

A CMS Energy Company

Big Rock Point Nuclear Plant 10269 US-31 North Charlevoix, MI 49720 Kurt M. Haas General Manager

October 24, 2006

U.S. Nuclear Regulatory Commission Document Control Desk Washington, DC 20555-0001

DOCKETS 50-155 AND 72-043 - LICENSE DPR-6 - BIG ROCK POINT PLANT – TRANSMITTAL OF SURVEY PACKAGES IN SUPPORT OF BIG ROCK POINT PHASED LICENSE TERMINATION

References:

- 1. U.S. NRC to Big Rock Point dated March 24, 2005, Big Rock Point Issuance of Amendment 126 to Approve the License Termination Plan (TAC No. L52096)
- 2. Big Rock Point to U.S. NRC dated September 27, 2005, Revision 2 of the Big Rock Point License Termination Plan
- 3. Big Rock Point to U.S. NRC dated April 3, 2006, Letter of Intent Concerning the Release of Part of the Big Rock Point Site Property from the 10 CFR Part 50 License.
- 4. U.S. NRC to Big Rock Point dated April 25, 2006, Report of April 12, 2006 Meeting to Discuss Partial Site Release and Final Status Survey Report Content
- 5. Big Rock Point to U.S. NRC dated August 24, 2006, Transmittal of Excavated Surface Surveys, Relocated Soil Surveys and Final Status Survey Packages in Support of Big Rock Point Phased License Termination
- 6. Big Rock Point to U.S. NRC dated September 19, 2006, Transmittal of Relocated Soil Survey Packages in Support of Big Rock Point Phased License Termination
- 7. Big Rock Point to U.S. NRC dated October 9, 2006, Transmittal of Survey Packages in Support of Big Rock Point Phased License Termination
- 8. Big Rock Point to U.S. NRC dated October 10, 2006, Transmittal of Survey Packages in Support of Big Rock Point Phased License Termination
- 9. Big Rock Point to U.S. NRC dated October 13, 2006, Transmittal of Survey Packages in Support of Big Rock Point Phased License Termination

Attachment 1 contains a matrix of Final Status Survey (FSS) record numbers, survey area descriptions, and review status. This attachment is a revision to attachment of our letter dated October 13, 2006. It contains a list of the final status survey release records expected to be submitted in support of our FSS report. This FSS report is expected to be submitted on or around the fifteenth of November. Also attached, are the following survey release records:

CLASS 1 FINAL STATUS SURVEY RELEASE RECORDS

- North West Protected Area (Attachment 2)
- Central Protected Area (Attachment 3)
- South Central Protected Area (Attachment 4)

CLASS 1 RELOCATED SOIL SUPPORTING SURVEY RECORD

• Relocated Soils from Turbine Building/Containment Demolition (Attachment 5)

These records are being provided to facilitate U.S. Nuclear Regulatory Commission review, as discussed in our April 12, 2006 meeting. Attachments 2 and 3 to this letter comprise those portions of survey packages which may be of use for final review and will be summarized in our FSS report.

The phased release approach is described in Sections 1.4.2 and 5.1.2 of the BRP License Termination Plan (LTP). BRP intends to release site land from the 10 CFR Part 50 license using this phased approach. The first phase includes the majority of the site land scheduled for release after all demolition, remediation and FSS activities associated with plant operation are complete.

BRP LTP Chapter 5 commits BRP to producing FSS package(s) for each survey area and outlines the contents of each supporting survey package.

The intended partial site release supports the process of license termination by demonstrating that an additional portion of the remaining site lands can be released from the Site license. This letter, along with completed and future on-site inspections and letters, provides documentation that demolition activities have been performed in accordance with the LTP.

Your timely review of FSS information and approval of our request to release the associated land is particularly important to the project and smooth transition to an Independent Spent Fuel Storage Installation (ISFSI)-only operation.

If you have any questions or comments on these reports, please contact Ken Pallagi, Radiation Protection and Environmental Services Manager at 231-547-8416.

Kurt M. Haas Site General Manager

ATTACHMENTS

cc: Administrator, Region III, USNRC (w/o Attachments) NRC Decommissioning Inspector, Big Rock Point (w/o Attachments) NRC NMSS Project Manager, James Shepherd (w/o Attachments) NRC NMSS FSS Reviewer, Bruce Watson Michigan Department of Environmental Quality, Thor Strong (w/o Attachments)

ATTACHMENT 1

CONSUMERS ENERGY BIG ROCKPOINT

DOCKET NUMBERS 50-155 AND 72-043

•

TRANSMITTAL OF SURVEY PACKAGES IN SUPPORT OF BIG ROCK POINT PHASED LICENSE TERMINATION

MATRIX OF FSS SUPPORTING DOCUMENTATION

October 24, 2006

5 Pages

SURVEY AREA ¹	RECORD ² NUMBER	SURVEY AREA DESCRIPTION	PACKAGE SIGNOFF DATE	U.S. NRC REVIEW METHOD	PACKAGE REVIEW DATE	LETTER DATE
		CLASS 1 AREAS – FINAL STATUS SURV	EY OF SURF	ACES		
1	01C ₁ 1	Class 1 Final Status Release Record, South West Protected Area	10/11/06	Letter		10/13/06
2	02C ₁ 1	Class 1 Final Status Release Record, West Central Protected Area	10/11/06	Letter		10/13/06
3	03C ₁ 1	Class 1 Final Status Release Record, North West Protected Area		Letter		10/24/06
4	04C ₁ 1	Class 1 Final Status Release Record, North Central Protected Area	10/04/06	Letter		10/10/06
5	05C ₁ 1	Class 1 Final Status Release Record, Central Protected Area	10/16/06	Letter		10/24/06
6			10/23/06	Letter		10/24/06
7						
8	8 08C ₁ 1 Class 1 Final Status Release Record, East Central Protected Area					
9	9 09C ₁ 1 Class 1 Final Status Release Record, North East Protected Area		10/04/06	Letter		10/13/06
10	10C ₁ 1					
113	11 ³ North11C ₁ 1 Class 1 Final Status Release Record, North Radwaste Staging Area					
11	South11C ₁ 1	Class 1 Final Status Release Record, South Radwaste Staging Area				
15	15(2R)C ₁ 1	Class 1 Final Status Release Record, Woods Road Storage Area	05/23/06	On-Site Inspection and Letter	06/13-14/06	10/9/06
20	20C ₁ 1	Class 1 Final Status Release Record, East Radwaste Staging Area				
23	23C ₁ 1	Class 1 Final Status Release Record, North Protected Area	10/05/06	Letter		10/10/06
24	24C ₁ 1	Class 1 Final Status Release Record, South Protected Area				
Discharge Canal ⁴	Canal C ₁ 1	Class 1 Final Status Survey, Discharge Canal	01/27/05	On-Site Inspection and Letter	06/13-14/06	10/9/06
	·	CLASS 1 AREAS- EXCAVATED SOIL FINA	L STATUS SU	RVEYS ⁵		
2	02Cx11	Class 1 Final Status Survey, Excavated Soil from Retention Pond Construction	10/13/2004	On-Site Inspection and Letter	06/13-14/06	10/9/06
8	08Cx11	Close L Final Status Survey Excepted Soil from Turbine Building On-Site Inspection		06/13-14/06	10/9/06	
9	09Cx ₁ 1 Class 1 Final Status Survey, Excavated Soil from Screenhouse 12/09/		12/09/04	On-Site Inspection and Letter	06/13-14/06	10/9/06
9	09Cx ₂ 1	Class 1 Final Status Survey, Excavated Soil from Screenhouse Area	12/08/04	On-Site Inspection and letter	06/13-14/06	10/9/06

 ¹ Survey Area Map – Big Rock Point License Termination Plan, Chapter 5, figure 5-3, Initial Land Area Survey Units
 ² Record Number nomenclature is defined in Procedure RM-76, Final Status Survey Design, step 6.2, Survey Unit Nomenclature
 ³ Surface of survey unit 11 was divided into North and South areas due to intermediate use of land between the quarry survey and the final surface survey

⁽served as solid Radwaste storage yard in interim.) ⁴ Discharge Canal is North East of the Protected Area ⁵ Soils removed from Class 1 Area excavations

SURVEY AREA ¹	REA ¹ NUMBER SURVEY AREA DESCRIPTION		PACKAGE SIGNOFF DATE	U.S. NRC REVIEW METHOD	PACKAGE REVIEW DATE	LETTER DATE
9	09Cx ₃ 1	Class 1 Final Status Survey, Excavated Soil from Screenhouse Area	12/09/04	On-Site Inspection and letter	06/13-14/06	10/9/06
9	Area		12/09/04	On-Site Inspection and letter	06/13-14/06	10/9/06
9	09Cx51	Class 1 Final Status Survey, Excavated Soil from Screenhouse Area	12/14/04	On-Site Inspection and letter	06/13-14/06	10/9/06
9	09Cx ₆ 1	Class 1 Final Status Survey, Excavated Soil from Screenhouse Area	01/19/05	On-Site Inspection and Letter	06/13-14/06	10/9/06
9	09Cx ₇ 1	Class 1 Final Status Survey, Excavated Soil from Screenhouse Area	05/16/05	On-Site Inspection and Letter	06/13-14/06	10/9/06
11	11Cx ₁ 1	Class 1 Final Status Survey, Excavated Soil from Radwaste Storage Vaults	10/13/04	On-Site Inspection and Letter	06/13-14/06	10/9/06
Slurry ⁶ Wall	Slurry Wall Cx ₁ 1	Class 1 Final Status Survey, Excavated Soil from Slurry Wall Construction	12/08/04	On-Site Inspection and Letter	06/13-14/06	10/9/06
Slurry Wall	Slurry Wall Cx ₂ 1	Class 1 Final Status Survey, Excavated Soil from Slurry Wall 12/20/04 On-Site Inspection and Letter		06/13-14/06	10/9/06	
Turbine Building ⁷	TBCx ₁ 1	Class 1 Supporting Survey– Soil Excavated from Turbine Building Demolition Area, Supporting Subsurface Structure and Component Removal	08/24/05	On-Site Inspection and Letter	06/13-14/06	10/9/06
Turbine Building	TBCx ₂ 1	Class 1 Supporting Survey– Soil Excavated from Turbine Building Demolition Area, Supporting Subsurface Structure and Component Removal	10/13/05	On-Site Inspection and Letter	06/13-14/06	10/9/06
Turbine Building	TBCx ₃ 1	Class 1 Supporting Survey– Soil Excavated from Turbine Building Demolition Area, Supporting Subsurface Structure and Component Removal	11/23/05	On-Site Inspection and Letter	06/13-14/06	10/9/06
Turbine Building	TBCx₄1	Class 1 Supporting Survey– Soil Excavated from Turbine Building Demolition Area, Supporting Subsurface Structure and Component Removal	11/23/05	On-Site Inspection and Letter	06/13-14/06	10/9/06
Turbine Building	Turbine TBCy.1 Class 1 Supporting Survey- Soil Excavated from Turbine Building		01/06/06	On-Site Inspection and Letter	06/13-14/06	10/9/06
Turbine Building	TBCx ₆ 1	Class 1 Supporting Survey– Soil Excavated from Turbine Building Demolition Area, Supporting Subsurface Structure and Component Removal	07/03/06	On-Site Inspection and Letter	06/13-14/06	10/9/06
Turbine Class Building TBCx ₇ 1 Demo		Class 1 Supporting Survey– Soil Excavated from Turbine Building Demolition Area, Supporting Subsurface Structure and Component Removal	07/05/06	On-Site Inspection and Letter	06/13-14/06	10/9/06

 ⁶ Slurry Wall crossed several survey areas on the ease, south, and west sides of the protected area.
 ⁷ Turbine building excavation was beneath survey areas 5, 6, and 8

SURVEY AREA ¹	RECORD ² NUMBER	SURVEY AREA DESCRIPTION	PACKAGE SIGNOFF DATE	U.S. NRC REVIEW METHOD	PACKAGE REVIEW DATE	LETTER DATE
Turbine Building	TBCx ₈ 1	Class 1 Supporting Survey – Relocated Soil from Turbine Building/Containment Demolition			06/13-14/06	10/9/06
Turbine Building	TBCx91	uilding/Containment Demolition 07/05/06 and Letter		On-Site Inspection and Letter	06/13-14/06	10/9/06
Turbine Building	TBCx101	Class 1 Relocated Soil Supporting Survey Release Record – Relocated Soils from Turbine Building/Containment Demolition	08/03/06	Letter		8/24/06
Turbine Building	TBCx111	Class 1 Relocated Soil Supporting Survey Release Record – Relocated Soils from Turbine Building/Containment Demolition	08/14/06	Letter		8/24/06
Turbine Building	TBCx ₁₂ 1	Class 1 Relocated Soil Supporting Survey Release Record – Relocated Soils from Turbine Building/Containment Demolition	9/6/06	Letter		9/20/06
Turbine Building	TBCx131	Class 1 Relocated Soil Supporting Survey Release Record – Relocated Soils from Turbine Building/Containment Demolition	9/6/06	Letter	:	9/20/06
Turbine Building				10/10/06		
Turbine Building	TBCx141	Class 1 Relocated Soil Supporting Survey Release Record – Relocated Soils from Turbine Building/Containment Demolition	10/23/06	Letter		10/24/06
		CLASS 1 AREAS – FINAL STATUS SURVEY –	SUBSURFACE	(OUARRY)		
9	09Cq ₁ 1	Class 1 Final Status Survey, Screenhouse Area Excavation	12/20/04	On-Site Inspection and Letter	06/13-14/06	10/9/06
11	11Cq ₁ 1	Class 1 Final Status Survey, Solid Radwaste Storage Area Excavation	10/13/04	On-Site Inspection and Letter	. 06/13-14/06	10/9/06
Containment ⁸	CSCq ₁ 1	Excavated Surface Supporting Survey Release Record – Base Elevation Survey of Containment Structure Excavation	08/03/06	Letter		8/24/06
Circulating Water Piping	CWCq ₁ 1	Excavated Surface Supporting Survey Release Record – Base Elevation Survey of Circulating Water Piping Excavation	08/07/06	Letter		8/24/06
Turbine Building	East TBCq ₁ 1	Class 1 Final Status Release Record, Turbine Building East Excavation Surface	03/30/06	Letter		4/03/06
Turbine Building	West TBCq ₁ 1	Excavated Surface Supporting Survey Release Record – Base Elevation Survey of the Turbine Building Excavation Following Removal of West-Side Foundations and Subsurface Components	08/14/06	Letter		8/24/06

⁸ Containment quarry was beneath survey areas 4, 5, 8, and 9. Circulation Water quarry was beneath survey areas 7, 8, 9, and 10. Turbine Building quarry was beneath survey areas 5, 6, and 8

SURVEY AREA ¹	RECORD ² NUMBER	SURVEY AREA DESCRIPTION	PACKAGE SIGNOFF DATE	U.S. NRC REVIEW METHOD	PACKAGE REVIEW DATE	LETTER DATE
		CLASS 2 AREAS – FINAL STATUS SUR	VEY OF SUF	RFACE		
12	12C ₁ 2	Class 2 Final Status Survey Release Record, Shoreline North of the Protected Area	08/14/06	Letter		8/24/06
15 15(1)C ₁ 2 Class 2 Final Status Survey Release Record, Eastern Section Woods Road Area						
15 15(2)C12 Class 2 Final Status Survey Release Record, Central Section Woods Road Area		08/09/06	Letter		8/24/06	
16 16C ₁ 2 Class 2 Final Status Survey Release Record, Shoreline East of Breakwall		08/14/06	Letter		8/24/06	
19 North19C12 Class 2 Final Status Survey Release Record, North West Transport Route						
19 South19C12 Class 2 Final Status Survey Release Record, South West Transport Route						
21 North21C ₁ 2 Class 2 Final Status Survey Release Record, North East Transport Route				-		
21 South21C ₁ 2 Class 2 Final Status Survey Release Record, South East Transport Route						
22	East22C ₁ 2	Class 2 Final Status Survey Release Record, East Powerline Corridor				
22	West22C ₁ 2	Class 2 Final Status Survey Release Record, West Powerline Corridor				
26	26C ₁ 2	Class 2 Final Status Release Record, Drainage Ditch, South and West of the Industrial Area				
Septic Drain Field ⁹	DFC ₁ 2	Class 2 Final Status Survey Release Record, Septic Field Drain	08/14/06	Letter		8/24/06
		CLASS 2 AREAS – EXCAVATED SOIL FIN	AL STATUS	SURVEYS		
12	12Cx ₁ 2	Class 2 Final Status Survey Record, Excavated Soil from Building Construction	12/07/04	On-Site Inspection and Letter	06/13-14/06	10/9/06
19	19Cx ₁ 2	Class 2 Final Status Survey Record, Excavated Soil from Storm Drain Modification	12/02/04	On-Site Inspection and Letter	06/13-14/06	10/9/06

⁹ Septic Field Drain survey area is contained within survey area 15(1)

SURVEY AREA ¹	RECORD ² NUMBER	SURVEY AREA DESCRIPTION	PACKAGE SIGNOFF DATE	U.S. NRC REVIEW METHOD	PACKAGE REVIEW DATE	LETTER DATE
		CLASS 3 AREAS – FINAL STATUS SUF	RVEY OF SUB	RFACE		
13	13 13C ₁ 3 Class 3 Final Status Survey Release Record, Shoreline East of Industrial Site		08/14/06	Letter		8/24/06
14	14C ₁ 3	Class 3 Final Status Survey Release Record, Shoreline West of the Industrial Site	08/17/06	Letter		8/24/06
17	17C13 Class 3 Final Status Survey Release Record, East Woods Boundary					
18 18C ₁ 3 Class 3 Final Status Survey Release Record, Wooded Area West of Industrial Site		07/03/06 ¹⁰	On-Site Inspection and Letter	06/13-14/06	10/9/06	
25	25 25C ₁ 3 Class 3 Final Status Survey Release Record, South Woods Boundary					
59	Class 3 Final Status Survey Release Record Soil Storage Area		07/03/06	On-Site Inspection and Letter	06/13-14/06	10/9/06

¹⁰ Revisions to packages signed after NRC review were administrative only – no changes to technical content.

ATTACHMENT 2

. j

CONSUMERS ENERGY BIG ROCKPOINT

DOCKET NUMBERS 50-155 AND 72-043

TRANSMITTAL OF SURVEY PACKAGES IN SUPPORT OF BIG ROCK POINT PHASED LICENSE TERMINATION

CLASS 1 FINAL STATUS SURVEY RELEASE RECORD, 03C11, NORTH WEST PROTECTED AREA

October 24, 2006

37 Pages

Έ.

Class 1 Final Status Survey Release Record 03C₁1

North West Protected Area

SURVEY PACKAGE CLOSURE Final Status Survey Documentation is authorized for closure. All required reviews are complete and the evaluation of data results have satisfied the criteria established for unrestricted release. 7 Real_ Date: 10-16-06 Signed: _ (ESSG) Date: 10-16-06 Signed: (ES Superintendent) _ Date: /0-16-06 Signed: (RP & ES Manager)

Final Status Survey, Release Record 03C₁1 North West Protected Area

Survey Description

Final Status Survey $03C_11$ encompasses 1956 m² at or below the grade elevation present during plant power operations in the north west section of the Protected Area. No materials of plant origin remain in the survey area.

History

During power operations the Protected Area supported the components and systems necessary for electrical generation. The location of Survey Unit 03 is adjacent to the transport route used to move spent resin and filter media for radiological survey and offsite removal. Structures and enclosures formerly located in this area were once used for the storage of contaminated materials. A detailed review of the history and radiological characterization of Survey Unit 3 is provided in Appendix 2B and 2E of the LTP (License Termination Plan).

Current Radiological Status

Scoping measurements and supporting surveys performed in the Protected Area following removal of subsurface components and demolition debris do not indicate the presence of elevated levels of residual radioactivity in this survey area. Based on operational history and former locations of radioactive systems and material transport pathways the radiological status of this survey unit is Class 1.

Post-Construction Expectations

Final Status Survey 03C₁1 will be performed in the following activity sequence:

- 1. Walkdown: Environmental Services Survey Group (ESSG) personnel will perform a walkdown assessment to ensure survey area preparations are complete and confirm that the following post-construction expectations have been satisfied as applicable:
 - Groundwater and Surface water control is adequate
 - All construction debris has been removed from the survey area
 - The survey location status meets all applicable safety requirements
- 2. Survey Area Isolation and Control: Control measures will be established to ensure that any potential ongoing decommissioning activities in adjacent locations do not impact the current survey area status. Isolation and control measures include postings, barriers, access points, and the evaluation of ongoing work activities in adjacent areas.

- 3. Survey Design and Execution: Survey design and execution will follow the Data Quality Objectives for 03C₁1 in accordance with the survey requirements established in procedures RM-76, *Final Status Survey Design* and RM-77, *Final Status Survey Implementation*, and LTP, Chapter 5. Survey size will be based on the statistical requirements of the Sign Test for Class 1 areas with soil samples collected in random start, systematic data point locations. Surface scanning will be performed with 100% survey area coverage. This survey will be conducted in accordance with approved BRP procedures and follow the guidance of NUREG 1575.
- 4. Data Quality Assessment: Isolation and control of the survey area will be maintained until the survey Data Quality Assessment demonstrates that the regulatory requirements for unrestricted site release have been satisfied.

Survey Area Requirements FSS 03C11 Page 2 of 2

DATA QUALITY OBJECTIVES

Final Status Survey, Release Record 03C₁1 North West Protected Area

STATE THE PROBLEM

The Problem:

1.

To demonstrate that the level of residual radioactivity in Class 1 Survey Unit 03 does not exceed the release criteria of 25 mrem/year Total Effective Dose Equivalent (TEDE) as specified in the License Termination Plan (LTP).

Stakeholders:

The primary stakeholders interested in the answer to this problem are Consumers Energy Co., and the general public as represented by the Michigan Department of Environmental Quality (MDEQ), and the US Nuclear Regulatory Commission (USNRC).

The Planning Team:

The planning team consists of members of the BRP Environmental Services Survey Group (ESSG). The primary decision maker will be the Final Status Survey Supervisor. The Final Status Survey Supervisor will obtain input from the site Construction Group and Scheduling Group for issues relating to schedule and costs.

Schedule:

Approximately five (5) working days are projected to implement the survey and to collect and analyze field data.

Resources:

The primary resources needed to determine the answer to the problem are two (2) technicians to perform fieldwork, one (1) technician to prepare the samples and conduct laboratory analyses, and two (2) survey team members to prepare and review the design, generate maps, coordinate field activities and evaluate data.

2. IDENTIFY THE DECISION

Several decisions need to be defined to address the stated problem.

Principal Study Question (1):

Does the mean concentration of residual radioactivity in the survey unit exceed the release criteria stated above?

Decision (1):

Determine whether the mean concentration of residual radioactivity in the survey exceeds the release criteria stated in the problem.

Actions (1):

Alternative actions include failure of the survey unit, remediation, or no action required.

Principal Study Question (2):

Do any areas of elevated activity in the survey unit exceed the release criteria?

The Decision (2):

Determine if any areas of elevated activity in the survey unit exceed the release criteria.

Actions (2):

Alternative actions include confirmation and investigation, performing the elevated measurement comparison (EMC), remediation, or no action required.

Principal Study Question (3):

Is the potential dose from residual radioactivity in the survey unit ALARA as stated?

The Decision (3):

Determine if the potential dose from residual radioactivity in the survey unit is ALARA. ALARA requirements for soil remediation are defined in Chapter 4 of the LTP.

Actions (3):

Alternative actions include remediation or no action required.

3. IDENTIFY INPUTS TO THE DECISION

Information Needed:

Characterization measurements are required to define the radionuclides present and determine the extent and variability of residual radioactivity in the survey area for design and implementation of the survey. Survey area classification, ALARA analysis, potential radionuclides of interest, and site-specific DCGL values are also required inputs to the decision process. The primary information required for evaluation is the analytical results of survey measurements.

Source of the Information:

The soil sample data to be used for survey development are the radionuclide-specific measurements of representative soil samples collected for radiological characterization and excavated soil surveys conducted to determine suitability for transport of excavated soil to the SVA. The soil samples obtained were judgmentally selected as a result of multiple surveys conducted during the excavation and transport process. The ALARA analysis for potential soil remediation is provided in LTP, Section 4.4. Site-specific DCGL values and BRP radionuclides of interest are defined in LTP Chapter 5, Table 5-1 and Procedure RM-76, *Final Status Survey Design*.

The survey will be conducted in accordance with applicable regulatory guidance as established in LTP Chapter 5 for Class 1 areas. Soil samples will be utilized for radionuclide-specific measurements in this evaluation.

4. BOUNDARIES OF THE STUDY

Boundaries of the Survey:

The target population for this survey is the total thickness of prepared soil in the survey area of 1956 m^2 .

Temporal Boundaries:

Scanning and sampling in this survey unit will only be performed during daylight hours under dry weather conditions. Surface soils must be free of significant snow cover and standing water prior to surface scanning. Soils must be in a non-frozen state or fragmented for collection to satisfy BRP procedural sampling requirements. The anticipated start date for the survey is September 19, 2006.

Constraints:

Cold weather or rainy conditions may effect the operation of electronic equipment. Adverse weather conditions that include accumulations of rain or snow may limit area access and delay survey efforts.

5. DEVELOP A DECISION RULE

The following decision rules have been developed to define a logical process for choosing among alternative actions for the principal study questions associated with this survey area.

Decision Rule (1):

If all reported concentrations for residual radioactivity are less than the site-specific DCGL's and the unity rule has been satisfied for each sample, then the survey unit meets release criteria. No further action is required.

Decision Rule (2):

If the mean value of activity in the survey unit is greater than the DCGL, then the survey unit fails to meet the release criteria.¹ Remediate, resurvey, and evaluate the results relative to the decision rule.

Decision Rule (3):

If the mean activity in the survey unit is less than the DCGL and any individual sample measurement exceeds this value, conduct the Sign Test and the elevated measurement comparison (EMC) per LTP, Chapter 5 and Procedure RM-76, *Final Status Survey Design*. If the EMC and the Sign Test have been satisfied then the survey unit meets the release criteria and no further action is required. If the EMC or the Sign Test has not been satisfied then remediate the area(s) of elevated activity, resurvey as appropriate, and evaluate the results relative to the decision rule.

Decision Rule (4):

If the potential dose from residual radioactivity in the survey unit is ALARA, then no further action is necessary. If the potential dose from residual radioactivity in the survey unit is not ALARA, then remediate and resurvey.

6. SPECIFY TOLERABLE LIMITS ON DECISION ERRORS

The Null Hypothesis:

It is assumed that residual radioactivity in the survey unit exceeds the release criterion.

When multiple radionuclides are present the mean activity value is determined as the average of the weighted sum. The DCGL of the weighted sum is 1.

Type I Error (α):

The α error is the maximum probability of rejecting the null hypotheses when it is true. The α error is defined in the LTP at a value of 0.05 (5%) and cannot be changed to a less restrictive value unless prior approval is granted by the USNRC. The α error value of 0.05 will be used for survey planning and data assessment for this survey area.

Type II Error (β):

The β error is the probability of accepting the null hypothesis when it is false. A value of 0.05 (5%) will be used for survey planning and data assessment for this survey area.

The Lower Bound of the Gray Region (LBGR):

The LBGR is initially set at one-half the DCGL_w for this survey unit. The LBGR may be adjusted during survey design to achieve an optimum relative shift between 1.0 and 3.0.

Relative Shift (Δ/σ) :

The relative shift will be maintained within the range of 1.0 and 3.0 by adjusting the LBGR as appropriate.

7. OPTIMIZE DESIGN FOR OBTAINING DATA

Statistical Test

Sign Test:

Radionuclides of potential plant origin also present in soil as background activity resulting from fallout constitute only a small fraction of the DCGL. Therefore, the Sign Test will be used where applicable in the survey evaluation to determine if the survey area meets the requirements for unrestricted release.

Number of Samples Determined:

The number of samples required for this survey will be determined based on the relative shift as defined by the requirements of the Sign Test (LTP, Chapter 5.) and Procedure RM-76, *Final Status Survey Design*. The LBGR is initially set at one-half the DCGL_w and may be adjusted as necessary for optimizing the survey design to achieve a relative shift between 1.0 and 3.0. Sample point locations are to be determined using a random start, systematic square grid spacing.

Judgmental Sampling:

Co-60 is the most limiting radionuclide for identification by surface scanning; judgmental surface and subsurface core samples will be collected in any location that exceeds the scan investigation level.

Scan Coverage:

Scanning for this survey area will provide 100% coverage.

Number of Samples for Quality Control:

A minimum of 5% of the sample population will be collected for quality evaluation. These samples may include sample splits, sample recounts, or third party sample analysis. Quality analyses will be conducted as defined in LTP, Chapter 5 and Procedure RM-79, *Final Status Survey Quality Control.*

Additional Sample Analysis Requirements:

The area of soil excavation intersects the identified waterborne pathway for Tritium migration and shall require Tritium in soil analyses for a minimum of 10% of the sample population. Soil samples will be collected in the same random locations as those selected for QA/QC evaluation and sent to an independent laboratory for Tritium analysis. Data results will be provided in the survey package.

Investigation Levels:

Investigation levels defined in LTP, Chapter 5 and BRP Procedure RM-76, *Final Status Survey Design*, shall be conservatively established for this survey as shown below:

	Classification	Scan Measurement	Soil Sample Analysis
ſ	Class 1	> DCGL	> DCGL _w

Investigation Levels for Survey 03C₁1

The investigation levels for soil sample measurements are meant to include any individual radionuclide result greater than the site-specific DCGL or where the combined radionuclide values exceed the unity rule. Co-60 is the most limiting radionuclide for identification by surface scanning; further investigation will be initiated at any location that exceeds the Co-60 Scan $_{DCGL}$ of 1818 CPM above background as detailed in the survey design.

FINAL STATUS SURVEY DESIGN

Release Record 03C₁1 **North West Protected Area**

Survey Unit Description

Survey 03C₁1 encompasses an area of 1956 m² in the north west section of the Protected Area. No materials of plant origin exist in this survey unit.

Soil Sample Design

Scoping Data

Scoping measurements and supporting surveys performed in the Protected Area following removal of subsurface components and demolition debris do not indicate the presence of elevated levels of residual radioactivity in this survey area. Input data for survey design were conservatively estimated based on supporting surveys of excavated soils resulting from subsurface structure and component removal within the Protected Area.

•	, , ,	•
Radionuclides	Cs-137	Co-60
σ^*	0.524	0.255
DCGL	11.93	3.21

Table 1

Input Data for Survey Design (pCi/g)

*Survey data detailed in Attachment 1

Sample Requirements

The number of sample data points for this survey is based on the requirements of the Sign Test. The Unity Rule is used for the presence of multiple radionuclides. The Standard Deviation of the weighted sum is described by the following:

$$\sigma = \sqrt{\left(\frac{\sigma_{cs_{137}}}{DCGL_{cs_{137}}}\right)^2 + \left(\frac{\sigma_{coso}}{DCGL_{coso}}\right)^2}$$

$$\sigma = \sqrt{\left(\frac{0.524}{11.93}\right)^2 + \left(\frac{0.255}{3.21}\right)^2}$$

 $\sigma = 0.091$

Relative Shift

Relative Shift = DCGLw-LBGR σ Relative Shift = $\frac{1-0.818}{0.091}$

Relative Shift = 2.0

With α and β error levels set at 0.05 and the relative shift of 2.0, the Sign Test requires 15 sample data points (Table 5.5 NUREG 1575).

Sample Locations

Sample locations are selected in a random start, systematic square grid pattern with the southwest corner of the survey unit as origin (X=0, Y=0). Two numbers between 0 and 1 have been randomly selected and then applied to the survey unit maximum X and Y dimensions to determine the random start location as shown below:

Tab	ole 2
Random	Numbers

Random #, X Axis	Random #, Y Axis
0.353393	0.688176

Survey Unit Dimensions:	X = 40.0 meters Y = 48.9meters	
Random Start Location With SW Corner Origin:	X = (0.353393)(40.0) Y = (0.688176)(48.9)	

Sample Spacing

As a conservative measure sample spacing will be calculated based on 18 samples for this survey. Samples are located in a systematic square grid pattern with sample spacing determined by the following:

$$L = \sqrt{\frac{A}{n}}$$

Where: A= area of survey unit, and n = number of samples.

L =
$$\sqrt{\frac{1956}{18}}$$
 = 10.4 meters

With sample spacing established at 10.4 meters, 20 data points are available for this survey. Data point locations are identified in Attachment 2.

QA/QC Sampling

A minimum of 5% of the sample population and 5% of the scan survey area are required to be selected for QA/QC verification in accordance with BRP Procedure RM-79, *Final Status Survey Quality Control*. As a conservative measure, three (3) soil samples and 10% of the scan survey area will be selected for QA/QC evaluation. Data point locations for soil samples will be determined by random number selection.

The QA/QC scan starting point and track direction are also determined by random number selection. The first random data point selected will identify the scanning start point and the second random data point will determine the direction in which the scan will track. QA/QC location results are provided in Table 3 below:

Survey Design FSS 03C₁1 Page 2 of 7

Table 3
Random Numbers Generated for QA/QC

QA/QC Soil Samples	Random Sample Number		Random Sample Number
Split Sample:	2	Start Point:	5
Sample Recount:	10	Scan Toward:	13
Sample Recount:	13	Scan Area Requirement:	196 m ²

Surface Scanning

The coverage requirement for surface scanning in this Class 1 area is 100%. The Scan _{MDC} has been established at fractional values of the DCGL_W for typical background activity levels at Big Rock Point. Scan _{MDC} values for varying backgrounds are provided in Attachment 3. The investigation level for identification of potential areas of elevated activity in this survey area will be the Scan _{DCGL} as defined by the following:

Scan _{DCGL} = Detector Rating $\frac{CPM}{uR/hr}$ * Exposure Model $\frac{uR/hr}{pCi/g}$ * DCGL_w Scan _{DCGL} for Co-60 = 1818 CPM

Scan $_{DCGL}$ for Cs-137 = 3518 CPM

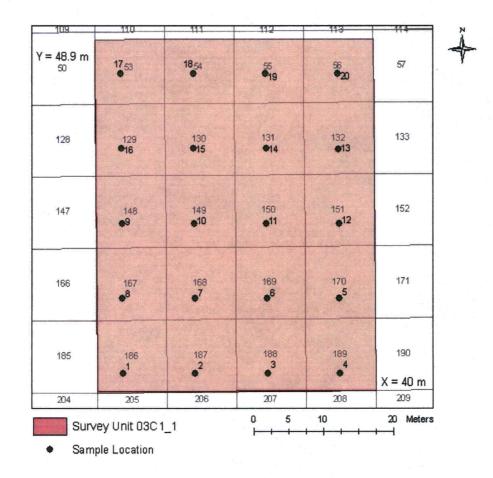
Where:1

Detector Rating = $\frac{1200 \text{ CPM}}{\text{uR/hr}}$ Cs - 137 and $\frac{565 \text{ CPM}}{\text{uR/hr}}$ Co - 60

Exposure Model = $\frac{1.229 \text{ uR/hr}}{5 \text{ pCi/g}} \text{ Cs} - 137 \text{ and } \frac{5.029 \text{ uR/hr}}{5 \text{ pCi/g}} \text{ Co} - 60$

 $DCGL_w = 11.93 \text{ pCi/g Cs} - 137 \text{ and } 3.21 \text{ pCi/g Co} - 60$

The DCGL_w for Co-60 is the most limiting value for scanning measurements performed to identify areas of potentially elevated activity. Scanning conducted for this survey will assume all residual radioactivity to originate from Co-60 and the instrument response at the Co-60 DCGL_w (1818 cpm) will be used as the scanning investigation level for FSS $0.3C_1$.


Survey Design FSS 03C₁1 Page 3 of 7

Design Data - FSS 03C₁1 Protected Area Supporting Surveys

Survey No.	Sequence No.	Cs-137 Activity (pCi/g)	Co-60 Activity (pCi/g)
HH060705	16538	1.26	0.66
HH060705	16539	0.06	0.06*
HH060705	16540	1:05	0.66
TB062805	16755	1.16	0.27
TB062805	16756	0.47	0.15*
TB062805	16774	0.19	0.31
	Mean:	0.698	0.352
	Std Dev:	0.524	0.255

* Measurement system MDA - Co-60 not identified in this sample

Survey Design FSS 03C₁1 Page 4 of 7

Soil Sample Locations - Survey 03C₁1 North West Protected Area

Sample No.	Grid Number	X Coord.	Y Coord.	Sample No.	Grid Number	X Coord.	Y Coord.
1	186	3.7	2.5	11	150	4.5	3.3
2	187	4.1	2.5	12	151	4.9	3.3
3	188	4.5	2.5	13	132	4.9	3.7
4	189	4.9	2.5	14	131	4.5	3.7
5	170	4.9	2.9	15	130	4.1	3.7
6	169	4.5	2.9	16	129	3.7	3.7
7	168	4.1	2.9	17	53	3.7	4.1
8	167	3.7	2.9	18	54	4.1	4.1
9	148	3.7	3.3	19	55	4.5	4.1
10	149	4.1	3.3	20	56	4.9	4.1

Sample spacing is 10.4 meters

.

あたちでもの

Survey Design FSS 03C₁1 Page 5 of 7

Scan MDC In Varying Backgrounds

				CPM	MDER	uR/hr	Scan MD	C pCi/g
Background	d'	1	S _i	MDCR _{surveyor}	Cs-137	Co-60	Cs-137	Co-60
2000	2.48	4	28.64	607.47	0.51	1.08	2.06	1.07
2500	2.48	4	32.02	679.18	0.57	1.20	2.30	1.20
3000	2.48	4	35.07	744.00	0.62	1.32	2.52	1.31
3500	2.48	4	37.88	803.61	0.67	1.42	2.72	1.41
4000	2.48	4	40.50	859.10	0.72	1.52	2.91	1.51
4500	2.48	4	42.95	911.21	0.76	1.61	3.09	1.60
	2.48	4	45.28	960.50	0.80.	1.70	3.26	1.69
5500	2.48	4	47.49	1,007.38	0.84	1.78	3.42	1.77
6000	2.48	4	49.60	1,052.17	0.88	1.86	3.57	1.85
6500	2.48	4	51.63	1,095.14	0.91	1.94	3.71	1.93
7000	2.48	4	53.57	1,136.48	0.95	2.01	3.85	2.00
7500	2.48	4	55.45	1,176.37	0.98	2.08	3.99	2.07
8000	2.48	4	57.27	1,214.95	1.01	2.15	4.12	2.14
8500	2.48	4	59.04	1,252.34	1.04	2.22	4.25	2.20
9000	2.48	4	60.75	1,288.65	1.07	2.28	4.37	2.27
9500	2.48	. 4	62.41	1,323.96	1.10	2.34	4.49	2.33
10000	2.48	4	64.03	1,358.35	1.13	2.40	4:61	2.39
10500	2.48	4	65.61	1,391.90	1.16	2.46	4.72	2.45
11000	2.48	4	67.16	1,424.65	1.19	2.52	4.83	2.51
11500	2.48	4	68.67	1,456.67	1.21	2.58	4.94	2.56
12000	2.48	4	70.14	1,488.00	1.24	2.63	5.04	2.62
12500	2.48	4 - /	71.59	1,518.68	1.27	2.69	5:15	2.67
13000	2.48	4	73.01	1,548.76	1.29	2.74	5.25	2.73
13500	2.48	4	74.40	1,578.26	1.32	2.79	5.35	2.78
14000	2.48	4	75.77	1,607.22	1.34	2.84	5.45	2.83
14500	2.48	4	77.11	1,635.67	1.36	2.89	5.55	2.88
15000	2.48	4	~.78.42		1.39	2.94	5.64	2.93
Modeled	Exposure	(uR/hr)@) 5 pCi/g					
		1.23E+00	<u>, </u>	and Angenera (a lo y na hindu nagaga	anar (alas) magnifik i fa ta ta ta		een o graatelijk boortelijk.	1999 Barren Barren Barren Barren
		5.03E+00						
						· · · · ·		

Contoniontod		Calculated Area Factors at Time of Peak Dose							
Contaminated Area (m ²)	H-3	Mn-54	Fe-55	Co-60	Sr-90	Cs-137	Eu-152	Eu-154	Eu-155
8094	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
4047	1.00	1.01	1.00	1.01	1.00	1.02	1.02	1.01	1.02
2024	1.00	1.03	1.00	1.03	1.00	1.03	1.03	1.03	1.03
1012	1.35	1.04	1.00	1.04	1.00	1.04	1.05	1.04	1.04
506	2.91	1.09	1.98	1.08	1.98	1.13	1.07	1.07	1.06
253	6.05	1.14	3.95	1.13	3.94	1.20	1.11	1.11	1.09
126	12.4	1.20	7.93	1.20	7.87	1.29	1.17	1.16	1.14
63	24.9	1.30	15.8	1.30	15.6	1.41	1.27	1.26	1.23
32	49.2	1.49	31.2	1.49	30.5	1.62	1.44	1.45	1.39
16	98.9	1.78	62.0	1.78	59.9	1.93	1.72	1.73	1.63
8	198	2.38	123	2.38	117	2.58	2.30	2.31	2.14
4	397	3.61	243	3.62	230	3.91	3.49	3.52	3.19
2	794	5.68	473	5.75	452	6.14	5.48	5.55	4.90
1	1590	9.57	905	9.73	887	10.3	9.24	9.39	7.88

Area Factors for Open Land Survey Evaluation

Survey Design FSS 03C₁1 Page 7 of 7 **RM-76** FINAL STATUS SURVEY DESIGN

Revision 1 Page 19 of 19

RM-76-5 FINAL STATUS SURVEY APPROVAL

AND AUTHORIZATION FOR IMPLEMENTATION

Survey Code <u>03C11</u>

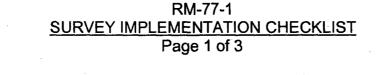
Survey Area Description:

Final Status Survey 03C11 encompasses 1956 m² at or below the grade elevation present during plant power operations in the north west section of the Protected

Area. No materials of plant origin remain in the survey area.

The survey area is authorized for Final Status Survey Implementation.

Designed by


<u>09 - 13 - 0 6</u> Date

Technical Review by

<u>\</u>3 - Ø (⊘ Date

RM-77 FINAL STATUS SURVEY IMPLEMENTATION

Revision 2 Page 8 of 12

<u>Step</u> (+) 1.0 PREPARATION FOR SURVEY <u>03C</u> Survey #

Initial Date

1.1 Survey Area Status:

- a. Final Status Survey Design has been approved for implementation (see RM-76-5, Final Status Survey Approval and Authorization for Supplementation).
 - 1. Survey area walkdown complete
 - 2. Survey area determined ready for FSS
 - Decommissioning activities that may impact the environmental status of the survey area have been completed.

4. Survey area environment is controlled by barriers and postings or other approved method to restrict access.

b. Survey area has been turned over to the Environmental Services Survey Group (ESSG) in acceptable condition for FSS.

09/14/06

All oglishow

1.2 Field Preparation:

- a. Survey unit boundaries delineated (Step 6.1.1)
- b. Statistical soil samples predetermined in the survey design are located and marked within the survey unit. (Step 6.1.2)
- c. Soil sample locations verified (Step 6.1.2.c)
- d. Instruments and equipment have been collected and calibrated for data measurement and collection (Step 6.1.3)
 - Field documentation is prepared (Step 6.1.4)

ESSG 09/19/06

e.

RM-77 FINAL STATUS SURVEY IMPLEMENTATION

Revision 2 Page 9 of 12

Date

RM-77-1 SURVEY IMPLEMENTATION CHECKLIST Page 2 of 3

2.0 DATA COLLECTION

Soil Survey:

2.1

All soil samples collected and controlled (Step 6.2.1).

.

2.2 Surface Scan:

Surface Scan complete. Action response requirements have been conducted on any identified areas exceeding the investigation level (Step 6.3).

- 2.3 Judgmental Soil Samples:
 - a. Judgmental soil samples have been collected and controlled (Step 6.2.3).
 - b. Deep core profiles performed in areas identified to contain elevated residual activity (Step 6.2.3).

3.0 SAMPLE PREPARATION AND LABORATORY ANALYSIS

- 3.1 Sample Preparation (Step 6.4.1):

C.

d.

MA

Na

- a. Soil samples are homogenous
- b. Soil samples are visibly dry prior to packing
 - Non-soil materials have been removed from sample
 - Soil samples have been transferred to one-liter Marinelli containers and are labeled and sealed.

UML 09/19/06 ESSG

Initial

ESSG osfigloro

AL Alighold

<u>946 09/23/06</u> ESSG

RM-77 FINAL STATUS SURVEY IMPLEMENTATION

Revision 2 Page 10 of 12

Date

m 25/00

Initial

ESSG

RM-77-1 SURVEY IMPLEMENTATION CHECKLIST Page 3 of 3

3.2 Laboratory Analysis:

Isotopic analyses are complete. The spectroscopy report requires a signature of completion by the laboratory analyst and a signature of evaluation documenting that a second level review has been performed (Step 6.4.2).

3.3

Sample Control and Documentation:

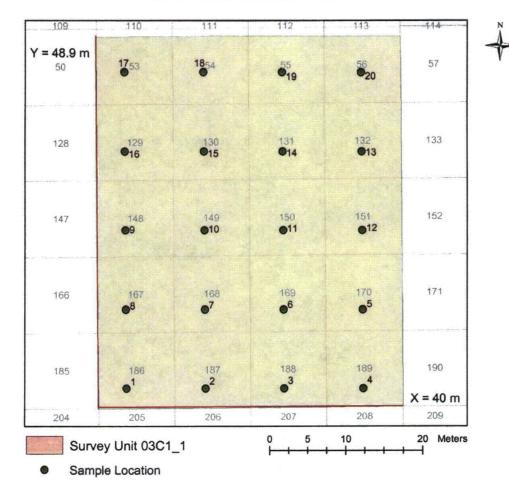
Chain of custody documentation exhibits control of soil samples (Step 6.4.3).

Reviewed by

09/25 Date

orlashi

RM-59 SAMPLING AND ANALYSIS OF OPEN LAND AREAS FOR SITE CHARACTERIZATION SURVEYS

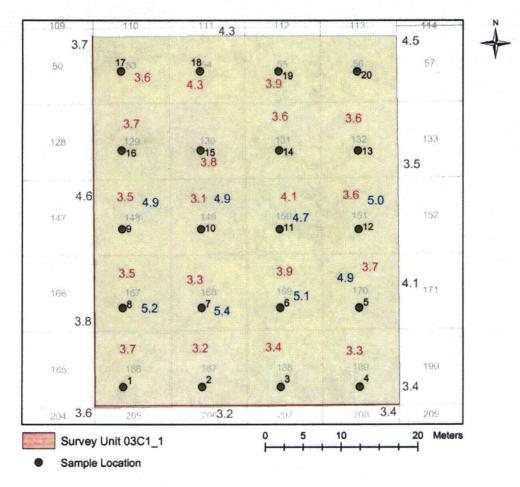

Revision 11 Page 7 of 13

ATTACHMENT RM-59-1 SAMPLING AND ANALYSIS REPORT

Date: 09-19-2006	Time: 1600	Location: 0	3C₁1	Tech: TRS/WMH/JNS
	SURVEY IDENTIF	ICATION / D	ESCRIPTION	
Survey 03C ₁ 1 encompas				ing plant power operations
in the north west section				
·	SUE			
Survey Type:	Characterization		(Motive)	
	Remediation		(
· · · · · · · · · · · · · · · · · · ·	Final	Scan	(Static)	
· · · · · · · · · · · · · · · · · · ·		Trend	ching and Diggin	g (use RM-59-4)
				· · ·
		<u>'EY DESIGN</u>	<u> </u>	
Sample Collection:		ndom <u>X</u> S	ystematic	Large Container Assay
Scan Coverage: 1009	//			
	A			
Inst.SN/Cal Due 186201/09	-30-2006 DAILY C	HECK: X	SAT	UNSAT INIT: TRS
Inst.SN/Cal Due 186194/02	2-08-2007 DAILY C	HECK: <u>X</u>	_ SAT	UNSAT INIT: TRS
Inst.SN/Cal Due <u>193709/02</u>				UNSAT INIT: <u>TRS</u>
Inst.SN/Cal Due Det. # 6				UNSAT INIT: JP
Inst.SN/Cal Due	DAILY C		_ SAT	_ UNSAT INIT:
Investigation of Unidentifie		<u>X</u>	_ SAT	UNSAT INIT: JLR
Minimum Detectable Activ	ity (Section 5.3.2)	X	_ SAT	UNSAT INIT: JLR
· · · ·	<u>co</u>	MMENTS		
Survey 03C11 was performe	d in a random start, squar	e grid, systemati	c sampling patterr	with samples
collected at 20 data point loo	cations. Laboratory analys	es did not identi	fy residual radioad	tivity above trace levels of
the DCGL value. Surface so	anning identified no area	s of elevated res	idual radioactivity.	The results of the QA/QC
verification scan (10%) were	e consistent with the findin	gs of the primary	/ survey scan.	
			······	
		•	, D	
Technician Signature:	Intall of	La huter	405 Date	9-A-06
Second Level Review	1 Paris	- Hunder		10-13-06
Signature:	y when		Date:	10 10 00

Soil Sample Activity Summary

Release Record 03C₁1 North West Protected Area



Sample	0.11#	X X		Cs-137	(pCi/g)	Co-60	(pCi/g)
No.	Grid #	Coord.	Coord.	Activity	MDA	Activity	MDA
1	194	5.0	4.0	0.0591		*0.0023	0.0436
2	195	5.5	4.0	0.0912		*0.0288	0.0560
3	196	6.0	4.0	0.0698		*0.0118	0.0538
4	197	6.5	4.0	0.0872		*0.0012	0.0528
5	178	6.5	4.5	0.0638	And Street Street	*0.0073	0.0476
6	177	6.0	4.5	0.2535		*-0.0063	0.0546
7	176	5.5	4.5	0.0529		*0.0243	0.0645
8	175	5.0	4.5	0.3983	Carlos Carlos	*0.0343	0.0743
9	156	5.0	5.0	0.1171		*0.0110	0.0477
10	157	5.5	5.0	0.2412	(Magenker) Los	*0.0077	0.0607
11	158	6.5	5.0	0.0677		*0.0010	0.0571
12	159	6.5	5.0	*-0.0001	0.0437	*-0.0101	0.0466
13	140	6.5	5.5	*0.0114	0.0480	*0.0117	0.0583
14	139	6.0	5.5	0.0503	degen & states	*0.0210	0.0683
15	138	5.5	5.5	0.0834		*0.0175	0.0581
16	137	5.0	5.5	0.1165	Sand Street	*0.0552	0.0646
17	61	5.0	6.0	0.0651		*-0.0035	0.0498
18	62	5.5	6.0	*0.0558	0.0712	*0.0250	0.0643
19	63	6.0	6.0	*0.0458	0.0615	*0.0254	0.0617
20	64	6.5	6.0	0.1818		*0.0046	0.0593

*Forced-count values

Surface Scan Summary

Release Record 03C₁1 North West Protected Area

RED Values are Average Mobile Scan General Area Activity (kcpm) **BLUE** Values are Average Verification Scan General Area Activity (kcpm) GREY Values are Average General Background Area Activity (kcpm)

No areas mush galic 1.04

100 % **Primary Scan:** Technician Signature: Date: 9 Time: QC Verification Scan: _ 10 % Technician Signature: U.P. lon MSalesourt Date: 9-19-06

Time: /500

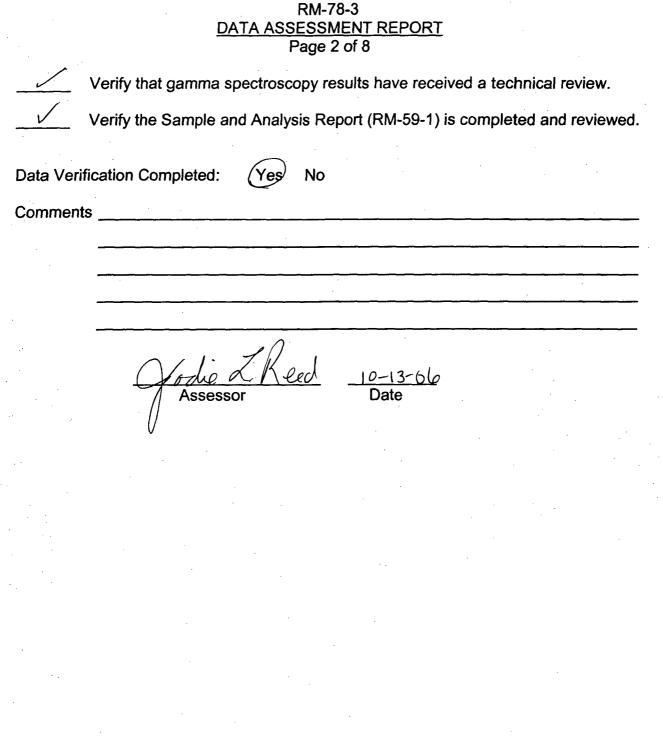
RM-72 SAMPLE CHAIN-OF-CUSTODY

Revision 0 Page 4of 5

* Samples collected by 3 seperate Teams. RM-72-1 CHAIN-OF-CUSTODY RECORD

Sample Number	Sampling Location	Date	Time	Final Disposition of Sample
1	Grid # 186 (3.7) (2.5)	9-19-06	1320	TO PERMONENT STOPPE
2	Grid # 187 (4.1) (2.5)	9-19-06	1322	
2 QA Split	Grid # 187 (4.1) (2.5)	9-19-06	1322	
3	Grid # 188 (4.5) (2.5)	9-9-06	1325	
4	Grid # 189 (4.9) (2.5)	9-19-06	1327	
5	Grid # 170 (4.9) (2.9)	9-19-06	1328	
6	Grid # 169 (4.5) (2.9)	9-19-06	1330	
7	Grid # 168 (4.1) (2.9)	9-19-06	1332	
8	Grid # 167 (3.7) (2.9)	9-A-06	1330	
9	Grid # 148 (3.7) (3.3)	9-19-06	1331	
10(R)	Grid # 149 (4.1) (3.3)	9-19-04-	1313	
11	Grid # 150 (4.5) (3.3)	9-A-04	1314	
12	Grid # 151 (4.9) (3.3)	9-A-06	1315	
13 (R)	Grid # 132 (4.9) (3.7)	9-19-06	1310	
14	Grid # 131 (4.5) (3.7)	9-19-06	1318	
15	Grid # 130 (4.1) (3.7)	9-19-06	1319	
16	Grid # 129 (3.7) (3.7)	9-19-06	1320	
17	Grid # 53 (3.7) (4.1)	9-19-06	1321	
18	Grid # 54 (4.1) (4.1)	9-19-06	1322	
19	Grid # 55 (4.5) (4.1)	9-19-0L	1323	
20	Grid # 56 (4.9) (4.1)	9-19-06	1324	

(Samples may be analyzed and stored, shipped for offsite evaluation or analyzed and disposed of.)

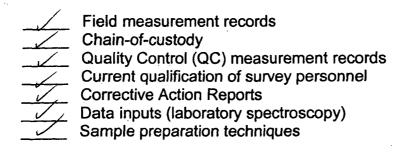

1. Relinquished by?	Date 9-19-04	Time 1350	Received in good condition by:
2. Relinquished by: Crecinoneur.	Date 9/25/04	Time (500	Received in good condition by:
3. Relinquished by:	Date	Time	Received in good condition by:
4. Relinquished by:	Date	Time	Received in good condition by:

Revision 2 Page 19 of 26

RM-78-3 DATA ASSESSMENT REPORT Page 1 of 8

03C,1 FINAL STATUS SURVEY: 1.0 DATA VERIFICATION 1.1 **Data Acceptance** Review the Implementation Checklist (RM-77-1) to verify that survey isolation and control measures were executed prior to FSS and are being maintained. Review RM-77, Final Status Survey Implementation, to verify that methods, techniques, and survey activities required for FSS have been applied in accordance with the appropriate procedures. 1.2 Field QC Records: Review all assessments, Condition Reports and audits to ensure that identified issues have been resolved. Comments: Verify scan instrumentation was in calibration and the QC source checks were performed prior to and after surveys. Verify daily QC source checks for Canberra gamma spectroscopy detector properly logged prior to soil sample analysis. **Review Verification:** 1.3 Verify that the Data Quality Objectives are complete. Verify that the survey design has been technically reviewed.

Revision 2 Page 20 of 26


Revision 2 Page 21 of 26

RM-78-3 DATA ASSESSMENT REPORT Page 3 of 8

2.0 DATA VALIDATION

2.1 Documentation Review:

Perform documentation review for quality control purposes and validate the data collected is complete and appropriate for use as defined by the survey design. Documentation includes:

2.2 Detection Limit Review:

Scan MDCs are below established site DCGLs.

Forced-count values are assigned as necessary when activity is not detected in a sample.

Minimum Detectable Concentration (MDC) values of gamma spectroscopy are below established DCGLs.

Quality Control (QC) Data Review:

/

Quality Control (QC) data results have received required reviews and are complete and consistent.

Results of judgmental samples have been reviewed and evaluated.

Review to ensure that the analytical results of judgmental samples do not impact the evaluation for unrestricted release of the survey area.

2.3

Revision 2 Page 22 of 26

RM-78-3 DATA ASSESSMENT REPORT Page 4 of 8

Qualification of Data:

Statistical radionuclide-specific measurements for completeness. Evaluate the survey for determination of data usability and confirm that sufficient qualified data are present for the decision process.

a. Total number of statistical samples planned for the survey: _/____

b. Total number of statistical samples determined as valid: <u>20</u>

c. Calculate % Completeness:

 $\frac{b \times 120}{2} = 160\%$

Qualified data are $\ge 00\%$ completeness and are sufficient to support the Sign Test requirement for determination of unrestricted release.

Data Validation Completed:

(Yes No

Comments:

2.4

odie L. Keed 10-13-06 Assessor

Revision 2 Page 23 of 26

RM-78-3 DATA ASSESSMENT REPORT Page 5 of 8

3.0 DATA QUALITY ASSESSMENT

3.1 Review the DQOs and Survey Design:

Confirm that all inputs to the decision have been reviewed and are complete.

Verify that boundaries or constraints identified in the survey area have not affected the quality of the data.

Review the Statement of Hypothesis and confirm that it remains relevant.

Confirm that Type I and Type II error limits are consistent with DQOs.

Confirm that the survey design is consistent with DQOs and that the appropriate number of data points were obtained.

3.2 Preliminary Review:

3.2.1 Preliminary Evaluation:

Quality Assessment (QA) reports consistent with procedure RM-79, Final Status Survey Quality Control.

Survey is of sufficient intensity to satisfy classification requirement.

Potential trends of radioactivity levels in the survey area do not impact a decision for unrestricted release.

Comments:

RM-78-3 DATA ASSESSMENT REPORT Page 6 of 8

3.2.2 Calculate Basic Statistical Quantities:

a. Number of qualified data points <u>20</u>
b. Calculation of the Mean <u>0.0/31 (sol</u>)
c. Calculation of the Median <u>0.019 (sol</u>)

d. Calculation Standard Deviation

N|A Attach graphic representation of the data if any radionuclide-specific measurements exceed 50% of the DCGL.

0.0100 (sor

 $_$

Sample QA/QC measurements consistent with FSS data

Statistical Evaluation:

NOTE:

: If all measurement data are less than the DCGL_w, statistical testing in not required and the survey unit meets the regulatory requirement for unrestricted release.

All survey measurements are below the DCGL_w.

3.3.1

3.3

Verify Assumptions of the Survey Design

Review the posting plot to verify that the data exhibits spatial independence. Spatial trends must be investigated and resolved prior to further assessment.

Review to verify dispersion symmetry. The appearance of skewed data must be investigated for cause and documented prior to further assessment.

Revision 2 Page 25 of 26

RM-78-3 DATA ASSESSMENT REPORT Page 7 of 8

Review the dataset standard deviation and range for data variance. Questionable data must be investigated for cause and documented prior to further assessment.

Verify that the data exhibits adequate power and confirm that the sample size is sufficient to satisfy the DQOs.

- 3.4 Draw Conclusions from the Data:
- 3.4.1 Investigation Levels and Response Actions

Determine if data results have exceeded any investigation level. Document findings. 1/0 investigation levels exceeded.

3.4.2 Evaluation for Unrestricted Release

Select applicable conclusion:

Survey area <u>acceptance criteria met</u> and survey area satisfies the requirements for unrestricted release:

_ All concentrations are less than the DCGL_w. The Null Hypothesis is rejected.

The mean concentration of the survey area is below the $DCGL_w$ but individual measurements in the survey unit exceed the $DCGL_w$. The Sign Test and EMC evaluation are successful and the Null Hypothesis is rejected.

Revision 2 Page 26 of 26

RM-78-3 DATA ASSESSMENT REPORT Page 8 of 8

NA

Survey area acceptance criteria not met and survey area fails to satisfy the requirements for unrestricted release:

 M_{A} The mean concentration in the survey area exceeds the DCGL_w. and the null hypothesis is confirmed.

N/A The mean concentration of the survey area is below the DCGL_w but individual measurements in the Unit exceed the DCGL... The Sign Test and EMC evaluation are unsuccessful and the null hypothesis is confirmed.

Data Quality Assessment Completed: (Yes) No quantities provided in Comments

Reed Assessor

Reviews: Technical Review

Date

10-16-06 Date

ES Superintendent

RP&ES Manager

RM-78-3, Attachment 1 Statistical Quantities

Release Record 03C₁1 North West Protected Area

Sample	Cs-137	Co-60	Weighted	**Weighted Sum		
Number	(pCi/gm)	(pCi/gm)	Sum (SOR)	<dcglw?< th=""><th>DCGL-W. Sum</th><th>Sign</th></dcglw?<>	DCGL-W. Sum	Sign
1	0.0591	0.0023	0.0057	yes	0.9943	+1
2	0.0912	0.0288	0.0166	yes	0.9834	+1
3	0.0698	0.0118	0.0095	yes	0.9905	+1
4	0.0872	0.0012	0.0077	yes	0.9923	+1
5	0.0638	0.0073	0.0076	yes	0.9924	+1
6	0.2535	-0.0063	0.0193	yes	0.9807	+1
7	0.0529	0.0243	0.0120	yes	0.9880	+1
8	0.3983	0.0343	0.0441	yes	0.9559	+1
9	0.1171	0.0110	0.0132	yes	0.9868	+1
10	0.2412	0.0077	0.0226	yes	0.9774	+1
11	0.0677	0.0010	0.0060	yes	0.9940	+1
12	-0.0001	-0.0101	-0.0032	yes	0.9968	+1
13	0.0114	0.0117	0.0046	yes	0.9954	+1
14	0.0503	0.0210	0.0108	yes	0.9892	+1
15	0.0834	0.0175	0.0124	yes	0.9876	+1
16	0.1165	0.0552	0.0270	yes	0.9730	+1
17	0.0651	-0.0035	0.0044	yes	0.9956	+1
18	0.0558	0.0250	0.0125	yes	0.9875	+1
19	0.0458	0.0254	0.0118	yes	0.9882	+1
20	0.1818	0.0046	0.0167	yes	0.9833	+1
	0.0055	0.0157	0.0100			
Std. Dev	0.0955	0.0157	0.0100			
Mean	0.1056	0.0135	0.0131			
Median	0.0688	0.0114	0.0119		ч. 1	

Number of Positive Differences (S+): n/a

Critical Value, k, Table I.3 of Marssim: n/a

S+ > than k?:

n/a

Survey Unit Pass or Fail: **Pass

*Note: Forced-Count values are used for samples with activity levels below the MDA. **Note: If all measurement data are less than the DCGL_w, then the Sign Test is not required. RM-79

FINAL STATUS SURVEY QUALITY CONTROL

Revision 1 Page 11 of 13

RM-79-1 FSS QUALITY CONTROL EVALUATION RESULTS

FSS Package # _ <u>03C,/</u>

QC Package # ______ *03 C*____

QC Measurement Type	Acceptance Criteria Met*?	Reference
1. Replicate Scan	Yes' No	Step 5.1.3
2. Sample Recounts		Step 5.1.4.1
a. In-house	Yes/ No	:
<u> </u>	Yes / No	
3. Split Samples		Step 5.1.4.2
c. In-house	Yes/No	
N/A d. Third party	Yes / No	

*<u>NOTE</u>: If Acceptance Criteria is not met, completion of Attachment RM-79-2, FSS Quality Control Investigation Results, is required.

Comments: Sample # QA/OC 10 +#13=

Reviews:

Kead Evaluator **Technical Review**

0-13-06

10-13-06

Date

QA Verification Split Sample Analysis

Date:	8/25/2006	Acc
		Resolu
QA:	03C11 North West Protected Area	<4
		4-7
Type:	Split Sample	8-1
		16-
Lab:	In-House	51-2
		>20

Table 1					
Acceptance Criteria					
Ratio					
N/A					
0.5-2.0					
0.6-1.66					
0.75-1.33					
0.8-1.25					
0.85-1.18					

		-	A	B	C	D	E	F	G	
Sample	Radionuclide	BRP Result Below MDA	BRP Results (pCi/g)	BRP % Error (Sigma)	BRP Resolution	Acceptance Ratio (Table 1)	Split Results Below MDA	Split Results (pCi/g)	Comparison Ratio F/A	Results in Agreement Compare G with D)
2	Co-60	· <	0.0560	n/a	n/a	n/a	<	0.0440	0.79	YES
2	Cs-137		0.0912	21.68	4.61	0.5-2.0		0.0696	0.76	YES
										*
		· · ·	÷							
	1									
	· ·									
	1				1					
	<u>+</u>	<u> </u>		<u> </u>			<u>+</u>	<u> </u>		

Resolution $C = \frac{A}{(A)(B/100)}$

< Indicates results less than the MDA.

*Note Results are considered in agreement for MDA and near-MDA measurement comparisons Results fihat fail, agreement must be investigated per RM-79.

QA Verification Sample Recount Analysis

		Table 1			
Date:	8/25/2006	Acceptan	ce Criteria		
		Resolution	Ratio		
QA:	03C11 North West Protected Area	<4	N/A		
		4-7	0.5-2.0		
Type:	Sample Recounts	8-15	0.6-1.66		
		16-50	0.75-1.33		
Lab:	In- House	51-200	0.8-1.25		
		>200	0.85-1.18		
		· · · · ·	1		

			Α	В	С	D	E	F	G	
Sample	Radionuclide	BRP Result Below MDA	BRP Results (pCi/g)	BRP % Error (Sigma)	BRP Resolution	Acceptance Ratio (Table 1)	Recount Result Below MDA	Recount Results (pCi/g)	Comparison Ratio F/À	Results in Agreement Compare G with D)
10	Co-60	<	0.0607	n/a	n/a	n/a	<	0.0587	0.97	YES
10	Cs-137		0.2412	9.95	10.05	0.6-1.66		0.2059	0.85	YES
13	Co-60	<	0.0583	n/a	n/a	n/a	<	0.0568	0.97	YES
13	Cs-137	<	0.0480	n/a	n/a	n/a	<	0.0496	1.03	YES
	· · ·		· · · · · · · · · · · · · · · · · · ·		· · · · ·					
				<u>.</u>					<u>````</u>	

Resolution C = $\frac{A}{(A)(B/100)}$

< Indicates results less than the MDA.

Note Results are considered in agreement for MDA and near-MDA measurement comparisons Results fithat fail agreement must be investigated per RM-79.

Tritium in Soil Data Results Final Status Survey 03C₁1

Sample	Tritium in Soil
Number	pCi/g
2	0.025
10	0.015
13	0.011

Mean:	0.0170
Median:	0.0150
St. Dev:	0.0072

<u>Note</u>: The DCGL for Tritium is 327 pCi/g. Sample results are less than 0.2% of the DCGL

700 Landwehr Road • Northbrook, IL 60062-2310 ph. (847) 564-0700 • fax (847) 564-4517

Mr. David W. Parish Big Rock Point 10269 US-31 North Charlevoix, MI 49720	LABORATORY REPORT NO. DATE: SAMPLES RECEIVED: PURCHASE ORDER NO:	8022-100-239 09-27-2006 09-22-2006
Chanevolx, IVII 49720	PURCHASE URDER NU.	·······

Below are the results of the analyses for tritium on three soil samples.

Excavated Soil Survey 03C₁1

Sample Description	Collection Date	Lab Code	Concentration (pCi/g of soil) H-3	MDA (pCi/g of soil)
2	09-19-06	BRSO-6484	0.025 ± 0.008	< 0.013
10	09-19-06	BRSO-6485	0.015 ± 0.007	< 0.011
13	09-19-06	BRSO-6486	0.011 ± 0.005	< 0.009

The error given is the probable counting error at 95 % confidence level. The less than, (<), value is based on 4.66 sigma counting error for background sample.

ncerely nnia ſоb, Laboratory Manager APPROVED B Tony Coorlim, Quality Assurance

ATTACHMENT 3

CONSUMERS ENERGY BIG ROCKPOINT

DOCKET NUMBERS 50-155 AND 72-043

TRANSMITTAL OF SURVEY PACKAGES IN SUPPORT OF BIG ROCK POINT PHASED LICENSE TERMINATION

CLASS 1 FINAL STATUS SURVEY RELEASE RECORD, 05C11, CENTRAL PROTECTED AREA

October 24, 2006

37 Pages

Class 1 Final Status Survey Release Record 05C₁1

Central Protected Area

SURVEY PACKAGE CLOSURE

Final Status Survey Documentation is authorized for closure. All required reviews are complete and the evaluation of data results have satisfied the criteria established for unrestricted release.

____ Date: _____0-16-06 Signed: led (ESSG) Date: <u>10-16-06</u>

Signed:

Signed:

(ES Superintendent)

Date: /0-/6-06

(RP & ES Manager)

Final Status Survey, Release Record 05C₁1 Central Protected Area

Survey Description

Final Status Survey $05C_11$ encompasses 1924 m^2 at or below the grade elevation present during plant power operations in the central section of the Protected Area. No materials of plant origin remain in the survey area.

History

1

During power operations the Protected Area supported the components and systems necessary for electrical generation. The location of Survey Unit 05 is adjacent to the transport route used to move spent resin and filter media for radiological survey and offsite removal. Structures and enclosures formerly located in this area were once used for the storage of contaminated materials. A detailed review of the history and radiological characterization of Survey Unit 5 is provided in Appendix 2B and 2E of the LTP (License Termination Plan).

Current Radiological Status

Scoping measurements and supporting surveys performed in the Protected Area following removal of subsurface components and demolition debris do not indicate the presence of elevated levels of residual radioactivity in this survey area. Based on operational history and former locations of radioactive systems and material transport pathways the radiological status of this survey unit is Class 1.

Post-Construction Expectations

Final Status Survey 05C₁1 will be performed in the following activity sequence:

- 1. Walkdown: Environmental Services Survey Group (ESSG) personnel will perform a walkdown assessment to ensure survey area preparations are complete and confirm that the following post-construction expectations have been satisfied as applicable:
 - Groundwater and Surface water control is adequate
 - All construction debris has been removed from the survey area
 - The survey location status meets all applicable safety requirements
- 2. Survey Area Isolation and Control: Control measures will be established to ensure that any potential ongoing decommissioning activities in adjacent locations do not impact the current survey area status. Isolation and control measures include postings, barriers, access points, and the evaluation of ongoing work activities in adjacent areas.

- 3. Survey Design and Execution: Survey design and execution will follow the Data Quality Objectives for 05C₁1 in accordance with the survey requirements established in procedures RM-76, *Final Status Survey Design* and RM-77, *Final Status Survey Implementation*, and LTP, Chapter 5. Survey size will be based on the statistical requirements of the Sign Test for Class 1 areas with soil samples collected in random start, systematic data point locations. Surface scanning will be performed with 100% survey area coverage. This survey will be conducted in accordance with approved BRP procedures and follow the guidance of NUREG 1575.
- 4. Data Quality Assessment: Isolation and control of the survey area will be maintained until the survey Data Quality Assessment demonstrates that the regulatory requirements for unrestricted site release have been satisfied.

DATA QUALITY OBJECTIVES

Final Status Survey, Release Record 05C₁1 Central Protected Area

1. STATE THE PROBLEM

The Problem:

To demonstrate that the level of residual radioactivity in Class 1 Survey Unit 05 does not exceed the release criteria of 25 mrem/year Total Effective Dose Equivalent (TEDE) as specified in the License Termination Plan (LTP).

Stakeholders:

The primary stakeholders interested in the answer to this problem are Consumers Energy Co., and the general public as represented by the Michigan Department of Environmental Quality (MDEQ), and the US Nuclear Regulatory Commission (USNRC).

The Planning Team:

The planning team consists of members of the BRP Environmental Services Survey Group (ESSG). The primary decision maker will be the Final Status Survey Supervisor. The Final Status Survey Supervisor will obtain input from the site Construction Group and Scheduling Group for issues relating to schedule and costs.

Schedule:

Approximately five (5) working days are projected to implement the survey and to collect and analyze field data.

Resources:

2.

The primary resources needed to determine the answer to the problem are two (2) technicians to perform fieldwork, one (1) technician to prepare the samples and conduct laboratory analyses, and two (2) survey team members to prepare and review the design, generate maps, coordinate field activities and evaluate data.

IDENTIFY THE DECISION

Several decisions need to be defined to address the stated problem.

Principal Study Question (1):

Does the mean concentration of residual radioactivity in the survey unit exceed the release criteria stated above?

Decision (1):

Determine whether the mean concentration of residual radioactivity in the survey exceeds the release criteria stated in the problem.

Actions (1):

Alternative actions include failure of the survey unit, remediation, or no action required.

Principal Study Question (2):

Do any areas of elevated activity in the survey unit exceed the release criteria?

The Decision (2):

Determine if any areas of elevated activity in the survey unit exceed the release criteria.

Actions (2):

Alternative actions include confirmation and investigation, performing the elevated measurement comparison (EMC), remediation, or no action required.

Principal Study Question (3):

Is the potential dose from residual radioactivity in the survey unit ALARA as stated?

The Decision (3):

Determine if the potential dose from residual radioactivity in the survey unit is ALARA. ALARA requirements for soil remediation are defined in Chapter 4 of the LTP.

Actions (3):

Alternative actions include remediation or no action required.

3. IDENTIFY INPUTS TO THE DECISION

Information Needed:

Characterization measurements are required to define the radionuclides present and determine the extent and variability of residual radioactivity in the survey area for design and implementation of the survey. Survey area classification, ALARA analysis, potential radionuclides of interest, and site-specific DCGL values are also required inputs to the decision process. The primary information required for evaluation is the analytical results of survey measurements.

Source of the Information:

The soil sample data to be used for survey development are the radionuclide-specific measurements of representative soil samples collected for radiological characterization and excavated soil surveys conducted to determine suitability for transport of excavated soil to the SVA. The soil samples obtained were judgmentally selected as a result of multiple surveys conducted during the excavation and transport process. The ALARA analysis for potential soil remediation is provided in LTP, Section 4.4. Site-specific DCGL values and BRP radionuclides of interest are defined in LTP Chapter 5, Table 5-1 and Procedure RM-76, *Final Status Survey Design*.

The survey will be conducted in accordance with applicable regulatory guidance as established in LTP Chapter 5 for Class 1 areas. Soil samples will be utilized for radionuclide-specific measurements in this evaluation.

4. BOUNDARIES OF THE STUDY

Boundaries of the Survey:

The target population for this survey is the total thickness of prepared soil in the survey area of 1924 m².

Temporal Boundaries:

Scanning and sampling in this survey unit will only be performed during daylight hours under dry weather conditions. Surface soils must be free of significant snow cover and standing water prior to surface scanning. Soils must be in a non-frozen state or fragmented for collection to satisfy BRP procedural sampling requirements. The anticipated start date for the survey is September 18, 2006.

Constraints:

Cold weather or rainy conditions may effect the operation of electronic equipment. Adverse weather conditions that include accumulations of rain or snow may limit area access and delay survey efforts.

5. DEVELOP A DECISION RULE

The following decision rules have been developed to define a logical process for choosing among alternative actions for the principal study questions associated with this survey area.

Decision Rule (1):

If all reported concentrations for residual radioactivity are less than the site-specific DCGL's and the unity rule has been satisfied for each sample, then the survey unit meets release criteria. No further action is required.

Decision Rule (2):

If the mean value of activity in the survey unit is greater than the DCGL, then the survey unit fails to meet the release criteria.¹ Remediate, resurvey, and evaluate the results relative to the decision rule.

Decision Rule (3):

If the mean activity in the survey unit is less than the DCGL and any individual sample measurement exceeds this value, conduct the Sign Test and the elevated measurement comparison (EMC) per LTP, Chapter 5 and Procedure RM-76, *Final Status Survey Design*. If the EMC and the Sign Test have been satisfied then the survey unit meets the release criteria and no further action is required. If the EMC or the Sign Test has not been satisfied then remediate the area(s) of elevated activity, resurvey as appropriate, and evaluate the results relative to the decision rule.

Decision Rule (4):

If the potential dose from residual radioactivity in the survey unit is ALARA, then no further action is necessary. If the potential dose from residual radioactivity in the survey unit is not ALARA, then remediate and resurvey.

6. SPECIFY TOLERABLE LIMITS ON DECISION ERRORS

The Null Hypothesis:

It is assumed that residual radioactivity in the survey unit exceeds the release criterion.

¹ When multiple radionuclides are present the mean activity value is determined as the average of the weighted sum. The DCGL of the weighted sum is 1.

Type I Error (α):

The α error is the maximum probability of rejecting the null hypotheses when it is true. The α error is defined in the LTP at a value of 0.05 (5%) and cannot be changed to a less restrictive value unless prior approval is granted by the USNRC. The α error value of 0.05 will be used for survey planning and data assessment for this survey area.

Type II Error (β):

The β error is the probability of accepting the null hypothesis when it is false. A value of 0.05 (5%) will be used for survey planning and data assessment for this survey area.

The Lower Bound of the Gray Region (LBGR):

The LBGR is initially set at one-half the DCGL_w for this survey unit. The LBGR may be adjusted during survey design to achieve an optimum relative shift between 1.0 and 3.0.

Relative Shift (Δ/σ) :

The relative shift will be maintained within the range of 1.0 and 3.0 by adjusting the LBGR as appropriate.

7. OPTIMIZE DESIGN FOR OBTAINING DATA

Statistical Test

Sign Test:

Radionuclides of potential plant origin also present in soil as background activity resulting from fallout constitute only a small fraction of the DCGL. Therefore, the Sign Test will be used where applicable in the survey evaluation to determine if the survey area meets the requirements for unrestricted release.

Number of Samples Determined:

The number of samples required for this survey will be determined based on the relative shift as defined by the requirements of the Sign Test (LTP, Chapter 5.) and Procedure RM-76, *Final Status Survey Design*. The LBGR is initially set at one-half the DCGL_w and may be adjusted as necessary for optimizing the survey design to achieve a relative shift between 1.0 and 3.0. Sample point locations are to be determined using a random start, systematic square grid spacing.

Judgmental Sampling:

Co-60 is the most limiting radionuclide for identification by surface scanning; judgmental surface and subsurface core samples will be collected in any location that exceeds the scan investigation level.

Scan Coverage:

Scanning for this survey area will provide 100% coverage.

Number of Samples for Quality Control:

A minimum of 5% of the sample population will be collected for quality evaluation. These samples may include sample splits, sample recounts, or third party sample analysis. Quality analyses will be conducted as defined in LTP, Chapter 5 and Procedure RM-79, *Final Status Survey Quality Control.*

Additional Sample Analysis Requirements:

The area of soil excavation intersects the identified waterborne pathway for Tritium migration and shall require Tritium in soil analyses for a minimum of 10% of the sample population. Soil samples will be collected in the same random locations as those selected for QA/QC evaluation and sent to an independent laboratory for Tritium analysis. Data results will be provided in the survey package.

Investigation Levels:

Investigation levels defined in LTP, Chapter 5 and BRP Procedure RM-76, *Final Status Survey Design*, shall be conservatively established for this survey as shown below:

Classification	Scan Measurement	Soil Sample Analysis
Class 1	> DCGL	> DCGL _w

Investigation Levels for Survey 05C₁1

The investigation levels for soil sample measurements are meant to include any individual radionuclide result greater than the site-specific DCGL or where the combined radionuclide values exceed the unity rule. Co-60 is the most limiting radionuclide for identification by surface scanning; further investigation will be initiated at any location that exceeds the Co-60 Scan _{DCGL} of 1818 CPM above background as detailed in the survey design.

Release Record 05C₁1 Central Protected Area

Survey Unit Description

Survey 05C₁1 encompasses an area of 1924 m² in the central section of the Protected Area. No materials of plant origin exist in this survey unit.

Soil Sample Design

Scoping Data

Scoping measurements and supporting surveys performed in the Protected Area following removal of subsurface components and demolition debris do not indicate the presence of elevated levels of residual radioactivity in this survey area. Input data for survey design were conservatively estimated based on supporting surveys of excavated soils resulting from subsurface structure and component removal within the Protected Area.

		- · · 5/
Radionuclides	Cs-137	Co-60
σ*	0.524	0.255
DCGL	11.93	3.21

Table 1 Input Data for Survey Design (pCi/g)

*Survey data detailed in Attachment 1

Sample Requirements

The number of sample data points for this survey is based on the requirements of the Sign Test. The Unity Rule is used for the presence of multiple radionuclides. The Standard Deviation of the weighted sum is described by the following:

$$\sigma = \sqrt{\left(\frac{\sigma_{cs_{137}}}{DCGL_{cs_{137}}}\right)^2 + \left(\frac{\sigma_{co60}}{DCGL_{co60}}\right)^2}$$

$$\sigma = \sqrt{\left(\frac{0.524}{11.93}\right)^2 + \left(\frac{0.255}{3.21}\right)^2}$$

 $\sigma = 0.091$

Relative Shift

Relative Shift =
$$\frac{DCGLw - LBGR}{\sigma}$$

Relative Shift = $\frac{1 - 0.818}{0.091}$

Relative Shift = 2.0

With α and β error levels set at 0.05 and the relative shift of 2.0, the Sign Test requires 15 sample data points (Table 5.5 NUREG 1575).

Sample Locations

Sample locations are selected in a random start, systematic square grid pattern with the southwest corner of the survey unit as origin (X=0, Y=0). Two numbers between 0 and 1 have been randomly selected and then applied to the survey unit maximum X and Y dimensions to determine the random start location as shown below:

Table 2							
Random I	Numbers						

Random #, X Axis	Random #, Y Axis
0.091956	0.994458

Survey Unit Dimensions:	X = 30.3 meters Y = 70.0 meters
Random Start Location	X = (0.091956)(30.3) = 2.8 meters
With SW Corner Origin:	Y = (0.994458)(70.0) = 69.6 meters

Sample Spacing

 $L = \sqrt{\frac{A}{n}}$

As a conservative measure sample spacing will be calculated based on 18 samples for this survey. Samples are located in a systematic square grid pattern with sample spacing determined by the following:

Where: A= area of survey unit, and *n* = number of samples.

L =
$$\sqrt{\frac{1924}{18}}$$
 = 10.3 meters

With sample spacing established at 10.3 meters, 19 data points are available for this survey. Data point locations are identified in Attachment 2.

QA/QC Sampling

A minimum of 5% of the sample population and 5% of the scan survey area are required to be selected for QA/QC verification in accordance with BRP Procedure RM-79, *Final Status Survey Quality Control*. As a conservative measure, three (3) soil samples and 10% of the scan survey area will be selected for QA/QC evaluation. Data point locations for soil samples will be determined by random number selection.

The QA/QC scan starting point and track direction are also determined by random number selection. The first random data point selected will identify the scanning start point and the second random data point will determine the direction in which the scan will track. QA/QC location results are provided in Table 3 below:

Table 3
Random Numbers Generated for QA/QC

$ (\Delta A)(\Delta C) \otimes $	Random Sample Number	Verification Scan	Random Sample Number
Split Sample:	3	Start Point:	12
Sample Recount:	5	Scan Toward:	3
Sample Recount:	11	Scan Area Requirement:	193 m ²

Surface Scanning

The coverage requirement for surface scanning in this Class 1 area is 100%. The Scan _{MDC} has been established at fractional values of the DCGL_W for typical background activity levels at Big Rock Point. Scan _{MDC} values for varying backgrounds are provided in Attachment 3. The investigation level for identification of potential areas of elevated activity in this survey area will be the Scan _{DCGL} as defined by the following:

Scan _{DCGL} = Detector Rating $\frac{CPM}{uR/hr}$ * Exposure Model $\frac{uR/hr}{pCi/g}$ * DCGL_w Scan _{DCGL} for Co-60 = 1818 CPM

Scan $_{DCGL}$ for Cs-137 = 3518 CPM

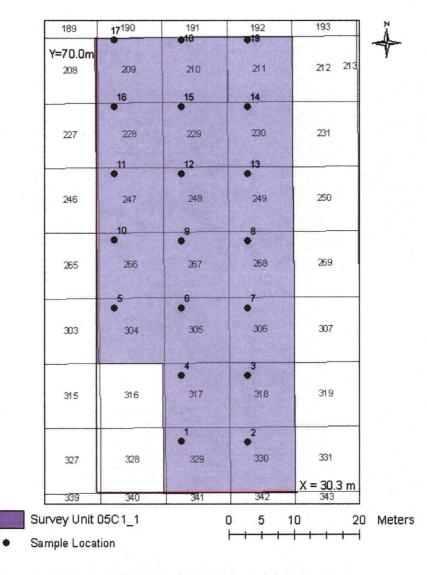
Where:¹ Detector Rating = $\frac{1200 \text{ CPM}}{\text{uR/hr}}$ Cs - 137 and $\frac{565 \text{ CPM}}{\text{uR/hr}}$ Co - 60

Exposure Model = $\frac{1.229 \text{ uR/hr}}{5 \text{ pCi/g}} \text{ Cs} - 137 \text{ and } \frac{5.029 \text{ uR/hr}}{5 \text{ pCi/g}} \text{ Co} - 60$

 $DCGL_w = 11.93 \text{ pCi/g Cs} - 137 \text{ and } 3.21 \text{ pCi/g Co} - 60$

The DCGL_w for Co-60 is the most limiting value for scanning measurements performed to identify areas of potentially elevated activity. Scanning conducted for this survey will assume all residual radioactivity to originate from Co-60 and the instrument response at the Co-60 DCGL_w (1818 cpm) will be used as the scanning investigation level for FSS $05C_11$.

¹ These values established in EA-BRP-SC-0201, Nal Scanning Sensitivity for Open Land Survey.



Design Data - FSS 05C₁1 Protected Area Supporting Surveys

Survey No.	Sequence No.	Cs-137 Activity (pCi/g)	Co-60 Activity (pCi/g)		
HH060705	16538	1.26	0.66		
HH060705	16539	0.06	0.06*		
HH060705	16540	1.05	0.66		
TB062805	16755	1 16	0:27		
TB062805	16756	0:47	0.15*		
TB062805	16774	0.19	0.31		
	Mean:	0.698	0.352		
	Std Dev:	0.524	0.255		

* Measurement system MDA - Co-60 not identified in this sample

Survey Design FSS 05C₁1 Page 4 of 7

Soil Sample Locations - Survey 05C₁1 Central Protected Area

Sample No.	Grid Number	X Coord.	Y Coord.	Sample No.	Grid Number	X Coord.	Y Coord.
1	329	2.8	7.2	11	247	2.5	8.8
2	330	3.1	7.2	12	248	2.8	8.8
3	318	3.1	7.6	13	249	3.1	8.8
4	317	2.8	7.6	14	230	3.1	9.2
5	304	2.5	8.0	15	229	2.8	9.2
6	305	2.8	8.0	16	228	2.5	9.2
7	306	3.1	8.0	17	209	2.5	9.6
8	268	3.1	8.4	18	210	2.8	9.6
9	267	2.8	8.4	19	211	3.1	9.6
10	266	2.5	8.4				

Sample spacing is 10.3 meters

4

(particular contract)

Survey Design FSS 05C₁1 Page 5 of 7

Scan MDC In Varying Backgrounds

		<u> </u>		CPM	MDER	uR/hr	Scan MD	C pCi/g
Background	d'	1	Si	MDCR _{surveyor}	Cs-137	Co-60	Cs-137	Co-60
2000	2.48	4	28.64	607.47	0.51	1.08	2.06	1.07
2500	2.48	4 🐝	32.02	679.18	0:57	1.20	2.30	1.20
3000	2.48	4	35.07	744.00	0.62	1.32	2.52	1.31
3500	2.48	4	37.88	803.61	0.67	1.42	2.72	1.41
4000	2.48	4	40.50	859.10	0.72	1.52	2.91	1.51
4500	2.48	4	42.95	911.21	0.76	1.61	3.09	1.60
5000	2.48	4	45.28	960.50	0.80	1.70	3.26	1.69
5500	2.48	4	47.49	1,007.38	0.84	1.78	3.42	1.77
6000	2.48	4	49.60	1,052.17	0.88	1.86	3.57	1.85
6500	2.48	4	51.63	1,095.14	0.91	1.94	3.71	1.93
7000	2.48	4	53.57	1,136.48	0.95	2.01	3.85	2.00
7500	2.48	4	55.45	1,176.37	0.98	2.08	3.99	2.07
8000	2.48	4	57.27	1,214.95	1.01	2.15	4.12	2.14
8500	2.48	4	59.04	1,252.34	1.04	2.22	4.25	2.20
9000	2.48	4	60.75	1,288.65	1.07	2.28	4.37	2.27
9500	2.48	. 4	62.41	1,323.96	1.10	2.34	4.49	2.33
10000	2.48	4	64.03	1,358.35	1.13	2.40	4.61	2:39
10500	2.48	4	65.61	1,391.90	1.16	2.46	4.72	2.45
11000	2.48	4	67.16	1,424.65	1.19	2.52	4.83	2.51
11500	2.48	4	68.67	1,456.67	1.21	2.58	4.94	2.56
12000	2.48	4	70.14	1,488.00	1.24	2.63	5.04	<u>2.62</u>
12500	2.48	4	71.59	1,518.68	1.27	2.69	×>5:15	2.67
13000	2.48	4	73.01	1,548.76	1.29	2.74	5.25	2.73
13500	2.48	4	74.40	1,578.26	1.32	2.79	5.35	2.78
14000	2.48	4	75.77	1,607.22	1.34	2.84	5.45	2.83
14500	2.48	4	77.11	1,635.67	1.36	2.89	5.55	2.88
15000	2.48	4	78.42	1,663.63	1.39	2.94	5.64	2.93
) 5 pCi/g					
		1.23E+00						
	Co-60	5.03E+00						

Cantoninatad		Calculated Area Factors at Time of Peak Dose							
Contaminated Area (m ²)	H-3	Mn-54	Fe-55	Co-60	Sr-90	Cs-137	Eu-152	Eu-154	Eu-155
8094	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
4047	1.00	1.01	1.00	1.01	1.00	1.02	1.02	1.01	1.02
2024	1.00	1.03	1.00	1.03	1.00	1.03	1.03	1.03	1.03
1012	1.35	1.04	1.00	1.04	1.00	1.04	1.05	1.04	1.04
506	2.91	1.09	1.98	1.08	1.98	1.13	1.07	1.07	1.06
253	6.05	1.14	3.95	1.13	3.94	1.20	1.11	1.11	1.09
126	12.4	1.20	7.93	1.20	7.87	1.29	1.17	1.16	1.14
63	24.9	1.30	15.8	1.30	15.6	1.41	1.27	1.26	1.23
32	49.2	1.49	31.2	1.49	30.5	1.62	1.44	1.45	1.39
16	98.9	1.78	62.0	1.78	59.9	1.93	1.72	1.73	1.63
8	198	2.38	123	2.38	117	2.58	2.30	2.31	2.14
4	397	3.61	243	3.62	230	3.91	3.49	3.52	3.19
2	794	5.68	473	5.75	452	6.14	5.48	5.55	4.90
1	1590	9.57	905	9.73	887	10.3	9.24	9.39	7.88

Area Factors for Open Land Survey Evaluation

Survey Design FSS 05C₁1 Page 7 of 7 RM-76 FINAL STATUS SURVEY DESIGN Revision 1 Page 19 of 19

RM-76-5 FINAL STATUS SURVEY APPROVAL

AND AUTHORIZATION FOR IMPLEMENTATION

Survey Code 05C11

Survey Area Description:

Final Status Survey 05C₁1 encompasses 1924 m² at or below the grade elevation present during plant power operations in the central section of the Protected

Area. No materials of plant origin remain in the survey area.

The survey area is authorized for Final Status Survey Implementation.

sed Designed

Technical Review by

<u>09-14-2006</u> Date

09-Date

RM-77 FINAL STATUS SURVEY IMPLEMENTATION

Revision 2 Page 8 of 12

RM-77-1
SURVEY IMPLEMENTATION CHECKLIST
Page 1 of 3

<u>Step</u> (+) 1.0 PREPARATION FOR SURVEY <u>05C</u> Survey #

Initial

<u>Date</u>

Survey Area Status:

1.1

- a. Final Status Survey Design has been approved for implementation (see RM-76-5, Final Status Survey Approval and Authorization for Supplementation).
 - 1. Survey area walkdown complete
 - 2. Survey area determined ready for FSS
 - 3. Decommissioning activities that may impact the environmental status of the survey area have been completed.
 - 4. Survey area environment is controlled by barriers and postings or other approved method to restrict access.
- b. Survey area has been turned over to the Environmental Services Survey Group (ESSG) in acceptable condition for FSS.

K/L 09/18/06

PIR 09/18/00 ESSG

1.2 Field Preparation:

- a. Survey unit boundaries delineated (Step 6.1.1)
- b. Statistical soil samples predetermined in the survey design are located and marked within the survey unit. (Step 6.1.2)
- c. Soil sample locations verified (Step 6.1.2.c)

Instruments and equipment have been collected and d. calibrated for data measurement and collection (Step 6.1.3)

e. Field documentation is prepared (Step 6.1.4)

CAR og 18/06 FESSG

RM-77 FINAL STATUS SURVEY IMPLEMENTATION

Revision 2 Page 9 of 12

Initial

RM-77-1 SURVEY IMPLEMENTATION CHECKLIST Page 2 of 3

- 2.0 DATA COLLECTION
- 2.1 Soil Survey:

 \checkmark

All soil samples collected and controlled (Step 6.2.1).

).

<u>un og 18/06</u> ESSG

Date

2.2 Surface Scan:

Surface Scan complete. Action response requirements have been conducted on any identified areas exceeding the investigation level (Step 6.3).

- 2.3 Judgmental Soil Samples:
 - a. Judgmental soil samples have been collected and controlled (Step 6.2.3).
 - b. Deep core profiles performed in areas identified to contain elevated residual activity (Step 6.2.3).

3.0 SAMPLE PREPARATION AND LABORATORY ANALYSIS

- 3.1 Sample Preparation (Step 6.4.1):
- a. b. c. d.

ALA

- a. Soil samples are homogenous
- b. Soil samples are visibly dry prior to packing
 - Non-soil materials have been removed from sample
 - Soil samples have been transferred to one-liter Marinelli containers and are labeled and sealed.

1/12 09 18/00 ESSG

ESSG 09 18/06

AL 09/20/04 ESSG

RM-77 FINAL STATUS SURVEY IMPLEMENTATION Revision 2 Page 10 of 12

RM-77-1 SURVEY IMPLEMENTATION CHECKLIST Page 3 of 3

3.2 Laboratory Analysis:

 \checkmark

Isotopic analyses are complete. The spectroscopy report requires a signature of completion by the laboratory analyst and a signature of evaluation documenting that a second level review has been performed (Step 6.4.2).

3.3 Sample Control and Documentation:

Chain of custody documentation exhibits control of soil samples (Step 6.4.3).

Reviewed by

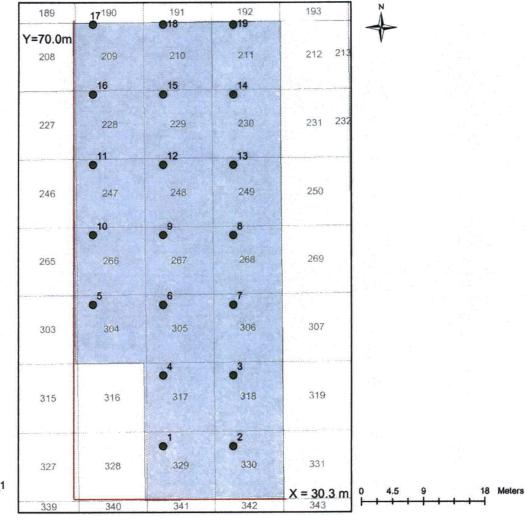
Date

Initial

09/20/06

Date

09/20/06


RM-77.doc

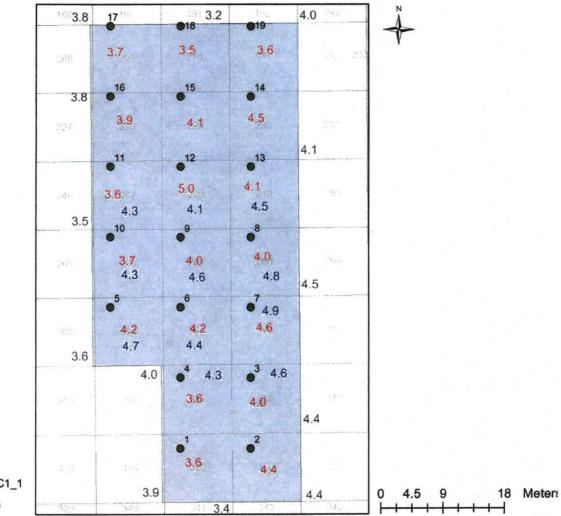
RM-59 SAMPLING AND ANALYSIS OF OPEN LAND AREAS FOR SITE CHARACTERIZATION SURVEYS

ATTACHMENT RM-59-1 SAMPLING AND ANALYSIS REPORT

Date: 09-18-2006	Time: 1600	Location: 0	5C ₁ 1	Tech: TRS/WMH/JNS						
SURVEY IDENTIFICATION / DESCRIPTION										
	Survey 05C ₁ 1 encompasses 1924 m ² at or below the grade elevation present during plant power operations in the central section of the Protected Area. No materials of plant origin remain in this area.									
	le Flotecteu Area. No III	aterials of plan	it ongin remain							
			·							
	SUR	VEY TYPE								
Survey Type:	Characterization		(Motive)							
	Remediation		. ,							
<u> </u>	E Final		(Static)							
	······	Iren	ching and Digg	ing (use RM-59-4)						
	SURV	EY DESIGN	· . J							
Sample Collection:			ystematic	Large Container Assay						
Scan Coverage: 1009										
		IALYSIS								
Inst.SN/Cal Due <u>186201/09</u>				UNSAT INIT: TRS						
Inst.SN/Cal Due <u>186194/02</u> Inst.SN/Cal Due <u>193709/02</u>				UNSAT INIT: <u>_trs</u> UNSAT INIT: <u>_trs</u>						
Inst.SN/Cal Due <u>Det.#6</u>				UNSAT INIT: JP						
Inst.SN/Cal Due	DAILY CI		SAT	UNSAT INIT:						
Investigation of Unidentifie		<u> </u>	_ SAT	UNSAT INIT: JLR						
Minimum Detectable Activ	rity (Section 5.3.2)	X	_ SAT	UNSAT_INIT: <u>JLR</u>						
	CO	MMENTS	· .							
Survey 05C11 was performe			ic sampling patte	ern with samples						
collected at 20 data point lo	cations. Laboratory analysis	es did not identi	ify residual radio	activity above trace levels of						
the DCGL value. Surface so	canning identified no areas	of elevated res	sidual radioactivi	ty. The results of the QA/QC						
verification scan (10%) were	e consistent with the scan v	alues identified	l in the survey.							
- <u></u>										
Technician Signature: IN Science Bloogh At Schlutterate: 9-18-06										
Second Level Review	Technician Signature: IN Sector und Deformer T Schlingate: 9-18-06									
Signature:	Dupterish	U '	Date	: <u>9-18-06</u> : 10/13/06						

Soil Sample Activity Summary

Release Record 05C₁1 Central Protected Area


Survey Unit 05C1_1

Sample Location

Sample No.	Grid #	X Coord.	Y Coord.	Cs-137 (pCi/g)		Co-60 (pCi/g)	
				Activity	MDA	Activity	MDA
1	329	2.8	7.2	*0.0218	0.0594	*0.0120	0.0624
2	330	3.1	7.2	0.0279		*0.0173	0.0621
3	318	3.1	7.6	0.0559	San-Briteria	*0.0106	0.0633
4	317	2.8	7.6	0.0501	ALC: NOT COMPLETE	*0.0002	0.0511
5	304	2.5	8.0	0.0710		*0.0404	0.0731
6	305	2.8	8.0	0.0745	Wilder State	*0.0144	0.0614
7	306	3.1	8.0	0.1045	(Contraction of the second	*0.0059	0.0659
8	268	3.1	8.4	0.1357		*-0.0099	0.0490
9	267	2.8	8.4	0.0861	Contraction of the last	*0.0101	0.0609
10	266	2.5	8.4	*0.0462	0.0653	*0.0048	0.0594
11	247	2.5	8.8	*0.0124	0.0523	*-0.0006	0.0494
12	248	2.8	8.8	*0.0018	0.0472	*0.0119	0.0561
13	249	3.1	8.8	*0.0386	0.0582	*0.0082	0.0684
14	230	3.1	9.2	*-0.0002	0.0440	*-0.0108	0.0507
15	229	2.8	9.2	0.0390		*0.0047	0.0585
16	228	2.5	9.2	*0.0208	0.0559	*-0.0117	0.0529
17	209	2.5	9.6	0.0531		*-0.0152	0.0602
18	210	2.8	9.6	0.0384		*-0.0027	0.0496
19	211	3.1	9.6	*0.0110	0.0545	*0.0126	0.0622

*Forced-count values

Surface Scan Summary

Release Record 05C₁1 **Central Protected Area**

Survey Unit 05C1_1 Sample Location

> RED Values are Average Mobile Scan General Area Activity (kcpm) BLUE Values are Average Verification Scan General Area Activity (kcpm) GREY Values are Average General Background Area Activity (kcpm)

No investigation lulla exceeded. Il 918 24

Primary Scan:

Technician Signature:

Date: 9-1 Time: _ 1400

QC Verification Scan: 10 %

Technician Signature: A Soderquist Date: 9-18-06 Time: 1400

RM-72 SAMPLE CHAIN-OF-CUSTODY

05C ₁ 1
RM-72-1
CHAIN-OF-CUSTODY RECORD

Sample Number	Sampling Location	Date	Time	Final Disposition of Sample	
1	Grid # 329 (2.8) (7.2)	9-18-06 1	240	permanent storage	
2	Grid # 330 (3.1) (7.2)	9-18-061	243	/) "	
3	Grid # 318 (3.1) (7.6)	9-18-061	246	· · · · · · · · · · · · · · · · · · ·	
3 QA Split	Grid # 318 (3.1) (7.6)	9-18-061	246		
4	Grid # 317 (2.8) (7.6)	9-18-06 1	248		
5 (R)	Grid # 304 (2.5) (8.0)	9-18-06 1	250		
6	Grid # 305 (2.8) (8.0)	9-18-061	the second se		
7	Grid # 306 (3.1) (8.0)	9-18-06 1	255		
8	Grid # 268 (3.1) (8.4)	9-18-06 1	258		
9	Grid # 267 (2.8) (8.4)	9-18-06 1		· · · · · · · · · · · · · · · · · · ·	
10	Grid # 266 (2.5) (8.4)	9-18-061			
<u>11 (R)</u>	Grid # 247 (2.5) (8.8)	9-18-06 1			
12	Grid # 248 (2.8) (8.8)	9-18-06	308		
13	Grid # 249 (3.1) (8.8)	9-18-061.	310		
14	Grid # 230 (3.1) (9.2)	9-18-06 1.			
15	Grid # <u>2</u> 29 (2.8) (9.2)	9-18-06 1	315		
16	Grid # 228 (2.5) (9.2)	9-18-06	318		
17	Grid # 209 (2.5) (9.6)	9-18-06 1	321		
18	Grid # 210 (2.8) (9.6)	9-18-061	1324		
19	Grid # 211 (3.1) (9.6)	9-18-061	327		
				4	

(Samples may be analyzed and stored, shipped for offsite evaluation or analyzed and disposed of.)

1. Relinquished by: to chem	Date	Time	Received in good condition by:
J. fulliety Lab locked	9-18-06	1335	permanent storage shaw
2. Relinquished by:	Date	Time	Received in good condition by:
	9/20/06	/४०४	Palmaned hoch Stolage Selano
3. Relinquished by:	Date	Time	Received in good condition by:
4. Relinquished by:	Date	Time	Received in good condition by:

Revision 2 Page 19 of 26

RM-78-3 DATA ASSESSMENT REPORT Page 1 of 8

05C.1 FINAL STATUS SURVEY: DATA VERIFICATION 1.0 1.1 **Data Acceptance** Review the Implementation Checklist (RM-77-1) to verify that survey isolation and control measures were executed prior to FSS and are being maintained. Review RM-77, Final Status Survey Implementation, to verify that methods, techniques, and survey activities required for FSS have been applied in accordance with the appropriate procedures. Field QC Records: 1.2 Review all assessments, Condition Reports and audits to ensure that identified issues have been resolved. Comments: Verify scan instrumentation was in calibration and the QC source checks were performed prior to and after surveys. Verify daily QC source checks for Canberra gamma spectroscopy detector properly logged prior to soil sample analysis. 1.3 **Review Verification:** Verify that the Data Quality Objectives are complete. Verify that the survey design has been technically reviewed.

Revision 2 Page 20 of 26

RM-78-3 DATA ASSESSMENT REPORT Page 2 of 8

Verify that gamma spectroscopy results have received a technical review.

No

verify that gamma spectroscopy results have received a technical review.

Verify the Sample and Analysis Report (RM-59-1) is completed and reviewed.

Data Verification Completed: (Yes)

Comments _

Theed Assessor

10-13-00 Date

Revision 2 Page 21 of 26

RM-78-3 DATA ASSESSMENT REPORT Page 3 of 8

2.0 DATA VALIDATION

2.1 Documentation Review:

Perform documentation review for quality control purposes and validate the data collected is complete and appropriate for use as defined by the survey design. Documentation includes:

Field measurement records Chain-of-custody Quality Control (QC) measurement records Current qualification of survey personnel Corrective Action Reports Data inputs (laboratory spectroscopy) Sample preparation techniques

2.2 Detection Limit Review:

Scan MDCs are below established site DCGLs.

Forced-count values are assigned as necessary when activity is not detected in a sample.

Minimum Detectable Concentration (MDC) values of gamma spectroscopy are below established DCGLs.

Quality Control (QC) Data Review:

2.3

Quality Control (QC) data results have received required reviews and are complete and consistent.

Results of judgmental samples have been reviewed and evaluated.

Review to ensure that the analytical results of judgmental samples do not impact the evaluation for unrestricted release of the survey area.

RM-78-3 DATA ASSESSMENT REPORT Page 4 of 8

2.4 Qualification of Data:

Statistical radionuclide-specific measurements for completeness. Evaluate the survey for determination of data usability and confirm that sufficient qualified data are present for the decision process.

a. Total number of statistical samples planned for the survey: ____/ 8 _____

b. Total number of statistical samples determined as valid: ____/9____

No

'es

c. Calculate % Completeness:

 $\frac{b \times 120}{a} = 126.7\%$

Qualified data are ≥00% completeness and are sufficient to support the Sign Test requirement for determination of unrestricted release.

Data Validation Completed:

Comments:

he L. heed <u>/0-13-04</u> Date Assessor

Revision 2 Page 23 of 26

RM-78-3 DATA ASSESSMENT REPORT Page 5 of 8

3.0 DATA QUALITY ASSESSMENT

3.1

Review the DQOs and Survey Design:

Confirm that all inputs to the decision have been reviewed and are complete.

Verify that boundaries or constraints identified in the survey area have not affected the quality of the data.

Review the Statement of Hypothesis and confirm that it remains relevant.

Confirm that Type I and Type II error limits are consistent with DQOs.

Confirm that the survey design is consistent with DQOs and that the appropriate number of data points were obtained.

3.2 Preliminary Review:

3.2.1 Preliminary Evaluation:

A/A

Quality Assessment (QA) reports consistent with procedure RM-79, Final Status Survey Quality Control.

Survey is of sufficient intensity to satisfy classification requirement.

Potential trends of radioactivity levels in the survey area do not impact a decision for unrestricted release.

Comments:

Revision 2 Page 24 of 26

RM-78-3 DATA ASSESSMENT REPORT Page 6 of 8

3.2.2 Calculate Basic Statistical Quantities:

a.	Number of qualified data points	19
b.	Calculation of the Mean	0.0056 (SOR)
C.	Calculation of the Median	0.0054 (SOR)
d.	Calculation Standard Deviation	0.00.51 (SOR)

_ Attach graphic representation of the data if any radionuclide-specific measurements exceed 50% of the DCGL.

Sample QA/QC measurements consistent with FSS data

Statistical Evaluation:

NA

3.3

<u>NOTE</u>: If all measurement data are less than the DCGL_w, statistical testing in not required and the survey unit meets the regulatory requirement for unrestricted release.

____All survey measurements are below the DCGL_w.

3.3.1 Verify Assumptions of the Survey Design

Review the posting plot to verify that the data exhibits spatial independence. Spatial trends must be investigated and resolved prior to further assessment.

Review to verify dispersion symmetry. The appearance of skewed data must be investigated for cause and documented prior to further assessment.

Revision 2 Page 25 of 26

RM-78-3 DATA ASSESSMENT REPORT Page 7 of 8

Review the dataset standard deviation and range for data variance. Questionable data must be investigated for cause and documented prior to further assessment.

Verify that the data exhibits adequate power and confirm that the sample size is sufficient to satisfy the DQOs.

- 3.4 Draw Conclusions from the Data:
- 3.4.1 Investigation Levels and Response Actions

Determine if data results have exceeded any investigation level. Document findings. To invisitigation level exceeded,

3.4.2 Evaluation for Unrestricted Release

Select applicable conclusion:

Survey area <u>acceptance criteria met</u> and survey area satisfies the requirements for unrestricted release:

All concentrations are less than the $DCGL_w$. The Null Hypothesis is rejected.

ΛA

The mean concentration of the survey area is below the $DCGL_w$ but individual measurements in the survey unit exceed the $DCGL_w$. The Sign Test and EMC evaluation are successful and the Null Hypothesis is rejected.

Revision 2 Page 26 of 26

RM-78-3 DATA ASSESSMENT REPORT Page 8 of 8

Survey area acceptance criteria <u>not</u> met and survey area fails to satisfy the requirements for unrestricted release:

The mean concentration in the survey area exceeds the $DCGL_w$, and the null hypothesis is confirmed.

No

The mean concentration of the survey area is below the DCGL_w but individual measurements in the Unit exceed the DCGL_w.. The Sign Test and EMC evaluation are unsuccessful and the null hypothesis is confirmed.

Data Quality Assessment Completed: (Yes

Comments • 0 D r Assessor Date **Reviews:** Technical Review Date 0-16-06 and ES Superintendent Date 10-16.06 Date **RP&ES** Manager

RM-78-3, Attachment 1 Statistical Quantities

Release Record 05C₁1 Central Protected Area

Sample	Cs-137	Co-60	Weighted	**Weighted Sum		
Number	(pCi/gm)	(pCi/gm)	Sum (SOR)	<dcglw?< th=""><th>DCGL-W. Sum</th><th>Sign</th></dcglw?<>	DCGL-W. Sum	Sign
1	0.0218	0.0120	0.0056	yes	0.9944	+1
2	0.0279	0.0173	0.0077	yes	0.9923	+1
3	0.0559	0.0106	0.0080	yes	0.9920	+1
4	0.0501	0.0002	0.0043	yes	0.9957	+1
5	0.0710	0.0404	0.0185	yes	0.9815	+1
6	0.0745	0.0144	0.0107	yes	0.9893	+1
7	0.1045	0.0059	0.0106	yes	0.9894	+1
8	0.1357	-0.0099	0.0083	yes	0.9917	+1
9	0.0861	0.0101	0.0104	yes	0.9896	+1
10	0.0462	0.0048	0.0054	yes	0.9946	+1
11	0.0124	-0.0006	0.0009	yes	0.9991	+1
12	0.0018	0.0119	0.0039	yes	0.9961	+1
13	0.0386	0.0082	0.0058	yes	0.9942	+1
14	-0.0002	-0.0108	-0.0034	yes	0.9966	+1
15	0.0390	0.0047	0.0047	yes	0.9953	. +1
16	0.0208	-0.0117	-0.0019	yes	0.9981	+1
17	0.0531	-0.0152	-0.0003	yes	0.9997	+1
18	0.0384	-0.0027	0.0024	yes	0.9976	+1
19	0.0110	0.0126	0.0048	yes	0.9952	+1

Std. Dev	0.0356	0.0129	0.0051
Mean	0.0468	0.0054	0.0056
Median	0.0390	0.0059	0.0054

Number of Positive Differences (S+): n/a

Critical Value, k, Table I.3 of Marssim: n/a

S+ > than k?: n/a

Survey Unit Pass or Fail: **Pass

*Note: Forced-Count values are used for samples with activity levels below the MDA. **Note: If all measurement data are less than the DCGL_w, then the Sign Test is not required. **RM-79**

.

FINAL STATUS SURVEY QUALITY CONTROL

Revision 1 Page 11 of 13

RM-79-1 FSS QUALITY CONTROL EVALUATION RESULTS

FSS Package # 05C,

QC Package #_______

QC Measurement Type	Acceptance Criteria Met*?	Reference
1. Replicate Scan	Yes/ No	Step 5.1.3
2. Sample Recounts		Step 5.1.4.1
a. In-house	Yes/ No	
<u></u> ∕ <u>I</u> A b. Third party	Yes / No	
3. Split Samples		Step 5.1.4.2
c. In-house	Yes/No	
<u>NA</u> d. Third party	Yes / No	

*<u>NOTE</u>: If Acceptance Criteria is not met, completion of Attachment RM-79-2, FSS Quality Control Investigation Results, is required.

Comments: mple # 3 = QA/QC split ample # 411= DUN

Reviews:

00 Evaluato

Technical Review

10-16-06 Date

073-04 Date

QA Verification Split Sample Analysis

. . . .

		•	• ,		Tat	ole 1				
Date:	9/20/2006				Acceptan	ce Criteria				
					Resolution	Ratio			•	
QA:	05C₁1 Central	Protected	Area		<4	N/A				
					4-7	0.5-2.0				
Type:	Split Sample				8-15	0.6-1.66				
					16-50	0.75-1.33				
Lab:	<u>In-House</u>				51-200	0.8-1.25				
					>200	0.85-1.18				
					1	↓				
			<u> </u>	B	C	D	E	F ·	G	
Sample	Radionuclide	BRP Result Below MDA	A BRP Results (pCi/g)	B BRP % Error (Sigma)	C BRP Resolution	D Acceptance Ratio (Table 1)	E Split Results Below MDA	Split Results	Comparison	Results in Agreement Compare G with D)
Sample 3	Radionuclide	Result Below	BRP Results	BRP % Error	BRP	Acceptance Ratio	Split Results	Split Results	Comparison Ratio	Agreement Compare
		Result Below MDA	BRP Results (pCi/g)	BRP % Error (Sigma)	BRP Resolution	Acceptance Ratio (Table 1)	Split Results Below MDA	Split Results (pCi/g)	Comparison Ratio F/A	Agreement Compare G with D)
3	Co-60	Result Below MDA	BRP Results (pCi/g) 0.0633	BRP % Error (Sigma) n/a	BRP Resolution	Acceptance Ratio (Table 1) n/a	Split Results Below MDA	Split Results (pCi/g) 0.0594	Comparison Ratio F/A 0.94	Agreement Compare G with D) YES
3	Co-60	Result Below MDA	BRP Results (pCi/g) 0.0633	BRP % Error (Sigma) n/a	BRP Resolution	Acceptance Ratio (Table 1) n/a n/a	Split Results Below MDA	Split Results (pCi/g) 0.0594	Comparison Ratio F/A 0.94	Agreement Compare G with D) YES
3	Co-60	Result Below MDA	BRP Results (pCi/g) 0.0633	BRP % Error (Sigma) n/a	BRP Resolution	Acceptance Ratio (Table 1) n/a n/a	Split Results Below MDA	Split Results (pCi/g) 0.0594	Comparison Ratio F/A 0.94	Agreement Compare G with D) YES
3	Co-60	Result Below MDA	BRP Results (pCi/g) 0.0633	BRP % Error (Sigma) n/a	BRP Resolution	Acceptance Ratio (Table 1) n/a n/a	Split Results Below MDA	Split Results (pCi/g) 0.0594	Comparison Ratio F/A 0.94	Agreement Compare G with D) YES

Resolution $C = \frac{A}{(A)(B/100)}$

< Indicates results less than the MDA.

*Note Results are considered in agreement for MDA and near-MDA measurement comparisons Results flhat fail agreement must be investigated per RM-79.

QA Verification Sample Recount Analysis

		Tab	le 1
Date:	<u>9/20/2006</u>	Acceptant	ce Criteria
		Resolution	Ratio
QA:	05C11 Central Protected Area	<4	N/A
		4-7	0.5-2.0
Type:	Sample Recounts	8-15	0.6-1.66
		16-50	0.75-1.33
Lab:	In- House	51-200	0.8-1.25
		>200	0.85-1.18

≜	
С	

			Α	В	С	D	E	F	G	
Sample	Radionuclide	BRP Result Below MDA	BRP Results (pCi/g)	BRP % Error (Sigma)	BRP Resolution	Acceptance Ratio (Table 1)	Recount Result Below MDA	Recount Results (pCi/g)	Comparison Ratio F/A	Results in Agreement Compare G with D)
5	Co-60	<	0.0731	n/a	n/a	n/a	· <	0.0822	1.12	YES
5	Cs-137		0.0710	24.90	4.02	0.5-2.0		0.0426	0.60	YES
11	Co-60	<	0.0494	n/a	n/a	n/a	<	0.0607	1.23	YES
11	Cs-137	<	0.0523	n/a	n/a	n/a		0.0564	1.08	YES
		<u> </u>						<u> </u>		
	1						1	- -		

Resolution C = $\frac{A}{(A)(B/100)}$

< Indicates results less than the MDA.

*Note Results are considered in agreement for MDA and near-MDA measurement comparisons Results fthat fail agreement must be investigated per RM-79.

Tritium in Soil Data Results Final Status Survey 05C₁1

Sample Number	Tritium in Soil pCi/g
3	1.227
5	0.009
11	0.013

Mean:	0.4163
Median:	0.0130
St. Dev:	0.7021

<u>Note</u>: The DCGL for Tritium is 327 pCi/g. Sample results are less than 0.4% of the DCGL

Environmental, Inc. Midwest Laboratory an Alleghony Technologies Co.

> 700 Landwehr Road - Nornbrook, IL 6006/52310 ph. (847) 564-0700 - fax (847) 564-4517

LABORATORY REPORT NO.	8022-100-234
DATE:	09-22-2006
SAMPLES RECEIVED:	09-20-2006
PURCHASE ORDER NO:	
	DATE: SAMPLES RECEIVED:

Below are the results of the analyses for tritium on three soil samples.

Excavated Soil Survey 05C11

Sample Description	Collection Date	Lab Code	Concentration (pCi/g of soil) H-3	MDA (pCi/g of soil)
3	09-18-06	BRSO-6400	1.227 ± 0.031	< 0.018
3	09-18-06	BRSO-6401 ^a	0.980 ± 0.028	< 0.018
5	09-18-06	BRSO-6402	0.009 ± 0.007	< 0.013
11	09-18-06	BRSO-6403	0.013 ± 0.007	< 0.012

^a Denotes a duplicate.

The error given is the probable counting error at 95 % confidence level. The less than, (<), value is based on 4.66 sigma counting error for background sample.

R oniaGrot Laboratory Manager

loro APPROVED BY

Tony Coorlim, Quality Assurance

ATTACHMENT 4

ľ

٤

CONSUMERS ENERGY BIG ROCKPOINT

DOCKET NUMBERS 50-155 AND 72-043

TRANSMITTAL OF SURVEY PACKAGES IN SUPPORT OF BIG ROCK POINT PHASED LICENSE TERMINATION

CLASS 1 FINAL STATUS SURVEY RELEASE RECORD, 06C11, SOUTH CENTRAL PROTECTED AREA

October 24, 2006

37 Pages

Class 1 Final Status Survey Release Record 06C₁1

South Central Protected Area

SURVEY PACKAGE CLOSURE Final Status Survey Documentation is authorized for closure. All required reviews are complete and the evaluation of data results have satisfied the criteria established for unrestricted release. Z. ED. Date: Signed: (ESSG) Date: 10-23-0,6 Signed: ary ES Superintendent) ES Manager) Date: 10-23-06 Signed:

Survey Area Requirements

Final Status Survey, Release Record 06C₁1 South Central Protected Area

Survey Description

Final Status Survey 06C₁1 encompasses 1977 m² at or below the grade elevation present during plant power operations in the south central section of the Protected Area. No materials of plant origin remain in the survey area.

History

During power operations the Protected Area supported the components and systems necessary for electrical generation. The location of Survey Unit 06 is adjacent to the transport route used to move spent resin and filter media for radiological survey and offsite removal. Structures and enclosures formerly located in this area were once used for the storage of contaminated materials. A detailed review of the history and radiological characterization of Survey Unit 06 is provided in Appendix 2B and 2E of the LTP (License Termination Plan).

Current Radiological Status

Scoping measurements and supporting surveys performed in the Protected Area following removal of subsurface components and demolition debris do not indicate the presence of elevated levels of residual radioactivity in this survey area. Based on operational history and former locations of radioactive systems and material transport pathways the radiological status of this survey unit is Class 1.

Post-Construction Expectations

Final Status Survey 06C₁1 will be performed in the following activity sequence:

- 1. Walkdown: Environmental Services Survey Group (ESSG) personnel will perform a walkdown assessment to ensure survey area preparations are complete and confirm that the following post-construction expectations have been satisfied as applicable:
 - Groundwater and Surface water control is adequate
 - All construction debris has been removed from the survey area
 - The survey location status meets all applicable safety requirements
- 2. Survey Area Isolation and Control: Control measures will be established to ensure that any potential ongoing decommissioning activities in adjacent locations do not impact the current survey area status. Isolation and control measures include postings, barriers, access points, and the evaluation of ongoing work activities in adjacent areas.

- 3. Survey Design and Execution: Survey design and execution will follow the Data Quality Objectives for 06C₁1 in accordance with the survey requirements established in procedures RM-76, *Final Status Survey Design* and RM-77, *Final Status Survey Implementation*, and LTP, Chapter 5. Survey size will be based on the statistical requirements of the Sign Test for Class 1 areas with soil samples collected in random start, systematic data point locations. Surface scanning will be performed with 100% survey area coverage. This survey will be conducted in accordance with approved BRP procedures and follow the guidance of NUREG 1575.
- 4. Data Quality Assessment: Isolation and control of the survey area will be maintained until the survey Data Quality Assessment demonstrates that the regulatory requirements for unrestricted site release have been satisfied.

DATA QUALITY OBJECTIVES

Final Status Survey, Release Record 06C₁1 South Central Protected Area

1. STATE THE PROBLEM

The Problem:

To demonstrate that the level of residual radioactivity in Class 1 Survey Unit 06 does not exceed the release criteria of 25 mrem/year Total Effective Dose Equivalent (TEDE) as specified in the License Termination Plan (LTP).

Stakeholders:

The primary stakeholders interested in the answer to this problem are Consumers Energy Co., and the general public as represented by the Michigan Department of Environmental Quality (MDEQ), and the US Nuclear Regulatory Commission (USNRC).

The Planning Team:

The planning team consists of members of the BRP Environmental Services Survey Group (ESSG). The primary decision maker will be the Final Status Survey Supervisor. The Final Status Survey Supervisor will obtain input from the site Construction Group and Scheduling Group for issues relating to schedule and costs.

Schedule:

Approximately five (5) working days are projected to implement the survey and to collect and analyze field data.

Resources:

2.

The primary resources needed to determine the answer to the problem are two (2) technicians to perform fieldwork, one (1) technician to prepare the samples and conduct laboratory analyses, and two (2) survey team members to prepare and review the design, generate maps, coordinate field activities and evaluate data.

IDENTIFY THE DECISION

Several decisions need to be defined to address the stated problem.

Principal Study Question (1):

Does the mean concentration of residual radioactivity in the survey unit exceed the release criteria stated above?

Decision (1):

Determine whether the mean concentration of residual radioactivity in the survey exceeds the release criteria stated in the problem.

Actions (1):

Alternative actions include failure of the survey unit, remediation, or no action required.

Principal Study Question (2):

Do any areas of elevated activity in the survey unit exceed the release criteria?

The Decision (2):

Determine if any areas of elevated activity in the survey unit exceed the release criteria.

Actions (2):

Alternative actions include confirmation and investigation, performing the elevated measurement comparison (EMC), remediation, or no action required.

Principal Study Question (3):

Is the potential dose from residual radioactivity in the survey unit ALARA as stated?

The Decision (3):

Determine if the potential dose from residual radioactivity in the survey unit is ALARA. ALARA requirements for soil remediation are defined in Chapter 4 of the LTP.

Actions (3):

Alternative actions include remediation or no action required.

3. IDENTIFY INPUTS TO THE DECISION

Information Needed:

Characterization measurements are required to define the radionuclides present and determine the extent and variability of residual radioactivity in the survey area for design and implementation of the survey. Survey area classification, ALARA analysis, potential radionuclides of interest, and site-specific DCGL values are also required inputs to the decision process. The primary information required for evaluation is the analytical results of survey measurements.

Source of the Information:

The soil sample data to be used for survey development are the radionuclide-specific measurements of representative soil samples collected for radiological characterization and excavated soil surveys conducted to determine suitability for transport of excavated soil to the SVA. The soil samples obtained were judgmentally selected as a result of multiple surveys conducted during the excavation and transport process. The ALARA analysis for potential soil remediation is provided in LTP, Section 4.4. Site-specific DCGL values and BRP radionuclides of interest are defined in LTP Chapter 5, Table 5-1 and Procedure RM-76, *Final Status Survey Design*.

The survey will be conducted in accordance with applicable regulatory guidance as established in LTP Chapter 5 for Class 1 areas. Soil samples will be utilized for radionuclide-specific measurements in this evaluation.

4. BOUNDARIES OF THE STUDY

Boundaries of the Survey:

The target population for this survey is the total thickness of prepared soil in the survey area of 1977 m^2 .

Temporal Boundaries:

Scanning and sampling in this survey unit will only be performed during daylight hours under dry weather conditions. Surface soils must be free of significant snow cover and standing water prior to surface scanning. Soils must be in a non-frozen state or fragmented for collection to satisfy BRP procedural sampling requirements. The anticipated start date for the survey is September 14, 2006.

Constraints:

Cold weather or rainy conditions may effect the operation of electronic equipment. Adverse weather conditions that include accumulations of rain or snow may limit area access and delay survey efforts.

5. DEVELOP A DECISION RULE

The following decision rules have been developed to define a logical process for choosing among alternative actions for the principal study questions associated with this survey area.

Decision Rule (1):

If all reported concentrations for residual radioactivity are less than the site-specific DCGL's and the unity rule has been satisfied for each sample, then the survey unit meets release criteria. No further action is required.

Decision Rule (2):

If the mean value of activity in the survey unit is greater than the DCGL, then the survey unit fails to meet the release criteria.¹ Remediate, resurvey, and evaluate the results relative to the decision rule.

Decision Rule (3):

If the mean activity in the survey unit is less than the DCGL and any individual sample measurement exceeds this value, conduct the Sign Test and the elevated measurement comparison (EMC) per LTP, Chapter 5 and Procedure RM-76, *Final Status Survey Design*. If the EMC and the Sign Test have been satisfied then the survey unit meets the release criteria and no further action is required. If the EMC or the Sign Test has not been satisfied then remediate the area(s) of elevated activity, resurvey as appropriate, and evaluate the results relative to the decision rule.

Decision Rule (4):

If the potential dose from residual radioactivity in the survey unit is ALARA, then no further action is necessary. If the potential dose from residual radioactivity in the survey unit is not ALARA, then remediate and resurvey.

6: SPECIFY TOLERABLE LIMITS ON DECISION ERRORS

The Null Hypothesis:

It is assumed that residual radioactivity in the survey unit exceeds the release criterion.

¹ When multiple radionuclides are present the mean activity value is determined as the average of the weighted sum. The DCGL of the weighted sum is 1.

Type I Error (α):

The α error is the maximum probability of rejecting the null hypotheses when it is true. The α error is defined in the LTP at a value of 0.05 (5%) and cannot be changed to a less restrictive value unless prior approval is granted by the USNRC. The α error value of 0.05 will be used for survey planning and data assessment for this survey area.

Type II Error (β):

The β error is the probability of accepting the null hypothesis when it is false. A value of 0.05 (5%) will be used for survey planning and data assessment for this survey area.

The Lower Bound of the Gray Region (LBGR):

The LBGR is initially set at one-half the DCGL_w for this survey unit. The LBGR may be adjusted during survey design to achieve an optimum relative shift between 1.0 and 3.0.

Relative Shift (Δ/σ) :

The relative shift will be maintained within the range of 1.0 and 3.0 by adjusting the LBGR as appropriate.

7. OPTIMIZE DESIGN FOR OBTAINING DATA

Statistical Test

Sign Test:

Radionuclides of potential plant origin also present in soil as background activity resulting from fallout constitute only a small fraction of the DCGL. Therefore, the Sign Test will be used where applicable in the survey evaluation to determine if the survey area meets the requirements for unrestricted release.

Number of Samples Determined:

The number of samples required for this survey will be determined based on the relative shift as defined by the requirements of the Sign Test (LTP, Chapter 5.) and Procedure RM-76, *Final Status Survey Design*. The LBGR is initially set at one-half the DCGL_w and may be adjusted as necessary for optimizing the survey design to achieve a relative shift between 1.0 and 3.0. Sample point locations are to be determined using a random start, systematic square grid spacing.

Judgmental Sampling:

Co-60 is the most limiting radionuclide for identification by surface scanning; judgmental surface and subsurface core samples will be collected in any location that exceeds the scan investigation level.

Scan Coverage:

Scanning for this survey area will provide 100% coverage.

Number of Samples for Quality Control:

A minimum of 5% of the sample population will be collected for quality evaluation. These samples may include sample splits, sample recounts, or third party sample analysis. Quality analyses will be conducted as defined in LTP, Chapter 5 and Procedure RM-79, *Final Status Survey Quality Control.*

Additional Sample Analysis Requirements:

The area of soil excavation intersects the identified waterborne pathway for Tritium migration and shall require Tritium in soil analyses for a minimum of 10% of the sample population. Soil samples will be collected in the same random locations as those selected for QA/QC evaluation and sent to an independent laboratory for Tritium analysis. Data results will be provided in the survey package.

Investigation Levels:

Investigation levels defined in LTP, Chapter 5 and BRP Procedure RM-76, *Final Status Survey Design*, shall be conservatively established for this survey as shown below:

Classification	Scan Measurement	Soil Sample Analysis
Class 1	> DCGL	> DCGL _w

Investigation Levels for Survey 06C₁1

The investigation levels for soil sample measurements are meant to include any individual radionuclide result greater than the site-specific DCGL or where the combined radionuclide values exceed the unity rule. Co-60 is the most limiting radionuclide for identification by surface scanning; further investigation will be initiated at any location that exceeds the Co-60 Scan _{DCGL} of 1818 CPM above background as detailed in the survey design.

FINAL STATUS SURVEY DESIGN

Release Record 06C₁1 South Central Protected Area

Survey Unit Description

Survey 06C₁1 encompasses an area of 1977 m² in the south central section of the Protected Area. No materials of plant origin exist in this survey unit.

Soil Sample Design

Scoping Data

Scoping measurements and supporting surveys performed in the Protected Area following removal of subsurface components and demolition debris do not indicate the presence of elevated levels of residual radioactivity in this survey area. Input data for survey design were conservatively estimated based on supporting surveys of excavated soils resulting from subsurface structure and component removal within the Protected Area.

	, , , , , , , , , , , , , , , , , , , ,	0,	
Radionuclides	Cs-137	Co-60	
σ*	0.524	0.255	
DCGL	11.93	3.21	

Table 1 Input Data for Survey Design (pCi/g)

*Survey data detailed in Attachment 1

Sample Requirements

The number of sample data points for this survey is based on the requirements of the Sign Test. The Unity Rule is used for the presence of multiple radionuclides. The Standard Deviation of the weighted sum is described by the following:

$$\sigma = \sqrt{\left(\frac{\sigma_{\text{cs137}}}{\text{DCGLcs137}}\right)^2 + \left(\frac{\sigma_{\text{co60}}}{\text{DCGLco60}}\right)^2}$$

$$\sigma = \sqrt{\left(\frac{0.524}{11.93}\right)^2 + \left(\frac{0.255}{3.21}\right)^2}$$

 $\sigma = 0.091$

Relative Shift

Relative Shift =
$$\frac{DCGLw - LBGR}{\sigma}$$

Relative Shift = $\frac{1 - 0.818}{0.091}$

Relative Shift = 2.0

With α and β error levels set at 0.05 and the relative shift of 2.0, the Sign Test requires 15 sample data points (Table 5.5 NUREG 1575).

Sample Locations

Sample locations are selected in a random start, systematic square grid pattern with the southwest corner of the survey unit as origin (X=0, Y=0). Two numbers between 0 and 1 have been randomly selected and then applied to the survey unit maximum X and Y dimensions to determine the random start location as shown below:

Table 2 Random Numbers

Random #, X Axis	Random #, Y Axis
0.803882	0.025830

Survey Unit Dimensions:	X = 60.0 meters Y = 39.3 meters	
Random Start Location With SW Corner Origin:	X = (0.803882)(60.0) Y = (0.025830)(39.3)	

Sample Spacing

As a conservative measure sample spacing will be calculated based on 18 samples for this survey. Samples are located in a systematic square grid pattern with sample spacing determined by the following:

$$L = \sqrt{\frac{A}{n}}$$

Where: A= area of survey unit, and n = number of samples.

$$L = \sqrt{\frac{1977}{18}} = 10.4$$
 meters

With sample spacing established at 10.4 meters, 20 data points are available for this survey. Data point locations are identified in Attachment 2.

QA/QC Sampling

A minimum of 5% of the sample population and 5% of the scan survey area are required to be selected for QA/QC verification in accordance with BRP Procedure RM-79, *Final Status Survey Quality Control*. As a conservative measure, three (3) soil samples and 10% of the scan survey area will be selected for QA/QC evaluation. Data point locations for soil samples will be determined by random number selection.

The QA/QC scan starting point and track direction are also determined by random number selection. The first random data point selected will identify the scanning start point and the second random data point will determine the direction in which the scan will track. QA/QC location results are provided in Table 3 below:

Table 3
Random Numbers Generated for QA/QC

QA/QC Soil Samples	Random Sample Number	1	Random Sample Number
Split Sample:	12	Start Point:	11
Sample Recount:	14	Scan Toward:	17
Sample Recount:	16	Minimum Scan Area Requirement:	198 m ²

Surface Scanning

The coverage requirement for surface scanning in this Class 1 area is 100%. The Scan _{MDC} has been established at fractional values of the DCGL_w for typical background activity levels at Big Rock Point. Scan _{MDC} values for varying backgrounds are provided in Attachment 3. The investigation level for identification of potential areas of elevated activity in this survey area will be the Scan _{DCGL} as defined by the following:

Scan _{DCGL} = Detector Rating $\frac{CPM}{uR/hr}$ * Exposure Model $\frac{uR/hr}{pCi/g}$ * DCGL_w Scan _{DCGL} for Co-60 = 1818 CPM

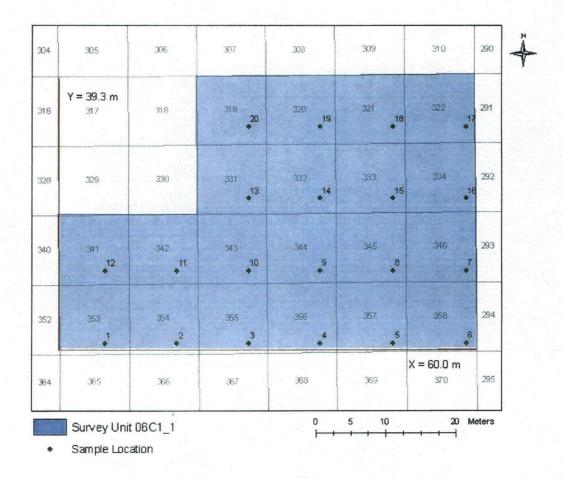
Scan _{DCGL} for Cs-137 = 3518 CPM

Where:¹ Detector Rating = $\frac{1200 \text{ CPM}}{\text{uR/hr}}$ Cs - 137 and $\frac{565 \text{ CPM}}{\text{uR/hr}}$ Co - 60

Exposure Model = $\frac{1.229 \text{ uR/hr}}{5 \text{ pCi/g}} \text{ Cs} - 137 \text{ and } \frac{5.029 \text{ uR/hr}}{5 \text{ pCi/g}} \text{ Co} - 60$

DCGL_w = 11.93 pCi/g Cs-137 and 3.21 pCi/g Co-60

The DCGL_w for Co-60 is the most limiting value for scanning measurements performed to identify areas of potentially elevated activity. Scanning conducted for this survey will assume all residual radioactivity to originate from Co-60 and the instrument response at the Co-60 DCGL_w (1818 cpm) will be used as the scanning investigation level for FSS $06C_11$.


Survey Design FSS 06C₁1 Page 3 of 7

Design Data - FSS 06C₁1 Protected Area Supporting Surveys

Survey No.	Sequence No.	Cs-137 Activity (pCi/g)	Co-60 Activity (pCi/g)	
HH060705	16538	1.26	0.66	
HH060705	16539	0.06	0.06*	
HH060705	16540	1.05	0.66	
TB062805	16755	1.16	0.27	
TB062805	16756	0.47	0.15*	
TB062805	16774	0.19	0.31	
	Mean:	0.698	0.352	
	Std Dev:	0.524	0.255	

* Measurement system MDA - Co-60 not identified in this sample

Survey Design FSS 06C₁1 Page 4 of 7

Soil Sample Locations - Survey 06C₁1 South central Protected Area

Sample No.	Grid Number	X Coord.	Y Coord.	Sample No.	Grid Number	X Coord.	Y Coord.
1	353	6.6	1.0	11	342	7.0	1.4
2	354	7.0	1.0	12	341	6.6	1.4
3	355	7.4	1.0	13	331	7.4	1.8
4	356	7.8	1.0	14	332	7.8	1.8
5	357	8.2	1.0	15	333	8.2	1.8
6	358	8.6	1.0	16	334	8.6	1.8
7 / 1	346	8.6	1.4	17	322	8.6	2.2
8	345	8.2	1.4	18	321	8.2	2.2
9	344	7.8	1.4	19	320	7.8	2.2
10	343	7.4	1.4	20	319	7.4	2.2

Sample spacing is 10.4 meters

Survey Design FSS 06C₁1 Page 5 of 7

Scan MDC In Varying Backgrounds

				<u>CPM</u>	MDER	uR/hr	Scan MD	C pCi/g
Background	d'	,	Si	MDCR _{surveyor}	Cs-137	Co-60	Cs-137	Co-60
2000	2.48	4	28.64	607.47	0.51	1.08	2.06	1.07
2500	2.48	4	32.02	679.18	0.57	1.20	2.30	1.20
3000	2.48	4	35.07	744.00	0.62	1.32	2.52	1.31
3500	2.48	4	37.88	803.61	0.67	1.42	2.72	1.41
4000	2.48	4	40.50	859.10	0.72	1.52	2.91	1.51
4500	2.48	4	42.95	911.21	0.76	1.61	3.09	1.60
5000	2.48	4	45.28	960.50	0.80	1.70	. • 3:26	1:69
5500	2.48	4	47.49	1,007.38	0.84	1.78	3.42	1.77
6000	2.48	4	49.60	1,052.17	0.88	1.86	3.57	1.85
6500	2.48	4	51.63	1,095.14	0.91	1.94	3.71	1.93
7000	2.48	4	53.57	1,136.48	0.95	2.01	3.85	2.00
7500	2.48	4	55.45	1,176.37	0.98	2.08	3.99	2:07
8000	2.48	4	57.27	1,214.95	1.01	2.15	4.12	2.14
8500	2.48	4	59.04	1,252.34	1.04	2.22	4.25	2.20
9000	2.48	4	60.75	1,288.65	1.07	2.28	4.37	2.27
9500	2.48	4	62.41	1,323.96	1.10	2.34	4.49	2.33
10000	2.48	4	64.03	1,358.35	1:13	2.40	4.61	2.39
10500	2.48	4	65.61	1,391.90	1.16	2.46	4.72	2.45
11000	2.48	4	67.16	1,424.65	1.19	2.52	4.83	2.51
11500	2.48	4	68.67	1,456.67	1.21	2.58	4.94	2.56
12000	2.48	4	70.14	1,488.00	1.24	2.63	5.04	2.62
12500	2.48	4	71.59	1,518.68	1.27		5.15	2.67
13000	2.48	4	73.01	1,548.76	1.29	2.74	5.25	2.73
13500	2.48	4	74.40	1,578.26	1.32	2.79	5.35	2.78
14000	2.48	4	75.77	1,607.22	1.34	2.84	5.45	2.83
14500	2.48	4	77.11	1,635.67	1.36	2.89	5.55	2.88
15000	2.48	4	78.42	1,663.63	1.39	2.94	5.64	2.93
	the second s) 5 pCi/g	об и страна 95-и страна 1994 г. страна 1997 г. стр				eren (
		1.23E+00						
	<u>: Co-60 (</u>	5.03E+00		· · · · · · · · · · · · · · · · · · ·	<u></u>			
					<u> </u>		l	

Contoningtod			Calcul	ated Area	Factors	at Time of	Peak Dos	e	
Contaminated Area (m ²)	H-3	Mn-54	Fe-55	Co-60	Sr-90	Cs-137	Eu-152	Eu-154	Eu-155
8094	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
4047	1.00	1.01	1.00	1.01	1.00	1.02	1.02	1.01	1.02
2024	1.00	1.03	1.00	1.03	1.00	1.03	1.03	1.03	1.03
1012	1.35	1.04	1.00	1.04	1.00	1.04	1.05	1.04	1.04
506	2.91	1.09	1.98	1.08	1.98	1.13	1.07	1.07	1.06
253	6.05	1.14	3.95	1.13	3.94	1.20	1.11	1.11	1.09
126	12.4	1.20	7.93	1.20	7.87	1.29	1.17	1.16	1.14
63	24.9	1.30	15.8	1.30	15.6	1.41	1.27	1.26	1.23
32	49.2	1.49	31.2	1.49	30.5	1.62	1.44	1.45	1.39
16	98.9	1.78	62.0	1.78	59.9	1.93	1.72	1.73	1.63
8	198	2.38	123	2.38	117	2.58	2.30	2.31	2.14
4	397	3.61	243	3.62	230	3.91	3.49	3.52	3.19
2	794	5.68	473	5.75	452	6.14	5.48	5.55	4.90
1	1590	9.57	905	9.73	887	10.3	9.24	9.39	7.88

Area Factors for Open Land Survey Evaluation

Survey Design FSS 06C₁1 Page 7 of 7 RM-76 FINAL STATUS SURVEY DESIGN Revision 1 Page 19 of 19

RM-76-5 FINAL STATUS SURVEY APPROVAL

AND AUTHORIZATION FOR IMPLEMENTATION

Survey Code __<u>06C11 _____</u>

Survey Area Description:

Final Status Survey 06C₁1 encompasses 1977 m² at or below the grade elevation present during plant power operations in the south central section of the Protected Area. No materials of plant origin remain in the survey area.

The survey area is authorized for Final Status Survey Implementation.

Designed by ON S SK

Technical Review by

12-2000 Date

17 Date

RM-76.doc

RM-77 FINAL STATUS SURVEY IMPLEMENTATION

Revision 2 Page 8 of 12

RM-77-	1
SURVEY IMPLEMENTA	TION CHECKLIST
Page 1 o	f 3

Initial Date

1.1 Survey Area Status:

Step

(+)

1.0

- a. Final Status Survey Design has been approved for implementation (see RM-76-5, Final Status Survey Approval and Authorization for Supplementation).
 - 1. Survey area walkdown complete
 - 2. Survey area determined ready for FSS
 - 3. Decommissioning activities that may impact the environmental status of the survey area have been completed.
 - 4. Survey area environment is controlled by barriers and postings or other approved method to restrict access.
- b. Survey area has been turned over to the Environmental Services Survey Group (ESSG) in acceptable condition for FSS.

AL a/12/04

Field Preparation:

- a. Survey unit boundaries delineated (Step 6.1.1)
- b. Statistical soil samples predetermined in the survey design are located and marked within the survey unit. (Step 6.1.2)

Soil sample locations verified (Step 6.1.2.c)

- d. Instruments and equipment have been collected and calibrated for data measurement and collection (Step 6.1.3)
- e. Field documentation is prepared (Step 6.1.4)

JAR 01/14/04

1.2

C.

ALL 09/12/06

RM-77 FINAL STATUS SURVEY IMPLEMENTATION

Revision 2 Page 9 of 12

RM-77-1 SURVEY IMPLEMENTATION CHECKLIST Page 2 of 3

- 2.0 DATA COLLECTION
- 2.1 Soil Survey:
- All soil samples collected and controlled (Step 6.2.1).
- 2.2 Surface Scan:

NA

NA

Surface Scan complete. Action response requirements have been conducted on any identified areas exceeding the investigation level (Step 6.3).

- 2.3 Judgmental Soil Samples:
 - a. Judgmental soil samples have been collected and controlled (Step 6.2.3).
 - b. Deep core profiles performed in areas identified to contain elevated residual activity (Step 6.2.3).

3.0 SAMPLE PREPARATION AND LABORATORY ANALYSIS

- 3.1 Sample Preparation (Step 6.4.1):
- 1
- a. Soil samples are homogenous
- b. Soil samples are visibly dry prior to packing
- c. Non-soil materials have been removed from sample
- d. Soil samples have been transferred to one-liter Marinelli containers and are labeled and sealed.

YAL a/14/00

Date

Initial

AL og /14/00 ÆSSG

Coll oglight

<u>55G</u>

RM-59 SAMPLING AND ANALYSIS OF OPEN LAND AREAS FOR SITE CHARACTERIZATION SURVEYS

ATTACHMENT RM-59-1 SAMPLING AND ANALYSIS REPORT

Date: 09-14-2006	Time: 1600	Loc	cation: 06C ₁ 1	Tech: SSO/JHW/LE	D/JNS
	SURVEY IDE		ON / DESCR	PTION	·
Survey 06C ₁ 1 encom	passes 1977 m ² at o	r below the gra	de elevation pre	sent during plant power	operations
				origin remain in this area	
			-		
			·		
		SURVEY '	TYPE		
Survey Type:	Characteriz	ation X	Scan (Motive)	
	Remediatio		- · ·	, ,	
	X Final		Scan (Static)		
			Trenching an	d Digging (use RM-59-4)
		SURVEY D	ESIGN		
Sample Collection:	Judgmental	Random	X Systemat	c Large Containe	r Assay
	100%		,	U	
		ANALYS	SIS		
Inst.SN/Cal Due 2011	95/02-10-2007 D	AILY CHECK:	X SAT	UNSAT INIT	Г: <u>sso</u>
Inst.SN/Cal Due 18618	35/09-23-2006 D	AILY CHECK:	X SAT	UNSAT INIT	LED
Inst.SN/Cal Due 19370	<u>09/02-21-2007</u> D	AILY CHECK:	<u>X</u> SAT	UNSAT INIT	[: <u>trs</u>
Inst.SN/Cal Due 18908	<u>36/01-26-2007</u> D	AILY CHECK:	<u> X </u> SAT	UNSAT INIT	[: <u>JHW</u>
Inst.SN/Cal Due _Det. #		AILY CHECK:			Г: <u>_JP</u>
Investigation of Unide			<u> X </u> SAT		: <u>_JLR</u>
Minimum Detectable A	Activity (Section 5.3.2	2)	<u>X</u> SAT	UNSAT INIT	: <u>JLR</u>
		COMME	NTS		
Survey 06C11 was perfo	ormed in a random star	t. square grid, s	vstematic samplir	o pattern with samples	
			•	al radioactivity above trace	levels of
the DCGL value. Surface	ce scanning identified r	no areas of eleva	ated residual radio	pactivity. The results of the	∋ QA/QC
verification scan (10%)	were consistent with th	e findings of the	primary survey s	can.	
	1	<u>. </u>	<u></u>	<u></u>	
Technician Signature	Indien autor	KED, INS, 6	In whitnes	Date: 9.14.06	
Second Level Review Signature		anie		Date: _/0-22-06	,

RM-77 FINAL STATUS SURVEY IMPLEMENTATION Revision 2 Page 10 of 12

RM-77-1 SURVEY IMPLEMENTATION CHECKLIST Page 3 of 3

3.2 Laboratory Analysis:

 \checkmark

3.3

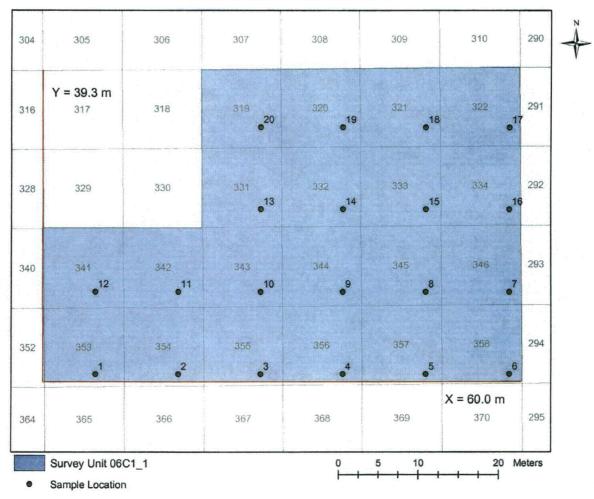
Isotopic analyses are complete. The spectroscopy report requires a signature of completion by the laboratory analyst and a signature of evaluation documenting that a second level review has been performed (Step 6.4.2).

Sample Control and Documentation:

Chain of custody documentation exhibits control of soil samples (Step 6.4.3).

Reviewed by

Date

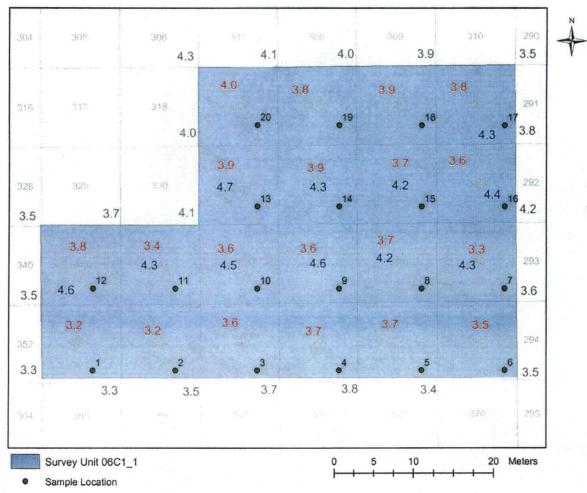

<u>Date</u>

09/19/00 SSG

09/18/06

Soil Sample Activity Summary

Release Record 06C₁1 South Central Protected Area



Sample No.	Grid #	X Coord.	Y Coord.	Cs-137 (pCi/g)		Co-60 (pCi/g)	
				Activity	MDA	Activity	MDA
1	353	6.6	1.0	0.0547	Plant discribe	*0.0319	0.0593
2	354	7.0	1.0	0.0490		*-0.0036	0.0472
3	355	7.4	1.0	0.0472		*-0.0083	0.0569
4	356	7.8	1.0	0.0853	time the	*0.0471	0.0749
5	357	8.2	1.0	0.0331	PERSONAL PROPERTY	*0.0291	0.0640
6	358	8.6	1.0	0.0902		*-0.0150	0.0499
7	346	8.6	1.4	0.0581	South States	*0.0132	0.0564
8	345	8.2	1.4	*0.0044	0.0430	*0.0023	*0.0579
9	344	7.8	1.4	0.0667		*0.0566	*0.0789
10	343	7.4	1.4	0.0918	PR SHARE WE	*0.0369	*0.0763
11	342	7.0	1.4	0.0468	and the second	*0.0323	*0.0599
12	341	6.6	1.4	*0.0324	0.0612	*-0.0009	*0.0624
13	331	7.4	1.8	0.0624	GRADI CARRIER	*0.0013	*0.0607
14	332	7.8	1.8	0.0417		*0.0030	*0.0639
15	333	8.2	1.8	*0.0364	0.0555	*0.0474	*0.0722
16	334	8.6	1.8	*0.0213	0.0598	*0.0110	*0.0612
17	322	8.6	2.2	0.0613	Sector Sector	*0.0049	*0.0583
18	321	8.2	2.2	0.0422	Mine Include	*0.0084	*0.0624
19	320	7.8	2.2	*0.0287	0.0560	*0.0119	*0.0491
20	319	7.4	2.2	0.0524	Non-Laterative	*0.0422	*0.0676

*Forced-count values

Surface Scan Summary

Release Record 06C₁1 South Central Protected Area

RED Values are Average Mobile Scan General Area Activity (kcpm) BLUE Values are Average Verification Scan General Area Activity (kcpm) GREY Values are Average General Background Area Activity (kcpm)

* No investigation levels exceeded. gen iolalus

lass

100 **Primary Scan: Technician Signature:** 10 % QC Verification Scan:

Date: 9.14.06 Time: 1400

Technician Signature: 1000

Date: 9.14.06 Time: 1400

RM-72 SAMPLE CHAIN-OF-CUSTODY

Sample Number	Sampling Location	Date	Time	Final Disposition of Sample	
1	Grid # 353 (6.6) (1.0)	9.14.06	1238	Permanent laked storage	
2	Grid # 354 (7.0) (1.0)	9.14.06	1240	(
3	Grid # 355 (7.4) (1.0)	9.14.06	1243		
4	Grid # 356 (7.8) (1.0)	9.14.06	1229		
5	Grid # 357 (8.2) (1.0)	9.14.06	1230		
6	Grid # 358 (8.6) (1.0)	9.14.06	1235		
7	Grid # 346 (8.6) (1.4)	9.14.06	1255		
8	Grid # 345 (8.2) (1.4)	9.14.06	1252		
9	Grid # 344 (7.8) (1.4)	9.14.06	124955		
10	Grid # 343 (7.4) (1.4)	9.14.06	1249-1		
11	Grid # 342 (7.0) (1.4)	9.14.06	1248		
12	Grid # 341 (6.6) (1.4)	9.14.06	1246		
12 QA Split	Grid # 341 (6.6) (1.4)	9.14.06	1246		
13	Grid # 331 (7.4) (1.8)	9.14.06	1306		
14 (R)	Grid # 332 (7.8) (1.8)	9.14.06	1305		
15	Grid # 333 (8.2) (1.8)	9.14.06	1305		
16 (R)	Grid # 334 (8.6) (1.8)	9.14.06	1300		
17	Grid # 322 (8.6) (2.2)	9.14.06	1316		
18	Grid # 321 (8.2) (2.2)	9.14.06	1313))	
19	Grid # 320 (7.8) (2.2)	9.14.06	1309		
20	Grid # 319 (7.4) (2.2)	9.14.06	1307	\checkmark	

06C₁1 RM-72-1 <u>CHAIN-OF-CUSTODY RECORD</u>

(Samples may be analyzed and stored, shipped for offsite evaluation or analyzed and disposed of.)

1. Relinquished by: locked storage	Date 9.14.05	Time 1405	Received in good condition by:
2. Relinquished by:	Date 9/18/06	Time /530	Received in good condition by: Permonent (sealer of) storage locked
3. Relinquished by:	Date	Time	Received in good condition by:
4. Relinguished by:	Date	Time	Received in good condition by:

RM-78-3 DATA ASSESSMENT REPORT Page 1 of 8

FINAL STATUS SURVEY: 06 C, 1 DATA VERIFICATION 1.0 1.1 **Data Acceptance** Review the Implementation Checklist (RM-77-1) to verify that survey isolation and control measures were executed prior to FSS and are being maintained. Review RM-77, Final Status Survey Implementation, to verify that methods. techniques, and survey activities required for FSS have been applied in accordance with the appropriate procedures. Field QC Records: 1.2 Review all assessments, Condition Reports and audits to ensure that identified issues have been resolved. Comments: Verify scan instrumentation was in calibration and the QC source checks were performed prior to and after surveys. Verify daily QC source checks for Canberra gamma spectroscopy detector properly logged prior to soil sample analysis.

1.3 **Review Verification:**

Verify that the Data Quality Objectives are complete.

Verify that the survey design has been technically reviewed.

Revision 2 Page 20 of 26

RM-78-3 DATA ASSESSMENT REPORT Page 2 of 8

Verify that gamma spectroscopy results have received a technical review.

No

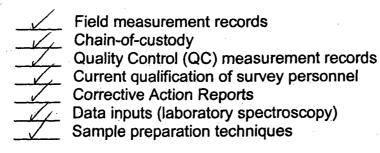
Verify the Sample and Analysis Report (RM-59-1) is completed and reviewed.

Data Verification Completed: (Yes

Comments _

in L. Keed Assessor

10/23/06 Date


RM-78.doc

RM-78-3 DATA ASSESSMENT REPORT Page 3 of 8

2.0 DATA VALIDATION

2.1 Documentation Review:

Perform documentation review for quality control purposes and validate the data collected is complete and appropriate for use as defined by the survey design. Documentation includes:

Detection Limit Review:

Scan MDCs are below established site DCGLs.

Forced-count values are assigned as necessary when activity is not detected in a sample.

Minimum Detectable Concentration (MDC) values of gamma spectroscopy are below established DCGLs.

2.3

2.2

Quality Control (QC) Data Review:

Quality Control (QC) data results have received required reviews and are complete and consistent.

Results of judgmental samples have been reviewed and evaluated.

Review to ensure that the analytical results of judgmental samples do not impact the evaluation for unrestricted release of the survey area.

Revision 2 Page 22 of 26

RM-78-3 DATA ASSESSMENT REPORT Page 4 of 8

2.4 Qualification of Data:

Statistical radionuclide-specific measurements for completeness. Evaluate the survey for determination of data usability and confirm that sufficient qualified data are present for the decision process.

Total number of statistical samples planned for the survey: 15 a.

Total number of statistical samples determined as valid: \mathcal{AD} b.

Calculate % Completeness: C.

 $\frac{b \times 120}{a} = 160\%$

Qualified data are ≥00% completeness and are sufficient to support the Sign Test requirement for determination of unrestricted release.

Data Validation Completed:

No Yes

Comments:

odie L. Keed 10/23/00 Assessor

RM-78-3 DATA ASSESSMENT REPORT Page 5 of 8

3.0 DATA QUALITY ASSESSMENT

3.1

Review the DQOs and Survey Design:

Confirm that all inputs to the decision have been reviewed and are complete.

Verify that boundaries or constraints identified in the survey area have not affected the quality of the data.

Review the Statement of Hypothesis and confirm that it remains relevant.

Confirm that Type I and Type II error limits are consistent with DQOs.

Confirm that the survey design is consistent with DQOs and that the appropriate number of data points were obtained.

3.2 Preliminary Review:

3.2.1 Preliminary Evaluation:

Quality Assessment (QA) reports consistent with procedure RM-79, Final Status Survey Quality Control.

Survey is of sufficient intensity to satisfy classification requirement.

Potential trends of radioactivity levels in the survey area do not impact a decision for unrestricted release.

Comments:

RM-78

Revision 2 Page 24 of 26

FINAL STATUS SURVEY ASSESSMENT

RM-78-3 DATA ASSESSMENT REPORT Page 6 of 8

3.2.2 Calculate Basic Statistical Quantities:

а.	Number of qualified data points	20
b.	Calculation of the Mean	0.0097 (SOR)
c.	Calculation of the Median	0.0064 (SOR)
d.	Calculation Standard Deviation	0.0072 (SOR)

A ttach graphic representation of the data if any radionuclide-specific measurements exceed 50% of the DCGL.

_ Sample QA/QC measurements consistent with FSS data

3.3 Statistical Evaluation:

<u>NOTE</u>: If all measurement data are less than the DCGL_w, statistical testing in not required and the survey unit meets the regulatory requirement for unrestricted release.

__All survey measurements are below the DCGL_w.

3.3.1 Verify Assumptions of the Survey Design

Review the posting plot to verify that the data exhibits spatial independence. Spatial trends must be investigated and resolved prior to further assessment.

_ Review to verify dispersion symmetry. The appearance of skewed data must be investigated for cause and documented prior to further assessment.

Revision 2 Page 25 of 26

RM-78-3 DATA ASSESSMENT REPORT Page 7 of 8

Review the dataset standard deviation and range for data variance. Questionable data must be investigated for cause and documented prior to further assessment.

Verify that the data exhibits adequate power and confirm that the sample size is sufficient to satisfy the DQOs.

- 3.4 Draw Conclusions from the Data:
- 3.4.1 Investigation Levels and Response Actions

Determine if data results have exceeded any investigation level. Document findings. The investigation levels exceeded,

3.4.2 Evaluation for Unrestricted Release

Select applicable conclusion:

Survey area <u>acceptance criteria met</u> and survey area satisfies the requirements for unrestricted release:

All concentrations are less than the DCGL_w. The Null Hypothesis is rejected.

The mean concentration of the survey area is below the DCGL_w but individual measurements in the survey unit exceed the DCGL_w. The Sign Test and EMC evaluation are successful and the Null Hypothesis is rejected.

Revision 2 Page 26 of 26

RM-78-3 DATA ASSESSMENT REPORT Page 8 of 8

Survey area acceptance criteria <u>not</u> met and survey area fails to satisfy the requirements for unrestricted release: Na

 M_{A} The mean concentration in the survey area exceeds the DCGL_w. and the null hypothesis is confirmed.

 M_{A} The mean concentration of the survey area is below the DCGL_w but individual measurements in the Unit exceed the DCGLw... The Sign Test and EMC evaluation are unsuccessful and the null hypothesis is confirmed.

Data Quality Assessment Completed: (Yes No Comments Assessor **Reviews:** 10 **Technical Review** Date ES Superintendent Date

10-23-06

RP&ES Manager

Date

RM-78-3, Attachment 1 Statistical Quantities

Release Record 06C₁1 South Central Protected Area

Sample	Cs-137	Co-60	Weighted	**Weighted Sum		
Number	(pCi/gm)	(pCi/gm)	Sum (SOR)	<dcglw?< th=""><th>DCGL-W. Sum</th><th>Sign</th></dcglw?<>	DCGL-W. Sum	Sign
1	0.0547	0.0319	0.0145	yes	0.9855	+1
2	0.0490	-0.0036	0.0030	yes	0.9970	+1
3	0.0472	-0.0083	0.0014	yes	0.9986	+1
4	0.0853	0.0471	0.0218	yes	0.9782	+1
5	0.0331	0.0291	0.0118	yes	0.9882	+1
6	0.0902	-0.0150	0.0029	yes	0.9971	+1
7	0.0581	0.0132	0.0090	yes	0.9910	+1
8	0.0044	0.0023	0.0011	yes	0.9989	+1
9	0.0667	0.0566	0.0232	yes	0.9768	+1
10	0.0918	0.0369	0.0192	yes	0.9808	+1
11	0.0468	0.0323	0.0140	yes	0.9860	+1
12	0.0324	-0.0009	0.0024	yes	0.9976	+1
13	0.0624	0.0013	0.0056	yes	0.9944	+1
14	0.0417	0.0030	0.0044	yes	0.9956	+1
15	0.0364	0.0474	0.0178	yes	0.9822	+1
16	0.0213	0.0110	0.0052	yes	0.9948	+1
17	0.0613	0.0049	0.0067	yes	0.9933	+1
18	0.0422	0.0084	0.0062	yes	0.9938	+1
19	0.0287	0.0119	0.0061	yes	0.9939	+1
20	0.0524	0.0422	0.0175	yes	0.9825	+1
				······		
Std. Dev	0.0224	0.0210	0.0072			
Mean	0.0503	0.0176	0.0097			
Median	0.0481	0.0115	0.0064			

Number of Positive Differences (S+):	n/a
Critical Value, k, Table 1.3 of Marssim:	n/a
S+ > than k?:	n/a
Survey Unit Pass or Fail:	**Pass

*Note: Forced-Count values are used for samples with activity levels below the MDA. **Note: If all measurement data are less than the DCGL w, then the Sign Test is not required.

RM-79 FINAL STATUS SURVEY QUALITY CONTROL

Revision 1 Page 11 of 13

RM-79-1 **FSS QUALITY CONTROL EVALUATION RESULTS**

FSS Package # _____OGC___I QC Package # 06C

QC Measurement Type	Acceptance Criteria Met*?	Reference
1. Replicate Scan	Yes) No	Step 5.1.3
2. Sample Recounts	· · · · · · · · · · · · · · · · · · ·	Step 5.1.4.1
a. In-house	Yes / No	
<u> </u>	Yes / No	
3. Split Samples		Step 5.1.4.2
c. In-house	Yes No	
<u>_∧/A</u> d. Third party	Yes / No	

If Acceptance Criteria is not met, completion of Attachment RM-79-2, FSS *<u>NOTE</u>: Quality Control Investigation Results, is required.

Comments: mple # 12 = 4A/a: Aplit; Sample # 14 + 16 = recounts

Reviews:

1.

Kedi Evaluator É **Technical Review**

Date

QA Verification Split Sample Analysis

		Tat	ole 1		
Date:	<u>9/14/2006</u>	Acceptance Criteria			
		Resolution	Ratio		
QA:	06C ₁ 1 South Central Protected Area	<4	N/A		
		4-7	0.5-2.0		
Туре:	Split Sample	8-15	0.6-1.66		
		16-50	0.75-1.33		
Lab:	In-House	51-200	0.8-1.25		
		>200	0.85-1.18		
			Ļ		

			<u> </u>	В	<u> </u>	D	E	F	G	
Sample	Radionuclide	BRP Result Below MDA	BRP Results (pCi/g)	BRP % Error (Sigma)	BRP Resolution	Acceptance Ratio (Table 1)	Split Results Below MDA	Split Results (pCi/g)	Comparison Ratio F/A	Results in Agreement Compare G with D)
12	Co-60	<	. 0.0624	n/a	n/a	n/a	< .	0.0638	1.02	· YES
12	Cs-137	<	0.0612	n/a	n/a	n/a	<	0.0622	1.02	YES
				· · · · · · · · · · · · · · · · · · ·				:		·-
								•		
							<u> </u>			· · · ·
							<u> </u>			
				ļ						
		· .			ļ		ļ			
				·			ļ			
		1	1				1			

Resolution C = $\frac{A}{(A)(B/100)}$

< Indicates results less than the MDA.

*Note Results are considered in agreement for MDA and near-MDA measurement comparisons Results that fail agreement must be investigated per RM-79.

QA Verification Sample Recount Analysis

Date:	9/14/2006	Accept
		Resolutio
QA:	06C11 South Central Protected Area	<4
		4-7
Type:	Sample Recounts	8-15
		16-50
Lab:	In- House	51-200
		>200

Α

Table 1					
Acceptance Criteria					
Resolution	Ratio				
<4	N/A				
4-7	0.5-2.0				
8-15	0.6-1.66				
16-50	0.75-1.33				
51-200	0.8-1.25				
>200	0.85-1.18				

D

С

В

F

Ε

G

Sample	Radionuclide	BRP Result Below MDA	BRP Results (pCi/g)	BRP % Error (Sigma)	BRP Resolution	Acceptance Ratio (Table 1)	Recount Result Below MDA	Recount Results (pCi/g)	Comparison Ratio F/A	Results in Agreement Compare G with D)
14	Co-60	<	0.0639	n/a	n/a	n/a	<	0.0749	1.17	YES
14	Cs-137		0.0417	38.44	2.60	n/a		0.0671	1.61	YES
16	Co-60	<	0.0612	n/a	n/a	n/a	<	0.0479	0.78	YES
16	Cs-137	<	0.0598	n/a	n/a	n/a		0.0506	0.85	YES

Resolution C = $\frac{A}{(A)(B/100)}$

< Indicates results less than the MDA.

*Note Results are considered in agreement for MDA and near-MDA measurement comparisons Results fthat fail agreement must be investigated per RM-79.

Tritium in Soil Data Results Final Status Survey 06C₁1

Sample	Tritium in Soil
Number	pCi/g
12	0.007
14	0.015
16	0.024

Mean: 0.0153 Median: 0.0150 St. Dev: 0.0085

<u>Note</u>: The DCGL for Tritium is 327 pCi/g. Sample results are less than 0.02% of the DCGL

700 Landwehr Road • Northbrook, IL 60062-2310 ph. (847) 564-0700 • fax (847) 564-4517

Below are the results of the analyses for tritium on three soil samples.

Excavated Soil Survey 06C₁1

Sample Description	Collection Date	Lab Code	Concentration (pCi/g of soil) H-3	MDA (pCi/g of soil)
12	09-14-06	BRSO-6372	0.007 ± 0.006	< 0.011
14	09-14-06	BRSO-6373	0.015 ± 0.008	< 0.014
16	09-14-06	BRSO-6374	0.024 ± 0.007	< 0.013

The error given is the probable counting error at 95 % confidence level. The less than, (<), value is based on 4.66 sigma counting error for background sample.

Bronia Grðð Labdratory Manager

1 ony (APPROVED BY orlin In

Tony Coorlim, Quality Assurance

ATTACHMENT 5

I

CONSUMERS ENERGY BIG ROCKPOINT

DOCKET NUMBERS 50-155 AND 72-043

TRANSMITTAL OF SURVEY PACKAGES IN SUPPORT OF BIG ROCK POINT PHASED LICENSE TERMINATION

CLASS 1 RELOCATED SOIL RELEASE RECORD, TBC_{X15}1, RELOCATED SOILS FROM TURBINE BUILDING/CONTAINMENT DEMOLITION

October 24, 2006

38 Pages

Supporting Survey, Relocated Soil Release Record TBC_{x15}1

Relocated Soils From Turbine Building/Containment Demolition

SURVEY PACKAGE CLOSURE

Final Status Survey Documentation is authorized for closure. All required reviews are complete and the evaluation of data results have satisfied the criteria established for unrestricted release and onsite use for excavation backfill.

Signed: 5.500 Date: (ESSG Supervisor)

Date: 10/03/04 **ES** Superintendent)

Signed:

_ Date: <u>/0-2</u>3-06

Signed: (RP & ES Manager)

Survey Requirements

Release Record TBC_{X15}1 Relocated Soils From Turbine Building/Containment Demolition Area

Survey Description

Supporting survey $TBC_{x15}1$ consists of soils excavated during Turbine/Containment demolition and the removal of subsurface piping components. The excavated soil was transported to the soil verification area (SVA) and graded to maximum depth of 1.0 meter. The physical size of the survey area is 1800 square meters.

The evaluation of excavated soil will be performed in accordance with procedure RM-76, Final Status Survey Design. Sample locations will be established by random start, systematic square grid pattern over the graded area. Each soil sample will be a full core homogenized composite that is representative of total soil thickness. Surface scanning will be conducted over 100% of the survey area.

History

The soil for survey evaluation originated from a Class 1 area that was excavated to remove concrete and piping components in the Turbine Building/Containment demolition area. Soil remediation efforts were required for some areas associated with subsurface component removal.

Current Radiological Status

Based on post remediation analyses and supporting surveys the residual radioactivity in this excavated soil is not expected to exceed DCGL concentration values. Survey documentation is maintained in the 10 CFR 50.75(g) files. Input for this evaluation includes the following survey data:

Turbine Building Demolition
Supporting Surveys for Soil Transport and Evaluation

TB051005	SB040405	SB042905	TB062805	HH060705
TB052405	SB040605	SB050205	HH050505	TB060905
TB052505	SB040705	SB051705	HH051705	TB080805
TB052605	SB041205	SB051805	HH051905	TB080905
TB060105	SB041905	HH042705	HH041905	

Post-Construction Expectations

Survey TBC_{x15}1 will be performed in the following activity sequence:

- 1. Walkdown: Environmental Services Survey Group (ESSG) personnel will perform a walkdown assessment to ensure survey area preparations are complete and confirm that the following post-construction expectations have been satisfied as applicable:
 - Groundwater and Surface water control is adequate
 - All construction debris has been removed from the survey area
 - The survey location status meets all applicable safety requirements
- 2. Survey Area Isolation and Control: Control measures will be established to ensure that any potential ongoing decommissioning activities in adjacent locations do not impact the current survey area status. Isolation and control measures include postings, barriers, access points, and the evaluation of ongoing work activities in adjacent areas.
- 3. Survey Design and Execution: Survey design and execution will follow the Data Quality Objectives for TBC_{X15}1 in accordance with the survey requirements established in procedures RM-76, *Final Status Survey Design* and RM-77, *Final Status Survey Implementation*, and LTP, Chapter 5. Survey size will be based on the statistical requirements of the Sign Test for Class 1 areas with soil samples collected in random start, systematic data point locations. Surface scanning will be performed with 100% survey area coverage. This survey will be conducted in accordance with approved BRP procedures and follow the guidance of NUREG 1575.
- 4. Data Quality Assessment: Isolation and control of the survey area will be maintained until the survey Data Quality Assessment demonstrates that the regulatory requirements for unrestricted site release have been satisfied.

DATA QUALITY OBJECTIVES

Survey TBC_{X15}1

Relocated Soils From Turbine Building/Containment Demolition Area

1. STATE THE PROBLEM

The Problem:

To demonstrate that the level of residual radioactivity in soils excavated from the Turbine Building/Containment demolition area does not exceed the release criteria of 25 mrem/year Total Effective Dose Equivalent (TEDE) as specified in the License Termination Plan (LTP). This soil has been relocated to the soil verification area (SVA) and is to be prepared for survey by grading out to a depth of one (1) meter or less. The excavated soil for evaluation is to be designated as a Class 1 survey area. It must be demonstrated that soils in this survey area satisfy the criteria established for unrestricted release prior to disposition as fill material for onsite usage.

Stakeholders:

The primary stakeholders interested in the answer to this problem are Consumers Energy Co., and the general public as represented by the Michigan Department of Environmental Quality (MDEQ), and the US Nuclear Regulatory Commission (USNRC).

The Planning Team:

The planning team consists of members of the BRP Environmental Services Survey Group (ESSG). The primary decision maker will be the Final Status Survey Supervisor. The Final Status Survey Supervisor will obtain input from the site Construction Group and Scheduling Group for issues relating to schedule and costs.

Schedule:

Approximately five (5) working days are projected to implement the survey and to collect and analyze field data.

Resources:

The primary resources needed to determine the answer to the problem are two (2) technicians to perform fieldwork, one (1) technician to prepare the samples and conduct laboratory analyses, and two (2) survey team members to prepare and review the design, generate maps, coordinate field activities and evaluate data.

2. IDENTIFY THE DECISION

Several decisions need to be defined to address the stated problem.

Principal Study Question (1):

Does the mean concentration of residual radioactivity in the survey unit exceed the release criteria stated above?

Decision (1):

Determine whether the mean concentration of residual radioactivity in the survey exceeds the release criteria stated in the problem.

Actions (1):

Alternative actions include failure of the survey unit, remediation, or no action required.

Principal Study Question (2):

Do any areas of elevated activity in the survey unit exceed the release criteria?

The Decision (2):

Determine if any areas of elevated activity in the survey unit exceed the release criteria.

Actions (2):

Alternative actions include confirmation and investigation, performing the elevated measurement comparison (EMC), remediation, or no action required.

Principal Study Question (3):

Is the potential dose from residual radioactivity in the survey unit ALARA as stated?

The Decision (3):

Determine if the potential dose from residual radioactivity in the survey unit is ALARA. ALARA requirements for soil remediation are defined in Chapter 4 of the LTP.

Actions (3):

Alternative actions include remediation or no action required.

3. IDENTIFY INPUTS TO THE DECISION

Information Needed:

Characterization measurements are required to define the radionuclides present and determine the extent and variability of residual radioactivity in the survey area for design and implementation of the survey. Survey area classification, ALARA analysis, potential radionuclides of interest, and site-specific DCGL values are also required inputs to the decision process. The primary information required for evaluation is the analytical results of survey measurements.

Source of the Information:

The soil sample data to be used for survey development are the radionuclide-specific measurements of representative soil samples collected for characterization to determine suitability for transport to the SVA. The soil samples obtained were judgmentally selected as a result of multiple surveys conducted during the excavation and transport process. The ALARA analysis for potential soil remediation is provided in LTP, Section 4.4. Site-specific DCGL values and BRP radionuclides of interest are defined in LTP Chapter 5, Table 5-1 and Procedure RM-76, *Final Status Survey Design*.

The survey will be conducted in accordance with applicable regulatory guidance as established in LTP Chapter 5 for Class 1 areas. Soil samples will be utilized for radionuclide-specific measurements in this evaluation.

4. BOUNDARIES OF THE STUDY

Boundaries of the Survey:

The target population for this survey is the total thickness of prepared soil in the survey area of 1800 m^2 .

Temporal Boundaries:

Scanning and sampling in this survey unit will only be performed during daylight hours under dry weather conditions. Surface soils must be free of significant snow cover and standing water prior to surface scanning. Soils must be in a non-frozen state or fragmented for collection to satisfy BRP procedural sampling requirements. The anticipated start date for the survey is September 22, 2006.

Constraints:

Cold weather or rainy conditions may effect the operation of electronic equipment. Adverse weather conditions that include accumulations of rain or snow may limit area access and delay survey efforts.

5. DEVELOP A DECISION RULE

The following decision rules have been developed to define a logical process for choosing among alternative actions for the principal study questions associated with this survey area.

Decision Rule (1):

If all reported concentrations for residual radioactivity are less than the site-specific DCGL's and the unity rule has been satisfied for each sample, then the survey unit meets release criteria. No further action is required.

Decision Rule (2):

If the mean value of activity in the survey unit is greater than the DCGL, then the survey unit fails to meet the release criteria.¹ Remediate, resurvey, and evaluate the results relative to the decision rule.

Decision Rule (3):

If the mean activity in the survey unit is less than the DCGL and any individual sample measurement exceeds this value, conduct the Sign Test and the elevated measurement comparison (EMC) per LTP, Chapter 5 and Procedure RM-76, *Final Status Survey Design*. If the EMC and the Sign Test have been satisfied then the survey unit meets the release criteria and no further action is required. If the EMC or the Sign Test has not been satisfied then remediate the area(s) of elevated activity, resurvey as appropriate, and evaluate the results relative to the decision rule.

When multiple radionuclides are present the mean activity value is determined as the average of the weighted sum. The DCGL of the weighted sum is 1.

Decision Rule (4):

If the potential dose from residual radioactivity in the survey unit is ALARA, then no further action is necessary. If the potential dose from residual radioactivity in the survey unit is not ALARA, then remediate and resurvey.

6. SPECIFY TOLERABLE LIMITS ON DECISION ERRORS

The Null Hypothesis:

It is assumed that residual radioactivity in the survey unit exceeds the release criterion.

Type I Error (α):

The α error is the maximum probability of rejecting the null hypotheses when it is true. The α error is defined in the LTP at a value of 0.05 (5%) and cannot be changed to a less restrictive value unless prior approval is granted by the USNRC. The α error value of 0.05 will be used for survey planning and data assessment for this survey area.

Type II Error (β):

The β error is the probability of accepting the null hypothesis when it is false. A value of 0.05 (5%) will be used for survey planning and data assessment for this survey area.

The Lower Bound of the Gray Region (LBGR):

The LBGR is initially set at one-half the DCGL_w for this survey unit. The LBGR may be adjusted during survey design to achieve an optimum relative shift between 1.0 and 3.0.

Relative Shift (Δ/σ) :

The relative shift will be maintained within the range of 1.0 and 3.0 by adjusting the LBGR as appropriate.

7. OPTIMIZE DESIGN FOR OBTAINING DATA

Statistical Test

Sign Test:

Radionuclides of potential plant origin also present in soil as background activity resulting from fallout constitute only a small fraction of the DCGL. Therefore, the Sign Test will be used where applicable in the survey evaluation to determine if the survey area meets the requirements for unrestricted release.

Number of Samples Determined:

The number of samples required for this survey will be determined based on the relative shift as defined by the requirements of the Sign Test (LTP, Chapter 5.) and Procedure RM-76, *Final Status Survey Design*. The LBGR is initially set at one-half the DCGL_w and may be adjusted as necessary for optimizing the survey design to achieve a relative shift between 1.0 and 3.0. Sample point locations are to be determined using a random start, systematic square grid spacing.

Judgmental Sampling:

Co-60 is the most limiting radionuclide for identification by surface scanning; judgmental surface and subsurface core samples will be collected in any location that exceeds the scan investigation level.

Scan Coverage:

Scanning for this survey area will provide 100% coverage.

Number of Samples for Quality Control:

A minimum of 5% of the sample population will be collected for quality evaluation. These samples may include sample splits, sample recounts, or third party sample analysis. Quality analyses will be conducted as defined in LTP, Chapter 5 and Procedure RM-79, *Final Status Survey Quality Control.*

Additional Sample Analysis Requirements:

The area of soil excavation intersects the identified waterborne pathway for Tritium migration and shall require Tritium in soil analyses for a minimum of 10% of the sample population. Soil samples will be collected in the same random locations as those selected for QA/QC evaluation and sent to an independent laboratory for Tritium analysis. Data results will be provided in the survey package.

Investigation Levels:

Investigation levels defined in LTP, Chapter 5 and BRP Procedure RM-76, *Final Status Survey Design*, shall be conservatively established for this survey as shown below:

Classification	Scan Measurement	Soil Sample Analysis
Class 1	> DCGL	> DCGL _w

Investigation Levels for Survey TBC_{X15}1

The investigation levels for soil sample measurements are meant to include any individual radionuclide result greater than the site-specific DCGL or where the combined radionuclide values exceed the unity rule. Co-60 is the most limiting radionuclide for identification by surface scanning; further investigation will be initiated at any location that exceeds the Co-60 Scan $_{DCGL}$ of 1818 CPM above background as detailed in the survey design.

Survey TBC_{x15}1 Survey Design Relocated Soils from Turbine Building/Containment Demolition Area

Survey Unit Description

Survey TBC_{x15}1 consists of excavated soils that have been removed from the Turbine Building/Containment demolition area for subsurface structure and component removal. Areas of excavation include the Containment foundation and the following subsurface piping and components:

- Underground diesel storage tank (heating boiler),
- Condenser cooling water piping,
- Service water and firewater piping
- East side storm drain, and
- Radwaste effluent piping in Survey Units 8, 9, and 10.

The soil has been graded out to a maximum thickness of one (1) meter over a total area of 1800 m². Soil sample locations for this survey will be determined using a random start, systematic, square-grid pattern over the graded area. Each soil sample will be a homogenized composite representative of the total thickness of soil. Surface scanning will be conducted over 100% of the graded area.

Soil Sample Design

Scoping Data

Sample measurements obtained to determine suitability for soil transport to the designated survey area have not identified residual radioactivity above fractional concentrations of the DCGL value. Input data for survey design were conservatively estimated based on supporting surveys for transport suitability obtained in the Turbine Building demolition area.

Radionuclides	Cs-137	Co-60
σ*	0.524	0.255
DCGL	11.93	3.21

Table 1 Input Data for Survey Design (pCi/g)

*Survey data detailed in Attachment 1

Sample Requirements

The number of sample data points for this survey is based on the requirements of the Sign Test. The Unity Rule is used for the presence of multiple radionuclides. The Standard Deviation of the weighted sum is described by the following:

 $\sigma = \sqrt{\left(\frac{\sigma_{cs_{137}}}{DCGL_{cs_{137}}}\right)^2 + \left(\frac{\sigma_{coee}}{DCGL_{coee}}\right)^2}$

$$\sigma = \sqrt{\left(\frac{0.524}{11.93}\right)^2 + \left(\frac{0.255}{3.21}\right)^2}$$

 σ = 0.091

Relative Shift

Relative Shift = $\frac{DCGLw - LBGR}{\sigma}$ Relative Shift = $\frac{1 - 0.818}{0.091}$

Relative Shift = 2.0

With α and β error levels set at 0.05 and the relative shift of 2.0, the Sign Test requires 15 sample data points (Table 5.5 NUREG 1575).

Sample Locations

Sample locations are selected in a random start, systematic square grid pattern with the southwest corner of the survey unit as origin (X=0, Y=0). Two numbers between 0 and 1 have been randomly selected and then applied to the survey unit maximum X and Y dimensions to determine the random start location as shown below:

Tab	le 2
Random	Numbers

Random #, X Axis	Random #, Y Axis
0.341663	0.184214

Survey Unit Dimensions:X = 150 meters
Y = 12 metersRandom Start LocationX = (0.341663)(150) = 51.2 metersWith SW Corner Origin:Y = (0.184214)(12) = 2.2 meters

Sample Spacing

As a conservative measure sample spacing will be calculated based on 18 samples for this survey. Samples are located in a systematic square grid pattern with sample spacing determined by the following:

$$L = \sqrt{\frac{A}{n}}$$

where A= area of survey unit, and n = number of samples.

$$L = \sqrt{\frac{1800}{18}} = 10$$
 meters

With sample spacing established at 10 meters, 15 data points are available for this survey. Data point locations are identified in Attachment 2.

QA/QC Sampling

A minimum of 5% of the sample population and 5% of the scan survey area are required to be selected for QA/QC verification in accordance with BRP Procedure RM-79, *Final Status Survey Quality Control*. As a conservative measure, three (3) soil samples and 10% of the scan survey area will be selected for QA/QC evaluation. Data point locations for soil samples will be determined by random number selection.

The QA/QC scan starting point and track direction are also determined by random number selection. The first random data point selected will identify the scanning start point and the second random data point will determine the direction in which the scan will track. QA/QC location results are provided in Table 3 below:

QA/QC Soil Samples	Random Sample Number	Verification Scan	Random Sample Number
Split Sample:	2	Start Point:	8
Sample Recount:	4	Scan Toward:	2
Sample Recount:	7	Minimum Scan Area Requirement:	180 m ²

Table 3Random Numbers Generated for QA/QC

Surface Scanning

The coverage requirement for surface scanning in this Class 1 area is 100%. The Scan _{MDC} has been established at fractional values of the DCGL_w for typical background activity levels at Big Rock Point. Scan _{MDC} values for varying backgrounds are provided in Attachment 3. The investigation level for identification of potential areas of elevated activity in this survey area will be the Scan _{DCGL} as defined by the following:

Scan _{DCGL} = Detector Rating $\frac{CPM}{uR/hr}$ * Exposure Model $\frac{uR/hr}{pCi/g}$ * DCGL_w Scan _{DCGL} for Co-60 = 1818 CPM

Scan $_{DCGL}$ for Cs-137 = 3518 CPM

Where:¹ Detector Rating = $\frac{1200 \text{ CPM}}{uR/hr}$ Cs - 137 and $\frac{565 \text{ CPM}}{uR/hr}$ Co - 60

Exposure Model = $\frac{1.229 \text{ uR/hr}}{5 \text{ pCi/g}} \text{ Cs} - 137$ and $\frac{5.029 \text{ uR/hr}}{5 \text{ pCi/g}} \text{ Co} - 60$

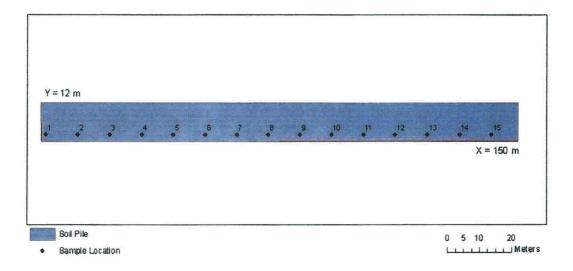
 $DCGL_w = 11.93 \text{ pCi/g Cs} - 137 \text{ and } 3.21 \text{ pCi/g Co} - 60$

¹ These values established in EA-BRP-SC-0201, *Nal Scanning Sensitivity for Open Land Survey.*

The DCGL_w for Co-60 is the most limiting value for scanning measurements performed to identify areas of potentially elevated activity. Scanning conducted for this survey will assume all residual radioactivity to originate from Co-60 and the instrument response at the Co-60 DCGL_w (1818 cpm) will be used as the scanning investigation level for Survey TBC_{x15}1.

Design Data - Survey TBC_{x15}1 Relocated Soils From Turbine Building Demolition Area

Survey No.	Sequence No.	Cs-137 Activity (pCi/g)	Co-60 Activity (pCi/g)
HH060705	16538	1.26	0.66
HH060705	16539	0:06	0.06*
HH060705	16540	1.05	0.66
TB062805	16755	1:16	0.27
TB062805	16756	0.47	0.15*
TB062805	16774	0.19	0.31
	Mean:	0.698	0.352
	Std Dev:	0.524	0.255


* Measurement system MDA - Co-60 not identified in this sample

Survey Design TBC_{x15}1 Page 5 of 8

y

١

Soil Sample Locations - Survey TBC_{x15}1 Relocated Soils From Containment/Turbine Building Demolition Area

Sample No.	X Coord.	Y Coord.	Sample No.	X Coord.	Y Coord.
1	1.2	2.2	9	81.2	2.2
2	11.2	2.2	10	91.2	2.2
3	21.2	2.2	11	101.2	2.2
4	31.2	2.2	12	111.2	2.2
5	41.2	2.2	13	121.2	2.2
6	51.2	2.2	14	131.2	2.2
7	61.2	2.2	15	141.2	2.2
8	71.2	2.2			

Sample no. 6 is the random start location Sample spacing is 10.0 meters

Survey Design TBC_{x15}1 Page 6 of 8

Scan MDC In Varying Backgrounds

		· · · · ·	· · · · ·	GPM	MDER	ùR/hr	Scan MD	C pCl/g
Background	d'		Si	MDCR _{surveyor}	Cs-137	Co-60	Cs-137	Co-60
2000	2.48	4	28.64	607.47	0.51	1.08	2.06	1.07
2500	2.48	4	32.02	679.18	0.57	1.20	2:30	1.20
3000	2.48	4	35.07	744.00	0.62	1.32	2.52	1.31
3500	2.48	4	37.88	803.61	0.67	1.42	2.72	1.41
4000	2.48	4	40.50	859.10	0.72	1.52	2.91	1.51
4500	2.48	4	42.95	911.21	0.76	1.61	3.09	1.60
5000	2.48	4	45.28	960.50	0.80	1.70	3.26	1.69
5500	2.48	4	47.49	1,007.38	0.84	1.78	3.42	1.77
6000	2.48	4	49.60	1,052.17	0.88	1.86	3.57	1.85
6500	2.48	4	51.63	1,095.14	0.91	1.94	3.71	1.93
7000	2.48	4	53.57	1,136.48	0.95	2.01	3.85	2.00
7500	2.48	4	55.45	1,176.37	0.98	2.08	3.99	2:07
8000	2.48	4	57.27	1,214.95	1.01	2.15	4.12	2.14
8500	2.48	4	59.04	1,252.34	1.04	2.22	4.25	2.20
9000	2.48	4	60.75	1,288.65	1.07	2.28	4.37	2.27
9500	2.48	4	62.41	1,323.96	1.10	2.34	4.49	2.33
10000	2.48	4	64.03	1,358.35	1.13	2.40	4.61	2.39
10500	2.48	4	65.61	1,391.90	1.16	2.46	4.72	2.45
11000	2.48	4	67.16	1,424.65	1.19	2.52	4.83	2.51
11500	2.48	4	68.67	1,456.67	1.21	2.58	4.94	2.56
12000	2.48	4	70.14	1,488.00	1.24	2.63	5.04	2.62
12500	2.48	4	71.59	1,518.68	1.27	2.69	5:15	2.67
13000	2.48	4	73.01	1,548.76	1.29	2.74	5.25	2.73
13500	2.48	4	74.40	1,578.26	1.32	2.79	5.35	2.78
14000	2.48	4	75.77	1,607.22	1.34	2.84	5.45	2.83
14500	2.48	4	77.11	1,635.67	1.36	2.89	5.55	2.88
15000	2.48	4	78.42	1,663.63	1.39	2.94	5.64	2.93
	Exposure	(úR/hr) @) 5 pCi/g					
		1:23E+00						
	Co-60	5.03E+00						

Contonsingted			Calcul	ated Area	Factors	at Time of	Peak Dos	е	
Contaminated Area (m ²)	H-3	Mn-54	Fe-55	Co-60	Sr-90	Cs-137	Eu-152	Eu-154	Eu-155
8094	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
4047	1.00	1.01	1.00	1.01	1.00	1.02	1.02	1.01	1.02
2024	1.00	1.03	1.00	1.03	1.00	1.03	1.03	1.03	1.03
1012	1.35	1.04	1.00	1.04	1.00	1.04	1.05	1.04	1.04
506	2.91	1.09	1.98	1.08	1.98	1.13	1.07	1.07	1.06
253	6.05	1.14	3.95	1.13	3.94	1.20	1.11	1.11	1.09
126	12.4	1.20	7.93	1.20	7.87	1.29	1.17	1.16	1.14
63	24.9	1.30	15.8	1.30	15.6	1.41	1.27	1.26	1.23
32	49.2	1.49	31.2	1.49	30.5	1.62	1.44	1.45	1.39
16	98.9	1.78	62.0	1.78	59.9	1.93	1.72	1.73	1.63
8	198	2.38	123	2.38	117	2.58	2.30	2.31	2.14
4	397	3.61	243	3.62	230	3.91	3.49	3.52	3.19
2	794	5.68	473	5.75	452	6.14	5.48	5.55	4.90
1	1590	9.57	905	9.73	887	10.3	9.24	9.39	7.88

Area Factors for Open Land Survey Evaluation

Survey Design TBC_{x15}1 Page 8 of 8 RM-76 FINAL STATUS SURVEY DESIGN Revision 1 Page 19 of 19

RM-76-5 FINAL STATUS SURVEY APPROVAL

AND AUTHORIZATION FOR IMPLEMENTATION

Survey Code <u>TBC_{x15}1</u>

Survey Area Description:

Survey TBC_{x15}1 is the final status evaluation of soil that was excavated from the Turbine Building/Containment demolition area. The soil has been relocated to the SVA and prepared for survey by grading to a maximum depth of 1 meter over an area of 1800 square meters.

The survey area is authorized for Final Status Survey Implementation.

Designed by

Date

Technical Review by

Date

RM-77 FINAL STATUS SURVEY IMPLEMENTATION

Revision 2 Page 8 of 12

RM-77-1
SURVEY IMPLEMENTATION CHECKLIST
Page 1 of 3

Initial

Date

Survey Area Status:

a. Final Status Survey Design has been approved for implementation (see RM-76-5, Final Status Survey Approval and Authorization for Supplementation).

PREPARATION FOR SURVEY <u>7BC x15</u> Survey #

- 1. Survey area walkdown complete
- 2. Survey area determined ready for FSS
- 3. Decommissioning activities that may impact the environmental status of the survey area have been completed.
- 4. Survey area environment is controlled by barriers and postings or other approved method to restrict access.
- b. Survey area has been turned over to the Environmental Services Survey Group (ESSG) in acceptable condition for FSS.

<u>HR 09/14/06</u> ESSG

Val applybo

1.2 Field Preparation:

C.

e.

- a. Survey unit boundaries delineated (Step 6.1.1)
- b. Statistical soil samples predetermined in the survey design are located and marked within the survey unit. (Step 6.1.2)

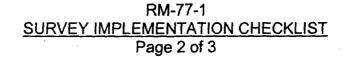
Soil sample locations verified (Step 6.1.2.c)

- d. Instruments and equipment have been collected and calibrated for data measurement and collection (Step 6.1.3)
 - Field documentation is prepared (Step 6.1.4)

Al on prior

 \checkmark

1.1


Step

(+)

1.0

RM-77 FINAL STATUS SURVEY IMPLEMENTATION

Revision 2 Page 9 of 12

2.0 DATA COLLECTION

Soil Survey:

All soil samples collected and controlled (Step 6.2.1).

 \checkmark

2.1

2.2 Surface Scan:

Surface Scan complete. Action response requirements have been conducted on any identified areas exceeding the investigation level (Step 6.3).

- 2.3 Judgmental Soil Samples:
 - a. Judgmental soil samples have been collected and controlled (Step 6.2.3).
 - b. Deep core profiles performed in areas identified to contain elevated residual activity (Step 6.2.3).

3.0 SAMPLE PREPARATION AND LABORATORY ANALYSIS

3.1 Sample Preparation (Step 6.4.1):

а. b. C. d.

- Soil samples are homogenous
- Soil samples are visibly dry prior to packing
- Non-soil materials have been removed from sample
- Soil samples have been transferred to one-liter Marinelli containers and are labeled and sealed.

09/25/06 SSG

Date

Initial

ESSG CALLE

ESSG 2/00

HL 09/28/00 ESSG

RM-77 FINAL STATUS SURVEY IMPLEMENTATION

Revision 2 Page 10 of 12

RM-77-1 SURVEY IMPLEMENTATION CHECKLIST Page 3 of 3

Laboratory Analysis: 3.2

> Isotopic analyses are complete. The spectroscopy report requires a signature of completion by the laboratory analyst and a signature of evaluation documenting that a second level review has been performed (Step 6.4.2).

3.3

Sample Control and Documentation:

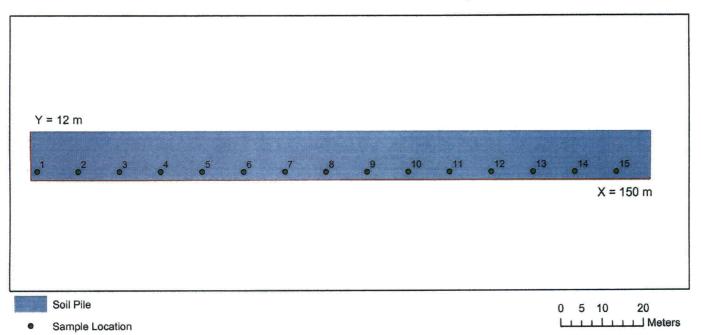
Chain of custody documentation exhibits control of soil samples (Step 6.4.3).

Reviewed by

0-06 Date

Date

An <u>alegi</u>oso NESSG <u>alegioso</u>

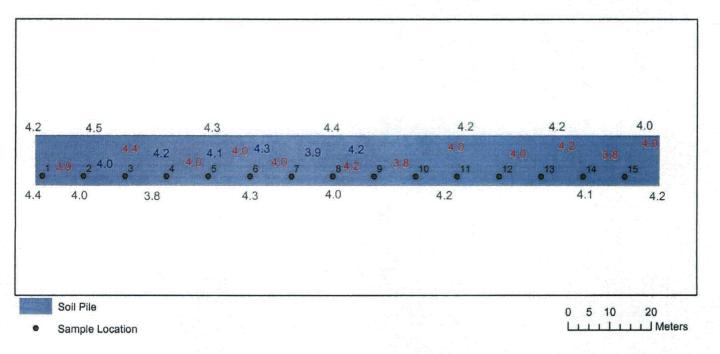

RM-59 SAMPLING AND ANALYSIS OF OPEN LAND AREAS FOR SITE CHARACTERIZATION SURVEYS

ATTACHMENT RM-59-1 SAMPLING AND ANALYSIS REPORT

Date: 09-22-06 Time: 1600	D Location: TBC _{x15} 1	Tech:WMH/LED/JHW/JNS
SUDVEY		
SURVEY IDENTIFICATION / DESCRIPTION Survey TBC x151 consists of excavated soils removed from the Turbine/ Containment Building demolition		
area and the removal of subsurface piping and components. The physical size of the survey area is 1800		
		· · · · · · · · · · · · · · · · · · ·
		· · · · · · · · · · · · · · · · · · ·
	SURVEY TYPE	
Survey Type: Charact	erization X_ Scan (Motive)	······································
Remedi		
<u>X</u> Final	Trenching and L	Digging (use RM-59-4)
	······································	
	SURVEY DESIGN	· · · · · · · · · · · · · · · · · · ·
·	Random X Systematic	Large Container Assay
Scan Coverage: 100 %		······································
ANALYSIS		
Inst.SN/Cal Due <u>186194/02-08-2007</u>	DAILY CHECK: X SAT	UNSAT INIT: WMH
Inst.SN/Cal Due 186192/03-14-2007	DAILY CHECK: X SAT	UNSAT INIT: WMH
Inst.SN/Cal Due 201195/02-10-2007	DAILY CHECK: X SAT	UNSAT INIT: WMH
Inst.SN/Cal Due <u>189086/01-26-2007</u>	DAILY CHECK: <u>X</u> SAT SAT DAILY CHECK: X SAT SAT	UNSAT INIT: <u>WMH</u> UNSAT INIT: JP
Inst.SN/Cal Due <u>Det #6</u> Investigation of Unidentified Peaks:	DAILY CHECK: <u>X</u> SAT X SAT	UNSAT INIT: <u>JP</u> UNSAT INIT: <u>JLR</u>
Minimum Detectable Activity (Section 5		UNSAT INIT: JLR
	COMMENTS	· · · · · · · · · · · · · · · · · · ·
Survey TBC _{x15} 1 was performed in a random start, square grid, systematic sampling pattern with samples		
Collected at 15 data point locations. Laboratory analyses did not identify residual radioactivity above trace		
Levels of the DCGL value. Surface scanning at 100% coverage identified no areas of elevated residual		
Radioactivity. The results of QA/QC ve		
values identified in the survey.	<u></u>	
values identified in the survey.	· · · · · · · · · · · · · · · · · · ·	
·		
Technician Signature: fluchtur Strong giburtor LEO, JNS Date: 9/28/06		
Second Level Review Signature:	Paris [Date: 10/20/06

Soil Sample Activity Summary

Release Record TBC_{x15}1 Relocated Soil from Containment/Turbine Building Demolition Area


	X	v	Cs-137	(pCi/g)	Co-60 (pCi/g)		
Sample No.	Coord.	Coord.	Cs-137 (pCi/g)	MDA	Activity	MDA	
1	1.2	2.2	0.0694		*0.0121	0.0552	
2	11.2	2.2	0.0431		*0.0065	0.0754	
3	21.2	2.2	0.0391		*0.0283	0.0689	
4	31.2	2.2	*0.0299	0.0568	*-0.0181	0.0387	
5	41.2	2.2	*0.0190	0.0480	*-0.0144	0.0441	
6	51.2	2.2	*0.0256	0.0508	*0.0002	0.0603	
7	61.2	2.2	0.0332		*0.0000	0.0541	
8	71.2	2.2	0.0442		*-0.0209	0.0412	
9	81.2	2.2	*0.0183	0.0507	*0.0151	0.0512	
10	91.2	2.2	*-0.0020	0.0335	*-0.0016	0.0503	
11	101.2	2.2	*0.0212	0.0559	*0.0003	0.0599	
12	111.2	2.2	*0.0312	0.0542	*0.0206	0.0568	
13	121.2	2.2	0.0706		*0.0144	0.0583	
14	131.2	2.2	*0.0427	0.0622	*0.0319	0.0612	
15	141.2	2.2	*0.0458	0.0584	*-0.0087	0.0534	

*Forced-count values

Coordinate location relative to SW corner of survey unit where X=0 m. and Y=0 m.

Surface Scan Summary

* No investigation levels exceeded AK

REDValues are Average Mobile Scan General Area Activity (kcpm)BLUEValues are Average Verification Scan General Area Activity (kcpm)GREYValues are Average General Background Area Activity (kcpm)

Primary Scan : **Technician Signature:** Date: 9-22-06 Time: 1400 INS, EED aup for QC Verification Scan: 10 Technician Signature: Date: 9.22.06 Time: 1515

RM-72 SAMPLE CHAIN-OF-CUSTODY

Sample Number	Sampling Location	Date	Time	Final Disposition of Sample
1	(1.2)(2.2)	4-25-06	1308	Permanent Storage
2	(11.2)(2.2)	9.25.06	1310	· · · · · · · · · · · · · · · · · · ·
2 QA Split	(11.2)(2.2)	9-25-06	1310	
3	(21.2)(2.2)	9.25.06	1314	
4 (R)	(31.2)(2.2)	9.25.06	1317	· · · · · · · · · · · · · · · · · · ·
5	(41.2)(2.2)	9-25.06	1318	
6	(51.2)(2.2)	9-25-06	1319	
7 (R)	(61.2)(2.2)	9-25-06	1321	
8	(71.2)(2.2)	9-25.06	1323	
9	(81.2)(2.2)	9-25-06	1325	
10	(91.2)(2.2)	9-25-06	1326	
11	(101.2)(2.2)	9-25-06	1328	
12	(111.2)(2.2)	9.25.06	1329	
13	(121.2)(2.2)	9.25.06	1330	
14	(131.2)(2.2)	9.25.06	1332	
15	(141.2)(2.2)	9-25-06	1333	\checkmark
· · ·	· · · · · · · · · · · · · · · · · · ·			

TBC_{x15}1 RM-72-1 <u>CHAIN-OF-CUSTODY RECORD</u>

(Samples may be analyzed and stored, shipped for offsite evaluation or analyzed and disposed of.)

1. Relinquished by: Locked in	Date	Time	Received in good condition by:
Seglend	9.25-06	1358	
2. Relinquished by:	Date	Time	Received in good condition by:
	9/38/06	1230	BRADANAL STONAGE SEAAANS
3. Relinquished by:	Date	Time	Received in good condition by:
4. Relinquished by:	Date	Time	Received in good condition by:

Revision 2 Page 19 of 26

RM-78-3 DATA ASSESSMENT REPORT Page 1 of 8

FINAL STATUS SURVEY: __________

- 1.0 DATA VERIFICATION
- 1.1 Data Acceptance

Review the Implementation Checklist (RM-77-1) to verify that survey isolation and control measures were executed prior to FSS and are being maintained.

Review RM-77, Final Status Survey Implementation, to verify that methods, techniques, and survey activities required for FSS have been applied in accordance with the appropriate procedures.

Field QC Records:

Review all assessments, Condition Reports and audits to ensure that identified issues have been resolved.

Comments:

1.2

Verify scan instrumentation was in calibration and the QC source checks were performed prior to and after surveys.

Verify daily QC source checks for Canberra gamma spectroscopy detector properly logged prior to soil sample analysis.

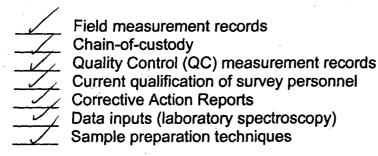
Review Verification:

1.3

Verify that the Data Quality Objectives are complete.

Verify that the survey design has been technically reviewed.

Revision 2 Page 20 of 26


RM-78-3 DATA ASSESSMENT REPORT Page 2 of 8 Verify that gamma spectroscopy results have received a technical review. Verify the Sample and Analysis Report (RM-59-1) is completed and reviewed. Data Verification Completed: No Yes Comments _ - Keed 10/20/06 Assessor Date

RM-78-3 DATA ASSESSMENT REPORT Page 3 of 8

2.0 DATA VALIDATION

2.1 Documentation Review:

Perform documentation review for quality control purposes and validate the data collected is complete and appropriate for use as defined by the survey design. Documentation includes:

Detection Limit Review:

Scan MDCs are below established site DCGLs.

 \checkmark

Forced-count values are assigned as necessary when activity is not detected in a sample.

Minimum Detectable Concentration (MDC) values of gamma spectroscopy are below established DCGLs.

Quality Control (QC) Data Review:

2.2

2.3

Quality Control (QC) data results have received required reviews and are complete and consistent.

Results of judgmental samples have been reviewed and evaluated.

Review to ensure that the analytical results of judgmental samples do not impact the evaluation for unrestricted release of the survey area.

Revision 2 Page 22 of 26

RM-78-3 DATA ASSESSMENT REPORT Page 4 of 8

2.4 Qualification of Data:

Statistical radionuclide-specific measurements for completeness. Evaluate the survey for determination of data usability and confirm that sufficient qualified data are present for the decision process.

a. Total number of statistical samples planned for the survey: __/ 3____

b. Total number of statistical samples determined as valid: _____

c. Calculate % Completeness:

 $\frac{b \times 120}{a} = \frac{120\%}{5}$

Qualified data are ≥100% completeness and are sufficient to support the Sign Test requirement for determination of unrestricted release.

Data Validation Completed:

Comments: _

Head Assessor

No

(Yes

RM-78-3 DATA ASSESSMENT REPORT Page 5 of 8

3.0 DATA QUALITY ASSESSMENT

Review the DQOs and Survey Design:

3.1

Confirm that all inputs to the decision have been reviewed and are complete.

Verify that boundaries or constraints identified in the survey area have not affected the quality of the data.

Review the Statement of Hypothesis and confirm that it remains relevant.

Confirm that Type I and Type II error limits are consistent with DQOs.

Confirm that the survey design is consistent with DQOs and that the appropriate number of data points were obtained.

3.2 Preliminary Review:

3.2.1 Preliminary Evaluation:

Quality Assessment (QA) reports consistent with procedure RM-79, Final Status Survey Quality Control.

Survey is of sufficient intensity to satisfy classification requirement.

Potential trends of radioactivity levels in the survey area do not impact a decision for unrestricted release.

Comments:

Revision 2 Page 24 of 26

RM-78-3 DATA ASSESSMENT REPORT Page 6 of 8

- 3.2.2 Calculate Basic Statistical Quantities:
 - a. Number of qualified data points
 - b. Calculation of the Mean
 - c. Calculation of the Median
 - d. Calculation Standard Deviation

NA

Attach graphic representation of the data if any radionuclide-specific measurements exceed 50% of the DCGL.

.0043 (sok

N. DO28 (SO

0.0056

Sample QA/QC measurements consistent with FSS data

3.3 Statistical Evaluation:

<u>NOTE</u>: If all measurement data are less than the DCGL_w, statistical testing in not required and the survey unit meets the regulatory requirement for unrestricted release.

 \checkmark All survey measurements are below the DCGL_w.

3.3.1 Verify Assumptions of the Survey Design

_ Review the posting plot to verify that the data exhibits spatial independence. Spatial trends must be investigated and resolved prior to further assessment.

Review to verify dispersion symmetry. The appearance of skewed data must be investigated for cause and documented prior to further assessment.

Revision 2 Page 25 of 26

RM-78-3 DATA ASSESSMENT REPORT Page 7 of 8

Review the dataset standard deviation and range for data variance. Questionable data must be investigated for cause and documented prior to further assessment.

Verify that the data exhibits adequate power and confirm that the sample size is sufficient to satisfy the DQOs.

- 3.4 Draw Conclusions from the Data:
- 3.4.1 Investigation Levels and Response Actions

Determine if data results have exceeded any investigation level. Document findings. To investigation levels exceeded. In

3.4.2 Evaluation for Unrestricted Release

Select applicable conclusion:

Survey area <u>acceptance criteria met</u> and survey area satisfies the requirements for unrestricted release:

All concentrations are less than the $DCGL_w$. The Null Hypothesis is rejected.

The mean concentration of the survey area is below the $DCGL_w$ but individual measurements in the survey unit exceed the $DCGL_w$. The Sign Test and EMC evaluation are successful and the Null Hypothesis is rejected.

Revision 2 Page 26 of 26

RM-78-3 DATA ASSESSMENT REPORT Page 8 of 8

Survey area acceptance criteria <u>not</u> met and survey area fails to satisfy the requirements for unrestricted release:

The mean concentration in the survey area exceeds the $DCGL_w$, and the null hypothesis is confirmed.

N/A The mean concentration of the survey area is below the DCGL_w but individual measurements in the Unit exceed the DCGL_w. The Sign Test and EMC evaluation are unsuccessful and the null hypothesis is confirmed.

Data Quality Assessment Completed: (Yes No Martido. Comments MIRATITO Assessor Date

Reviews:

2.200 **Technical Review**

ES Superintendent

Date

0-23-06 Date **RP&ES** Manager

RM-78-3, Attachment 1 Statistical Quantities

Release Record TBC_{x15}1

Relocated Soil from Containment/Turbine Building Demolition Area

Sample	Cs-137	Co-60	Weighted	**Weighted Sum		
Number	(pCi/gm)	(pCi/gm)	Sum (SOR)	<dcglw?< th=""><th>DCGL-W. Sum</th><th>Sign</th></dcglw?<>	DCGL-W. Sum	Sign
1	0.0694	0.0121	0.0096	yes	0.9904	+1
2	0.0431	0.0065	0.0056	yes	0.9944	+1
3	0.0391	0.0283	0.0121	yes	0.9879	+1
4	0.0299	-0.0181	-0.0031	yes	0.9969	+1
5	0.0190	-0.0144	-0.0029	yes	0.9971	+1
6	0.0256	0.0002	0.0022	yes	0.9978	+1
7	0.0332	0.0000	0.0028	yes	0.9972	+1
8	0.0442	-0.0209	-0.0028	yes	0.9972	+1
9	0.0183	0.0151	0.0062	yes	0.9938	+1
10	-0.0020	-0.0016	-0.0007	yes	0.9993	+1
11	0.0212	0.0003	0.0019	yes	0.9981	+1
12	0.0312	0.0206	0.0090	yes	0.9910	+1
13	0.0706	0.0144	0.0104	yes	0.9896	+1
14	0.0427	0.0319	0.0135	yes	0.9865	+1
15	0.0458	-0.0087	0.0011	yes	0.9989	+1
Std. Dev	0.0189	0.0161	0.0056			
Mean	0.0354	0.0044	0.0043			
Median	0.0332	0.0003	0.0028			
N	umber of Positive I	Differences (S+):	n/a			
Criti	cal Value, k, Table	e I.3 of Marssim :	n/a			
		S+ > than k?:	n/a			
	Survey L	Jnit Pass or Fail:	**Pass			·

*Note: Forced-Count values are used for samples with activity levels below the MDA. **Note: If all measurement data are less than the DCGL_w, then the Sign Test is not required.

RM-79 FINAL STATUS SURVEY QUALITY CONTROL

Revision 1 Page 11 of 13

RM-79-1 FSS QUALITY CONTROL EVALUATION RESULTS

FSS Package # $\underline{TBC_{XIS}}$

QC Package # ________

QC Measurement Type	Acceptance Criteria Met*?	Reference
1. Replicate Scan	Yes / No	Step 5.1.3
2. Sample Recounts		Step 5.1.4.1
a. In-house	Yes No	
<u>NA</u> b. Third party	Yes / No	
3. Split Samples		Step 5.1.4.2
c. In-house	Yes No	
<u>ル/A</u> d. Third party	Yes / No	

*<u>NOTE</u>: If Acceptance Criteria is not met, completion of Attachment RM-79-2, FSS Quality Control Investigation Results, is required.

Comments: ample # 2 = QA Recart Sample # 447 = recumts

Reviews: Det Evaluator

Technical Review

Date

10 (23 06 Date

QA Verification Split Sample Analysis

					Tat	ole 1				
Date:	<u>9/25/2006</u>				<u>Acceptan</u>	<u>ce Criteria</u>				
					Resolution	Ratio				
QA:	TBC _{x15} 1 Excav	vated Soil	from Contai	<u>n. Bldg. Area</u>	<4	N/A				
					4-7	0.5-2.0				
Type:	Split Sample				8-15	0.6-1.66				
					16-50	0.75-1.33				
Lab:	<u>In- House</u>				51-200	0.8-1.25				
					>200	0.85-1.18				
					↑	¥				
			A	В	С	D	Е	F	G	
Sample	Radionuclide	BRP Result Below	BRP Results (pCi/g)	BRP % Error (Sigma)	BRP Resolution	Acceptance Ratio (Table 1)	Recount Result	Recount Results	Comparison Ratio F/A	Results in Agreement Compare
		MDA	(pc//g)	(Oigina)			Below MDA	(pCi/g)	F/A	G with D)
2	Co-60	MDA <	0.0754	n/a	n/a	n/a	Below MDA <	0.0588	0.78	G with D) YES
2	Co-60 Cs-137				n/a 2.17					
	1 1		0.0754	n/a	<u> </u>	n/a	<	0.0588	0.78	YES
	1 1		0.0754	n/a	<u> </u>	n/a	<	0.0588	0.78	YES
	1 1		0.0754	n/a 46.17	<u> </u>	n/a	<	0.0588	0.78	YES
	1 1		0.0754	n/a 46.17	<u> </u>	n/a	<	0.0588	0.78	YES
	1 1		0.0754	n/a 46.17	<u> </u>	n/a	<	0.0588	0.78	YES
	Cs-137		0.0754	n/a 46.17	<u> </u>	n/a	<	0.0588	0.78	YES
	Cs-137		0.0754	n/a 46.17	<u> </u>	n/a	<	0.0588	0.78	YES
	Cs-137		0.0754	n/a 46.17	<u> </u>	n/a	<	0.0588	0.78	YES
	Cs-137		0.0754	n/a 46.17	<u> </u>	n/a	<	0.0588	0.78	YES
	Cs-137		0.0754	n/a 46.17	<u> </u>	n/a	<	0.0588	0.78	YES

Resolution C = $\frac{A}{(A)(B/100)}$

< Indicates results less than the MDA.

*Note Results are considered in agreement for MDA and near-MDA measurement comparisons Results fihat fail agreement must be investigated per RM-79.

QA Verification Sample Recount Analysis

.

					Tat	ole 1				
Date:	<u>9/25/2006</u>				Acceptan	ce Criteria				
			•		Resolution	Ratio				
QA:	TBC _{x15} 1 Exca	vated Soil	from Contai	n. Bldg. Area	<4	N/A				
					4-7	0.5-2.0				
Туре:	Sample Reco	<u>unts</u>			8-15	0.6-1.66				
					16-50	0.75-1.33				
Lab:	<u>In- House</u>				51-200	0.8-1.25				
					>200	0.85-1.18				
	. ·		÷		♠	↓				
			Α	В	С	D	Е	F	G	
Sample	Radionuclide	BRP Result Below MDA	BRP Results (pCi/g)	BRP % Error (Sigma)	BRP Resolution	Acceptance Ratio (Table 1)	Recount Result Below MDA	Recount Results (pCi/g)	Comparison Ratio F/A	Results in Agreement Compare G with D)
4	Co-60	<	. 0.0387	n/a	n/a	n/a	<	0.0641	1.66	YES
4	Cs-137	<	0.0568	n/a	n/a	n/a	<	0.0568	1.00	YES
7	Co-60	<	0.0541	n/a	n/a	n/a	<	0.0442	0.82	YES
7	Cs-137		0.0332	44.44	2.25	n/a	<	0.0547	1.65	YES
					1.					
										-
				· · ·						
								-		
			1							

Resolution C ≃ A (A)(B/100)

< Indicates results less than the MDA.

*Note Results are considered in agreement for MDA and near-MDA measurement comparisons Results fthat fail agreement must be investigated per RM-79.

Tritium in Soil Data Results Final Status SurveyTBC_{x15}1

Sample Number	Tritium in Soil pCi/g
2	0.007
4	0.006
7	0.004

Mean:	0.0060
Median:	0.0060
St. Dev:	0.0010

<u>Note</u>: The DCGL for Tritium is 327 pCi/g. Sample results are less than 0.2% of the DCGL

700 Landwehr Road • Northbrook, IL 60062-2310 ph. (847) 564-0700 • fax (847) 564-4517

Mr. David W. Parish Big Rock Point 10269 US-31 North Charlevoix, MI 49720	LABORATORY REPORT NO. DATE: SAMPLES RECEIVED: PURCHASE ORDER NO:	8022-100-243 10-02-2006 09-27-2006
Charlevoix, MI 49720	PURCHASE ORDER NO:	

Below are the results of the analyses for tritium on three soil samples.

Excavated Soil Survey TBC_{x15}-1

Sample Description	Collection Date	Lab Code	Concentration (pCi/g of soil) H-3	MDA (pCi/g of soil)
2	09-25-06	BRSO-6591	0.007 ± 0.006	< 0.011
1	09-25-06	BRSO-6592	0.006 ± 0.006	< 0.010
7	09-25-06	BRSO-6593	0.004 ± 0.005	< 0.010

The error given is the probable counting error at 95 % confidence level. The less than, (<), value is based on 4.66 sigma counting error for background sample.

Sincerely,

Bronie Grob /1214

Bronia Grob, Laboratory Manager

APPROVED BY

Tony Coorlim, Quality Assurance