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Temperature Dependence of Weibull Stress Parameters:
Studies Using the Euro-Material

Similar to ASME A508 Class-3 Steel
by

Bogdan Wasiluk. Jason P. Petti. and Robert H. Dodds, Jr.

Abstract

The so-called Beremin model describes the stochastic effects of the cleavage fracture process in ferritic
steels at the metallurgical scale. The Beremin model, coupled with large-scale finite element analyses,
can be used to understand the effects of constraint loss on the macroscale toughness measured in labora-
tory test specimens and in fuil-scale pressure vessels. This process provides the basis for the quantitative
fransfirabilitY, of fracture toughness measured with a variety of test specimens to structures. The Beremin
model leads to a quantity termed the Weibull stress which depends on a number of model parameters.
This work demonstrates the temperature invariance of the Weibull stress modulus, ti. for a 22NiMoCr37
pressure vessel steel through calibrations at two extreme temperatures of the ductile-to-brittle transition.
This temperature invariance reflects the characterization of microcrack size distribution in the material
described by the Weibull modulus. The calibrations performed here also demonstrate the clear depend-
ence of the Weibull stress scale parameter, a,,, on temperature. The increase of a,, with temperature re-
flects the increase in microscale toughness of ferritic steels. The calibration procedure employs a three
parameter Weibull stress model, which includes the effects of a minimum (threshold) toughness, K,,i,,.
The calibrations suggest that K,,,, increases gradually with temperature. Finally, an engineering proce-
dure is presented to enable practical applications of the Weibull stress model for defect assessments. This
procedure combines the demonstrated temperature invariance of m, a recently developed method for pre-
dicting the variation of a,, with temperature using the ASTM E-1921 Master Curve, and the calibration of
the Weibull stress parameters at one temperature. The (calibrated) temperature invariant m and the esti-
mated a. as a function of temperature are used to predict the cumulative probability of fracture for several
large datasets without direct calibration.
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Foreword

Appendix G. "Fracture Toughness Requirements," to Part 50 of Title 10 of the Code of Federal Regula-
lions (10 CFR Purt 50). "Domestic Licensing of Production and Utilization Facilities," specifies fracture

toughness requirements Ibr ferritic materials of pressure-retaining components of the reactor coolant prcs-
sure boundary of light-water nuclear power reactors. These requirements provide reasonable assurance
that adequate margins of safety are maintained during any condition of normal operation, including an-
ticipated operational occurrences, to which the pressure boundary may be subjected over its service life-
time. Similarly, the Pressurized Thennal Shock Rule (10 CFR 50.61) describes fracture toughness re-
quirements for protection against brittle fracture that could occur as a result of pressurized thermal shock
events. Over the past 5 years, several licensees have requested changes to their licensing bases through
application of master curve (MC) technology for fracture toughness characterization, as codified by the
American Society for Testing and Materials (ASTM) in ASTM E-1921, "Standard Test Method for De-
termination of Reference Temperature, To, for Fermitic Steels in the Transition Ranee." Such uses of MC
technology by the industry can be expected to continue until the Nuclear Regulatory Commission (NRC)
revises both the Pressurized Thermal Shock Rule and the hcatup and cooldown limits associated with Ap-
pendix G to 10 CFR Part 50. The MC relies on an elastic-plastic characterization of fracture toughness,
while the current regulatory framework is based wholly on linear-elastic fracture mechanics (LEFM) cal-
culations. The NRC has reviewed these license amendment requests employing conservative adjustments
to accommodate elastic-plastic fracture mechanics (EPFM) analytical results in the LEFM regulatory
framework. If an EPFM-based probabilistic fracture mechanics tool were available, these safety evalua-
tions of RPVs could be performed in an equally technically rigorous, but more efficient and less conser-
vative manner.

This report addresses the appropriate application (for certain types of loading scenarios) of EPFM mate-
rial toughness parameters measured using laboratory specimens to the evaluation of defects in large struc-
tures. The present work describes a novel approach that couples a Weibull stress model to characterize
cleavage fracture processes, with the well-understood and validated MC statistical model. The approach
employs the massive data set of fracture toughness generated recently in Europe for a common RPV steel,
combined with high-fidelity, nonlinear, three-dimensional computational analyses of test specimens. The
resulting observations reflect the temperature-independence of a key Weibull stress parameter over the
ductile-to-brittle transition region, in addition to the temperature-dependence of the Weibull scale pa-
rameter, at least for this important steel. This work represents a significant step in the development and
application of an EPFM-based probabilistic fracture mechanics tool.

BriaiJ. Sheror4l]irector U
Office of Nuclear Regulatory Research
U.S. Nuclear Regulatory Commission
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Executive Summary

This work advances the understanding and applicability of numerical models to predict tile cleavage frac-
ture process in stnictural components fabricated from ferritic steels and operated over tile ductile-to-brittle
transition (DBI) region of temperatures. The pressure vessels of commercial nuclear power plants are
fabricated from the territic steels of specific interest in this study. Significant research programs have
recently been completed to characterize the ductile-to-brittle transition behavior of ferritic steels. This
behavior proves challenging it) qtuanify given the shifl in (metallurgical scale) fracture mechanism from
void growth and coalescence to transgranular cleavage as the temperature decreases. The potential for

cleavage fracture causes concern since sudden failure can occur by cleavage without extensive prior de-
lormation. Tile necessity f'or probabilistic fail tire assessment evolves naturally frori the large statistical
scatter observed in measured toughness values in the DBT regime. Tile scatter reflects a "weakest link"
phenomenon where one or more initiation sites at metallurgical-scale inclusions trigger sudden fracture of
a test specimen or structure. The observed scatter shows a strong sensitivity to the volume of material at
the crack front subjected to high stresses and leads to the also observed strong variations of toughness
across specimen geometry. .gu., shallow-notch SE(B)s compared to conventional C(T)s, for examples see

The DBT behavior of ferritic steels has been studied widely, leading to engineering approaches that char-
acterize the scatter and temperature dependence of macroscopic fracture toughness values. The ASTM
E1921 [I] testing standard quantifies the DBT behavior of ferritic steels. The standard employs a three
parameter Weibull distribution for the cumulative probability of cleavage fracture at each temperature
over the DBT. E1921 also utilizes tile empirically based "Master Curve" to estimate the temperature-
toughness relationship over the DBT for a wide range of ferritic steels. The Master Curve concept defines
the relationship between the median fracture toughness Kj,. (P/= 0.5) for high constraint conditions and
the normalized temperature, T-T0, for a IT size specimen. Once To becomes known for a specific mate-
rial, un-normalization of the Master Curve produces an estimate of the median toughness throughout the
DBT.

The assumption that small-scale yielding (SSY) conditions exist at fracture limits the usefulness and ap-
plication of the testing standard in practice. Alternative methods, including the Beremin model [6], have
found widespread use and development to address the cleavage modeling at the metallurgical scale. The
Beremin model introduces a statistical treatment for the distribution of fracture initiators (e.g., micro-
cracks formed at inclusions) to develop a probabilistic approach for cleavage fracture. The Beremin
model defines the scalar, microstructural fracture parameter, the so-called Weibull-stress (Gw), which re-
flects the random distribution of microcracks at the crack front. The model includes two parameters, the
WeibLill modulus (m) and the Weibull scale parameter ((Y,,). The Weibull modulus, m, characterizes the
size distribution of microcracks, while the Weibull scale parameter, a,,, represents the aggregate micro-
crack toughness [6]. In the Weibull stress framework, these two parameters describe material features
invariant of crack-front constraint, crack-front length, etc.

Over the past twenty years, several different methods have evolved to calibrate the Weibull stress parame-
ters. Gao et al. [8] and Ruggieri et al. [12,13] show that non-unique calibrations are produced with early
calibration methods based entirely on deep-notch toughness values. Petti and Dodds [ 14] went on to sug-
gest coupling the Master Curve description of the macroscale toughness-temperature relationship with the
calibration procedure to set the Weibull scale parameter, u,,. This method produces an estimate of a,, as a
function of temperature for the material throughout the DBT with a direct calibration at only one tempera-
ture, most likely the testing temperature adopted to establish To.

Starting from the recent work by Petti and Dodds [14], the present study utilizes the extensive datasets
generated during a recent Euro-testing program on a reactor pressure vessel steel to explore the tempera-
ture dependence of the Weibull stress modulus, m. Calibrations described here at two widely different
temperatures demonstrate the temperature independence of m over the DBT region, in addition to the

xv



temperature dependence of the Weibull scale parameter. ,.. Applications of this engineering procedure to
several datasets for the I-uro-material. not included in calibrations, show excellent predictions and demn-
onstrate significant promise for this method.
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I Introduction

Significant research programs have recently been completcd to characterize the ductile-to-brittle transi-

tion (DBT) behavior of ferritic steels. This behavior proves difficult to assess with the shift in fracture

mechanism from void growth and coalescence to transuranular cleavage as the temperature decreases

throughout the DBT region. File potential for cleavage fracture causes concern since sudden Ibilurc can

occur by cleavage without extensive prior deformation. Complica;tions in failure assessments also stem

from the large scatter observed in measured toughness vahlCs in tile DBT regime. The scatler reflects a
..weakest link'" phenomenon where one or more initiation sites at metallurgical-scale inclusions tritgger

sudden fracture of the specimen-structure. The observed scatter shows a strong sensitivity to the volume

of material at the crack front subjected to high stresses and leads to the also observed strong variations of

toughness across specimen gcomletry, e.g.. shallow-notch SE(B)s compared to conventional ((T)s. for

examples see [8] .

The DBT behavior of ferritic steels has been studied widely, leading to engineering approaches that char-

acterize the scatter and temperature dependence of macroscopic fracture toughness values. Tile ASTM

El1921 [I] testing standard quantifies the DBT behavior of ferritic steels. The standard employs a three

parameter Weibull distribution for tile cumulative probability of cleavage fracture at each temperature

over the DBT. The distribution maintains a constant exponent of 4 to reflect the requirement that small-

scale yielding (SSY) conditions exist at fracture in each specimen. The Weibull distribution also includes

a ininimum (threshold) toughness, K,,i,, to enforce the experimental observation that the probability of

fracture remains zero below a small, but finite toughness value. El1921 also utilizes the empirically based

Master Curve to estimate the temperature-toughness relationship over the DBT for a wide range of ferritic

steels. The Master Curve concept developed by Wallin [2,3,4,5] defines the relationship between the me-

dian fracture toughness Kj, (PI = 0.5) for high constraint conditions and the normalized temperature, T -

TO, for a IT size specimen. The reference temperature, To, defines the temperature at which the median

fracture toughness for a IT crack-front length equals I00MPa',m. Once To becomes known for a specific

material, un-normalization of the Master Curve produces an estimate of the median toughness throughout

the DBT. Simple weakest link models enable adjustment of non-IT size fracture toughness values for use

with the Master Curve provided the SSY conditions exist.

The assumption that small-scale yielding (SSY) conditions exist at fracture limits the usefulness and ap-

plication of the testing standard for situations when high constraint conditions do not exist at fracture,

e.g., large deformation prior to fracture in higher toughness materials or in naturally low constraint

specimens and structures (those with T-stress < 0). Since the simple weakest link model for the macro-

scale toughness fails to remain applicable under these conditions, alternative methods, including the

Beremin model [6], have found widespread use and development. The Beremin model introduces a sta-

tistical treatment for the distribution of fracture initiators (e.g., microcracks formed at inclusions) to de-

velop a probabilistic approach for cleavage fracture. The Beremin model defines the scalar, microstruc-

tural fracture parameter, the so-called Weibull-stress (o-,,), which reflects the random distribution of mi-

crocracks at the crack front. The model includes two parameters, the Weibull modulus (m) and the

I



Weibull scale parameter (a,,). The Weibull modulus, in. characterizes the size distribution of microcracks.

while the Vcibull scale parameter. a7,,. represents the aggregate microcrack toughness 161. in the \\eibull

stress framework, these two parameters describe material features invariant of crack-front constraint.

crack-front length. etc.

Bakker and Kocrs [71 proposed an important extension of the original Beremin model by introducing a

threshold stress, a,,,, to incorporate the existence of experimentally observed threshold toughness values.

In their proposal. cleavage fracture becomes possible only when the critical stress acting on the volume

surrounding a microcrack exceeds a specific. material threshold value. Measurement or estimation of 'a,,

becomes problematic and affects strongly the calibration of Weibull stress parameters (in. a,,). Gao et cii.

[8] suggest an alternate approach, which introduces a minimum Weibull stress, a,,,,.. This simplifies

considerably the introduction of a threshold toughness since a-,,.., is taken as the value of 7,,. at a given

minimtum macroscopic fracture toughness, K,. More recently, Kroon and Faleskog [9.10]. among oth-

ers, include the effects of plastic strain in a Weibull stress framework to reflect additional microcrack nu-

cleation under loading. These extensions of the original Beremin model continue to advance its useful-

ness and practical application.

Over the past twenty years, several different methods have evolved to calibrate the Weibull parameters.

Minami el al. [II] and Bakker and Koers [7] use one set of fracture toughness values obtained from a

high constraint geometry. Minami et c!. [I I] describe a maximum likelihood method which employs sta-

tistical estimators (a, fl) to enforce equal probability distributions between the macroscopic and micro-

scopic parameters, (JJ/3)a=(aIa,)n. Gao et a/. [8] and Ruggieri et cii. [12,13] show that non-uniqUe cali-

brations are produced with this method since two parameters (m, a,,) are calibrated with experimental data

having crack-front fields at fracture controlled by a single loading parameter (J). They also showed that

use of test specimens with widely differing constraint levels does lead to a unique calibration. Recent

work by Petti and Dodds [14] argues that the Weibull modulus, M, may be independent of temperature in

the DBT region, while the Weibull scale parameter, a,,, increases with temperature. If this holds, calibra-

tions would still appear to be required at every temperature of interest over the DBT region. To overcome

this severe limitation, Petti and Dodds [14] suggest coupling the Master Curve description of the macro-

scale toughness-temperature relationship with the calibration procedure to set the Weibull scale parame-

ter, a,.. This method produces an estimate of u-, as a function of temperature for the material throughout

the DBT with a direct calibration at only one temperature, most likely the testing temperature adopted to

establish To. There does not appear to exist a "Master Curve" for ferritic steels in terms of parameters (mi,

u,,) since these parameters, for the limited set of materials calibrated to date, vary significantly.

Recently, Wallin [1 5] applied the E1921 procedures to the extensive datasets produced in a European Un-

ion project [16] entitled "Fracture toughness of steel in the ductile-to-brittle transition regime." This pro-

ject thoroughly characterized the behavior of a quenched-and-tempered pressure vessel steel, DIN

22NiMoCr37 (similar to the American A508 CI.3 steel). More than 800 tests were performed using com-

pact tension (C(T)) specimens ranging in size from 0.5T to 4T with test temperatures spanning the entire

DBT. Follow-on work by Heerens et al. [17], among others, tested over 400 pre-cracked Charpy (CVN)

specimens extracted from the broken larger specimens. These very large datasets validate the statistical
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and Master Curve concepts-procedures adopted in [1 92 I and provide inm aluable datascts for validation of

mnicromechanical models such as described in this study.

Starting from the recent work by Petti and Dodds [141. the present study utilizcs the extensive datasets

from the Euro-testing program to explore the temperature dependence of the Weibull stress modulus, m.

Calibrations described here at two widely different temperatures demonstrate clearly the temperature in-

dependence of In over the DBT region. in addition to the temperature dependence of" the Weibull scale

parameter. a,,. The calibration procedure adopted here also examines "best fit" values 1'(r the threshold

toughness. K,. Finally. we describe examples of the procedure that demonstrate practical use of the

Weibull stress model for engineering applications in defect assessments. The procedure requires calibra-

tion of the Weibull parameters at only one temperature and knowledge of the reference temperature, T,,,

for the material. The procedure assumes m remains invariant of temperature and uses a modified version

of the method introduced by Petti and Dodds [141 to estimate r7,, at temperatures throughout the DBT

without direct calibration through use of the Master Curve. As would be fbllowcd in practice. K,,,,,. is

fixed in this demonstration example at the E 1921 recommended value of 20 MPa\'m. Applications of this

engineering procedure to several datasets for the Euro-material, not included in calibrations, show excel-

lent predictions and demonstrate significant promise for this method.

The organization of this report is as follows. Section 2 reviews the modeling of cleavage fracture includ-

ing both the weakest link-based model and Weibull stress framework. Section 3 presents an improved

calibration procedure for the three-parameter Weibull stress model. Section 4 describes the finite element

models and computational procedures. Section 5 discusses the European testing program and the calibra-

tion of the Euro-material at two temperatures, -11 O0 C and -40'C. Section 6 employs the Master Curve to

perform multi-temperature predictions throughout the DBT region. Finally, Section 7 summarizes the

conclusions supported by this study.
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2 Modeling of Cleavage Fracture Toughness

2.1 Weakest Link-Based Model

Weakest link concepts form the technical basis for the first testing standard developed specifically to ad-

dress the unique statistical issues with ferritic steels in the ductile-to-brittle transition region (ASTM

E 1921 [(1). As expressed in E1921, the weakest-link model requires that the local stress field and J-

values remain essentially uniform along the entire crack front and that small-scale yielding (SSY) condi-

tions prevail at the cleavage fracture event. This greatly simplifies description of the crack-front loading

but limits the application of such approaches to fracture specimens (and structures) prior to the develop-

ment of significant constraint loss under increased plastic deformation. Under SSY conditions, the crack

driving force may be expressed for convenience in terms of a /&i- value, i.e., K, = EJ/(Iu-t).

Based on these assumptions, the three-parameter statistical model employed in E1921 adopts a constant

exponent (modulus) of four in the Weibull expression for the cumulative fracture probability at each tem-

perature over the ductile-to-brittle transition,

K./ - KptinPf,(Kj,)=l-exp-l.{K -K,,,i3, ], (I)

where K,,,1, denotes the minimum fracture toughness, P, (K,. •< K,,,,,) = 0. E1921 sets K,,i,,, equal to 20

MPa',m, invariant of material flow properties, crack-front configuration, and temperature. The tempera-

ture dependent K0-value corresponds to the fracture toughness when the cumulative probability of failure

equals 63.2%, Pf (KI, = K0) = 0.632. The maximum likelihood method provides the estimate for K0 from

measured toughness values as,

K° _ (r-0.3068) j + Kmin ' (2)

where N and r denote the total number specimens in a dataset and the number of uncensored (valid) val-

ues, respectively. The E1921 procedures censor measured values of fracture toughness that violate SSY

conditions; toughness values have a limiting value of Ki, given by,

S Ebcr°
Kj•, <_ (3)

where b, E, v, and ao denote the remaining ligament, Young's modulus, Poisson's ratio, and yield stress.

E1921 currently adopts a value of 30 for the limiting, non-dimensional deformation, M•,,,,,; a value now

widely accepted as applicable for standard, deep-notched compact tension specimens, C(T)s.

Toughness values measured using fracture specimens tested at other (xT) than IT thickness (crack-front

length of 25.4 mm), require a statistical adjustment to an equivalent IT value for comparisons. The
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E192 1 requirement I Or a unifoni .1-value along the front and for SSY conditions makes the adjustnent

process straiglitforward. The highly stressed volume of' material along, the crack front then scales with

B x K and thus equivalent P, values for different crack-front lengths through Eq. ( I ) require that

.I 1lI= + (, I- El 2 l )f B~r 
( 4E2 

,)

where Kt21-2' 20 N4 Pa m and B denotes specimen thickness.

2.2 The Weibull Stress Model

The mnac-oscopic fracture model represented by Eqs. (1. 4) applies under conditions of high-constraint (T-

stress Ž 0). SSY when each crack front location has the same applied ./-value. SSY conditions insure the

unique correspondence across specimens between the crack-front .1-value and the local crack-front

strains-stresses at fracture. The corresponding micr.osco/pic fracture model employs directly the strain-

stresses at each crack-front location, SSY conditions then become unnecessary to establish the link with

the scalar measure (.J) of the loading. The Beremin group [6] introduced the most widely used and devel-

oped microscopic model. In this model, a local fracture parameter, the so-called \Veibull stress (7,,), de-

fines a scalar measure of the crack-front conditions driving cleavage fracture at increasing levels of exter-

nal loading. Numerical analyses connect values of aT,. with external loading of the specimen-structure and

may include complexities from variable crack-front geometry, large-scale yielding, thermo-mechanical

loading, etc. In its original form, u,,. describes the crack-front loading in a two-parameter Weibull expres-

sion for the cumulative fracture probability [6] follows as,

P/.(=,I)=l-exP - r 1, (5)

where the scalar Weibull stress, a,,., is given by,

U" , J j . (6)

where V denotes the highly-stressed volume of material just ahead of the crack front over which the trig-

gering event of cleavage fracture occurs. The Beremin grouped showed the link between the Weibull

modulus, m, and the postulated shape of the probability density function for pre-existing microcracks that

form at metallurgical- scale inclusions, at grain boundaries, etc. The value of rn quantifies the degree of
"scatter" reflected in the cumulative failure probability distribution, analogous to the "4" exponent in the

macroscopic model of Eq. (1). The Weibull-stress scale parameter, a,,, denotes the Weibull stress value

for a cumulative probability of fracture equal to 0.632, P (a7,, = o-) = 0.632. The Weibull stress is com-

puted most often by integrating the maximum principal stress, a,, over the fracture process zone, V, at

each stage of loading. This zone consists of the region of plastically deformed, crack-front material over

which the maximum principal stress exceeds a multiple (2) of the yield stress ao, _ 2u-. Petti and Dodds

[18] illustrate that the specified value for 2 does not affect the calibrated values of in for smaller ni-values
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< 10 to 12, but not the relative toughness values between differing crack-front conditions. Here we em-

ploy the common value of 2 for .. The normalizing volume, Vo, cancels in applications of the Weibull

stress model to compare crack-front conditions for the same material and is assigned a value here of unity.

Under strict plane-strain and SSY conditions, the macroscopic and microscopic fracture models have a

unique and the now well-understood connection [6,8],

c" =C BJ 2 or o7 =C BK , (7)

where C and C = C[(1 - v2  E] denote a material constant dependent on the material flow properties at
the temperature of interest and on Weibull stress parameters (m, VO).

Actual fracture specimens eventually violate SSY conditions to varying degrees with increasing load.

Gao and Dodds [19] modified Eq. (7) by inserting a non-dimensional constraint function, g(M). The g-
function characterizes the level of constraint difference between the ideal, plane-strain SSY conditions

(with T-stress = 0) and a specific fracture specimen,
o(7 =C BJ-,(MgM) or oa. =C BK(,.)g(M), (8)

Where M = bo 0/J,, and J, denotes a through-thickness average value. The constraint function, g(M),

equals 1.0 for all materials under plane-strain, SSY conditions with T-stress = 0. For a specific configura-

tion, 3-D nonlinear finite element analyses and Weibull stress computations produce a,,, vs. J,,g values. A

plane-strain, SSY boundary-layer analysis with T-stress = 0 readily yields the constant C for a specific

material and m value (see [8] for examples). The g-function value (with respect to M) then follows by

solving Eq. (8) for g(M) at each loading level in the specimen--structure. As SSY conditions degenerate
along the crack-front under increased loading, the g(M)-values gradually fall below the 1.0 level. By ex-

pressing g-functions in terms of the non-dimensional deformation, M, the g(M) function for a material

remains invariant for all geometrically similar specimens, e.g., all SE(B)s for the material at the specified

temperature with a/W = 0.5, B x B cross-section and span = 4W have the same g(M) invariant of the spe-

cific thickness B.

Figure 1 illustrates the Weibull stress values for the SSY reference condition and for plane-sided C(T)
specimens computed using the stress-strain properties for the Euro material at -40'C. Figure Ia com-

pares the Weibull stress values (normalized by the yield stress at -40'C) with increased loading for IT

SSY and IT C(T) configurations using a representative Weibull stress modulus of m=10. The IT SSY

values enable computation of the material constant C appearing in Eq. (7). Figure lb recasts the same
results with the loading normalized in terms of the non-dimensional deformation parameter, M, where J-

values for SSY are normalized using b for the C(T) specimen. Figure Ic shows the constraint function,

g(M), for the C(T) specimen computed directly from the curves in Fig. lb through Eq. (8) and the mate-

rial constant C. Differences between the IT SSY, which haveg(M) - 1.0, and IT C(T) curves reflect the

levels of constraint loss in the C(T) specimen under increasing load. Figures lc also reveals the strongly

positive T-stress in the C(T) specimen at large M-values where g(M) exceeds 1.0. Figures l(a-c) illustrate

clearly the very gradual constraint loss, which makes difficult the specification of a "single" limiting M-
value for specimens in testing standards. Recall also that the m=l 0 used in these illustrative results influ-
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ences the constraint loss - calibrated tn-values larger than 10 would reduce the differences between the

SSY and C(T) curves. Compared to the strict plane-strain, SSY reference condition, the C(T) specimen

begins to lose constraint (g(M)) when M z 300 (based on m = 10). The value g(M) = 0.5, for example,

implies a 16% difference in K,-values between C(T) and SSY conditions at the same Weibull stress value,

and thus the same fracture probability. Figure I d shows the effect of specimen size on the Weibull stress

values for the C(T) specimen. The C(T) curves reflect the coupled effects of absolute crack front length

(statistical) and constraint loss (deterministic) for increasing J-values. However, each of these propor-

tionally scaled C(T) specimens has the identical g-function curve shown in Fig. Ic.

By adopting the three-parameter form for the cumulative fracture probability in Eq. (1), E1921 assumes

high-constraint, SSY conditions exist at fracture and includes threshold toughness. Extension of the

Weibull stress model to match the E1921 characterization of toughness scatter at each temperature re-

quires threshold toughness in a three-parameter cumulative probability of fracture [18]. Gao and Dodds

[19] and Petti and Dodds [14,18] modified the Weibull stress model to include constraint loss, crack-front

length effects, and a minimum Weibull stress value to predict a minimum (threshold) toughness,

e -exp -- 07 -4 for a,,. > a,,,_,i,,, (9)P xp _ý 0 M14 _a'n'4 4]

P.(),,,) 0 for cr,,, <r.m (10)

The minimum (threshold) Weibull stress, o- o,, ,, =ow(K, =K,,,,)], depends on the crack-front

length, material flow properties, and the Weibull parameters (m,pO). For plane strain SSY conditions,

Petti and Dodds [18] showed that the specific three-parameter form above leads to identical scaling of

crack-front length effects on the fracture toughness using the Weibull stress model (for all m-values) and

the E1921 expression, Eq. (4).

In the two-parameter Weibull stress model, Eq. (5), the denominator within the exponential (a,,) remains

invariant of changes in crack-front length and constraint level for a constant temperature and loading rate,

i.e., a,, represents a material property. The three-parameter expression in Eq. (9) introduces a at,,., in the

denominator. But because aw-mr, varies with crack-front length and (potentially) constraint, a. must now

change to maintain a constant denominator for all crack-front lengths and (potentially) different constraint

levels [14]. In practice, the small differences in constraint levels between identical thickness, deep-notch

SE(B) specimens, C(T) specimens, and the plane-strain SSY (T-stress = 0) reference condition when Kmi,,

_< 20 MPaim lead to a negligible effect on a,.

By using the three-parameter expression in Eq. (9), a "toughness scaling" model arises which converts

measured toughness values for xT size specimens (including constraint loss) to IT plane-strain SSY con-

ditions [18]. Written as an extension of Eq. (4), the toughness scaling model has the form

ASSYIT)zK A4 g(MxT) )1/4 K($T) - g ( Al(,T) )J1!4Kmn,1)
Kssy(IT Kmin + g(M (T) K/1(c InMi)'l/r" K /Bi - )= L ' ' --,c .,o j (11
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where ~ ~ ~ % I (.Wj .)with .!!1 ,Tl , = /[ 1) t ,' ,,, for low constraint specimens and for hig~hwhcreg "I "I ......

constraint specimens when K,...., _ 20MPa',m [I 8]. For common test specimen sizes (IT), no constraint

loss occurs at the applied loading of K = K,,,,, and the above expression simplifies with g(Mo 1,, .0)

Tile g(M) function varies with temperature and loading rate due to the change in material flow properties.

This approach also applies equally for a different selection of the "reference" condition. For example,

ongoing work of the F 192 1 committee envisions use of a IT C(T) specimen as the reference condition

rather than the more stringent IT, plane-strain SSY (T-stress = 0) condition.

2.3 Summary of Weibull Stress Parameters

At the muc'roscale, the cleavage fracture toughness under SSY conditions is taken here to be described by

tile approach in ASTM E-1921. At each temperature in the DBT region, the statistical distribution of

measured fracture toughness values is represented by Eq. (1). The macroscale parameters are: (I) the

fixed exponent of 4 (taken as invariant of temperature), (2) the median fracture toughness, K0, which var-

ies with temperature and crack front length, and (3) the threshold toughness K,,,,,, below which tile fracture

probability vanishes (taken as temperature and crack-front length invariant in E-I1921). The fixed expo-

nent of 4 derives from the (strict) conditions of SSY under which the "in-plane" plastic zone size in-

creases in area proportional to K 4 (invariant of temperature). The volume of crack front plastic zone thus

increases proportional with crack front length (i.e., B) x K4. In Eq. (1), the probability of cleavage frac-

ture thus varies in proportion to the volume of highly stressed material containing metallurgical triggering

points along the crack front. In this work, we use the extensive experience with large-scale fracture test-

ing programs conducted over the past 10+ years framed in terms of the E-1921 approach. Under SSY

conditions, a calibrated implementation of the Weibull stress model must predict the toughness-

temperature variation of E-1921 and the statistical distribution of Kj, values at each temperature described

by Eq. (1).

In the Weibull stress microscale model, the exponent (m) is coupled to an assumed, inverse power law

description for the probability density function of initiating sites for cleavage fracture. Because the expo-

nent reflects the statistical distribution of pre-existing trigger points for cleavage fracture, it is argued to

be temperature and constraint invariant. The temperature dependence appears in the toughness scale pa-

rameters, q,, analogous to the temperature dependent K0 value in Eq. (1). Petti and Dodds [14] re-

examine the fundamental assumptions of the Weibull stress model and argue that a, reflects the micro-

scale toughness (F1) of material that encloses metallurgical scale cracks and thus varies with temperature.

The temperature dependence of the material flow stress enters into a,, as well but is a clear second-order

effect. As a "local," metallurgical-scale parameter, o, is assumed to not vary with constraint, since it re-

flects the actual stress computed to act upon a local material volume that drives the Weibull stress model,

not the stress in/erred to exist on the assumption that SSY conditions exist with stress field amplitude

governed by Kj.

The simplest, two-parameter Weibull stress model does not predict a threshold value of macroscopic

toughness. This contradicts directly the E-1921 description of toughness which has the threshold tough-

ness, K,,,i,,. Ruggieri, et. al. [13] suggest using K,,,i,, to define a threshold value of the Weibull stress, ,
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= a,, (KW = K,,,,), together with the 3-parameter formn in t-q. (9), which enables prediction of the F- 192' 1

statistical distribution, Eq. (I), when SSY conditions do exist. Because the material flow properties vary

with temperature, q, likewise varies with temperature and crack front length fbr a fixed K,......
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3 Calibration of the Weibull Stress Model

The values of fracture toughness predicted using the Weibull stress model depend strongly on the cali-

brated values of the Weibull stress parameters (in, a,). Gao et al. [8, 20] and Ruggieri et al. [13] first

dernonstrated the source of difficulties in earlier calibration procedures which employ a single set of high-

constraint toughness values, with crack-front fields characterized by only J, to calibrate the two parame-

ters. They introduced a new calibration procedure, which leads to unique sets of calibrated parameters.

This procedure utilizes the constraint differences between two different sets of measured fracture tough-

ness values - one set measured using high constraint specimens and one set measured using low constraint

specimens. The low constraint specimens fracture at crack-front conditions characterized by at least two

independent parameters (i.e., J and the T-stress or the 0-stress), which enables calibration for a unique

pair (m, r,,). The method proceeds by using trial values of in to constraint correct (scale) each set of

toughness values to a common reference configuration (most often plane-strain, SSY with zero T-stress).

The calibrated pair of Weibull parameters (in and then a,,) best collapses the two experimental data sets to

the same distribution of cumulative fracture probability when scaled to the reference condition.

For three-parameter models such as Eq. (9), additional procedures must be introduced to calibrate the

third-parameter, K,,,m,, (or a,._,,m). Petti and Dodds [ 14,18] employ a simple least squares procedure in com-

bination with constraint correction to calibrate all three-parameters. They assign equal weight to all

measured toughness values in the calibration process. This method not only produces similar toughness

distributions for the high and low constraint data sets when scaled to a common reference condition, but

finds the set of parameters that produce a "best-fit" of Eq. (9) to the experimental data. In earlier work

[8,13,20], the simple calibration procedure forced equivalence of only K0-values for the two scaled distri-

butions, which often led to less than satisfactory fits for toughness values at low and high fracture prob-

abilities. Here, we employ an updated version of the least squares procedure. This error function applies

a weight factor to each measured toughness value designed to reduce the relative contribution of experi-

mental values that differ the greatest amount from the mean of the measured values. The Appendix pro-

vides a detailed description of the error measure.

The following steps describe the calibration procedure:

1. Test two sets of specimens at the same temperature in the DBT region that have markedly different constraint:

* high constraint (HC) data set, with nHC specimens, that approaches small-scale yielding conditions,
having M_> 100

" a low constraint (LQ data set, with nLC specimens, under large-scale vielding but without significant
ductile tearing prior to cleavage fracture in each specimen

The subsequently calibrated parameters for the Weibull stress model then app ly strictly for the test tempera-
ture.

2. Obtain uniaxial. (true) stress-strain curve for the test temperature to strain values of ;Z 2.0 (needed for finite
element modeling).

3. Rank order each of the experimental data sets and calculate the rank probability oa failure for each specimen
in each data set,
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I -L k i- i0. -r, ())C -0.3i-,,ik n + 0.4 -rank + 0.4

where nHC acld nLC denole the number of specimens in e'ach data set and i denotes the rank number, respec-
tive/v (see Bompas-Smnith [211).

4. Perjrmn nonlinear 3-D finite element analses as described here and in [8, /3, 20116r:

* both fIC and LC test specimen geometries, and

" the plane-strain reference conjfiguration. IT SSY (T-stress = 0).

The stored, stress-strain results f/br each element at each cmnahlsis load step enable vieri rapid comnputation of

the Weibull stress value using Eq. (6) for a speci(ied, trial value of /i.

5. Assume trial vahles fur in and Kn (or assume K,,,,, is fixed cit 20 MPa Vin as in El 921). From 3-D finite ele-
inent results, compute a,,. vs. J loading curves.for the spcc'inens (IIC and LC) and/or the IT SSY reference

condition. Convert J-vaciles to K -vacites by capplving the plane-strain conversion (the calihration process is

expressed in terms of K1 to maintain similarity with E1921 termninolog,). Set the vcahe of j.-,,,i, Kj

6. Correct the high and low constraint toughness values to the ITSSYplane-strain condition using Eq. (11). This

yields two sets of toughness valhtes temined K j.CISSY and K ,-C-ITssY , or generclIv is

HC ITSSY /tC' ITSSY7. Use Eq. (2) to computte K0) - - for the high constraint data set. Use A0 - anc the tricl value of k

to define a continuous, cumnulativeJfilure probabilitv .finction termed here K. TSSY fi-omt Eq. (1).

8. For the trial pair m and K,,,,, calculate a scalar error ineasure to characterize differences between the HC and
LC constraint-corrected distributions. The new error measure here includes two parts: (1) the sumned difekr-
ences between the high and low constraint-corrected data sets (Step 6) and the continuous SSY distribution
(Step 7), and (2) the summed differences between the Kl1,-values for the high and low constraint data sets

scaled to SSY (both from Step 6).

nL• +n,. an(ntc"il

Error(,K)= -TSSY ITSSY - F(,) + Y K j1C-T1Y - LITSSYIWF (13)

The multiplier, WF, denotes a weight factor (EWF -- 1 ), which scales the error contribution for a given value of
i based on the confidence in the current failure probabilitv. See the Appendix for additional details including
modifications to handle the nHC • nLC case.

Other, similar error measures likely would lead to equally satisfactory estimates for the parameters.

9. Repeat steps 5-8for additional trial pairs of m and Kmi,.

10. The calibrated pair (n, K,,,i,,) minimizes the error finction.

After calibration of in and Kmi,, compute values for a,, and ci,,m•,, using the finite element results for a, vs.
TSSYTSSYITSSY

J. Remember that u,, corresponds to K = KITSSY (Step 7) and JwTmin to Ki = K,,i calculated for

the reference configuration. The following equation scales the calibrated u, ITSSY to the experimental

specimen configuration (xT xC),

.ITi-C ITSSY - ,0/4 I ITSSY _,,,14i, jTC

where o-.., denotes the ,,. value corresponding to Kj = Kj,, for the xT size specimen of interest. Equa-

tion (7) may be used to compute u),-C if the specimen has not experienced constraint loss at K,,j, oth-
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erwise. Use Eq. (8). Using in, , predictions of the cumulative probability of failure for

the xT size specimen at a given temperature follow from Eq. (9),
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4 Finite Element Modeling

Nonlinear finite element analyses are performed on highly refined meshes using the research code

WARP3D [22]. The material response follows a Mises constitutive model with .J, flow theory-isotropic

hardening and includes the effects of large displacements and finite strains. Each finite element model

consists of standard three-dimensional, 8-node elements with 2x2x2 Gauss quadrature and a B formula-

tion to prevent volumetric locking. WARP3D includes a domain integral procedure that enables compu-

tation of.J-integral values point-wise along the front of a crack and the through-thickness average value.

At each temperature, the analyses use piecewise-linear representations of the quasi-static, true stress-true

strain curves measured [16,23] for the Euro material - a quenched and tempered pressure vessel steel

DIN 22NiMoCr37 similar to ASME Grade A508 C1.3 (see Fig. 2). The tests and instrumentation enabled

logarithmic strain values to reach c = 2.0; the curves input to WARP3D have no further hardening for t: >

2.0. As commonly observed in ferritic steels, the yield stress decreases slowly with increasing tempera-

ture over the DBT region. The complete experimental stress-strain curve at -11 0°C remained unavailable

to us at the time of our analyses; consequently, we adopted the material flow properties at -91 'C in analy-

ses for specimens tested at -1IO 0 C. Temperature invariant values of E = 206 GPa and v = 0.3 are em-

ployed in the analyses. The strong dependency of computed Weibull stress values on the stress-strain

fields just ahead of the blunted region along the crack front leads to a direct dependence on details of the

stress-strain curves input to the analyses. Preliminary analyses to compute the a,.-J curves using initial

stress-strain curves with measured strains e < 0.12 showed a significant variability depending on the as-

sumptions made for the input curves at larger strain levels (overall load-displacement curves from the

analyses show no effect since very small volumes of material at the crack front experience severe strain-

ing). The availability of stress strain curves at the higher maximum strain values eliminated this issue.

The plane-strain, SSY stress fields with zero T-stress define a very high constraint, reference condition at

the crack front to assess constraint loss in the fracture specimens. To generate these fields, this study em-

ploys a standard boundary layer model [24, 25]. At maximum load, the extent of the plastic zone (Rn)

remains small compared to the outer boundary radius (R, < 0.05R). The one-quarter symmetric, finite

element mesh shown in Fig. 3c contains approximately 2,800 elements with one element layer through

the thickness. A plane-strain, Mode I displacement field applied to the outer boundary loads the model,

u(R,0) K 1(+ cos (- ) (3 - 4v - cos 0), (15)
E 2

v(R, 0) = 0 c j(3-4v-cos0) (16)

w(R, 0) 0 (17)
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The crack-tip region of the SSY mesh has a small initial root radius of 2.5 /in to aid convergence of the

finite-strain analyses in the early stages of loading. The 7,,.-.J curves obtained from the SSY analyses en-

able computation of the C and C constants in Eq. (7).

Nonlinear finite deformation analyses are also performed on 3-D models of CVN and C(T) specimen ge-

ometries using very refined meshes. Figures 3(a,b) show the one-quarter symmetric finite element

meshes defined for these two specimens. The CVNs are 0.4T SE(B)s with a square cross-section, pre-

cracked to a/W-= 0.12 or 0.5. The proportionally scaled C(T) specimens range in size from 0.ST to 2T, all

analyzed with a/W=0.56 (the g-function approach described previously enables simple scaling of the IT

size used in the analyses to all other sizes). Focused rings of elements surround the crack-tip region of

each specimen. The specimen meshes also contain an initial root radius at the crack front. Under increas-

ing load, extensive element distortion near the notch root prevents convergence of the global Newton it-

erations. To remedy this problem, several different meshes are employed for each fracture specimen,

each mesh has an increasingly larger initial root radius. This process enables generation of solutions over

the complete loading history to quite high .1-values. The number of elements in the CVN and C(T) mod-

els ranges from 16,200 to 28,500 depending on the specimen type and initial root radius, which ranged

from 0.25-108 pm for C(T)s and 0.25-36 pan for CVNs. The key results (oY,,.-J curves) for a mesh are not

used until the deformed root radiLus exceeds ; 3x the undeformed radius. Previous work shows that

crack-front fields at higher loading then remain unaffected by the initial notch radius [26]. Simple spline

fitting of these multi-mesh results yields the final o.-.J curve for a specimen (at a specific temperature)

over the complete load history.
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5 Results from Calibration Procedure

5.1 European program

Ten laboratories generated extraordinarily large datasets of fracture toughness values (>800) for a single

material during the European Union project entitled "Fracture toughness of steel in the ductile to brittle

transition regime." Fleerens et al. 116] provide a detailed description of the experimental procedures, ma-

terial properties, specimen dimensions and locations in the forging. The project participants executed

fracture toughness tests using standard, deep notch C(T) specimens with sizes ranging from 0.5T to 4T.

The datasets span test temperatures from the lower shelf to the upper shelf with significant coverage of

the DBT region. The fracture datasets and experimental stress-strain curves may be downloaded from the

GKSS ftp-server at ftp://ftp.gkss.de/pub/eurodataset. Subsequent additional work by Heerens et al. [I17],

among others, tested over 400 pre-cracked Charpy specimens machined from the broken halves of 4T

C(T)s tested in the Euro-program.

Wallin's analysis [1 5] of all tile C(T) fracture toughness data generated in the testing program leads to an

ASTM E1921 To temperature of -90'C (i.e., the temperature at which the median toughness of a IT,

high-constraint geometry = 100 MPa',m). Figures 4(a,c) show the rank distributions of cumulative frac-

ture probability, Eq. (12), for the raw experimental fracture toughness values for the 0.5T, IT, and 2T

C(T) specimens at -40'C and at -20'C - temperatures at the upper-end of the DBT region. In contrast,

Fig. 4(b) shows the cumulative fracture probabilities for the deep-notch CVN and 0.5T C(T) specimens

tested in the lower-transition region at -1 10°C. Three of tile 0.5T C(T)s at -40'C and most of the 0.5T

C(T) specimens at -20'C experienced significant, stable ductile tearing prior to cleavage fracture. All

other specimens failed by cleavage fracture without measurable ductile tearing. To better characterize the

relative amount of deformation in various size specimens across the DBT shown in Fig. 4, markers corre-

sponding to different M-values are provided, where M = boo/J with the temperature dependent uo taken

from Fig. 2. To place these values in perspective, E1921 requires censoring of values for deep-notch

specimens with M _< 30, although some amount of constraint loss does occur at higher M-values, espe-

cially in the SE(B) specimens.

Figure 5 shows the distributions of cumulative fracture probability for raw experimental toughness values

of datasets used here later to explore the robustness of the calibrated Weibull stress model. These datasets

are not used in any present calibrations and include: (1) deep notched (a/W= 0.5) CVNs at -91°C; (2)

0.5T C(T)s at -60'C, and (3) shallow-notched (a/W=O. 12) CVNs at -11 0°C. All deep-notch C(T)

specimens in all datasets have a nominal a/W= 0.56.

Figure 6 shows the experimental datasets of Fig. 4 scaled to a common, IT crack-front length using Eq.

(4) as described in El192 1. This statistical adjustment corrects the different datasets at a common tem-

perature to have the same cumulative failure probabilities provided there exists no deterministic constraint

loss from large-scale yielding effects. In Fig. 6(a) for -40'C, the 2T and IT datasets merge very closely

but the 0.5Ts diverge for specimens with M< 20. At -20'C in Fig. 6(c), the 0.5T specimens all have M:<
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20 and show a markedly different behavior from the IT and 2T specimens (which also appear to show

some constraint differences). Figure 6(b) shows that even at -1I10°C (20'C below T0) there appears to

exist a constraint difference between deep-notch CVNs and C(T)s with nominally the same crack-front

length (OAT vs. 0.5T).

5.2 Calibration Strategy

The procedures to calibrate the three-parameter Weibull stress model described in Section 2 rely upon the

existence of fracture toughness datasets at a fixed temperature with differing amounts of constraint loss.

The present work uses the toughness datasets for the Euro-material measured at -40'C and at -I 10C to

calibrate the parameters (independently) to investigate the temperature dependence of the Weibull

modulus (in). These two test temperatures of T7-- 20°C and To+ 50'C lie at the extreme ends of the DBT

for this material and should indicate the temperature effect on in if it exists.

Bernauer et a/. [27] previously combined a continuum damage model for ductile tearing with the stan-

dard, two-parameter Beremin model to calibrate Weibull stress parameters for this same Euro-material.

Based on initial quasi-static fracture and tensile tests produced by the program, the calibrated m in [27]

varied from 22 to 103 depending on test temperature and specimen geometry. Their results using fracture

tests relied on a single set of high-constraint specimens, C(T)s, combined with the maximum likelihood

parameter calibration method of Minami et al. [I 1] and thus their results may have been influenced by the

non-uniqueness issue [8,12,13]. The calibration process here uses the final, very large datasets combined

with a three-parameter Weibull stress model and the constraint-based procedure to overcome the non-

uniqueness issues.

5.3 Calibration at -40 0 C

Here we calibrate the Weibull stress parameters for the Euro-material at -40'C using the 0.5T and IT

C(T) fracture toughness data (see Fig. 4a). Exceptionally large fracture toughness values (M •<10) are

excluded from the calibration procedure. Excessive deformation occurs along the crack front in the finite

element models and predicted strain levels exceed the experimental stress-strain curves input to the analy-

ses. Some specimens with M values _< 10 reportedly have ductile tearing not incorporated in the present

analyses. The calibration procedure follows the steps outlined in Section 2. Figure 7(a) provides the er-

ror function of Eq. (13) over a wide range of trial m and K,,i,, pairs (m and K,,,1 , range from 1 to 30 and

from 0 to 80 MPa'Im, respectively). Figure 7(a) illustrates the error as a function of m; Figure 7(b) shows

the corresponding value of Kmi at each of these rn-values that leads to the indicated minimum error. The

Eq. (13) error values are normalized by the maximum error value found over the examined range of in

and K,,,i,,. At -40'C, the error function remains relatively constant for values of fn ranging from 18 to 22.

Similarly, the corresponding K,.i,, values remain nearly constant at 40 MPaJn for values of in ranging

from 18 to 22 (recall that E192 1 adopts a temperature invariant K,,, = 20 MPa'lm for all materials to re-

duce the required number of test specimens to a practical value of 6 minimum).
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The Weibull stress parameters i = 20 with n.,..,. computed at K,,,, = 40 NiPa'nm appear to best minimize

the error function at -40'C. Figure 8(a) illustrates the effects of the now combined statistical crack-front

length (thickness) adjustment and the dLe'fcrministic constraint correction. Each measured toughness value

for the 0.5T and IT C(T) specimens is corrected to an equivalent IT SSY value using Eq. (II), where the

g-function corresponds to the calibrated i = 20 (for the C(T) geometry and stress-strain curve at -40°C)

and K,,,m,, equals the calibrated value of 40 MPa~rm. The rank probabilities (PI) follow from Eq. (12). The

continuous curve on the figure represents Eq. (9) based on these values: ti 20 a,..,,, computed at A,,... =

40 MPaqrm in the IT-SSY boundary layer model, and aT,, = a,,. at K. = K(1)rsFs' for the IT-C(T) specimen

(see Step 7 in the calibration process). Table I lists the computed values of a-,, and a,.,,,i, for each speci-
men and C. The P, value for each a,. value is plotted in terms of the corresponding K "TSSY value com-

puted with Eq. (7) given C at --40'C (and a unit value for V0).

These constraint corrected values in Fig. 8(a) should be compared to those in Fig. 6(a), which reflect only

the (statistical) crack-front length adjustment. Since this it and K,,..., pair minimizes the error function

based on constraint differences. the constraint corrected toughness values collapse to essentially the same

distribution in Fig. 8(a) as expected. For reference, Fig. 8(b) shows the constraint corrected values for the

same datasets but using a very different pair of Weibull stress parameters ofmn = 4 and K,,,j,, = 20 MPa3'm.

Here the corrected datasets do not collapse to same distributions indicating an incorrect pair of values (1n,

Figures 9(a,c) show the cumulative probability of fracture predictions for the 0.5T, IT and 2T C(T)

specimens using the calibrated parameters. The raw experimental toughness values (no adjustments, no

corrections) are plotted at the corresponding rank probability values in each case. The continuous curve

for each dataset derives from Eq. (9) based on these values: at = 20, a ,,u,, computed at K,,,i,, = 40 MPa',m

in the IT-SSY boundary layer model, and a,, = a,,, at K1 = KOITSsY for the IT-C(T) specimen and adjusted

via Eq. (14) to the actual specimen size (see Step 7 in the calibration process). Table I lists the computed

'values of aY,, and _ for each specimen. The P•, value for each a,,, value is plotted in terms of the corre-

sponding K)T value where a,,. values are computed with Eq. (8) given C at -40'C (and a unit value for

V0). The g-function for each of these proportionally-sized C(T) specimens is identical. This process,

based on the calibrated Weibull stress parameters, leads to consistent predictions for the 0.5T and IT C(T)

specimens as indicated in Fig. 9a, i.e. the data used to calibrate the parameters. The predicted distribution

for the 2T C(T) dataset (not used in the calibration) shows excellent agreement as well.

5.4 Calibration at-110°C

We repeat the above calibration procedure using large datasets of 0.ST C(T) and deep notch, pre-cracked

CVN specimens at -1 10°C. At this temperature, 20'C below To = -90'C, even the small C(T) specimens

exhibit very nearly SSY behavior at fracture. Consequently, the absence of constraint loss between, for

example, iT and 0.5 C(T) specimens precludes calibration of the Weibull stress parameters. Figure 6(b)

shows the 0.5T C(T) and CVN datasets adjusted to (statistically) equivalent IT thickness using the E1921

procedure. The resulting distributions indicate sufficient constraint loss exists in the pre-cracked CVN

specimens (0.4T SE(B)s with BxB cross-section) to calibrate the parameters.
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Figure 7(c) provides values of the error function detined in Eq. (1 3) over a wide range of trial in and K,..,

pairs (in and K,,,,. range from I to 30 and from 0 to 80 MPa'ir, respectively). Figure 7(c) illustrates the

error as a function of in; Figure 7(d) shows the corresponding value of K,,,,,, at each of these in-values that

leads to the minimum error. Here the Eq. (1 3) error values are again normalized by the maximum error

value found over the examined range of In and K,,,. The reduced level of constraint loss for these two

specimen geometries (compared to the specimens used at -40°C) leads to less "sensitivity" in the calibra-

tion process. This effect appears as the larger "tflat" region of the error curve in Fig. 7(c). As the con-

straint difference between the two datasets used in the calibration gradually vanishes, all values of In fit

the datasets indicating the loss of uniqueness discussed in [8,12,13].

Figures 7(c,d) indicate that in = 18 and K,,,,,, = 30 NIPaV•m minimize the error at this temperature. Figure

8(d) illustrates the effects of the now combined statistical crack-front length (thickness) adjustment and

the deterministic constraint correction. Each measured toughness value for tile 0.5T C(T) and the CVN

specimen is corrected to an equivalent IT-SSY Value using Eq. (II) and K,..,., equals the calibrated value

of 30 MPam. Since in and K,,,i,, minimize the error function, the constraint corrected toughness values

collapse to nearly identical distributions. For reference. Fig. 8(d) shows the constraint corrected values

for the same datasets but using a very different pair of Weibull stress parameters of m = 4 and K,,,;,, = 20

MPa~'m. Here the corrected datasets do not collapse to same distributions indicating an incorrect pair of

values (m, Ki,).

Figure 9(b) shows the cumulative probability of fracture predictions for the 0.5T C(T) and CVN speci-

mens using the calibrated parameters. The raw experimental toughness values (no adjustments, correc-

tions) are plotted at the corresponding rank probability values in each case. The continuous curve for

each dataset derives again from Eq. (9) based on these values: m =18, Ua,,.,,,, computed at K,,,i,, = 30

MPa,,m in the IT-SSY boundary layer model, and a,, = a,, at K. = K/TSSY for the 0.5T-C(T) specimens

and adjusted via Eq. (14) to the actual specimen size (see Step 7 in the calibration process). Table 1 lists

the computed values of a,, and a,.,,..,, for each specimen and C. The P1 value for each a,, value is plotted in

terms of the corresponding K'T value where a,. values are computed with Eq. (8) given C at -11 0°C (and

a unit value for V0). The predicted distributions for these two datasets, both used in the calibration, show

excellent agreement as expected.

5.5 Consequences of Temperature Invariant m-Value

Based on the independent calibrations using very large datasets at extremes of the DBT (-40'C, -1 10°C),

the Weibull modulus, m, appears to remain essentially invariant of temperature with a value of 18 to 20

for this key ferritic steel used to fabricate many commercial reactor pressure vessels. Further, the best-fit

K,,,i,, value appears to increase slowly with temperature while a,, increases more sharply with temperature

over the DBT region. These results are consistent with recent studies by Petti and Dodds [14]. In a re-

lated effort, Gao and Dodds [28] show, through similar calibrations, an invariance of in to loading rate at

a fixed temperature in the DBT for a strongly rate-sensitive ferritic steel (A515-70). Not surprisingly,

they find that a,, exhibits a dependence on loading rate (decreases with increased K-rate) but insufficient

experimental data precludes a study of the K,,,, rate dependence in their work.
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The temperature invariance of in opens the real potential for practical applications of this methodology to

quantify constraint effects on cleavage toughness over the DBT region. Experimental datasets with suffi-

cient constraint difference are then required at only one temperature to calibrate in. Petti and Dodds [14]

outline a new procedure to predict the cumulative probabilities of fracture at any temperature over the

DBT region for specimen geometries that experience constraint loss given a calibrated value for in and an

estimated or assumed variation for K,,,i,, with temperature (could be simply a constant value of, for exam-

pie, 20 MPa'lm). In the Petti and Dodds approach, the toughness-temperature relationship defined by the

E 192 1 Master Curve for A'/,. enables computation of the (,, temperature dependence - the process tbrces

the Weibull stress model with a calibrated, temperature invariant in value to predict the E1921 Master

Curve Kj,.-temperature dependence.

In the next section, we employ the present calibrated Weibull stress parameters for the Euro-material and

the Petti and Dodds procedure to predict the rneasured fracture distributions at various temperatures over

the DBT region not used in the present calibrations. This exercise thus very closely represents a likely

application scenario in practical defect assessments.
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6 Predictions Over DBT by Coupling with the Master Curve

The previous section used extensive fracture data sets for the Euro-material to demonstrate that the

Weibull modulus (n) remains essentially constant over tile DBT range (z 20 at 40 'C and - 18 at ---110

'C). The experimental toughness values at these two temperatures, coupled with known in-vahles. also

enabled determination of temperature speci tic r, and K ,,,., values (and thus c, ......). In practical defect as-

sessments, such temperature specific calibrations become impractical. Most likely. sets of low and high

constraint fracture toughness values for the calibration process will be available at only one temperature.

With tile knowledge that in remains essentially constant over the DBT range for this important pressure

vessel steel, this section describes an application of the Petti and Dodds procedure [14] to predict cumula-

tive fracture probabilities for specimens that experience constraint loss. The recommended procedure

uses the calibrated value of in for the material obtained from Fracture toughness tests conducted above T,1

(but below the onset of ductile tearing) to maximize the constraint loss in the datasets and thereby in-

crease the calibration sensitivity. Recall that when the temperature falls well below T, the behavior of all

fracture specimens approaches SSY (including small-sized specimens and specimens with shallow-

cracks). Once SSY conditions are reached, a unique calibration of the Weibull stress parameters is no

longer possible (see extended discussions in [8,15,19]). The present calibration process thus relies on the

large differences in fracture toughness between high and low constraint specimens that develop rapidly at

temperatures above To. Predictions from the calibrated model at lower temperatures, approaching and

below To, are then expected to maintain accuracy as all datasets gradually merge to the SSY condition on

the lower-shelf at which in becomes a non-unique parameter

The large datasets of fracture toughness values with some constraint loss available for the Euro-material

over the DBT region between -20'C and -1 10°C provide a.unique opportunity to assess the practicality

and effectiveness of the proposed procedure. Let Lis assume then for this exercise that high and low frac-

ture toughness datasets are available only at -40'C. The high toughness dataset, the IT C(T) specimens,

combined with conventional application of the ASTM E1921 procedures leads to an estimate of the refer-

ence temperature To z -90'C. Using the high constraint IT C(T) specimens and the 0.5T C(T) specimens

(which experience some constraint loss), the calibrated Weibull modulus again becomes m = 20, as de-

veloped in Section 5.3. In practice, the number of available test specimens for the calibration (often 6-

10) would be far less than the number of specimens here for the Euro-material at -40'C. The reduced

number of specimens in practice would thus preclude the simultaneous calibration of.K,,i,,, which is set

now at the temperature invariant value of 20MPa/m, as required in E1921, rather than the calibrated

value of 40 MPanm.

With In and K i,,,, now known over the full DBT range, the only remaining parameter required to estimate

fracture probabilities at temperatures other than -40'C becomes the Weibull scale parameter, U,, which

varies with temperature. The procedure outlined by Petti and Dodds [14] predicts oq, as a function of tem-

perature using the calibrated m-value and the known value for To. Given To, the procedure adopts the
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I:1921 Master Curve to estimate the scale parameter KA,1r (assuInIedl to represent plane-strain IT SSY

conditions) as a function of temperature. Finite element analyses of the plane-strain SSY boundary layer

model over a range of temperatures yield the Weibull stress vs. IK. curves and thus the constant C for use

in Eq. (7). The finite element analyses of the SSY model and of the application geometries do require the

measured, uniaxial stress-strain curves at the specific application temperatures. The analyses and K.l T

estimates from the Master Curve enable computation of the needed a, values as a function of temperature.

With a,, known, the cumulative fracture probabilities 1`r the application geometry may be computed using

the procedures described in Section 5.

Here, we employ this procedure to estimate the cumulative fracture probabilities of the Euro-material for

these configurations that have some level of constraint loss: (a) shallow notch CVN specimens at -110

'C, (b) deep-notch CVN specimens at -91 'C, (c) 0.ST C(T) specimens at --60'C, and (d) 2T, I T and 0.5T

C(T)s at -20'C. Large datasets of measured fracture toughness values are available at each of these con-

ditions for the Euro-material to assess the reliability of this approach -- none of these datasets have been

used in any calibration processes described in this work.

The following steps describe the procedure in additional detail:

1. Calibrate tile Weihall stress Parameter in as descrihed in Section 3 aisinsg datasets o/ fi'actare toaghness oh-

tained at a temperatare above T, i htbelow the onset of signilicant ductile tearing (reconmnended). Tlte cali-
brated In-vaine then remains invariant oa!temperatare. Most often, K,,,K,, will be set to the templerature invari-

ant, El 921 value o/20 MPa vm. Here. we iste the calibrated va/le ojm = 20 at -40 9C.
2. Use the iigh constraint experinental data from the calibration and calculate the El 921 rq/crence temperature

TFo,

To = T-.I-.- n K' 30- MPa'/m, 'C, (18)

0.019 70 ]
where T denotes the test temperature and

IT mlT=0.9124(K1'-K,,)+K,, MPa,]m, (19)

with

(KTFi, 114
1") ,,K = (N-0.3068) +Kj i MPa'm, (20)

where N denotes the number oJfspecimens in the dataset.

3. Using the Master Curve and T0, calculate K0T for the DBT temperature(s), T, at which predictions /fracture

probabilities for specimens with constraint loss are desired,

Ko') = 31 +-77 exp[O.019(T-T,)] MPaim, °C. (21)

4. Using stress-strain curves at tihe application temperatures, perform finite element analvses to compute Weibull
stress values ('with calibrated m) for: (a) the IT plane-strain SSY reference condition, (b) all specimens (sizes

and geometries) /f interest.
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.5. ti'iu wali o 0/ (TI, ( rrrci,,onn.,h to K, = K,11r ,11d (T., rrcst l( ) ir4lll ) KI - K.... fil lt ' tedesired h'iPI-

teralure Ltsing res.ulits /Irnt tlh I T phl'-S.Itrail SSY allaisis.

6. Calculate the denominator of Eq. (9). f(T`ss4 (1 lot- the -ipp/icati temqkratire. This .. ,hte

toilIs cOInsItalntI with cham,-ccs in tonstrcjlint (e.a. specintmen si:-c and type). Thoi-hI inot needld to intake the

ir-cdiutions. the vaIle' ll//,,hr f/in .hpLcimt'n of i/tlfrs l./5I/f.n wv/lnto E. / 1f4).

7, •'Simg reSults fi-oi the./imwft chellint anal,'ses of *he sfecillells, cahtuilaic o.,I.....

8•. Use Eq. (9) 10with the coLt.•ttt dt'inimator calcilatLd in Step 6. the val/ue of oLr i..t..lr the .pecitell f inter-

.'st cc/Lti/atLed inl Step 7. anclL the xT .Lcinten's Wei/ittll stress distrihtitiott (is af i/tltio f o"Kjfioin Step 4 to

predict the distribtution of/Llnniative fr-actulre probhahility P/ vs. K,.

From Step 3 above and with T, = -90'C, KIV (assumed here to be plane-strain SSY) equals 106.5

MPaJm, 167.2 MPa"Im, and 322 MPa'rn at -91 'C, -60 'C. and -20'C. respectively. Application of the

remaining steps of the procedure leads to predictions of the cumulative fracture probabilities for the

lower-constraint geometries across the DBT range. Petti and Dodds [ 14] discuss the potential conse-

quences of assuming that the M'laster Curve actually represents IT. plane-strain SSY conditions -- at tem-

peratures in upper transition this strong connection diminishes and also contributes to errors in predictions

of fracture probabilities at temperatures higher than the one used to calibrate m. A quantitative recom-

mendation on the upper limit of' testing temperature above T) is not possible with this technology at the

present time. The current model (faithfully) reproduces built-in inaccuracies-of the Master Curve shape at

temperatures approaching upper transition.

Figure 10(a) compares the predictions to the raw experimental data at -91°C for the deep notch CVNs.

The Weibull stress-based prediction (curve) very closely matches the rank probability values for the

measured experimental toughness values. Figure 10(b) illustrates equally good agreement for the 0.5T

C(T) specimens at -60'C. Figure 10(c) illustrates the predictions at -20'C for the 2T, ITand 0.ST C(T)

.specimens. The circles indicate those 0.ST C(T) specimens, which experienced ductile tearing prior to

fracture. In the finite element analyses, excessive deformation along the crack front in these IT and 0.5T

C(T) specimens at -20'C for very high toughness levels eventually limits the accuracy of the predictions.

Nevertheless, the method produces reasonably good predictions of the, cumulative probability of failure

for these specimens at 70'C above To and at 20'C above the temperature used for calibration of in. Fi-

nally, Figure 10(d) shows the predictions for the newly available shallow-notch (a/W = 0.12) CVN

specimens tested at -1 10C. The solid line illustrates the prediction using the E1921 value of 20 MPa4m

for K,,,,. For-reference, the dashed line shows the improved prediction for the temperature specific, cali-

brated value of Ki, = 30 MPa"m described in Section 4.4.

The good agreement of predictions with measured experimental toughness values shown in each case in

Fig. 10 provides an encouraging demonstration for application of the Weibull stress method, at least for

this key ferritic steel used in many nuclear pressure vessels. The demonstrated temperature invariance of

the Weibull modulus, in, coupled with a fixed K,,,,, and the E1921 Master Curve to support temperature

dependent ux,, represents a reasonably practical engineering methodology.
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7 Summary and Conclusions

This study utilizes the very large datasets of more than 800 specimens from a recently completed Euro-

pean Union research project entitled "Fracture toughness of steel in the ductile to brittle transition re-

gime" to investigate the temperature dependence of' the Weibull stress modulus, in, over the ductile-to-

brittle transition range. The material is a widely used, nuclear pressure vessel steel DIN 22NiMoCr37

(similar to the American A508 CI.3 steel). The Weibull stress micromechanical model for cleavage frac-

ture adopted in this study has three-parameters in the expression for the cumulative fracture probability

that require calibration: the modulus In, the scale factor oT,, and a threshold value, ,,.-mi,,, of the Weibull

stress below which cleavage fracture does not occur. Once these parameters become known for a mate-

rial at a specified temperature over the DBT range, 3-D finite element analyses of fracture specimens may

be used to predict cumulative probabilities of cleavage fracture under various levels of constraint loss that

develop from large-scale plasticity.

The work presented here supports the following conclusions:

* Sufficient constraint difference exists in the available experimental datasets to calibrate the

Weibull modulus, m, at the extreme range of temperatures of the DBT for this material. The

ASTM E1921 reference temperature To =-90'C. Independent calibrations of m are described in

this study at T= -40'C and -I 10C.

" The calibrated m-values are m = 20 at T= -40'C and m = 18 at T= -11 O0 C, with greater sensitiv-

ity of the calibration process demonstrated at the higher temperature. The calibration process se-

lects the value for m that collapses datasets with constraint differences to have the same distribu-

tions of cumulative fracture probability in a IT, plane-strain SSY reference condition. Based on

these results derived from exceptionally large datasets, we conclude that m for this key ferritic

steel remains invariant of temperature over the DBT range.

" The very large datasets support simultaneous estimates for the best-fit value of the threshold

toughness, Kmin, as used in the E1921 three-parameter Weibull expression for the cumulative frac-

ture probability. The best-fit values are K,,i, = 30 MPaqm at T= -110°C and Kmin = 40 MPaV!m

at T = -40'C. ASTM E1921 recommends use of a temperature invariant value of K,,mi = 20

MPa'lm unless quite large datasets are available for the calibration. Not surprisingly, Kmn does

increase somewhat with temperature for this material.

" With calibrated values of the Weibull modulus, m, at T = -I 10°C, -40 0 C, corresponding tempera-

ture dependent or,, and a,, values derive from nonlinear finite element analyses of the IT, plane-

strain SSY reference condition and of various fracture specimens. The calibrated model predicts

correctly the fracture toughness probability distributions for the combined deterministic effects of

constraint loss and statistical effects of crack-front length at the two calibration temperatures.
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1The temperature invariance of the Weibull modulus. in. fir this pressure vessel steel makes possi-

ble more practical, 'engineering' applications of the present Weibull stress model in defect as-

sessments. The modulus, /it. is calibrated at a single temperature from test data (recommended to

be above To but below the temperature at which significant ductile tearing develops prior to

cleavage fracture). I lere, we use M = 20 from the calibration at T = -40'C. With nI and T,

known, along with stress-strain curves at temperatures of interest over the DBT region. this work

demonstrates use of the E 1921 Master Curve to compute the temperature dependence of q,, for the

F-uro-material. As would be most likely done in practice. K,,.. is fixed over the DBT range at the

E-1 921 recommended value of 20 MPaJm.

Applications of this "'engineering" approach to additional, large datasets for the EAuro-material

over the DBT range that show some constraint loss lead to excellent predictions of the measured,

cumulative fracture probabilities. These comparisons use no datasets involved in any calibrations

of the Weibull stress parameters.

28



References

I. Test method for the determination of reference temperature T, for ferritic steels in the transition
range (ASTM i- 1921 ), American Society for Testing and Materials. Philadelphia, 2002.

2. Wallin K. Fracture toughness transition curve shape for ferritic steels. Fracture of engineering
materials and structures. Elsevier 1991. p. 83-88.

3. Wallin K. Irradiation damage effects on the fracture toughness transition curve shape for reactor
pressure vessel steels. Int J Press Ves Piping 1993;55:61-79.

4. Wallin K, Saario T, Torronen K. Statistical model for carbide induced brittle fracture in steel.
Metal Science 1984;18:13-16.

5. Wallin K. The scatter in KIc-results. Engng Fract Mech 1984,19:1085-1093.

6. Beremin FM. A local criterion for cleavage fracture of a nuclear pressure vessel steel. Metallur
Trans 1983;14A:2277-2287.

7. Bakker A. Koers RWJ. Prediction of cleavage fracture events in the brittle-ductile transition region
of a ferritic steel. In: Blauel, Schwalbe, editors. Defect Assessment in Components - Fundamentals
and Applications, ESIS/EG9, Mechanical Engineering Publications, London, 1991. p. 613-632.

8. Gao X, Ruggieri C, Dodds RH. Calibration of Weibull stress parameters using fracture toughness
data. lnt J Fract 1998;92:175-200.

9. Kroon M, Faleskog J. A probabilistic model for cleavage fracture with a length scale-influence of
material parameters and constraint. Int J Fract 2002; 118:99-118.

10. Kroon M, Faleskog J. A probabilistic model for cleavage fracture-parameter estimation and
predictions of stationary crack experiments. Engng Fract Mech 2004;71:57-79.

11. Minami F, Bruckner-Foit A, Munz D, Trolldenier B. Estimation procedure for the Weibull

parameters used in the local approach. Int J Fract 1992;54:197-2 10.

12. Ruggieri C, Dodds RH. Numerical evaluation of probabilistic fracture parameters with WSTRESS.
Engr Comp 1998; 15:49:73.

13. Ruggieri C, Gao X, Dodds RH. Transferability of elastic-plastic fracture toughness using the
Weibull stress approach: significance of parameter calibration. Engng Fract Mech 2000;67:101-
117.

14. Petti JP, Dodds RH. Calibration of the Weibull stress scale parameter, q,, using the Master Curve.
Engng Fract Mech 2005;72:91-120.

15. Wallin K. Master curve analysis of the "Euro" fracture toughness dataset. Engng Fract Mech
2002;69:451-481.

29



16. Ileerens J. HeIllmann D. Development of the Euro fracture toughness dataset. EIgnge Fract Mech

2002:69:421-449.

17. Heerens J, llellhann D. Fracture Toughness Determination in the Ductile-to-Brittle Transition

Regime - Pre-Cracked Charpy Specimens Compared with Standard Compact Specimens. 1-SIS-30,

Mechanical Engineering Publications, 2002. p. 297-305.

18. Petti JP, Dodds RH. Coupling of the Weibull stress model and macroscale models to predict

cleavage fracture. Engng Fract Mech 2004:71:2079:2103.

19. Gao X, Dodds RH. Constraint effects on the ductile-to-brittle transition temperature of fcrritic

steels: a Weibull stress model. Int J Fract 2000:102:43-69.

20. Gao X. Dodds RIH. Tregoning RL, Joyce JA. Link RE. A Weibull stress model to predict cleavage

fracture in plates containing surface cracks. Fatigue Fract Engng Mater Struct 1999:22: 481-493.

21. Bompas-Smith Jil. Mechanical survival: the use of reliability data. New York. McGraw-Hill, 1973.

22. Koppenhoefer K, Gullerud A, Roy A, Roychowdhury S, Dodds RH. WARP3D: dynamic non-linear

analysis of solids using a preconditioned conjugate gradient software architecture. Structural

Research Series (SRS) 596, UILU-ENG-94-2017, University of Illinois at Urbana-Champaign,

2005.

23. Bemauer G, Brocks W. Micro-mechanical modeling of ductile damage and tearing - results of a

European round robin. Fatigue Fract Engng Mater Struct 2002;25;363-383.

24. Moran B, Shih CF. A general treatment of crack tip contour integrals. Int J Fract 1987;35:295-310.

25. Larsson SG, Carlsson AJ. Influence of non-singular stress terms and specimen geometry on small

scale yielding at crack-tips in elastic-plastic materials. J Mech Phys Solids 1973;21:447-73.

26. Dodds R, Shih C, Anderson T. Continuum and micro-mechanics treatment of constraint in fracture.
Int J Fract 1993;64:101-133.

27. Bemauer G, Brocks W, Schmitt W. Modifications of the Beremin model for cleavage fracture in
the transition region of a ferritic steel. Engng Fract Mech 1999;64:305-325.

28. Gao X, Dodds RI. Loading rate effects on parameters of the Weibull stress model for ferritic

steels. Engng Fract Mech 2005;72;2416-2425.

29. Wallin K. Optimized estimation of the Weibull distribution parameters. Research Report 604,

Technical Research Center of Finland, Espoo, Finland, 1989.

30. Rossoll A. Fracture toughness determination of a low alloy steel by instrumented Charpy impact

tests. Ph.D. Thesis, Ecole Centrale des Arts et Manufactures, Chatenay-Malabry, France, 1998.

30



Appendix: Calibration Error Measure

The present calibration method employs an updated error measure (luinction) io characterie differences

between the low-constraint (LC) and high-constraint (I IC) data sets once they are constraint corrected to

tile IT SSY condition for a trial value of in and K,..... This procedure also accommodates a variable or

fixed value for K,,,,. The error function combines eqnt1lll" three contributions as

Em i A-_Z :. ..... - K' It'";:.. I '.:'... - KY' t: ' . Z K ..'"" - Al."',, k. ,( l

where nl.C and n/IC dcnote the number of test specimens in the LC and HC data sets. respectively. As

noted in Section 3, there are likely other, equally effective scalar measures of" tile calibration error. The

one above is physically motivated to reflect data sets with a larger number of values and to (possibly)

improve upon the earlier measure of Gao and Dodds [201 based on agreement of only K.) values for the

data sets. Equation ( .'\1) contains three independent parts calculated separately for a trial pair (in. K,.....).

The first and second parts follow as.

"-(A2) - "'" A

and compute the difference between the high and low constraint experimental data sets constraint

corrected to the reference configuration, K.,("" , and the SSY distribution of Krrss,' , see Fig. Ala.
The reference (continuous) cumulative failure probability, K,.ssY, follows from Eq. (I) using Ks

taken equal to Kl/-c-•rss\ . For each specimen toughness value i, the difference between K' (I-TSSY and

K,,i) is thus computed at the same failure probability.
J,(i)

The second part of the error function,

K ,-1TSSY A-T'(

captures the difference between the high constraint data set values, K.(),TSSY and the low constraint

data set values, KLCITSS , where both distributions are constraint corrected to the IT SSY reference

condition. Following the first two parts of the error function, the difference is calculated at equal failure

probabilities. For LC and HIC data sets with differing numbers of tested specimens (e.g. unequal failure

probabilities for a given toughness value), we use linear interpolation to estimate the required toughness.

The weight function, WF, reduces the relative contribution of the experimental data with the largest

uncertainty in PI (the tail and top of tile distribution),

CLK,. (z,)
WF() =1 ,I , where WF""" = 1 (A4)

CL,, (z;)

and CLK,, denotes the confidence limit for each sample and N denotes the total number of specimens in

the data set. Another possible weight function has a simpler form
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"= I ( %% where (II'" .... 1 (A5)

and cPl.• is the confidence limit for the data value with the most uncertainty. This second weight

tunct.ion should he applied it it is desired to completely reduce the contribution ot the data with the most

uncertainty.

The weighi tunction is calculated separately fOr each data set

CLK, (Z-;, + - (A6)

The 5% (:'") and 95% (""0 ' ) confidence liunits follow from nonlinear cquation,

C',( + ..(z , A ( ( )-(:, 0, (-A = .7)

where

, -(P -:). (AX)

A- -(P - 7 (A9)

A(-, -rin {1. 162 - 0.342 /N; 0.82 + P lIn(N)} forP,,_ 0.5, (A 10)

and

A(-7 min{l .162-0.342/ N;0.82 + (I - P.) ln(N)} for P, > 0.5. (Al l)

The positive sign in Eq. (A7) corresponds to the 5% limit and the negative sign to the 95% limit. See

Wallin [29] and Gao et aL. [20] for additional details regarding confidence limits.
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Figure 1. Weibull stress values and constraint correction g-functions computed using stress-strain properties for the
Euro material at -400C. Weibull stress modulus taken as m = 10 for these illustrative results.
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Table 1. Characteristic parameters of three parameter Weibull stress model for the Euro-material.

T = - 400 C

Configuration a., MPa a.-Mi.? MPa

0.5T C(T) 1212 846

IT C(T) 1219 875

2T C(T) 1276 898

IT SSY 1212 844

m = 20, e1/m = 492.36556 (MPa, m); = 60.52524 (ksi, in)

T = - 1100 C

Configuration a,, MPa aw-min, MPa

0.5T C(T) 1034 814
0.4T PCVN 1020 781

1T SSY 1097 869

m = 18, = 477.61145 (MPa,m); = 57.44222 (ksi,in)
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