
Serial No. 07-0244 Docket Nos. 50-245 50-336 50-423 License Nos. DPR-21 DPR-65 NPF-49

ATTACHMENT 1

2006 RADIOACTIVE EFFLUENT RELEASE REPORT VOLUME I

MILLSTONE POWER STATION UNITS 1, 2, AND 3 DOMINION NUCLEAR CONNECTICUT, INC. (DNC)

Millstone Power Station 2006 Radioactive Effluent Report Release Report Volume 1

Dominion N	uclear Conne	ecticut, Inc.
MILLSTONE UNIT	LICENSE	DOCKET
1	DPR-21	50-245
2	DPR-65	50-336
3	NPF-49	50-423

Table of Contents

Volume 1

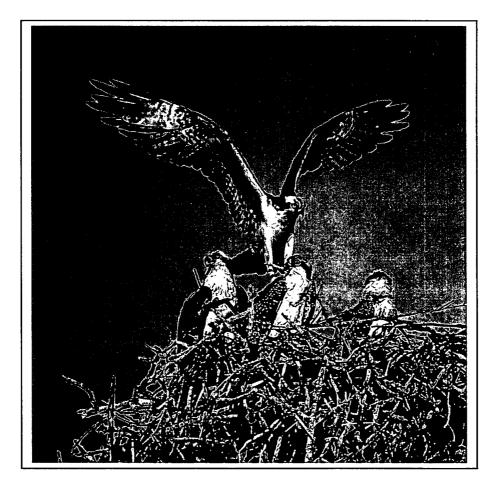
Table of Contents1
List of Tables
References
Introduction4
1.0 Off-Site Doses
1.1 Dose Calculations 5 1.1.1 Airborne Effluents 5 1.1.2 Liquid Effluents 6 1.2 Dose Results 7 1.2.1 Airborne Effluents 7 1.2.2 Liquid Effluents 7 1.2.3 Analysis of Results 7
2.0 Effluent Radioactivity
2.1 Airborne Effluents 12 2.1.1 Measurement of Airborne Radioactivity 12 2.1.2 Estimate of Errors 14 2.1.3 Airborne Batch Release Statistics 15 2.1.4 Abnormal Airborne Releases 15
2.2 Liquid Effluents
 2.2.1 Measurement of Liquid Radioactivity
2.3 Solid Waste
2.4 Groundwater Monitoring
3.0 Inoperable Effluent Monitors
4.0 Operating History
5.0 Errata
6.0 REMODCM Changes

.

2006 REMODCM Revision 25-02

List of Tables

Table 1-1	Off-Site Dose Summary from Airborne Effluents - Units 1,2,3
Table 1-2	Off-Site Dose Summary from Liquid Effluents - Units 1,2,3
Table 1-3	Off-Site Dose Comparison to Limits - Units 1,2,3
Table 1-4	Off-Site Dose Comparison - Units 1,2,3
Table 2.1-A1	Unit 1 Airborne Effluents - Release Summary
Table 2.1-A2	Unit 1 Airborne Effluents - Ground Continuous - Balance of Plant Vent & Spent Fuel Pool Island Vent
Table 2.1-L1	Unit 1 Liquid Effluents - Release Summary
Table 2.2-A1	Unit 2 Airborne Effluents - Release Summary
Table 2.2-A2	Unit 2 Airborne Effluents - Mixed Continuous - Aux Bldg Vent, SGBD Tank Vent & Spent Fuel Pool Evaporation
Table 2.2-A3	Unit 2 Airborne Effluents - Mixed / Elevated Batch - Containment Purges
Table 2.2-A4	Unit 2 Airborne Effluents - Elevated Batch - WGDT
Table 2.2-A5	Unit 2 Airborne Effluents - Elevated Continuous - Containment Vents/Site stack
Table 2.2-A6	Unit 2 Airborne Effluents - Ground Batch - Containment Equipment Hatch
Table 2.2-A7	Unit 2 Airborne Effluents – Ground Batch - RWST Vent
Table 2.2-L1	Unit 2 Liquid Effluents - Release Summary - Quarry
Table 2.2-L2	Unit 2 Liquid Effluents - Continuous - SGBD
Table 2.2-L3	Unit 2 Liquid Effluents - Batch - LWS
Table 2.2-L4	Unit 2 Liquid Effluents - Continuous - Turbine Building Sump - Yard Drain DSN 006
Table 2.3-A1	Unit 3 Airborne Effluents - Release Summary
Table 2.3-A2	Unit 3 Airborne Effluents - Mixed Continuous - Vent & Spent Fuel Pool Evaporation
Table 2.3-A3	Unit 3 Airborne Effluents - Ground Continuous - ESF Building Ventilation
Table 2.3-A4	Unit 3 Airborne Effluents - Mixed Batch - Containment Drawdowns
Table 2.3-A5	Unit 3 Airborne Effluents - Mixed Batch - Containment Purges
Table 2.3-A6	Unit 3 Airborne Effluents - Elevated Continuous - Gaseous Waste System & Containment Vents
Table 2.3-A7	Unit 3 Airborne Effluents - Ground Batch - Containment Equipment Hatch
Table 2.3-A8	Unit 3 Airborne Effluents - Ground Batch- RWST Vent
Table 2.3-L1	Unit 3 Liquid Effluents - Release Summary - Quarry
Table 2.3-L2	Unit 3 Liquid Effluents - Continuous - SGBD, SW & TK2
Table 2.3-L3	Unit 3 Liquid Effluents - Batch - LWS
Table 2.3-L4	Unit 3 Liquid Effluents - Batch - CPF Waste Neutralization Sumps & Hotwell Discharge
Table 2.3-L5	Unit 3 Liquid Effluents - Release Summary - Yard Drain DSN 006
Table 2.3-L6	Unit 3 Liquid Effluents - Continuous - Turbine Building Sump
Table 2.3-L7	Unit 3 Liquid Effluents - Batch - WTT Berm Water
Table 2.1-S	Unit 1 Solid Waste & Irradiated Component Shipments
Table 2.2-S	Unit 2 Solid Waste & Irradiated Component Shipments
Table 2.3-S	Unit 3 Solid Waste & Irradiated Component Shipments
Table 2.4-GW	Groundwater Monitoring Results


References

- 1. NUREG-0597 <u>User Guide to GASPAR Code</u>, KF Eckerman, FJ Congel, AK Roecklien, WJ Pasciak, Division of Site Safety and Environmental Analysis, Office of Nuclear Reactor Regulation, US Nuclear Regulatory Commission, Washington, DC 20555, manuscript completed January 1980, published June 1980.
- 2. Intentionally left blank
- 3. NRC Regulatory Guide 1.109 <u>Calculation of Annual Doses to Man from Routine Releases</u> of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, <u>Appendix I</u>, Revision 1, October 1977.
- 4. Intentionally left blank
- 5. NRC Regulatory Guide 1.111 <u>Methods for Estimating Atmospheric Transport and</u> <u>Dispersion of Gaseous Effluents in Routine Releases from Light-Water-Cooled Reactors</u>, Revision 1, July 1977.
- NUREG/CR-1276, ORNL/NUREG/TDMC-1 <u>User's Manual for LADTAP II A Computer</u> Program for Calculating Radiation Exposure to Man from Routine Release of Nuclear <u>Reactor Liquid Effluents</u>, DB Simpson, BL McGill, prepared by Oak Ridge National Laboratory, Oak Ridge, TN 37830, for Office of Administration, US Nuclear Regulatory Commission, manuscript completed 17 March 1980.
- 7. 10 CFR Energy, Part 50 Domestic Licensing of Production and Utilization Facilities, Appendix I Numerical Guides for Design Objectives and Limiting Conditions for Operation to Meet the Criterion "As Low As Reasonably Achievable" for Radioactive Material in Light-Water-Cooled Nuclear Power Reactor Effluents.
- 8. 40 CFR <u>Environmental Protection Agency</u>, Part 190 <u>Environmental Radiation Protection</u> <u>Standard for Nuclear Power Operation</u>.
- 9. <u>DOSLIQ-Dose Excel Code for Liquid Effluents, Software Document File</u>, Rev 1, February 2002.
- 10. <u>DOSAIR-Dose Excel Code for Airborne Effluents, Software Document File</u>, Rev 0, February 2002.
- 11. GASPAR II Technical Reference and User Guide (NUREG/CR-4653), March 1987.
- 12. Memo No. MP-HPO-07024, <u>2006 Report on Solid Waste and Irradiated Component</u> <u>Shipments</u>, April 9, 2007.
- 13. Memo No. NAF-07-035, <u>40CFR190 Offsite Dose Estimate for 2006</u>, April 9, 2007.

Introduction

This report, for the period of January through December of 2006, is being submitted by Dominion Nuclear Connecticut, Inc. for Millstone Power Station's Units 1, 2, and 3, in accordance with 10CFR50.36a, the REMODCM, and the Station's Technical Specifications. A combined report, written in the US NRC Regulatory Guide 1.21 format, is submitted for all three units.

Volume 1 contains radiological and volumetric information on airborne and liquid effluents, shipments of solid waste & irradiated components, calculated offsite radiological doses, all changes to the REMODCM, information on effluent monitors inoperable for more than 30 consecutive days, and corrections to previous reports. Volume 2 contains a full copy of each of the complete revisions to the REMODCM effective during the calendar year.

Nesting Ospreys

1.0 Off-Site Doses

This report provides a summary of the 2006 off-site radiation doses from releases of radioactive materials in airborne and liquid effluents from Millstone Units 1, 2, and 3. This includes the annual maximum dose (mrem) to any real member of the public as well the maximum gamma and beta air doses.

To provide perspective, these doses are compared to the regulatory limits and to the annual average dose that a member of the public could receive from natural background and other sources.

1.1 Dose Calculations

The off-site dose to humans from radioactive airborne and liquid effluents have been calculated using measured radioactive effluent data, measured meteorological data, and the dose computer models DOSAIR and DOSLIQ, which were developed by Millstone. The methodology and input parameters for DOSAIR are those used in GASPAR II (Reference 12) and NRC Regulatory Guide 1.109 (Reference 3). The methodology and input parameters for DOSLIQ are those used in LADTAP II (Reference 6) and NRC Regulatory Guide 1.109 (Reference 3). The calculated doses generally tend to be conservative due to the conservative model assumptions. More realistic estimates of the off-site dose can be obtained by analysis of environmental monitoring data. A comparison of doses estimated by each of the above methods is presented in the Annual Radiological Environmental Operating Report.

Doses are based upon exposure to the airborne and liquid effluents over a one-year period and an associated dose commitment over a 50-year period from initial exposure. The portion of the doses due to inhalation and ingestion take into account radioactive decay and biological elimination of the radioactive materials.

Maximum individual dose is defined as the dose to the individual who would receive the maximum dose from releases of airborne and liquid effluents. Although the location of the maximum individual may vary each quarterly period, the annual dose is the sum of these quarterly doses. This conservatively assumes that the individual is at the location of maximum dose each quarter.

The dose calculations are based upon three types of input: radioactive source term, site-specific data, and generic factors. The radioactive source terms (Curies) are characterized in Section 2, Effluent Radioactivity, of this report. The site-specific data includes: meteorological data (e.g. wind speed, wind direction, atmospheric stability, etc.) to calculate the transport and dispersion of airborne effluents, and dilution factors for liquid effluents. The generic factors include the average annual consumption rates (for inhalation of air and ingestion of fruits, vegetables, leafy vegetables, grains, milk, poultry, meat, fish, and shellfish) and occupancy factors (for air submersion and ground irradiation, shoreline activity, swimming, boating, etc.). All these inputs are used in the appropriate dose models to calculate the maximum individual dose from radioactive airborne and liquid effluents.

1.1.1 Airborne Effluents

Maximum individual doses due to the release of noble gases, radioiodines, and particulates were calculated using the computer code DOSAIR (Reference 11). This is equivalent to the NRC code, GASPAR II, which uses a semi-infinite cloud model to implement the NRC Regulatory Guide 1.109 (Reference 3) dose models.

The values of average relative effluent concentration (χ/Q) and average relative deposition (D/Q) used in the DOSAIR code were generated using EDAN 3, a meteorological computer code which implements the assumptions cited in NRC Regulatory Guide 1.111 (Reference 5), Section C. The annual summary of hourly meteorological data (in 15-minute increments), which includes wind speed,

direction, atmospheric stability, and joint frequency distribution, is not provided in the report but can be retrieved from computer storage.

Millstone Stack (375 ft) releases are normally considered elevated with Pasquill stability classes determined based upon the temperature gradient between the 33 ft and 374 ft meteorological tower levels. The doses were conservatively calculated using mixed mode 142 ft meteorology since DOSAIR may underestimate the plume exposure (prior to plume touchdown) for elevated releases from the Millstone Stack. All three units previously had the ability to discharge effluents to the Millstone Stack. However, in March 2001, Unit 1 was separated from releasing to the stack and modifications were made to add two new release points, the Spent Fuel Pool Island Vent (SFPI) and the Balance of Plant Vent (BOP).

Unit 1 Spent Fuel Pool Island Vent (73 ft) and the Balance of Plant Vent (80 ft) releases are considered ground level, therefore these doses were calculated using the 33 ft meteorology. Continuous ventilation of the spent fuel pool island and evaporation from the spent fuel pool water (H-3) release to the Spent Fuel Pool Island Vent. Continuous ventilation from other Unit 1 buildings and airborne releases from the reactor building evaporator are discharged to the BOP Vent. Doses from these release points were summed to determine the total Unit 1 airborne effluent dose.

Unit 2 Auxiliary Building Ventilation, Steam Generator Blowdown Tank Vent, and Containment Purge (through the Unit 2 Vent)(159 ft) releases are considered mixed mode (partially elevated and partially ground) continuous releases. The first two of these are continuous releases while the Containment Purge is typically a batch release. Some Containment Purges are released via the Millstone Stack. Because doses for releases from the Unit 2 Vent and from the Millstone Stack are calculated using the same meteorology, the Containment Purge releases are not divided between Unit 2 Vent and Millstone Stack. Batch releases from the Waste Gas Decay Tanks and Containment Vents are typically discharged via the Millstone Stack. The doses for these elevated releases were conservatively calculated using mixed mode 142 ft meteorology for which the Pasquill stability classes are determined based upon the temperature gradient between the 33 ft and 142 ft meteorological tower levels. The Containment Equipment Hatch and the RWST Tank Vent releases are considered ground level where the 33 ft meteorology was used for the dose calculations. Each of the doses for the various release points were summed to determine the total Unit 2 airborne effluent dose.

The Unit 3 Vent (142.5 ft) is considered a mixed mode (partially elevated and partially ground) release point. The Pasquill stability classes are determined based upon the temperature gradient between the 33 ft and 142 ft meteorological tower levels. Auxiliary Building Ventilation is a mixed mode continuous release while Containment Purge and "initial" Containment Drawdown (through the roof of the Auxiliary Building) are considered mixed mode batch releases. Gaseous waste and operational containment drawdowns (also called containment vents) are released through the Unit 3 SLCRS system to the Millstone Stack (375 ft). The doses for these elevated releases were conservatively calculated using mixed mode 142 ft meteorology. The Engineered Safety Features Building (ESF) Ventilation, the Containment Equipment Hatch, and RWST Vent releases are considered ground level where the doses were calculated using 33 ft meteorology. Similar to Unit 2, each of the doses for the various release points were summed to determine the total Unit 3 airborne effluent dose.

1.1.2 Liquid Effluents

Maximum individual doses from the release of radioactive liquid effluents were calculated using the DOSLIQ program (Reference 10). This program uses the dose models and parameters cited in NRC Regulatory Guide 1.109 with site-specific inputs to produce results similar to the LADTAP II code, (Reference 6).

1.2 Dose Results

The calculated maximum off-site doses are presented in Table 1-1 for airborne effluents and Table 1-2 for liquid effluents.

1.2.1 Airborne Effluents

For the dose to the maximum individual, DOSAIR calculates the dose to the whole body, GI-tract, bone, liver, kidney, thyroid, lung, and skin from each of the following pathways: direct exposure from noble gases in the plume and from ground deposition, inhalation, and ingestion of vegetation, cow or goat milk, and meat. The values presented are a total from all pathways. However, only the whole body, skin, thyroid and maximum organ (other than thyroid) doses are presented.

For the plume and inhalation pathways, the maximum individual dose is calculated at the off-site location of the highest decayed χ/Q where a potential for dose exists.

For ground deposition, the maximum individual dose is calculated at both the off-site maximum land location of the highest χ/Q and highest D/Q where a potential for dose exists.

For the vegetation pathway, the maximum individual dose is calculated at the vegetable garden of the highest D/Q (or highest χ /Q when only tritium is released). For the vegetation pathway, the calculated dose is included in the maximum individual's dose only at locations and times where these pathways actually exist. Similarly, for meat, cow's milk, and goat's milk pathways, the calculated dose is included in the maximum individual's dose only at locations and times where these pathways actually exist.

To determine compliance with 10CFR50, Appendix I (Reference 7), the maximum individual whole body and organ doses include all applicable external pathways (i.e. plume and ground exposure) as well as the internal pathways (inhalation and ingestion).

1.2.2 Liquid Effluents

The DOSLIQ code performs calculations for the following pathways: fish, shellfish, shoreline activity, swimming, and boating. Doses are calculated for the whole body, skin, thyroid, and maximum organ (GI-LLI, bone, liver, kidney, and lung).

1.2.3 Analysis of Results

Table 1-3 provides a quantitative dose comparison with the limits specified in the REMODCM. The data indicates that the total whole body and organ doses to the maximum offsite individual from Millstone Station including all sources of the fuel cycle are well within the limits of 40CFR190 (Reference 8). On-site radioactive waste storage during this year was within storage criteria and the maximum dose to a member of the public was approximately 0.22 mrem/yr. The doses from airborne and liquid effluents were added to the estimated dose from on-site radioactive waste storage to show compliance with 40CFR190.

The Offsite Dose Comparison, Table 1-4, provides a perspective on the maximum offsite individual dose received from Millstone Station with the natural background radiation dose received by the average Connecticut resident. The total dose to the maximum individual received from Millstone Station is small in comparison to the dose received from natural background radiation.

Table 1-12006 Off-Site Dose Commitments from Airborne EffluentsMillstone Units 1, 2, 3

Unit 1	1st Quarter	2nd Quarter	3rd Quarter	4th Quarter	Annual Total
Max Air	(mrad)	(mrad)	(mrad)	(mrad)	(mrad)
Beta	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Gamma	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Max Individual	(mrem)	(mrem)	(mrem)	(mrem)	(mrem)
Whole Body	3.09E-04	2.60E-04	2.60E-04	1.49E-04	9.78E-04
Skin	3.46E-04	2.64E-04	2.62E-04	1.49E-04	1.02E-03
Thyroid	3.08E-04	2.46E-04	2.51E-04	1.49E-04	9.54E-04
Max organ+	3.10E-04	3.41E-04	3.11E-04	1.49E-04	1.11E-03

Unit 2	1st Quarter	2nd Quarter	3rd Quarter	4th Quarter	Annual Total
Max Air	(mrad)	(mrad)	(mrad)	(mrad)	(mrad)
Beta	1.66E-03	4.02E-03	1.32E-03	8.03E-03	1.50E-02
Gamma	2.30E-03	2.51E-04	2.41E-04	9.92E-04	3.79E-03
Max Individual	(mrem)	(mrem)	(mrem)	(mrem)	(mrem)
Whole Body	2.59E-03	5.20E-03	8.12E-04	1.51E-03	1.01E-02
Skin	4.05E-03	7.41E-03	1.47E-03	2.83E-03	1.58E-02
Thyroid	3.71E-03	1.20E-02	2.06E-02	2.18E-02	5.81E-02
Max organ+	2.60E-03	5.25E-03	8.84E-04	2.48E-03	1.12E-02

Unit 3	1st Quarter	2nd Quarter	3rd Quarter	4th Quarter	Annual Total
Max Air	(mrad)	(mrad)	(mrad)	(mrad)	(mrad)
Beta	5.49E-06	6.20E-06	8.89E-06	3.10E-06	2.37E-05
Gamma	1.07E-05	1.54E-04	2.21E-05	8.09E-06	1.95E-04
Max Individual	(mrem)	(mrem)	(mrem)	(mrem)	(mrem)
Whole Body	1.87E-03	2.51E-03	7.23E-03	6.79E-04	1.23E-02
Skin	1.87E-03	2.51E-03	7.23E-03	6.84E-04	1.23E-02
Thyroid	1.87E-03	2.51E-03	7.22E-03	6.79E-04	1.23E-02
Max organ+	1.87E-03	2.51E-03	7.23E-03	6.79E-04	1.23E-02

* Maximum of the following organs (not including thyroid): Bone, GI-LLI, Kidney, Liver, Lung

Table 1-22006 Off-Site Dose Commitments from Liquid EffluentsMillstone Units 1, 2, 3

			د		
Unit 1	1st Quarter	2nd Quarter	3rd Quarter	4th Quarter	Annual Total
Max Individual	(mrem)	(mrem)	(mrem)	(mrem)	(mrem)
Whole Body	0.00E+00	2.66E-07	0.00E+00	0.00E+00	2.66E-07
Thyroid	0.00E+00	7.63E-08	0.00E+00	0.00E+00	7.63E-08
Max Organ	0.00E+00	3.78E-07	0.00E+00	0.00E+00	3.78E-07

Unit 2	1st Quarter	2nd Quarter	3rd Quarter	4th Quarter	Annual Total
Max Individual	(mrem)	(mrem)	(mrem)	(mrem)	(mrem)
Whole Body	9.93E-05	7.63E-05	8.78E-05	1.30E-04	3.93E-04
Thyroid	6.83E-05	6.43E-05	7.10E-05	4.20E-05	2.46E-04
Max Organ	2.73E-04	3.16E-04	5.22E-04	1.75E-03	2.86E-03

Unit 3	1st Quarter	2nd Quarter	3rd Quarter	4th Quarter	Annual Total
Max Individual	(mrem)	(mrem)	(mrem)	(mrem)	(mrem)
Whole Body	4.96E-05	1.13E-04	6.90E-05	1.21E-04	3.53E-04
Thyroid	2.87E-05	4.23E-05	2.94E-05	1.03E-04	2.03E-04
Max Organ	1.93E-04	7.15E-04	2.88E-04	1.76E-04	1.37E-03

Table 1-32006 Off-Site Dose Comparison to LimitsMillstone Units 1, 2, 3

Airborne Effluents

Max Individual Dose vs REMODCM Limits

	Whole Body	Thyroid	Max Organ**	Skin	Beta Air	Gamma Air
	(mrem)	(mrem)	(mrem)	(mrem)	(mrad)	(mrad)
Unit 1	9.78E-04	9.54E-04	1.11E-03	1.02E-03	0.00E+00	0.00E+00
Unit 2	1.01E-02	5.81E-02	1.12E-02	1.58E-02	1.50E-02	3.79E-03
Unit 3	1.23E-02	1.23E-02	1.23E-02	1.23E-02	2.37E-05	1.95E-04
Millstone Station	2.34E-02	7.14E-02	2.46E-02	2.91E-02	1.51E-02	3.98E-03
REMODCM Limits	5 *	1/5	15	1/5 *	20	10

Liquid Effluents

Max Individual Dose vs REMODCM Limits

	Whole Body	Thyroid	Max Organ**
	(mrem)	(mrem)	(mrem)
Unit 1	2.66E-07	7.63E-08	3.78E-07
Unit 2	3.93E-04	2.46E-04	2.86E-03
Unit 3	3.53E-04	2.03E-04	1.37E-03
Millstone Station	7.46E-04	4.49E-04	4.23E-03
REMODEM Limits	€₽	10 ÷	10 °

Max Individual Dose vs 40CFR190 Limits

	Whole Body	Thyroid	Max Organ **
	(mrem)	(mrem)	(mrem)
Airborne Effluents	2.34E-02	7.14E-02	2.46E-02
Liquid Effluents	7.46E-04	4.49E-04	4.23E-03
Radwaste Storage	2.20E-01	2.20E-01	2.20E-01
Millstone Station	2.44E-01	2.92E-01	2.49E-01
40CFR190 Limit	25	75	25

* 10CFR50, Appendix I Guidelines

** Maximum of the following organs (not including Thyroid): Bone, GI-LLI, Kidney, Liver, Lung

Table 1-4

2006 Offsite Dose Comparison Natural Background vs. Millstone Station

Average Resident	Natural Background Radiation Dose (NCRP 94)
Cosmic	27 mrem
Cosmogenic	1 mrem
Terrestial (Atlantic and Gulf Coastal Plain)	16 mrem
Inhaled	200 mrem
In the Body	40 mrem
	~ 284 mrem

Maximum Off-Site Individual	Millstone Station Whole Body Dose
Airborne Effluents	0.023 mrem
Liquid Effluents	0.001 mrem
On site RadWaste Storage	0.220 mrem
	0.244 mrem

11

-

2.0 Effluent Radioactivity

2.1 Airborne Effluents

2.1.1 Measurement of Airborne Radioactivity

2.1.1.1 Continuous Releases

The following pathways have continuous radiation monitors that include particulate filters and, except for Unit 1, charcoal cartridges for monitoring the activity being released:

Unit 1 Spent Fuel Pool (SFPI) Island (no charcoal cartridge) Unit 1 Balance of Plant (BOP) Vent (no charcoal cartridge) Unit 2 Ventilation Vent Unit 2 Wide Range Gas Monitor (WRGM) Unit 3 Ventilation Vent Unit 3 Supplementary Leak Collection and Recovery System (SLCRS) Unit 3 Emergency Safeguards Facility (ESF) Building Vent

Charcoal cartridges and particulate filters are used to collect iodines and particulates, respectively. These filters are periodically replaced (typically weekly, except every two weeks for Unit 1) and then analyzed for isotopic content using a gamma spectrometer. Particulate filters are also analyzed for Sr-89 (for all but Unit 1), Sr-90 and gross alpha. At least monthly, gaseous grab samples are taken and analyzed for noble gasses and tritium. The gas washing bottle (bubbler) method is utilized for tritium collection. This sample is counted on a liquid scintillation detector. Isotopic concentrations at the release point are multiplied by the total flow to obtain the total activity released for each isotope.

Since a major source of tritium is evaporation of water from the spent fuel pools, tritium releases were also estimated based upon amount of water lost and measured concentrations of the pool water. Grab samples from the Unit 1 SFPI Vent and the Unit 2 and 3 Vents are compared to the measured evaporation technique and the higher amount from either the vent or the measured evaporation technique is used to determine the amount of tritium released.

Another continuous airborne pathway is the Unit 2 Steam Generator Blowdown Tank Vent. A decontamination factor (DF) across the SGBD Tank vent was determined for iodines by comparing the results of gamma spectrometry, HPGe, analysis of the Steam Generator Blowdown water and grab samples of the condensed steam exiting the vent. This DF was applied to the total iodine releases via the Steam Generator Blowdown water to calculate the iodine release out the vent. An additional factor of 0.33 was utilized to account for the fraction of blowdown water actually flashing to steam in the Steam Generator Blowdown Tank.

2.1.1.2 Batch Releases

The following pathways periodically have releases that are considered batches:

Unit 1 Reactor Building Evaporator (via BOP Vent)

Unit 2 Waste Gas Decay Tanks (via Unit 2 WRGM to Millstone Stack)

Unit 2 and 3 Containment Purges (via Unit Ventilation Vents, except for Unit 2 if using Enclosure Building Filtration System (EBFS) via WRGM to Millstone Stack)

Unit 2 and 3 Containment Equipment Hatch Openings

Unit 2 and 3 Refueling Water Storage Tank (RWST) Vents

Unit 3 Containment Drawdown

Prior to processing each batch from the Reactor Building Evaporator a sample is collected and counted on a liquid scintillation detector. Concentration is multiplied by volume to determine the total activity released.

Waste Gases from the Unit 2 Gaseous Waste Processing System are held for decay in waste gas decay tanks (6) prior to discharge through the Millstone Site Stack. Each gas decay tank is analyzed prior to discharge for noble gas and tritium. Calculated volume discharged is multiplied by the isotopic concentrations (noble gas and tritium) from the analysis of grab samples to determine the total activity released.

Containment air is sampled periodically for gamma and tritium to determine the activity released from containment venting. The measured concentrations are multiplied by the containment vent volume to obtain the total activity released. Unit 2 typically performs this process of discharging air from containment to maintain pressure approximately once per week while at Unit 3 it is more often (typically at least daily).

Containment air is sampled prior to each purge for gamma and tritium to determine the activity released from containment purging. Similar to containment venting, the measured concentrations are multiplied by the containment vent volume to obtain the total activity released.

Samples of air near the Containment Equipment Hatch openings are analyzed for particulates and iodines, during refueling outages for the period that the equipment hatch is open. An estimated flow out of the hatch and sample results are used to determine the radioactivity released.

When water is transferred to Refueling Water Storage Tank (RWST) there is a potential for a release of radioactivity through the tank vent. In previous years a decontamination factor (DF) was applied to the total iodine transferred from the water that is transferred to the RWST water to estimate the iodine released. Starting with the 2R17 outage, actual measurements were performed by suction on the tank. Iodines and particulates were reduced prior to release by HEPA and charcoal filtration. All noble gases are assumed to be released through the tank vent.

Unit 3 containment is initially drawn down prior to startup. This is accomplished by using the containment vacuum steam jet ejector which releases through an unmonitored vent on the roof of the Auxiliary Building. Grab samples are performed prior to drawdown to document the amount of radioactivity released during these evolutions.

2.1.2 Estimate of Errors

Estimates of errors associated with radioactivity measurements were made using the following guidelines:

Sampling/Data Collection	10%	Variation in data collection
Sample Line Loss	20%	Deposition of some nuclides
Calibration	10%	Calibration to NBS standards
Sample Counting	10%	Error for counting statistics
Flow & Level Measurements	10%	Error for release volumes

2.1.3 Airborne Batch Release Statistics

Unit 1	I – None	2
--------	----------	---

Unit 2	Ctmt Purges	Ctmt Vents	WGDT
Number of Batches Total Time (min) Maximum Time (min) Average Time (min) Minimum Time (min)	1 492 492 492 492	36 5569 320 155 65	16 8688 717 543 306
Unit 3	Ctmt Purges	Ctmt Vents	Drawdowns
Number of Batches Total Time (min) Maximum Time (min) Average Time (min) Minimum Time (min)	0 - - - -	278 * * *	0 - - -

* ~ 2-3 hrs per Vent

2.1.4 Abnormal Airborne Releases

An abnormal airborne release of radioactivity is defined as an increase in airborne radioactive material released to the environment that was unplanned or uncontrolled due to an unanticipated event. These do not include normal routine effluent releases from anticipated operational and maintenance occurrences such as power level changes, reactor trip, opening primary system loops, degassing, letdown of reactor coolant or transferring spent resin and do not include non-routine events such as minor leakages from piping, valves, pump seals, tank vents, etc.

2.1.4.1 Unit 1 - None

2.1.4.2 Unit 2 - None

2.1.4.3 Unit 3 - None

2.1.5 Airborne Release Tables

The following tables provide the details of the airborne radioactivity released from each of the Millstone units. They are categorized by type of release, source(s), and by release point of discharge to the environment.

Table 2.1-A1 Millstone Unit 1 Airborne Effluents

Release Summary

	2006.						
Units	1st Qtr	2nd Qtr	3rd Qtr	4th Qtr	Total		

A. Fission & Activation Gases

1.	Total Activity	Ci	-	-	-	-	-
	Released						
2.	Average Period	uCi/sec	-	-	-	-	-
	Release Rate						

B. lodine-131

1	Total Activity				_	-	_
1.	Total Activity		-	-	-	-	-
	Released		_				
2.	Average Period	uCi/sec	-	-	-	-	-
	Release Rate						

C. Particulates

1.	Total Activity	Ci	6.37E-06	2.07E-06	8.44E-07	-	9.29E-06
	Released						
2.	Average Period	uCi/sec	8.20E-07	2.63E-07	1.06E-07	-	2.95E-07
	Release Rate						

D. Gross Alpha

1. Total Activity	Ci	-	-	-	-	-
Released						

E. Tritium

1.	Total Activity	Ci	2.86E-01	1.28E-01	1.25E-01	6.10E-01	1.15E+00
	Released						
2.	Average Period	uCi/sec	3.67E-02	1.63E-02	1.58E-02	7.68E-02	3.64E-02
	Release Rate	1					

Millstone Unit 1 Airborne Effluents Ground Continuous - Balance of Plant Vent & Spent Fuel Pool Island Vent

Nuclides						
Released	Units	1st Qtr	2nd Qtr	3rd Qtr	4th Qtr	Total

A. Fission & Activation Gases

Kr-85	Ci	-	-	-	-	-
Total Activity	Ci	-	-	-	-	

B. lodines

I-131	Ci	-	-	-	-	-
Total Activity	Ci	-	-	-	-	-

C. Particulates

Cs-137	Ci	6.37E-06	2.07E-06	8.44E-07	-	9.29E-06
Total Activity	Ci	6.37E-06	2.07E-06	8.44E-07	-	9.29E-06

D. Gross Alpha

Gross Alpha	Ci	-	-	-	-	-

E. Tritium

H-3	Ci	2.86E-01	1.28E-01	1.25E-01	6.10E-01	1.15E+00

dash "-" denotes less than Minimum Detectable Activity (MDA)

.

Millstone Unit No. 2

Airborne Effluents - Release Summary

			2006		1
Units	1st Qtr	2nd Qtr	3rd Qtr	4th Qtr	Total

A. Fission & Activation Gases

1.	Total Activity	Ci	3.62E+00	3.24E+00	1.92E+00	1.95E+01	2.83E+01
	Released						
2.	Average Period	uCi/sec	4.66E-01	4.12E-01	2.42E-01	2.46E+00	8.98E-01
	Release Rate						

B. Iodine-131

1.	Total Activity	Ci	2.12E-04	1.30E-04	2.23E-04	6.99E-04	1.26E-03
	Released						
2.	Average Period	uCi/sec	2.73E-05	1.66E-05	2.81E-05	8.79E-05	4.01E-05
	Release Rate						

C. Particulates

1.	Total Activity	Ci	-	-	-	8.55E-06	8.55E-06
	Released						
2.	Average Period	uCi/sec	-	-	-	1.08E-06	2.71E-07
	Release Rate						

D. Gross Alpha

1. Total Activity	Ci	-	-	-	-	-
Released						

E. Tritium

1.	Total Activity	Ci	7.73E+00	1.37E+01	1.09E+00	7.64E+00	3.02E+01
	Released						
2.	Average Period	uCi/sec	9.95E-01	1.74E+00	1.37E-01	9.61E-01	9.56E-01
	Release Rate						

.

Millstone Unit No. 2 Airborne Effluents - Mixed Continuous - Aux Bldg Vent & SGBD Tank Vent & Spent Fuel Pool Evaporation

Nuclides				2006		
Released	Units	1st Qtr	2nd Qtr	3rd Qtr	4th Qtr	Total

A. Fission & Activation Gases

Ar-41	Ci	1.17E+00		2.07E-02	2.56E-01	1.45E+00
Xe-133	Ci	5.23E-01	6.94E-01	2.34E-02	2.53E+00	3.77E+00
Xe-135	Ci	5.10E-01	-	1.54E-02	1.30E-01	6.55E-01
Total Activity	Ci	2.20E+00	6.94E-01	5.96E-02	2.92E+00	5.87E+00

B. lodines

I-131	Ci	2.12E-04	1.30E-04	2.23E-04	6.65E-04	1.23E-03
I-132	Ci	1.27E-04	8.24E-05	3.31E-04	7.25E-04	1.27E-03
I-133	Ci	7.46E-04	4.66E-04	7.56E-04	2.15E-04	2.18E-03
1-134	Ci	-	-	-	-	-
I-135	Ci	4.42E-04	2.08E-04	5.02E-04	1.45E-04	1.30E-03
Total Activity	Ci	1.53E-03	8.87E-04	1.81E-03	1.75E-03	5.98E-03

C. Particulates

1-131	Ci	_	_	_	-	-
Br-82	Ci	-	-		-	-
Co-58	Ci	-	-		2.90E-07	2.90E-07
Co-60	Ci	-	-	-	-	-
Ru-103	Ci	-	-	-	-	-
Ru-106	Ci	-	-	-	4.35E-06	4.35E-06
Cs-137	Ci	-	-	-	-	-
Sr-89	Ci	-	-	-	-	-
Sr-90	Ci	-	-	-	-	-
Total Activity	Ci	-	-	-	4.64E-06	4.64E-06

D. Gross Alpha

Gross Alpha	Ci	-	-	-	-	-

E. Tritium *

H-3	Ci	7.43E+00	1.33E+01	1.03E+00	7.53E+00	2.93E+01
		·····				

* includes estimated spent fuel pool evaporation

Millstone Unit No. 2

Airborne Effluents - Mixed Batch - Containment Purges

Nuclides				2006		
Released	Units	1st Qtr	2nd Qtr	3rd Qtr	4th Qtr	Total

A. Fission & Activation Gases

Kr-85	Ci	N/A	N/A	N/A	2.19E+00	2.19E+00
Xe-133	Ci	N/A	N/A	N/A	1.08E+01	1.08E+01
Xe-135	Ci	N/A	N/A	N/A	2.12E-03	2.12E-03
Total Activity	Ci	N/A	N/A	N/A	1.30E+01	1.30E+01

B. lodines *

I-131	Ci	N/A	N/A	N/A	-	-
Total Activity	Ci	N/A	N/A	N/A	-	-

C. Particulates *

I-131	Ci	N/A	N/A	N/A	-	
Cs-137	Ci	N/A	N/A	N/A	-	-
Total Activity	Ci	N/A	N/A	N/A	-	-

D. Gross Alpha *

Gross Alpha	Ci	N/A	N/A	N/A	-

E. Tritium

H-3	Ci	N/A	N/A	N/A	6.99E-03	6.99E-03

* lodines, Particulates and Gross α included in Table 2.2-A2 or 2.2-A5 dash "-" denotes less than Minimum Detectable Activity (MDA)

Table 2.2-A4 Millstone Unit No. 2

Airborne Effluents - Elevated Batch - WGDT

Nuclides				2006		
Released	Units	1st Qtr	2nd Qtr	3rd Qtr	4th Qtr	Total

A. Fission & Activation Gases

Kr-85	Ci	5.35E-01	1.39E+00	4.00E-01	1.26E+00	3.59E+00
Xe-131m	Ci	5.03E-03	6.80E-03	5.03E-03	8.07E-03	2.49E-02
Xe-133	Ci	1.10E-01	1.05E-01	1.82E-01	1.00E-01	4.97E-01
Xe-133m	Ci	3.22E-05	-	7.01E-05	-	1.02E-04
Xe-135	Ci	5.05E-05	2.00E-05	-	-	7.05E-05
Total Activity	Ci	6.50E-01	1.50E+00	5.87E-01	1.37E+00	4.11E+00

B. lodines *

I-131	Ci	-	-	-	-	-
Total Activity	Ci	-	-	-	-	-

C. Particulates *

I-131	Ci	-		-	_	-
Cs-137	Ci	-	-	-	-	-
Total Activity	Ci	-	-	-	-	-

D. Gross Alpha *

Gross Alpha	Ci	-	-	-	-	-

E. Tritium

H-3 ($\overline{\mathbf{r}}$	6 79E-04	2 75E-03	3.51E-04	4.33E-04	4 21E-03
11-0		0.732-04	2.750-00	3.51E-04		4.2 TE-00

* lodines, Particulates and Gross α included in Table 2.2-A2 or 2.2-A5 dash "-" denotes less than Minimum Detectable Activity (MDA)

Millstone Unit No. 2

Airborne Effluents - Elevated - Containment Vents/Site Stack

Nuclides		·		2006		l.
Released	Units	1st Qtr	2nd Qtr	3rd Qtr	4th Qtr	Total

A. Fission & Activation Gases

Ar-41	Ci	2.07E-02	2.10E-02	2.60E-02	1.20E-02	7.96E-02
Kr-85	Ci	6.06E-01	9.40E-01	1.20E+00	7.36E-02	2.82E+00
Kr-87	Ci	7.45E-04	-	-	-	7.45E-04
Kr-88	Ci	-	-	-	1.40E-03	1.40E-03
Xe-133	Ci	1.37E-01	8.01E-02	4.92E-02	1.41E-02	2.80E-01
Xe-133m	Ci	4.83E-04	-	-	-	4.83E-04
Xe-135	Ci	6.80E-03	7.68E-04	2.40E-04	2.77E-04	8.08E-03
Total Activity	Ci	7.71E-01	1.04E+00	1.28E+00	1.01E-01	3.19E+00

B. lodines

I-131	Ci	-	-	-	7.19E-08	7.19E-08
I-133		-	-	-	2.52E-07	2.52E-07
Total Activity	Ci	-	-	-	3.24E-07	3.24E-07

C. Particulates

1-131	Ci	-	-	-	-	-
Br-82	Ci	-	-	-	1.47E-07	1.47E-07
Co-58	Ci	-	-	-	1.81E-07	1.81E-07
Co-60	Ci	-	-	-	-	_
Ru-103	Ci	-	-	-	-	-
Ru-106	Ci	_	-	-	-	_
Cs-137	Ci	-	-	-	-	<u> </u>
Sr-89	Ci	-	-		-	-
Sr-90	Ci	-	-	-	-	-
Total Activity	Ci	+	-	-	3.28E-07	3.28E-07

D. Gross Alpha

Gross Alpha	Ci	-	-	-	-	-

E. Tritium

	H-3	Ci	3.01E-01	4.15E-01	5.91E-02	1.05E-01	8.79E-01
--	-----	----	----------	----------	----------	----------	----------

dash "-" denotes less than Minimum Detectable Activity (MDA)

.

Millstone Unit No. 2 Airborne Effluents - Ground Batch - Containment Equipment Hatch

Nuclides				2006		
Released	Units	1st Qtr	2nd Qtr	3rd Qtr	4th Qtr	Total

A. Fission & Activation Gases

Kr-85	Ci	N/A	N/A	N/A	-	-
Xe-133	Ci	N/A	N/A	N/A	-	-
Total Activity	Ci	N/A	N/A	N/A	-	-

B. Iodines

1-131	Ci	N/A	N/A	N/A	2.75E-05	2.75E-05
I-132	Ci	N/A	N/A	N/A	7.49E-06	7.49E-06
Total Activity	Ci	N/A	N/A	N/A	3.50E-05	3.50E-05

C. Particulates

Ci	N/A	N/A	N/A	-	-
Ci	N/A	N/A	N/A	1.86E-06	1.86E-06
Ci	N/A	N/A	N/A	2.12E-07	2.12E-07
Ci	N/A	N/A	N/A	5.16E-07	5.16E-07
Ci	N/A	N/A	N/A	6.51E-07	6.51E-07
Ci	N/A	N/A	N/A	1.01E-07	1.01E-07
Ci	N/A	N/A	N/A	2.41E-07	2.41E-07
Ci	N/A	N/A	N/A	3.58E-06	3.58E-06
	Ci Ci Ci Ci Ci Ci	Ci N/A Ci N/A	CiN/AN/ACiN/AN/ACiN/AN/ACiN/AN/ACiN/AN/ACiN/AN/ACiN/AN/A	CiN/AN/AN/ACiN/AN/AN/ACiN/AN/AN/ACiN/AN/AN/ACiN/AN/AN/ACiN/AN/AN/ACiN/AN/AN/A	Ci N/A N/A N/A 1.86E-06 Ci N/A N/A N/A 2.12E-07 Ci N/A N/A N/A 5.16E-07 Ci N/A N/A N/A 6.51E-07 Ci N/A N/A N/A 1.01E-07 Ci N/A N/A N/A 2.41E-07

D. Gross Alpha

Gross Alaba	0	NI/A	NI/A	NI/A		
Gloss Alpha		N/A	N/A	IN/A	-	-

E. Tritium

and the second se						
H-3	Ci	N/A	N/A	N/A	-	-

Millstone Unit No. 2 Airborne Effluents - Ground Batch - RWST Vent

Nuclides				2006		
Released	Units	1st Qtr	2nd Qtr	3rd Qtr	4th Qtr	Total

A. Fission & Activation Gases

Kr-85	Ci	-	-	-	1.38E-01	1.38E-01
Kr-85m	Ci	_	-	-	5.04E-06	5.04E-06
Xe-131m	Ci	-	-	-	1.42E-02	1.42E-02
Xe-133	Ci	-		-	1.97E+00	1.97E+00
Xe-133m	Ci	-	-	-	2.88E-02	2.88E-02
Xe-135	Ci	-	-		1.59E-02	1.59E-02
Total Activity	Ci	-	-	-	2.17E+00	2.17E+00

B. lodines

I-131	Ci	N/A	N/A	N/A	5.81E-06	5.81E-06
1-133	Ci	N/A	N/A	N/A	4.00E-07	4.00E-07
Total Activity	Ci	N/A	N/A	N/A	6.21E-06	6.21E-06

C. Particulates

I-131	Ci	N/A	N/A	N/A		-
Total Activity	Ci	N/A	N/A	N/A	-	-

D. Gross Alpha

Gross Alpha	Ci	N/A	<u>N/A</u>	N/A	-	-

E. Tritium

H-3	Ci	N/A	N/A	N/A	-	-

Millstone Unit No. 3 Airborne Effluents - Release Summary

			2006		
Units	1st Qtr	2nd Qtr	3rd Qtr	4th Qtr	Total

A. Fission & Activation Gases

1.	Total Activity	Ci	1.99E-02	1.03E-02	1.11E-02	1.05E-02	5.18E-02
	Released						
2.	Average Period	uCi/sec	2.56E-03	1.31E-03	1.40E-03	1.33E-03	1.64E-03
	Release Rate						

B. lodine-131

1.	Total Activity	Ci	-	-	-	-	-		
	Released		No Activity Detected						
2.	Average Period	uCi/sec	-	-	-	-	-		
	Release Rate								

C. Particulates

1.	Total Activity	Ci	4.82E-06	3.70E-06	1.70E-05	3.80E-06	2.93E-05
	Released	_					
2.	Average Period	uCi/sec	6.20E-07	4.71E-07	2.14E-06	4.78E-07	9.29E-07
	Release Rate						

D. Gross Alpha

1. Total Activity	Ci	-	-	-	-	-
Released						

E. Tritium

1.	Total Activity	Ci	1.77E+01	1.07E+01	1.60E+01	8.51E+00	5.28E+01
	Released						
2.	Average Period	uCi/sec	2.27E+00	1.36E+00	2.01E+00	1.07E+00	1.67E+00
	Release Rate						

Millstone Unit No. 3 Airborne Effluents - Mixed Continuous - Normal Ventilation & Spent Fuel Pool Evaporation

Nuclides			2006						
Released	Units	1st Qtr	2nd Qtr	3rd Qtr	4th Qtr	Total			

A. Fission & Activation Gases

Xe-133	Ci	-	-	-	_	-
Total Activity	Ci	-	-	-	-	-

B. lodines

I-131	Ci	-	-	-	-	-
I-133	Ci	-	-	-	-	-
Total Activity	Ci	-	-	-	-	-

C. Particulates

I-131	Ci	-	-	-	-	-
Be-7	Ci	-	-	1.27E-05	-	1.27E-05
Co-58	Ci	-	-	-	-	-
Co-60	Ci	-	-	-	-	-
Cr-51	Ci	-		-	-	-
Mn-54	Ci	-	-	-	-	-
Nb-95	Ci	-	-	-	-	-
Ba-140	Ci	-	_	-	÷ .	-
Ce-141	Ci	-	_	-	-	-
Ce144	Ci		-	-	-	-
Sr-89	Ci	-	-	-	-	-
Sr-90	Ci	-	-	-	-	-
Total Activity	Ci	-		1.27E-05	-	1.27E-05

D. Gross Alpha

Gross Alpha	Ci	-	-	-	-	-

Ε.	Т	ri	tiu	m		

H-3	1715+01		154E+01	7 76 =+00	5 00 =+01
11-0		1.035701	1.046+01	1.100100	
			L		

.

Millstone Unit No. 3 Airborne Effluents - Ground Continuous - ESF Building Ventilation

Nuclides				2006		· · · · · · · · · · · · · · · · · · ·
Released	Units	1st Qtr	2nd Qtr	3rd Qtr	4th Qtr	Total

A. Fission & Activation Gases

Xe-133	Ci	-	-	-	-	-
Total Activity	Ci	-	-	-	-	-

B. lodines

Di louinco	Di lodines								
I-131	Ci	-	-	-	-	-			
I-133	Ci	-	-	-	-	-			
Total Activity	Ci	-	-	-	-	-			

C. Particulates

I-131 Be-7	Ci	-	-	~	-	-
Be-7	Ci	3.96E-07	-	-	3.15E-07	7.11E-07
Co-58	· Ci	-	-	-	-	-
Co-58 Cr-51 Sr-89	Ci	-	-	-	-	-
Sr-89	Ci	-	_	-	-	-
Sr-90	Ci	-	-	-	-	-
Total Activity	Ci	3.96E-07	-	-	3.15E-07	7.11E-07

D. Gross Alpha

ss Alpha Ci	-	-	-	-	-

E. Tritium

H-3	Ci	-	-	2.32E-01	1.62E-01	3.94E-01
	1					

Millstone Unit No. 3 Airborne Effluents - Mixed Batch - Containment Drawdowns

<< No Release >>

	r					
Nuclides				2006		. i
Released	Units	1st Qtr	2nd Qtr	3rd Qtr	4th Qtr	Total
A. Fission & A	ctivatio	n Gases				
Xe-133	Ci	N/A	N/A	N/A	N/A	N/A
Total Activity	Ci	N/A	N/A	N/A	N/A	N/A
B. lodines						
I-131	Ci	N/A	N/A	N/A	N/A	N/A
I-133	Ci	N/A	N/A	N/A	N/A	N/A
Total Activity	Ci	N/A	N/A	N/A	N/A	N/A
C. Particulates	5					
I-131	Ci	N/A	N/A	N/A	N/A	N/A
Total Activity	Ci	N/A	N/A	N/A	N/A	N/A
D. Gross Alph	a					
Gross Alpha	Ci	N/A	N/A	N/A	N/A	N/A
E. Tritium						
Н-3	Ci	N/A	N/A	N/A	N/A	N/A

Millstone Unit No. 3 Airborne Effluents - Mixed Batch - Containment Purges

<< No Release >>

Nuclides				2006		
Released	Units	1st Qtr	2nd Qtr	3rd Qtr	4th Qtr	Total

A. Fission & Activation Gases

Xe-133	Ci	N/A	N/A	N/A	N/A	N/A
Xe-135	Ci	N/A	N/A	N/A	N/A	N/A
Total Activity	Ci	N/A	N/A	N/A	N/A	N/A

B. lodines *

I-131	Ci	N/A	N/A	N/A	N/A	N/A
I-133	Ci	N/A	N/A	N/A	N/A	N/A
Total Activity	Ci	N/A	N/A	N/A	N/A	N/A

C. Particulates *

1-131	Ci	N/A	N/A	N/A	N/A	N/A
Br-82	Ci	N/A	N/A	N/A	N/A	N/A
Total Activity	Ci	N/A	N/A	N/A	N/A	N/A

D. Gross Alpha *

Gross Alpha	Ci	N/A	N/A	N/A	N/A	N/A
			· · · · <u></u> ·· · ·			

E. Tritium

H-3	Ci	N/A	N/A	N/A	N/A

* lodines, Particulates and Gross α included in Table 2.3-A2 or 2.3-A6 dash "-" denotes less than Minimum Detectable Activity (MDA)

Millstone Unit No. 3 Airborne Effluents - Elevated Continuous - Gaseous Waste System & Containment Vents

Nuclides				2006		
Released	Units	1st Qtr	2nd Qtr	3rd Qtr	4th Qtr	Total

A. Fission & Activation Gases

Ar-41	Ci	7.45E-03	6.85E-03	7.59E-03	8.23E-03	3.01E-02
Xe-133	Ci	1.22E-02	3.38E-03	3.22E-03	2.02E-03	2.08E-02
Xe-135	Ci	2.21E-04	6.51E-05	3.17E-04	2.87E-04	8.90E-04
Kr-85m	Ci	-	-	-	-	-
Xe-135m	Ci	-	-	-	-	-
Total Activity	Ci	1.99E-02	1.03E-02	1.11E-02	1.05E-02	5.18E-02

B. lodines

B. lodines						
1-131	Ci	-	-	-	-	-
Total Activity	Ci	-	-	-	-	-

C. Particulates

Ci	-	-	-	-	-
Ci	-	-	2.56E-08	-	2.56E-08
Ci	-	-	1.28E-07	-	1.28E-07
Ci	1.50E-08	-	1.98E-08	-	3.48E-08
Ci	4.41E-06	3.30E-06	3.93E-06	3.43E-06	1.51E-05
Ci	-	4.01E-07	1.73E-07	5.24E-08	6.26E-07
Ci	-	-	-	-	-
Ci	-	-	-	-	-
Ci	4.43E-06	3.70E-06	4.28E-06	3.48E-06	1.59E-05
	Ci Ci Ci Ci Ci Ci Ci	Ci - Ci - Ci 1.50E-08 Ci 4.41E-06 Ci - Ci -	Ci - - Ci - - Ci 1.50E-08 - Ci 4.41E-06 3.30E-06 Ci - 4.01E-07 Ci - - Ci - -	Ci - 2.56E-08 Ci - 1.28E-07 Ci 1.50E-08 - 1.98E-08 Ci 4.41E-06 3.30E-06 3.93E-06 Ci - 4.01E-07 1.73E-07 Ci - - - Ci - - - Ci - - -	Ci - 2.56E-08 - Ci - - 1.28E-07 - Ci 1.50E-08 - 1.98E-08 - Ci 4.41E-06 3.30E-06 3.93E-06 3.43E-06 Ci - 4.01E-07 1.73E-07 5.24E-08 Ci - - - - Ci - - - - Ci - - - -

D. Gross Alpha

Gross Alpha	Ci	-	-	-	 -

E. Tritium

H-3	<u> </u>	2.67E-01	2 57E 01	3 265 01	501501	1 545+00
п-з		2.07E-01	3.57E-01	3.20E-01	5.91E-01	1.546+00

dash "-" denotes less than Minimum Detectable Activity (MDA)

.

Millstone Unit No. 3

Airborne Effluents - Ground Batch - Containment Equipment Hatch

<< No Release >>

Nuclides				2006		
Released	Units	1st Qtr	2nd Qtr	3rd Qtr	4th Qtr	Total

A. Fission & Activation Gases

Xe-133	Ci	N/A	N/A	N/A	N/A	N/A
Total Activity	Ci	N/A	N/A	N/A	N/A	N/A

B. lodines

I-131	Ci	N/A	N/A	N/A	N/A	N/A
I-133	Ci	N/A	N/A	N/A	N/A	N/A
Total Activity	Ci	N/A	N/A	N/A	N/A	N/A

C. Particulates

Ci	N/A	N/A	N/A	N/A	N/A
Ci	N/A	N/A	N/A	N/A	N/A
Ci	N/A	N/A	N/A	N/A	N/A
Ci	N/A	N/A	N/A	N/A	N/A
Ci	N/A	N/A	N/A	N/A	N/A
Ci	N/A	N/A	N/A	N/A	N/A
Ci	N/A	N/A	N/A	N/A	N/A
Ci	N/A	N/A	N/A	N/A	N/A
Ci	N/A	N/A	N/A	N/A	N/A
Ci	N/A	N/A	N/A	N/A	N/A
Ci	N/A	N/A	N/A	N/A	N/A
a		-			
Ci	N/A	N/A	N/A	N/A	N/A
Ci	N/A	N/A	N/A	N/A	N/A
	Ci Ci Ci Ci Ci Ci Ci Ci Ci Ci	Ci N/A Ci N/A	Ci N/A N/A Ci N/A N/A	Ci N/A N/A N/A a	Ci N/A N/A N/A N/A Ci N/A N/A N/A N/A N/A a

Millstone Unit No. 3 Airborne Effluents - Ground Batch - RWST Vent

<< No Release >>

Nuclides			2006				
Released	Units	1st Qtr	2nd Qtr	3rd Qtr	4th Qtr	Total	

A. Fission & Activation Gases

Xe-133	Ci	N/A	N/A	N/A	N/A	N/A
Total Activity	Ci	N/A	N/A	N/A	N/A	N/A

B. lodines

I-131	Ci	N/A	N/A	N/A	N/A	N/A
I-133	Ci	N/A	N/A	N/A	N/A	N/A
Total Activity	Ci	N/A	N/A	N/A	N/A	N/A

C. Particulates

I-131	Ci	N/A	N/A	N/A	N/A	N/A
Total Activity	Ci	N/A	N/A	N/A	N/A	N/A

D. Gross Alpha

Gross Alpha	Ci	N/A	N/A	N/A	N/A	N/A
· · · · · · · · · · · · · · · · · · ·			······································			
E. Tritium						

H-3	Ci	N/A	N/A	N/A	N/A	N/A

2.2 Liquid Effluents

2.2.1 Measurement of Liquid Radioactivity

2.2.1.1 Continuous Liquid Releases

Grab samples are taken for continuous liquid release pathways and analyzed on the HPGe gamma spectrometer and liquid scintillation detector (for tritium) if required by the conditional action requirements of the REMODCM. Total estimated volume is multiplied by the isotopic concentrations (if any) to determine the total activity released. A proportional aliquot of each discharge is retained for composite analysis for Sr-89, Sr-90, Fe-55 and gross alpha if required by the conditional action requirements of the REMODCM. Pathways for continuous liquid effluent releases include, Steam Generator Blowdown, Service Water Effluent, and Turbine Building Sump discharge from Units 2 & 3.

2.2.1.2 Liquid Tanks/Sumps

There are numerous tanks & sumps that are used to discharge liquids containing radioactivity to the environs; they are:

- Unit 1 Reactor Cavity Water
- Unit 2 Clean Waste Monitor Tanks (2) Aerated Waste Monitor Tanks (2) CPF Waste Neutralization Sump & Turbine Building Sump Steam Generator Bulk
- Unit 3 High Level Waste Test Tanks (2) Low Level Waste Drain Tanks (2) Boron Test Tanks CPF Waste Neutralization Sump & Turbine Building Sump Steam Generator Bulk

Prior to release, a tank is re-circulated for two equivalent tank volumes, a sample is drawn and then analyzed on the HPGe gamma spectrometer and liquid scintillation detector (H-3) for individual radionuclide composition. Isotopic concentrations are multiplied by the volume released to obtain the total activity released. For bulk releases, several samples are taken during the discharge to verify the amount of radioactivity released. A proportional aliquot of each discharge is retained for composite analysis for Sr-89, Sr-90, Fe-55, Ni-63, and gross alpha.

2.2.2 Estimate of Errors

Estimates of errors associated with radioactivity measurements were made using the following guidelines:

Sampling/Data Collection	10%	Variation in data
Calibration	10%	Calibration to N

- Sample Counting
- Flow & Level Measurements
- ta collection
- **NBS** standards
- 10% Error for counting statistics
- 10% Error for release volumes

2.2.3 Liquid Batch Release Statistics

	Unit 1	Unit 2	Unit 3
Number of Batches	0	55	297
Total Time (min)	0	6140	35,026
Maximum Time (min)	0	287	370
Average Time (min)	0	112	118
Minimum Time (min)	0	11	7
Average Stream Flow	Not	Applicable - Oce	ean Site

2.2.4 Abnormal Liquid Releases

An abnormal release of radioactivity is the discharge of a volume of liquid radioactive material to the environment that was unplanned or uncontrolled.

In 2006, the following abnormal liquid releases occurred:

2.2.4.1 Unit 1 - None

2.2.4.2 Unit 2 - None

2.2.4.3 Unit 3 - None

2.2.5 Liquid Release Tables

The following tables provide the details of the liquid radioactivity released from each of the Millstone units. They are categorized by type of release, source(s), and by release point of discharge to the environment.

Millstone Unit No. 1 Liquid Effluents - Release Summary (Release Point - Quarry)

			2006		
Units	1st Qtr	2nd Qtr	3rd Qtr	4th Qtr	Total

A. Fission and Activation Products

1.	Total Activity	Ci	N/A	2.31E-05	N/A	N/A	2.31E-05
	Released						
2.	Average Period	uCi/ml	N/A	6.23E-14	N/A	N/A	6.23E-14
	Diluted Activity ⁽¹⁾						

B. Tritium

1.	Total Activity	Ci	N/A	-	N/A	N/A	-
	Released						
2.	Average Period Diluted Activity	uCi/ml	N/A	-	N/A	N/A	-

C. Dissolved and Entrained Gases

1.	Total Activity	Ci	N/A	N/A	N/A	N/A	N/A
	Released						
2.	Average Period	uCi/ml	N/A	N/A	N/A	N/A	N/A
	Diluted Activity						

D. Gross Alpha

1. Total Activity	Ci	N/A	-	N/A	N/A	N/A
Released						

E. Volume

1.	Released Waste	Liters	0.00E+00	8.32E+04	0.00E+00	0.00E+00	8.32E+04
	Volume						
2.	Dilution Volume	Liters	N/A	9.09E+08	N/A	N/A	9.09E+08
	During Releases						
3.	Dilution Volume	Liters	N/A	3.70E+11	N/A	N/A	3.70E+11
	During Period ⁽¹⁾						

dash "-" denotes less than Minimum Detectable Activity (MDA)

Millstone Unit No. 2 Liquid Effluents - Release Summary (Release Point - Quarry)

		2006		
Units 1st Qtr	2nd Qtr	3rd Qtr	4th Qtr	Total

A. Fission and Activation Products

1.	Total Activity	Ci	6.72E-03	3.19E-03	5.08E-03	1.56E-02	3.06E-02
	Released						
2.	Average Period	uCi/ml	2.50E-11	1.17E-11	1.77E-11	8.39E-11	3.01E-11
	Diluted Activity						

B. Tritium

1.	Total Activity	Ci	1.79E+02	1.84E+02	1.97E+02	4.23E+01	6.02E+02
	Released						
2.	Average Period	uCi/mI	6.65E-07	6.73E-07	6.87E-07	2.28E-07	5.93E-07
	Diluted Activity						

C. Dissolved and Entrained Gases

1.	Total Activity	Ci	3.30E-02	5.08E-02	3.08E-01	1.33E-01	5.24E-01
	Released						
2.	Average Period	uCi/ml	1.23E-10	1.86E-10	1.07E-09	7.13E-10	5.16E-10
	Diluted Activity						

D. Gross Alpha

1. Total Activity	Ci	-	-	-	-	-
Released						

E. Volume

1.	Released Waste	Liters	7.95E+06	4.08E+05	7.25E+05	4.58E+05	9.54E+06
	Volume						
2.	Dilution Volume	Liters	2.40E+09	1.82E+09	3.56E+09	1.56E+09	9.34E+09
	During Releases						
3.	Dilution Volume	Liters	2.69E+11	2.73E+11	2.87E+11	1.86E+11	1.02E+12
	During Period						

dash "-" denotes less than Minimum Detectable Activity (MDA)

Millstone Unit No. 2 Liquid Effluents - Continuous - SGBD, SW, RBCCW (Quarry Release Point)

			2006								
Units	1st Qtr	2nd Qtr	3rd Qtr	4th Qtr	Total						
Activat	ion Product	s									
Ci	-	-	-	-	-						
B. Tritium H-3 Ci 1.13E-02 7.85E-05 - 5.80E-04 1.20E-02											
Ci	1.13E-02	7.85E-05		5.80E-04	1.20E-02						
& Entr	ained Gases	;									
Ci	-	-	-	-	-						
D. Gross Alpha											
Ci	N/A	N/A	N/A	N/A	N/A						
	Activat Ci Ci & Entr Ci	Activation Product: Ci - Ci 1.13E-02 & Entrained Gases Ci -	Activation Products Ci - Ci 1.13E-02 7.85E-05 & Entrained Gases - Ci - -	Units 1st Qtr 2nd Qtr 3rd Qtr Activation Products Ci - - Ci 1.13E-02 7.85E-05 - & Entrained Gases Ci - -	Units 1st Qtr 2nd Qtr 3rd Qtr 4th Qtr Activation Products - - - - Ci - - - - - Ci 1.13E-02 7.85E-05 - 5.80E-04 & Entrained Gases - - - Ci - - - -						

Millstone Unit No. 2 Liquid Effluents - Batch - LWS

Nuclides	1			2006		
Released	Units	1st Qtr	2nd Qtr	3rd Qtr	4th Qtr	Total

A. Fission & Activation Products

Ag-110m	Ci	4.85E-05	5.36E-05	1.29E-04	1.42E-04	3.73E-04
Ce-141	Ci	-	_	-	-	-
Ce-144	Ci	-	-	-	-	
Co-57	Ci	3.57E-06	7.68E-07	2.91E-06	3.76E-05	4.48E-05
Co-58	Ci	2.15E-04	1.65E-04	1.35E-04	1.85E-03	2.37E-03
Co-60	Ci	6.02E-04	1.14E-03	1.84E-03	1.90E-03	5.48E-03
Cr-51	Ci	1.05E-05	-	-	1.34E-03	1.35E-03
Ni-63	Ci	2.40E-03	3.51E-04	7.63E-04	1.39E-03	4.90E-03
Cs-134	Ci	5.12E-04	1.89E-06	7.30E-06	2.05E-04	7.26E-04
Cs-137	Ci	9.25E-04	2.01E-05	4.82E-05	3.02E-04	1.30E-03
Fe-55	Ci	9.33E-04	7.08E-04	7.93E-04	4.32E-03	6.76E-03
Fe-59	Ci	-	-	-	2.46E-04	2.46E-04
La-140	Ci	4.70E-08	-	-	-	4.70E-08
Mn-54	Ci	2.05E-05	6.69E-05	1.20E-04	1.95E-04	4.02E-04
M0-99	Ci	-	-	-	-	-
Nb-95	Ci	5.85E-06	2.48E-05	-	4.70E-04	5.01E-04
Ru-103	Ci	-	-	-	3.60E-05	3.60E-05
Sb-124	Ci	-	-	-	4.35E-05	4.35E-05
Sb-125	Ci	1.02E-03	6.65E-04	1.24E-03	2.53E-03	5.46E-03
Sn-113	Ci	9.04E-06	1.95E-07	-	3.06E-04	3.15E-04
Sn-117m	Ci	-	-	-	3.79E-05	3.79E-05
Sr-89	Ci	1.05E-05	-	-	-	1.05E-05
Sr-90	Ci	-	-	4.16E-06	-	4.16E-06
Zn-65	Ci	-	-	-	-	-
Zr-95	Ci	4.10E-06	_	-	2.39E-04	2.43E-04
Zr-97	Ci	-	_	-	6.05E-06	6.05E-06
Total Activity	Ci	6.72E-03	3.19E-03	5.08E-03	1.56E-02	3.06E-02

B. Tritium

H- <u>3</u>	Ci	1.79E+02	1.84E+02	1.97E+02	4.23E+01	6.02E+02

C. Dissolved & Entrained Gases

Kr-85	Ci	2.83E-02	5.04E-02	1.88E-01	1.13E-01	3.80E-01
Xe-131m	Ci	-	-	2.29E-03	3.85E-04	2.67E-03
Xe-133	Ci	4.72E-03	4.54E-04	1.17E-01	1.94E-02	1.41E-01
Xe-133m	Ci	-	-	2.59E-04	-	2.59E-04
Xe-135	Ci	-	-	9.88E-05	1.35E-05	1.12E-04
Total Activity	Ci	3.30E-02	5.08E-02	3.08E-01	1.33E-01	5.24E-01

D. Gross Alpha

Gross Alpha Ci							
	Gross Alpha	l Ci l	-	-	-	-	_

Millstone Unit No. 2

Liquid Effluents -Continuous-Turbine Building Sump

(Release Point - Yard Drain - DSN 006)

Nuclides				2006		
Released	Units	1st Qtr	2nd Qtr	3rd Qtr	4th Qtr	Total

A. Fission & Activation Products

Total Activity	Ci	-	_	_	_	_
		-			-	

B. Tritium

H-3	Ci	1.75E-02	8.08E-03	2.23E-04	2.75E-02	5.33E-02
Average Period	uCi/ml	6.91E-07	2.31E-07	4.66E-09	1.34E-06	4.14E-07
Diluted Activity						

C. Dissolved & Entrained Gases

Total Activity	Ci	4	 -	-	-	

D. Gross Alpha

Gross Alpha	Ci	N/A	N/A	N/A	N/A	N/A

E. Volume

Released Waste	Liters	1.95E+06	8.29E+05	6.59E+07	1.76E+06	7.04E+07
Volume						
Dilution Volume	Liters	2.53E+07	3.49E+07	4.79E+07	2.06E+07	1.29E+08
During Period*						

dash "-" denotes less than Minimum Detectable Activity (MDA), or that an MDA is not specified.

*Dilution Volume During Period is an approximation of actual dilution flow to DSN006.

Millstone Unit No. 3 Liquid Effluents - Release Summary (Release Point - Quarry)

			2006		
Units	1st Qtr	2nd Qtr	3rd Qtr	4th Qtr	Total

A. Fission and Activation Products

1.	Total Activity	Ci	4.23E-03	1.94E-02	1.45E-02	4.11E-03	4.23E-02
	Released						
2.	Average Period	uCi/ml	9.65E-12	4.17E-11	3.07E-11	8.76E-12	2.29E-11
	Diluted Activity						

B. Tritium

1.	Total Activity	Ci	4.54E+01	2.40E+01	2.55E+01	2.32E+02	3.27E+02
	Released						
2.	Average Period	uCi/ml	1.04E-07	5.15E-08	5.40E-08	4.95E-07	1.77E-07
	Diluted Activity						

C. Dissolved and Entrained Gases

1.	Total Activity	Ci	-	5.16E-03	-	-	5.16E-03
	Released						
2.	Average Period	uCi/ml	-	1.11E-11	-	-	2.80E-12
	Diluted Activity						

D. Gross Alpha

1.	Total Activity	Ci	-	-	-	-	-
	Released						9

E. Volume

1.	Released Waste	Liters	4.66E+06	4.82E+06	7.91E+06	4.32E+06	2.17E+07
	Volume						
2.	Dilution Volume	Liters	5.23E+09	7.79E+09	8.68E+09	6.67E+09	2.84E+10
	During Releases						
3.	Dilution Volume	Liters	4.38E+11	4.66E+11	4.72E+11	4.69E+11	1.85E+12
	During Period						

Millstone Unit No. 3 Liquid Effluents - Continuous - SGBD & SW (Quarry Release Point)

Nuclides				2006							
Released	Units	1st Qtr	2nd Qtr	3rd Qtr	4th Qtr	Total					
A. Fission & Activation Products											
Total Activity	Ci	-	-	-	-	-					
				<u> </u>							
B. Tritium											
H-3	Ci	1.86E-02	6.87E-02	1.46E-01	4.95E-02	2.83E-01					
C. Dissolved & Entrained Gases											
Xe-133	Ci	-	-	-	-	-					
Total Activity	Ci	-	-	-	-	-					
D. Gross Alp	ha										
Gross Alpha	Ci	N/A	N/A	N/A	N/A	N/A					
	·		······································								

Millstone Unit No. 3

Liquid Effluents - Batch - LWS (Quarry Release Point)

			(duality rion	ouder entry		
Nuclides			2006			
Released	Units	1st Qtr	2nd Qtr	3rd Qtr	4th Qtr	Total

A. Fission & Activation Products

Ag-110m	Ci	-	1.19E-04	2.42E-05	-	1.43E-04
Ce-141	Ci	-	-	-	-	-
Ce-144	Ci	-	-	-	-	-
Co-58	Ci	2.93E-04	3.68E-05	1.24E-05	-	3.42E-04
Co-60	Ci	6.56E-04	2.07E-03	2.19E-03	1.05E-03	5.97E-03
Cs-134	Ci	-	-	-	-	-
Cs-137	Ci	4.61E-05	4.55E-05	8.50E-05	1.25E-04	3.02E-04
Fe-55	Ci	1.82E-03	5.40E-03	3.34E-03	1.15E-03	1.17E-02
Fe-59	Ci	-	-	-	-	-
Mn-54	Ci	7.48E-05	2.63E-04	1.93E-04	1.94E-05	5.50E-04
Mo-99	Ci	-	-	-	-	-
Nb-95	Ci	1.50E-05	1.09E-05	1	-	2.59E-05
Ni-63	Ci	6.26E-04	4.11E-03	3.73E-04	4.13E-04	5.52E-03
Sb-124	Ci	-	3.95E-05	-	-	3.95E-05
Sb-125	Ci	6.92E-04	7.29E-03	8.25E-03	1.35E-03	1.76E-02
Sn-113	Ci	-	1.14E-05	-	~	1.14E-05
Sn-117m	Ci	-	4.15E-05	8.17E-06	-	4.97E-05
Te-132	Ci	5.92E-06	-	-	-	5.92E-06
Sr-89	Ci	-	-	-	-	-
Sr-90	Ci	_	_	-	-	-
Sr-92	Ci	-	-	1.35E-05	-	-
Zn-65	Ci	-	-	-	-	-
Total Activity	Ci	4.23E-03	1.94E-02	1.45E-02	4.11E-03	4.22E-02

B. Tritium

	H-3	Ci	4.54E+01		2.53E+01	2.32E+02	3.27E+02	
--	-----	----	----------	--	----------	----------	----------	--

C. Dissolved & Entrained Gases

Kr-85	Ci	-	5.16E-03	-	-	5.16E-03

D. Gross Alpha

Gross Alpha Ci - - - -	Gross Alpha	Ci	-	-	-	-	+
----------------------------------	-------------	----	---	---	---	---	---

Millstone Unit No. 3 Liquid Effluents - Batch - CPF Waste Neutralization Sumps, Hotwell, S/G Bulk (Quarry Release Point)

Nuclides				2006		
Released	Units	1st Qtr	2nd Qtr	3rd Qtr	4th Qtr	Total
A. Fission &	Activat	ion Product	ts			

H-5 CI 1.74E-02 2.85E-02 3.42E-02 2.40E-02 1.05E-01	H-3	Ci		2.83E-02	3.42E-02	2.46E-02	
---	-----	----	--	----------	----------	----------	--

C. Dissolved & Entrained Gases

Total Activity	Ci	-	-	-	-	

D. Gross Alpha

Gross Alpha	Ci	N/A	N/A	N/A	N/A	N/A

dash "-" denotes less than Minimum Detectable Activity (MDA), or that an MDA is not specified.

Millstone Unit No. 3 Liquid Effluents - Release Summary (Release Point - Yard Drain - DSN 006)

			2006		1
Units	1st Qtr	2nd Qtr	3rd Qtr	4th Qtr	Total

A. Fission and Activation Products

1.	Total Activity	Ci	-	-	-	-	-
	Released						
2.	Average Period	uCi/ml	-	-	-	-	-
	Diluted Activity						

B. Tritium

1.	Total Activity	Ci	3.68E-02	8.51E-02	4.61E-03	4.95E-02	1.76E-01
	Released						
2.	Average Period	uCi/ml	1.34E-06	2.28E-06	9.22E-08	2.35E-06	1.30E-06
	Diluted Activity						

C. Dissolved and Entrained Gases

1.	Total Activity	Ci	-	-	-	-	-
	Released						
2.	Average Period	uCi/ml	-	-	-	-	-
	Diluted Activity						

D. Gross Alpha

1. Total Activity	Ci	N/A	N/A	N/A	N/A	N/A
Released						

E. Volume

1.	Released Waste	Liters	2.23E+06	2.36E+06	2.10E+06	4.23E+05	7.11E+06
	Volume						
3.	Dilution Volume	Liters	2.53E+07	3.49E+07	4.79E+07	2.06E+07	1.29E+08
	During Period*		-				

*Dilution Volume During Period is an approximation of actual dilution flow to DSN006. dash "-" denotes less than Minimum Detectable Activity (MDA), or that an MDA is not specified.

Millstone Unit No. 3 Liquid Effluents - Continuous - Turbine Building Sump (Release Point - Yard Drain - DSN 006)

			2006		
Jnits	1st Qtr	2nd Qtr	3rd Qtr	4th Qtr	Total
ctival	tion Product	s			
Ci	-	-	-	-	-
Ci	3.66E-02	8.51E-02	4.61E-03	4.95E-02	1.76E-01
		_			
Entr	ained Gases	5			
Ci	_	-	-	-	_
a					
Ci	N/A	N/A	N/A	N/A	N/A
	Ci Ci Ci Entr Ci	Ci 3.66E-02 Ci 3.66E-02 Entrained Gases Ci -	Ci 3.66E-02 8.51E-02 Ci	Ci Products Ci - - Ci 3.66E-02 8.51E-02 4.61E-03 Entrained Gases - - Ci - - -	Ci - - - - Ci - - - - - Ci 3.66E-02 8.51E-02 4.61E-03 4.95E-02 Ci 3.66E-02 8.51E-02 - - Ci 3.66E-02 8.51E-02 - - Ci - - - - - Ci - - - - - a - - - - -

Millstone Unit No. 3

Liquid Effluents - Continuous - WTT Berm Water

(Release Point - Yard Drain - DSN 006)

Nuclides				2006						
Released	Units	1st Qtr	2nd Qtr	3rd Qtr	4th Qtr	Total				
A. Fission &	Activa	tion Product	s							
Total Activity	Ci	-	N/A	N/A	N/A	-				
B. Tritium										
H-3	Ci	2.00E-04	N/A	N/A	N/A	2.00E-04				
C. Dissolved	& Enti	rained Gases	5							
Total Activity	Ci	-	N/A	N/A	N/S	-				
						······				
D. Gross Alp	ha									
Gross Alpha	Ci	N/A	N/A	N/A	N/A	N/A				
P						•••••••••••••••••••••••••••••••••••••••				

2.3 Solid Waste

Solid waste shipment summaries for each unit are given in the following tables:

Table 2.1-S Unit 1 Solid Waste and Irradiated Component Shipments Table 2.2-S Unit 2 Solid Waste and Irradiated Component Shipments Table 2.3-S Unit 3 Solid Waste and Irradiated Component Shipments

The principal radionuclides in these tables were from shipping manifests.

Solidification Agent(s): No solidification on site

Containers routinely used for radioactive waste shipment include:

55-gal Steel Drum DOT 17-H container	7.5 ft ³
Steel Boxes	45 ft ³ 87 ft ³ 95 ft ³ 122 ft ³
Steel Container	202.1 ft ³
Steel "Sea Van"	1280 ft ³
Polyethylene High Integrity Containers	120.3 ft ³ 132.4 ft ³ 173.4 ft ³ 202.1 ft ³

Table 2.1-SSolid Waste and Irradiated Component ShipmentsMillstone Unit 1

January 1, 2006 through December 31, 2006

A. SOLID WASTE SHIPPED OFFSITE FOR BURIAL OR DISPOSAL (Not irradiated fuel)

1. Type of Waste

a. Spent resins, Filter sludges, Evaporator bottoms, etc.

Disposition	Units	Annual Totals	Est. Total Error
None			

b. Dry compressible waste, Contaminated equipment, etc.

Disposition	Units	Annual Totals	Est. Total Error
From Millstone Nuclear Power Station to Duratek, Inc., Oak Ridge, TN for Super-	m ³	1.7105E+01	25%
Compaction, Incineration, etc	Ci	3.7522E-03	2576

c. Irradiated components, Control rods, etc.

Disposition	Units	Annual Totals	Est. Total Error
None			

d. Other - (Grease, Oil, Oily waste)

Disposition	Units	Annual Totals	Est. Total Error
None			

d. Other - (Mixed Waste)

Disposition	Units	Annual Totals	Est. Total Error
From Millstone Nuclear Power Station to Perma-Fix of Florida, Inc., Gainesville,	m ³	1.0809E-01	25%
FL for Stabilization, Fuel Blending, etc	Ci	4.3471E-04	25%

d. Other - (Water)

Disposition	Units	Annual Totals	Est. Total Error
From Millstone Nuclear Power Station to Duratek, Inc., Oak Ridge, TN for	m ³	9.4627E-01	25%
Incineration.	Ci	1.1778E-03	23%

Radionuclide % of Total Curies H-3 0.74 2.7898E-05 C-14	wer Station to Duratek, Inc., Oak Ridge, TN for Super-Cor			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			Curies	
$\begin{array}{c ccccc} Cr-51 & 0.03 & 1.3115E-06 \\ Mn-54 & & & \\ Fe-55 & 54.13 & 2.0311E-03 \\ Fe-59 & & \\ Co-57 & & \\ Co-58 & 1.19 & 4.4730E-05 \\ Co-60 & 11.38 & 4.2705E-04 \\ Ni-59 & & \\ Ni-63 & 6.56 & 2.4612E-04 \\ Zn-65 & & \\ Sr-89 & & \\ Sr-90 & & \\ Nb-94 & & \\ Zr-95 & & \\ Nb-95 & & \\ Tc-99 & & \\ Ru-103 & & \\ Ru-106 & & \\ Ag-110m & & \\ Sn-113 & & \\ Sn-113 & & \\ Sh-124 & & \\ Sb-125 & & \\ I-129 & & \\ I-131 & & \\ Cs-134 & 2.08 & 7.8112E-05 \\ Cs-136 & & \\ Cs-137 & 23.82 & 8.9363E-04 \\ Ba-140 & & \\ La-140 & & \\ Ce-141 & & \\ Ce-144 & & \\ Eu-154 & & \\ Hf-181 & & \\ Pu-238 & 0.01 & 4.3842E-07 \\ Pu-239 & <0.01 & 3.0189E-07 \\ Pu-241 & & \\ Am-241 & 0.03 & 1.0894E-06 \\ Pu-242 & & \\ Cm-242 & & \\ Cm-242 & & \\ Cm-244 & 0.01 & 4.6107E-07 \\ \end{array}$		0.74	2.7898E-05	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		0.03	1.3115E-06	
Fe-59				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		54.13	2.0311E-03	
Co-58 1.19 4.4730E-05 Co-60 11.38 4.2705E-04 Ni-63 6.56 2.4612E-04 Zn-65				
Co-60 11.38 4.2705E-04 Ni-59				
Ni-59 6.56 $2.4612E-04$ Zn-65 $3r-89$ $3r-89$ Sr-90 $3r-90$ Nb-94 $2r-95$ Nb-95 $7c-99$ Ru-103 $8r-106$ Ag-110m $3r-113$ Sn-113 $3r-117m$ Sb-124 $3r-117m$ Sb-125 $1-129$ I-131 $3r-117m$ Cs-134 2.08 7.8112E-05Cs-136 $3r-117m$ Cs-137 23.82 8.9363E-04Ba-140 $4r-140$ La-140 $4r-140$ Ce-144 $8r-140$ Hf-181 $1r-181$ Pu-238 0.01 4.3842E-07Pu-239 <0.01 3.0189E-07Pu-241 $3r-140$ Am-241 0.03 1.0894E-06Pu-242Cm-243Cm-244 0.01 4.6107E-07				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		11.38	4.2705E-04	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		_		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		6.56	2.4612E-04	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				
Ru-103 Ru-106 Ag-110m Sn-113 Sn-113 Sn-117m Sb-124 Sb-125 I-129 I-131 Cs-134 2.08 7.8112E-05 Cs-136 Cs-137 23.82 8.9363E-04 Ba-140 I.a-140 I.a-140 I.a-140 Ce-141 Ce-144 I.a-140 I.a-140 Fu-154 I.a-140 I.a-140 I.a-140 Ce-141 I.a-140 I.a-140 I.a-140 Ce-141 I.a-140 I.a-140 I.a-140 Cu-141 I.a-140 I.a-140 I.a-140 Cu-241 I.a-140 I.a-140 I.a-140 Cu-241 I.a-140 I.a-140 I.a-140 Cu-241 I.a-140 I.a-140 I.a-140 Cu-241 I.a-140 I.a-140 I.a-140 Reinform I.a-140 I.a-140 I.a-140 Cu-243 I.a-140 I.a-140 I.a-140 Cu-242 I.a-140 I.a-140 I.a-140 Cu-242 I.a-140 I.a-140 I.a-				
Ru-106 Ag-110m Sn-113 Sn-117m Sb-124 Sb-125 I-129 I-131 Cs-134 2.08 7.8112E-05 Cs-136 Cs-136 Cs-137 23.82 8.9363E-04 Ba-140 La-140 Ce-141 Ce-144 Eu-154 Hf-181 Pu-238 0.01 4.3842E-07 Pu-239 <0.01			ļ	
Ag-110m Ag-113 Sn-113 Sn-117m Sb-124 Sb-125 I-129 I-131 Cs-134 2.08 7.8112E-05 Cs-136 Cs-137 23.82 8.9363E-04 Ba-140 Item 14 Item 14 Item 14 Ce-141 Ce-144 Item 154 Item 154 Hf-181 Pu-238 0.01 4.3842E-07 Pu-239 <0.01				
Sn-113 Sn-117m Sb-124 Sb-125 I-129 I-131 Cs-134 2.08 7.8112E-05 Cs-136 Cs-137 23.82 Ba-140 Image: Ce-141 Image: Ce-144 Ce-144 Image: Ce-144 Image: Ce-144 Fu-238 0.01 4.3842E-07 Pu-239 <0.01				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				
Sb-124 Sb-125 I-129 I-131 Cs-134 2.08 7.8112E-05 Cs-136 Sb-125 Cs-137 23.82 8.9363E-04 Ba-140 Sb-125 Sb-125 Cs-137 23.82 8.9363E-04 Ba-140 Sb-125 Sb-125 Cs-137 23.82 8.9363E-04 Ba-140 Sb-140 Sb-140 La-140 Sb-140 Sb-140 Ce-141 Sb-140 Sb-140 Ce-141 Sb-140 Sb-140 Fu-154 Sb-140 Sb-140 Hf-181 Sb-140 Sb-140 Pu-238 0.01 4.3842E-07 Pu-239 <0.01				
Sb-125 I-129 I-131 Cs-134 Cs-134 2.08 7.8112E-05 Cs-136 Cs-137 23.82 Ba-140 La-140 Ce-141 Ce-144 Eu-154 Hf-181 Pu-238 0.01 4.3842E-07 Pu-239 <0.01				
I-129 I-131 Cs-134 2.08 7.8112E-05 Cs-136 Cs-137 23.82 Ba-140 La-140 Ce-141 Ce-144 Eu-154 Hf-181 Pu-238 0.01 4.3842E-07 Pu-239 <0.01				
I-131 2.08 7.8112E-05 Cs-134 2.08 7.8112E-05 Cs-136 3.012E-05 3.0189E-04 Ba-140 3.0189E-07 3.0189E-07 La-141 3.0189E-07 3.0189E-07 Pu-239 <0.01				
Cs-134 2.08 7.8112E-05 Cs-136				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		2 08	7 81125-05	
Cs-137 23.82 8.9363E-04 Ba-140		2.00	7.0112E-00	
Ba-140		23.82	8 93635-04	
La-140 Ce-141 Ce-141 Ce-144 Eu-154 Fear Control Contro Control Control Control Contro Control Control Contro C	the second se	20.02	0.0000L-04	
Ce-141 Ce-144 Ce-144 Eu-154 Hf-181 Pu-238 Pu-239 <0.01				
Ce-144				
Eu-154 Hf-181 Pu-238 0.01 4.3842E-07 Pu-239 <0.01				
Hf-181 Pu-238 0.01 4.3842E-07 Pu-239 <0.01				
Pu-238 0.01 4.3842E-07 Pu-239 <0.01				
Pu-239 <0.01 3.0189E-07 Pu-241 0.03 1.0894E-06 Am-241 0.03 1.0894E-06 Pu-242 0 0 Cm-242 0 0 Cm-243 0 0 Cm-244 0.01 4.6107E-07		0.01	4.3842F-07	
Pu-241 0.03 1.0894E-06 Pu-242 0 0 Cm-242 0 0 Cm-243 0 0 Cm-244 0.01 4.6107E-07				
Am-241 0.03 1.0894E-06 Pu-242 Cm-242 Cm-243 Cm-244 0.01 4.6107E-07				
Pu-242 Cm-242 Cm-243 Cm-244 Cm-244 0.01		0.03	1.0894E-06	
Cm-242				
Cm-243				
Cm-244 0.01 4.6107E-07				
		0.01	4.6107E-07	
			3.7522E-03	

b. Dry compressible waste, Contaminated equipment, etc.

From Millstone Nuclear Power Station to Duratek, Inc., Oak Ridge, TN for Super-Compaction, Incineration, etc..

Millstone Nuclear Power				abilization, Fuel Blendin
	Radionuclide	% of Total	Curies	Ú.
	<u>H-3</u>	1.40	6.0896E-06	
	C-14			
	Cr-51	0.75	3.2793E-06	
	Mn-54			
	Fe-55	49.47	2.1503E-04	
	Fe-59			
	<u>Co-57</u>			
	<u>Co-58</u>	5.71	2.4835E-05	
	Co-60	10.40	4.5201E-05	
	Ni-59			
	Ni-63	9.55	4.1532E-05	
	Zn-65			
	Sr-89			
	Sr-90			
	Nb-94			
	Zr-95			
	Nb-95			
	Tc-99			
	<u>Ru-103</u>			
	Ru-106			
	Ag-110m			
	Sn-113			
	<u>Sn-117m</u>			
	Sb-124			
	Sb-125			
	l-129			
	l-131			
	Cs-134	4.22	1.8353E-05	
	Cs-136			
	<u>Cs-137</u>	18.45	8.0188E-05	
	Ba-140	,		
	La-140			
	Ce-141			
	Ce-144			
	Eu-154			
	Hf-181			
	Pu-238	0.01	4.9965E-08	
	Pu-239	<0.01	3.9932E-08	
	Pu-241			
	Am-241	0.02	8.7060E-08	
	Pu-242			
	Cm-242			
	Cm-243			
	Cm-244	<0.01	2.3622E-08]
	CURIES	(TOTAL)	4.3471E-04	
		-	•	

2. Estimate of major nuclide composition (by type of waste) d. Other - (Mixed Waste)

From M ng, etc..

From Millston		ation to Duratek. In	c., Oak Ridge, TN fo	r Incineration.
	Radionuclide	% of Total	Curies	
1	H-3	95.56	1.1256E-03	
	C-14	<0.01	8.9895E-09	
	Cr-51			
	Mn-54	0.02	2.2579E-07	
	Fe-55	0.93	1.1007E-05	
	Fe-59			
	Co-57		4 0000 7 00	
	<u>Co-58</u>	0.17	1.9939E-06	
	Co-60	0.32	3.7564E-06	
	Ni-59 Ni-63	0.65	7.6305E-06	
	Zn-65	0.05	7.0300E-00	
	Sr-89	<0.01	7.7641E-08	
	Sr-90	<0.01	1.0378E-07	
	Nb-94	<0.01	2.6436E-09	
	Zr-95		2.01002.00	
	Nb-95	<0.01	8.2036E-08	
	Tc-99	< 0.01	8.0282E-09	
	Ru-103			
	Ru-106			
	Ag-110m			
	Sn-113			
	Sn-117m			
	Sb-124			
-	Sb-125	0.04	5.2261E-07	
	I-129			•
	I-131		4 0000 07 07	
	Cs-134	0.04	4.3330E-07	
	Cs-136	2.02	0.00000 05	1
	Cs-137 Ba-140	2.03	2.3963E-05	
	La-140			
	Ce-141			
	Ce-144	<0.01	9.5663E-09	
	Eu-154	< 0.01	1.8934E-09	
	Hf-181			
	Pu-238	<0.01	8.8690E-08	
	Pu-239	<0.01	3.7440E-08	
	Pu-241	0.18	2.1576E-06	
	Am-241	<0.01	1.0881E-07	
	Pu-242	<0.01	6.7301E-10	
	Cm-242	<0.01	6.3870E-10	
	Cm-243	<0.01	2.0520E-08	
	Cm-244			1
	CURIES	(TOTAL)	1.1778E-03	1

2. Estimate of major nuclide composition (by type of waste)

d. Other - (Water)

.

3. Solid Waste Disposition (Shipments from Millstone)

Number of Shipments*	Mode of Transportation	Destination
3	Truck (Sole Use Vehicle)	Duratek, Inc., Oak Ridge, TN
2	Truck (Sole Use Vehicle)	Perma-Fix of Florida, Inc., Gainesville, FL

* Indicates the number of shipments in this category which contained *any* unit-1 waste. (Example: A shipment containing wastes from units 1, 2 *and* 3 will be counted once on *each* of the three unit-specific sections of this report.) 31 physical shipments were made from this station in 2006.

B. IRRADIATED FUEL SHIPMENTS (Disposition)

Number of Shipments	Mode of Transportation	Destination
No Shipments in 2006	N/A	N/A

Table 2.2-S Solid Waste and Irradiated Component Shipments Millstone Unit 2

January 1, 2006 through December 31, 2006

A. SOLID WASTE SHIPPED OFFSITE FOR BURIAL OR DISPOSAL (Not irradiated fuel)

1. Type of Waste

a. Spent resins, Filter sludges, Evaporator bottoms, etc.

Disposition	Units	Annual Totals	Est. Total Error
From Millstone Nuclear Power Station to Chem-Nuclear Systems, LLC, Barnwell,	m ³	3.4069E+00	25%
SC for Burial.	Ci	2.0047E+02	2370
From Millstone Nuclear Power Station to Duratek, Inc., Kingston, TN for Super- Compaction, Incineration, etc	m ³	5.0976E+00	25%
	Ci	2.3207E-03	
From Millstone Nuclear Power Station to Duratek, Inc., Oak Ridge, TN for Super-	m ³	9.7524E+00	25%
Compaction, Incineration, etc	Ci	4.0877E-01	23%
From Millstone Nuclear Power Station to Studsvik Processing Facility, Erwin, TN	m ³	5.3569E+00	250/
for Thermal Destruction, Incineration, etc	Ci	1.0516E+02	25%

b. Dry compressible waste, Contaminated equipment, etc.

Disposition		Annual Totals	Est. Total Error
From Millstone Nuclear Power Station to Duratek, Inc., Kingston, TN for Super-	m ³	1.3359E+02	25%
Compaction, Incineration, etc	Ci	4.4353E-02	25%
From Millstone Nuclear Power Station to Duratek, Inc., Oak Ridge, TN for Super-	m ³	2.8574E+02	25%
Compaction, Incineration, etc	Ci	2.7485E-01	
From Millstone Nuclear Power Station to Energy Solutions, LLC, Clive, UT for	m ³	1.8428E+02	25%
Burial.	Ci	1.9502E+01	25%

c. Irradiated components, Control rods, etc.

Disposition	Units	Annual Totals	Est. Total Error
From Millstone Nuclear Power Station to Energy Solutions, LLC, Clive, UT for	m ³	1.0082E+02	25%
Burial.	Ci	6.6065E+01	2376

d. Other - (Grease, Oil, Oily waste)

Disposition	Units	Annual Totals	Est. Total Error
From Millstone Nuclear Power Station to Duratek, Inc., Oak Ridge, TN for Super-	m³	6.2446E-01	25%
Compaction, Incineration, etc	Ci	6.1083E-05	25%

d. Other - (Mixed Waste)

Disposition	Units	Annual Totals	Est. Total Error
From Millstone Nuclear Power Station to Perma-Fix of Florida, Inc., Gainesville,	m ³	1.0809E-01	25%
FL for Stabilization, Fuel Blending, etc	Ci	4.3471E-04	2576

d. Other - (Water)

Disposition	Units	Annual Totals	Est. Total Error
From Millstone Nuclear Power Station to Duratek, Inc., Oak Ridge, TN for	m ³	4.0170E+01	25%
Incineration.	Incineration. Ci 2.7558		23%

Radionuclide	% of Total	Curies
H-3		
C-14	:	
Cr-51		
Mn-54	0.30	5.9172E-01
Fe-55	5.03	_1.0077E+01
Fe-59		
Co-57		
Co-58	<0.01	1.6420E-03
Co-60	1.63	3.2701E+00
Ni-59		
Ni-63	15.28	3.0635E+01
Zn-65		
Sr-89		
Sr-90	0.12	2.4595E-01
Nb-94		
Zr-95		
Nb-95		
Tc-99		
Ru-103		
Ru-106		
Ag-110m		
Sn-113		
Sn-117m		
Sb-124		
Sb-125		
I-129		
I-131		
Cs-134	27.53	5.5193E+01
Cs-136	50.40	1 00 10 5 00
Cs-137	50.10	1.0043E+02
Ba-140		
La-140		
Ce-141		
Ce-144		
Eu-154		
Hf-181	<0.01	9 50925 04
Pu-238	< 0.01	8.5083E-04
Pu-239	<0.01	2.1471E-04
Pu-241	<0.01	1.5475E-02
Am-241	<0.01	7.7075E-05
Pu-242 Cm-242	<0.01	1 26705 04
1.171-2/12	<0.01	.1.2676E-04
Cm-242 Cm-243 Cm-244	<0.01	6.5148E-04

a. Spent resins, Filter sludges, Evaporator bottoms, etc.

From Millstone Nuclear Power Station to Chem-Nuclear Systems, LLC, Barnwell, SC for Burial.

.

. }

2. Estimate of major nuclide composition (by type of w	vaste)
--	-------	---

a. Spent resins, Filter sludges, Evaporator bottoms, etc.

From Millstone Nuclear Power Station to Duratek, Inc., Kingston, TN for Super-Compaction, Incineration, etc..

Power Station to Dur		
Radionuclide	% of Total	Curies
H-3		
C-14		
Cr-51		
Mn-54		
Fe-55	27.49	6.3799E-04
Fe-59		
Co-57		
Co-58	5.94	1.3788E-04
Co-60	7.90	1.8325E-04
Ni-59		
Ni-63	12.84	2.9788E-04
Zn-65		
Sr-89		
Sr-90		
Nb-94		
Zr-95		
Nb-95		
Tc-99		
Ru-103		
Ru-106		
Ag-110m		
Sn-113		
Sn-117m		
Sb-124		
Sb-125		
I-129		
I-131		
Cs-134	17.41	4.0403E-04
Cs-136		
Cs-137	28.37	6.5838E-04
Ba-140		
La-140		
Ce-141		
Ce-144		
Eu-154		
Hf-181		
Pu-238	0.02	4.3699E-07
Pu-239	0.02	3.8887E-07
Pu-241		
Am-241	0.02	4.9796E-07
Pu-242		
Cm-242		
Cm-243		
Cm-244		
CURIES	(TOTAL)	2.3207E-03
5		_

		e, TN for Super-Co
Radionuclide	% of Total	Curies
H-3	1.27	5.1740E-03
C-14	0.07	2.9248E-04
Cr-51	1.07	4.3728E-03
Mn-54	0.65	2.6443E-03
Fe-55	43.62	1.7829E-01
Fe-59	0.04	1.5556E-04
Co-57	0.16	6.5833E-04
Co-58	12.51	5.1140E-02
Co-60	12.65	5.1708E-02
Ni-59		
Ni-63	20.48	8.3708E-02
Zn-65	<0.01	9.9811E-06
Sr-89	<0.01	1.0219E-05
Sr-90	0.02	7.5739E-05
Nb-94	<0.01	1.0800E-05
Zr-95	2.85	1.1644E-02
Nb-95	1.76	7.2080E-03
Tc-99	<0.01	2.4710E-07
Ru-103	<0.01	2.1727E-05
Ru-106		
Ag-110m	0.08	3.3548E-04
Sn-113	0.17	6.8227E-04
Sn-117m		
Sb-124	0.02	1.0081E-04
Sb-125	0.57	2.3266E-03
I-129		
I-131		
Cs-134	0.66	2.7113E-03
Cs-136		
Cs-137	0.97	3.9583E-03
Ba-140	<0.01	3.2926E-06
La-140		
Ce-141	<0.01	4.7541E-06
Ce-144	0.15	6.0688E-04
Eu-154		
Hf-181	0.01	4.7923E-05
Pu-238	<0.01	2.1128E-05
Pu-239	<0.01	9.6661E-06
Pu-241	0.19	7.8853E-04
Am-241	<0.01	1.1569E-05
Pu-242		
Cm-242	<0.01	1.3274E-05
Cm-243		
Cm-244	<0.01	2.5143E-05
	(TOTAL)	4.0877E-01

ż

a. Spent resins, Filter sludges, Evaporator bottoms, etc.

From Millstone Nuclear Power Station to Duratek, Inc., Oak Ridge, TN for Super-Compaction, Incineration, etc..

Radionuclide	% of Total	Erwin, TN for Them Curies
H-3	0.56	5.8797E-01
C-14	0.02	2.1019E-02
Cr-51	0.03	3.4000E-02
Mn-54	1.06	1.1154E+00
Fe-55	23.18	2.4376E+01
Fe-59	<0.01	3.5607E-03
Co-57	0.05	4.8872E-02
Co-58	0.40	4.2454E-01
Co-60	4.69	4.9282E+00
Ni-59		
Ni-63	28.29	2.9750E+01
Zn-65	<0.01	1.1300E-03
Sr-89	<0.01	3.2828E-03
Sr-90	0.18	1.8853E-01
Nb-94		
Zr-95	0.05	5.5333E-02
Nb-95	0.04	4.5701E-02
Tc-99		
Ru-103	<0.01	8.7500E-04
Ru-106	<0.01	4.0900E-03
Ag-110m	<0.01	3.9850E-03
Sn-113	0.03	3.5579E-02
Sn-117m		
Sb-124	<0.01	4.4400E-04
Sb-125	0.23	2.3921E-01
I-129		
I-131		
Cs-134	16.06	1.6884E+01
Cs-136		
Cs-137	24.98	2.6270E+01
Ba-140	<0.01	2.4339E-20
La-140		
Ce-141	<0.01	1.3600E-04
Ce-144	0.06	6.5932E-02
Eu-154		
Hf-181	<0.01	2.6493E-07
Pu-238	<0.01	1.5083E-03
Pu-239	<0.01	6.9768E-04
Pu-241	0.06	6.2845E-02
Am-241	<0.01	8.2932E-04
Pu-242		
Cm-242	<0.01	3.6848E-04
Cm-243		
Cm-244	<0.01	1.7305E-03
CURIES	(TOTAL)	1.0516E+02

a. Spent resins, Filter sludges, Evaporator bottoms, etc.

From Millstone Nuclear Power Station to Studsvik Processing Facility, Erwin, TN for Thermal Destruction, Incineration, etc..

b. Dry compressible waste, Contaminated equipment, etc.

From Millstone Nuclear Power Station to Duratek, Inc., Kingston, TN for Super-Compaction, Incineration, etc..

Power Station to Dur	atek, Inc., Kingston,	TN 101 Super-Com
Radionuclide	% of Total	Curies
H-3	0.64	2.8456E-04
C-14		
Cr-51	0.75	3.3326E-04
Mn-54	0.63	2.7863E-04
Fe-55	35.08	1.5557E-02
Fe-59		
Co-57		
Co-58	8.41	3.7302E-03
Co-60	8.55	3.7908E-03
Ni-59		
Ni-63	12.13	5.3812E-03
Zn-65		
Sr-89		
Sr-90		
Nb-94		
Zr-95		
Nb-95		
Tc-99		
Ru-103		
Ru-106		
Ag-110m ·		
Sn-113		
Sn-117m		
Sb-124		
Sb-125		
I-129	2	
I-131		
Cs-134	12.54	5.5632E-03
Cs-136		
Cs-137	21.22	9.4134E-03
Ba-140		
La-140		
Ce-141		
Ce-144		
Eu-154		
Hf-181		0.74077.00
Pu-238	0.02	6.7487E-06
Pu-239	0.01	5.9860E-06
Pu-241		7 00505 00
Am-241	0.02	7.8058E-06
Pu-242		
Cm-242		
Cm-243 Cm-244	<0.01	0 17205 00
	<0.01	9.1732E-08
CURIES	(TOTAL)	4.4353E-02

ower Station to Duratek, Inc., Oak Ridge, TN for Super-Com					
Radionuclide	% of Total	Curies			
H-3	0.04	9.7843E-05			
C-14					
Cr-51	0.02	4.1905E-05			
Mn-54	0.02	4.4007E-05			
Fe-55	28.25	7.7642E-02			
Fe-59					
Co-57					
Co-58	5.71	1.5692E-02			
Co-60	8.06	2.2151E-02			
Ni-59					
Ni-63	12.93	3.5542E-02			
Zn-65					
Sr-89					
Sr-90					
Nb-94					
Zr-95					
Nb-95					
Tc-99					
Ru-103					
Ru-106					
Ag-110m					
Sn-113					
Sn-117m					
Sb-124					
Sb-125					
I-129					
I-131					
Cs-134	17.05	4.6873E-02			
Cs-136					
Cs-137	27.87	7.6608E-02			
Ba-140					
La-140					
Ce-141					
Ce-144					
Eu-154					
Hf-181					
Pu-238	0.02	5.1127E-05			
Pu-239	0.02	4.5342E-05			
Pu-241	<0.01	1.7385E-05			
Am-241	0.02	4.6581E-05			
Pu-242					
Cm-242					
Cm-243		0.48455.05			
Cm-244	<0.01	2.1747E-07			
CURIES	(TOTAL)	2.7485E-01			

b. Dry compressible waste, Contaminated equipment, etc. From Millstone Nuclear Power Station to Duratek, Inc., Oak Ridge, TN for Super-Compaction, Incineration, etc..

From Millstone Nuclear Power Station to Energy Solutions, LLC, Clive, UT for Buria					
Radionuclide	% of Total	Curies	i ioi buildi.		
H-3	0.58	1.1400E-01			
C-14	1.24	2.4200E-01			
Cr-51	<0.01	3.4100E-07			
Mn-54	1.16	2.2700E-01			
Fe-55	53.33	1.0400E+01			
Fe-59	<0.01	2.3500E-07			
Co-57	0.15	2.8800E-02			
Co-58	1.05	2.0500E-01			
Co-60	15.13	2.9500E+00			
Ni-59					
Ni-63	24.36	4.7500E+00			
Zn-65					
Sr-89					
Sr-90					
Nb-94		· · · · ·			
Zr-95	0.09	1.7800E-02			
Nb-95	0.17	3.3700E-02			
Тс-99	0.93	1.8100E-01			
Ru-103	<0.01	6.3300E-09			
Ru-106	0.78	1.5300E-01			
Ag-110m	<0.01	2.7100E-08			
Sn-113	0.09	1.7100E-02			
Sn-117m	<0.01	2.8800E-09			
Sb-124	<0.01	5.0700E-09			
Sb-125	0.67	1.3100E-01			
I-129	0.03	5.7800E-03			
I-131	<0.01	8.2200E-08			
<u>Cs-1</u> 34	<0.01	2.3550E-05			
<u>Cs-136</u>	<0.01	2.2400E-08			
<u>Cs-1</u> 37	<0.01	2.8965E-05			
Ba-140	<0.01	1.8800E-07			
La-140	<0.01	1.8800E-07			
Ce-141	<0.01	2.5500E-09			
<u>Ce-144</u>	0.13	2.4600E-02			
Eu-154					
Hf-181	<0.01	5.7800E-09			
Pu-238	0.04	6.9800E-03			
Pu-239	0.03	6.2000E-03			
Pu-241	0.04				
Am-241	0.04	7.9500E-03			
Pu-242					
Cm-242					
Cm-243					
Cm-244		4.05005-04			
CURIES	(TOTAL)	1.9502E+01			

2. Estimate of major nuclide composition (by type of waste)b. Dry compressible waste, Contaminated equipment, etc.

one Nuclear Power Station to Energy Solutions, LLC, Clive, U					
Radionuclide	% of Total	Curies			
H-3	<0.01	2.6600E-04			
C-14	0.11	7.3700E-02			
Cr-51	<0.01	1.3500E-05			
Mn-54	2.13	1.4100E+00			
Fe-55	81.89	5.4100E+01			
Fe-59	<0.01	4.6600E-04			
Co-57	<0.01	3.9200E-03			
Co-58	0.03	2.2000E-02			
Co-60	12.47	8.2400E+00			
Ni-59	0.01	6.6900E-03			
Ni-63	3.24	2.1400E+00			
Zn-65	<0.01	2.2400E-03			
Sr-89					
Sr-90		-			
Nb-94	<0.01	2.2900E-05			
Zr-95	<0.01	4.2700E-03			
Nb-95	<0.01	3.2200E-05			
Tc-99	< 0.01	6.0500E-06			
Ru-103	< 0.01	9.6500E-06			
Ru-106					
Ag-110m					
Sn-113	<0.01	2.3000E-03			
Sn-117m					
Sb-124					
Sb-125	0.07	4.7000E-02			
I-129					
I-131					
Cs-134					
Cs-136					
Cs-130	<0.01	2.9100E-03			
Ba-140	10.0-	2.01002-00			
La-140					
Ce-141	<0.01	4.0600E-07			
Ce-141 Ce-144	10.07	4.0000E-07			
Eu-154	·	<u> </u>			
	<0.01	2.5300E-06			
Hf-181 Pu-238	< 0.01				
	<0.01	2.0500E-03			
Pu-239	<0.01	1.8400E-03			
Pu-241		0.0005.00			
Am-241	<0.01	2.3639E-03			
Pu-242					
Cm-242	0.01				
Cm-243	<0.01	3.2600E-03			
Cm-244					
CURIES	(TOTAL)	6.6065E+01			

c. Irradiated components, Control rods, etc. From Millstone Nuclear Power Station to Energy Solutions, LLC, Clive, UT for Burial.

From Millstone Nuclear Power Stat		tek, Inc., Oak Ridge	• •	npaction, Incineration, e
	nuclide	% of Total	Curies]
	1-3	0.46	2.8391E-07	<u>1</u>
	-14			1
	r-51			1
	n-54	4.23	2.5847E-06	1
	ə-55	52.77	3.2235E-05	1
Fe	∋-59			1
Co	o-57]
Co	o-58	11.77	7.1865E-06]
	o-60	11.54	7.0518E-06	
	i-59]
	i-63	14.95	9.1301E-06	
	<u>1-65</u>			
	r-89			1
	r-90			1
	p-94			4
	-95			1
	<u>p-95</u>	0.12	7.3124E-08	
	-99			
	-103			
	-106			4
	110m			4
	-113	· · · · · · · · · · · · · · · · · · ·		4
	117m			4
	-124 -125	· · · · · · · · · · · · · · · · · · ·		4
	129			
	131		·	4
	-134			4
	-136			4
	-137	4.11	2.5118E-06	1
	-140		2.01102-00	1
	-140	•	····	1
	-141			
	-144			1
	-154			1
5 million 100 million	-181			1
	-238	0.01	8.6784E-09	1
	-239	0.01	7.7499E-09	1
	-241			1
	-241	0.02	9.9450E-09	1
	-242			1
	-242			1
	-243			1
	-244]
	CURIES ((TOTAL)	6.1083E-05	

2. Estimate of major nuclide composition (by type of waste) d. Other - (Grease, Oil, Oily waste)

From Millstone Nuclear Power		x of Florida, Inc., 0	,	abilization, Fuel Blending, etc
	Radionuclide	% of Total	Curies]
	H-3	1.40	6.0896E-06	
	C-14			
	Cr-51	0.75	3.2793E-06	1
	Mn-54	······································		
	Fe-55	49.47	2.1503E-04	1
	Fe-59			
	Co-57			
	Co-58	5.71	2.4835E-05	
	Co-60	10.40	4.5201E-05	
ļ	Ni-59			
	Ni-63	9.55	4.1532E-05	4
ļ	Zn-65			
	Sr-89			
	Sr-90			
	Nb-94			
	Zr-95 Nb-95	<u> </u>	<u> </u>	
	Tc-99			
•	Ru-103			•
	Ru-105			
	Ag-110m			
	Sn-113			
	Sn-117m			
-	Sb-124		······	
ľ	Sb-125			
	I-129			
	I-131			1
	Cs-134	4.22	1.8353E-05	
	Cs-136			
	Cs-137	18.45	8.0188E-05	
	Ba-140			
	La-140			
	Ce-141			
	Ce-144			
	Eu-154			
ļ	Hf-181			4
	Pu-238	0.01	4.9965E-08	4
	Pu-239	<0.01	3.9932E-08	
•	Pu-241	0.00	0.70005-00	
	Am-241	0.02	8.7060E-08	4
-	Pu-242			4
	Cm-242			4
ŀ	Cm-243 Cm-244	<0.01	2 36335 09	4
			2.3622E-08	
L	CURIES (4.3471E-04	

2. Estimate of major nuclide composition (by type of waste) d. Other - (Mixed Waste)

.

Erom Milloton		ation to Durotok Inc	,	- Incincration
		ation to Duratek, Inc		r incineration.
ļ	Radionuclide	% of Total	Curies]
	H-3	91.34	2.5173E-02	
•	C-14	<0.01	9.8165E-08	
•	<u>Cr-51</u>	0.07	4 99905 05	
	Mn-54	0.07	1.8396E-05	
	Fe-55	2.62	7.2190E-04	
	Fe-59	<0.01	1 20005 00	
	Co-57	<0.01	1.2696E-06	
-	<u>Co-58</u>	0.57	1.5730E-04	
-	Co-60	2.03	5.5979E-04	
	Ni-59	1.20	2 57095 04	
-	Ni-63	1.30	3.5798E-04	
ŀ	Zn-65	<0.01	9 47945 07	
	Sr-89	< 0.01	8.4784E-07	
ŀ	Sr-90 Nb-94	<0.01 <0.01	1.1333E-06 2.8868E-08	
-	Zr-95	<u> </u>	2.0000E-00	
ŀ	Nb-95	0.02	5 95625 06	
ł	Tc-99	0.02 <0.01	5.8562E-06 8.7668E-08	
· •	Ru-103	~0.01	0.7000E-00	
ŀ	Ru-106			
ŀ	Ag-110m			
ŀ	Sn-113	<0.01	2.3582E-06	
ł			2.00022-00	
ł	Sb-124			
	Sb-125	0.07	2.0517E-05	
ŀ	I-129	0.07	2.0317 2-00	
•	I-131			
ŀ	Cs-134	0.11	3.1662E-05	
	Cs-136		0.10022.00	
	Cs-137	1.74	4.7826E-04	
1	Ba-140			
ľ	La-140	······································		
ľ	Ce-141			
ľ	Ce-144	<0.01	1.0446E-07	
ľ	Eu-154	< 0.01	2.0676E-08	
-	Hf-181			
	Pu-238	<0.01	1.3708E-06	
ľ	Pu-239	<0.01	7.6651E-07	
ľ	Pu-241	0.09	2.3561E-05	
1	Am-241	<0.01	1.6464E-06	
ľ	Pu-242	<0.01	7.3492E-09	
ľ	Cm-242	<0.01	6.9746E-09	
ſ	Cm-243	<0.01	2.2407E-07	
ľ	Cm-244			
ľ	CURIES	(TOTAL)	2.7558E-02	
L		······································		i i

2. Estimate of major nuclide composition (by type of waste) d. Other - (Water)

Number of Shipments*	Mode of Transportation	Destination
1	Truck (Sole Use Vehicle)	Chem-Nuclear Systems, LLC, Barnwell, SC
8	Truck (Sole Use Vehicle)	Duratek, Inc., Kingston, TN
13	Truck (Sole Use Vehicle)	Duratek, Inc., Oak Ridge, TN
1		Energy Solutions, LLC, Clive, UT
1**	Barge (Sole Use Vehicle)	Energy Solutions, LLC, Clive, UT
2	Truck (Sole Use Vehicle)	Perma-Fix of Florida, Inc., Gainesville, FL
4	Truck (Sole Use Vehicle)	Studsvik Processing Facility, Erwin, TN

* Indicates the number of shipments in this category which contained *any* unit-2 waste. (Example: A shipment containing wastes from units 1, 2 *and* 3 will be counted once on *each* of the three unit-specific sections of this report.) 31 physical shipments were made from this station in 2006.

** One physical Barge shipment was made, holding three separately manifested components.

B. IRRADIATED FUEL SHIPMENTS (Disposition)

Number of Shipments	Mode of Transportation	Destination
No Shipments in 2006	N/A	N/A

Table 2.3-SSolid Waste and Irradiated Component ShipmentsMillstone Unit 3

January 1, 2006 through December 31, 2006

A. SOLID WASTE SHIPPED OFFSITE FOR BURIAL OR DISPOSAL (Not irradiated fuel)

1. Type of Waste

a. Spent resins, Filter sludges, Evaporator bottoms, etc.

Disposition	Units	Annual Totals	Est. Total Error
From Millstone Nuclear Power Station to Duratek, Inc., Kingston, TN for Super- Compaction, Incineration, etc	m ³	1.2744E+01	259/
	Ci	1.1532E-02	25%
rom Millstone Nuclear Power Station to Duratek, Inc., Oak Ridge, TN for Super-	m³	7.1887E+00	25%
Compaction, Incineration, etc	Ci	2.0762E+00	
From Millstone Nuclear Power Station to Studsvik Processing Facility, Erwin, TN	m ³	2.7557E+00	25%
for Thermal Destruction, Incineration, etc	Ci	7.3485E+01	20%

b. Dry compressible waste, Contaminated equipment, etc.

Disposition	Units	Annual Totals	Est. Total Error
From Millstone Nuclear Power Station to Duratek, Inc., Kingston, TN for Super- Compaction, Incineration, etc	m ³	8.0429E+01	25%
	Ci	3.1317E-02	
From Millstone Nuclear Power Station to Duratek, Inc., Oak Ridge, TN for Super-	m ³	1.3590E+02	25%
Compaction, Incineration, etc	Ci	1.1307E+00	2576

c. Irradiated components, Control rods, etc.

Disposition	Units	Annual Totals	Est. Total Error
None			

d. Other - (Grease, Oil, Oily waste)

Disposition	Units	Annual Totals	Est. Total Error
From Millstone Nuclear Power Station to Duratek, Inc., Oak Ridge, TN for Super-	m ³	6.2446E-01	25%
Compaction, Incineration, etc	Ci	6.1083E-05	2370

d. Other - (Mixed Waste)

Disposition	Units	Annual Totals	Est. Total Error
From Millstone Nuclear Power Station to Perma-Fix of Florida, Inc., Gainesville,	m ³	1.0809E-01	25%
FL for Stabilization, Fuel Blending, etc	Ci	4.3471E-04	2070

d. Other - (Water)

Disposition	Units	Annual Totals	Est. Total Error
From Millstone Nuclear Power Station to Duratek, Inc., Oak Ridge, TN for	m ³	1.6708E+01	25%
Incineration.	Ci	1.6969E-02	2378

Radionuclide	% of Total	Curies
H-3	0.50	5.8103E-05
C-14		
Cr-51	3.59	4.1438E-04
Mn-54	2.40	2.7715E-04
Fe-55	57.05	6.5793E-03
Fe-59		
Co-57		
Co-58	14.38	1.6580E-03
Co-60	9.57	1.1041E-03
Ni-59		0.07/05.04
Ni-63	8.39	9.6742E-04
Zn-65		
Sr-89		
Sr-90 Nb-94		
Zr-95	0.94	1.0783E-04
Nb-95	0.94	1.1161E-04
Tc-99	0.91	1.11012-04
Ru-103	·····	
Ru-106		
Ag-110m		· · · · · · · · · · · · · · · · · · ·
Sn-113		
Sn-117m	· · · · · · · · · · · · · · · · · · ·	<u> </u>
Sb-124		
Sb-125		
I-129		
I-131	······································	
Cs-134		
Cs-136		
Cs-137	2.20	2.5423E-04
Ba-140		
La-140		
Ce-141		
Ce-144		
Eu-154		•
Hf-181		
Pu-238		
Pu-239	·	
Pu-241		
Am-241		
Pu-242		
Cm-242		
Cm-243		ļ
Cm-244		I

a. Spent resins, Filter sludges, Evaporator bottoms, etc.

From Millstone Nuclear Power Station to Duratek, Inc., Kingston, TN for Super-Compaction, Incineration, etc..

•	, Filter sludges, Eva	•	
From Millstone Nuclear Power Station to			paction, incineration, etc
Radionuc		Curies	}
H-3	0.42	8.6712E-03	
C-14	< 0.01	1.5500E-05	
Cr-51	< 0.01	1.6334E-05	
Mn-54		3.9471E-02	
Fe-55	65.66	1.3632E+00	
Fe-59	0.04	7.04005.04	
Co-57	0.04	7.8103E-04	
Co-58	0.17	3.5560E-03	
Co-60	18.03	3.7438E-01	
Ni-59	12.00	2 75725 01	
Ni-63	13.28	2.7573E-01	
Zn-65			
Sr-89		4 00005 00	
Sr-90	<0.01	4.0000E-06	
Nb-94	<0.01	5 62215 05	
Zr-95 Nb-95		5.6231E-05 2.7481E-04	
Tc-99	0.01	2.7401E-04	
Ru-103	,		
Ru-100			
		2.2500E-05	
Ag-110r Sn-113		2.2000E-00	
Sn-117			
Sb-124			
Sb-125		7.8546E-03	
I-129	0.30	7.00402-00	
I-123			
Cs-134	< 0.01	1.1700E-04	
Cs-136		1.17002.04	
Cs-137		1.5065E-03	
Ba-140		1.00002.00	
La-140		_	
Ce-141			
Ce-144		1.3609E-04	
Eu-154			
Hf-181			
Pu-238		9.7344E-06	
Pu-239		2.9559E-06	
Pu-241		3.5250E-04	
Am-24*		5.2061E-06	
Pu-242			
Cm-242		3.1021E-06	
Cm-243			
Cm-244		1.9121E-05	
	RIES (TOTAL)	2.0762E+00	
			1

2. Estimate of major nuclide composition (by type of waste) a. Spent resins, Filter sludges, Evaporator bottoms, etc.

Station to Studsvik P	% of Total	Curies
H-3	0.05	3.4297E-02
C-14	0.01	7.3570E-03
Cr-51	0.80	5.8600E-01
Mn-54	4.33	3.1806E+00
Fe-55	51.88	3.8125E+01
Fe-59	0.06	4.5300E-02
Co-57	0.12	8.9427E-02
Co-58	4.05	2.9732E+00
Co-60	13.95	1.0253E+01
Ni-59		
Ni-63	22.92	1.6841E+01
Zn-65	0.03	2.0488E-02
Sr-89	<0.01	4.3715E-04
Sr-90	<0.01	1.9569E-03
Nb-94		
Zr-95	0.44	3.2302E-01
Nb-95	0.59	4.3500E-01
Tc-99		
Ru-103	<0.01	3.3400E-03
Ru-106	<0.01	3.1400E-03
Ag-110m	0.05	3.4810E-02
Sn-113	0.04	3.2687E-02
<u>Sn-117m</u>		
Sb-124	<0.01	3.1401E-03
Sb-125	0.53	3.8689E-01
I-129	<0.01	1.6429E-05
I-131	0.04	0.05005.00
Cs-134	<0.01	3.0500E-03
Cs-136	0.00	4.04405.00
Cs-137	0.06	4.0443E-02
Ba-140		
La-140	<0.01	1 04005 04
Ce-141 Ce-144	<0.01 0.05	1.0400E-04
Eu-154	0.05	3.6621E-02
Hf-181		
Pu-238	<0.01	5.5000E-04
Pu-239	<0.01	2.0839E-04
Pu-241	0.03	2.2476E-02
Am-241	<0.03	3.5685E-04
Pu-242		0.00002-04
Cm-242	<0.01	1.0622E-03
Cm-242 Cm-243	-0.01	1.00222-00
Cm-243	<0.01	9.1509E-04
	(TOTAL)	7.3485E+01
CURIES		1.0400ETUI

a. Spent resins, Filter sludges, Evaporator bottoms, etc.

From Millstone Nuclear Power Station to Studsvik Processing Facility, Erwin, TN for Thermal Destruction, Incineration, etc..

b. Dry compressible waste, Contaminated equipment, etc.

From Millstone Nuclear Power Station to Duratek, Inc., Kingston, TN for Super-Compaction, Incineration, etc..

Power Station to Dur			
Radionuclide	% of Total	Curies	
H-3	1.10	3.4368E-04	
C-14			
Cr-51	2.16	6.7736E-04	
Mn-54	1.77	5.5366E-04	
Fe-55	49.56	1.5522E-02	
Fe-59			
Co-57			
Co-58	11.37	3.5600E-03	
Co-60	9.59	3.0038E-03	
Ni-59			
Ni-63	10.49	3.2863E-03	
Zn-65			
Sr-89			
Sr-90			
Nb-94			
Zr-95	0.31	9.8223E-05	
Nb-95	0.30	9.5400E-05	
Tc-99			
Ru-103			
Ru-106			
Ag-110m			
Sn-113			
Sn-117m			
Sb-124			
Sb-125			
I-129			
I-131			
Cs-134	4.19	1.3129E-03	
Cs-136			
Cs-137	9.12	2.8569E-03	
Ba-140			
La-140			
Ce-141			
Ce-144			
Eu-154			
Hf-181	.0.01	0.00055.00	
Pu-238	< 0.01	2.2285E-06	
Pu-239	<0.01	1.9652E-06	
Pu-241	10.01	0.05005.00	
Am-241	<0.01	2.6566E-06	
Pu-242			
Cm-242			
Cm-243	<0.01	0 17205 00	
Cm-244	<0.01	9.1732E-08	
CURIES	(TOTAL)	3.1317E-02	

2. Estimate of major nuclide composition (by type of waste)

b. Dry compressible waste, Contaminated equipment, etc.

From Millstone Nuclear Power Station to Duratek, Inc., Oak Ridge, TN for Super-Compaction, Incineration, etc..

Power Station to Dura		the second s
Radionuclide	% of Total	Curies
H-3	0.62	6.9945E-03
C-14		
Cr-51	0.60	6.7636E-03
Mn-54	2.28	2.5808E-02
Fe-55	64.81	7.3281E-01
Fe-59		
Co-57		
Co-58	6.54	7.3912E-02
Co-60	11.34	1.2824E-01
Ni-59		
Ni-63	10.38	1.1738E-01
Zn-65		
Sr-89		
Sr-90		
Nb-94		4 0 40 1 7 0 5
Zr-95	0.38	4.3431E-03
Nb-95	0.22	2.4610E-03
Tc-99		
Ru-103		
Ru-106		
Ag-110m		
Sn-113		
Sn-117m		,
Sb-124 Sb-125		
l-129		
1-129		
Cs-134	0.03	3.5466E-04
Cs-134 Cs-136	0.03	3.3400E-04
Cs-130	2.80	3.1607E-02
Ba-140	2.00	3.10072-02
La-140		
Ce-141		
Ce-144		
Eu-154		
Hf-181		
Pu-238	<0.01	7.9206E-07
Pu-239	< 0.01	6.6357E-07
Pu-241		0.0007 2.07
Am-241	<0.01	1.1836E-06
Pu-242		1.10002.00
Cm-242		
Cm-243		
Cm-244	<0.01	2.1747E-07
	(TOTAL)	1.1307E+00
	(····)	

From Millstone Nuclear Pr		tek Inc. Oak Bido	· ·	paction, Incineration, etc
	Radionuclide	% of Total	Curies	
	H-3	0.46	2.8391E-07	lj T
	C-14	0.40	2.03912-07	
	Cr-51			
	Mn-54	4.23	2.5847E-06	
	Fe-55	52.77	3.2235E-05	
	Fe-59	02.11	0.22002-00	
	Co-57			
	Co-58	11.77	7.1865E-06	
	Co-60	11.54	7.0518E-06	
	Ni-59			
	Ni-63	14.95	9.1301E-06	
	Zn-65			
	Sr-89	<u> </u>		
	Sr-90			
	Nb-94			
	Zr-95			
	Nb-95	0.12	7.3124E-08	
	Tc-99			
	Ru-103			
	Ru-106			
	Ag-110m			
	Sn-113			
	Sn-117m			
	Sb-124			
	Sb-125			
	I-129			
	I-131			
	Cs-134			
	<u>Cs-136</u>		0.54405.00	
	Cs-137	4.11	2.5118E-06	
	Ba-140			
	La-140 Ce-141		· · · · · · · · · · · · · · · · · · ·	
	Ce-141 Ce-144			
	Eu-154			
	Hf-181			4
	Pu-238	0.01	8.6784E-09	
	Pu-239	0.01	7.7499E-09	
	Pu-241	0.01	1.1400-09	
	Am-241	0.02	9.9450E-09	
	Pu-242	0.02	0.0002-00	
	Cm-242			1
	Cm-243	·····		
	Cm-244			
	CURIES	(TOTAL)	6.1083E-05	
		<u>, </u>		<u>.</u>

-

2. Estimate of major nuclide composition (by type of waste) d. Other - (Grease, Oil, Oily waste)

72

d. Other - (Grease, Oil, Oily waste)			
From Millstone Nuclear Power Station to	Duratek, Inc., Oak Rid	ge, TN for Super-Com	paction, Incineration, etc
Radionuc	lide % of Total	Curies	
H-3	0.46	2.8391E-07	
C-14			
Cr-51			
Mn-54	4.23	2.5847E-06	
Fe-55		3.2235E-05	
Fe-59			
Co-57			
Co-58	11.77	7.1865E-06	
Co-60	11.54	7.0518E-06	
Ni-59			
Ni-63	14.95	9.1301E-06	
Zn-65			
Sr-89			
Sr-90			
Nb-94			
Zr-95			
Nb-95	0.12	7.3124E-08	
Tc-99			
Ru-103	3		
Ru-106	6		
Ag-110	m		
Sn-113	3		
	m		
Sb-124	1		
Sb-125	5		
l-129			
I-131			
<u> </u>			
<u>Cs-136</u>			
Cs-13		2.5118E-06	
Ba-140			
La-140			
Ce-14 [·]			
Ce-144			
Eu-154			
Hf-181			
Pu-238		8.6784E-09	
Pu-239	· · · · · · · · · · · · · · · · · · ·	7.7499E-09	
Pu-24			
Am-24		9.9450E-09	
Pu-242			
Cm-24			
Cm-24			
Cm-24			
	RIES (TOTAL)	6.1083E-05	

2. Estimate of major nuclide composition (by type of waste) d. Other - (Grease, Oil, Oily waste)

73

		. Other - (wate	•	
From Millstor	e Nuclear Power St			r Incineration.
	Radionuclide	% of Total	Curies	
	H-3	96.95	1.6451E-02	
	C-14	<0.01	7.9827E-08	
	Cr-51			
	Mn-54	0.02	3.1079E-06	
	Fe-55	0.61	1.0286E-04	
	Fe-59			
	Co-57			
	Co-58	0.11	1.7979E-05	
	<u>Co-60</u>	0.21	3.5210E-05	
	Ni-59			
	Ni-63	0.41	6.9101E-05	
	Zn-65			
	Sr-89	<0.01	6.8945E-07	
	Sr-90	<0.01	9.2157E-07	
	Nb-94	<0.01	2.3475E-08	
	Zr-95			
	Nb-95	<0.01	7.2848E-07	
	Tc-99	<0.01	7.1290E-08	
	Ru-103			
	Ru-106			
	Ag-110m			
	Sn-113			
	Sn-117m			
	Sb-124			
	Sb-125	0.03	4.6407E-06	
	1-129			
	I-131			
	Cs-134	0.07	1.1300E-05	
	Cs-136			
	Cs-137	1.47	2.4987E-04	
	Ba-140			
	La-140	-		
	Ce-141			
	Ce-144	<0.01	8.4949E-08	
	Eu-154	<0.01	1.6813E-08	
	Hf-181			
	Pu-238	<0.01	7.8884E-07	
	Pu-239	<0.01	3.3360E-07	
	Pu-241	0.11	1.9160E-05	
	Am-241	<0.01	9.6767E-07	
	Pu-242	<0.01	5.9763E-09	
	Cm-242	<0.01	5.6717E-09	
	Cm-243	<0.01	1.8221E-07	
	Cm-244			
	CURIES	(TOTAL)	1.6969E-02	

2. Estimate of major nuclide composition (by type of waste) d. Other - (Water)

3. Solid Waste Disposition (Shipments from Millstone)

Number of Shipments*	Mode of Transportation	Destination
5	Truck (Sole Use Vehicle)	Duratek, Inc., Kingston, TN
9	Truck (Sole Use Vehicle)	Duratek, Inc., Oak Ridge, TN
2	Truck (Sole Use Vehicle)	Perma-Fix of Florida, Inc., Gainesville, FL
3	Truck (Sole Use Vehicle)	Studsvik Processing Facility, Erwin, TN

* Indicates the number of shipments in this category which contained *any* unit-3 waste. (Example: A shipment containing wastes from units 1, 2 *and* 3 will be counted once on *each* of the

three unit-specific sections of this report.) 31 physical shipments were made from this station in 2006.

B. IRRADIATED FUEL SHIPMENTS (Disposition)

Number of Shipments	Mode of Transportation	Destination
No Shipments in 2006	N/A	N/A

2.4 Groundwater Monitoring

Per the voluntary requirements of the NEI Groundwater Monitoring Initiative:

Туре	Location	Identification	Frequency	Results
Well	Unit 1 Tank Farm	MW-9A	Semiannually	Gamma and H-3 < LLD
	Unit 1 Tank Farm	MW-9B	Semiannually	Gamma and H-3 < LLD
	Unit 1 Tank Farm	MW-9D	Semiannually	Gamma and H-3 < LLD
	Unit 1 Tank Farm	T1-MW-1	Semiannually	Gamma and H-3 < LLD
	Former Waste Oil UST	T3-MW-1	Quarterly	Gamma and H-3 < LLD
	Former ROB UST	ME-5	Quarterly	Gamma and H-3 < LLD
	Former S&W USTs	T7MW-1	Semiannually	Gamma and H-3 < LLD
	Former S&W USTs	T7-MW-2	Semiannually	Gamma and H-3 < LLD
	Former S&W USTs	T7-MW-3	Semiannually	Gamma and H-3 < LLD
	Fab Shop Area	T10-MW-1	Semiannually	Gamma and H-3 < LLD
	Fab Shop Area	T10-MW-2	Semiannually	Gamma and H-3 < LLD
	Fab Shop Area	T10-MW-3	Semiannually	Gamma and H-3 < LLD
	Fab Shop Area	MW-4A	Semiannually	
	Fab Shop Area			Gamma and H-3 < LLD
		MW-4B	Semiannually	Gamma and H-3 < LLD
	Fab Shop Area	MW-4D	Semiannually	Gamma and H-3 < LLD
	Fab Shop Area	T10-MW-5A	Semiannually	Gamma and H-3 < LLD
	Fab Shop Area	T10-MW-5C	Semiannually	Gamma and H-3 < LLD
	Fab Shop Area	T10-MW-5D	Semiannually	Gamma and H-3 < LLD
	Unit 1 Transformer Switchyard	1MW-XMFR-03	Semiannually	Gamma and H-3 < LLD
	Unit 1 Transformer Switchyard	S1-MW-2	Semiannually	Gamma and H-3 < LLD
	Unit 2 Transformer Switchyard	MW-7B	Semiannually	Gamma and H-3 < LLD
	Unit 2 Transformer Switchyard	MW-7C	Semiannually	Gamma and H-3 < LLD
·····	Unit 2 Transformer Switchyard	MW-7D	Semiannually	Gamma and H-3 < LLD
	Unit 2 Transformer Switchyard	S2-MW-1	Semiannually	Gamma and H-3 < LLD
	Unit 3 Service Trans. Switchyard	S3-MW-2	Quarterly	Gamma and H-3 < LLD
	Fueling Station	S11-MW-1	Semiannually	Gamma and H-3 < LLD
	Fueling Station	S11-MW-2	Semiannually	Gamma and H-3 < LLD
	Unit 2 Fuel Oil AST	S12-MW-1	Semiannually	Gamma and H-3 < LLD
	Unit 2 Fuel Oil AST	S12-MW-3	Semiannually	Gamma and H-3 < LLD
	Recycling Area Waste Oil AST	S13-MW-1	Semiannually	Gamma and H-3 < LLD
	Recycling Area Waste Oil AST	S13-MW-2	Semiannually	Gamma and H-3 < LLD
	Recycling Area Waste Oil AST	MW-6A	Annual	Gamma and H-3 < LLD
	Recycling Area Waste Oil AST	MW-6B	Annual	Gamma and H-3 < LLD
Yard Drains	Catch Basin 1-3	CB 1-3	Monthly	Gamma and H-3 < LLD
	Catch Basin 1-5	CB 1-5	Monthly	Gamma and H-3 < LLD
	Catch Basin 1-7	CB 1-7	Monthly	Gamma and H-3 < LLD
	Catch Basin 1-13	CB 1-13	Monthly	Gamma and H-3 < LLD
	Catch Basin 1-14	CB 1-14	Monthly	Gamma and H-3 < LLD
	Catch Basin 1-22	CB 1-22	Monthly	Gamma and H-3 < LLD
	Catch Basin 2-9	CB 2-9	Monthly	Gamma and H-3 < LLD
	NPDES Discharge DSN 006		Monthly	Gamma < LLD and,
			-	occasionally*,
			l	H-3 at ~2000 pCi/liter
	ROB Yard Drain		Monthly	Gamma and H-3 < LLD
	ISFSI Yard Drain	DMH#11	Monthly	Gamma and H-3 < LLD
Sump	Unit 3 Containment Underdrains		Weekly	Gamma and H-3 < LLD

Table 2.4-GW Groundwater Monitoring Results

* Note: Turbine building sumps normally have detectable H-3, which is monitored and reported in the effluent section of this report

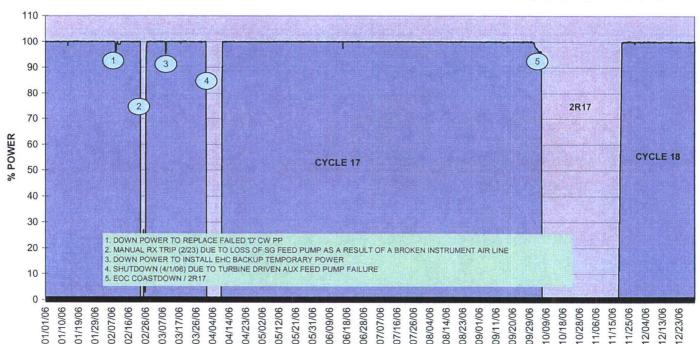
.

3.0 Inoperable Effluent Monitors

During the period January 1 through December 31, 2006, the following effluent monitors were inoperable for more than 30 consecutive days:

3.1 Unit 1 – None

3.2 Unit 2 - None

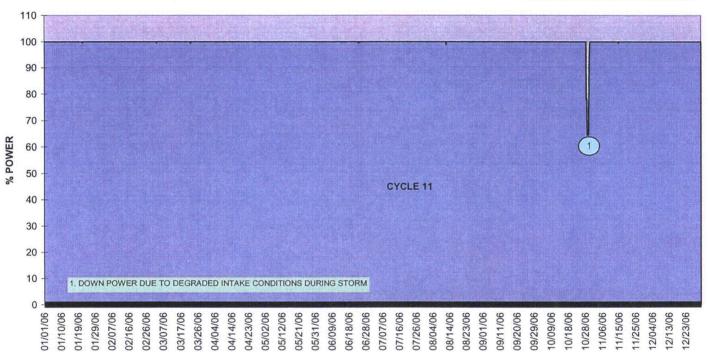

3.3 Unit 3 - None

4.0 Operating History

The operating history of the Millstone Units during this reporting period was as follows:

Unit 1 was shut down November 11, 1995 with a cessation of operation declared in July 1998.

Unit 2 operated with a DER capacity factor of 84.0% and the power history for 2006 is shown below.



MP2 - CYCLE 17 & 18 POWER HISTORY YEAR 2006

Note: Data at 3 hour intervals

(3

Unit 3 operated with a DER capacity factor of 99.6% and the power history for 2006 is shown below.

MP3 - CYCLE 11 POWER HISTORY YEAR 2006

Note: Data at 3 hour intervals

5.0 Errata

5.1 The 2005 Radioactive Effluent Release Report had incorrect information for Reference 9. The corrected Reference 9:

Memo No. MP-HPO-06023, 2005 Report on Solid Waste and Irradiated Component Shipments, April 11, 2006.

6.0 REMODCM Changes

In 2006, the following changes were made to the Millstone REMODCM:

Rev	Effective Date

25 - 02 December 4, 2006

The description and the bases of the change(s) for each REMODCM revision are included here in Volume 1 of the Radioactive Effluent Release Report. In addition, a complete copy of the REMODCM revision(s) for the calendar year 2006 is provided to the Nuclear Regulatory Commission as Volume 2 of the Radioactive Effluent Release Report.

6.1 REMODCM Rev 25–02 - Description of Changes

.

.

REMODCM Change Request - Routing and Cover Sheet

Change Request #: 06-02

Page 1_of 2.

I. Description of changes (include markup pages) and affected documents

Originator name (Print): **Claude Flory**

Section/Page	Section Title and Description	of Change with Basis
Table I.D-3 Page 28	Millstone Unit 2 Radioactive Gaseous Waste S Correct title of table by changing "Unit 2" to "I	ampling and Analysis Program
Table I.E-1 Page 39	 Change sample type for #6 from "Well Wa an error made during processing of a previor Change sample type for #6a from "Water" error made during processing of a previous Change numbering of samples #6a to #7, # #14. This is an administrative change. 	us REMODCM change. to "Well Water." This will correct an REMODCM change.
V.B.1/P. 140	REMODCM Unit Three Controls – Definitions The definition for DOSE EQUIVALENT I-131 This change supports the licensing change asso (AST). (See attached markup page for change.	is changed for Unit 3. ciated with the Alternate Source Term
If more space	ce is needed, Go To page 3	Yes 🗌 No 🔀
Originator sig	mature: Claude Velory	Date: 10/20/06
		MP-22-REC-FAP01.1-001 Rev. 001

1 of 2

Gaseous Release Source or Point	Sample Type and Frequency	Minimum Analysis Frequency	Type of Activity Analysis	Lower Limit of Detection (LLD) ^A (µCi/cc)
A. Containment a	nd Fuel Building Release			
 Containment Hogger Drawdown Containment Purge 	Gaseous, Particulate and Charcoal Grab Prior to Each Drawdown Gaseous Grab prior to each purge ^H	Prior to Each Purge or Drawdown; Weekly for venting and prior to venting for Footnote I sample	Principal Gamma Emitters ^B	1 x 10 ⁻⁴
 Containment Vent Open Equipment 	Gaseous Grab every two weeks for venting ¹	Prior to Each	I-131 I-133	$\frac{1 \times 10^{-12}}{1 \times 10^{-10}}$
Hatch during Outages 5. Fuel Building	weeks for venting	Drawdown	Principal Particulate Gamma Emitters ^B - (1-131, others with half lives greater than 8 days)	1 x 10 ⁻¹¹
		Monthly for all release sources except Equipment Hatch	Н-3	1 x 10 ⁻⁶
	Continuous Particulate at Open Equipment Hatch	Weekly	Particulate Gamma emitters for ½ hour count (1-131, others with half-life greater than 8 days)	NA
	Continuous Charcoal at Equipment Hatch and Fuel Building Rollup Doors ^K	Weekly	I-131 and I-133 for one hour count	NA
	Gaseous Grab at Equipment Hatch and Fuel Building Rollup Doors ^K	Daily	Noble Gases – Gross Activity	1 x 10 ⁻⁴
B. Continuous Re	lease			
1. Unit 3 Ventilation Vent (HVR-	Monthly - Gaseous Grab ^{C,J}	Monthly ^{C, J}	Principal Gamma Emitters ^B	1 x 10 ⁻⁴
RE10B)			H-3 ⁰	1 x 10 ⁻⁶
2. Engineered Safeguards Building (HVQ- RE49)	Continuous Charcoal Sample ^{D,F}	Weekly	1-131 1-133	1 x 10 ⁻¹² 1 x 10 ⁻¹⁰
3. Millstone Stack via SLCRS (HVR- RE19B)	Continuous Particulate Sample ^{D,F}	Weekly	Principal Particulate Gamma Emitters ^B - (I-131, others with half lives greater than 8 days)	1 x 10 ⁻¹¹
	Continuous Particulate Sample ^D	Quarterly Composite	Sr-89, Sr-90 Gross alpha	1 x 10 ⁻¹¹ 1 x 10 ⁻¹¹
	Continuous Noble Gas ^D	Continuous Monitor	Noble Gases - Gross Activity	1 x 10 ⁻⁶

<u>Table I.D-3</u> Millstone Unit 23 Radioactive Gaseous Waste Sampling and Analysis Program

.....

MP-22-REC-BAP01 Rev. 025-01 28 of 162

Millstone Radiological Environmental Monitoring Program				
Exposure Pathway and/or Sample	No. of Locations	Sampling and Collection Frequency	Type and Frequency of Analysis	
1. Gamma Dose - Environmental TLD	40 ^(a)	Quarterly	Gamma Dose - Quarterly	
2. Airborne Particulate	8	Continuous sampler - weekly filter change	Gross Beta - Weekly Gamma Spectrum - Quarterly on composite (by location), and on individual sample if gross beta is greater than 10 times the mean of the weekly control station's gross beta results	
3. Airborne Iodine	8	Continuous sampler - weekly canister change	I-131 - Weekly	
4. Vegetation	5	One sample near middle and one near end of growing season	Gamma Isotopic on each sample	
5. Milk	3	Semimonthly when animals are on pasture; monthly at other times.	Gamma Isotopic and I-131 on each sample; Sr-89 and Sr-90 on Quarterly Composite	
5a.Pasture Grass	3	Sample as necessary to substitute for unavailable milk	Gamma Isotopic and I-131	
6. Well Sea Water	2	Continuous sampler with a monthly collection at indicator location. Quarterly at control location - Composite of 6 weekly grab samples	Gamma Isotopic and Tritium on each sample.	
6a 7. Well Water	3 2	Semiannually	Gamma Isotopic and Tritium on each sample.	
78. Bottom Sediment	5	Semiannual	Gamma Isotopic on each sample	
7a 9. Soil	. 3	Annually	Gamma Isotopic on each sample	
\$10. Fin Fish-Flounder and one other type of edible fin fish (edible portion)	2	Quarterly	Gamma Isotopic on each sample	
911. Mussels (edible portion)	2	Quarterly	Gamma Isotopic on each sample	
1012.Oysters (edible portion)	4	Quarterly	Gamma Isotopic on each sample	
1113.Clams (edible portion)	2	Quarterly	Gamma Isotopic on each sample	
1214.Lobsters (edible portion)	2	Quarterly	Gamma Isotopic on each sample	

TABLE I.E-1 Millstone Radiological Environmental Monitoring Program

(a) Two or more TLDs or TLD with two or more elements per location.

رين منتخب

> MP-22-REC-BAP01 Rev. 025-01 39 of 162

3. CHANNEL CALIBRATION - A CHANNEL CALIBRATION shall be the adjustment, as necessary, of the channel such that it responds within the required range and accuracy to known values of input. The CHANNEL CALIBRATION shall encompass the entire channel including the sensors and alarm, interlock and/or trip functions and may be performed by any series of sequential, overlapping, or total channel steps such that the entire channel is calibrated.

ه» ريد.

- 4. CHANNEL CHECK A CHANNEL CHECK shall be the qualitative assessment of channel behavior during operation by observation. This determination shall include, where possible, comparison of the channel indication and/or status with other indications and/or status derived from independent instrument channels measuring the same parameter.
- 5 DOSE EQUIVALENT I-131 DOSE EQUIVALENT I-131 shall be that concentration of I-131 (microCurie/gram) which alone would produce the same CDE-thyroid dose as the quantity and isotopic mixture of I-131, I-132, I-133, I-134, and I-135 actually present. The thyroid dose conversion factors used for this calculation shall be those listed in Regulatory-Guide 1.109 Rev. 1, "Calculation of Annual Doses to Man from Routine Releases of Reactor Effluent for the Purpose of Evaluating Compliance with 10 CFR Part 50 Appendix-I under Inhalation in Federal Guidance Report No. 11 (FGR 11), "Limiting Values of Radionuclide Intake and Air Concentration and Dose Conversion Factors for Inhalation, Submersion and Ingestion.
- 6. MEMBER(S) OF THE PUBLIC MEMBER(S) OF THE PUBLIC shall include all persons who are not occupationally associated with the plant. This category does not include employees of the licensee, its contractors or its vendors. Also excluded from this category are persons who enter the site to service equipment or to make deliveries. This category does include persons who use portions of the site for recreational, occupational, or other purposes not associated with the plant.

The term "REAL MEMBER OF THE PUBLIC" means an individual who is exposed to existing dose pathways at one particular location.

- 7. MODE Refers to Mode of Operation as defined in Safety Technical Specifications.
- 8. OPERABLE OPERABILITY An instrument shall be OPERABLE or have OPERABILITY when it is capable of performing its specified functions(s) and when all necessary attendant instrumentation, controls, electrical power, or other auxiliary equipment that are required for the instrument to perform its functions(s) are also capable of performing their related support function(s).
- 9. SITE BOUNDARY The SITE BOUNDARY shall be that line beyond which the land is not owned, leased, or otherwise controlled by the licensee.

MP-22-REC-BAP01 Rev 025-01 140 of 162

	KENIODENI Change Kequest - Ko	
Char	ge Request Number #: 06-02	Page_2_of_2
II.	Technical Reviews:	
-	O 5 Janie	Approve 🗗 Disapprove 🗌
	Manager, - Radiological Protection and Chemistr	ry Date
	WA Ech.	Approve 🗹 Disapprove 🗌
	Supervisor - Radiological Engineering Da	ate
III.	SORC Review:	Meeting No.
	Unreviewed Radiological Environmental Impa	ct (Bases Attached) Yes 🗌 No 📈
	Rohe to Jak	Approve Disapprove M/26/06 MP-06-078
1	SORC Chairman Date	10/26/06 MP-06-078
IV.	Management Approval:	······································
	M. 10-25-	Approve Disapprove
	Site Vice President Da	ate
V.	Implementation: Verify that the affected docu	ment changes have been
	Effective date of REMODCM revis	sion: $12/4/06$
	UH Sali	2/12/06
	Supervisor - Radiological Engineering Section	
VI.	Distribution: Change sent to Document Contr	ol for distribution
	WA Seli	12/12/06
	Supervisor - Radiological Engineering Section	(NFE) Date
VII.	Documentation: In Annual Effluent Report (or	r separate submittal to NRC)
	WA Enti	4/18/07
	Supervisor - Radiological Engineering Section	(NFE) Date

REMODCM Change Request - Routing and Cover Sheet

.....

)

MP-22-REC-FAP01.1-001 Rev. 001 2 of 2

~*

-