

U.S. EPR Pre-Application Review Meeting: U.S. EPR Digital Protection System Topical Report

AREVA NP Inc. and the NRC March 1, 2007

AREVA NP INC.

> NRC Meeting –U.S. EPR Digital Protection System Topical Report March 1, 2007

AREVA NP INC.

Introduction

Sandra M. Sloan Manager, Regulatory Affairs New Plants Deployment

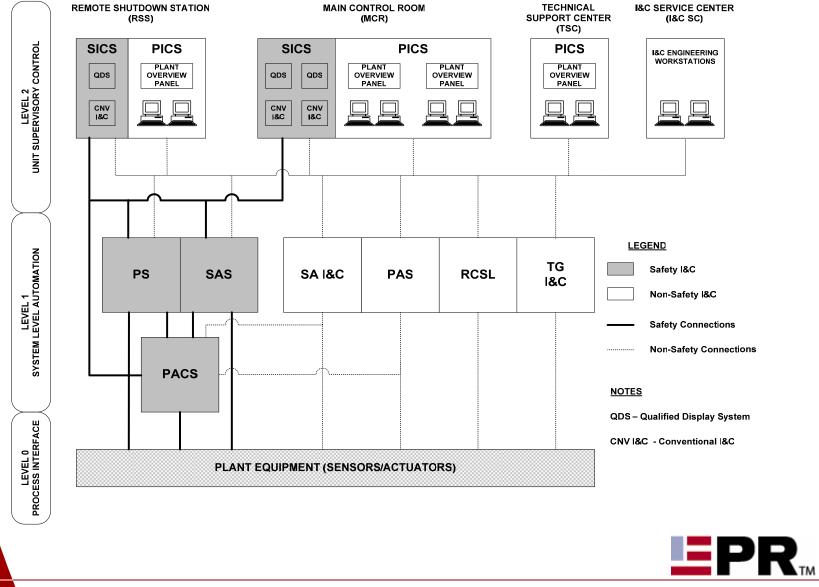
> NRC Meeting –U.S. EPR Digital Protection System Topical Report March 1, 2007

- > Introduction and Meeting Objectives (S. Sloan)
- > Digital Protection System Overview (S. Small)
- > Digital Protection System Topical Report (S. Small)
 - Contents
 - Application of TELEPERM XS (TXS) to the Digital Protection System design and selected technical topics
- Summary and Next Steps (S. Sloan)

- > Provide an overview of the U.S EPR Digital Protection System Topical Report
- > Follow-up from the August 31, 2006 meeting on I&C Digital Instrumentation and Control System Topics
- > Provide information on application of generic TXS technology to the U.S. EPR design
- > Provide an opportunity for early NRC feedback on the U.S. EPR Digital Protection System Topical Report

U.S. EPR Digital Protection System Overview

Shelby Small I&C Systems Engineer


AREVA NP INC.

AREVA

> NRC Meeting –U.S. EPR Digital Protection System Topical Report March 1, 2007

Digital Protection System Overview Overall I&C Architecture

Digital Protection System Overview Background

- U.S. EPR Digital Protection System is an integrated Reactor Protection and Engineered Safeguard Features Actuation System (ESFAS)
 - Reactor Trip (RT)
 - ESFAS
 - Permissive signals
- > Implemented in the TELEPERM XS platform
- > TXS platform is described in topical report EMF-2110, Revision 1, TELEPERM XS: A Digital Reactor Protection System, September 1, 1999
- NRC issued a safety evaluation report (SER) for the topical report via letter dated May 5, 2000 (TAC No. MA1983, ML003732662)

Digital Protection System Overview TXS Safety Principles

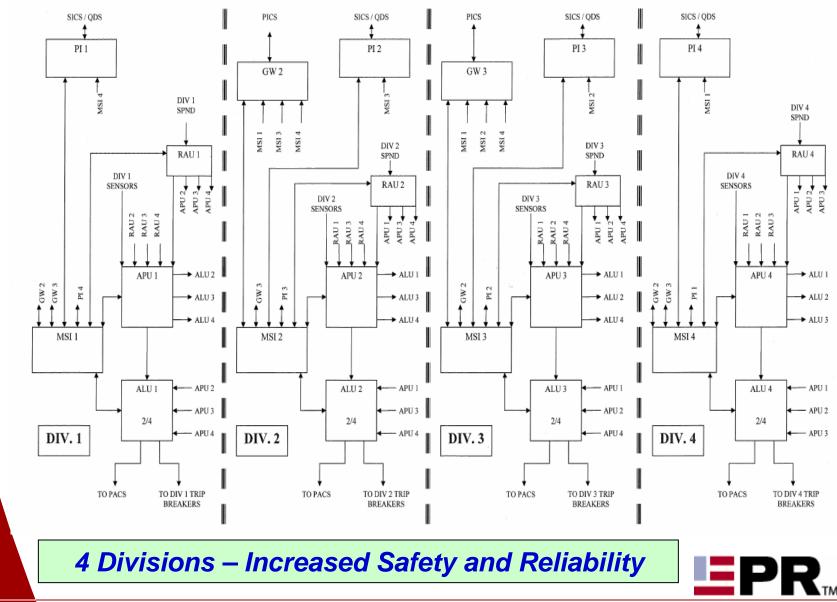
- > TXS computer processors use a deterministic operating system
 - Increases the predictability of the software
- > The most important features of the TXS software design include a strictly cyclic processing of application software
 - Asynchronous operating system (meaning no real-time clock that redundant processors synchronize to) reduces failure potential and enhances reliability
- > Only static memory allocation
 - Each variable in the application program has a permanent dedicated place in memory, so that memory conflicts caused by dynamic memory allocation are not possible
- > No process-driven interrupts
- > Other important features include:
 - Bus systems with a constant load
 - No long-term data storage
 - No self-contained external data storage media

Digital Protection System Overview Design Features

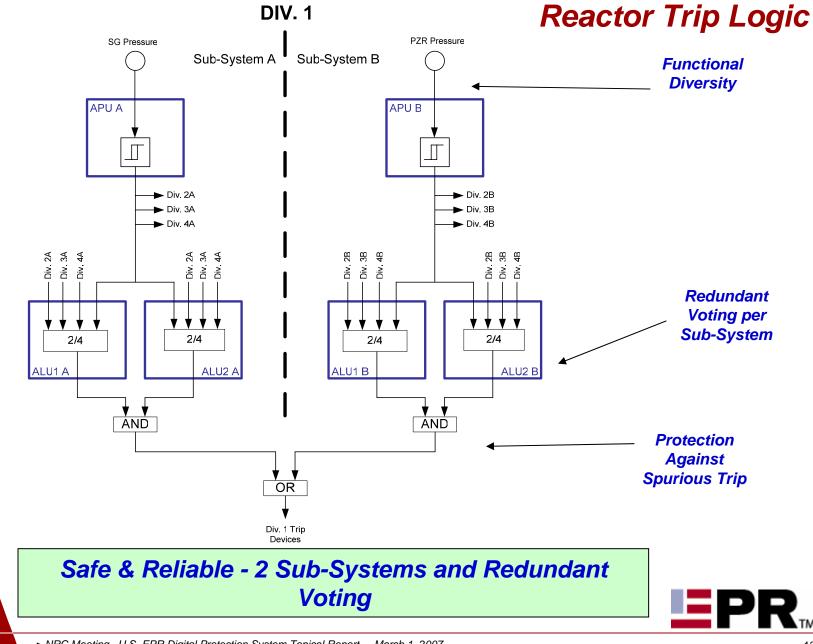
- > Functionality
 - Performs RT, Engineered Safety Features (ESF) functions, safety permissives
 - Each division independently generates a trip decision per parameter
 - Each division votes 2/4 on trip decisions from all four divisions
- > Redundancy
 - Four redundant divisions
 - Redundant voting within each sub-system
- > Functional diversity for RTs
 - Two functionally diverse sub-systems per division
- > Independence
 - Between redundant divisions
 - Between functionally diverse sub-systems
- > Reliability and availability
 - Protection against spurious reactor trips
 - Protection against unavailability of ESF functions

Redundant, Diverse, and Reliable

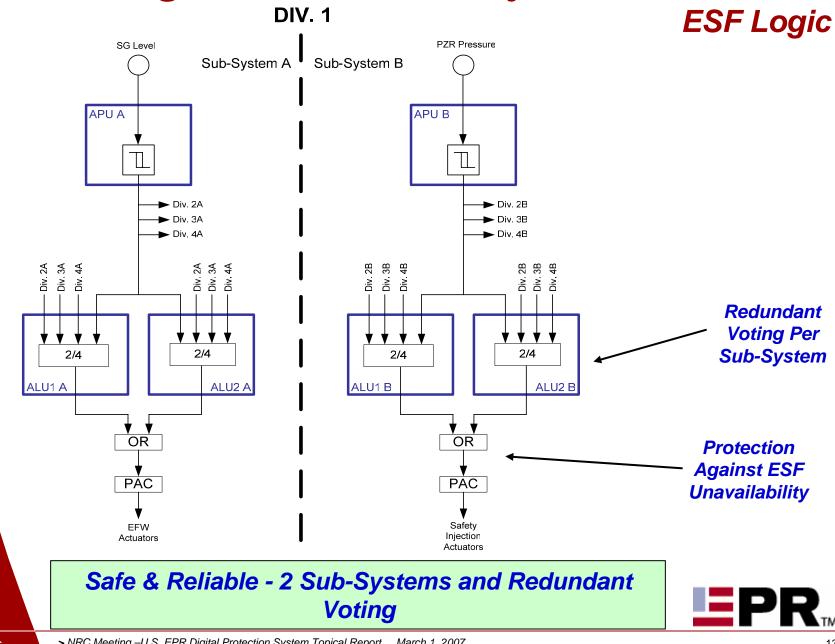
Digital Protection System Overview Functional Diversity


- For each event requiring reactor trip, if the primary initiation signal is processed in sub-system A (or B), a diverse initiating signal, if necessary, is provided in sub-system B (or A)
 - A sensor used for a primary initiation signal in one sub-system cannot be used by the secondary initiation signal in the other sub-system
 - Sub-system A must comprise separate function computers from sub-system B
 - The function computers of different sub-systems are not be located in the same cabinets
 - Communications between function computers within a division must be limited to units of the same sub-system
 - Communications between divisions must be limited to units of the same sub-system

The goal is functional independence between sub-systems


Digital Protection System Overview Block Diagram

AREVA NP INC.



Digital Protection System Overview

Digital Protection System Overview

U.S. EPR Digital Protection System Topical Report Contents

AREVA NP INC.

AREVA NP INC

Topical Report Contents

- **1.** Introduction
 - Background
 - Purpose and scope
- 2. System Definition
 - Role of the system
 - System organization
 - System implementation
- **3.** Overall System Architecture
 - Architecture diagram explanation
 - System architecture features
- 4. Units of the Digital Protection System
 - Description of each unit type Remote Acquisition Unit (RAU), Acquisition & Processing Unit (APU), Actuation Logic Unit (ALU), etc.
 - Includes Panel Interface (PI), Qualified Display System (QDS) and Priority Actuation & Control System (PACS) modules

Topical Report Contents (cont'd)

- **5.** Detailed System Architecture
 - Presented as a series of network diagrams
 - General concepts related to network topologies
- 6. Reactor Trip Functionality
 - Typical automatic RT sequence
 - SPND-based automatic RT sequence
 - Reactor trip voting logic and outputs
 - Manual RT
 - RT actuators
- 7. Engineered Safety Features Actuation Functionality
 - Typical automatic ESF actuation sequence
 - ESF actuation voting logic
 - ESF actuation outputs
 - Divisional assignments ESF actuation outputs
 - Manual ESF actuations

AREVA NP INC

Topical Report Contents (cont'd)

- 8. Permissive Signals
 - Definition of permissive
 - Design rules
- 9. Functional Diversity
 - Definition of functional diversity
 - Design rules
- **10.** Use of PAC in ESFAS
 - General operation of PAC module
 - General description of PAC concept in the U.S. EPR

11. Inter-Channel Communication

- Communication interfaces
- Communication independence
- **12.** Safety to Non-Safety Interfaces
 - General requirements for interfaces
 - Service Unit Interface
 - PICS Interface
 - Control System Interface

Topical Report Contents (cont'd)

13. Compliance with IEEE 603-1991

- IEEE 603-1998 is used as framework to demonstrate compliance
 - Adds specific references to IEEE 7-4.3.2 in the relevant clauses
 - Updates references to other IEEE standards that have been endorsed by NRC Regulatory Guides
 - Applies to "computer-based safety systems and to advanced nuclear power generating station designs"
- Clause 4 will be addressed in DCD
- Clauses 5-8 addressed in this topical report
- **14. TXS Operating Experience**
 - Observed vs. calculated failure rates
 - Examples of TXS protection systems currently in operation
- **15.** Summary and Conclusions
- **16.** References

AREVA NP INC.

Related Reports

Report No.	Title	Date
EMF-2110, Revision 1	TELEPERM XS: A Digital Reactor Protection System	May 2000 (ML003732662)
ANP-10272	Software Program Manual for TELEPERM XS Safety Systems Topical Report	December 2006 (ML063610100)
ANP-10273P ANP-10273NP	AV42 Priority Actuation and Control Module Topical Report	November 2006 (ML063380081, ML063380086)
ANP-10274NP	U.S. EPR Probabilistic Risk Assessment Methods Report	December 2006 (ML063540121)
ANP-10279	U.S. EPR Human Factors Engineering Program Topical Report	January 2007 (ML070370197)
TBD	U.S. EPR Instrument Setpoint Methodology Topical Report	March 2007*
TBD	U.S. EPR Diversity and Defense-In-Depth Analysis Methodology	June 2007*

* scheduled submittal date

Topical Report Contents Background

- > The NRC SER approved:
 - TXS as a qualified generic digital I&C platform acceptable for safety related applications
 - The TXS system design principles:
 - Use of four system building blocks described in SER
 - Equipment qualification methods
 - Software development including V&V methods
 - Processing principles
 - Inter-channel communication principles
 - Maintenance interface
- > The existing SER requires each applicant to demonstrate:
 - The "as-built" system adheres to approved TXS design principles
 - Generic qualification bounds plant license requirements
 - Plant-specific interface items are sufficiently addressed

Topical Report Contents *Purpose and Scope*

- > AREVA NP seeks an SER approving U.S. EPRspecific implementation of:
 - Protection System architecture
 - Specific network configurations
 - Typical RT concepts and sequences
 - Typical ESFAS concepts and sequences
 - Design rules for permissive signals
 - Inter-channel communication independence
 - Safety to non-safety system interfaces
 - Compliance with relevant clauses of IEEE-603
- > Not seeking approval of a specific set of TXS hardware components or version of software for use in the U.S. EPR

Application of TELEPERM XS to the U.S. EPR Digital Protection System Design: Selected Technical Topics

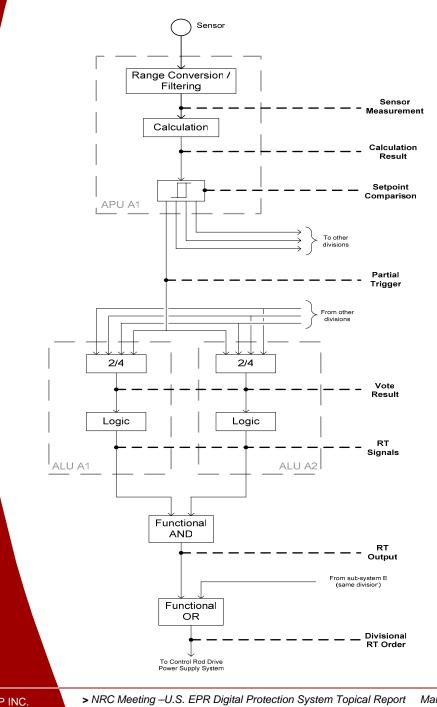
Topical Report Selected Technical Topics

- > Follow-up to NRC feedback from August 31, 2006 meeting
 - Manual RT actuation
 - Manual ESF actuation
- > Application of TELEPERM XS to U.S. EPR Digital Protection System architecture
 - Inter-divisional communication
 - Safety to non-safety interfaces

> Main Control Room (MCR)

- Four dedicated buttons (one per PS division)
- Hardwired around PS electronics
- Also hardwired to ALU level, combined with auto trip logic
- Acts on the under-voltage coils of trip breakers, trip contactors, transistors of operating coils

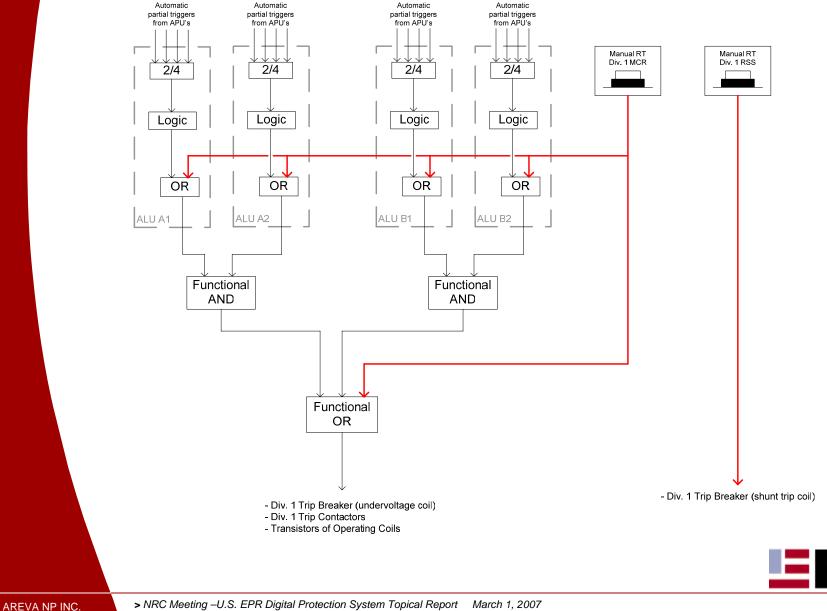
> Remote Shutdown Station (RSS)


- Four dedicated buttons
- Hardwired around PS electronics

Acts on the shunt trip coils of trip breakers

PR_M

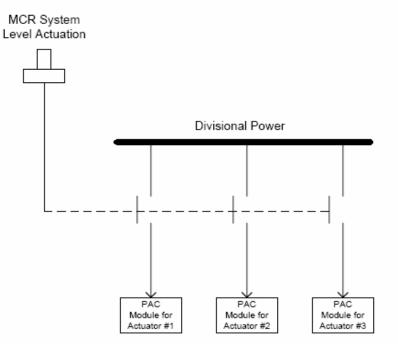
AREVA NP INC.


Topical Report Manual Reactor Trip

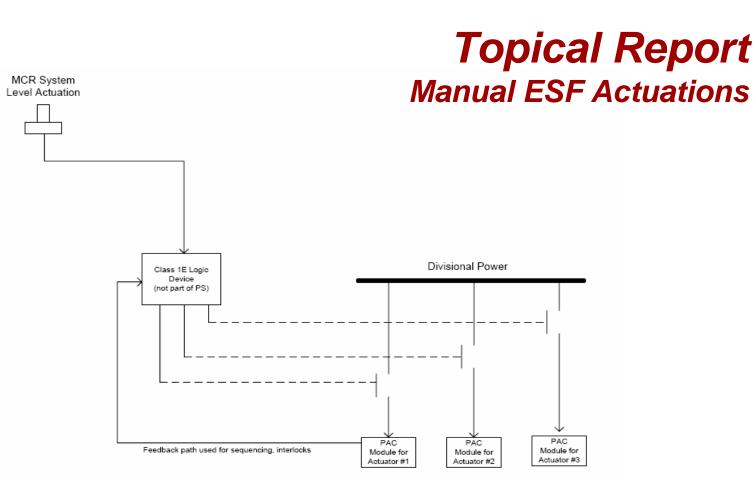
Typical Automatic RT Sequence (orientation for next slide)

Topical Report Manual Reactor Trip

Topical Report Manual ESF Actuations

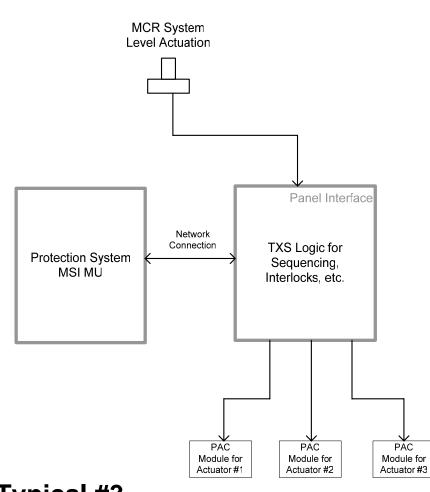

> System level initiation (division by division)

- Implemented completely through 1E paths
- Performs all actions performed by the related automatic functions
- System level actuation has priority over individual component control
- > Implementation in the design
 - Three typical implementations
 - Determined on a case by case basis
 - Number and types of actuators involved
 - Level of sequencing required
 - Defense-in-depth and diversity analysis considerations


Topical Report Manual ESF Actuations

Typical #1

- 1E actuation path, diverse from the PS
- Only used when no sequencing is required
- Can be credited in defense-in-depth and diversity analysis


Typical #2

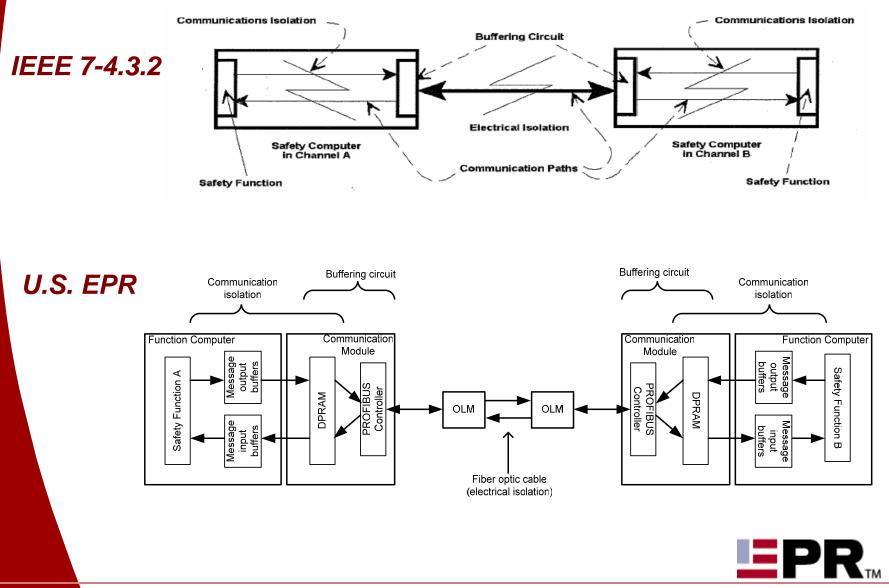
- 1E actuation path, diverse from the PS
- Used when sequencing required
- Can be credited in defense-in-depth and diversity analysis

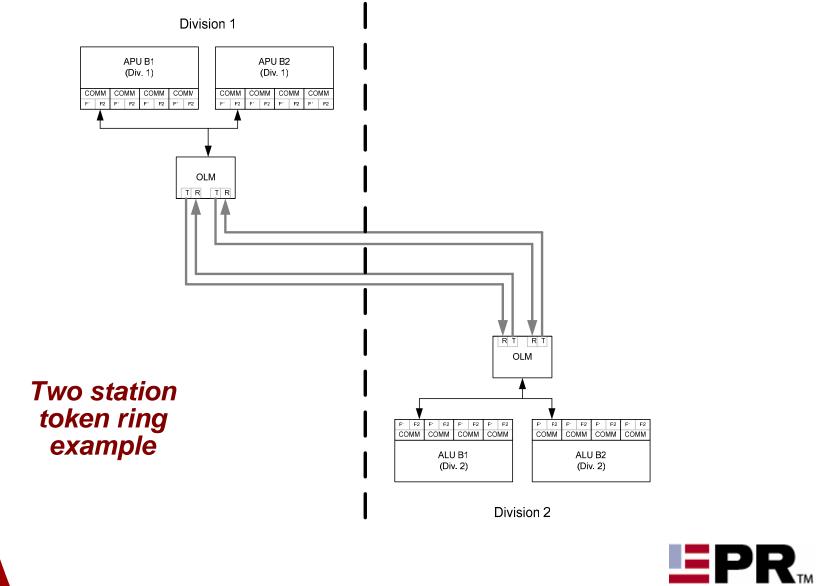
AREV/

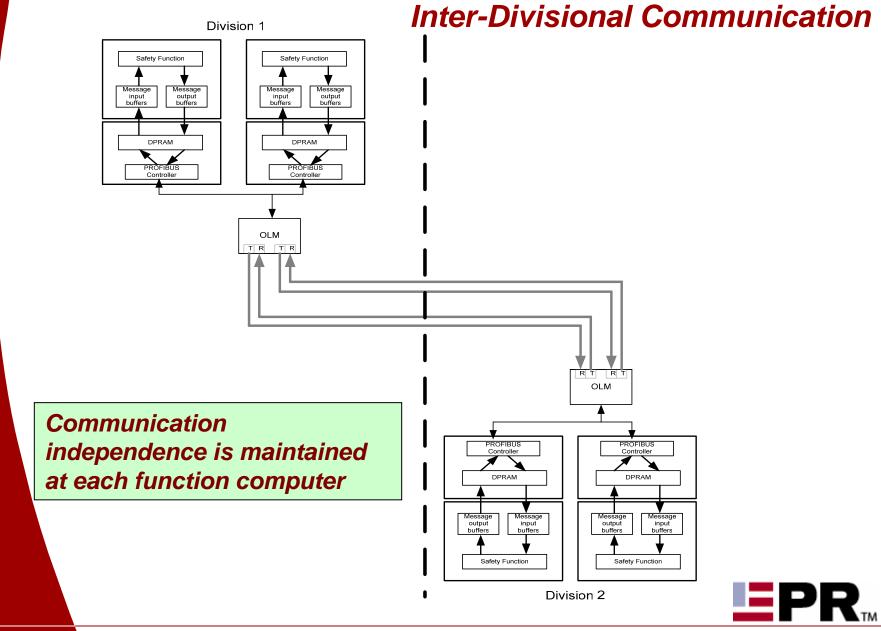
Topical Report Manual ESF Actuations

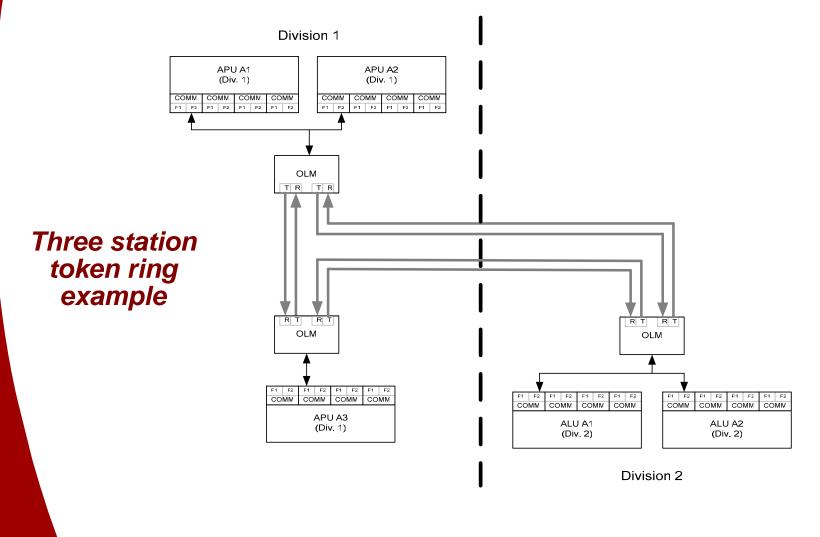
Typical #3

- 1E actuation path, utilizes panel interface
- Used when sequencing or timing required
- Evaluating how this approach will be credited in the defense-in-depth and diversity analysis

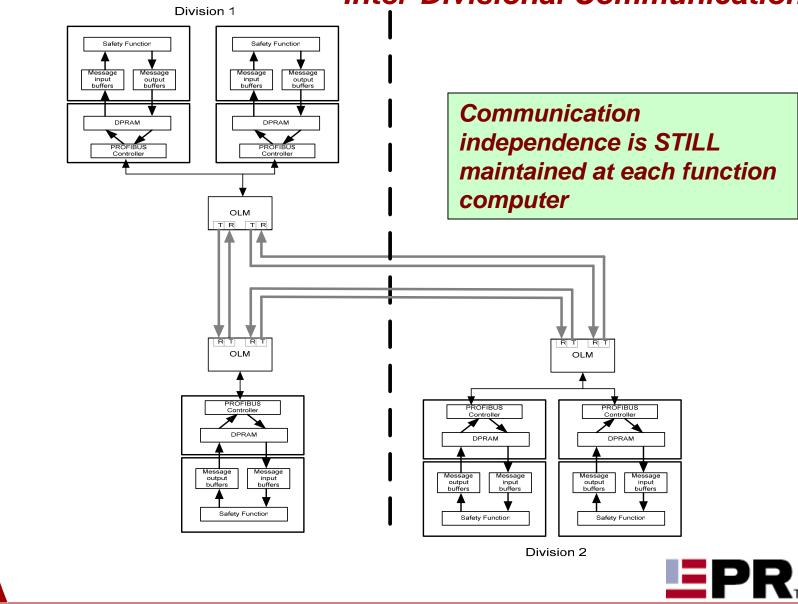


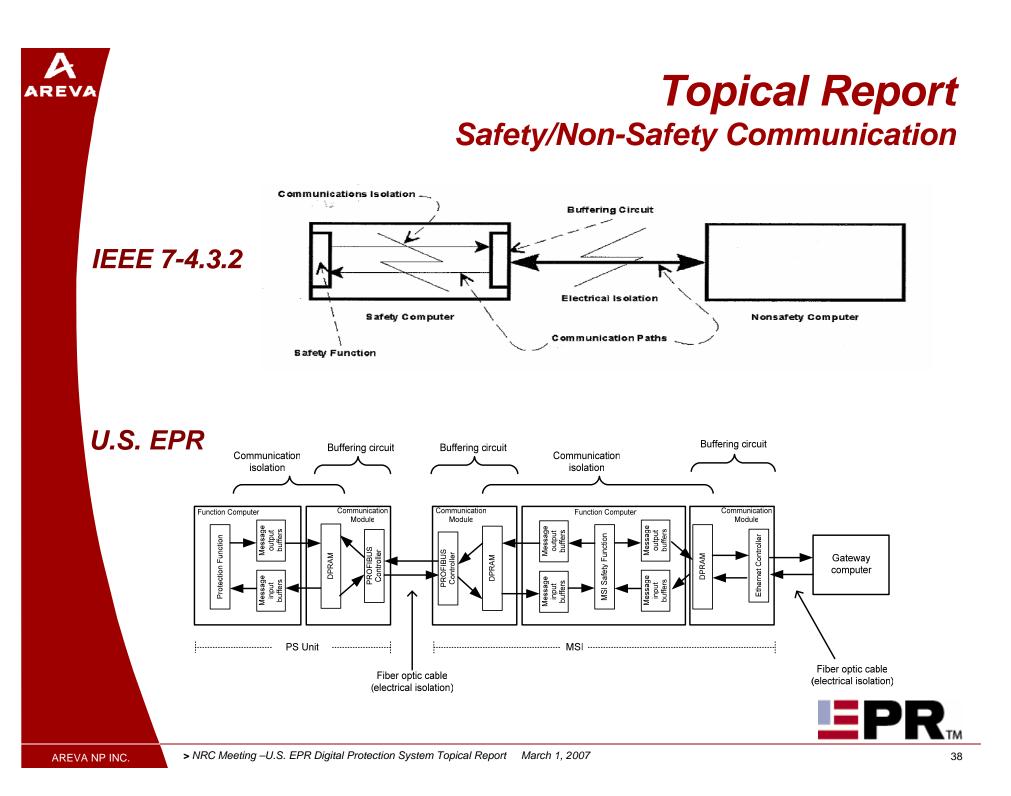

- > Two basic network configurations
 - Two station token ring (redundant point to point topology)
 - More than two station token ring (redundant ring topology)
 - Independence achieved in the same manner regardless of network topology
- > Electrical isolation
 - Fiber optic communication paths
- > Communications isolation
 - Buffering circuits
 - Separation of data flow
 - Network communication performed independently of function computer processing





Topical Report





Topical Report Safety/Non-Safety Interfaces

> Three general cases

- PS sends information out for display or use in non-safety systems (hardwired or network interface)
- Exchange between PS and SU for diagnostics, monitoring or maintenance (network interface)
- PS receives information from PICS (network interface)
 - ESF actuation resets
 - Validation/inhibition of permissive signals
 - Periodic testing
- > Regulatory status
 - First two cases approved in the TXS SER
 - Third case requires approval

AREVA	Topical Report Safety/Non-Safety Communication	
>	This interface does not prevent performance of safety functions	
	 Protective actions not initiated through this interface 	
	 Commands from PICS required on safe shutdown path are also available on Class 1E SICS 	
	 No direct network connection between GW and function computers 	
	 Multiple layers of isolation between non-safety computer and protective function (buffering circuits, data flow separation) 	
	 MSI provides Class 1E isolation 	
	 Only checks for and uses data from expected messages 	
	 Only configured communication channels are checked 	
	 MSI does not function as part of automatic protection channels 	
	 Loss of MSI (worst case) does not lead to degradation of the automatic protection channels 	
AREVA NP INC.	> NRC Meeting –U.S. EPR Digital Protection System Topical Report March 1, 2007 39	

Topical Report Safety/Non-Safety Control of Access

- > Physical features
 - Inside protected area
 - Separated into four areas
 - Key access to cabinets
 - Cabinet door alarms
- > Engineered features
 - Engineering/service tools
 - Password protected
 - Access allowed to one safety division at a time
 - Access via password and key switch required to change software
 - Communications
 - Static channels (i.e., no TCP/IP or message routing services installed on the MSI)
 - Ignores unexpected messages
 - No connection outside of the plant control
- > Administrative controls
 - Personnel access and work authorization

- > The U.S. EPR Digital Protection System is redundant, reliable, and implements functional diversity
 - Four divisions
 - Two subsystems and redundant voting
- > U.S. EPR Digital Protection System Topical Report describes the application of the TXS technology to the U.S. EPR design
- > AREVA NP seeks an SER approving U.S. EPR-specific implementation of:
 - Protection System architecture
 - Specific network configurations
 - Typical Reactor Trip concepts and sequences
 - Typical ESFAS concepts and sequences
 - Design rules for permissive signals
 - Inter-channel communication independence
 - Safety to non-safety system interfaces
 - Compliance with relevant clauses of IEEE-603

> The U.S. EPR Digital Protection System:

- Based on NRC approved technology (TXS)
- Contains redundant divisions, functional diversity, independence, reliability, and availability
- Complies with regulatory requirements and guidance
- Considers latest developments
 - IEEE 603 and IEEE 7-4.3.2
- > This type of interaction helps us understand NRC expectations and thus produce a high-quality DC submittal

Digital Protection System is safe, reliable, redundant, and complies with regulatory requirements

- > AREVA NP will submit the U.S. EPR Digital Protection System Topical Report in March 2007
- > Next meetings:
 - May 2007:
 - I&C Diversity and Defense-in-Depth Topical Report presubmittal
 - PRA Methods Report post-submittal
 - Equipment Qualification Program Report post-submittal
 - AREVA NP looks forward to timely NRC feedback and interactions to support efficient review of this topical report and inform development of the DCD

Abbreviations and Acronyms

- > ALU Actuation Logic Unit
- > APU Acquisition & Processing Unit
- > DCD Design Certification Document
- > **DPRAM** Dual Port Random Access Memory
- > ESF Engineered Safety Feature
- > ESFAS Engineered Safety Feature Actuation System
- > **GW** Gateway
- > I&C Instrumentation and Controls
- > IEEE Institute of Electrical and Electronics Engineers
- > MCR Main Control Room
- > MSI Monitoring & Service Interface
- > MU Main Unit
- > OLM Optical Link Module
- > PACS Priority Actuation & Control System
 - PI Panel Interface

>

Abbreviations and Acronyms (cont'd)

Transmission Control Protocol/Internet Protocol

- > **PICS** Process Information & Control System
- > **PROFIBUS** Process Field Bus
- > **PS** Protection System
- > **PZR** Pressurizer
- > QDS Qualified Display System
- > RAU Remote Acquisition Unit
- > RCSL Reactor Control, Surveillance, and Limitation
- > RSS Remote Shutdown Station
- > RT Reactor Trip
- SAS Safety Automation System
- SER Safety Evaluation Report
- > SG Steam Generator
- SICS Safety Information & Control System
- > SPND Self Powered Neutron Detectors

TELEPERM XS

- > SU Service Unit
- > TCP/IP
- > TXS

LPR_{TM}

Protection System - Function Block Definitions

- > RAU: Acquires in-core instrumentation, distributes to APU's
- > APU: Acquires process sensors, performs threshold detection and processing functions, distributes to ALU's
- > ALU: Performs voting of trip decisions from APU's, issues actuation orders to trip devices and PAC modules
- MSI: Provides 1E/non-1E isolation, performs data transfer and monitoring functions
- > PI: Provides 1E interface to safety displays
- > GW: Provides interface to balance of plant

