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Materials for a Typical 4-loop PWR RCS 
Components 
 
Component Piping, 

RTD body 
Hot Leg 
Elbow 

Surge Line 
to Hot Leg 
Nozzle 

RV Nozzle SG and 
PZR 
Nozzles 

Weld 

Material SA 240 
Grade 316  

SA 351 
Grade 
CF8M 

SA 182 
Grade 
F316 

SA 508 
Class 2 

SA 216 
Grade 
WCC 

308 SS 

 
 During Phase III of NRC-sponsored severe accident program, tensile and 

creep tests were conducted at high temperatures on  
– SA 240 Grade 316 (SS), SA 351 Grade CF8M (Cast SS), SA 516 Grade 70 

(Carbon steel). 
–  SA 240/SA 516 weldment, SA 240/SA 240 weldment and SA 240/SA 351 

weldment.   
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Thermal Inputs to ABAQUS from RELAP-5 Data 

  
 Convection HTCs were augmented by entrance factors dependent on the 

PORV status and distance from inlet, and added to the steam-to-wall 
radiation HTCs. 

 ABAQUS thermal conduction analyses included wall-to-wall radiation. 
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Finite Element Model of the Hot Leg/Surge Line 

  
 Shell elements were used. 
 Detailed boundary conditions were imposed. 
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Results for Base Case (March, 2006) 
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 Both locations are predicted to fail by exhaustion of tensile ductility almost 

simultaneously at 13,430 s. 
 The accumulated creep strains in both locations are less than the available 

creep ductility at this time. 
 The hot leg failure time reported in ISL-NSAD-TR-06-02 based on a simple 

creep rupture model is 13,630 s. 
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Ligament Rupture vs. Burst of Cracked SG Tubes  
 Ligament rupture refers only to the rupture of the remaining ligament of part-

throughwall cracks (no leakage before ligament rupture, leakage only after 
ligament rupture). 

 Burst is defined as unstable growth of throughwall cracks with or without 
increasing pressure (unflawed tubes always fail by burst) 
– Burst can lead to fishmouth opening of the crack after significant crack growth 
– In test systems with limited flow/pressure capability, it is difficult to achieve 

fishmouth opening if the tube is tested without bladder and foil 
– Operationally, a tube is considered to have burst if there is crack tip tearing 

 Ligament rupture is not necessarily burst 
 Burst of PTW cracks is a two-step process, first ligament rupture then burst 
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Examples of Burst 
 

  
Clearly a burst (Fishmouth)     This is also a burst 

 



 

 
7 
 

Ligament Rupture Models for SG tubes at High 
Temperature 
 
 Flow Stress Model  

– mP! = ! (T ), mP =stress magnification factor 

 Creep Rupture Model  

–  dt

tR(T ,mP! )0

tf

" = 1 
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Unstable Burst Model for SG Tubes with 
Throughwall and Part-Throughwall Cracks 
 m!b = ! (T ), m=bulging factor (function of crack length) 
 At room temperature, whether a part-throughwall crack will burst immediately 

after ligament rupture depends on the relative values of m and mP. 
– If m>mP, it will burst 

– If m≤mP, it will not burst. 
 At high temperature, !  is a function of both T and strain rate. 
 During ligament rupture or unstable burst, strain rates are high 

– Flow stresses measured from ordinary tensile tests are not applicable. 
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Rate Effect on Ligament Rupture and Burst 
Pressures 
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Pressure Ramp Temperature Ramp 

 Flow stress on unflawed tube is rate dependent.   
– Flow stress corresponding to 2°C/min matches flow stress measured from tensile 

tests. 
 Flow stresses derived from tensile tests may give conservative or 

unconservative failure predictions, depending on the rate 
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Rupture of SG Tubes During Severe Accidents 
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 Note flow stress model works for EPRI ramp (2°C/min) but underpredicts the 
failure temperatures for INEL ramp (7.5°C/min). 
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Predicted Burst Time for Unflawed Tubes (Current 
Base Case) 
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 Predicted failure time for hottest tubes is 13,475 s (cf. hot leg is 13,430 s). 
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Ligament Rupture vs. Burst for PTW Flawed Tubes 
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 Shallow cracks burst immediately after ligament rupture, deep cracks do not 

– This is an artifact of our test system, which depressurizes immediately after 
ligament rupture.  Shallow cracks can have enough stored energy to cause burst 

– Long, deep cracks would have burst if the system pressure could have been 
maintained after ligament rupture 

 The criterion m=mp separates burst from ligament rupture for the high 
temperature tests 
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Upper Bound to Flow Stress for Burst Prediction 

0

5

10

15

20

25

600 650 700 750 800 850 900 950

p
 (

M
P

a
)

T (°C)

25 mm crack

fishmouth

Leak

10

4 5 6

8

7

3

3

 
10

100

1000

0 200 400 600 800 1000 1200

Inconel Alloy 600

INEL

NSMH

F
lo

w
 S

tr
e
s
s
 (

M
P

a
)

T (°C)

Hot rolled plate

Annealed 1 h at 871°C

0.5 in rod

Annealed 1 h at 871°C

Computed flow stress

from high temperature tests

  
(a) (b) 

 Some of the tests lying close to the leak/fishmouth separation line would have 
burst if the system pressure could have been maintained after ligament 
rupture. 
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Prediction of Crack Opening Area at High 
Temperature 
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INEEL creep rate on Alloy 600 vs. stress data plotted using an activation energy 
of 65 kcal/mole and stress normalized by Young’s modulus at temperature. 

 Opening rate in a pressurized tube with an axial crack is 

 
 

!! = !"(# )ch2(0,n)

= Ach2(0,n)#
n
   with σ = mσhoop 
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Validation of COD by Tests on Tubes with TW 
Circumferential Notches Under Axial Loading 
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Crack Opening  

  
(a) (b) 

Crack opening at the end of tests for (a) isothermal loading (CR 102) and (b) 
Severe Accident loading (CR 108) 

 
 No extension of notches due to creep was observed in any test. 
 


