

Westinghouse Electric Company Nuclear Power Plants P.O. Box 355 Pittsburgh, Pennsylvania 15230-0355 USA

U.S. Nuclear Regulatory Commission ATTENTION: Document Control Desk Washington, D.C. 20555

Direct tel: 412-374-6306 Direct fax: 412-374-5005 e-mail: sterdia@westinghouse.com

Your ref: Project Number 740 Our ref: DCP/NRC1885

May 11, 2007

Subject: AP1000 COL Standard Technical Report Submittal of APP-GW-GLR-101, Revision 0

In support of Combined License application pre-application activities, Westinghouse is submitting Revision 0 of AP1000 Standard Combined License Technical Report Number 101. This report completes and documents, on a generic basis, activities required for partial closure of COL Information Item 19.59.10-2 in the AP1000 Design Control Document. Changes to the Design Control Document identified in Technical Report Number 101 are intended to be incorporated into FSARs referencing the AP1000 design certification or incorporated into the design certification when Part 52 is revised to permit amendment of the design certification. This report is submitted as part of the NuStart Bellefonte COL Project (NRC Project Number 740). The information included in this report is generic and is expected to apply to all COL applications referencing the AP1000 Design Certification.

The purpose for submittal of this report was explained in a March 8, 2006 letter from NuStart to the U.S. Nuclear Regulatory Commission.

Pursuant to 10 CFR 50.30(b), APP-GW-GLR-101, Revision 0, "AP1000 Probabilistic Risk Assessment Site-Specific Considerations," Technical Report Number 101, is submitted as Enclosure 1 under the attached Oath of Affirmation.

It is expected that when the NRC review of Technical Report Number 101 is complete, COL Information Item 19.59.10-2 will be considered partially complete for COL applicants referencing the AP1000 Design Certification.

Questions or requests for additional information related to the content and preparation of this report should be directed to Westinghouse. Please send copies of such questions or requests to the prospective applicants for combined licenses referencing the AP1000 Design Certification. A representative for each applicant is included on the cc: list of this letter. Westinghouse requests the NRC to provide a schedule for review of this Technical Report within two weeks of its submittal.

Very truly yours,

Andree Sterds

A. Sterdis, Manager Licensing and Customer Interface Regulatory Affairs and Standardization

/Attachment

1. "Oath of Affirmation," dated May 11, 2007

/Enclosure

1. APP-GW-GLR-101, Revision 0, "AP1000 Probabilistic Risk Assessment Site-Specific Considerations," Technical Report Number 101, dated May 2007.

cc:	S. Bloom S. Coffin G. Curtis	- - -	U.S. NRC U.S. NRC TVA	1E 1E 1E	1A
	P. Grendys	-	Westinghouse	1E	
	P. Hastings	-	Duke Power	1E	1A
	C. Ionescu	-	Progress Energy	1E	1A
	D. Lindgren	-	Westinghouse	1E	1 A
	A. Monroe	-	SCANA	1E	1A
	M. Moran	-	Florida Power & Light	1E	1 A
	C. Pierce	-	Southern Company	1E	1A
	E. Schmiech	-	Westinghouse	1E	1A
	G. Zinke	-	NuStart/Entergy	1E	1A

ATTACHMENT 1

"Oath of Affirmation"

ATTACHMENT 1

UNITED STATES OF AMERICA

NUCLEAR REGULATORY COMMISSION

In the Matter of:)NuStart Bellefonte COL Project)NRC Project Number 740)

APPLICATION FOR REVIEW OF "AP1000 GENERAL COMBINED LICENSE INFORMATION" FOR COL APPLICATION PRE-APPLICATION REVIEW

W. E. Cummins, being duly sworn, states that he is Vice President, Regulatory Affairs & Standardization, for Westinghouse Electric Company; that he is authorized on the part of said company to sign and file with the Nuclear Regulatory Commission this document; that all statements made and matters set forth therein are true and correct to the best of his knowledge, information and belief.

W. E. Cummins Vice President Regulatory Affairs & Standardization

Subscribed and sworn to before me this //⁴/_h day of May 2007.

COMMONWEALTH O	F PENNSYLVANIA
Notarial	Seal
Debra McCarthy, Monroeville Boro, A	Contractor Country
wy commission Expl	res Aug. 31, 2009
Member, Pennsylvania A	sociation of Notaries
Llerra M	Carthy
Notary Public	\mathcal{A}

ENCLOSURE 1

APP-GW-GLR-101, Revision 0

AP1000 Probabilistic Risk Assessment Site-Specific Considerations

Technical Report Number 101

AP1000 DOCUMENT COVER SHEET

		TDC:		Permanent File:	APY	
			RF S#:	RFS IT	EM #:	
AP1000 DOCUMENT NO.	REVISION NO.		ASSIGNED TO			
APP-GW-GLR-101	0	Page 1 of 36	WINTERS			
ALTERNATE DOCUMENT N	UMBER: TR-101	W	ORK BREAKDO	WN #: GW		
ORIGINATING ORGANIZAT	TON: Westinghouse Electric (Company				
TITLE: AP1000 Proba	bilistic Risk Assessment	Site-Specific Conside	erations			
		-				
ATTACUMENTS.					THE DOC	DIENT

ATTACHMENTS: N/A		DCP #/REV. INCORPORATED IN THIS DOCUMENT REVISION: N/A				
CALCULATION/ANALYSIS N/A	REFERENCE:					
ELECTRONIC FILENAME APP- GW-GLR-101.doc	ELECTRONIC FILE FORMAT Microsoft Word		DNIC FILE DESC GLR-101.doc	CRIPTION	<u></u>	

(C) WESTINGHOUSE ELECTRIC COMPANY LLC - 2007

WESTINGHOUSE CLASS 3 (NON PROPRIETARY)

Class 3 Documents being transmitted to the NRC require the following two review signatures in lieu of a Form 36.

LEGAL REVIEW	SIGNATURE/DATE	5/9/20.7	
PATENT REVIEW	SIGNATURE/DATE	-6.1	
Mike Corletti	DAMi Dut for	51912007	
WESTINGHOUSE PR	OPRIETARY ELASS 2		

This document is the property of and contains Proprietary Information owned by Westinghouse Electric Company LLC and/or its subcontractors and suppliers. It is transmitted to you in confidence and trust, and you agree to treat this document in strict accordance with the terms and conditions of the agreement under which it was provided to you.

ORIGINATOR	SIGNATURE/DATE :
D. T. McLaughlin	1 m w he 3/8/07
REVIEWERS	SIGNATURE/DATE
	•
VERIFIER	SIGNATURE/DATE VERIFICATION METHOD
J. T. Kitzmiller	Colunt. Standar 5-8-2007 Independent 3-Pass Review
AP1000 RESPONSIBLE MANAGER	APPROVAL DATE
G. G. Ament	/ aus/ min 5/8/07
* Approval of the responsible manager signifi	s that document is complete, all required reviews are complete, electronic file is attached and document is released for use.

APP-GW-GLR-101 Revision 0 May 2007

AP1000 Standard Combined License Technical Report

AP1000 Probabilistic Risk Assessment Site-Specific Considerations

Westinghouse Electric Company LLC P.O. Box 355 Pittsburgh, PA 15230-0355

© 2007 Westinghouse Electric Company LLC All Rights Reserved

APP-GW-GLR-101 Revision 0

TABLE OF CONTENTS

Introduction	4
External Events Methodology	4
Transportation and Nearby Facilities Accidents	11
Site-Specific Level 3 PRA	16
Regulatory Impact	18
References	19
DCD Section 19.58 MARKUP	20
DCD Section 19.1 MARKUP	32
DCD Section 19.59 MARKUP	33
DCD Appendix 1.B MARKUP	37
	Introduction External Events Methodology High Winds Evaluation External Flooding Evaluation Transportation and Nearby Facilities Accidents Site-Specific Level 3 PRA Regulatory Impact References DCD Section 19.58 MARKUP DCD Section 19.1 MARKUP DCD Section 19.59 MARKUP DCD Section 19.59 MARKUP

1.0 INTRODUCTION

This technical report addresses AP1000 Design Control Document (DCD) (Reference 1) Combined Operating License (COL) Information Item 19.59.10-2 on page 19.59-37.

DCD Paragraph 19.59.10.5 Combined License Information Item 19.59.10-2 states:

"The Combined License applicant referencing the AP1000 certified design will review differences between the as-built plant and the design used as the basis for the AP1000 PRA and Table 19.59-18. If the effects of the differences are shown, by a screening analysis, to potentially result in a significant increase in core damage frequency or large release frequency, the PRA will be updated to reflect these differences. Based on site-specific information, the COL should also reevaluate the qualitative screening of external events (PRA Section 58.1). If any site-specific susceptibilities are found, the PRA should be updated to include the applicable external event."

The purpose of this report is to identify the potential external events that may impact the AP1000 risk on a site-specific basis. The Combined License information requested in COL Item 19.59.10-2 has been partially addressed in this report. Additional work is required by the Combined Operating License Applicant to address the aspects of the Combined License information requested in this subsection as delineated in the following paragraph:

The Combined Operating License Applicant will confirm that the High Winds, Floods, and Other External Events analysis documented in this report is applicable to the COL site. Further evaluation will be required if any unbounded site-specific susceptibilities are found.

The first part of the COL Item 19.59.10-2, regarding difference between the as-built plant and the design used as the basis for the AP1000 PRA has been addressed by Technical Report TR-06 (Reference 2).

This report also discusses impact of site selection on PRA Level 3 requirements. There is no specific COL item associated with this Level 3 PRA scope. However, as the Level 3 PRA is not required for COL application, this report suggests removing the Level 3 PRA information from the AP1000 DCD. This change to the AP1000 DCD is editorial in nature and does not impact the Level 3 analysis documented in the AP1000 Probabilistic Risk Assessment report (Reference 3).

2.0 EXTERNAL EVENTS METHODOLOGY

To support resolution of AP1000 COL Item 19.59.10-2, Westinghouse gathered site-specific, external event information from the NUSTART utilities interested in the AP1000 design. The process began when Westinghouse developed a list of PRA external events and provided this list to the utilities currently considering the AP1000 design.

External events considered in the AP1000 PRA are those events whose cause is external to all systems associated with normal and emergency operations situations. Some external events may not pose a significant threat of a severe accident. Some external events are considered at the design stage and have a sufficiently low contribution to core damage frequency or plant risk.

Based upon the guidelines provided in Reference 4 and Reference 5, the following is a list of external events that are considered for evaluation. Note that sabotage events are not included in

the scope of this evaluation.

- High winds and tornadoes;
 - Tornados are based on the Enhanced Fujita Scale (see Table 2.0-1)
 - Hurricanes are based on the Saffir-Simpson Scale (see Table 2.0-2)
- External floods;
- Transportation and nearby facility accidents
 - Aviation (accidental commercial/general/military)
 - Marine (ship/barge)
 - Pipeline (gas/oil)
 - Railroad
 - Truck

Each utility then evaluated each external event for applicability to their proposed sites. Events that were not applicable to any of the surveyed sites were screened from the evaluation. For events determined by the utility to be applicable to their proposed sites, the utility provided to Westinghouse an external event initiating event frequency. Westinghouse gathered initiating event frequencies from the utilities and compiled them. For a given initiating event, the initiating event frequencies are ordered in decreasing value. The highest initiating event frequency was selected to "bound" each event. Westinghouse then selected the largest initiating event frequency for each initiating event category and evaluated the frequency versus modified criteria in NUREG-1407.

The criteria developed in this report are that external events with a frequency less than 10^{-7} events / yr can be screened from the evaluation. For external event frequencies greater than 10^{-7} events / yr, a quantitative evaluation will be performed. If that evaluation can show that the resulting CDF would be less than 10^{-8} events / yr, then that external event can also be screened from the evaluation. Events that can not be screened from the evaluation would have to be considered for further detailed analysis.

The AP1000 total plant CDF is 5.08E-07 events/yr (from Table 19.59-15 of Reference 1). Events with a CDF of less than 10% of the total (<5.08E-08 events/yr) are not considered important to risk.

The external events considered in this analysis will not lead directly to core damage, as they are not likely to completely compromise the AP1000 defense-in-depth. The 10^{-7} events/yr event frequency criterion was developed by conservatively assigning 10% of the events to core damage. It should be stated that none of the AP1000 safety systems would be impacted by external events, and do not have failure rates as high as 10% (from Table 19.59-14 of Reference 1). Thus, the conservative maximum CDF from an external event with a 10^{-7} events/yr frequency should be 10^{-8} events/yr, which falls below the 5.08E-08 events/yr CDF criterion.

	Table 2.0-1: Description of Enhanced Fujita Scale (Tornados) ¹					
Scale Number	Intensity Phrase	Wind Speed	Type of Damage Done			
EF0	Gale tornado	65-85 mph	Some damage to chimneys; breaks branches off trees; pushe over shallow-rooted trees; Some damage to chimneys; branches broken off trees; shallow-rooted trees pushed over sign boards damaged.			
EFI	Moderate tornado	86-110 mph	Peels surface off roofs; mobile homes pushed off foundation or overturned; moving autos blown off roads.			
EF2	Significant tornado	111-135 mph	Roofs torn off frame houses; mobile homes demolished; boxcars overturned; large trees snapped or uprooted; light- object missiles generated; cars lifted off ground.			
EF3	Severe tornado	136 - 165 mph	Roofs and some walls torn off well-constructed houses; train overturned; most trees in forest uprooted; heavy cars lifted of the ground and thrown.			
EF4	Devastating tornado	166-200 mph	Well-constructed houses leveled; structures with weak foundations blown away some distance; cars thrown and larg missiles generated.			
EF5	Incredible tornado	>200 mph	Strong frame houses leveled off foundations and swept away automobile-sized missiles fly through the air in excess of 100 meters (109 yds); trees debarked; incredible phenomena will occur.			

1. Enhanced Fujita Scale extracted from Reference 6.

	Tab	le 2.0-2: Description of Saffir-Simpson Scale (Hurricanes) ¹
Category Number	Wind Speed	Category Description
1	74-95 mph	Storm surge generally 4-5 ft above normal. No real damage to building structures. Damage primarily to unanchored mobile homes, shrubbery, and trees. Some damage to poorly constructed signs. Also, some coastal road flooding and minor pier damage.
2	96-110 mph	Storm surge generally 6-8 feet above normal. Some roofing material, door, and window damage of buildings. Considerable damage to shrubbery and trees with some trees blown down. Considerable damage to mobile homes, poorly constructed signs, and piers. Coastal and low-lying escape routes flood 2-4 hours before arrival of the hurricane center. Small craft in unprotected anchorages break moorings.
3	111-130 mph	Storm surge generally 9-12 ft above normal. Some structural damage to small residences and utility buildings with a minor amount of curtain wall failures. Damage to shrubbery and trees with foliage blown off trees and large trees blown down. Mobile homes and poorly constructed signs are destroyed. Low-lying escape routes are cut by rising water 3-5 hours before arrival of the center of the hurricane. Flooding near the coast destroys smaller structures with larger structures damaged by battering from floating debris. Terrain continuously lower than 5 ft above mean sea level may be flooded inland 8 miles (13 km) or more. Evacuation of low-lying residences with several blocks of the shoreline may be required.
4	131-155 mph	Storm surge generally 13-18 ft above normal. More extensive curtain wall failures with some complete roof structure failures on small residences. Shrubs, trees, and all signs are blown down. Complete destruction of mobile homes. Extensive damage to doors and windows. Low-lying escape routes may be cut by rising water 3-5 hours before arrival of the center of the hurricane. Major damage to lower floors of structures near the shore. Terrain lower than 10 ft above sea level may be flooded requiring massive evacuation of residential areas as far inland as 6 miles (10 km).
5	>155 mph	Storm surge generally greater than 18 ft above normal. Complete roof failure on many residences and industrial buildings. Some complete building failures with small utility buildings blown over or away. All shrubs, trees, and signs blown down. Complete destruction of mobile homes. Severe and extensive window and door damage. Low-lying escape routes are cut by rising water 3-5 hours before arrival of the center of the hurricane. Major damage to lower floors of all structures located less than 15 ft above sea level and within 500 yards of the shoreline. Massive evacuation of residential areas on low ground within 5-10 miles (8-16 km) of the shoreline may be required.

1. Saffir-Simpson Scale extracted from Reference 7.

3.0 HIGH WINDS EVALUATION

The overall methodology recommended by NUREG-1407 (Reference 5) for analyzing plant risk due to high winds and tornados is a progressive screening approach. This approach is modified to consider determining the acceptability of hazard frequency and risk. High winds (including tornadoes) can affect plant structures in at least two ways: (1) If wind forces exceed the load capacity of a building or other external facility, the walls or framing might collapse or the structure might overturn from the excessive loading; and (2) If the wind is strong enough, as in a tornado or hurricane, it may be capable of lifting materials and thrusting them as missiles against the plant structures that house safety related equipment. Critical components or other contents of plant structures not designed to resist missile penetration might be damaged and lose their function.

The NUREG-1407 criterion for High Winds and Tornados states that "these events pose no significant threat of a severe accident because the current design criteria for wind are dominated by tornadoes having an annual frequency of exceedance of about 10^{-7} ". This is interpreted to mean that events with an annual frequency of exceedance less than 10^{-7} events/yr may be removed from further consideration and events with an annual frequency of exceedance greater than 10^{-7} events/yr must be further evaluated. However, the NUREG-1407 criterion was developed for currently operating plants. This 10^{-7} events/yr value is sufficiently low to capture important contributors to AP1000 risk, and is consistent with the acceptance criteria outlined in Section 2.0 of this report.

High Winds and Tornados tend to behave as a Loss of Offsite Power (LOSP), since the site switchyard is unprotected and not designed against high winds velocities. For wind velocities greater than the design basis, additional Structures, Systems and Components (SSC) may also be damaged. Therefore, two analyses will be performed, one considering only a LOSP, and another considering a LOSP with failure of the standby non-safety systems. This analysis considers not only excessive wind forces, but also missile generation. A Conditional Core Damage Probability will be calculated for each of those two scenarios. Risk due to the event can be estimated using the following equation:

CDF = IEF * CCDP (Equation 1)

Where CDF is annual Core Damage Frequency, IEF is the Initiating Event Frequency and CCDP is the Conditional Core Damage Probability. If this evaluation indicates an acceptably small contribution to risk (e.g. less than 10% of the total plant CDF), then the progressive screening is complete and no detailed PRA will be necessary.

The analysis for High Winds and Tornados begins with an examination of the Design Basis for the plant, which is documented in Section 2.0 of the AP1000 DCD (Reference 1). It is anticipated that a high wind or tornado event would result in a loss of offsite power, as the switchyard is likely to become unavailable during the event.

The AP1000 design basis wind speed for tornados is 300 mph as discussed in Chapter 2 of the AP1000 DCD. This value is assumed to be the maximum wind speed that will not challenge the safety related structures. The AP1000 operating basis wind speed is 145 mph as discussed in Chapter 2 of the AP1000 DCD. This value is assumed to be the maximum wind speed that will not challenge the non-safety related structures.

The structures protecting safety related features of the AP1000 are designed for extreme winds and missiles associated with these winds. As long as the external event winds are less than these design basis winds (300 mph, per Chapter 2 of the DCD), the safety features of the AP1000 will be unaffected. If the winds exceed the design values, then the integrity of the safety related structures may be compromised.

The structures protecting non-safety related features of the AP1000 are designed according to uniform building code and have some level of protection against seismic and high wind events. As long as the external event winds are less than the operating basis winds (145 mph, per Chapter 2 of the DCD), the non-safety features of the AP1000 will be unaffected. If the winds exceed the operating basis values, then the integrity of the non-safety related structures may be compromised.

In summary of the design against high winds, the plant is designed against 300 miles per hour (mph) winds. The operating basis of the plant is winds up to 145 mph. This means that the safety structures are protected against winds up to 300 mph and non-safety system structures are protected against winds up to 145 mph. Per the Enhanced Fujita Scale for Tornados (Table 2.0-1), no tornados are expected to exceed 300 mph; however, EF3, EF4, and EF5 tornados do exceed the operating basis of the AP1000. Per the Saffir-Simpson Scale for Hurricanes (Table 2.0-2), no hurricanes are expected to reach 300 mph winds; however, Category 4 and Category 5 Hurricane winds do exceed the operating basis of the AP1000.

Three studies are performed to evaluate the high wind events. The Case 1 study is a Loss of Offsite Power (LOSP) induced by each of the events, with no other equipment unavailable. A Conditional Core Damage Probability (CCDP) is developed for this scenario, which may be multiplied by the high wind event frequency. The CCDP was calculated as 9.81E-09. All tornados and hurricanes are considered in this Case 1 as they may challenge the AP1000 switchyard. Extratropical cyclones are normal storms and thunderstorms with winds expected to fall below the operating basis for the AP1000. They are also included in the Case 1 analysis.

As stated above, the EF3, EF4, and EF5 Tornados and Category 4 and Category 5 Hurricanes may challenge the non-safety related structures in the AP1000. Therefore, these events will be evaluated with the loss of additional SSCs. The Case 2 study is created by modifying the Case 1 analysis for the EF3, EF4, and EF5 tornados, and Category 4 and Category 5 hurricanes to have a LOSP with additional failures of non-safety systems. A CCDP was developed for this scenario, which may be multiplied by the high wind event frequency. The CCDP was calculated as 5.85E-08.

The final Case 3 is a conservative study where all high wind events are evaluated as a LOSP with failure of the non-safety systems. The CCDP developed for Case 2 is applied to all events. This case is created to represent the risk to the plant if the non-safety structures were not designed to any code.

In this high winds analysis, events are considered of low risk importance if their initiating event frequency is less than 10⁻⁷ or if their estimated CDF is less than 10% of the total plant CDF (5.08E-07 events/yr, Reference 1). Therefore, the CDF screening value is 5.08E-08 events/yr.

The results of the CDF calculation are shown in Table 3.0-1. Equation 1 was used to determine the resultant CDF.

APP-GW-GLR-101 Revision 0

Category	Event	Limiting Initiating	CDF (events/yr)			
		Event Freq. (events/yr)	LOSP (Case 1) (events/yr)	LOSP with non- safety systems unavailable for select events (Case 2) (events/yr)	LOSP with non- safety systems unavailable for all events (Case 3) (events/yr)	
High	EF0 Tornado	8.00E-05	7.85E-13	7.85E-13 ¹	4.68E-12	
Winds	EF1 Tornado	8.00E-05	7.85E-13	7.85E-13 ¹	4.68E-12	
	EF2 Tornado	1.60E-04	1.57E-12	1.57E-12 ¹	9.36E-12	
	EF3 Tornado	8.00E-05	7.85E-13	4.68E-12	4.68E-12	
	EF4 Tornado	8.00E-05	7.85E-13	4.68E-12	4.68E-12	
	EF5 Tornado	8.00E-05	7.85E-13	4.68E-12	4.68E-12	
	Cat. 1 Hurricane	1.00E-01	9.81E-10	9.81E-10 ¹	5.85E-09	
	Cat. 2 Hurricane	5.00E-02	2.94E-10	2.94E-10 ¹	2.93E-09	
	Cat. 3 Hurricane	3.00E-02	2.94E-10	2.94E-10 ¹	1.76E-09	
	Cat. 4 Hurricane	1.00E-02	9.81E-11	5.85E-10	5.85E-10	
	Cat. 5 Hurricane	1.00E-02	9.81E-11	5.85E-10	5.85E-10	
	Extratropical Cyclones	3.00E-02	2.94E-10	2.94E-10 ¹	1.76E-09	
Totals		i i i i i i i i i i i i i i i i i i i	2.07E-09	3.25E-09	1.35E-08	

¹CDF values from Case 1 were used to illustrate the winds from these events will not challenge additional plant SSCs.

In the above table, none of the limiting initiating event frequencies were sufficiently low to be removed from further consideration. Therefore, the CDF calculation was performed. In each case, the resultant CDF is less than 10% of the total plant CDF, 5.08E-08 events/yr. The Category 4 and Category 5 Hurricane frequency is considered to be extremely conservative at 1.00E-02 events/yr. Yet, even with that initiating event frequency, and the worst case sensitivity study (Case 3), the resultant CDF is still less than the CDF criterion of 5.08E-08 events/yr. Furthermore, the sum of the estimated CDF for each Case falls below the CDF criterion of 5.08E-08 events/yr. Bevents/yr. Therefore, no further detailed PRA is necessary for the AP1000 High Winds and Tornados analysis.

It is recognized that by failing all non-safety systems for Case 3, the total CDF increases by an approximate factor of 4 compared to the Case 2. In Case 3, the larger frequencies for the lower intensity events are driving the CDF. In Case 3, there is an assumption that no non-safety structure will survive any high wind event. But, in fact, the AP1000 non-safety structures have been designed to a building code that offers an added level of protection. It is concluded that the added level of protection for the non-safety structures is important in preventing core damage.

APP-GW-GLR-101 Revision 0

4.0 EXTERNAL FLOODING EVALUATION

An external flooding analysis was performed to account for any significant contribution to core damage frequency resulting from plant damage caused by storms, dam failure, and flash floods.

The analysis for External Floods begins with an examination of the Design Basis for the plant, which is documented in Section 2.0 of the AP1000 DCD (Reference 1). The AP1000 is designed against flood levels less than plant elevation 100 feet.

Only one site indicated susceptibility to external floods, due to hurricane surge water. That site is located at an elevation of 45 feet. Category 5 Hurricanes, per the Saffir-Simpson scale, are capable of storm surges greater than 18 feet. However, the probability of generating a storm surge of 45 feet, combined with the frequency of a Category 5 hurricane results in a very small event frequency. Engineering judgment is used to establish that the frequency of this type of flood is significantly less than the 10^{-7} per year criterion for initiating event frequency.

As a sensitivity study, the 10^{-7} events/yr initiating event frequency is taken as the frequency of an event that may challenge the non-safety structures in the plant. This sensitivity study also considers failure of the switchyard due to flooding. A LOSP with failure of the non-safety systems CCDP was developed. Equation 1 was used to determine the resultant CDF.

As expected, the risk due to a flooding event is very low for the AP1000. The resultant CDF of 5.85E-15 events/yr is an insignificant contribution to total plant CDF.

For other sites, the AP1000 is designed to site characteristics described in Chapter 2 of the DCD. The site selection criterion provides that, for an accident that has potential consequences serious enough to affect the safety of the plant to the extent that 10 CFR 100 guidelines are exceeded, the annual frequency of occurrence is less than 10^{-6} per year. As explained in Section 2.0, this criterion should be extended to an annual frequency of occurrence less than 10^{-7} per year. As none of the surveyed sites indicated susceptibility to floods due to dam failure and/or flash floods, those events should be considered on a site-by-site basis.

5.0 TRANSPORTATION AND NEARBY FACILITIES ACCIDENTS

These events consist of accidents related to transportation near the nuclear power plant and accidents at industrial and military facilities in the vicinity. The following modes of transportation are considered:

- Aviation (commercial/general/military)
- Marine (ship/barge)
- Pipeline (gas/oil)
- Railroad
- Truck

5.1 Aviation Accidents

Two of the surveyed sites reported that Aviation Accidents are a concern. The limiting event frequency is 1.21E-06 events/yr; however, most of that frequency is for small aircraft, with commercial aircraft contribution 9.40E-09 events/yr.

A conservative analysis has be performed to evaluate the risk due to small aircraft accidents onsite. This analysis assumed a Loss of Offsite Power event, and conservatively failed a set of standby non-safety systems. This is acceptable as it is unlikely that a small aircraft accident would challenge any of the passive safety systems inside containment. This leaves only the nonsafety systems outside of containment as vulnerable. However, this evaluation is conservative as it is unlikely that a small aircraft would have the capacity to fail such a large area of the AP1000.

Equation 1 is used to determine the resultant CDF. A CDF of 7.08E-14 events/yr is calculated and is an insignificant contribution to total plant CDF of approximately 5.08E-07 events/yr (Reference 1). Therefore, sites that can demonstrate an aviation event frequency less than or equal to 1.21E-06 events/yr for small aircraft accidents are bounded by this evaluation.

Larger commercial aircraft may have the capacity to challenge SSCs within the AP1000 containment. However, the containment structure and safety systems are designed to withstand various earthquake levels, such that many of the safety system SSCs will still be available following the accident. Therefore the 10^{-7} events/yr criterion for event frequency is still applicable for larger commercial aircraft. Sites that can demonstrate a commercial aircraft aviation event frequency less than the 10^{-7} events/yr criterion are also bounded by this analysis.

5.2 Marine Accidents

Only sites with large waterways with ship and/or barge traffic that go through or near the site need to consider Marine Accidents. One of the surveyed sites reported that Marine Accidents are a concern.

Marine accidents involving ship or barge accidents, pose a hazard to a nuclear power plant due to two possibilities:

- 1. Release of hazardous material towards the plant
- 2. Explosion with resulting damage to the plant.

The potential exists for a Marine Accident that leads to a release of toxic materials into the atmosphere. This type of event may compromise the safety of the plant operators, resulting in reduced operator reliability. However, the toxic release will not directly lead to any failure of plant equipment. To evaluate the risk impact of this scenario, a CCDP is developed that models a reactor trip followed by the guaranteed failure of all PRA credited operator actions. The resulting CCDP is 6.26E-08. The initiating event frequency is 1.0E-06 events/yr, which was selected as the bounding value of the surveyed sites based on supplied information.

Equation 1 is used to determine the resultant CDF. The resultant CDF is 6.26E-14 events/yr. The results indicate a very low estimated CDF contribution due to toxic releases from a Marine Accident.

The above analysis is conservative. The AP1000 has an additional level of defense against toxic airborne material. With advanced warning, the operators may actuate passive control room habitability. This system isolates the control room from normal HVAC and actuates a separate system supplied from compressed air containers. The compressed air slightly pressurizes the control room above atmospheric pressure, preventing the entrance of toxic material in the control room. This system is available for 72 hours, which is adequate time to withstand the event.

There is also a potential for marine explosion accidents. The AP1000 is not designed with a Service Water intake structure; thus, Loss of Service Water events as a consequence of marine explosions are not a nuclear safety concern for the AP1000 design. Regulatory Guide 1.91 (Reference 8) provides the acceptance criterion of an overpressure event in excess of 1 psi at a frequency less than 1E-06 /yr.

Additional evaluations were performed in NUREG/CR-5042 (Reference 9), which documents a study performed for the Waterford site. Waterford lies in a heavily trafficked (>100,000 vessels per year) area of the Mississippi River. The Waterford reactor building is located approximately 2,200 feet from the main shipping channel in the Mississippi River.

The Waterford site is of no special relation to the AP1000 design; however, several insights may be gained from the NUREG/CR-5042 evaluation. The NUREG/CR-5042 evaluation considered detonation of a 300,000 barrel barge filled with gasoline. The detonation of this fuel loading produced an acceptable overpressure for the safety-related buildings. This evaluation provides justification that the Regulatory Guide 1.91 acceptance criterion is conservative, at least for the safety-related buildings. Marine explosion accidents do not need to be considered further for the AP1000 PRA as long as the Regulatory Guide 1.91 criterion is met.

5.3 Pipeline Accidents

Pipeline accidents could pose a hazard to the AP1000 due to the release of hazardous material or the possibility of an explosion and resulting damage to the plant. One of the surveyed sites noted a potential pipeline accident applicable to the site. For the site, there is a 30" Gas line approximately 5800 feet away. An evaluation was performed.

Considerations for the evaluation are:

- Gas pipe rupture frequency,
- Gas cloud formation probability,
- Gas cloud transportation and non-dispersion probability,
- Gas cloud ignition probability on-site.

Consider Figure 5.3-1 to further evaluate the probability of this accident. When considering the pipe rupture frequency, the probability of forming a dense gas cloud, and the probability of the wind speed and direction to be in the ranges necessary to transport the gas cloud 5800 feet to the site, without dispersing the gas, including ignition of the gas cloud on-site in a location that may challenge the plant, this event probability becomes very low.

Site habitability is also a concern for toxic materials. However, the AP1000 has an additional level of defense against toxic airborne material. With advanced warning, the operators may actuate passive control room habitability. This system isolates the control room from normal

HVAC and actuates a separate system supplied from compressed air containers. The compressed air slightly pressurizes the control room above atmospheric pressure, preventing the entrance of toxic material in the control room. This system is available for 72 hours, which is adequate time to withstand the event.

The expected frequency value is expected to be below the initiating event criterion of 1.0E-07 events/yr. This is based on the expected low frequency of a pipe rupture combined with the low probability of forming and igniting a gas cloud. Therefore, no further quantitative evaluation is necessary.

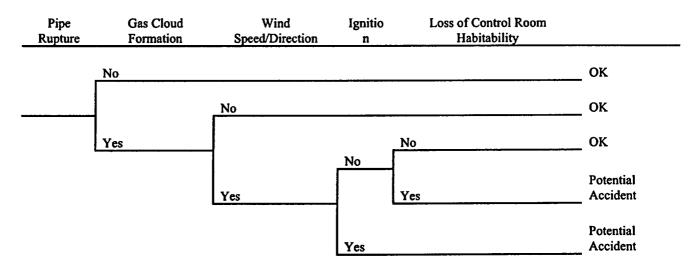


Figure 5.3-1: Pipeline Accident Model

5.4 Railroad and Truck Accidents

Railroad and Truck accidents could pose a hazard to the AP1000 due to the release of hazardous material or the possibility of an explosion and resulting damage to the plant. Toxic material releases were evaluated in the Marine Accident evaluation as to not be important to AP1000 plant risk. Significant damage to the AP1000 plant was evaluated in the Aviation Accident evaluation. Neither truck nor railroad accidents are expected to result in the amount of damage that may be seen from an Aviation Accident. This is especially true considering the increased security barriers established at U.S. nuclear power plants. None of the surveyed sites noted railroad accidents as applicable to the site. Therefore, no further analysis is necessary.

For other sites, the AP1000 is designed to site characteristics described in Chapter 2 of the DCD. The site selection criterion provides that, for an accident that has potential consequences serious enough to affect the safety of the plant to the extent that 10 CFR 100 guidelines are exceeded, the annual frequency of occurrence is less than 10^{-6} per year. As explained in Section 2.0, this criterion should be extended to an annual frequency of occurrence less than 10^{-7} per year.

6.0 SITE-SPECIFIC LEVEL 3 PRA

A Probabilistic Risk Assessment (PRA) was performed in support of the AP1000 Design Certification application. The purpose of the PRA was to improve plant design using risk insights. Included in the PRA was an assessment of offsite dose risk (commonly referred to as a Level 3 PRA) for a reference site. There was no explicit regulatory requirement for a Level 3 PRA; however, the Level 3 PRA was suggested for Design Certification in the EPRI ALWR Utility Requirements Document (Reference 10). The purpose of the Level 3 PRA was to estimate the potential ground-level exposure, expressed as both effective dose equivalent (EDE), wholebody dose and acute red bone marrow dose, resulting from the possible accidental release of radioactive fission products.

The results of the AP1000 Level 3 PRA were used to support the DCD Appendix 1B Severe Accident Mitigation Design Alternatives (SAMDA) for the Westinghouse AP1000 design. This evaluation is performed to evaluate whether or not the safety benefit of the SAMDA outweighs the costs of incorporating the SAMDA in the plant, and is conducted in accordance with applicable regulatory requirements as identified below.

The National Environmental Policy Act (NEPA), Section 102.(C)(iii) requires, in part, that:

... all agencies of the Federal Government shall ... (C) include in every recommendation or report on proposals for legislation and other major Federal actions significantly affecting the quality of the human environment, a detailed statement by the responsible official on ... (iii) alternatives to the proposed action.

The 10 CFR 52.47(a)(ii) requires an applicant for design certification to demonstrate:

... compliance with any technically relevant portions of the Three Mile Island requirements set forth in 10 CFR 50.34(f) ...

A relevant requirement of 10 CFR 50.34(f) contained in subparagraph (1)(i) requires the performance of:

... a plant/site specific probabilistic risk assessment, the aim of which is to seek such improvements in the reliability of core and containment heat removal systems as are significant and practical and do not impact excessively on the plant ...

In SECY-91-229, the U.S. Nuclear Regulatory Commission (NRC) staff recommends that SAMDAs be addressed for certified designs in a single rulemaking process that would address both the 10 CFR 50.34 (f) and NEPA considerations in the 10 CFR Part 52 design certification rulemaking. SECY-91-229 further recommends that applicants for design certification assess SAMDAs and the applicable decision rationale as to why they will or will not benefit the safety of their designs. The Commission approved the staff recommendations in a memorandum dated October 25, 1991 (Reference 11).

Similar to the analysis performed in support of the AP1000 Design Certification, there is no explicit regulatory requirement for a Level 3 PRA to support COL Applications. Furthermore, there is no regulatory requirement for a SAMDA analysis to support COL Applications, although similar work will be performed to support the site Environmental Report.

APP-GW-GLR-101 Revision 0

The Level 3 PRA performed to support the AP1000 Design Certification provided valuable insights to confirm public safety will be maintained for a reference AP1000. Those same levels of safety are expected to hold true for a specific site COL application. This conclusion is especially true considering the "standard design" approach taken by Westinghouse and the potential COL applicants in which the Certified Design will be maintained from site-to-site in order to guarantee the already proven low risk levels. Based on this conclusion, this Technical Report recommends that the Level 3 results summary data be removed from AP1000 DCD Chapter 19 (See Section 11.0). This change also impacts the DCD Appendix 1B SAMDA assessment. Therefore, AP1000 DCD Appendix 1B is revised accordingly (see Section 12.0). The above revisions are editorial in nature. The changes to DCD Appendix 1B are simply made to indicate that the Level 3 PRA inputs to the SAMDA analysis were extracted from the AP1000 PRA report (Reference 3), rather than from AP1000 DCD Chapter 19.

7.0 REGULATORY IMPACT

AP1000 is expected to achieve a higher standard of severe accident safety performance than current operating plants, because both prevention and mitigation of severe accidents have been addressed during the design stage, taking advantage of PRA insights, PRA success criteria analysis, severe accident research, and severe accident analysis. Since PRA considerations have been integrated into the AP1000 design process from the beginning, many of the traditional PRA insights relating to current operating plants are not at issue for the AP1000. The Level 1, and Level 2 PRA results show that addressing PRA issues in the design process leads to a low level of risk. The PRA results indicate that the AP1000 design meets the higher expectations and goals for new generation passive pressurized water reactors (PWRs).

The AP1000 design is shown to be highly robust against the external events discussed in this Technical Report. The design is resilient against high winds, external floods and other external events that challenge various equipment in the plant.

The following conclusions and insights are derived from the AP1000 external events assessment for events at power:

- High Winds and Tornados were quantitatively evaluated to be of low risk to the AP1000 design for each of the participating sites. A bounding assessment is provided to show that the expected CDF due to any one of these events does not exceeds 10% of the total plant CDF (5.08E-08 events/yr). The same is true for the aggregate results. Sensitivity studies were performed to ensure low risk for more limiting scenarios. No further analysis is suggested.
- 2. The AP1000 is designed to flooding levels described in Chapter 2 of the DCD. The site selection criterion provides that, for an accident that has potential consequences serious enough to affect the safety of the plant to the extent that 10 CFR 100 guidelines are exceeded, the annual frequency of occurrence is less than 10⁻⁶ per year. This criterion should be extended to an annual frequency of occurrence less than 10⁻⁷ per year. No further analysis is suggested.
- 3. Transportation and Nearby Facilities Accidents are qualitatively evaluated to be of low risk importance and do not warrant further evaluation.

The changes to the DCD presented in this report do not represent an adverse change to the design or the PRA. The DCD changes do not require a license amendment per the criteria of VIII.B.5.b of Appendix D to 10CFR Part 52.

The closure of the COL Information Item 19.59.10-2 will not alter barriers or alarms that control access to protected areas of the plant. The closure of the COL Information Item will not alter requirements for security personnel. Therefore, the closure of the COL Information item does not have an adverse impact on the security assessment of the AP1000.

8.0 REFERENCES

- 1. APP-GW-GL-700, "AP1000 Design Control Document", Revision 15.
- 2. APP-GW-GLR-021, "AP1000 As-Built COL Information Items", Revision 0, June 2006.
- 3. APP-GW-GL-022, "AP1000 Probabilistic Risk Assessment", Revision 5.
- 4. "Individual Plant Examination of External Events (IPEEE) for Severe Accident Vulnerabilities 10 CFR 50.54(f)", Generic Letter 88-20, Supplement 4, June 28, 1991.
- 5. U.S. Nuclear Regulatory Commission, NUREG-1407, "Procedural and Submittal Guidance for the Individual Plant Examination of External Events (IPEEE) for Severe Accident Vulnerabilities", June 1991.
- 6. National Weather Service, "The Enhanced Fujita Scale", February 02, 2007, Available: <u>http://www.spc.noaa.gov/efscale/</u>.
- 7. National Weather Service, "The Saffir-Simpson Hurricane Scale", June 22, 2006, Available: <u>http://www.nhc.noaa.gov/aboutsshs.shtml</u>.
- 8. U.S. Nuclear Regulatory Commission Regulatory Guide 1.91, "Evaluations of Explosions Postulated to Occur on Transportation Routes Near Nuclear Power Plants", Revision 1, February 1978.
- 9. U.S. Nuclear Regulatory Commission, NUREG/CR-5042, "Evaluation of External Hazards to Nuclear Power Plants in the United States", December 1987.
- 10. "Advanced Light Water Reactor Utility Requirements Document," Volume III, APPENDIX A to Chapter 1, PRA Key Assumptions and Groundrules", EPRI, Rev. 5 & 6, December 1993.
- 11. U.S. Nuclear Regulatory Commission, "SECY-91-229 Severe Accident Mitigation Design Alternatives for Certified Standard Designs", USNRC Memorandum from Samuel J. Chilk to James M. Taylor, dated October 25, 1991.

9.0 DCD SECTION 19.58 MARKUP

The following DCD markup identifies how COL application Final Safety Analysis Reports should be prepared to incorporate the subject change.

Revise Section 19.58:

19.58 Winds, Floods, and Other External Events

This section intentionally blank.

19.58.1 Introduction

External events considered in the AP1000 PRA are those events whose cause is external to all systems associated with normal and emergency operations situations. Some external events may not pose a significant threat of a severe accident. Some external events are considered at the design stage and have a sufficiently low contribution to core damage frequency or plant risk.

Based upon the guidelines provided in References 19.58-1 and 19.58-2, the following is a list of five external events that are included for AP1000 analysis:

- High winds and tornadoes
- External floods
- Transportation and nearby facility accidents
- Seismic events
- Internal fires

The first three external events are addressed in this Section. Seismic events and internal fires are addressed in the AP1000 PRA.

Chapter 2 of the AP1000 Design Control Document (DCD) defines the site characteristics for which the AP1000 is designed. A site is acceptable if the site characteristics fall within the AP1000 site interface parameters.

19.58.2 External Events Analysis

19.58.2.1 Severe Winds and Tornadoes

The overall methodology recommended by NUREG-1407 for analyzing plant risk due to high winds and tornados is a progressive screening approach. This approach is modified to consider determining the acceptability of hazard frequency and risk. High winds (including tornadoes) can affect plant structures in at least two ways: (1) If wind forces exceed the load capacity of a building or other external facility, the walls or framing might collapse or the structure might overturn from the excessive loading; and (2) If the wind is strong enough, as in a tornado or hurricane, it may be capable of lifting materials and thrusting them as missiles against the plant structures that house safety related equipment. Critical components or other contents of plant structures not designed to resist missile penetration might be damaged and lose their function.

The NUREG-1407 criterion for High Winds and Tornados states that "these events pose no significant threat of a severe accident because the current design criteria for wind are dominated by tornadoes having an annual frequency of exceedance of about 10⁻⁷". This is interpreted to mean that events with an annual frequency of exceedance less than 10⁻⁷ may be removed from further consideration and events with an annual frequency of exceedance greater than 10⁻⁷ must be further evaluated. However, the NUREG-1407 criterion was developed for currently operating plants.

High Winds and Tornados tend to behave as a Loss of Offsite Power (LOSP), since the site switchyard is unprotected and not designed against high winds velocities. For wind velocities greater than the design basis, additional Structures, Systems and Components (SSC) may also fail. Therefore, two analyses are performed, one considering only a LOSP, and another considering a LOSP with failure of the standby non-safety systems. This analysis considers not only excessive wind forces, but also missile generation. A Conditional Core Damage Probability will be calculated for each of those scenarios. Risk due to the event can be estimated using the following equation:

CDF = IEF * CCDP

(Equation 19.58.2.1-1)

Where CDF is annual Core Damage Frequency, IEF is the Initiating Event Frequency and CCDP is the Conditional Core Damage Probability. If this evaluation indicates an acceptably small contribution to risk (e.g. less than 10% of the total plant CDF), then the progressive screening is complete and no detailed PRA will be necessary.

The analysis for High Winds and Tornados begins with an examination of the Design Basis for the plant, which is documented in Section 2.0 of the AP1000 DCD. The analysis for winds and tornadoes is site-specific. It is anticipated that a high wind or tornado event would result in a loss of offsite power, as the switchyard is likely to become unavailable during the event.

The AP1000 design basis wind speed for tornados is 300 mph as discussed in Chapter 2 of the AP1000 DCD. This value is assumed to be the maximum wind speed that will not challenge the safety related structures. The AP1000 operating basis wind speed is 145 mph as discussed in Chapter 2 of the AP1000 DCD. This value is assumed to be the maximum wind speed that will not challenge the non-safety related structures.

The structures protecting safety related features of the AP1000 are designed for extreme winds and missiles associated with these winds. As long as the external event winds are less than these design basis winds, the safety features of the AP1000 will be unaffected. If the winds exceed the design values, then the integrity of the safety related structures may be compromised.

The structures protecting non-safety related features of the AP1000 are designed according to uniform building code and have some level of protection against seismic and high wind events. As long as the external event winds are less than the operating basis winds (145 mph, per Chapter 2 of the DCD), the non-safety features of the AP1000 will be unaffected. If the winds exceed the operating basis values, then the integrity of the non-safety related structures may be compromised.

In summary of the design against high winds, the plant is designed against 300 miles per hour (mph) winds. The operating basis of the plant is winds up to 145 mph. This means that the safety structures are protected against winds up to 300 mph and non-safety system structures are protected against winds up to 145 mph. Per the Enhanced Fujita Scale for Tornados (Table 19.58.2.1-1), no tornados are expected to exceed 300 mph; however, EF3, EF4, and EF5 tornados do exceed the operating basis of the AP1000. Per the Saffir-Simpson Scale for Hurricanes (Table 19.58.2.1-2), no hurricanes are expected to reach 300 mph winds; however, Category 4 and Category 5 Hurricane winds do exceed the operating basis of the AP1000.

Three studies are performed to evaluate the high wind events. The Case 1 study is a Loss of Offsite Power (LOSP) induced by each of the events, with no other equipment unavailable. A Conditional Core Damage Probability (CCDP) is developed for this scenario, which may be multiplied by the high wind event frequency. All tornados and hurricanes are considered in this Case 1 as they may challenge the AP1000 switchyard. Extratropical cyclones are normal storms and thunderstorms with winds expected to fall below the operating basis for the AP1000. They are also included in the Case 1 analysis.

As stated above, the EF3, EF4, and EF5 Tornados and Category 4 and Category 5 Hurricanes may challenge the non-safety related structures in the AP1000. Therefore, these events will be evaluated with the loss of additional SSCs. The Case 2 study is created by modifying the Case 1 analysis for the EF3, EF4, and EF5 tornados, and Category 4 and Category 5 hurricanes to have a LOSP with additional failures of non-safety systems unavailable. A CCDP is developed for this scenario, which may be multiplied by the high wind event frequency.

The final Case 3 is a conservative study where all high wind events are evaluated as a LOSP with failure of the non-safety systems. This case is created to represent the worst case scenario unavailable. In this analysis, events are considered of low risk importance if their initiating event frequency is less than 10⁻⁷ events/yr or if their estimated CDF is less than 10% of the total plant CDF. Therefore, the CDF screening values is 5.08E-08 events/yr.

The results of the CDF calculation are shown in Table 19.58.2.1-3. Equation 19.58.2.1-1 was used to determine the resultant CDF.

In Table 19.58.2.1-3, none of the limiting initiating event frequencies were sufficiently low to be removed from further consideration. Therefore, the CDF calculation was performed. In each case, the resultant CDF is less than 10% of the total plant CDF, 5.08E-08 events/yr. The Category 4 and Category 5 Hurricane frequency is considered to be extremely conservative at 1.00E-02 events/yr. Event with the conservative initiating event frequency, and the worst case sensitivity study (Case 3), the resultant CDF is still less than the CDF criterion of 5.08E-08 events/yr. Furthermore, the sum of the estimated CDF for each Case falls below the CDF criterion of 5.08E-08 events/yr. Therefore, no further detailed PRA is necessary for the AP1000 High Winds and Tornados analysis.

19.58.2.2 External Floods

An external flooding analysis was performed to account for any significant contribution to core damage frequency resulting from plant damage caused by storms, dam failure, and flash floods.

The analysis for External Floods begins with an examination of the Design Basis for the plant, which is documented in Section 2.0 of the AP1000 DCD. The AP1000 is designed against flood levels less than plant elevation 100 feet.

The basic steps involved in an external flooding analysis are similar to those followed for internal flooding in the individual plant examination. However, the focus of attention is on areas, which due to their location and grading, may be susceptible to external flood damage, thus requiring information on such items as dikes, surface grading, locations of structures, and locations of equipment within the structures. Information, such as meteorological data for the site, historical flood height, and frequency data, is also needed.

Category 5 Hurricanes, per the Saffir-Simpson scale, are capable of storm surges greater than 18 feet. However, the probability of generating a storm surge of 18 feet, combined with the frequency of a Category 5 hurricane results in a very small event frequency. Even conservatively assuming a storm surge of 18 feet, the frequency of an event capable of generating this storm surge is very small. Engineering judgment is used to establish that the frequency of this type of flood is significantly less than the 10⁻⁷ per year criterion for initiating event frequency.

As a sensitivity study, the 10⁻⁷ events/yr initiating event frequency is taken as the frequency of an event that may challenge the non-safety structures in the plant. This sensitivity study also considers failure of the switchyard due to flooding. A LOSP with failure of the non-safety systems CCDP was developed. Equation 19.58.2.1-1 was used to determine the resultant CDF. As expected, the risk due to a flooding event is very low for the AP1000. The resultant CDF of 5.85E-15 events/yr is an insignificant contribution to total plant CDF.

For other sites, the AP1000 is designed to site characteristics described in Chapter 2 of the DCD. The site selection criterion provides that, for an accident that has potential consequences serious enough to affect the safety of the plant to the extent that 10 CFR 100 guidelines are exceeded, the annual frequency of occurrence is less than 10^{-6} events/yr. To consider the already low risk of the AP1000 design, this criterion should be extended to an annual frequency of occurrence less than 10^{-7} events/yr. Susceptibility to floods due to dam failure and/or flash floods may need to be considered on a site-by-site basis.

19.58.2.3 Transportation and Nearby Facility Accidents

These events consist of accidents related to transportation near the nuclear power plant and accidents at industrial and military facilities in the vicinity. The following modes of transportation are considered:

- Aviation (commercial/general/military)
- Marine (ship/barge)
- Pipeline (gas/oil)
- Railroad
- Truck

19.58.2.3.1 Aviation Accidents

If a limiting event frequency is 1.21E-06 events/yr, and most of that frequency is for small aircraft, with commercial aircraft contribution 9.40E-09 events/yr then the following discussion is applicable.

A conservative analysis was performed to evaluate the risk due to small aircraft accidents on-site. This analysis assumes a Loss of Offsite Power and conservatively failed a set of standby non-safety systems. This is acceptable as it is unlikely that a small aircraft accident would challenge the passive safety systems inside containment. This leaves only the non-safety systems outside of containment as vulnerable. However, this evaluation is conservative as it is unlikely that a small aircraft would have the capacity to fail such a large area of the AP1000.

Equation 19.58.2.1-1 is used to determine the resultant CDF. A CDF of 7.08E-14 events/yr is calculated and is an insignificant contribution to total plant CDF of approximately 5.08E-07 events/yr. Therefore, sites that can demonstrate an aviation event frequency less than or equal to 1.21E-06 events/yr for small aircraft accidents are bounded by this evaluation.

Larger commercial aircraft may have the capacity to challenge SSCs within

the AP1000 containment. However, the containment structure and safety systems are designed to withstand various earthquake levels, such that many of the safety system SSCs will still be available following the accident. To consider the already low risk of the AP1000 design, the 10⁻⁷ events/yr criterion for event frequency is applicable for larger commercial aircraft. Sites that can demonstrate a commercial aircraft aviation event frequency less than the 10⁻⁷ events/yr criterion are also bounded by this analysis.

19.58.2.3.2 Marine Accidents

Only sites with large waterways with ship and/or barge traffic that go through or near the site should consider Marine Accidents. Marine accidents involving ship or barge accidents pose a potential hazard to a nuclear power plant due to two possibilities:

- 1. Release of hazardous material towards the plant
- 2. Explosion with resulting damage to the plant.

The potential exists for a Marine Accident that leads to a release of toxic materials into the atmosphere. This type of event may compromise the safety of the plant operators, resulting in reduced operator reliability. However, the toxic release does not directly lead to any failure of plant equipment. To evaluate the risk impact of this scenario, a CCDP is developed that models a reactor trip followed by the guaranteed failure of all PRA credited operator actions. The resulting CCDP is 6.26E-08. The bounding initiating event frequency is 1.0E-06 events/yr.

Equation 19.58.2.1-1 is used to determine the resultant CDF. The resultant CDF is 6.26E-14 events/yr. The results indicate a very low estimated CDF contribution due to toxic releases from a Marine Accident.

The above analysis is conservative. The AP1000 has an additional level of defense against toxic airborne material. With advanced warning, the operators may actuate passive control room habitability. This system isolates the control room from normal HVAC and actuates a separate system supplied from compressed air containers. The compressed air slightly pressurizes the control room above atmospheric pressure, preventing the entrance of toxic material in the control room. This system is available for 72 hours, which is adequate time to withstand the event.

There is also a potential for marine explosion accidents. The AP1000 is not designed with a Service Water intake structure; thus, Loss of Service Water events as a consequence of marine explosions are not a nuclear safety concern for the AP1000 design. As long as the Regulatory Guide 1.91 (Reference 19.58-5) acceptance criterion is met, marine explosion accidents do not need to be considered further for the AP1000 PRA.

19.58.2.3.3 Pipeline Accidents

Pipeline accidents could pose a hazard to the AP1000 due to the release of hazardous material or the possibility of an explosion and resulting damage to the plant. For a site with a 30" Gas line approximately 5800 feet away, a semi-quantitative evaluation was performed.

Considerations for the evaluation are:

- Gas pipe rupture frequency,
- Gas cloud formation probability,
- Gas cloud transportation and non-dispersion probability,
- Gas cloud ignition probability on-site.

Consider Figure 19.58.2.3.3-1 to further evaluate the probability of this accident. When then considering the probability of forming a dense gas cloud, and the probability of the wind speed and direction to be in the ranges necessary to transport the gas cloud 5800 feet to the site, without dispersing the gas, including ignition of the gas cloud on-site in a location that may challenge the plant, this probability becomes very low.

Site habitability is also a concern for toxic materials. However, the AP1000 has an additional level of defense against toxic airborne material. With advanced warning, the operators may actuate passive control room habitability. This system isolates the control room from normal HVAC and actuates a separate system supplied from compressed air containers. The compressed air slightly pressurizes the control room above atmospheric pressure, preventing the entrance of toxic material in the control room. This system is available for 72 hours, which is adequate time to withstand the event. The expected frequency value is expected to be below the initiating event criterion of 10-7 events/yr. Therefore, no further quantitative evaluation is necessary.

19.58.2.3.4 Railroad and Truck Accidents

Railroad accidents could pose a hazard to the AP1000 due to the release of hazardous material or the possibility of an explosion and resulting damage to the plant. Toxic material releases were evaluated in the Marine Accident evaluation as to not be important to AP1000 plant risk. Significant damage to the AP1000 plant was evaluated in the Aviation Accident evaluation. No railroad accidents are expected to result in the amount of damage that may be seen from an Aviation Accident. This is especially true considering the increased security barriers established at U.S. nuclear power plants.

The AP1000 is designed to site characteristics described in Chapter 2 of the DCD. The site selection criterion provides that, for an accident that has potential consequences serious enough to affect the safety of the plant to the extent that 10 CFR 100 guidelines are exceeded, the annual frequency of occurrence is less than 10^{-6} per year. As explained in Section 2.0, this

criterion should be extended to an annual frequency of occurrence less than 10⁻⁷ per year.

19.58.3 Conclusion

The risk due to external hazards is low for the AP1000 design. The AP1000 design is shown to be highly robust against the external events discussed in this section. The design is resilient against high winds, external floods and other external events that challenge various equipment in the plant.

The following conclusions and insights are derived from the AP1000 external events assessment for events at power:

- 1. High Winds and Tornados were quantitative evaluated to be of low risk to the AP1000 design for each of the participating sites. A bounding assessment is provided to show that the expected CDF due to any one of these events exceeds 10% of the total plant CDF (5.08E-08 events/year). The same is true for the aggregate results. Sensitivity studies were performed to determine that there is low risk for more limiting scenarios. No further analysis is suggested.
- 2. The AP1000 is designed to flooding levels described in Chapter 2 of the DCD. The site selection criterion provides that, for an accident that has potential consequences serious enough to affect the safety of the plant to the extent that 10 CFR 100 guidelines are exceeded, the annual frequency of occurrence is less than 10-6 per year. As explained in Section 4.1, this criterion can be extended to an annual frequency of occurrence less than 10-7 per year. No further analysis is suggested.
- 3. Transportation and Nearby Facilities Accidents are qualitatively evaluated to be of low risk importance and do not warrant further evaluation.

19.58.4 References

19.58-1 U.S. Nuclear Regulatory Commission "Individual Plant Examination of External Events (IPEEE) for Severe Accident Vulnerabilities -10 CFR 50.54(f)," Generic Letter 88-20, Supplement 4, June 28, 1991.

19.58-2 U.S. Nuclear Regulatory Commission NUREG-1407, "Procedural and Submittal Guidance for the Individual Plant Examination of External Events (IPEEE) for Severe Accident Vulnerabilities," June 1991.

19.58-3 National Weather Service, "The Enhanced Fujita Scale", February 02, 2007, Available: <u>http://www.spc.noaa.gov/efscale/</u>.

19.58-4 National Weather Service, "The Saffir-Simpson Hurricane Scale", June 22, 2006, Available: <u>http://www.nhc.noaa.gov/aboutsshs.shtml</u>.

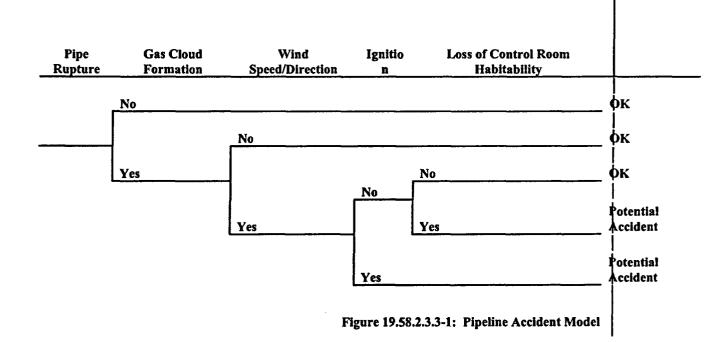
19.58-5 U.S. Nuclear Regulatory Commission Regulatory Guide 1.91,

"Evaluations of Explosions Postulated to Occur on Transportation Routes Near Nuclear Power Plants", Revision 1, February 1978.

		,	
Scale Number	Intensity Phrase	Wind Speed	Type of Damage Done
EFO	Gale tornado	65-85 mph	Some damage to chimneys; breaks branches off trees; pushes over shallow-rooted trees; Some damage to chimneys; branches broken off trees; shallow-rooted trees pushed over; sign boards damaged.
EF1	Moderate tornado	86-110 mph	Peels surface off roofs; mobile homes pushed off foundations or overturned; moving autos blown off roads.
EF2	Significant tornado	111-135 mph	Roofs torn off frame houses; mobile homes demolished; boxcars overturned; large trees snapped or uprooted; light-object missiles generated; cars lifted off ground.
EF3	Severe tornado	136 - 165 mph	Roofs and some walls torn off well-constructed houses; trains overturned; most trees in forest uprooted; heavy cars lifted off the ground and thrown.
EF4	Devastating tornado	166-200 mph	Well-constructed houses leveled; structures with weak foundations blown away some distance; cars thrown and large missiles generated.
EF5	Incredible tornado	>200 mph	Strong frame houses leveled off foundations and swept away; automobile-sized missiles fly through the air in excess of 100 meters (109 yds); trees debarked; incredible phenomena will occur.

1. Enhanced Fujita Scale extracted from Reference 19.58-3.

Category Number	Wind Speed	Category Description
1	74-95 mph	Storm surge generally 4-5 ft above normal. No real damage to building structures. Damage primarily to unanchored mobile homes, shrubbery, and trees. Some damage to poorly constructed signs. Also, some coastal road flooding and minor pier damage.
2	96-110 mph	Storm surge generally 6-8 feet above normal. Some roofing material, door, and window damage of buildings. Considerable damage to shrubbery and trees with some trees blown down. Considerable damage to mobile homes, poorly constructed signs, and piers. Coastal and low-lying escape routes flood 2-4 hours before arrival of the hurricane center. Small craft in unprotected anchorages break moorings.
3	111-130 mph	Storm surge generally 9-12 ft above normal. Some structural damage to small residences and utility buildings with a minor amount of curtain wall failures. Damage to shrubbery and trees with foliage blown off trees and large trees blown down. Mobile homes and poorly constructed signs are destroyed. Low- lying escape routes are cut by rising water 3-5 hours before arrival of the center of the hurricane. Flooding near the coast destroys smaller structures with larger structures damaged by battering from floating debris. Terrain continuously lower than 5 ft above mean sea level may be flooded inland 8 miles (13 km) or more. Evacuation of low-lying residences with several blocks of the shoreline may be required.
4	131-155 mph	Storm surge generally 13-18 ft above normal. More extensive curtain wall failures with some complete roof structure failures on small residences. Shrubs, trees, and all signs are blown down. Complete destruction of mobile homes. Extensive damage to doors and windows. Low-lying escape routes may be cut by rising water 3-5 hours before arrival of the center of the hurricane. Major damage to lower floors of structures near the shore. Terrain lower than 10 ft above sea level may be flooded requiring massive evacuation of residential areas as far inland as 6 miles (10 km).
5	>155 mph	Storm surge generally greater than 18 ft above normal. Complete roof failure on many residences and industrial buildings. Some complete building failures with small utility buildings blown over or away. All shrubs, trees, and signs blown down. Complete destruction of mobile homes. Severe and extensive window and door damage. Low-lying escape routes are cut by rising water 3-5 hours before arrival of the center of the hurricane. Major damage to lower floors of all structures located less than 15 ft above sea level and within 500 yards of the shoreline. Massive evacuation of residential areas on low ground within 5-10 miles (8-16 km) of the shoreline may be required.


1. Saffir-Simpson Scale extracted from Reference 19.58-4.

.

•

	Table 1	9.58.2.1-3: High	Winds and T	ornados Results		
<u>Category</u>	Event	Limiting Initiating	<u>CDF (</u> events/yr <u>)</u>			
		<u>Event Freq.</u> (events/yr)	LOSP (Case 1) (events/yr)	LOSP with non- safety systems <u>unavailable for</u> <u>select events</u> (Case 2) (events/yr)	LOSP with non- safety systems <u>unavailable for all</u> <u>events (Case 3)</u> <u>(events/yr)</u>	
High Winds	EF0 Tornado	8.00E-05	7.85E-13	7.85E-13 ¹	4.68E-12	
	EF1 Tornado	8.00E-05	7.85E-13	7.85E-13 ¹	4.68E-12	
	EF2 Tornado	1.60E-04	1.57E-12	1.57E-12 ¹	9.36E-12	
	EF3 Tornado	8.00E-05	7.85E-13	7.85E-13 ¹	4.68E-12	
	EF4 Tornado	8.00E-05	7.85E-13	7.85E-13 ¹	4.68E-12	
	EF5 Tornado	8.00E-05	7.85E-13	4.68E-12	4.68E-12	
	Cat. 1 Hurricane	1.00E-01	9.81E-10	9.81E-10 ¹	5.85E-09	
	Cat. 2 Hurricane	5.00E-02	2.94E-10	2.94E-10 ¹	2.93E-09	
	Cat. 3 Hurricane	3.00E-02	2.94E-10	2.94E-10 ¹	1.76E-09	
	Cat. 4 Hurricane	1.00E-02	9.81E-11	5.85E-10	5.85E-10	
	Cat. 5 Hurricane	1.00E-02	9.81E-11	5.85E-10	5.85E-10	
	Extratropical Cyclones	3.00E-02	2.94E-10	2.94E-10 ¹	1.76E-09	
Totals			2.07E-09	3.05E-09	1.35E-08	

¹CDF values from Case 1 were used to illustrate the winds from these events will not challenge additional plant SSCs.

10.0 DCD SECTION 19.1 MARKUP

The following DCD markup identifies how COL application Final Safety Analysis Reports should be prepared to incorporate the subject change.

Revise the final paragraph of Section 19.1.3:

External events analyses include:

- Internal fire assessment
- Internal flooding assessment
- Seismic margin assessment
- High winds assessment
- External flooding assessment
- Transportation and nearby facility accident assessment

11.0 DCD SECTION 19.59 MARKUP

The following DCD markup identifies how COL application Final Safety Analysis Reports can incorporate the subject change.

Delete the fourth paragraph of subsection 19.59.1:

The Level 3 analysis shows the potential offsite dose from a severe accident is very small and well within the established goals. The risk measured by the potential offsite dose does not increase significantly after the first 24 hours after a severe accident is assumed to cause a release to the environment.

Revise the subsection 19.59.7:

19.59.7 Plant Dose Risk From Release of Fission-Products

Chapter 49 discusses the Level 3 results for at power and shutdown internal events. The dose risks are quantified by multiplying the fission product release category frequency vector by the release category mean dose vectors. The goal is that a 24 hour, whole body, site boundary dose greater than 25 rem has a frequency (large release frequency) of less than 1E 06 per year. The AP1000 large release frequency is 1.95E 08 per year, which is a factor of 50 times less than the goal.

The total at power risk from a postulated release of fission products (the 24-hour, site boundary effective dose equivalent (EDE) is 1.83E-04 rem per reactor year. For shutdown, this risk was ealoulated to be 7.1E 05 rem per reactor year for AP600. For AP1000, this shutdown risk could be estimated as 9.7E-05 rem per reactor year (estimated the same way as shutdown LRF in Table 19.59-15). Table 19.59-16 and Figure 19.59 2 summarize the plant dose results.

Containment bypass-failures account-for 79 percent of the dose risk. These types of failures are usually assumed as a result of steam generator tube rupture. A less conservative analysis of the containment bypass failures may show a smaller frequency, and, as a result, a smaller dose risk. This section intentionally left blank.

Delete the final sentence of subsection 19.59.8:

Figure 19.59-2 shows the 24-hour, whole body EDE site boundary dose cumulative distribution.

Revise the third paragraph of Section 19.59.10.5:

The Combined License information requested in this subsection has been partially addressed in APP-GW-GLR-101, Revision 0 (Reference 19.59-4), and the applicable changes are incorporated into the DCD. Additional work is required by the Combined Operating License Applicant to address the aspects of the Combined License information requested in this subsection as delineated in the following paragraph:

The Combined Operating License Applicant will confirm that the High Winds, Floods, and Other External Events analysis documented in Section 19.58 is applicable to the COL site. Further evaluation will be required if the COL site is shown to be outside of the bounds of the High Winds, Floods, and Other External Events analysis documented in Section 19.58The APP-GW-GLR-101 Rev. 0

Combined License applicant referencing the AP1000 certified design will review differences between the as built plant and the design used as the basis for the AP1000 PRA and Table 19.59 18. If the effects of the differences are shown, by a screening analysis, to potentially result in a significant increase in core damage frequency or large release frequency, the PRA will be updated to reflect these differences. Based on site specific information, the COL should also reevaluate the qualitative screening of external events (PRA Section 58.1). If any site specific susceptibilities are found, the PRA should be updated to include the applicable external event.

APP-GW-GLR-101 Rev. 0

Delete Table 19.59-16:

			Table 19.59-16						
SITE BOUNDARY WHOLE BODY-EDE DOSE RISK-24 HOURS									
Release Category	Release Frequency (/reactor year)	Mean Dose (sieverts)	Dose (REM)	Risk (REM/reactor year)	Percent Contributio to Total Ris				
CFI	1.89E-10	2.59E+01	2.59E+03	4.90E-07	0.3				
CFE	7.47E-09	4.23E+01	4 .23E+03	3.16E-05	17.3				
łC	2.21E-07	1.82E-02	1.82E+00	4 .02E-07	0.2				
BP	1.05E-08	1.37E+02	1.37E+0 4	1.44E-04	78.6				
Ci	1.33E-09	5.10E+01	5.10E+03	6.78E-06	3.7				
CFL	3.45E-13	3.84E-02	3.84E+00	1.32E-12	0.0				
	2.4E-07		Total Risk =	1.83E-04	100.0				

.

.

-

APP-GW-GLR-101

Delete Figure 19.59-2:

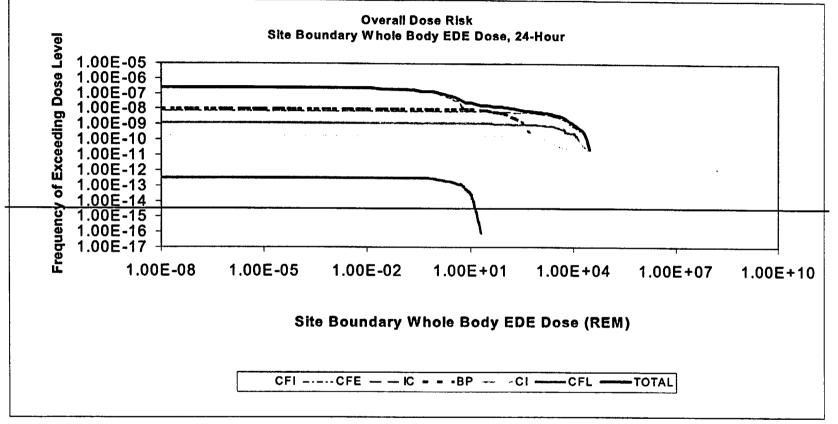


Figure 19.59-2

24-Hour Site Boundary Dose Cumulative Frequency Distribution

12.0 DCD APPENDIX 1.B MARKUP

The following DCD markup identifies how COL application Final Safety Analysis Reports can incorporate the subject change.

Revise the third paragraph of subsection 1B.1.4.1:

The dose risks are quantified by multiplying the calculated fission product release category frequency vector by the release category mean dose vectors. The frequencies for each of the six release categories are quantified in Chapter 45 of the AP1000 Probabilistic Risk Assessment (Reference 2), while the mean doses for each release category are identified in Chapter 49. Table 1B-1 presents the results of the dose risk calculations at the site boundary at 24 hours. The table presents the release category identifier, the release frequency (per reactor-year), the mean dose (in rem), and the resulting risk (in rem per reactor-year). In addition, each table presents the total dose risk and the percent that each release category contributes to the total risk. The information from Table 1B-1 was extracted from Chapter 49 of the AP1000 Probabilistic Risk Assessment.

Revise the second paragraph of subsection 1B.1.4.2

Level 3 analysis is performed only for internal events at power. The ensuing population dose was very low, and it was not pursued for other events. The population dose for internal events is given in Table 1B-3. <u>The information from Table 1B-3 was extracted from Chapter 49 of the AP1000 Probabilistic Risk Assessment.</u>