

March 1, 2007 Mitsubishi Heavy Industries, Ltd.

MITSUBISHI-HEAVY_INDUSTRIES, LTD.

UAP-HF-07014

1.2 Calcu	lation Coc			
≻Calculation codes used for US-APWR				
	Computer Code	Notes		
Dose Evaluation during Normal Operation	ORIGEN2, PWR-GALE, NRCDose	Calculation codes approved by the NRC (XOQDOQ for COL)		
Dose Evaluation under Accident Conditions	ORIGEN2, RADTRAD, MicroShield	Calculation codes approved by the NRC (PAVAN and ARCON96 for COL)		
Radiation Shielding Protection	ORIGEN2, MicroShield, DORT, ANISN, MCNP, G ³	Calculation codes used in the U.S.A.		
A MITSUBISHI_HEAVY	INDUSTRIES, LTD.	UAP-HF-07014-6		

2. Dose Evaluation during Normal Operation (1)					
➢ US req	uirements and most recent guidance	G24,327 875.	CLE-SPECTACI		
10CFR20	Standards for protection against radiation				
10CFR50	Domestic licensing of production and utilization facilit (Especially 50.34a & Appendix I)	ties			
40CFR190	190 Environmental radiation protection standards for nuclear power operations				
R.G.1.109 Rev. 1 (1977)	 Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I 				
R.G.1.111 Rev. 1 (1977)	11 Methods for Estimating Atmospheric Transport and Dispersion of Gaseous Effluents in Routine Releases from Light-Water-Cooled Reactors				
R.G.1.112 Rev. 2 (1997)	Calculation of Releases of Radioactive Materials in C Liquid Effluents from Light-Water-Cooled Power Rea	Gase Ictor	ous and s		
R.G.1.113 Rev. 1 (1977)	Estimating Aquatic Dispersion of Effluents from Accie Routine Reactor Releases for the Purpose of Implem Appendix I	dent nenti	al and ng		
MITSUBISHI	EAVY-INDUSTRIES, LTD.	UA	P-HF-07014-8		

3.2	Requ	irements Considered	(
≻The	e U.S.	requirements and most recent g	juida	nce
for do	ose ev	valuation under accident conditio	ns	
10CFR1	100.11	Determination of exclusion area, low population z population center distance	one, an	d
10CFR	50.67	Accident source term		
10CFR App.A	50	General Design Criteria for Nuclear Power Plants		
R.G.1.1	83	Alternative Radiological Source Terms For Evalua Basis Accidents at Nuclear Power Reactors	ating De	esign
R.G.1.1	45	Atmospheric Dispersion Models for Potential Acci Consequence Assessments at Nuclear Power Pla	ident ants	
R.G.1.1	94	Atmospheric Relative Concentrations for Control Radiological Habitability Assessments at Nuclear	Room Power	Plants
NUREG	-0737	Clarification of TMI Action Plan Requirements		
MITSUBI	SHI_HEA	<u>VY-INDUSTR</u> IES, LTD.	UAP-H	F-07014-17

3.:	3 Dose C	riteria		US: APWR		
≻Do	>Dose criteria in R. G. 1.183 based on 10 CFR 50.67					
	Accident	* ¹ EAB and LPZ Dose Criteria	CR Dose Criteria	Analysis Release Duration		
LOCA		25 rem TEDE*2	5 rem TEDE	30 days for containment and ECCS leakage		
SGTR	Fuel Damage or Pre-incident Iodine Spike	25 rem TEDE	5 rem TEDE	Failed SG: time to isolate; Intact SG(s): until cold		
	Coincident Iodine Spike	2.5 rem TEDE	5 rem TEDE	shutdown is established		
MSLB	Fuel Damage or Pre-incident lodine Spike	25 rem TEDE	5 rem TEDE	Until cold shutdown is		
	Coincident Iodine Spike	2.5 rem TEDE	5 rem TEDE	established		
FHA		6.3 rem TEDE	5 rem TEDE	E 2 hours		
* ¹ EAB; E	* ¹ EAB; Exclusion Area Boundary, LPZ; Low Population Zone, * ² TEDE; Total Effective Dose Equivalent					
MITSUBISHI-HEAVY_INDUSTRIES, LTD. UAP-HF-07014-1						

Calculation codes used for US-APWR				
– Core Inventory ; ORIGEN2 – Dose : RADTRAD, MicroShield				
Method to determine	x/0 values in DC			
χ /Q values at the site	Bounding values covering 70			
χ /Q values at the site boundary	Bounding values covering 70 to 80 % of the US sites			

 Source term based on R. G. 1.183 Core inventory fraction released into containment 					
······································	Gap Release	Early In Vessel	Total		
Noble Gases	0.05	0.95	1.0		
Halogens	0.05	0.35	0.4		
Alkali	0.05	0.25	0.3		
Tellurium Metals	0.00	0.05	0.05		
Ba, Sr	0.00	0.02	0.02		
Noble Metals	0.00	0.0025	0.0025		
Cerium Group	0.00	0.0005	0.0005		
Lanthanides	0.00	0.0002	0.0002		
✓ Release pha Phase Gap Releas Early In-Ves	i ses On se 30 sel 0.{	set Durati sec 0.5 h 5 hr 1.3 h	on Ir		

5.5 Loss-of-coolant Accident (4)					
> Major conditions for dose	evaluation				
Parameters	Value				
 Source term, release fractions and timing 	Source term based on R.G.1.183				
 Removal efficiency of the containment spray 	Based on SRP 6.5.2				
· Containment lookago rata	0 – 24h ; 0.15%/day				
• Containment leakage rate	24h – 30d ; 0.075%/day				
 Removal efficiency of the HEPA filter 	Design value				
ESF leakage rate	4 times design leakage rate				
 Sump water pH 	Larger than 7				
TSUBISHI_HEAVY_INDUSTRIES, LTD.	UAP-HF-07014				

3.6 Steam Generator Tube Rupture (3)

Radiological concentration of primary coolant and secondary coolant

Parameters	Value
 Radiological concentration of the primary coolant 	Based on the technical specification $(1 \mu\text{Ci/cc}$ Dose Equivalent I-131)
 lodine concentration of the primary coolant and iodine spike 	
- Pre-incident iodine spike	The maximum value permitted by the technical specification (60 μ Ci/cc Dose Equivalent I-131)
- Coincident iodine spike	lodine increases to 335 times the equilibrium release rate
 Concentration in secondary coolant 	Based on the technical specification (0.1 μ Ci/cc Dose Equivalent I-131)
Secondary coolant	

Major conditions for dose evaluation		
Parameters	Value	
 Primary to Secondary leak rate Failed SG: Intact SGs: Partition Coefficient Iodine Noble gas Release Duration Failed SG: Intact SGs: 	Based on accident analysis Based on the technical specification 100 All noble gases released from the primary system are released Based on accident analysis Until shutdown cooling	

.7 Main Steam Line Break Accident (3)					
Radiological concentration of primary coolant and secondary system					
Parameters	Value				
 Radiological concentration in the primary coolant 	Based on the technical specification (1 μ Ci/cc Dose Equivalent I-131)				
 Iodine concentration in the primary coolant and iodine spike Pre-incident iodine spike 	The maximum value permitted by The technical specification (60 μ Ci/cc Dose Equivalent I-131)				
- Coincident iodine spike	lodine increases to 500 times the equilibrium release rate				
Concentration in secondary coolant	Based on the technical specification (0.1 μ Ci/cc Dose Equivalent I-131)				
MITSUBISHI_HEAVY_INDUSTRIES, LTD. UAP-HF-07014-3					

7 Main Steam Line Br	Main Steam Line Break Accident (4)				
Major conditions for	Major conditions for dose evaluation				
Parameters	Value				
 Primary to Secondary leak rate Failed MSL: Intact MSLs: 	Based on technical specifications				
 Partition Coefficient lodine Noble gas 	100 All noble gases from the primary system are released				
 Release Duration Failed MSL: Intact MSLs: 	Based on accident analysis Until shutdown cooling				
L					

3.8 Fuel Handling Accident (5)						
Maior conditions 1	Major conditions for dose evaluation Value					
Parameters	Fuel Handling Building	Containment				
Assembly peaking factor	Design value	Design value				
Fraction of degraded fuel	200%	200%				
	(2 assemblies)	(2 assemblies)				
 Assumed cooling period 	1 day	1 day				
 Chemical form of iodine Elemental lodine Organic lodine 	99.85 % 0.15%	99.85 % 0.15%				
Minimum Water Depth	23feet ~	23feet ~				
 Effective DF Iodine Noble Gases 	200	200				
Release Duration	2hr	2hr				
MITSUBISHI-HEAVY INDUSTRIES,	LTD.	UAP-HF-07014-3				

3.9 Main Control Room Doses during LOCA (3)

Dose evaluation conditions within the main control room

Parameters	Value	
FP release rate from CV	Same as offsite dose evaluation at LOCA	
MCR emergency air purifier	Pressurized recirculation type	
FP pathway of flow into MCR	Fresh-air inlet (through filter) In-leakage (unfiltered leakage)	
Capacity of emergency recirculation fan*	1.5 volume changes per hour	
Fresh-air (through filter) inlet volume*	0.5 volume changes per hour	
Leak-in (unfiltered leakage) volume*	0.05 volume changes per hour	
Filtration efficiency of emergency recirculation system	Charcoal filter :95% HEPA filter: 99%	

MITSUBISHI HEAVY INDUSTRIES, LTD.

UAP-HF-07014-39

complia guidanc	of shielding, HVAC and plant nce with applicable NRC req e	layout will be conc uirements and regu	lucted in full ulatory
NRC R	equirements (10 CFR 20, 50)	
	Item	Limit	Reference
Occupa	tional Dose Limit	5 rem/yr (TEDE)	10CFR20.1201(a)(1)
Dose Li	mit for Public	0.1 rem/yr (TEDE)	10CFR20.1301(a)(1)
Externa area	Dose Limit in any unrestricted	0.002 rem/hr	10CFR20.1301(a)(2)
Occupa control	tional Dose inside the main room under accident conditions	5 rem (TEDE)	10CFR50 Appendix A 10CFR50.67

Location	Radiation Source
Core	Neutron and prompt Gamma-rays (4,451 MWt thermal power)
Reactor Coolant System (RCS) /Steam Generator (SG)	N-16(Gamma-ray) and N-17(Neutron) FP and CP
Chemical and Volume Control System (CVCS)	FP in the Primary Coolant assuming a Fuel Cladding Defect of 1% and CP
	FP and CP in Resin of Demineralizer
Boron Recovery System (BRS)	FP and CP in Boron Acid
	FP and CP in Resin of Demineralizer
Residual Heat Removal System (RHRS)	FP in the Primary Coolant assuming a Fuel Cladding Defect of 1% and CP

4.4 Radiation Sources (1)

Locat	ion	Radiation Source
Waste Management System	Gaseous	FP in Stripping Gas in Equipment
	0.00.1	FP in Charcoal Bed
	Liquid	FP and CP in Equipment Drain
		FP and CP in Floor Drain
		FP and CP in Condensed Liquid Drain
		FP and CP in Resin of Demineralizer
	Solid	FP and CP in Spent Resin
		Co-60 in Waste Drum

 Normal Operation Including Shutdown (Cont'd) 		
Location	Radiation Source	
Secondary Coolant	SG Blow Down Water with Primary-to-Secondary Leakage	
Spent Fuel Storage Pit, Reactor Cavity	Spent Fuel Fuel type : 17 x 17, 14 feet, UO ₂ U-235 enrichment : based on design value Burn up : based on design value Minimum Decay time before handling : 1 day	
Spent Fuel Storage Pit Cooling and purification System	Co-60 in pit water that causes 15 mrem/h at the surface of the water	
	FP and CP in resin of demineralizer	

4.4 Radiation Shielding Design (1)

>Shielding Design is based on these primary references

Reference	Title
Regulatory Guide 1.69	Concrete Radiation Shields for Nuclear Power Plant
ANSI/ANS-N101.6-1972	Concrete Radiation Shields
ANSI/ANS-6.4-1997	Nuclear Analysis and Design of Concrete Radiation Shielding for Nuclear Power Plant
•	Reactor Shielding Design Manual (Edited by T. Rockwell III)

MITSUBISHI_HEAVY_INDUSTRIES, LTD.

UAP-HF-07014-50

Name of code	Notes	
ORIGEN2	✓Source term calculation for core inventory and spent fuel	
MicroShield	✓For almost all the contained sources besides neutron source (tank, filter, demineralizer, e.t.c.)	
DORT ANISN	✓Used inside and around the reactor pressure vessel and equipment of RCS	
MCNP	✓For complicated geometries	
G ³	✓For scattered gamma-ray dose calculation	

