40-7102

State of New Jersey Department of Environmental Protection and Energy Division of Responsible Party Site Remediation CN 028 Trenton, NJ 08625-0028

Scott A. Weiner Commissioner Karl J. Delaney Director

JAN 21 1993

Yawar Faraz Project Manager Fuel Cycle Safety Branch Mail Stop 6H3 USNRC Washington D.C. 20555

Re: Shieldalloy Metallurgical Corporation Ground Water Radiation Data

Dear Mr. Faraz:

Pursuant to our telephone conversation in December, 1992, attached please find some of the quarterly ground water monitoring results for radiochemical parameters submitted by Shieldalloy Metallurgical Corporation (SMC) in accordance with the Administrative Consent Order (ACO) dated October 5, 1988. The following documents have been enclosed for your convenience:

Attachment 1 - Paragraph 20 of the ACO requiring the radiochemical analyses,

<u>Attachment 2</u> - Figure showing the locations of the monitoring wells and the direction of ground water flow, and a table listing the screened intervals of the monitoring wells,


<u>Attachment 3</u> - Table listing the gross beta results for the monitoring wells and a USGS table listing typical gross alpha and gross beta levels in the ground water in the vicinity of SMC,

<u>Attachment 4</u> - Table listing the potassium and sodium results for the monitoring wells from the Remedial Investigation (RI), and

Attachment 5 - Quarterly reports for calendar quarters 1Q92, 2Q92, and 3Q92.

Basically, through the ACO, SMC is required to monitor several wells quarterly for gross alpha, with analysis for specific radionuclides if the gross alpha values exceeded 5 picocuries per liter (pCi/l). Although not required, SMC has also been monitoring for gross beta.

The gross alpha results at times have been high due to high detection limits, but more recent data, such as that provided, are showing lower levels along with low to non-detect levels of the specific radionuclides. The Department of Environmental Protection and Energy (DEPE) is trying to work with SMC to

determine whether there is a concern about the gross alpha levels through improved analytical methodologies.

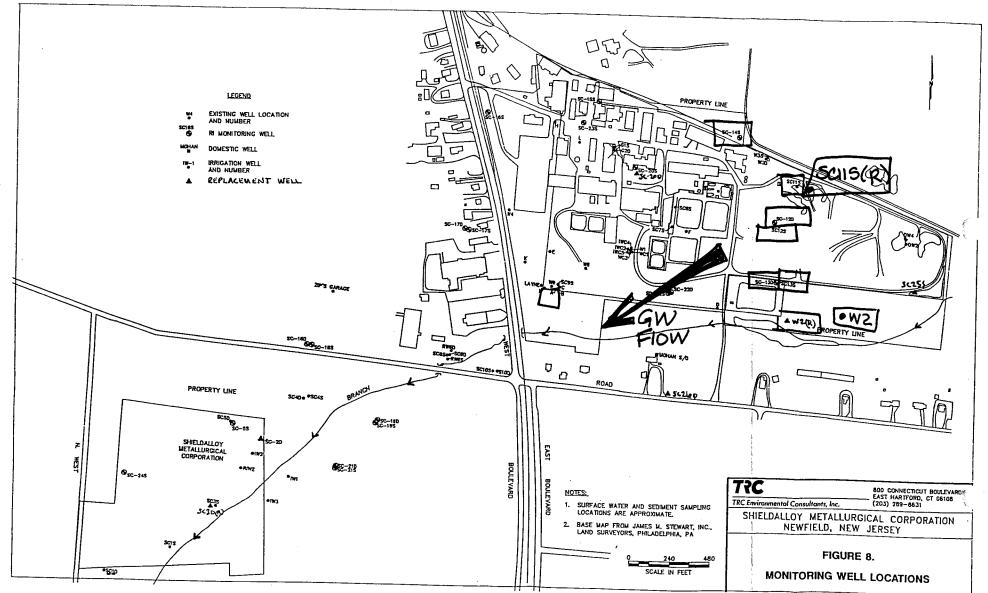
DEPE is, however, concerned about the elevated concentrations of gross beta found in the wells that are located closest to the source material piles, specifically the lime dust pile. The DEPE believes that the gross beta is the result of potassium-40 (K-40) present in the lime pile. This is supported by the high levels of potassium detected in the ground water during the Remedial Investigation. SMC is being resistant to our requests that they identify the source of the gross beta; they claim that it is naturally occurring while we contend that while it is naturally occurring, it is not present in the Cohansey aquifer in concentrations that are seen in the wells nearest the lime pile. We are working to resolve this issue.

I hope that this information is useful. I you have any questions on the enclosed information or require more information, please feel free to call me at (609) 633-1455.

Sincerely,

Donna L Goffigan

Donna L. Gaffigan, Case Manager Bureau of Federal Case Management


Enclosures

Paragraph 20:8. s

Shieldalloy shall incorporate the following sampling program into the monitoring program being conducted pursuant to paragraph 22(a) of the 1984 ACO:

- 1. Wells W2; SC 11S, SC 12S, SC 13S, A, and W3 (shallow) will be sampled quarterly for the first two calendar years following the date of execution of this Administrative Consent Order, and thereafter in accordance with subparagraph (c) of this paragraph.
 - (a) For the first four quarters the ground water samples will be filtered in the field and both fractions analyzed for gross alpha activity. In the event that in any sample either the filtered solids or the filtrate indicate a level of gross alpha activity in excess of 5 picocuries per litre, that sample will be further analyzed for the radionuclides U-238; U-235; U-234; Th-232; Th-228; Ra-226:
 - (b) After the first four quarters the results of the analyses will be reviewed jointly by the Department and Shieldalloy to determine whether the field filtration of the well samples is necessary and desirable and a decision will be made before the collection of the fifth series of quarterly samples whether or not to filter all subsequent samples in the field. The Department's decision shall control. If the decision is not to filter subsequent samples in the field, then the analytical program will continue based on total activity.
 - (c) Quarterly sampling shall continue as specified in a and b above until four (4) consecutive quarterly sample results from all monitor wells show radioactivity less than 5 picocuries/litre unless Shieldalloy can show, to the satisfaction of Department, based on a comparison of sample results from upgradient and downgradient monitor wells, that the radioactivity is attributed to natural background conditions. If it is shown, to the Department's satisfaction, that radioactivity in excess of 5 picocuries/litre is attributed to natural background conditions or that no sample results exceed 5 picocuries/litre, then sampling will be reduced to a frequency of once a year. Samples collected at the yearly frequency shall be analyzed for gross alpha and beta activity and shall be analyzed for the specific isotopes referenced in subparagraph a above in the event that the level of gross alpha activity of the ground water exceeds 5 picocuries/litre.
- 3. All samples will be analyzed for radionuclides in a USNRC approved laboratory.

1988 ACO

.

.

DEPTHS OF WELLS MONITORED FOR RADIATION

SHIELDALLOY METALLURGICAL COPRORATION

WELL NUMBER	DEPTH (SCREENED)
А	114-124'
W2	55-60/115-120'
W2(R)	2-17'
SC11S	20-27'
SC12S	15-25'
SC13S	14-24'
SC14S	12-27'
SC11S(R)	9-24′
SCI2 D	126-136
5C13D	127-137

Attachment 3

 $\sim 4d$

.

•	Gross beta	action by of Unfiltered wat (in p Gi/L)	Samples from SMC Monite. Wells c
,	Campolina		

Sampling Date	æA	W3 Dr 5C14	ØWZ	SCII	SCIZ	SC13
10/26/88	n/p	n/p	nfo	n11>_	8319	19±6
12/17/83	9-1 ±2,4	८ <i>6</i> ,0	39±4	2828	100±10	14土三
4/25/89	3,2±1.7	7,6±1.9	1422	h/p	3814	カノキ
8/1/89	< 6,0	7,5±1.8	2475	16±7	73±17	<u> ۲۹</u> 0
9/28/89	5.0	7.6±3,4	12±4	h/p	70±15	<20
1/10/90	L 4.0	10±3	48±8	6, S±3, Z	130±20	530±16
4/16/90	< <i>S</i> ,D	6,5±2,5	34±13	4,7±2,9	200±30 220±30 (Dup)	<800
7/12/90	<6,6	6.2±2,3	15±3	24.0	170±10	170±40
10/17/90	<i>ζ</i> 4, 0	5.1±2.4	12±3	4.7±2.4	76±8	< 80-
4/29/91	<10	く4.0	2 4,0	< 4, D	140±10	190±60 < 80 - (Dup)
8/23/91	n/p	n/p	n/1>	n/p	n/-p	n/+>
10/7/91	n/t>	4,2±2,1	n/p	n/17	n/p	n/p
1/16/92	1228	6.1±3,1	27±8	n/17	280±40	280±90
4/14/92	29.0	11±3	22±4	n/p	340±30	340±30 420±40
n/12 · ind, repor	ted to	F Graly	is uan r	not perfo	rmed or	not

United States Department of the Interior

CEOLOGICAL SURVEY NEW JERSEY DISTRICT OFFICE WATER RESOURCES DIVISION MOUNTAIN VIEW OFFICE PARK 810 BEAR TAVERN ROAD, SUITE 206 WEST TRENTON, NJ 08628

TELEFAX TRANSMITTAL FORM

DATE: 11-6-92 TIME: 1130 TO: (LOCATION) NJBEL, Radiation Laboratory (PERSON) D. Bahman Parsa FROM: Zoltan Szabo, USGS SUBJECT: Radioactivity Data from southern NJ NUMBER OF PAGES TO FOLLOW: SPECIAL INSTRUCTIONS: Data has been approved by Washington and is DK for official use. Data cannot be released to general public untill the date of the release of the report IF THERE IS A PROBLEM, CALL 609-771-3902 FAX NUMBER 530 - 5387

٦

.

	organi	c carbon	in, ground rsey, 198	d-w <u>ate</u> r se	<u>selected physic inorganic chem</u> amples from the tinued	Kirkwood-Co	hansey aquiter	syste
pH stand- ard nits)	Spe- clfic con- duct- ance (uS/cm)	Tempor- ature, water (deg C)	Solids, sum of consti- tuents, dis- solved (mg/L)	Carbon, organic dis- solved (mg/L as C)	Gross alpha, dis- solved (pCi/L, as Th-230)	Gross beta, dis: solved (pCi/L as Cs-137)	New Jersey well number	
				Atla	ntic County			
5.14 5.20 4.80 4.97	35 49 143 44	13.5 14.0 15.5 12.5	28 29 34 68	0.2	5.2 + 1.2 4.7 + 1.1 1.7 + 0.7 4.4 + 1.3 10 + 1.0	2.6 + + + + + + + + + + + + + + + + + + +	1-0168 1-0168 1-0230 1-0244 1-0285	
4.97 5.39 5.02 4.93 5.03	41 41 39	12.5 13.0 13.5 13.5 11.5	30 ≫ (5) 3	1.0 .2 .2 .5	3.7 + 1.0 1.8 + .7 .5 + .4 1.3 + .5	$\begin{array}{c} 4.2 + 1.0 \\ 1.9 + 1.7 \\ .6 + .5 \\ 1.2 + .5 \\ 1.2 \end{array}$	1-0285 1-0323 1-0762 1-0762 1-0763	
5.26 4.76 5.60 5.40 5.37	59 101 178 40 25	13.0 14.0 13.5 13.5 13.0	45 125 44	.2 .4 .3 .3	1.4 ++ .6 1.7 ++ 2.6 14.4 ++ 2.6 .6 +	2.5 +++ 2.1 8.8 +++ 2.6 1.4 +++ .6	1-0767 1-0770 1-0793 1-0794 1-0833	
				Cano	ien County			
4.85 5.26 5.68 5.31 5.10	73 92 54 45 39	12.5 11.5 12.5 12.0 12.0	64 47 33	.4 .7 .3 .5	21.2 + 3.2 5.5 + 1.5 2.3 • .7 2.0 + .7 6.0 + 1.5	6.6 + 1.6 7.6 + 1.4 2.6 +7 1.6 +6 2.7 + .9	7 - 0464 7 - 0490 7 - 0497 7 - 0500 7 - 0506	
5.02 5.19 4.43 4.98 4.56	127 37 66 75	13.0 13.0 13.2 13.3 13.4	70 27 23	.4	12.7 + 2.3 3.5 + .9 16.1 + 2.6 8.0 + 1.8 9.5 + 1.7	7.4 + 1.8 1.6 + 9.2 + 2.2 4.6 + 1.3 7.8 + 2.0	7-0603 7-0671 7-0675 7-0676 7-0677	
				Cumber	rland County	****** *************************		
5.15 4.54 4.65 4.65	109 81 81 121 121	13.0 12.5 12.5 12.5 12.5	76 53 53 75 74	.4 .3 .5 .3 .4	$13.7 \pm 2.4 \\ 9.6 \pm 1.8 \\ 15.8 \pm 2.6$	6.5 ± 1.6 6.9 ± 1.6 9.9 ± 1.6 8.9 ± 2.2	11-0002 11-0003 11-0003 11-0013 11-0013 11-0013	
4.76 4.55 5.30 4.85	93 93 83 36 86	14.0 14.0 13.0 13.5 13.0	58 58 55 59	.343.22	8.3 + 1.7 8.0 + 1.7 9.1 + 2.0 1.3 + .5 5.8 + 1.3	8.6 + 1.5 8.4 + 1.5 6.9 + 1.3 1.5 + 7 4.1 + 1.1	11-0020 11-0020 11-0022 11-0042 11-0043	
6.33 7.85 5.07 5.19 4.85	142 183 73 24 246	13.0 13.5 12.5 12.5 15.5	91 140 51 25 123	.3	4.8 ± 1.5 .1 ± .5 5.0 ± 1.2 1.9 ± .7 9.0 ± 2.5	2.6 + .9 1.4 + .8 3.4 + .9 2.4 + .8 14.2 + 2.2	11-0073 11-0097 11-0158 11-0161 11-0179	
4.30 4.42 5.36 4.71 5.08	97 73 561 125 38	12.0 12.5 13.6 12.5 11.5	59 47 256 76 29	.6 .3 1.0 .4 .3	$\begin{array}{r} 10.1 + 2.0 \\ 3.7 + 1.0 \\ 13.2 + 4.6 \\ 14.2 + 2.5 \\ 3.9 + 1 \\ 0 \end{array}$	9.5 + 1.6 3.9 + 1.1 74.0 + 8.7 9.2 + 2.2 2.6 + .9	11 • 0254 11 • 0255 11 • 0262 11 • 0274 11 • 0278	
4.78 5.06 4.58 4.77 4.48	142 26 120 148 201	12.5 13.0 13.5 12.4 12.5	89 26 75 60 121	.55.47	6.0+1.6 2.3+2.7 12.3+2.6 8.1+1.8 24.6 <u>+</u> 3.7	6.9 + 1.7 2.2 + 1.7 8.6 + 1.5 6.0 + 1.2 16.0 + 2.4	11-0281 11-0309 11-0361 11-0367 11-0368	

Appendix 2.--<u>Results of field measurements of selected physical and chemical characteristics of, and</u> results of analyses for dissolved inorganic chemical constituents, radionuclides, and

	ördan	ic carbon	in, grou		samples from		ituents, radionuclide Cohansey aquifer syst
pH stand ard mits)	Spe- cific con- duct- ance (µS/cm)	Temper- ature, water (deg C)	Solids, sum of consti- tuents, dis- solved (mg/L)	Carbon, organic dis- solved (mg/L as C)	Gross alpha dis solved (pCi/l, as Th-230)	Gross beta, dis- solved (pCi/L as Cs-137)	New Jersey Well number
				Cumberlan	d CountyCon	tinued	
4.80 4.80 4.96 4.59	128 128 143 202	12.5 12.5 13.5 12.5	83 82 89 113	1.1 .4 .5 .5	15.7 + 2.6 16.2 + 2.6 17.1 + 2.6 23.3 + 3.6	10.8 • .8 10.0 + 2.4 12.8 + 2.8 12.4 + 2.9	11-0369 11-0369 11-0374 11-0375
				Glou	cester County		
4.50 4.30 4.20 4.70 4.70	101 135 36 246 145	13.0 14.0 14.0 13.5 13.5	61 31 142	• • • • • • • •	3.8 + 1.1 7.7 + 1.6 5.9 + 1.3 1.0 + 0.6 14.2 + 2.5	3.4 + 1.19.4 + 1.64.2 + 1.111.7 + 1.911.0 + 3.0	15-0375 15-0566 15-0619 15-0726 15-0733
4.70 4.40 4.60 4.80 4.40	51 125 37 52 190	15.5 17.5 16.0 14.0 14.0	32 50 120	•• •• ••	1.4 + .6 7.1 + 1.6 1.6 + .6 4.1 + 1.0 19.9 + 3.3	2.2 + .8 9.8 + 1.6 2.2 + 0.9 13 + 2	15-0734 15-0735 15-0743 15-0752 15-0754
5.00 5.30 4.60 4.40 4.60	30 21 73 28 79	13.5 12.5 15.0 15.0 14.0	16 67 38 49	• • • • • •	5.0 ± 1.1 2.0 ± .7 18.6 ± 3.0 2.3 ± .8 7.3 ± 1.7	$2.5 \pm 0.9 \\ 1.0 \pm .5 \\ 18 \pm 3 \\ 3.0 \pm 1.0 \\ 4.4 \pm 1.0 $	15-0759 15-0764 15-0785 15-0791 15-0793
4.90 4.80 5.20 5.20	57 203 45 58 140	15.5 14.0 14.5 19.0	127 40 81	 	1.5 + .6 14 + 2.7 2.4 + 4 .8 2.7 + 1 .9 4.0 + 1.2	$\begin{array}{c} 2.2 \pm .7 \\ 38 \pm 5 \\ 1.9 \pm .8 \\ 3.8 \pm .9 \\ 7.3 \pm 1.4 \end{array}$	15-0801 15-0802 15-0804 15-0805 15-0810
5.20 5.20 4.80 4.70	38 256 74 47 146	17.5 15.5 15.0 14.0 15.0	30 158 35 90	•••	5.7 + 1.2 5.0 + 1.9 5.7 + 1.5 2.7 + 0.9 12.3 + 2.6	3.4 ± 0.8 4.9 ± 1.4 6.5 ∓ 1.3 2.7 ∓ .9 9.0 ∓ 2.1	15-0812 15-0829 15-0831 15-1016 15-1017
4.80 4.70 4.60	74 99 170	12.5 12.5 13.5	55 99	•••	$\begin{array}{r} 14.2 + 2.3 \\ 4.4 + 1.2 \\ 15 + 3 \end{array}$	20 + 3 9.3 + 1.6 5.8 + 1.2	15-1019 15-1028 15-1029
				s	alem County		
5.96 4.52 4.54 5.43 5.38	140 43 226 127 382	15.5 12.0 11.0 14.0 13.0	86 35 139 79 242	.3 .4 .4 .5 .4	21.0 + 3.2 5.3 + 1.3 18.3 + 3.0 6.2 + 1.5 2.2 + 1.2	10.6 + 2.5 5.0 + 1.0 10.6 + 2.4 7.6 + 1.8 7.6 + 1.5	33-0275 33-0462 33-0463 33-0465 33-0465 33-0466
7.85	18	12.5	145	.3	0.4 ± 0.5	1.6 ± 0.7	33-0469

,

Appendix 2.--Results of field measurements of selected physical and chemical characteristics of, and results of analyses for dissolved inorganic chemical constituents, radionuclides, and organic carbon in, ground-water samples from the Kirkwood-Cohansey aquifer system in southern New Jersey, 1988-89--Continued

Ncw Jersey weil number	Well owner	Well nome	Radium ·226, dissolved by radon-222 emanation (pCi/L)	Radium -228 dis- solved beta counting (pCi/L)	Radon -222, total liquid scintil- lation (pCi/L)	Uranium, dis- solved (µg/l as U)	Uranium -234, dissolved (pCi/L)	-238, dissolved
			Atlantic Cour	nty				
1-0168 1-0168 1-0230 1-0244 1-0285	C & E Canners Hamilton Township MUA AC Expressway Authority Eastern Brewing	Foisom Boro HTMUA 1 (WOOD) Egg Harbor Pl. Eastern 4	1.2 + 0.2 1.3 + 1 .2 .4 + 1 .1 1.8 + 1 .3 1.4 + .2	2.6 + 1.2 2.0 + 1 1.3 1.2 + 1 + 1.3 2.0 + 1 + 1 - 6 2.0 + 1 + 1 - 6 2.0 + 1 + 1 - 7 2.0 + 1 + 1 + 1 + 1 - 7 2.0 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +	110 370 98	$\begin{array}{c} 0.04 + 0.01 \\ <.01 + .01 \\ <.01 + .01 \\ .07 + .01 \\ .03 + .01 \end{array}$	•••	•• •• ••
1-0285 1-0232 1-0762 1-0762 1-0763	Ideal Manufacturing Co. Klotz, William Farnsworth, John	OW53 Klotz 1 Farnsworth 1	$\begin{array}{c} 1.3 + .2 \\ .8 + .1 \\ .1 + .03 \\ .4 + .1 \end{array}$	$\begin{array}{c} 1.5 + .6 \\ 1.2 + .6 \\ 1.2 + .6 \\ .7 + .5 \end{array}$	180 180 260 190	.03 ± .01 <.01 ± .01 <.01 ± .01 <.01 ± .01	••• •• ••	••
1-0767 1-0770 1-0793 1-0794 1-0833	Mantinelli, Joseph Estell Manor Bd of Ed Scott Paper Company Corbin City Bd of Ed Laureldale Fire Company	Mantinelli 1 Est Mn. School Scott-Domestic AC Reg Day Sch Laureldale Fire	.1 ± .01 .3 ± .05 4.6 ± .8 .1 ± .03 .4 ± .07	1.5 + 1.0 .9 + 1.0 3.7 + 1.0 .2 + .3 .4 + .6	140 190 360 94 350	.03 + .01 .05 + .01 .15 + .01 <.01 + .01 <.01 + .01	••• •• ••	··· ··· ··
			Canden Count	Ξγ	<u> a .</u>			
7-0464 7-0490 7-0497 7-0500 7-0506	Winslow Board of Ed Winslow Water Company Winslow Water Company Certainteed Street Lower Camden Bd of Ed	1 Prod 1 Prod 2 Certainteed 1 Edgewood JH	7.4 + 1.3 1.7 + .3 .9 + .1 .6 + .1 2.0 + .3	3.3 + 0.9 3.0 + .9 .6 + .5 .9 + .6 1.9 + .8	<80 230 240 180	.04 • .01 .01 + .01 .03 + .01 .03 + .01 .02 + .01	••	•• ••
7-0603 7-0671 7-0675 7-0676 7-0677	Garden State Water Co. Ancora State Hospital Garden State Water Co. Garden State Water Co. Garden State Water Co.	GSWC 8 Anc St Hosp 7 Cohansey Deep 1 Cohansey Deep 2 Cohansey Deep 3	4.1 <u>+</u> .7 .6 <u>+</u> .1 9.2 <u>+</u> 1.6 2.7 <u>+</u> .5 4.3 <u>+</u> .7	3.2 + 1.2 .7 + 1.5 5.3 + 1.3 1.7 + .8 4.3 + 1.2		.19 + .03 .05 + .01 .26 + .01 .03 + .01 .06 + .01	 	••• •• ••
			Cumberland Co	unty		<u>.,</u> ,		<u></u>
11-0002 11-0003 11-0003 11-0013 11-0013	Bridgeton Water Dept. Bridgeton Water Dept. Bridgeton Water Dept.	BWD 2 REP BWD 6 BWD 11	3.0 ± 0.5 2.1 1.8 ± .3 4.2 ± .7 3.8 ± .7	2.2 ± 0.7 3.4 ± 1.0 3.3 ± 1.0 3.5 ± 1.0	280	<.01 + .01 .03 + .01 .02 + .01 .14 + .02 .13 + .02		
11-0020 11-0020 11-0022 11-0042 11-0043	Bridgeton Water Dept, Bridgeton Water Dept, Cumberland County Cumberland County	BWD 3 BWD 12 Vocat Sch 2 Vocat Sch 1	2.0 + .4 1.9 + .3 2.2 + .4 .4 + .1 1.0 + .2	2.6 + .7 2.7 + .9 1.7 + .6 .6 + .5 3.1 <u>+</u> 1.0	230	.04 + .01 .04 + .01 .02 + .01 .08 + .01 .03 + .01	··· ··· ··	•• • • • •
11-0073 11-0097 11-0158 11-0161 11-0179	Cumberland County Cumberland County West Company Cumberland County Seabrook Farms	Sheppards 2 Jones Is. 1 4 Fair Grounds 1 Seabrook 6-A	1.8 + .3 .1 + .02 1.5 • .3 1.2 + .2 1.6 + .3	.4 + .4 .4 + .4 1.0 + 1.0 1.0 + .5 3.3 + 1.4		.09 + .01 <.01 + .01 .01 + .01 .04 + .01 .19 + .01	••	•• •• ••
11.0254 11-0255 11-0262 11-0274 11-0278	Vincland Water Dept, Vincland Water Dept. Seabrook Brothers Bridgeton Water Dept. Millville Water Dept.	VWSU 10 VWSU 7 12-Monitor BWD 14 Airport 3	2.1 • .3 1.5 + .2 .8 + .1 4.0 + .6 .9 + .1	3.3 + .9 1.8 + .6 10.2 + 2.5 3.0 + .8 1.3 + .6	<80 <80 100 380	.06 + .01 .02 + .01 .01 + .01 .09 + .01 .02 + .01	 	012 <u>+</u> .010
11-0281 11-0309 11-0361 11-0367 11-0368	Bridgeton Water Dept, Fairton Public Schools Bridgeton Water Dept, Cruzane, Dan Cumberland HS	BWD 13 1962 Well BWD 16 Domestic Cumborland HS	2.5 + .4 .9 + .1 1.8 + .3 2.5 + .5 4.0 + .7	2.1 + .8 .5 + .5 2.3 + .7 1.6 + .7 5.1 + 1.2	190 1,000 510 390	.01 + .01 <.01 + .01 .07 + .01 .02 + .01 .19 + .01	••• •• ••	.02

.

Appendix 2...<u>Besults of field measurements of selected physical and chemical characteristics of, and results of analyses</u> for dissolved inorganic chemical constituents, radionuclides, and organic carbon in, ground-water samples from the Kirkwood-Cohansey aguifer system in southern New Jersey, 1988-89--Continued

New Jersey well number	Well owner	Well name	Radium -226, dis- solved, radon Method (pCi/L)	Radium -228 dis- solved (pCi/L 85 Ra-228)	Radon -222 total (pCi/L)	Uranium •234 water dissolved (pCi/L)	Uranium natural dis- solved (µg/L as U)
···		Cumbert	and CountyC	Continued			
11-0369 11-0369 11-0374 11-0375	Cumberland County Seabrook Bros & Sons Seabrook Bros & Sons	Cumb. Med Cntr 11 A-Nonitor Seabrook 1	3.0 + .5 3.7 + .6 4.9 + .8 4.4 + .8	3.5 ± 1.0 5.5 ± 1.7 6.0 ± 1.4 4.3 ± 1.1	340 340 340 + 80 190 <u>∓</u> 80	 	$\begin{array}{c} 0.04 + 0.01 \\ .03 + .01 \\ .06 + .01 \\ .18 + .01 \end{array}$
		G	Loucester Cou	unty			
15 • 0375 15 • 0566 15 • 0619 15 • 0726 15 • 0733	Nonroe Township MUA Cecil Fire Company Hospitality Creek Smith, John Wrobel, Anthony	MT MUA 7 1979 Cecil 1 Hosp Crk (CPGD1) Aura Orchards Wrobel H 1	9 + .1 2.4 + .4 1.3 + .2 2.4 + .4 6.7 + 1.1	1.3 + .7 2.5 + .8 2.3 +	84 + 30 170 + 30 330 + 30 640 + 40 340 + 40	<.10 ± .02 <.10 ± .02 <.10 ± .02 <.10 ± .02 <.10 ± .02 <.10 ± .02	.04 ± .01 .01 ± .01 .02 ± .01 .21 ± .01 .06 ± .01
15-0734 15-0735 15-0743 15-0752 15-0754	Dase, Dennis Dematto, Lou Franklin Twp Bd of Ed Decora, Inc. Dean, George	Dase #1 Dematto #1 Lake School 1 Decore 1 Dean 1	.5 + .1 2.2 + .4 .6 + .1 1.2 + 1.0 3.5 + .6	1.1 + .8 3.2 + 1.0 1.5 + .8 1.0 + .6 3.7 + 1.0	200 + 40 150 + 40 210 + 30 <80 + 40 500 + 40	<.10 ± .02 <.10 ± .01 <.10 ± .01 .20 ± .05	.06 ± .01 .02 ± .01 .02 ± .01 <.01 ± .01 <.01 ± .01 .62 ± .08
15 - 0759 15 - 0764 15 - 0785 15 - 0791 15 - 0793	Messiano, Jim Scafonis, Felix D & M Builders Franklin Twp Bd of Ed Ferrucci, Mary	Messiano 1 Scafonis D Behl Rd Well CLR 1 Ferrucci #10	2.3 + .41 .6 + .0 5.7 + 1.0 <.02+ .0 2.1 + .3	0 1.4 ± .8 1 <1.0 ± .7 2.1 ± .7 1 1.8 ± .6	510 + 50 250 + 70 260 + 40	<.10 + .02 .30 + .08 <.10 + .01 <.10 + .01 <.10 + .01 <.10 + .03	<.01 + .01 <.01 + .01 .12 • .02 <.01 + .01 .35 • .05
15-0801 15-0802 15-0804 15-0805 15-0810	Chillari, Joe Wawa Inc. Franklin Twp Bd of Ed Franklin Twp Bd of Ed Elk Township MUA	Chillari 1 Wawa #1 Malaga #1 Main Rd School 1 Elk #1	.4 ++ .1 3.7 + .6 1.1 + .2 .8 ++ .1 1.6 + .3	<1.0 + .6 4.5 + 1.1 <1.0 + .6 1.4 + .5 0 1.9 + .7	520 + 40 410 + 40 200 + 40 320 + 50	<.10 ± .01 <.10 ± .01 <.10 ± .02 <.10 ± .04 .10 ± .02	.04 + .01 .16 + .02 .01 + .01 .14 + .02 .02 + .01
15-0812 15-0829 15-0831 15-1016 15-1017	Corona Pumps Zee Douglass Franklin Township MUA Duffield, Claude Hayricz, H.	Corona #1 Zee Worker Fr. Admin Bld Duffield 2 Shorcway HS	1.4 + 2 1.5 + 3 1.3 + 2 1.0 + 2 5.8 + 6	1.5 ± .8 2.4 ± .8 2.3 ± 1.0 1.4 ± .4 3.5 ± 1.0	360 + 30 480 + 50 390 ¥ 30 230 ¥ 40 230 ¥ 70	<.10 + <.10 + .01 <.10 + .03 <.10 + .01 <.10 + .01 <.10 + .01	.01 + .01 .04 + .01 <.01 + .01 .02 + .01 .04 + .01
15-1019 15-1028 15-1029	Williams, Ron Washington Township MUA Washington Township MUA	Williams Garden TW 13/Hydro T-2 TW 12/Hydro T-1	2.1 <u>+</u> .4 2.8 <u>+</u> .5 4.8 <u>+</u> .8	9.5 <u>+</u> 2.2 2.3 <u>+</u> .9 1.2 <u>+</u> .8	320 ± 40 470 ± 40	<.10 + .01 <.10 + .02	<.01 ± .01 .12 ± .02 .18 ± .03
			Salem Count	у			
33-0275 33-0462 33-0463 33-0465 33-0465 33-0466	Elmer Comm Hosp Walker Bros Fox, Ellis Paulus, Millard Wilson, Merrill	Hosp 1 Walker Farm Fox 1 Paulus 1 Wilson 1	8.7 ± 1.4 1.83 6.1 ± 1.1 1.7 ± .3 .4 ± .1	5.3 + 1.3 1.0 + + + 5 3.8 + + + 1.0 2.2 + + + - 5	330 470 <80 1,000		.14 + .01 .14 + .01 .06 + .01 .02 + .01 <.01 + .01
33-0469	Parvin State Park	Parvin Domestic	.1 <u>+</u> .0		330	••	<.01 <u>+</u> .01

NUV CORPANNES AND SCHOOL STA

Attachment 4

December 1990

(From RI Report)

Well ID	Potassium	Sodium	
	[PPb	[ppb]	
A (unfiltered) A (filtered)	1260 B	67700	
A (filtered)	1190 B	72300	
SCIAS (unfiltered)	9210	17900	
SCI4S (unfiltered) SCI4S (filtered)	9040	17900	
W2 (unfiltered)	15800	18900	
W2 (filtered)	17400	19300	
W35 (unfiltered)	4310 B	9280	····
W35 (filtered)	4480B	9290	
SCIIS (unfiltered)	1940B	12500	·····
sciis (filtered)	3390 B	9160	· · · · · · · · · · · · · · · · · · ·
SC129 (unfiltered)	174000	410000	
SC12S (Filtered)	180000	435000	
SCI3S (unfiltered)	155000	1790000	
SCI3S (Filtered)	170 000	1940000	
	·		
5C12 D (unfiltered)	5230	22700	
SCI2D (Filtered)	5900	26100	
SCIED (Filtered) SCIED (Unfiltered)	10108	21800	

. ·	April 19	91 (From F	el Report)
Well ID	Potassium [PPb]	Sodium Ippbl	
A (infiltered)	1250 B	182000	
SCI4S (unfiltered)	514D	11300	· · · ·
			· · · · · · · · · · · · · · · · · · ·
			••••••••••••••••••••••••••••••••••••••
			· · · · · · · · · · · · · · · · · · ·
SCIIS Cunfiltered) 2790 B	9450	
SCIZS (unfiltered)) 1 <i>8000</i> 0	413000	
Sci3S (unfiltered)) 150 <i>0</i> 00	1504000	
SCI2D (unfiltered SCI3D Lunfiltered) 1650B	3700 B	
SC13D Lunfiltered) < DL	2870B	

Attachment 5

Section 19

•

,

SHIELDALLOY METALLURGICAL CORPORATION

Certified Mail: P 233 598 946 Return Receipt Requested

October 9, 1992

Ms. Donna L. Gaffigan State of New Jersey Department of Environmental Protection and Energy Bureau of Federal Case Management Division of Hazardous Waste Management 401 East State Street **CN-028** Trenton, New Jersey 08625

WEST BOULEVARD P.O. BOX 768 NEWFIELD, NJ 08344 TELEPHONE (609) 692-4200 TWX (510) 687-8918 FAX (609) 692-4017 ENVIRONMENTAL DEPARTMENT FAX (609) 697-9025

1 A still

Third Quarter 1992 Radiochemical Ground Water Sampling Report RE:

1/211) 12

Dear Ms. Gaffigan:

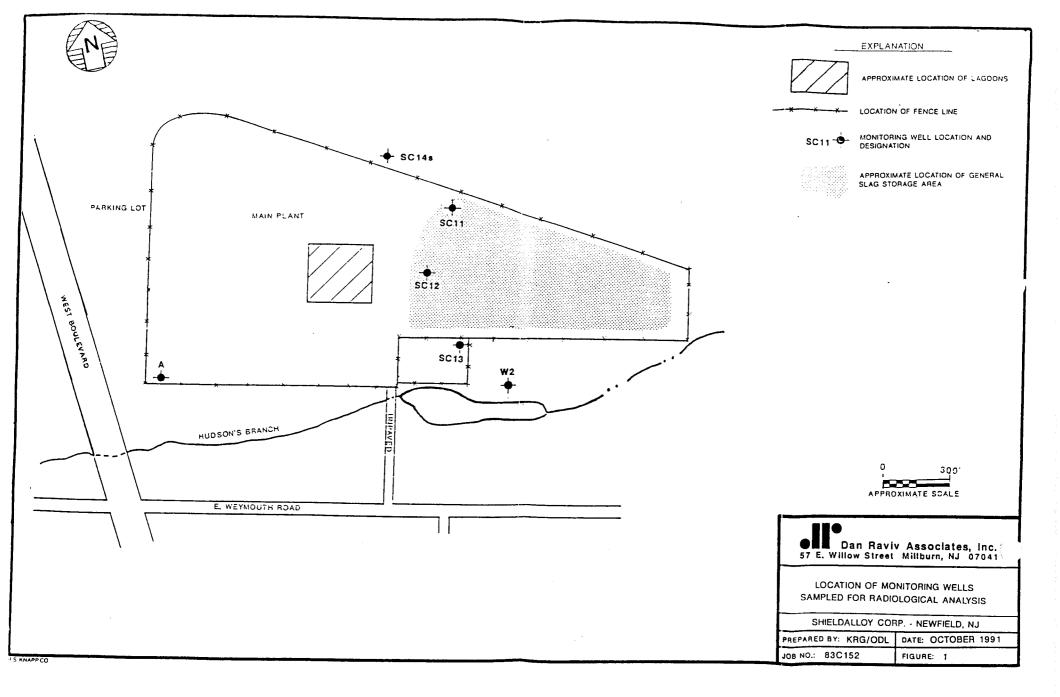
In accordance with 120(g) of the Shieldalloy Metallurgical Corporation (SMC) 1988 Administrative Consent Order, please find results of the subject sampling event. Monitoring Wells A, W2 SC11S, SC12S, SC13S and SC14S were sampled on July 15, 1992. The locations of these monitoring wells are identified on Enclosure (1) Location of Monitoring Wells Sampled for Radiological Analysis. Sec. St.

The methodology for subject sampling and analyses was consistent with previous subject sampling events. A one gallon sample was collected from each of the six wells while a duplicate one gallon sample was collected from Well SC12S and submitted for analysis as a quality control measure. After collection the samples were taken to the SMC laboratory to determine the Total Dissolved Solids (TDS) level for each sample. The TDS results as well as the sample identification numbers for the respective wells are presented in Enclosure (2). The samples were then submitted to Teledyne Isotopes (TI) of Westwood, New Jersey for gross alpha analysis.

Results of the gross alpha activity of the subject samples were all less than 3 pCi/ ℓ which was the minimum detection limit (MDL) for the analysis (see Enclosure 3). These results satisfy the analytical requirements of this program and are well below the Safe Drinking Water Act's limit of 15 pCi/e. As in past sampling events, radiological levels in background well SC14S are comparible to the other on-site wells. The chain of custody, request for analysis and all available TI quality assurance, laboratory data sheets are found NO SUBELEC in Enclosure 4.

Ms. Donna L. Gaffigan NJDEPE - BFCM October 9, 1992 Page 2

In the second quarter 1992 subject report, dated August 6, 1992, SMC petitioned the NJDEPE for the discontinuation of the subject sampling program under the ACO. This petition was based on the programs restrictive lower detection limits and the consistent detection of only natural background radiological levels in the subject wells during the four years of monitoring. As of the publication date of this report, SMC has not received a response from the Department to this petition. During the week of October 19, 1992, SMC expects to sample the subject wells in regards to other monitoring programs. At this time SMC will collect additional groundwater samples which will be available for radiological analysis if SMC is directed by the Department to do so. Please advise me at your earliest convenience as to the result of the petition review.


If you have any questions, please do not hesitate to contact me at 609-692-4200.

Sincerely,

hing A Kerm

Craig R. Rieman Radiological Safety Manager

CRR:lms Enclosures CC: Richard D. Way David R. Smith James P. Valenti Charles L. Harp, Jr., Esq. Jay E. Silberg, Esq. Carol D. Berger **ENCLOSURE 1**

ENCLOSURE 2

Enclosure 2

Shieldalloy Metallurgical Corporation

Gravimetric Analysis for TDS

Sample Well	Sample ID Number	Result (ppm)	Date Analyzed	By
A	GW-92007	*		
W2	GW-92004	225	07/16/92	GJ
SC11S	GW-92001	110	07/16/92	GJ
SC12S	GW-92002	800	07/16/92	GJ
SC12S (QC)	GW-92003	800	07/16/92	GJ
SC13S	GW-92005	4720	07/16/92	GJ
SC14S	GW-92006	•		

Not Available

ENCLOSURE 3

TELEDTNE ISOTOPES

ENVISED 09/25/92 RUN DATE 08/12/07

REPORT OF ANALYSIS

	WORK ORDER NUMBER	CUSTONER P.D. MINDER	DATE RECEIVED	DELIVERY DATE	PAGE 1	
MR CRAIG RIEMAN Shteldalloy Corp Po Box 768 Newfielo NJ	3-7853 08344		07/23/92	08/25/42		

MATER

TELEDYNE SAMPLE NUMBER	CUSTOMER'S STA IDENTIFICATION NUM	COLLECTION-DATE START STOP DATE TIME DATE TIM	E NUCLIDE	ACTI FCI/		NUCL-UNIT-% ♦ M\U	MID-COUNT TIME DATE TIME	VOLUME – UNITS Ash-Vght-7 ≠	L#8.
84107	GN-92001 S-115	07/15	GR-A	L.T.	3. E	00	08/05		3
84106	GW-92002 - 2002	a7/15	GR-A	L.T. 3	3. E	00	09/24		3
84107	64-92003	07/15	GR-A	L.T.	3. E	: 00	09/24		3
84108	6H-92004 (J., 2	07/15	GR-A	L.T. :	3. ε	00	09/24		3
84109	си-92005 SU 22	07/15	GR-A	Loto	3. E	e o1	08/05	•	3
84110	CN-92006	07/15	GR-A	L.T.	2. E	E 00	08/05		3
84111	GN-92007 A	07/15	CR-A	L.T.	3. 8	E 00	09/24		3

LAST PAGE OF REPORT

4 for 10/10/02 APPROVED BY J. GUENTHER

SEND I COPIES TO SHOOS NE CRAIG RIEMAN

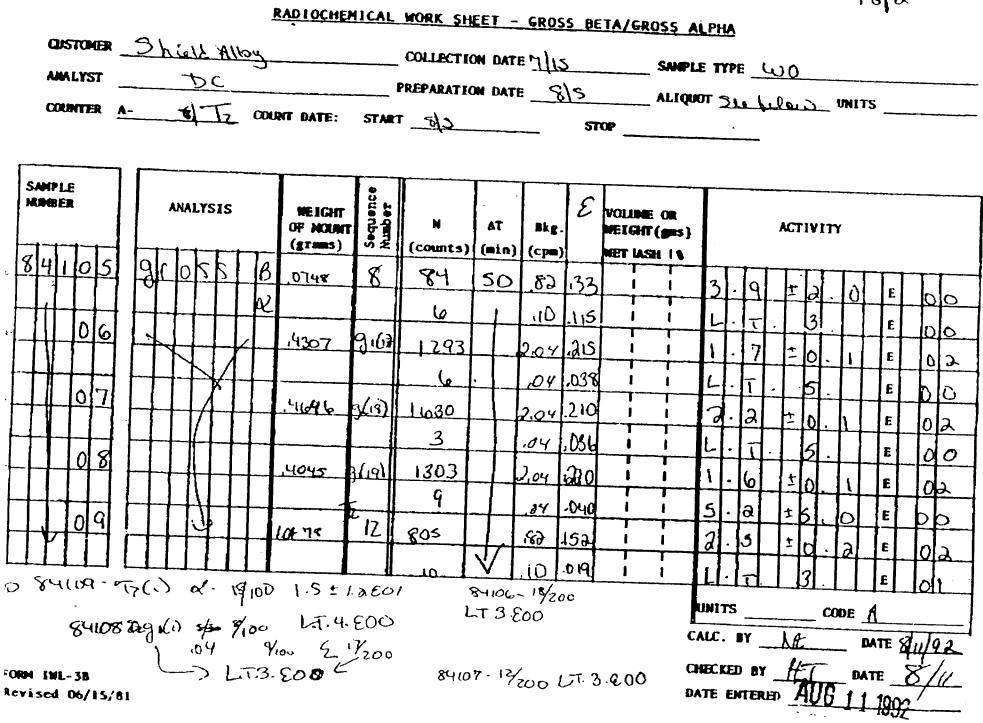
3 - RADID CHEMISTRY LAB.

2 - GAS LAB.

4 - GEILII SAMMA SPEC LAB.

AB. 5 - TRITIUM GAS/L.S. LAB.

AB. 6 - ALPHA SPEC LAP.


The Gr-A for TI\$ 84106, 84107, 84108 and 84111 have been revised, based on longer counting to improve the detection limit.

frontin 9-25-92

ENCLOSURE 4

ANALYSIS REQUEST AND CHAIN OF CUSTODY RECORD

SMC	P.O. 80	X 768, 12 V	Y META WEST BOUI 3344 (609)			RPORATION by Report to 1	5 Dev	merle	.n/	/ / ñ	AN	ALYS	ES	/	
moler: (Print	Name) $F \leq M$ Coll Date $\frac{2}{15}$	AIT7+ lection Time	TO NING (TRC) Preserv. NONE	n 3mn 1/4) Lab Sample Number		Purchase Order 70 Folion/ Chain of Custody Tap Sample Matrix (Liquid, Sludge, etc.) WATE 72	e No.	2011 A 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	C I C C X X X X X X X X X X X X X X X X	N N N N N N N N N N N N N N N N N N N	VI X		MITL 1 ALPHA MDL F TBETA MDL ISOTOF	Number of Containers/ REMARKS EN GROS E 3 pCin FOR GROS E 4 pCin FOR AC TOR AC TOR AC CRACE	1 55 2 2 2 2 2 2 2 3 5 5 5 5 5 5 5 5 5 5
linquished by	(Signatur A- J	re). iem				Date Time $\frac{1}{17}/17/92$ (602)	Redei	ved by	: (Sign	ature)			CESUL CARCO Date	TS OF S ALA Time 12 1200	tA.
MPLE COLU	BJIRET CTORM	ITNES'S	TELET) (Signaturé) Le ru	NE 150777	3		ANAL	osed of YTICA EDY M		OARAT	TORY	/			

												R	ADIOCHEN	ICAL	WORK SHE	ET		GROS	<u>S 8E</u>	TA/	GROS	<u>5 Al</u>	<u>.</u> PH	A									0
		LT	51]	<u>L</u>		U	0Y		COLLECT10 PREPARAT10 r8/5/9	n i N d	MTE NATE	= ={	15 5 9	2	S	MPLE L'IQUO	: ТҮ л _	PE 3	20) <i>Л</i>	sle	<u></u>	D TINI	гs _			
SAMPLE NUMBER						٨	NA1	LYS	rs			MEIGHT OF HOURT (grans)	Sequence Number	N (counts)	A (=		Bkg. (cpm)		MEI	LUME C IGHT (1 I IASH	pas)		n			CTI	VIT	 ſ					
8	4	1	1	0		ß	R	0	S	S		B	. 0422	13	115		0	63	.357	1	- 	T			3		\$	а.	Τ.	Π	E	-	<u> </u>
		\downarrow									-	Н	1		9		1		142	1	1	T			-			$\frac{2}{2}$		┢╌┦	E	Т	
	1		Ц	1						_	-	B	,3052	14	60			.62		1-	1	T	<u> </u>			•			+	┝╴┥	E		+
$ \downarrow $	¥	⊥									-	2	\checkmark		8	1	1	10	.05		T	1 I		-	1 1	·			╋	┢─┤	E		0
																				 	T I	1	5			÷		<u>6</u> .	╂╌┤	┝┤	-	╀	0
																					 1	J						╉╌			E	╉	╂──
															-						1	1		H				+	┠╌┥	╏┈┨	E	╋	
							Τ														1			-				+-	╂╼┥		E	╋	<u> </u>
					ſ							1				<u></u>								-		-	-+	+	┢╌┥	┝╍╋	E		<u> </u>
			ĺ	1	ſ					1															\rightarrow	-	-+	┼╾			E		
		<u>_</u>	2	-• 0	S.	4		┉┉╉╴			 7 (ייי ר	1.00	-	r. 3.20	•		[<u>.</u>				1			E		1
	•	6,		~	υ	·				-	ĸ	0	0 6:03		(. 3.20	0										4			ODE			Ŧ	
											v		- •										ALC					,			TE _	<u>el 1</u>	1
ORN cvi				15;	'81	l																	HEC ATE				4	T		DATI 1-	е 199	87 2-	<u>'//</u>

20/2

RADIOCHEMISTRY

BECKMAN - COUNTERS

TENNELEC - COUNTERS

BACKGROUNDS - CHECKSOURCES SEPTEMBER 1992

Checked 9/9, 9/23

• • •

÷.,

H. Seler

			3)	78-40	13	30	7-32			
			5 Chec	ck Sourc	C#-137	a Chec	k Source	Am-241		
Date	8 Blank	2 Blank	N	<u>Δ1</u>	CPM	N	Δt	CPM	Comm.]
1	84	.10	9761	34.99	390.59	7993	9,2.9	318-38	1	1
2	.84	.16	9811.	85.46	385.34	7225	23.45	1		1
3	,98	.05	97169	24.9	392.32		7.66	3225		1
4	102	10	9793	25.18	358.91	٦	Τ	1		1
5								1		1
6			·					1		1
7				:					1	1
8	1.02	,06	9790	24.8	394.75	7214	23.23	310.5+		1
9	98.	.14	9869	24.75	328.25			310.10		1/
10	.74	108	9805	25101	390,24	7190	22042	320/64	Oris inel	C
11	.94	.12	9815	24.82	3as.44	1	2a.uz	321.56		1
12	-88-	18	lans	21.10	399.39			311-18		1
13										
14	88	12	9825	241.4	399.39	7136	22.53	314.15		
15	.90	.02	9843	25.27	389:51		1	318.83		
18	.94	12	9811	24.7	397.20		22.5			
17	.96	. 22	9785		399.34	1257		372.96		
18	,98	10	9783	253	386.67		22.5	320.89		
19							- mains	ac 07		
20										
21	ଞଚ	14	6,783	25.05	390.53	3100	-7 0	8224		
22	98	,08	9809		386, 79			521.3		
23	.82	.04	1 7	24.98	3-12.11	7360		322.5		
24	108	.04	1 E		394.6	7192				
25	1.00	,O,	9822		390.07	1:49	22.3	314.6		
28					- ALAUT		413.0	320.0		
27										
28	90	€0.	9807	25.23	88.70	1081	22.90	800 21		
29					301.10		2.90	309.21		
30	.74	:06	4809	24.65	\$97.93	17720	01.0	2.20		
31					C.L.I.2	<u>22251</u>	22.7	317.9		
EY										

••

.

Τ2

KEY

.

Outside Control Limits Restart Change Gas

RS CG

SHIELDALLOY METALLURGICAL CORPORATION

Certified Mail: P 284 353 207 Return Receipt Requested

August 6, 1992

Ms. Donna L. Gaffigan State of New Jersey Department of Environmental Protection and Energy Bureau of Federal Case Management Division of Hazardous Waste Management 401 East State Street CN-028 Trenton, New Jersey 08625 WEST BOULEVARD P.O. BOX 768 NEWFIELD, NJ 08344

TELEPHONE (609) 692-4200 TWX (510) 687-8918 FAX (609) 692-4017

***ENVIRONMENTAL DEPARTMENT FAX (609) 697-9025

C E Z AUG 7 1992

RE: Second Quarter 1992 Radiochemical Ground Water Sampling Report

Dear Ms. Gaffigan:

In accordance with ¶20(g) of the Shieldalloy Metallurgical Corporation (SMC) 1988 Administrative Consent Order, please find results of the subject sampling event. Monitoring Wells A, W2, SC12S, and SC13S were sampled on April 14, 1992 while Well SC14S was . sampled on April 13, 1992. The locations of these monitoring wells are identified on Enclosure (1) Location of Monitoring Wells Sampled for Radiological Analysis. Well SC11S was unavailable for sampling due to damage from freezing weather. Well SC11S has since been repaired and will be available for sampling in the future.

The methodology for referenced sampling and analyses was consistent with previous subject sampling events. A one gallon sample was collected from each of the five wells while a duplicate one gallon sample was collected from Well SC13S and submitted for analysis as a quality control measure. After collection the samples were taken to the SMC laboratory to determine the Total Dissolved Solids (TDS) level for each sample. The TDS results are presented in Enclosure (2). The samples were then submitted to Teledyne Isotopes (TI) of Westwood, New Jersey for gross alpha analysis.

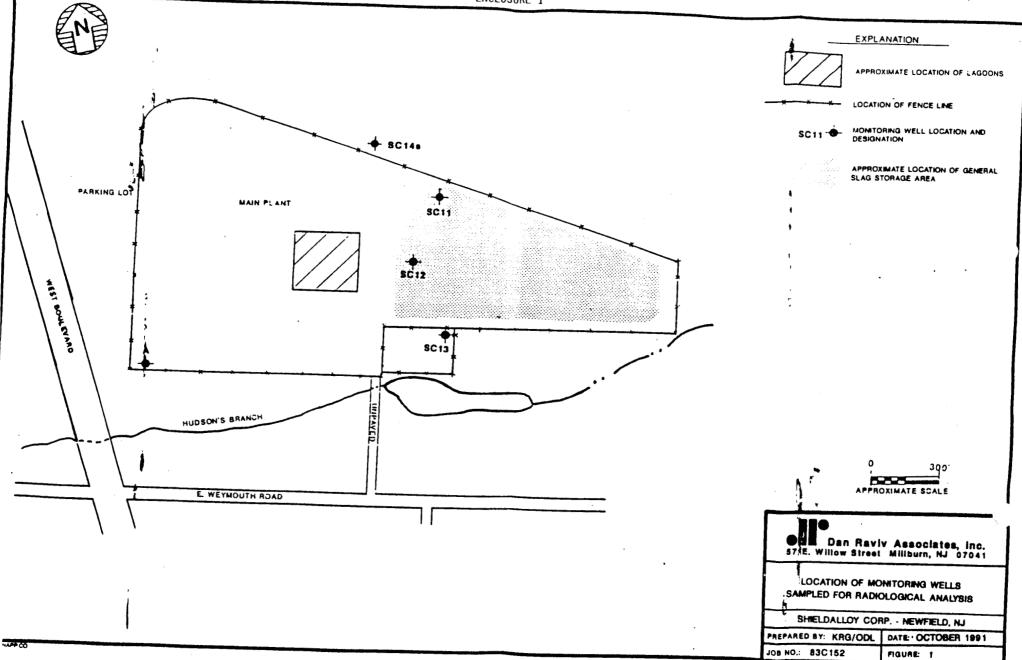
Results of the gross alpha activity of the subject samples were all less than the minimum detection limit (MDL) for the analysis (see Enclosure 3). However, four sample results (Wells A, SC12S, SC13S, and SC13S1) reported MDLs greater than the target of 5 pCi/ ℓ . Therefore, these four samples were resubmitted for isotopic analysis. The results of the isotopic analysis can be found in Enclosure 4. Gross alpha and isotopic analyses for this sampling event indicate radiological levels comparable to background Well SC14S. This is consistent with past sampling events. The chain of custody, request for analysis and all available TI quality assurance, laboratory data sheets are found in Enclosure 5.

Ms. Donna L. Gaffigan NJDEPE-BFCM-DHWM August 6, 1992 Page 2

SMC has conducted the subject monitoring program, as requested by the NJDEPE and agreed to in the 1988 ACO, since December 1988 in an effort to determine if the storage of radioactive material at the SMC facility had any influence on the groundwater. Much data has been collected during this program which has shown consistently, to be comparable to background radiochemical levels for this area. Although the gross alpha results have not been elevated if compared to the Safe Drinking Water Act (SDWA) standards, SMC's contract laboratory has been unable to reach lower detection limits required per the ACO and subsequent related correspondence from the Department. Dissolved solids in the groundwater have caused analytical interference when TI attempts to reach lower detection limits. This analytical interference problem may prevent SMC from consistently obtaining gross alpha results with detection limits below 5 pCi/ ℓ , required by the ACO before petitioning the Department for relief of the subject monitoring. SMC asserts that the requirements established under the ACO are arbitrary and more restrictive than the SWDA standards. Since the data collected to date have consistently shown compliance with the SDWA, SMC is hereby petitioning the Department for the discontinuation of the subject sampling program under the ACO.

SMC feels strongly that the request to discontinue this programs is appropriate. We are agreeable to meeting with the Department to discuss results of the monitoring program to date and discuss other information concerning the management of the NRC-licensed material.

If you have any questions, please do not hesitate to contact me at 609-692-4200.


Sincerely.

Cing R Riem

Craig R. Rieman Radiological Safety Manager

CRR:lms Enclosure

CC: Richard D. Way David R. Smith James P. Valenti Charles L. Harp, Jr., Esq. Jay E. Silberg, Esq. Carol D. Berger

SHIELDALLOY METALLURGICAL CORPORATION

TDS Results

Date 02/06/92

SAMPLE WELL	TEST DESCRIPTION	RESULT		UNITS	DATE ANALYZED	BY
SC12S	TDS by Gravimetric	1750	0.01	ppm	05/12/92	GJ/of SMC
SC13S	TDS by Gravimetric	4200	0.01	ppm	05/12/92	GJ/of SMC
SC14S	TDS by Gravimetric	58	0.01	ppm	04/13/92	GJ/of SMC
Α	TDS by Gravimetric	1025	0.01	ppm	05/12/92	GJ/of SMC
W-2	TDS by Gravimetric	225	0.01	ppm	05/12/92	GJ/of SMC

Enclosure 2

Ċ

TELEDYNE ISOTOPES

REPORT OF ANALYSIS

RUN DATE 05/21/92

		WORK ORDER NUMBER	CUSTOMER	P+O+ NUMBER	DATE RECEIVE	D DELIVERY DATE	PAGE 1
HR CRAIG Shteldal Po box 1 Newfield	LLOY CORP 168	3-1352			04/27/92	05/30/92	
		WATER	- GROUND				
TELEDTHE SAMPLE NUMBER	E CUSTOMER'S STA IDENTIFICATION NUM		NUCLIDE	ACTIVITY (PCI/LITER)	NUCL-UNIT-% U/M \$	NID-COUNT) TIME VOLUME - UNITS DATE TIME ASH-WGHT-% *	LAB
† Å251	A	04/14 1215 6	R-A	L.T. 9. E	00	05/15	3
74252	W2	04/14 0838 G	R-A	Liti 4. E	00	03/15	3
74253	SC125	04/14 0925 G	R-A	LITI I. E	01	05/15	3
74254	SC135	04/14 1015 5	R-A	Liti Åi e	01	05/15	3
74255	SC11351	04/14 1015 G	R-A	L.T. 6. E	01	05/15	3
74256	SC145	04/13 1025 G	R-A	L.T. 2. E	00	05/15	3
		LAST PAG	E OF REPORT		APPROVED	By le guenther 05/21/92	

SEND 1 COPIES TO SHOOS MR CRAIG RIEMAN

2 - GAS LAB. 3 - RADIO CHEMISTRY LAB.

4 - GEILIJ GAMMA SPEC LAB.

.

PROVED BY U. WUENTNER USIZIN

ŧ

5

5 - TRITIUM GAS/L.S. LAB.

. .

.

6 - ALPHA SPEC LAB.

ENCLOSURE 3

TELEDYNE ISOTOPES

REPORT OF ANALYSIS

- - •

. .

1

RUN DATE 06/11/92

		WORK ORDER NUMBER	CUSTOME	R P.O. NUMBER	DATE RECEIVE	D DELIVERY DATE	PAGE
MR CRAIG R Shieldallo Po box 768	Y CORP	3-1627			05/19/92	06/21/92	
NEWFIELD N.	J 083	44					
			WATER - GROUND				
TELEDYNE Sample Number	CUSTOMER'S IDENTIFICATION	COLLECTION-DAT STA START ST NUM DATE TIME DATE	OP	ACTIVITY (PCI/LITER)	NUCL-UNIT-% U/M *	MID-COUNT TIRE VOLUME - UNITS DATE TIME ASH-WGHT-% *	LAB.
74251 A		04/14 1215	RA-226	L.T. 1. E 0	0	06/09	2
74252 W2		04/14 0838	RA-226	L.T. 1. E 0	0	06/09	2
74253 SC	1 2 5	04/14 0925	RA-226	L.T. 2. E 0	0	06/09	2
74254 SCI	135	04/14 1015	RA-226	L.T. 1. E 0	0	06/09	2
74255 SCI	1 1 3 5 1	04/14 1015	RA-226	1.T. 2. E 0	0	06/10	2
74256 501	145	04/13 1025	RA-226	L.T. 2. E 0	0	06/10	2
		⁶ LA	ST PAGE OF REPORT	r		Whantin	
SEND 1	COPIES TO SH300S	MR CRAIG RIEMAN			APPROVED	BY'J. GUENTHER 06/11/92	
2 - GAS LA	AB• 3 - RADIO	CHEMISTRY LAB. 4	- GE(LI) GAMMA SP	EC LAB. 5	- TRITIUM GAS/	L•S• LAB• _ 6 - ALPHA SPE	C LAB.

.

i

ENCLOSURE 4

6

ľ

ACC 115 (40) •

REPORT OF ANALYSIS

WORK ORDER HUHBER CUSTONER P.G. NUMBER DATE RECEIVED DELIVERY DATE PAGE 1 HP CRAIG RIEMAN 3-2380 06/30/92 08/02/92 SHIFLDALLOT CORP PO BOX 768 NEWFIELD NJ 08344 4 WATER - CROUND TELEDYNE NID-COUNT COLLECTION-DATE SAMPLE CUSTORER#5 STA START STOP ACTIVITY NUCL-UNIT-# TIME VOLUME - UNITS NUMBER **IDENTIFICATION** NUM DATE TIME DATE TIME MUCLIDE I PCT/LITER) U/n + DATE TIME ASH-WGHT-7 = LAB. 1 74251 4 04/14 1215 1-234 3.0 +-1.0 E-01 07/22 6 TH-230 L.T. 4. E-01 07/23 6 U-235 L.T. 1. E-01 07/22 U-238 3.0 +-1.8 E-01 07/22 TH-232 L.7. 2. E-01 07/23 TH-228 L.T. 8. E-01 07/23 74253 SC125 L.T. 5. E-01 04/14 0975 U-234 07/22 TH-230 L.T. J. E-01 07/23 L.T. 5. E-01 U-235 07/22 L.T. 7. E-01 U-238 07/22 TH-232 L.T. 2. E-01 07/23 TH-228 1.T. 9. E-01 07/23 74254 SC135 5.0 +-1.5 E 00 07/25 04/14 1015 U-234 TH-230 L.T. 3. E-01 07/24 L.T. 5. E-01 07/25 U-235 U-238 3.7 +-1.5 E 00 07/25 L.T. 1. E-01 07/24 TH-232 TH-228 L.T. 1. E 00 07/24 ٨ U-234 6.2 +-2.4 E QQ 07/25 74255 SC11351 04/14 1015 L.T. 1. E 00 07/24 TH-230 L.T. 9. E-01 07/25 U-235 7.3 +-2.5 E 00 07/25 U-238

LAST PAGE OF REPORT

TH-232

TH-228

APPROVED BY \$. GUENTHER 08/05/92

SEND 1 COPIES TO SHOOS ME CRAIG RIFMAN

Z ~ GAS LAB.

3 - RADIO CHEMISTRY LAB.

4 - GELLII GAMMA SPEC LAB.

L.T. 4. E-01

L.T. 2. E 00

5 - TRITIUM GAS/L.S. LAD. 6 - ALPHA SPEC LAR.

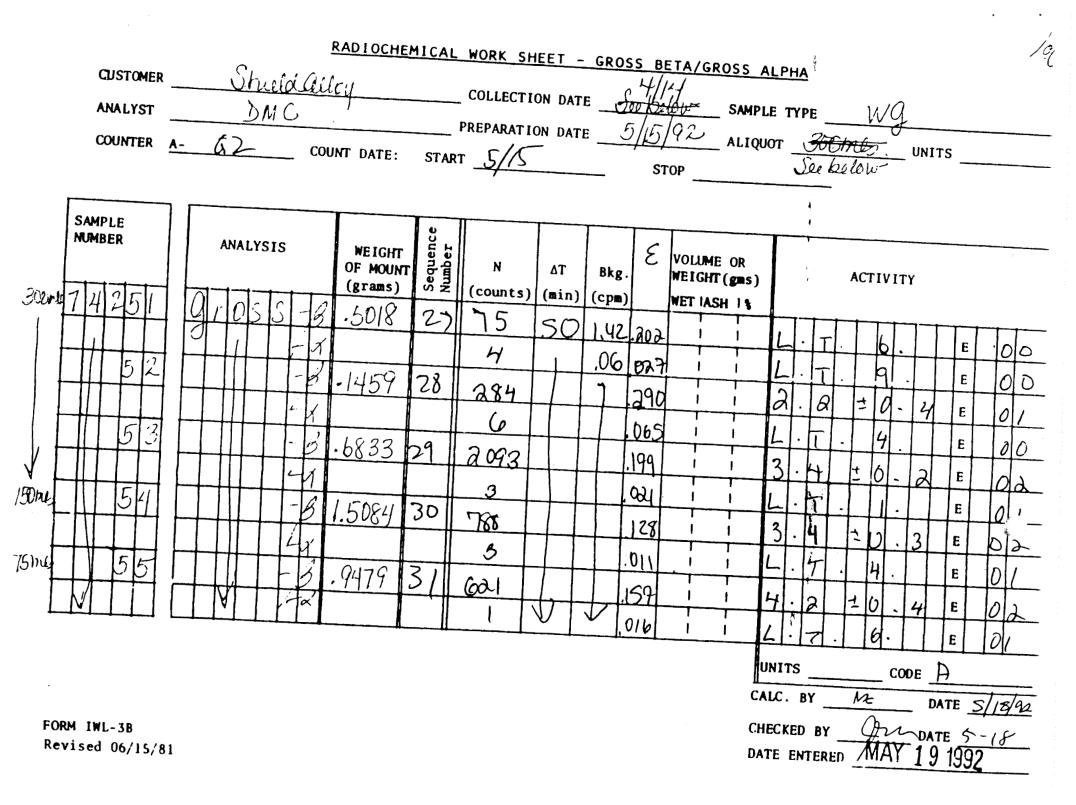
07/24

07/24

.

PUN DATE 08/05/97

439-461 162-177


				57-70		102				
	<u> </u>	r	B Chec	k Source	C8-137	<u>ə Checi</u>	C Source	Am-241		1
Date	B Blank	9 Blank	N	Δt	CPM	N	Δt	CPM	Comm.	
1	1.12	.04	10001	23.D	494.25	8031	SD	Ger Dal	165.52 KS]
2]
3						1				1
4	1.84	-94	HOOD I.	21.9	459.76	5219	30	164.38		1
5	1.66	.02	10001	29.1	453.22	8191	SO	163.82]
6	1.08	,02	10001		456.67	7993			163.12 ^{RS}]
7	1.04	.08	10001	22.4	446.14		50	161.36	164.32 BS]
8	1.44	,0 J	10001	22.2	450.50		50	162.94].
9	1,56	06	[000]	22,4	446.81	8251	50.	165.02		1
10										1
_11										1
12										1
13										
14	1,24	.02	10001	22,40	447.14	8114	50	162.78		
15	1.42	-02	10001	22.0	454.25	8023	SO	160.46		RS
16									<u></u>	
17										1
18	1,64	, 08	10001	22.3	<u> </u>	8179	50	163.58		
19										proxins with machine
20										Jann,
21	1,94	.02	10001	22.10	453.22	8303	50	166.06		
22	1.88	.02			449.82			165.70		
23				110-1-				- <u></u>		
24		•								1
25							↓			1
26	2.10	,06	10001	21,8	458,76	8231	50	164.62	B.2.06	
27				21.8	459 46	7501		150.02		Not : 1450
28	1.18	,16	10001	22.6	443,50		50	135.40		Changed bister with
29								∿،در		Dister W, 4(
30										1
31										
			L	l					L	1

KEY

Outside Control Limits Restart Change Gas

RS -

œ -

	<u>R</u>	ADIOCHEMICAL	WORK SHE	<u> ET -</u>	GROS	<u>s be</u>	TA/GROSS	AL	РНА		. +at							E z
CUSTOMER	Thield Alloy DMC G2 cour		COLLECTIC	N DATE	_4	13	SAM 9.2	PLE	TY	PE.			Né	Ĵ				
COUNTER A-	G2 cour	NT DATE: STAR	r <u>5/1</u> 5	-		<u></u> ST	ALI OP	QUOT	د_ ` 	10	<u>~)/></u>	<u>kr.</u>		UNIT	s	-		
SAMPLE NUMBER	ANALYSIS	WEIGHT OF MOUNT (grams)	N (counts)	∆T (min)	Bkg. (cpm)		VOLUME OR WEIGHT (gm WET IASH 1				•	ACT	IVIT	Y				
14256	97055-3	.055/32	191		(.42		•		1		1	1	0.	3	E		01	
┝╋╋			И	50	.06	.103			L	. -	1.	1			E	 		
$\left - \right - \left - \left$															E			-
┟╼╄╾╂╶╂╾╉╼┫	┝╌┼╌┼╌┼╶┼														E		-	
┠╼╉╾╋╌╄╌╄╼┫╷												ļ			E			
															E		T	-
┕╍┝╍╂╌╂╌╂╺┨	╶┼┼┼┼┼╏						· · · ·		<u> </u>						E			
	╶┼┼┼┼┼╂						<u> </u>		<u></u>		l				E			
	╶┼┽┼┼┼╂						<u> </u>		ŀ	+;	-				E	\rightarrow	\bot	
								-							E			
								Ш СА	NIT	BY		M			DATE	<u></u>	<u>8</u> [4]	_ <u>></u>
FORM IWL-3B Revised 06/15/81	L								ecki Fe e		-	<u>,</u> <u>/</u>	2 MA'	<u> </u>	те 9 <u>19</u>		8	-

.

CALCULATION SHEET - Ra²²⁶ GAS COUNTING

CUSTOMER NAME	S- Alloy	T.L. NO.	7425	-/
LAB CODE NO.	022	FLASK NO.	/3	
DETECTOR NO.	<u>7-3</u>	SCAVENGE DATE	6-3	@ 1530
DETECTOR EFF.	203	FILL DATE	6-9	Q , C 39
DETECTOR BEGD.	2.27 ±	SAMPLE SIZE	2.50 ml.	
ELECTRONICS NO.	3	MEASURED BY	A7.	
BACKGROUND COUR	TS	BACKGROUND COUNT 1	TIME (MIN)	

COUNTING DATA

Initial	Start Time	Δt	Alpha Channel	α cpm	
L	1050	60	102		7
	1327		120		228Ra ACTIVITY =
	1.130		118		7
					(cpm-bkgd) ($e^{+\lambda T_2}$) (0.45)
					(Eff) $(1-e^{-\lambda T})$ (Sample Size)
					1.
					-
					4

CALCULATION DATA

Rn ²²² Ingrowth		$(1-e^{-\lambda T_{1}})$
Rn ²²² Decay	1.03	(e ^{+ λT} 2)
Ra ²²⁶ Activity	L.T. I Rill	±
Secondary Result	-3,617.5E-1	ful
Mid Count Time	6-9-92	
Calculated by Approved by	J.J.	Date $6 - 9 - 92$ Date $6 - 11$

CALCULATION SHEET - Ra226 GAS COUNTING

CUSTOMER NAME	S-Alloy	T.I. NO.	7425	-2
LAB CODE NO.	022	FLASK NO.	H1	
DETECTOR NO.	R-4A	SCAVENGE DATE	6-3	0 1530
DETECTOR EFF.	144	FILL DATE	6-9	a 10.41
DETECTOR BKGD.	<u></u>	SAMPLE SIZE	250 -	
ELECTRONICS NO.	44	MEASURED BY	2-1.	
BACKGROUND COUR	NTS	BACKGROUND COUNT	TIME (MIN)	

COUNTING DATA

α срт	Alpha Channel	Δt	Start Time	Initial
	49	60	1050	
	49		1327	
	54	11	, , ,	
		5Y 	V 5Y	

CALCULATION D	ATA	
Rn ²²² Ingrowth	.65	(1-e ^{- λT_1})
Rn ²²² Decay	1.03	(e ^{+ λT} 2)
Ra ²²⁶ Activity	_ h.T. / pull	±
Secondary Result	04t.69 min	±
Mid Count Time	6-9-92	
Calculated by	1-2:	Date 6.9.92
Approved by	0 pm	Date <u>1-11</u>

.45) ZE)

CALCULATION SHEET - Ra226 GAS COUNTING

CUSTOMER NAME	S-Alloy	T.L. NO	74253
LAB CODE NO.	022	FLASK NO.	1920
DETECTOR NO.	R-5	SCAVENGE DATE	6-3 01530
DETECTOR EFF	159	FILL DATE	6-9 01043
DETECTOR BKGD.	5.82	SAMPLE SIZE	tone.
ELECTRONICS NO.	5	MEASURED BY	11.
BACKGROUND COUNT	9	BACKGROUND COUNT 1	TAGE (MOIN)

COUNTING DATA

Initial	Start Time	Δt	Alpha Channel	acpm	
	070	60	313		
	1327		353		226Ra ACTIVITY =
	1430	W	342	-	
		V			(cpm-bkgd) ($e^{+\lambda T_{2}}$) (0.45)
					(Eff) (1-e ^{-λT} l) (Sample Size)

CALCULATION DA	TA		
Rn ²²² Ingrowth	,65	$(1-e^{-\lambda T_1})$	
Rn ²²² Decay	1.03	$(e^{+\lambda T}2)$	
Ra ²²⁶ Activity	LiT. 3 pull	$\frac{1}{2} = \frac{1}{12} =$	com bin ing]
Secondary Result	-, 22± 1.58 pi	l±	3 counts Jam
Mid Count Time	6.9.92		<i>v</i>
Calculated by	fr fr	Date $\frac{6-9-92}{6-11}$ Date $\frac{6-11}{6}$	

CALCULATION SHEET - Ra²²⁸ GAS COUNTING

CUSTOMER NAME	S-Alloy		T.L. NO.	7425	۶
LAB CODE NO.	022		FLASE NO.	910	
DETECTOR NO.	<u>R-6</u>		SCAVENGE DATE	_6-3_	<u>• 1530</u>
DETECTOR EFF.	195		FILL DATE	6-9	
DETECTOR BKGD.	<u>232</u> ±		SAMPLE SIZE	-2-50	
ELECTRONICS NO.	6	•	MEASURED BY	J.7.	
BACKGROUND COUN	rts	BAC	KGROUND COUNT T		

COUNTING DATA

Initial	Start Time	Δt	Alpha Channel	α срт
	1050	60	139	
	1327	1	151	
	1.130		165	
		IV		

226Ra ACTIVITY =

(cpm-bkgd) (e^{+ λ T₂) (0.45) (Eff) (1-e^{- λ T₁) (Sample Size)}}

CALCULATION D	ATA	
Rn ²²² Ingrowth	,65	$(1-e^{-\lambda T})$
Rn ²²² Decay	1.03	(e ^{+ λ} Τ2)
Ra ²²⁶ Activity	L.T. I puik	±
Secondary Result	-63±,85 pm/f	*
Mid Count Time	6-9.92	
Calculated by	1.7.	Date Contract
Approved by	Em	Date _6-11

CALCULATION SHEET - Ra226 GAS COUNTING

CUSTOMER NAME	S-Alloy	T.I. NO.	74255	
LAB CODE NO.	022	FLASE NO.	924	
DETECTOR NO.	<u></u>	SCAVENGE DATE	6-3	@ 1530
DETECTOR EFF.	236	FILL DATE	6-10	@ 13''
DETECTOR BKGD.	<u>5.36</u> ±	SAMPLE SIZE	250 m	0.
ELECTRONICS NO.		MEASURED BY	d.7.	
BACKGROUND COUN	rts	BACKGROUND COUNT 1	TIMOE (MIIN)	

COUNTING DATA

Initial	Start Time	Δt	Alpha Channel	a cpm
	1325	60	244	
	1515		244 266	
	1620		232	
		TV		
		1		
	<u> </u>	<u>† – – – – – – – – – – – – – – – – – – –</u>		

226 Ra ACTIVITY =

(cpm-bkgd) ($e^+ \lambda T_2$) (0.45) (Eff) (1- $e^- \lambda T_1$) (Sample Size)

CALCULATION DATA

Rn ²²² Ingrowth	7/	$(1-e^{-\lambda T_1})$
Rn ²²² Decay	1.03	(e ^{+ λ} Τ2)
Ra ²²⁶ Activity	L.T. 2 puff	±
Secondary Result	-1.7t.9 pull	±
Mid Count Time	6-10-92	
Calculated by .	J7. fm	Date $\frac{-11-52}{6-11}$

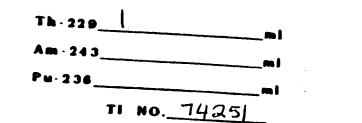
CALCULATION SHEET - Ra226 GAS COUNTING

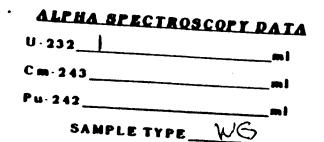
CUSTOMER NAME	S- Alloy	T.L. NO	74256	
LAB CODE NO.	022	FLASK NO.	07	
DETECTOR NO.	R-2	SCAVENGE DATE	6-3	1530
DETECTOR EFF.	137	FILL DATE	6-10	0 / 3/3
DETECTOR BEGD.	2.97 ±	SAMPLE SIZE	25000.	
ELECTRONICS NO.	2	MEASURED BY	d.7.	
BACKGROUND COUN	rts	BACKGROUND COUNT T	IMIE (MIN)	

COUNTING DATA

	a cpm	Alpha Channel	Δt	Start Time	Initial
1		132	60	1325	
2		131	/	1500 1670	
1		149	1/	1620	
(cpm-b			0		
(Ef	<u> </u>				

226Ra ACTIVITY =


(cpm-bkgd) ($e^+ \lambda T_2$) (0.45) (Eff) (1- $e^- \lambda T_1$) (Sample Size)


CALCULATION DATA

Rn ²²² Ingrowth	.71	$(1-e^{-\lambda T_{1}})$
Rn ²²² Decay	1.03	(e ^{+ λT} 2)
Ra ²²⁶ Activity	L.T. 2 puil	±
Secondary Result	92 £ 1.14 puil	±
Mid Count Time	6-10-52	
Calculated by	2-7. Jon	Date $6 - 11 - 92$

TELEDYNE	ISOTOPES
----------	----------

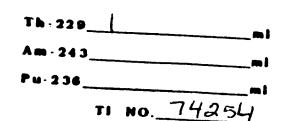
Г

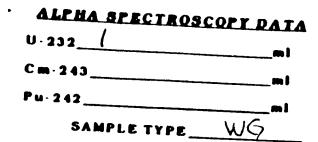
CUSTOMER Shield Alloy
ANALYST D.S.
PREP DATE 7/14/92
ALIQUOT 150 ml

÷

		Mid Count					ALIQUOT 150 m/			
Det.	Nuclide	MM/DD/HHMM	Counts	M, scc	Spike Counts	Spike Activity	Bkg Counts	Bkg #1. scc		
	Pn:242_			· · · · · · · · · · · · · · · · · · ·		Pc1			Results	
	Pu-230_			1		+	 			
	Pu: 239		1	1			ļ			
				h		++				
	<u>U-230</u>	7/22 2349	13	60 0 0 0	1041					
18	U-235		2	1	1041	3.87	<u>/</u>	80000	3.0 ± 1.8 E-01	
	U-234		13				1		L.T. 1. E-01	
	<u>U-236</u>	1		·····		┟┻───┤	/	¥	3.0 ± 1.8 E-01	
	Am-243	•			T	┝━━━━╋				
	<u>Cm-246</u>									
	Am-241				1					
	CN-244									
	<u>Cn::/42</u>				<u>├</u>			<u> </u>		
		1/23 2050	5	80 000	1111	3.91	2			
7	Th-230		29					80000	1.7. 2. 8-01	
	Th-229		Seike		, ,	·			L.T. 4, E-01	
	Th 220		5-6			•	57		-	
c a u l (Unita	PC1/L	Ash_					dire -	L.T. 8. E-01	
ode_		A	Fraci	lon	-	Calc. by		×	Date 3/30	
/144	Revised 5/7/	91			С	hecked b	y{	m	Date 7-30	
							У-			

7	TELEDY	NE ISOTOPES							
Th	- 229	-	•	ALPHA SPE U-232	<u>Ctrosc</u>	OPY DAT		2 6 1	
Am	- 24 3			Cm. 242		ml	•	CUSTOMER	Shield Alloy
Pu-	236	mi		Cm-243		mi		ANALYST	D.S.
	TI N	10. <u>74253</u>		Pu-242					7/14/92
				SAMPLE	TYPE	NG	-		JOT_150m/
Del.	Nuclide	Mid Count MM/DD/HHMM	Counts		Spike Counts	Spike Activity	Bkg Counts	Bkg #1. sec	/
	En.242_				-	Pci		1. SCC	Results
	En-230_		-				ļ		
	PH:230		1						
	· · · · · · · · · · · · · · · · · · ·								
	<u>U-238</u>	7/22 2349	2	60 000					-
19	U-235_		1		211	3.87	2	80 000	L.T. D. E-01
• •	U-224		3		<u> </u>			· · ·	L.T. J. E-01
	U-230				<u>↓</u>		1	V	L.T. J. E-01
									
	Am-243	·							
	<u>Cm·246</u> _								
	Am-241_								
	Cm-244_								
	<u>Cîn-242</u>								
	Th-232	1/23 2050	2	80 000	1050	3.51	2 1		
28	Th-239		16			1			L.T. 2. E-01
	Th-229		Selke				- <u>_</u>	<u>-</u>	1.T. 1. E-01
	_Th:220		38				5-1	<u>+</u>	
Resul	II Unita	DCI/L	Ash						. <u>T. 9. E-01</u>
Code.		A		ction			0		Date 7/30
WL-44	Revised 5/7	/91			C	hecked b	y	\sim	Date 7-30

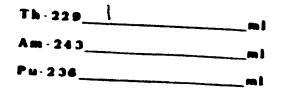

۲


•

.

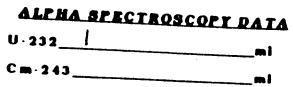
•

.•



CUSTOMER	Shield Sllow
ANALYST).5.
PREP DATE	7/14/92
, ALIQUO	150m/

è


		Mid Count					-	, ALIQ	UOT_ISOM/
×a.	Nuclide	MM/DD/HHMM	Counts	M. acc	Spike Counts	Spike Activity	Bkg Counts	Bkg III. sec	Results
	Pu: 242_			1		Pcl			INCSURS
	Ru-239_	A					 	1	
_	Pu:230	I				<u> </u>			
		,							
	<u>U-230</u>	7/25 1946	47	77306	258	2.02			
·	U-235		3		1200	3.87	10	80000	3.7 ± 1.5 E.
	U-224		54	1			4		L.T. S. E-
	U-236					├ ▲	./		5.0±1.5 E
-									
	Am-213							A	
	<u>Cm:246</u>								
	Am-211_								
	Cm-244								
	Cm-242					÷ -		k	
Т		2/						k	
		24 2217		60 000	834	3.91	/	80 000	Τ
	IA-230			A		1	5		L.T. 1. E-0
	Th-229		_Selks					<u>-</u>	L.T. 3. E-0.
	Th.220		41	I		1	5-9		
ult	Unite	pCi/L	Ash_						<u>L.T. 1. 200</u>
e	······································	· A	Frac	1108	-	Calc. by	<u> </u>		Date 2/30
44	Revised 5/7/	/91			C	hecked b	y	m	1)ale 7-30

TELEDYNE	ISOTOPES
----------	----------

r-

TI NO. 74255

•

Pu-242_____ml

SAMPLE TYPE WG

CUSTOMER_Shield Alloy
ANALYST DS
PREP DATE 7/14 192
ALIQUOT_ISOM/

		Mid Count							
Del.	Nuclide	MM/DD/HHMM	Counts	M. scc	Spike Counts	Spike Activity Pci	Bkg Counts	Bkg #1, sec	Results
	Pn-242_								
	En-230		1	1			<u> </u>		
	Pu:238	1	1		╺╌┠────┻───	┦┛───			
						1			
	U-230	7/25 1950	41	22006					•
	<u>U 235</u>			>>306	134	3.87	3	80 000	7.3 + 2.5 800
/0	U 224	· · · · · · · · · · · · · · · · · · ·	2	k			1'		L.T. 9. E-01
			35	A			3	+	6.2 ± 2.4 Eou
	U 236			l				[G.Z 22.7 280
T	4		<u> </u>					-	
	Am-243_		╂─────┨					A	
	<u>Cm:246</u> _							1	1
	Am-241								3
	Cm:244_								
	Cm-142			· · · · · · · · · · · · · · · · · · ·				ł	
	Th:232_	2/24 2217	1	60000	35-8	3.51	2		
	Th-230	A	6	1		3.77		80000	L.T. 4. E-01
27	Th-229		Spike		╏───╄──┤	- <u>+</u>	11		L.T. 1. 200
	Th 228	1	38		┟──┺──╁	- I		k	
	I Unite	C II				<u> </u>	57	-	L.T. 2. 200
		prince-	Ash_ Frac			Calc. by		2	Date 2/30
Code_		<u>IT</u>	••••		C	Checked b	<u>n</u>	22	
WI, 44	Revised 5/7	/91					· · · · /		Date 7-30

THORIUM and URANIUM 1992

07/29/92

	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June
Th kg Received by NIOBEC ORE x Th by weight	226,200 0.005 1,131	226,200 0.005 1,131	245,050 0.007 1,715	188,500 0.007 1,320	150,800 0.007 1,056	207,350 0.007 1,451	150,800 0.007 1,056	207,350 0.007 1,451
Th kg Received by LUESHE ORE x Th by weight	.,		18,084 0.0002 3.62	.,020	1,000	18,190 5 0.0002 4	1,000	1,401
Previous Inventory + Addt'l Received TOTAL Th INVENTORY	235,000 <u>1,131</u> 236,131	236,131 1,131 237,262	237,262 1,719 238,981	238,981 1,320 240,300	240,300 1,056 241,356	241,356 1,455 242,811	242,811 	243,867
U kg Received by NIOBEC ORE x U by weight	226,200 0.0004 90	226,200 0.0004 90	245,050 0.0007 172	188,500 0.0007 132	150,800 0.0007 106	207,350 0.0007 145	150,800 0.0007 106	207,350 0.0007 145
U kg Received by LUESHE ORE x U by weight			18,084 0.0011 20			18,190 0.0011 20	1	
Previous Inventory + Addt'l Received TOTAL U INVENTORY	29,400 90 29,490	29,490 90 29,581	29,581 191 29,772	29,772 132 29,904	29,904 106 30,010	30,010 t <u>165</u> <u>30,175</u>	30,175 <u>106</u> 30,281	30,281

	APRIL	MAY	JUNE
The KG RECEIVED			·
NIOBEC ONE (Kg)	207,350	150,800	207,350
x Th by WEIGHT	·····		
•		the second se	
· · · · · · · · · · · · · · · · · · ·			K.»
LUESHE ORE (45)	18,190	-0-	- 0 0
x Th 232 By WETEHT			
· · · · · · · · · · · · · · · · · · ·			
· · · · · · · · · · · · · · · · · · ·			
PREVIOUS INVENTORY	24,389	· · ·	
+ ADDITTONAL		· · · · ·	
TOTAL TH 232 INV.			
· · · · · · · · · · · · · · · · · · ·			
V-238 KG RELEIVED	207,350	150,800	207,350
V-238 Ky RELEIVED NIOBEC PRE (Kg)	···		
X U-238 BY WEIGHT			
	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
		······································	
LUESHE ORE	18,190	-0 -	-0-
X U-238 BY WEIGHT			······
· ·			
PREVIOUS INVENTORY	30,009		<u></u>
+ ADDITIONAL			
TOTAL U-238 NYENTORY		<u> </u>	
	<u></u>		
· · · · · · · · · · · · · · · · · · ·			
		· · · · · · · · · · · · · · · · · · ·	
		<u>, ,,, ,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	
900 Pro-			

1992 NON FEB JAN MARCH DEC The Ky RECEIVED NIOBEC ORE(K 226,200 226,200 245,050 150,800 188,500 0.005 TH BY WEIGHT 0.005 0.007 0.007 0.007 1715K. 1,131Kg 1,131Kg 1,320K 1056 LVESHE (Kg) 18,084 Th BY WEIGHT 0002 36 Kg PILEVIUUS INVENTORY 237,262 239,013 236,131 240,333 235,000 1,131 1,751 1.131 1.320 ADDITIONAL 1056 237,262 236,131 239,013 240,333 241,389 TG INV. TOTAL Kg RECEIVED NIOBEL ORE(45)226,200 245,050 226,200 188,500 150,800 .0004 0007 0007 .0004 0007 X U BY WEIGHT 172 10 90 132 100 LUESHE ORE (45) 18,084 U BY WERDAY . 0011 20 29,903 PREVIOUS ENVENTORY 29,400 29,580 29,490 29,771 + ADDITIONAL 90 90 106 132 191 TOTAL U INV 29,771 30,009 29,490 29.580 29,903 OPS FORM 7523 en nur s

SHIELDALLOY METALLURGICAL CORPORATION

WEST BOULEVARD P.O. BOX 768 NEWFIELD, NJ 08344

TELEPHONE (609) 692-4200 TWX (510) 687-8918 FAX (609) 692-4017 ENVIRONMENTAL DEPARTMENT FAX (609) 697-9025

Certified Mail: P 284 354 431 Return Receipt Requested

April 16, 1992

Ms. Donna L. Gaffigan State of New Jersey Department of Environmental Protection and Energy Bureau of Federal Case Management Department of Hazardous Waste Management 401 East State Street CN-028 Trenton, New Jersey 08625

RE: First Quarter 1992 Radiochemical Ground Water Sampling Report

Dear Ms. Gaffigan:

In accordance with paragraph 20(g) of Shieldalloy Metallurgical Corporation (SMC) 1988 Administrative Consent Order (ACO), please find enclosed results of the subject sampling event. Monitoring Wells A, SC12S, SC13S, SC14S, and W2 were sampled on January 16th. The locations of these monitoring wells are identified on Enclosure (1), Location of Monitoring Wells Sampled for Radiological Analysis. Well SC11S was damaged due to freezing weather during the sampling event and prevented SMC from sampling it. The repair or replacement of Well SC11S is anticipated shortly allowing for sampling to continue beginning in the third quarter 1992.

The methodology for referenced sampling and analyses was consistent with the previous subject sampling events. A one gallon sample was collected from each of the five wells while a duplicate one gallon sample was collected from Well SC14S and submitted for analysis as a quality control measure. After collection the samples were taken to the SMC laboratory to determine the total dissolved solids (TDS) level for each sample. The TDS results are presented in Enclosure (2). The samples were then submitted to Teledyne Isoptopes (TI) of Westwood, New Jersey for gross alpha analysis.

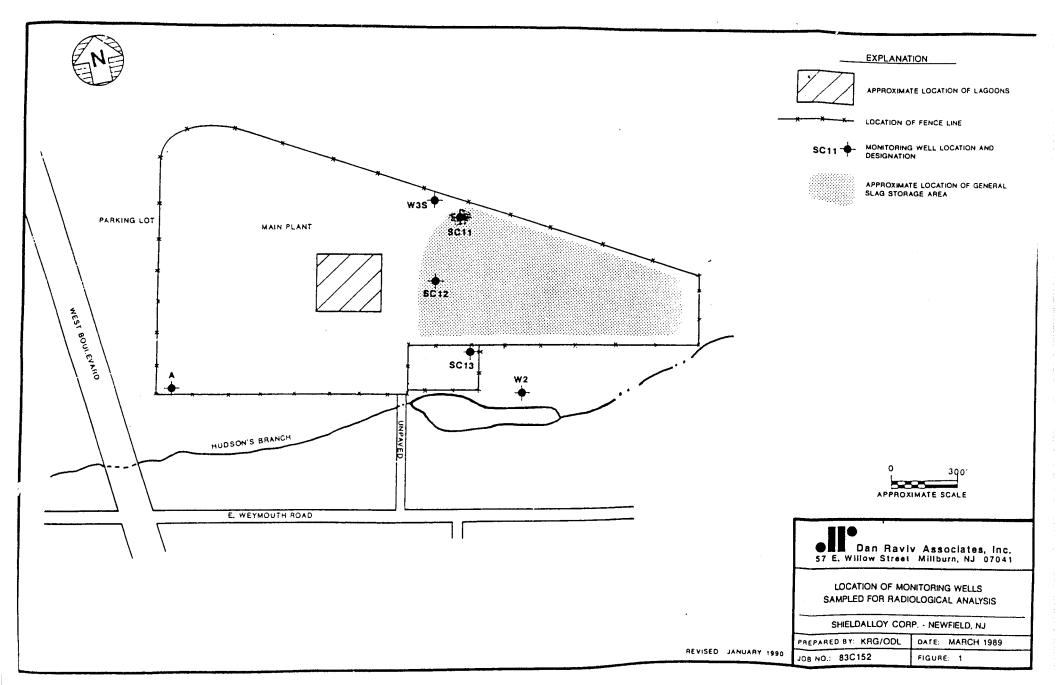
Results of the gross alpha activity of the subject samples were all less than the minimum detection limit (MDL) for the analysis (see Enclosure 3). On February 24, SMC was contacted by TI with a report of the gross alpha analysis results. It reported that the target MDL of 3 pCi/l could not be obtained for four of the subject samples due to

Ms. Donna L. Gaffigan, NJDEPE-BFCM-DHWM April 16, 1992 Page 2

interference caused by solids contained within the samples (see Enclosure 4). It is requested that the Department consider approving Teledyne Isotopes' suggestion to modify the analytical procedures or accept a higher MDL target.

Four samples were resubmitted for isotopic analysis due to MDLs higher than the target MDL. The results of the isotopic analysis may be found in Enclosure 5. Gross alpha and isotopic analyses for this sampling event indicate radiological levels comparable to background well SC14S and past sampling events.

The chain of custody, request for analysis, and all available TI quality assurance, laboratory data sheets are found in Enclosure 6.


If you have any further questions, please do not hesitate to contact me.

Sincerely, Lames P. Valenti for

Craig R. Rieman Radiological Safety Manager

CRR:lms Enclosures CC: Richard D. Way David R. Smith James P. Valenti Charles L. Harp, Jr., Esq. Jay E. Silberg, Esq. Carol D. Berger

SHIELDALLOY METALLURGICAL CORPORATION

TDS Results

Date 02/06/92

SAMPLE	TEST				DATE	
WELL	DESCRIPTION	RESULT	LIMIT	UNITS	ANALYZED	BY
SC12S	TDS by Gravimetric	10700	0.01	ppm	01/17/92	GJ/of SMC
SC13S	TDS by Gravimetric	8000	0.01	ppm	01/17/92	GJ/of SMC
SC14S	TDS by Gravimetric	47	0.01	ppm	01/17/92	GJ/of SMC
A	TDS by Gravimetric	440	0.01	ррт	01/17/92	GJ/of SMC
W-2	TDS by Gravimetric	210	0.01	ppm	01/17/92	GJ/of SMC

Enclosure 2

~

REPORT OF ANALYSIS

	WORL	K ORDER NUMBER				RUN DATE 02/11	1/92
MR CRAIG RIEMAN Shieldalloy Corp Po Rox 768 Newfield Nj	08344	3-5932	CUSTOMER P.O. NUMBER	DATE RECEIVED 01/23/92	DELIVERY DATE 02/25/92	PAGE	1

				WATER	DRINKING - NEW	JERSEY		
TELEDYNE SAMPLE NUMBER	CUSTOMER'S IDENTIFICATION	S T A NUM	STAR	LECTION-DATE T STO TIME DATE)P	ACTIVITY NUCL-UNIT-% (PCI/LITER) U/M +	NID-COUNT TIME VOLUME - UNITS DATE TIME ASH-WOHT-X &	
64665 R	MONITORING OF WG		01/16	1630	GR-A	L.T. 9. E 00	DATE TIME ASH-WCHT-X .	LAB. 3
64666 W2	MONITORING OF WG		01/16	1540	GR-A	L.T. 8. E 00	02/05	3
64667 125	MONITORING OF WG		01/16	1355	G R – A	L.T. 2. E 01	02/05	
64668 135	MONITORING OF WG		01/16	1505	GR-A	L.T. 9. E 01	02/05	3
64669 145	MONITORING OF WG		01/16	1115	GR-A	L.T. 3. E 00		3
64670 1458	MONITORING OF WG		01/16	1115	GR-A	L.T. 3. E 00	02/05	3
							02/05	3

		LAST PAGE OF REPORT	Amartin
SEND 1 COPTES	TO SH300S MR CRRIG RIEMAN		APPROVED BY J. GUENTHER 02/11/92
2 - GAS LAB.	3 - RADIO CHENISTRY LAB.	4 - GE(LI) GAMMA SPEC LAB.	5 - TRITIUM GAS/L.S. LAB. 6 - ALPHA SPEC LAB.

Due to large amounts of residue in some of the samples, the LLDs are larger than samples with low amounts of residue.

Enclosure 3

.

-

.

.

February 19, 1992

Mr. Craig Rieman Shieldalloy Metallurgical Corp. 12 West Boulevard Newfield, NJ 08344

Dear Mr. Rieman:

Groundwater samples collected by you from your Newfield, New Jersey facility on January 16, 1992 were submitted for analysis as drinking water per New Jersey analytical procedures. Although the requested MDL for gross alpha was 3 pCi/l, some of the results were reported with a substantially higher MDL. Discussions with Teledyne's laboratory manager revealed the problem encountered. The New Jersey procedures limit the amount of solids from the sample aliquot to no more than 100 mg. Because the samples submitted were heavily loaded with sediment, a very small aliquot was necessary to remain below the 100 mg limit. The small aliquot size necessarily increased the MDL.

In the future, you have two choices for analysis of this type of sample. Either, allow us to analyze for gross alpha without strict adherence to the New Jersey drinking water analytical procedures, or accept a higher MDL. It should be kept in mind that the Safe Drinking Water Act contaminant levels and associated procedures are intended for samples taken at the tap. As such, they may not be appropriate for the groundwater sampling program being conducted by SMC.

If you have any questions or require further clarification, please feel free to contact me

Sincerely,

TELEDYNE ISOTOPES

Scott W. Densel

and the second sec

een ite

Scott W. Dennerlein, Health Physicist Radiological Services Department

SWD:jk

Enclosure 4

50 VAN BUREN AVENUE WESTWOOD, NEW JERSEY 07675 (201) 664-7070

REPORT OF ANALYSIS

RUN DATE 04/07/42

. . .

	WORK	BROER MUNDER	CUSTORER P.B. NUNGER	DATE RECEIVER	DELIVERY DATE	PAGE	1
MA CRAIG RIERAM Smithlgalloy Corp Po Box 748 Mewfielo MJ	•••	3-0348		\$3/12/92	04/14/92		

HATER DEDINEING - NEW JERSEY

TELEDTHE SAMPLE NUMBER	CUSTONER'S TOENTEFECATEON	COLLECTION-OAT STA START ST MUM DATE TIME DATE	0P	ACTIVIJY MUCL-UN1T-Z { PCJ/L1TER} U/N +	NED-COUNT TENE ØATE TENE	VOLUME - UNITS ASH-NENT-X + LAB.
64665 A		01/16 1630	RA-226	L.T. 2. E 00	94/04	2
			TH-228	L.T. 4. E-01	03/30	£
			TH-230	3.4 8.4 E 84	03/30	
			TH-232	L.T. 8. E-02	03/30	
			U-234	3.4 +-2.5 E-01	03/25	, i i i i i i i i i i i i i i i i i i i
			4-235	L.T. 9. E-42	03/25	, i i i i i i i i i i i i i i i i i i i
			U-234	2.4 +-2.3 E-01	03/25	4
64666 W2	MONITORING OF NG	61/36 1540	RA-224	L.T. 1. E 00	84/06	2
			TH-228	L+T+ 7+ E-01	43/31	6
			TH-230	1.7. 2. 2-01	03/31	6
			TH-232	L.T. 1. E-01	63/31	6
			W-234	L.T. 3. 4-01	03/25	6
			- U-235	Ł.T. I. E-01	43/25	۵
			u~238	L.T. 2. E-01	\$3/25	- 6
64667 825	HENETORING OF NG	41/14 1355	RA-224	L.T. 2. € 00	04/0 1	2
			TH-228	L.T. 7. E-41	83/26	▲
			7H-230	L-T-]- E-01	03/26	6
			TH-232	L.T. 8. E-#2	43/26	6
			U-234	L.T. 1. E 🕶	03/27	6
			U-235	L.T. 8. E-91	03/27	6
			U-238	L.T.]. E 00	03/27	6
64668 135	NONITORING OF NG	81/14 1585	RA-226	L.T. 2. E 00	84/06	2
			TH-22#	tate le E OO	\$3/31	•
			TH-230	1.T. I. E-01	03/31	•
			TH-232	L.T. I. E-01	03/31	6
			4-234	1.7 +-8.9 E CO	Q3/27	4
			U-235	L.T. 4. E-01	03/27	6
			U-234	5.7 +-5.6 E-#1	03/27	•
					0 м	.1

LAST PAGE OF REPORT

APPROVED BY J. GUENTHER 04/07/92

SEND 1 COPIES TO SHOOS ME CRAIG RIEMAN

2 - GAS LAB.

3 - RADIO CHERISTRE LAD.

4 - GELLII GAMMA SPEC LABA

5 - TRETIUM GAS/L-S+ LAB+ 6 - ALPHA SPEC LAB+

Enclosure 5

ANALYSIS HEQUEST AND CHAIN OF CUSTODY RECORD

SMC	P.O. BOX	768, 12 V	VEST BOU	ALLURGICAL COI ILEVARD)692-4200	RPORA	TION			A moto	ANALYS	SES	
Project Ng.	G.W	MON	ITORIN	5 1/2 '92	Purchase	e Order		a si			, / /	
Sampler: (Print	Name) 1 G RI	EMA	J	/-4	Chain of	Custody T	ape No.	AN AN S		N N	Nur	nber of
Sample No./ Identification		ection Time	Preserv.	Lab Sample Number		pie Matrix Sludge, etc			Stri or a		/ Con	tainers/ MARKS
A	1/14/92	1630	NONE		LIQU	マ	V				MPL FOR	GROS
W2		1540	1		1	- .	V				ALPHAE	
125		13.55		,			V				MOLFOR	
135		1505					V				BETA É	
14SA		1115					V				MDL FO	RU,T
14SB	4	1115			J		V				t fa ≤	
											<u> </u>	I '
								-			CALLC	, RIEM
											WITHE	ROSS G
											RESULT	SEFORE
Relinquished by	: (Signatur	e)			Date	Time	Rece	ived by: (Si	gnature)		Date	Time
1. rang	A L	im			1/16/9	2 1830	, 1	, hele	m		1-2392	1200
2.					, ,			•				
3.										<u></u>		+
4.	×										-	
5.	<u> </u>											-
Sample Disposal Method AS REQUIRED 137 T.L.						Disp	osed of by:	(Signatu	re)	Date	Time	
SAMPLE COLL			Signature					LYTICAL LA			CONTACT SCOTT DE	JNERLE
l	~)	V						//				/ of /
0002	28 '											•· _A

ALPHA SPECTROSCOPY DATA

•

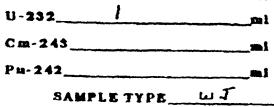
Th: 220______ni Am-243______ni U-232_____

Pu-236______mi

TI NO.64665

CUSTOMER Shield Alloy Corr ANALYST TET PREP DATE 3/18/92 ALIQUOT 150 ml

Del.	Nuclide	Mid Count MM/DD/19/MMA	Counts	#L, 300	Spike Caunta	Spike Activity Pci	Blug Counts	Blug M. sec	Results
	PH-242								
	Ex-238					4	I		
		1		1		1			
									1
	<u>U-230</u>	3/25 2300	4	60 000	696	3.87	?	200 000	2.6 \$2.3 E-01
13	<u>U-215</u>				↓ ▲	<u> </u>		 	L.T. 9. E-02
	<u>U-214</u>		11		<u>↓</u> ▲	↓	·Y	↓	3.6±2.5 E-01
	<u>U-230</u>			<u> </u>		1			
				[1		<u> </u>		
	Am 243								
	<u>Cm-246</u>			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
ł	Am-251. Cm-244.				l			1	
1									
	<u>Cm-112</u>								
	Th-232	3/30 0320	2	56537	1081	3.91	2	200 000	L.T. 8. E-02
	Th-230_	1	154			1	7		3.4 ± 0.6 €-00
	Th-229		Seilic	i		1	-		-
	Th-229	1	39	A		1	116		L.T. 6. E-01
Resi	uit Uniter	, li/l	As Fra			Calc.	by	ž.	Vale 3/31/92
	<	<u>A</u>				Checked	Ьу		Date


IWL-44 Rovisod 5/7/91

ALPHA SPECTROSCOPY DATA

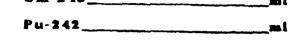
Th-229_____mi Am-243______mi

Pu-236_____ml

TI NO. 64666

CUSTOMER Shield Alloy Corp. ANALYST PREP DATE 3/18/92 ALIQUOT 150 ml

Del.	Nuclide	Mid Count MM/DD/HHMM	Counts	M, acc	Spike Counts	Spike Activity Pci	Blug Counts	Big ft, scc		Results	· · · · · · · · · · · · · · · · · · ·
	Pu-242										
	Pu-239			LL		1					
	<u>P=238</u>			1		1					
)									·		
	<u>U-238</u>	3/25 2300	_3	60000	235	3.87	6	200 000	4.7.	2.	E-01
14	U-235		1 .	t	1	1	ź		1.T.	1.	E-01
'	U-234	II	5	L			ક	+	L.T.	З.	E-01
	<u>U-236</u>			1	1	1 .					
									£		
	Am-245										
	С										
	Am:241_										
	<u>Cm-244</u>				<u> </u>						
								1			
	Th-232	3/31 2350	4	60000	261	3.91	2	200 000	L.T.	1.	8-01
	Th-230	k	2			1	5	·	L.T.	2.	8-01
25	<u>Th-229</u>	Ł	Solic		i	·	~	l	-		
	<u>Th-228</u>		9	LL		1	68	at	L.T.	7.	8-01
Rceu	11 Ualto +	Ci II	As Fr:	h		Calc.	by	Ē	I	Date J	131/92
Code		H				Checked	l by		I	Date	


IWL-44 Revised 5/7/91

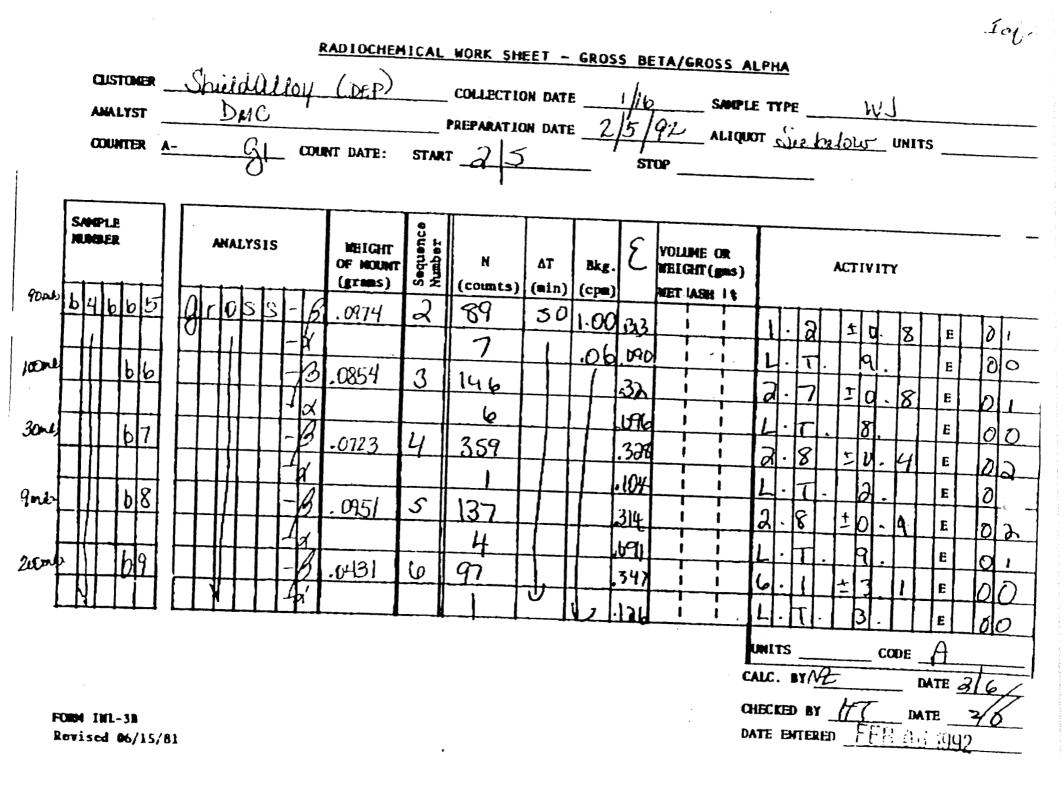
ALPHA SPECTROSCOPT DATA

Th-229_____mi Am-243______mi U-232_____m1 Cm-243_____m1

Pu-236_____m]

TI NO. 64667

SAMPLE TYPE_WJ


CUSTOMERShield Alloy Corp.
ANALYST TET
PREP DATE 3/18/52
ALIQUOT_15-0 ml

Det.	Nuclide	Mid Count MM/DD/HHMM	Cuanta	#1, scc	Spike Counts	Spike Activity Pci	Bkg Counts	Bkg Ft, acc	R	coults
	PH-242									
	P=-239	k		L	+	4				
	<u>Pu-238</u>			1	1	1.				
		3/27 0117			1				·	
	<u>U-238</u>	3/27 0117	3	80 000	131	3.87	5	200 000	1	1. 200
9	<u>U-235</u>	ŧ		i	}	- L	2	 	1	8. E-01
	<u>U-234</u>	1	3	Ł		.	6	V	L.T.	1. 200
	<u>U-236</u>			·	1	1				
					1					
	Am-243_				<u> </u>					
	<u>Cm-246</u>									
	Am-241_							l	<u> </u>	
	<u>Cm-244</u>									
	Cm-242									
	Th-232	3/26 2350	2	60 000	871	3.9/	1 1	200 000	1.T.	8. E-02
	Th-230	1	8			,	3		L.T.	1. E-01
26				······						
	<u>Th-229</u> <u>Th-228</u>		Splkc 13	*	1 ,	<u>↓</u> *	82		K.T.	7. E-01
Resu	it Units_	et 12	Asi	h		Cale.	by			e 3/31/52
Code	•	A	Fra	action		Checked				lc

TWL-44 Revised 5/7/91

A	-243	ml ml ml		<u>АLРИА SP</u> U-232 Cm-243 Pu-242				ANALYST_	Shield Alloy Comp RE 3/18/92
Det		Mid Course		SAMPL	e type	5			UOT_150ml
	. Nuclide	MM/DD/HHMM	Counts	#L. sec	Spike Counts	Spike Activity	Blog Counts	Blog	
	Pp-242_					Pci	COULCES	M. scc	Results
	Pu-239_			1					
L	Pn-238								
	U-238	3/27 0117		7	<u> </u>	++			
10	U-235	1	5	80 000	209	3.87			
10	<u>U-234</u>	1	14			1	1	200 000	
	U-236		- 17	Ł		4	1		L.T. 4. E-01
				I	1	4			1.7 ± 0.9 €00
	Am-243								
	<u>Cm-246</u>					<u> </u>			
	Am-241								
	<u>Cm-244</u>				1				
	<u>Cm-242</u>								
T	Th-232 3	31 2350	1						
2)	Th-230	1		60000	644	J.91	2	200 000	1 *
- /	Tb-229		0	4		+	1		1.T. 1. E-01
	Th-228		Spike 29	k		+	-	1	4.T. 1. E-01
csul	t Unita	e-1/				1	91		LT. I. Ead
ode_	/ -	A	Ash_ Frac	tion		Calc. by			
1-44	Revised 5/7/9	31			•	Checked by			Date 3/3/92
						-			Date

Date____

400		U	•
$\varphi n n$	-	4	4

			400	- 42	(138	-155		
مورون ، مراجع			8 Chec	k Source	Ca-137	2 Chec	k Source	Am-241	
Date	B Blank	d Blank	N	Δt	CPM	N	Δŧ	CPM	Comm.
1									
2		<u>`</u>							
	1.16	N2,000	20538	50	410.70	7444	50	148.57	
4	1.12	106	20 889	50	417,78	7543	50	120.36	
5	100	.02	20029	50	413.98	1401	50_	148.02	
	1.00	<u> </u>	20509	50	410.18	7430	50	148.60	
	Lieb	.04	26769	50	415,35	7553	50	151.6h	
8				·	· .				
9									
10	1.08	.06	20008	50	412.16	7420	SO	148.40	
11	. 58	,D3	20-721	50	414.42	7257	50	14514	
12		·							
13					411.5RS	·			
14	1.20	.04	21077	50	42174	7463	50	149.26	
15	.98	.02	ana	50	40538	TRUZ	50	140,50	cg
16									
17									
18	1.110	.02	20702	90	415,74	SFER.	FB	14744	
19		•							
20									
21				1					
23									
23		المتوجات كالربوسا وبسرا							
24					105262				
25	A1.30	07	19607	50	395.14	6931	50	1386	
28					·				
27	1,00	.04	20084	S	401,68	7040	29	140,00	
28									
29									
30									
31									

KEY

ł

I

Outside Control Limits Restart Change Gas .

R\$ -