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NRC RAT 19.2-58, Supplement 1

In PRA, Section 21.3.4.4, GE described an analysis to address the liner integrity for
temperatures greater than 1O00OK, using LS-DYNA3D. In the GE model, a piece of liner
between a neighboring set of anchors and the presence of concrete behind the liner were
considered. GE showed in Figures 21.3-22 that the resulting maximum effective plastic
strains in the liner between anchors at temperatures 1400TK and 1650TK are 1.4% and
7.26%, respectively. In Section 21.3.4.3, GE stated that the drywell pressure is predicted to
be around 6 bar (0.6Mpa). However, it is not obvious that the pressure load is included in
the LS-DYNA 3D model. Provide:

a) the material models for both liner and concrete at high temperature used in LS-
DYNA3D model, including stress-strain relation and strain rate effect.

b) a discussion of the effect of high temperature degradation on the ability of the liner
and concrete to resist the pressure load.

GE Response:

First it should be noted that as stated in Section 21 ofNEDO-33201 Rev 1, the code used is
not the commercial version LS-DYNA3D but the LLNL code DYNA3D. This is a much
advanced code, with unique capabilities in the areas of interest here, including explosive
loads and/or high temperatures.

a) Material properties for the liner were provided in Figure 21.3.4.4.2 of Section 21 of
NEDO-33201 Rev 1. Concrete properties are not relevant, as the time scale is way
off the time scale needed to affect concrete wall structural stability.

b) The high internal pressures have no bearing on the concrete, which remains
structurally intact. The liner, backed by the concrete, will deform under thermal
stresses, and Section 21 of NEDO-33201 Rev 1 shows that this deformation is
accommodated by creep, while remaining at strain levels well below what might be
considered as potentially threatening.

NRC Assessment Following the February 5, 2007 Audit

Staff Assessment:

GE should provide a detailed description of material models used in the DYNA3D analysis
described in Section 21 ofNEDO-33201 Rev 1. It is not sufficient simply to identify it as "a
much advanced code". As indicated in Figure 21.3.4.3-11 of Section 21 of NEDO-33201
Rev 1, the temperature profiles for both LDW and UDW could be very high. For Cases F
and H, the upper drywell is subjected to temperature in excess to 1000" Kfor a long period
of time. In a high temperature environment, load bearing capability of concrete degrades.
GE should justify why the temperature of 1000" K or higher will not affect the concrete
load bearing capability.
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Audit Interest:

Discuss the concrete material model in DYNA3D that was used in the GE analysis. Also,
discuss how GE considered the concrete load bearing capability for Cases F and H in
Figure 21.3.4.3-11 of Section 21 ofNEDO-33201 Rev 1.

Status Update/Resolution of RAI:

a) See 19.2-51.

b) In addition, GE will provide the reference material to DYNA3D concrete material
model.

GE Response

a) See response to 19.2-51 Supplement 1. It is contained in Enclosure 1 to MFN 06-
428 S2.

b) The paper describing the concrete model for DYNA3D is attached.
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NRC RAI 19.2-62, Supplement 1

In PRA, Section 21.4.4.4, GE described the structural response analyses for the pedestal
and the BiMAC device subjected to EVE pressure impulses. The K&C model (Karagozian
and Case) was used for concrete and rebars included in the model. The pressure impulse
loads analyzed range from 200 kPa-s to 600 kPa-s. The impulse loads are characterized as
high frequency loads and, therefore, strain rate effect on material properties is expected to
be important. Provide:

a) a description of how the strain rate effect is considered for both concrete and steel
material models (material properties are typically obtained from pseudo static tests
(low cyclic));

b) a detailed description of the K&C model;

c) a description of how the reinforced concrete pedestal is modeled in the LS-
DYNA3D model;

d) a description of how the failure of the pedestal impacts the RPV supports, which are
structurally supported by the pedestal.

GE Response:

a) and b) The model used is not the commercial LS-DYNA3D but LLNL's own code
developed and verified for explosive loads, as described in reference "Noble, C. J. et
al (2005). "Concrete Model Description and Summary of Benchmark Studies for
Blast Effects and Simulation", UCRL-215024, Lawrence Livermore National
Laboratory (July, 2005)" given in Section 21.4 of NEDO-33201 Rev 1. This
reference contains all descriptions requested under a) and b).

c) This is already given in Section 21.5 of NEDO-33201 Rev 1 (Figures 21.5.4.4-2 and
related text).

d) As noted already in Section 21.5 of NEDO-33201 Rev 1, SE loads on the pedestal
are localized and any hypothesized failure would be local, having no impact on the
pedestal as a whole, and reactor-bearing capacity.

Staff Assessment:

The issue is whether the K&C model includes strain rate effect, which is important in
characterizing the concrete response to shock loads, and whether any test data was used to
define the concrete strain-pressure relationship. GE should provide the reference or
provide a detailed description of the concrete model in the reference. Further clarification
is needed.
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Audit Interest

Typical concrete properties are determined based on static tests (low cycle). However, for
shock loads, strain rate effect needs to be considered in defining the concrete properties.
Discuss how the K&C model includes strain rate effect in characterizing the concrete
response to shock loads, and what data GE used to describe the strain rate effect in the
concrete strain-pressure relationship.

Status Update/Resolution of RAI

GE will provide the reference materialfor the K&C model.

GE Response

Complete definition of the K&C model is now provided in a supplement to PRA Chapter
21 (UCRL-TR-227386). This reference was provided in response to RAI 19.2-60 in MFN
07-202.
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Summary- Lagrangian finite element codes with explicit time integration are extensively used for
the analysis of structures subjected to explosive loading. Within these codes, numerous material
models have been implemented. However, the development of a realistic but efficient concrete
material model has proven complex and challenging.

The plasticity concrete material model in the Lagrangian finite element code DYNA3D was
assessed and enhanced. The main modifications include the implementation of a third, independent
yield failure surface-, removal of the tensile cutoff and extension of the plasticity model in tension;
shift of the pressure cutoff; implementation of a three invariant formulation for the failure surfaces;
determination of the triaxial extension to triaxial compression ratio as a function of pressure; shear
modulus correction; and implementation of a radial path strain rate enhancement. These modifica-
tions insure that the response follows experimental observations for standard uniaxial, biaxial and
triaxial tests in both tension and compression, as shown via single element analyses. The radial path
strain rate enhancement insures constant enhancement for all those tests. As a full scale example,
a standard dividing wall subjected to a blast load is analyzed and the effects of the modifications
assessed. © 1997 Published by Elsevier Science Ltd.

NOTATION

a51  parameters defining the three-parameters failure surfaces
f.,f, compressive and tensile strength of concrete, respectively
G shear modulus
I1 (a1 + 02 + O3) first invariant of stress tensor
J2  ((sI + s~z + s3)12) second invariant of the deviatoric stress tensor
Js (st s2 s3) third invariant of the deviatoric stress tensor
K bulk modulus
p pressure (11/3)
PC pressure cutoff in tension
rer, radii of the compressive and tensile meridians, respectively
rt strain rate enhancement factor
T (Aa = 137) failure surface for the deviatoric stresses
Au (3/3J2) failure surface for the deviatoric stresses
A modified effective plastic strain (damage parameter)
11 parameter indicating the relative location of the current failure surface
V, ratio of tensile to compressive meridian radii at a given pressure
9) scaling factor

1. INTRODUCTION

In the analysis of complex structures subjected to blast loading and large deformations,
Lagrangian finite element codes with explicit time integration have become a necessary and
efficient tool [1-4]. In these codes a limited element library including trusses, beams, shells
and solids has proven sufficient. However, extensive material libraries have been required
for representation of the vast range of material behaviors. In the case of reinforced concrete
structures, implementation of a realistic but efficient concrete material model has proven
complex and challenging.

Numerous analyses for prediction of small and full scale blast tests of reinforced concrete
structures sponsored by the Defense Special Weapons Agency (formerly the Defense
Nuclear Agency) have provided an opportunity to revisit the existing material models in the
finite element code DYNA3D [1]. The models potentially suitable for representing the
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concrete's constitutive behavior were assessed over the full range from elastic response to
failure. The most robust one, material model 16, still contains several shortcomings. In this
report those deficiencies and the corresponding corrections are described.

ORIGINAL MATERIAL MODEL

The Lagrangian finite element code DYNA3D was originally developed by the Lawrence
Livermore National Laboratory (LLNL) [1]. Within DYNA3D, several material models
have been used in the past to represent concrete, namely, material models 5 (Soil and
Crushable Foam), 16 (Concrete/Geological Material), 17 (Isotropic Elastic-Plastic with
Oriented Cracks), 25 (Extended Two Invariant Geologic Cap). Materials 5, 17 and 25 have
exhibited significant limitations in modeling concrete behavior [5]. Material model 16,
however, appeared more appropriate and presented some attractive features which could be
easily enhanced.

Overview

The original material model 16 (subroutine f3dml6.f) decouples the volumetric and
deviatoric responses. An equation of state gives the current pressure as a function of current
and previous minimum (most compressive) volumetric strain. Once the pressure is known,
a moveable surface-herein denominated a yield or failure surface-limits the second
invariant of the deviatoric stress tensor. The volumetric response is easily captured via
a tabulated input such as the one in equation of state 8. No changes were deemed necessary
for this part of the response. However, the deviatoric response (in f3dml6.f) did present
some shortcomings which were addressed with modifications to be described in detail later.
Due to the decoupling of volumetric and deviatoric responses, this model has the limitation
of not incorporating shear dilation which is observed with concrete. For the case of
significant structural lateral restraints and low damage levels this will result in responses
softer than expected. During initial loading or reloading, the deviatoric stresses remain
elastic until the stress point reaches the initial yield surface. The deviatoric stresses can then
increase further until the maximum yield surface is reached. Beyond this stage the response
can be perfectly plastic or soften to the residual yield surface (see Fig. 1). Whenever the stress
point is on the yield surface and the stress increment corresponds to loading on that surface,
plastic flow occurs in accordance with a Prandtl-Reuss (volume preserving) flow rule,
implemented by the well known "radial return" algorithm. The model also incorporates
a tensile cutoff and a pressure cutoff, which are detailed in the following.

Original deviatoric response

Stress limits. The function At which limits the deviatoric stresses is defined as a linear
combination of two fixed three-parameter functions of pressure:

Aa = O7Aom + (1 - rl)Ar,,

where

Atfm= ao + P (maximum stress difference),
al + a2p

Aar, - aor + P (residual stress difference),
al, + a2p

and where p - (a.,. + ay, + a.,)/ 3 is the pressure (stresses are positive in tension,
pressure is positive in compression). The parameter tj is a user-defined function of a modi-
fied effective plastic strain measure A. The function n(1) is intended to first increase from
some initial value up to unity, then decrease to zero representing softening. Hence, one may
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AG > 0 Max.
PI. 2
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Residual

-ft

Residual
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Max.

Pt. 2: Maximum Strength

o Pt. 3: Residual

Fig. I. Three failure surfaces (first K & C revision of Model 16).

think of the yield surface as migrating between Aa,, representing the minimum or residual

strength, and Ao'r, the maximum strength. The initial yield surface is given by

A0"y = ryA0"m + (1 - fl,)AU,

where /,, = ,/(0) is the initial value of q before any plasticity has occurred. The DYNA3D
manual includes a suggestion (at the end of its section on material model 16) which specifies
a value ,iy = 0.309.

Available triaxial compression concrete data indicate that, for the initial yield surface, the
principal stress difference Ae', should be about 45% of the maximum stress difference [6].
On the other hand, the residual strength should vanish for the unconfined compression test.
Furthermore, because the two fixed surfaces become parallel for large values of p, they
cannot properly represent the brittle-ductile transition point. The original formulation,
with the constraint that the initial, maximum, and residual yield surfaces be linearly related,
therefore cannot properly capture the experimental data. This suggests the need for a third
fixed yield surface independent from the other two.
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Compressive meridian. Data for the compressive meridian are usually obtained from an
unconfined compression test and triaxial compression tests with various levels of confine-
ment [6, 7]. For the original model 16, a minimum of two nonzero levels of confinement are
needed since three parameters define the compressive meridian. The usual tests provide no
data for pressures below f,'/3 (failure in an unconfined compression test). The three-
parameter maximum failure surface just described will usually overestimate the strength
when extrapolated to pressures below f'/3. Similarly, this formulation would overestimate
the principal stress difference for the biaxial tension test.

Tensile meridian. It is well known that the tensile or extension meridian of the failure
surface for concrete is usually lower (closer to the hydrostat at the same pressure) than the
compressive meridian, e.g. see Section 5 of [7]. Experimental data suggest that the ratio of
the tensile to compressive meridian, herein denoted 0,, varies from about 0.5 at negative
(tensile) pressures to unity at high confinements. Using equal meridians at low pressures will
yield erroneous results (see Fig. 2).

Tensile cutoff. In an attempt to alleviate the previously noted shortcoming at low
pressures, the original material model incorporates at tensile cutoff which limits the
maximum principal stress to the tensile strength f t (see Fig. 2). For intermediate pressures
(0 < p <f',/3) this does not solve the problem. In addition the tensile cutoff algorithm
reduces the current stress state to zero in 20 steps. This arbitrary and abrupt stress decrease
contrasts with the smooth decay offered by the plasticity model when transitioning between
the maximum and residual failure surfaces.

Pressure cutoff. The original model also incorporates a pressure cutoff which prevents
the pressure from going below f,/3 (see Fig. 2). Although this does not affect the uniaxial
tensile test, it does limit the principal stress difference to f,/2 for a biaxial tensile test, and to

Fig. 2. Original LLNL-DYNA3D failure surfaces.
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f/13 for a triaxial tensile test. These limits disagree with experimental data showing that in
both cases the principal stress difference should reach approximately f, [7-9]. In addition,
whenever the pressure cutoff is reached in the original model, the current state of stress is
maintained and no stress decay takes place upon further straining.

Rate enhancement. In the original model, at any given pressure, the failure surfaces are
expanded by a rate enhancement factor which depends on the effective deviatoric strain
rate, as shown in Fig. 3. Enhancing strength at a given pressure is inconvenient, because the
rate enhancement factors available in the literature apply to the uniaxial unconfined
compression and extension paths, not to a pure shear path. It is possible to derive the
following formula to relate the test data to the input data in compression:

r. 3afr + a2 f2 r?r 3aoa1 + (1 + aoa2)f~rf'

where r, = input to DYNA3D (rate enhancement factor at fixed pressure), rf = ex-
perimental rate enhancement factor from an unconfined uniaxial compression test, f=
compressive strength, and a, = parameters defining the maximum stress difference Arm.
However, the original program uses the same factor for enhancing stress states at negative
pressures. When calibrated to unconfined compression, it can be shown that this results in
almost no enhancement in the uniaxial tension test.

Elastic behavior. The original LLNL material model 16 has two options for the elastic
response, both isotropic. Both use the bulk modulus from the pressure-volume relation to
compute a second elastic constant. One assumes a constant Poisson's ratio, the other
a constant shear modulus. Although a constant shear modulus absolutely guarantees that
no elastic energy can be generated, that option was dropped in favor of the second option, in
which the user specifies a value of Poisson's ratio. When used with equation of state 8, the
model derives a shear modulus from the current unloading bulk modulus. This method

Aa > 0

Compressive
rf f* Meridian

f• Dev;otoric Rodial
Enhancement < Enhancement
Factor rc Factor r,
in Compression. on fc
of p= rf3 C

t 3.3

i = p

Tensile
Meridian

Fig. 3. Original LLNL-DYNA3D rate enhancement in compression.
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easily leads to inconsistencies such as negative Poisson ratios upon initial loading [10]. The
assumption of constant Poisson's ratio was retained, but the computation of the shear
modulus was modified as described later.

NEW MATERIAL MODEL

The original material model 16 has been significantly modified to correct most of the
shortcomings noted in the previous section.

New pressure cutoff

The pressure cutoff pC now has an initial value of -f, (see Fig. 4). Together with changes

in the maximum failure surface described below, both the biaxial and triaxial tensile tests

can now reach a principal stress difference of ft. Upon failure in the negative pressure range,

the parameter r is used not only to reduce the current failure surface from the maximum to

the residual, but also to increase the pressure cutoff from -f, to zero in a smooth fashion.

This is done by checking the pressure returned by the equation of state subroutine, and
resetting it to Pc if it violates p > PC, where

PC = -f, if the maximum failure surface has not been reached (hardening),

I -qft if the maximum failure surface has been reached (softening).

Note that although implemented in the concrete material model subroutine, this modifica-

tion can override the pressure calculated in the equation of state. This pressure cutoff is

necessary as otherwise the equation of state would calculate very large negative pressures

for large volumetric extensions beyond cracking, which would be physically incorrect.

Aa > 0

Compress;ve
Meridian
Me Pe
ConIo

I c

IP

M4eridian
11 f W)

Tensile
Cutoff

Fig. 4. Willarm Warnke failure surface.
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Compressive meridians of the fixed failure surfaces

New fixed surface to represent initial yielding. A third, independent, fixed surface has
been implemented with three new parameters (ao0 , a ,I, a2y). This surface represents initial
yielding and is given by

Acr = ao7 +
aly + a2Yp

In addition, since for concrete the residual strength in tension is zero, the pressure
independent parameter in the formulation of the residual surface is not needed, i.e., aof = 0.
To permit the residual and the maximum failure surfaces to intersect at a point representing
the brittle-ductile transition, a ne~w parameter a2t has been added. The residual surface now
takes the form

Aa, = P

alf + a2fp

In the new model, after reaching the initial yield surface but before the maximum failure
surface, the current surface is obtained as a linear interpolation between the two:

Aat= I(Ator* - Aay) + Aay,

where r varies from 0 to I depending on the accumulated effective plastic strain parameter
A. After reaching the maximum surface the current failure surface is similarly interpolated
between the maximum and the residual:

Au = ti(Aa'* - Ao,) + Ao,.

The function il(A) is input by the user as a series of (1, A) pairs. This function would
normally begin at 0 at A = 0, increase to 1 at some value A = A., and then decrease to 0 at
some larger value of A. Since A is non-decreasing, this would permit Act sequentially to take
on the values Aay, Aarm, and Aar,. In fact, there are no internal checks to guarantee that the
user's input takes on these specific values. Thus, at the beginning of the subroutine the value
of Am, is defined simply as the value of A corresponding to the first relative maximum of7 in
the input table. Then, whenever A <5 A. the current surface in interpolated between the
initial yield and the maximum; conversely, if A > Am the current surface is interpolated
between the maximum and the residual.

In summary a total eight parameters define the three fixed surfaces, as follows:

Aa'm = ao + p (maximum failure surface),
a, +- a2 P

Acr' a P (residual failure surface),
alf + a2fp

Acy• = aoy + p (yield failure surface).aly + a2yP

At pressures above the brittle-ductile transition, Aa, should be limited to Arm. In the
code this is ensured by resetting Aa, to Aa*m(p) if Aa, from the nominal formula exceeds
Acrm(p). The yield surface is similarly limited to Aortm.

Determination of maximum failure surface parameters. The parameters (ao, a,, a2) should
be determined from laboratory data in unconfined compression tests and conventional
triaxial compression tests at a range of confining pressures. With only three data points, an
exact fit can easily be made. With more than three, some sort of least-squares method could
be employed. Alternatively, estimates for the values of these parameters can be obtained as
follows:

The parameter ao represents the intersection of the maximum failure surface with the
stress difference axis, i.e. AaI,,-o = ao.
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* Parameter al is the inverse of the slope at p = 0, i.e.

p JLo al

* For very large values of p, the denominator on the right-hand side of the equation is
dominated by the term a2p (the term al becomes relatively insignificant). Hence

I
A- ao --- as p -+ 0o.

a,

Determination of initial yield surface parameters. To define the initial yield surface,
(ao,, al,, a2,) have to be determined. Available data [6] suggest that this surface is approx-
imately the locus of points at A -- 0.4 5Ac&= on triaxial compression paths, as shown in
Fig. 5. For a point (p, Amm) on the maximum failure surface, the corresponding point
(p', A,) on the yield surface is

Aoy=0.45Aa•m and p'= P- 05 Aac .

3

From the latter equation, p can be obtained as a function of p':

P= _ I - -P 55 (ao +- I
2 a2 3\ a2

0.55 + T2) (0.55aooa a,
2  VLa2 --- ao j + 3a2  a2 /

while the former equation gives Ac, as a function of p:

Aa;P=0.45(ao+

enabling Ac;, to be computed as a function of p'. A plot of A. is included in Fig. 5 for SAC5
material properties [11].
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Since the proposed formulation has three parameters, the curve Ao,(p') can be approxim-
ated by choosing three points from the curve and solving for the parameters (ao,, ay, a2,).
By picking the first point at p' = 0, which gives (Aay = aoy), only two equations with two
unknowns have to be solved for a,, and a2,.

Scaling of failure surfaces. If a new concrete with known unconfined compression
strength f is to be modeled, but its failure surfaces are otherwise unknown, then one
way of scaling data from a known material is as follows:

Define r=f-l ,
f"clld

where fc.o.d is the unconfined compressive strength in a previously modelled concrete. Then
the new material failure surfaces can be taken as

A'a = aon+ +

aln + a2 ,p

with the new coefficients (ao0 , al,, a2,) written in terms of the old ones as

a 0 n a aor, ain = a,, a 2 , = a 2 /r.

Damage accumulation

New shear damage accumulation. The current failure surface is interpolated from the
maximum failure surface and either the yield or the residual failure surface as

AU = 10(AC. - Au.i.) + A'mi.,

where Aami. is either Aa, or Ac, depending on whether A < A.m or A > A•m, and where 'i is
a function of A. In the original LLNL model 16, the modified effective plastic strain A, is
defined as

A- d7P

S(1 + p/fI)b,

where the effective plastic strain increment is given by dF = V1(213)C .
In the new model, two changes have been implemented. First rate effects were included,

and second, the parameter bI is replaced by b2 for tensile pressure (p < 0),-as follows:

r(l +p/rff)~b, for p > O,

for p < 0.
0 rf (I + plrrff)b2

Note that at p = 0, the denominator is a continuous function. In this way, the damage
evolution can be different in tension and compression, if needed.

Volumetric damage. With damage accumulation as just described, if a triaxial tensile test
is modelled, wherein the pressure decreases from 0 to -f, with no deviators, then no
damage accumulation occurs. The parameter A remains 0 and so does 11. The equation of
state decreases the pressure to -f, but keeps it at that level thereafter. To implement
a pressure decay after tensile failure, a volumetric damage increment can be added to the
deviatoric damage whenever the stress path is "close" to the triaxial tensile test path, i.e. the
negative hydrostatic axis. The closeness to this path is measured by the ratio k/J3u/.v,
which, for example, is 1.5 for the biaxial tensile test. To limit the effects of this change to the
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paths close to the triaxial tensile path, the incremental damage is multiplied by a factor
fd given by

fd = 1 /0.1I 0' ,fpI <0.1,
0, 1,,/ '• 2/pl >zt 0.1.

The modified effective plastic strain is incremented by

A = b3 fdkd(t, - 4v.yeid)

where b3 is the input scalar multiplier, kd the internal scalar multiplier, e, the volumetric

strain, and cy,yleld the volumetric strain at yield.
Determination of damage evolution parameters b2,b3 and bl. The values of b2 and

b3 govern the softening part of the unconfined uniaxial tension stress-strain curve as the
stress point moves from the maximum to the residual failure surfaces. It is well known that,
unless such softening is governed by a localization limiter or characteristic length, the
results will not be objective upon mesh refinement, i.e. they will be mesh-dependent [12].
One way to eliminate this mesh dependency is to force the area under the stress-strain curve
to be Ge/h, where Gf is the fracture energy and h the element size. If the localization occurs
in one element, h = w, where w, is the crack front width or localization width, and typically
w, is 1-6 times the maximum aggregate size [12]. The fracture energy usually varies from 40
to 175 N/m (0.23 to 1 lbf/in) according to the European CEB-FIP model code (Section
2.1.3.3.2: Fracture Energy) [9]. This smeared Crack Band model insures mesh size indepen-
dence [1Z 13]. However, there may still be some effects of mesh topology on crack direction
both in statics and dynamics [12,14].

In a typical analysis, a localization width (width of the localization path transverse to the
crack advance, e.g. one element width, or cube root of the element volume in 3D) is chosen
together with Gf. The parameter b2 is determined by iterative calculations until the area
under the stress-strain curve for a uniaxial unconfined tensile test coincides with Gf/h.
Similarly b3 is found using a hydrostatic triaxial tensile test. An example of the effects of
b2 and b3 on the stress-strain response of a single element subjected to uniaxial and triaxial
tensile tests is shown in Fig. 6. If the analysis yields a different localization width than

Single Element Unlaxial 2.5
Extension Response for single N m en /,4a&xM !

M.Sb QMncrste l-evxt, Response for
Sat-8 COncrete

3- -- rtj1W~01riea 116I 2.0 J
- K&CM v cf k • &o - -

t.5

b.5
as -4 -

b2 - r4b3-1
Lb3_1O

07 0.0-

O.OE+O 4.OE.4 CE-4 1.2E.3 l.BE-3 2.063 0.DE*O LOE-3 ZOE-3 3.0E-3

Uniaxial Strain Triaxial Strain

(a) Parameter b 2: effect on uniaxial tension (b) Parameter b3: effect on riaxial tensile
strain softening. strain softening.

Fig. 6. Effects of parameters b2 and N3 on tension softening. (a) Parameter b2: effect on uniaxial
tension strain softening. (b) Parameter b3: effect on triaxial tensile strain softening.
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anticipated, this should be corrected and the calculation restarted. These parameters will be
of importance when the structure analyzed is lightly reinforced or is tension- or shear-
critical. In dynamic.analyses the localization pattern may vary during the run, depending on
the relative amount of damping.

Similar considerations should be brought to bear when selecting a value for bl, which
governs softening in compression. The parameter b, is used to match observed compression
behavior at various levels of transverse confinement. Figure 7 shows the ability of the model
to reproduce test data from [6) for an unconfined compression test, as well as for four more
levels of confinement. In this example, the 4-in. tall, 2-in. diameter cylinders were modeled
using single elements.

Material model assessment for monotonic load paths. Figure 6(a) shows a comparison
between the original and the new model for an unconfined uniaxial tension test. It is
observed that the original model is almost perfectly brittle and cannot represent softening,
whereas the new one can capture various softening patterns depending upon the given
fracture energy (assumed a material constant) and the element size. The energy dissipated in
the tension softening stage can be significant in cases of tensile or shear failure.

Figure 6(b) shows a comparison between original and new model for a hydrostatic tensile
test. It is observed that the original model reaches one-third of the tensile strength, then
remains at that stress level upon further straining, thus dissipating unrealistic amounts of
energy. Similarly, if a biaxial tension test is represented, the old model reaches (and remains
at) a stress of one-half the tensile strength. Note that in Fig. 6(b) only a few points were used
to model the stress-strain curve. Figure 7 shows the model capability to represent triaxial
compression tests on cylinders using single elements, and including the unconfined uniaxial
compression test. Figure 8 shows the ability of the model to capture the actual biaxial
compressive strength. The biaxial strength should be around 1.15 times the unconfined
uniaxial compressive strength according to Kupfer et al. [8]. The biaxial compression
loading path is initially parallel to the tensile meridian and is very sensitive to the choice of
a two versus three invariant formulation (addressed in the next section). This explains why
the original two-invariant model yields a grossly inaccurate biaxial compressive strength of
about 5 times the unconfined uniaxial compressive strength.

In summary, the model is able to capture proper material behavior in uniaxial,
biaxial, and triaxial monotonic tension and compression. After tensile fracture, the
model will still be able to carry deviatoric stresses as long as the pressure becomes
positive (compressive). In this case, the stress state will be located on a surface close
to, or coincident with, the residual failure surface, depending on the amount of damage
incurred.
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Fig. 7. Model representation of triaxial compression tests.
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Three-invariant failure surface formulation

Development of a three-invariant model. The previous Aa versus p relationships actually
define only the compressive meridians of the failure surfaces in principal stress space.
The original material model 16 assumes the full failure surfaces are obtained by rotating
these meridians around the hydrostatic axis, thereby forming circular cross sections
in the deviatoric planes. The surfaces are functions of pressure and the second invariant
of the deviatoric stress tensor, J2, whose square root is proportional to the radius
of the circle. A third invariant, such as J3 or Lode angle 0 (angular offset in the deviatoric
plane of the stress point from the image of a positive [tensile] principal stress axis)
may be introduced to permit more general shapes in the deviatoric plane, such as the
triangular curves with smooth corners shown in Fig. 9(a). For concrete the deviatoric
section typically transitions from this shape at low pressures to circular at high pressures.
Figures 9(b) and 9(c) show the large difference that can exist between the tensile and
compressive meridians. Moreover, the difference is amplified when considering failure levels
under compressive, proportional loadings, represented by rays emanating from the origin in
stress space. These differences can be captured in the model only if a third invariant is
included.

To introduce the third invariant, a dependence on the Lode angle 0 [Fig. 10(a)] is sought.
The shape proposed by Willam and Warnke [7] is adopted, providing a smooth, convex
triangular surface generated by elliptical segments as shown in Fig. 10(b). If r, is the distance
from the hydrostatic axis to the failure surface at the compressive meridian, and r, the
distance at the tensile meridian, then at any intermediate position.the distance r (r, < r < rj)
will be given by

2r,(r• - r•)cos0 + rj(2r, - r=),14(r, - r4)cos2 0 + 5r, - 4rtr,
r = 4(r• - r•)cos 2 0 + (r, - 2r,)'

By dividing both sides by r,, then dividing the numerator and denominator of the
right-hand side by r', we obtain

2(1 -- j 2)cos 0 + (21 - 1)]/4(l -- ,2) cos 2 0 + 502 -- 4r=4(1 -- j,2) cosI 0 + (I -- 20b)'"
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r/f•

(a) Deviatoric sections for increasing pressure. (b) Hydrostatic section.

r/1fc

I /If

NOTE: r .

I = I, I/3

(c) Typical tensile and compressive meridians.

Fig. 9. Typical failure surface section for concrete from [7]. (a) Deviatoric sections for increasing

pressure. (b) Hydrostatic section. (c) Typical tensile and compressive meridians. Note: r = 12.

e = W/1 5.

where r' - r/r, and p = rl/r,. Note that r' depends only on 0, and 0, and that in general

4, in turn depends on p. For 0 - 0° the formula yields r' = 0, corresponding to pure

extension,and for 0 = 600 it yields r' = I corresponding to pure compression. The value of
0 can be obtained from

cos0= "L or c 3/ J32 f-•2 J32j,2
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X

(a) Angle of similarity 0. (b) Elliptical approximation for 0 < 0 < 60.

Fig. 10. Deviatoric plan section in the Willam Warnke model adapted from [7]. (a) Angle of
similarity 0. (b) Elliptical approximation for 0 < 0 < 60.

where sl is the first principal deviatoric stress = max o1' - P,C2 - P - A (a1, a2 , o 3̀) are
the principal stresses, and the stress invariants J2 and J3 are given by

lj2' =~ I ' T z T.
(S + S2 + S), =s s3 = S s, ,

T1 X "r2, S2

Once the value of r' is known, the original compressive meridians are multiplied by it to
obtain the meridian at that location.

Migration between fixed failure surfaces in triaxial extension. Lacking guidance from
laboratory data, the transition between fixed failure surfaces in triaxial extension was taken
to be the same as in triaxial compression. This transition is given by the it-r relationship,
which has been discussed in the section on damage accumulation. If a different transition
were found for the triaxial extension cases, then a second, independent )i-qi relationship
would have to be implemented.

New compressive meridian. Up to this point in the development it was implied that the
compressive meridian is known and input to the code, and the extension meridian can be
found as a fraction 0, of the compression one. In fact, depending on data availability, in
some pressure ranges it is more appropriate to define the tensile meridian, and then obtain
the compressive meridian from the tensile one. The specification built into the new model
results from a combination of both approaches, as described here and in the following
subsections. For pressures in excess of f[/3, the input compressive meridian (determined by
the parameters ao,aI and a2 does serve as a basis for all the others. For pressures below
f,/3 and above -f,, we limit the maximum tensile stress on the extension meridian to f,.
This uniquely defines the extension meridian as

3
A= 3(p +f,)

2

which passes through both the triaxial tensile test failure point at (p, Aa) = (-ft, O)and the
uniaxial tensile test point at (p, Aa) = (-f,3, f,).
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At p =f'13 we force the two formulations to coincide by determining the appropriate
value of p. The compressive meridian for pressures less than f,/3 then follows as the image
of the tensile meridian, i.e., the tensile meridian divided by •,(p) at each pressure p. The
following subsections describe the determination of 0(p) in detail. All three compression
failure surfaces (yield, maximum, residual) have corresponding tensile images.

Given this segmental failure surface formulation and the piecewise linear definition of
, as a function of pressure, the failure surface will not be smooth. This does not violate any

fundamental theoretical requirement. In fact, due to the use of a Prandtl-Reuss flow rule as
implemented with the "radial return" algorithm, it creates no numerical difficulties either.

Definition of ,(p). To complete the implementation of the three-invariant failure surface,
the function 0((p) has to be defined for the full range of possible pressures. As mentioned
earlier, for concrete, 0, varies from • at negative (tensile) pressures to unity at high
compressive pressures. In order to satisfy various observations for specific triaxial stress
paths, the values of 0, are present within the code for several pressures, as follows.

Case p 5 0 (tensile pressure). For p < 0 the tensile meridian has to include the points
(p, -Aa)= (-fl, 0) and (p, -Au) = (-f,/3,ft ), which represent failure in triaxial and
uniaxial tensile tests, respectively. At p = - 2f,/3 the compressive meridian is (see Fig. 11)

Aa 3 -2f, + f f,
0 -) = FV

However, this should represent failure in the biaxial tensile test, which test data suggest is
approximately given by Ao" =f,. By equating both stress differences, i = 1/2 at
p = - 2ft/3.

Another test of interest is the pure shear test in plane stress. If the coordinates are rotated
450 in plane, the resulting state of stress is (a ,b 2,o03) = (T,0, - T). Assuming that the
maximum tensile stress is limited by fi, then r =f, at failure. From (o1, a 2 , er), Aa can be
found as:

Aa = _,1_J2= V,3i.

For this test,*the principal stress difference is given by r' times the compressive meridian, i.e.

A _ 3(p +f,) ,fAc -r' (p+ =r' 3f,

Auc > 0

New Compressive
Meridian

f Bioxiol Tensile
_ Path a , = f =c2 =

-' Unioxiol TensilePath A6 = a7 =ft

I \ •New Tensile
Meridian

Fig. 11. Derivation or o for p < 0.
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with r' = r'(O,, 0 = 30*). The two expressions are equal provided 41, = at p = 0, because

r'(1, 30) = 1/.l/3. Thus uniaxial, biaxial, and triaxial tensile failure and pure shear failure

can all be plausibly represented with •, = ½ for p < 0. For example, this gives the nominal

maximum compressive failure surface the form Aa,, = 3(p +f t ).

Case p =f'-/3 (unconfined compression test). At p =f-/3, the uniaxial unconfined com-

pressive test yields a principal stress difference of f,. The corresponding point on the

extension meridian is Aa = f This should be limited by the defined extension meridian

(Fig. 12)

hence

I 3f,

For example, if f,/f. 0.10 (typical of concretes with f, ' 5000 psi) then 0 = 0.65. For the

WSMR-5 data, and = 0.606. Note that this value is actually an upper bound for 0.

Case p = 2af'/3 (biaxial compression test). Biaxial compression tests conducted by

Kupfer et al. [8], have shown failure occurring at (al,ca2 ,c03) = (0,f', f.)'with a = 1.15.

The stress point lies on the tensile meridian at a pressure p = 2atf,/3 -_ 2.3f,'/3 and a stress

difference IAamI = af,. The corresponding point on the compressive meridian is given in

terms of the input parameters as

Aacm = ao + -ao + 2f/3
al + a2P T, + a2(2a f/ 3)'

AU> 0

Compressive
Meridion

Compr

ft

I- Tensile
Meridion

Fig. 12. Cutoff versus new tensile meridian.
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so the ratio / = / is

= f" with a = 1.15.
ao+-2af,/3
a, + 2a2cf'/3

Completion of definition of O. For computational purposes, the function 0(p) is piecewise
linear, using, the previously defined values. For higher compression pressures, two addi-
tional data points from existing databases were chosen, as follows

1={0.753 at p=3f,,
for p > 8.45f,'.

The last entry represents the transition point beyond which the tension and compression
meridians are equal, and the failure surface becomes a circle in the deviatoric plane. In
summary

20• P <-g0,

½ + 3f t/2f., p =f'13,
ef(p) = __ ___

2Ofp/3 ' p = 2cf./3,

a1 + 2a 2c'f/3

0.753, p = 3f.,
,1, p > 8.45f:,

and the function is linear between the specified points.
Comparison with previously reported values of 0. Based on various experimental data,

Ahmad and Shah have proposed the following values for 0 [15]:

,50.686 for - : p/f, < 1.75,
=0.610 + 0.0435(p/f,) for 1.75 < p/f, < 8.9.

The proposed values of i for p/f, > 3 are based on this and additional data [6]. For
p/f© = -, using 0 = 0.686 implies that, in some cases and while unloading uniaxially from
an isotropic compression state, the failure surface would only be reached for di = 0.124f,.
This would probably only happen for concretes with low compressive strengths
(f. • 4000 psi), where f/f, > 0.10.

Based on several data sets, Chen [7] suggests that

f0.5 for p/f" _ 0,
V=0.8 forp/f{L7.

Radial rate enhancement

Since in typical experiments rate enhancements are obtained along radial paths from the
origin in the principal stress difference versus pressure plane (via unconfined compressive
and tensile tests), strength enhancement was implemented in general along radial stress
paths. This is accomplished as follows (see Fig. 13). Let rf be the enhancement factor and
p the pressure after calling the equation of state subroutine. The enhanced value Aa. of the
failure surface at pressure p is desired, assuming the enhancement factor is applied radially.
To get A&r an "unenhanced" pressure p/rf is first obtained, then the unenhanced strength
Aa(p/rr) is calculated for the specified failure surface. Finally, the unenhanced strength is
multiplied by the enhancement factor to give

Aa. = rfAcr(p/rf).
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Fig. 13. New rate enhancement in tension and compression.

This formulation presents the following advantages:

" The code input is obtained directly from the test data at the same strain rate;
" Strength is equally enhanced along any radial stress path, including uniaxial, biaxial and

triaxial tension, and uniaxial and biaxial compression - this is far more consistent with
data than the earlier formulation;

* Different rate enhancements can be included in tension and compression by linking the
enhancement factor itself to pressure;

* The method was very simple to implement in the code.

Compressive meridian in the softening regime

Compressive meridian for negative pressures. With the modifications discussed so far, if
p < 0 and softening is underway, there will be a vertical segment in the current failure
surface (in the p versus Aa plane, see Fig. 14) due to the reduction in minimum pressure p,.
In other words, the current failure surface is given by:

Aal = q(Aum - Ao,) + Aor, for p > p,

and a vertical segment at p = p,.
To avoid this vertical segment but maintain the reduction in magnitude of p,, a modified

maximum failure surface T 1 (p, tj) can be defined as follows when pressure is negative and
softening is under way (A > Am):

TI(p, ) = T(p) -pcp (l)=p)'= 3 J+
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Fig. 14. Failure surface evolution during tensile strain softening.

where Y, is the nominal maximum failure surface in compression = 3(p +f'), pf the
intersection of the residual surface with the pressure axis = 0 (for concrete), p,(1/) is
tnpm + (I - tj)pf = tip., and p, the intersection of the maximum surface with the pressure
axis = -f t .

As defined, Y I is continuous with Ym at p = pf = 0. The current failure surface in the
softening range can then be defined as follows:

IIAmFp) + (0 - 1)At ip), p > pI,
T (p,t)= T1,(p, 1) = 'IT., P - P rm(p.) = 3(p + ni), p -pf.

PV -Pm

The formula above is uncorrected for rate enhancement. The correction follows as
outlined in the section on radial rate enhancement. Given an updated pressure p (which
implicitly includes effects of rate enhancement), the corresponding "unenhanced" state is
denoted by Pu = p/rf, where rf is the enhancement factor. The current unenhanced failure
surface for negative pressures can be written as

up.,,T)=ri (p., r) =3 (+P4f for-L-<pf (pg = 0 for concrete).
Of rf

The corresponding enhanced failure surface follows by multiplying by rg:

Y. (p, j7) = rf [m - (P.)l= 3(p + nrtf,).

This is the expression to use in the formulas for stress and damage update to be derived in
the next subsection. The corresponding partial derivative with respect to r1 for p < pf is

OYT=
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Corrections to the flow rule. The foregoing modification has the undesirable effect of
complicating the dependence of the failure surface on p and 1l. The expressions for the
updated stresses and the increment dR of the damage parameter must also be modified. The
derivation, which is based on the assumption of Prandtl-Reuss (volume-preserving) plastic
flow, is presented below.

In matrix symbolic notation, the decomposition of strain increments into elastic and
plastic parts is

de = +W dt' = a'dp + Cdo,

where a' is the deviatoric stress and C the elastic tensor. Premultiplying by C- 1

C-dE = C-'a'du + da

and by Vf, the gradient with respect to stress of the failure function f = , - T ['r, 11M],

VfC-'de = V~fC-'a'dp + Vfda.

But by differentiating the consistency equation f(a, I dA) = 0 (which ensures that the stress
point remains on the failure surface during plastic flow), we have

V~fdua =f,Adl = 0 =- Vfde" = -fdA,

where the comma denotes a partial derivative. Therefore

Vf C-dc = Vof C-a'dp -f,,dA.

On the other hand, by definition

d =h(a)d? = h(a)/(2/3)d djdej = h(•a)V/(213)-a':a'dp =h(a)(2/3)j 7;d/,

where in this model h(c) = (1 + p/rhfft)-b2/rf when p < 0. By substituting dA and solving
for dp,

dy = VffC- 1 de
V~fC-, - (2/3)f-xh(a)V/3 •

Now note that C- 1 de - da* = trial elastic stress increment, C- Y' 2Ga', and with some
manipulation it can be shown that

(VNf)' =3aj 3 ,

so

dp= Vefda*

d- 2G/_J - (2/3)f,ah(a)7/3.

At any time step the failure surface will change due to changes in both presence and Uj.
The pressure change is known just after entering the material model subroutine. If Y*
denotes the failure surface corresponding to the updated pressure but the prior value of j7,
and Y.+1 the fully updated surface, the increment due to n will be

Y.1 ra = dn dl= Y dl hT (a dF

= a.YY dr/h(a)(213) ý3/ Jý d yOiq d2 A

y , '(A)h(a)(2/3) Vf d(*
2G - (213)f,,h(•)"
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Now because f(cr.) = 0, f(a*) =f(oq, + dor*) = (Vf)da*. But by definition,
fRa*) = 3-/2-T *. Furthermore, sincef(a, A) = ,32 - T (p, q), f,• = -

Therefore the update to the failure surface (after the trial elastic part) is

Tn+ -rj -T =T,,r/'(Q)h(ta) f(a*)
3G I +T,,, 1'(A)h(a)/3G"

where

T fr.[Aar.(p/rj) - Aor(p - rr)], p > pf,T ! 3r~f f, P< Pf.

For the update of A, the increment is

= h()d = h(a) 2J2 h(tr)[./F3J7 - T(p*,,,j)]

d3G[_ -Tu-•G)h(c)J

Shear modulus correction

With the constant Poisson's ratio option and equation of state 8, the original model 16
computes the elastic shear modulus from the specified constant Poisson's ratio and the
current unload/reload bulk modulus. This can easily lead to a negative effective Poisson's
ratio on loading whenever there is a large enough disparity between loading and un-
load/reload bulk moduli. In a first attempt at correcting this deficiency, the shear modulus
was made dependent on whichever bulk modulus was currently in effect. However, this
method failed because even infinitesimal pressure oscillations, e.g. during an unconfined
compressive loading, led to large shear modulus oscillations which did not reflect the
nominally continuously increasing load. In addition, these oscillations were encouraged by
the fact that elastic energy could be generated whenever pressure increased while shear
stress decreased.

A better approach is to compute the shear modulus based on a scaled bulk modulus, one
which varies from the loading to the unload/reload value depending on how far the pressure
is below the virgin curve. A scaling factor which varies from zero to unity as pressure drops
from the virgin loading curve to pi is given by

(P = At + (p - pf)/K. '

where At = c,mln - CY, 6, is volumetric strain, and K. is the unload/reload bulk modulus
from equation of state 8. If KL is the corresponding loading modulus, the scaled bulk
modulus is

K'= (KL - Ku)e- 5 5"5s + Ku,

where the constant 5.55 is chosen so that K' will increase half way to the unload/reload
value when p has dropped 1/8 of the way from the virgin curve to pg. The shear modulus is
then calculated as

G = (1.5 - 3v)K'/(l + v).

APPLICATION EXAMPLE: SUBSTANTIAL DIVIDING WALLS

Substantial dividing walls (SDWs) in munitions production, maintenance, and storage
facilities are used to subdivide explosives to prevent sympathetic detonation and to provide
operational shields for personnel. They are 12-in. thick concrete walls with #4 reinforcing
bars at 12-in. spacings on each face and in each direction, and without any shear reinforcing.
Current Army and Air Force safety regulations assume that the 12-in. SDW's will prevent
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propagation for up to 425 pounds of Class/Division 1.1 explosives. This study seeks to
provide a verification of the propagation prevention limits of the 12-inch SDW [16].

Although both the mass and velocity of secondary fragments are used for their capability
of detonating the acceptor charge, this study was tasked exclusively with estimating their
velocity. This is due to the wide variation in fragment sizes and the difficulty for current
analytical model to provide reliable estimates of fragment sizes. Established criteria indi-
cates expected maximum fragment velocities close to 500 feet per second for typical
fragment sizes.

Load definition

Definition of airblast loading was performed with two widely used codes: SHOCK [17]
to produce the shock loading (early time airblast) resulting from the incident blast wave and
FRANG [18] to compute the gas pressure (late time airblast) resulting from expansion of
the detonation products and heating of the air within the room. The process adopted was to
compute loads independently of the response of the wall, i.e. the walls were assumed to be
rigid. However, the assumption of rigid boundary conditions is considered reasonable for
this set of problems because the shock pressure pulse (which typically dominates gas
pressures) lasts less than a millisecond, in which time the wall has not yet had time to move
significantly so that interaction might take place.

One potentially significant effect of the loading produced by realistic munitions which
was not considered in this study is that associated with the primary fragments. The primary
fragments, produced by the breaking up of a weapon's casing upon detonation, will impact
the wall and may provide a sizable additional source of impulse and possibly cause
significant degradation of the wall's components (e.g. abrasion of cover concrete, cutting of
front face rebar) [19). In this paper light casing donors are considered. The resultant
combined loading used is shown in Fig. 15.

Test description

A description of the selected test (C-6) and relevant design data was obtained from [20].
This experiment was conducted in the early 1960s at the Naval Ordnance Test Station
(NOTS) in China Lake, California, and consisted of a cased donor munition placed in
a cubicle with three sides walls (no roof) with numerous acceptor charges placed immediate-
ly outside the dividing walls, as shown in Fig. 16. The 272-lb charge was detonated, resulting
in complete destruction of the dividing walls but no sympathetic detonations. Fragments
velocities of about 500 ft/s were measured [20].

Structural model

The SDWs analyzed were components of a cell where munitions are manufactured,
stored, or handled. Two typical configurations for these cells were analyzed; one with two

Li (SHOCK) Resultant Combined

Loading

O P MRNX

Time

Fig. 15. Method used to combine gas and blast pressure loadings.
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Fig. 16. Test C-6.

frangible walls (roof and side wall) and one with only one (side wall only). The discretization
used to represent a typical SDW in the parametric calculations is shown in Fig. 17, which
illustrates a model with three supported sides (one side wall is frangible). The model for
a wall with two supported sides (roof is also frangible) is similar, except that the stub along
the roof line is omitted. The following model features are noteworthy:

1. The selected mesh has six brick elements through the thickness for the concrete, one
for the cover on each side and four inside the rebar cage; the thickness of cover is taken at
1- in., plus one bar diameter (centerline of the two-way tn'.h). The elements are approxim-
ately 2 in. cubes.

2. Reinforcing steel was modeled discretely using truss elements at 12-in. spacings in each
direction (in this example, using beam elements provided a small improvement in the
results, but truss elements reduced the computational time).

3. Stubs of the floor, side wall, and, where present, roof were included in the model with
fixed boundary conditions applied at the end of each stub; the stubs were one thickness in
length.

The material model used for steel, identified in DYNA3D as Material 19, has
similar features as the concrete model: inclusion of strain rate effects, nonlinear post-
yield hardening, and failure upon reaching a predefined level of strain. This material
model was modified to support truss and beam elements [21]. Bar failure is an essential
property as bar failure is observed in each one of the runs performed in this study,
and without accurate representation of the breakage of reinforcing bars, the resulting
secondary fragment velocity could not be adequately predicted. An example of the
stress strain curves required as input for this material is presented in Fig. 18: one for
static properties (49 ksi yield stress, 81 ksi ultimate), one for infinite rate (limit case with
88 ksi yield stress, 97 ksi ultimate), and one for an intermediate value at which properties
have been -measured (72 ksi yield stress, 91 ksi ultimate at I s' 2). This allows independent
scaling of yield and ultimate strengths as a function of strain rate. The failure strain was
12% (Fig. 18).
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Fig. 17. View of DYNA3D concrete and steel meshes (3-sided support).

120

100--

•.8o
80 -80

U)Uj
1-40

20
20

0 0.02 0.04 0.06 0.08 0.1 0.12

STRAIN

Fig. 18. Inputs to material 19 (steel).

Comparison of analytical and test results for test C-6

The analysis was performed with both the original and new material models. Both runs
indicated a similar type of breaching failure in the immediate area of the charge, with shear
failure along the floor and side wall (Fig. 19). However, with the original model, it can first
be observed that the elements along the edges distort significantly: this is due to the brittle
nature of this model in uniaxial tension [as shown in Fig. 6(a)]. In contrast the new model
results in small deformations along the same edges. Also the original model locks up in
biaxial tension [as well as triaxial hydrostatic tension-see Fig. 6(b)] where the stress
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(a) Original version. (b) Current version

Fig. 19. Comparison of wall deformations using different versions of the concrete material model.
(a) Original version. (b) Current version.

reaches f,12 (ft/3 in triaxial tension) and remains there upon further straining. This results
in excessive energy dissipation in biaxial tension, and significantly reduced deformations at
the center of the wall, as shown in Fig. 19(a). Figure 19(b) shows that the new model
properly represents the observed breaching.

Calculated secondary fragment velocities are presented in Fig. 20. The figure shows the
velocity of a node on the front face of the slab where the velocity is in the diiection normal
to the slab's surface; the node is located approximately 1 ft above the intersection of the
dividing wall with the floor, in line with the charge. This represents the location where
maximum velocity was observed in the finite element model. The velocity time histories
indicate that for both models fragment velocities initially reach about 430 ft/s, then the
original model shows a significant and unexpected velocity reduction, probably due to the
excessive energy dissipation in biaxial tension.

The calculations using the new model predicted fragment velocities of up to 470 ft/s
which compare well with the observed 500 ft/s. Upon failure the velocity remains constant,
indicating complete separation of the debris. In conclusion, the test results appear to
confirm the validity of the new material model, both with regard to the predicted secondary
fragment velocity, as well as the level and mode of damage incurred by the dividing wall.

CONCLUSIONS

The concrete material model in DYNA3D has been significantly modified to properly
represent material behavior along multiple radial paths in the Acr versus p space, including
uniaxial, biaxial and triaxial tension and compression. The plasticity model has been
extended to replace the tensile cutoff and provide a smooth transition to the residual failure
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Fig. 20. Velocity time histories.

surface. A new algorithm captures strain rate effects properly in any radial path. The model
has shown to properly represent the blast response of Substantial Dividing Walls subjected
to standard charges.
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