DRAFT For NRC AWAITING PORC APPLU

IR 0553792-02, Drywell Structural Integrity Basis from 1R21 Inspections

Reasons for Evaluation/Scope

The purpose of this Technical Evaluation is to present current and projected (until 1R22) margin in Drywell Vessel Thicknesses and the bases to further confirm that the drywell structural integrity continues to maintain design basis requirements as established in references 1 through 3. The intent of this evaluation is to demonstrate that the Drywell Vessel thicknesses are adequate to satisfy current licensing and design bases requirements.

This Technical Evaluation was developed in accordance with CC-AA-309-101, Revision 7.

A prejob brief for this Technical Evaluation was performed by Howie Ray in accordance with HU-AA-1212 Rev 1. The risk rank of this Technical Evaluation was concluded to be a "4", since the acceptance criteria have already been established and approved through existing design analysis. Therefore a third party review is not required.

Background

In the 1R21 Outage a series of UT thickness measurements were performed of various elevations of the Drywell Vessel in accordance with specification OC-IS -328277-004. The purpose of these UT inspections is to measure corrosion rates of the Drywell Vessel and further confirm that the vessel meets the design basis.

This is accomplished by inspecting the same locations over time.

In the mid 1980's a survey was performed of the Drywell Vessel at the Sandbed elevation (11' 3"). As a minimum at least one inspection location (also referred to as a grid) was selected in each of the 10 Drywell Bays and permanently marked. These were then selected for repeat inspection and entered into the Drywell Thickness Monitoring Program.

UT Inspection of locations with the most thinning consisted of obtaining 49 individual UT thickness readings in a 7 by 7 pattern spaced on 1 inch centers. These measurements were taken using a stainless steel template. The template was designed to ensure that the 7 by 7 grid is located in the same area with repeatability of a 1/16".

The program then performed UT inspections over time at these same locations from 1987 to 1996.

The corrosion rates were developed using a standard regression analysis and establishment of the 95% confidence intervals to capture increasing variance depending on the projection of ongoing corrosion and the number of inspections. This methodology is based on the following references:

- 1) Applied Regression Analysis, Second Edition, N.R. Draper & H. Smith, John Wiley and Sons 1981
- 2) Statistical Concept and Methods, G.K. Bhattacharyya & R.A. Johnson, John Wiley and Sons 1977,

- 3) Experimental Statistics, Mary Gobbons Natrella, John Wiley and Sons 1966 (Reprint National Bureau of Standards Handbook 91)
- 4) Fundamental Concepts in the Design of Experiments, Charles C Hicks, Saunders College Publishing, Fort Worth, 1982

Each time UT inspections are performed the distribution of the individual readings is checked to confirm the original distribution evaluation.

Inspections of the Drywell above the sandbed have been performed up to 2006. Corrosion rates have been calculated in calculation C-1302-187-E310-037 Revision 2 and ECR 05-00575.

Corrosion in the sand bed region was addressed by removing sand, water, and corrosion byproduct in the sandbed and applying a coating on the exterior of the vessel in 1992.

Comparison of UT inspections performed in 1992 and 1994 as documented in C-1302-187-5300-030 shows that the sandbed region continues to meet design basis requirements.

This Technical Evaluation will compare the 2006 UT inspection data to these earlier calculations to further confirm conclusion that the drywell vessel continues to meet design basis.

Detailed Evaluation

Methodology

C-1302-187-E310-037 Revision 2 and C-1302-187-5300-030 identify the locations which are the most critical with respect to thinning (see table 1). These are located at five different elevations 11' 3, 50' 2", 51' 10", 60' 10", and 87' 5".

These calculations developed corrosion rate projections for these critical locations. The mean of the 2006 inspection of the same critical locations plotted on the earlier projections to determine if those projections are still valid and bound the current inspection results.

Elevation 11' 3

Refer to the data in attachment 3 and the projection curve for location 19A in attachment 2.

Calculation C-1302-187-5300-030 identified location 19A as the most critical since it was the thinnest area in the sandbed. However the calculation concluded with 95% confidence that this location and the other sandbed region locations were not experiencing corrosion. Figure 1 provides a trend of the mean values for this location. Figure 1 also provides curves showing the calculated standard error of plus or minus 0.0034 inches for the means. The 2006 mean is also plotted on figure 1 and shows that this value is well within the standard error band.

Table 1 provides a breakdown of the mean thickness measured in 2006 and associated current margin.

Elevation 50' 2" Refer to the data in attachment 3 and the projection curves for locations 5-5 and 13-23 in attachment 2.

The 2004 calculation identified locations 5-5HI and 15-23HI as the most critical since they were the thinnest at this elevation. The calculation concluded that these locations are experiencing corrosion rates of 0.0003 and 0.0004 inches per year with 95% confidence. Figure 2 and Figure 3 provide trends of the means of data collected from 1987 through 2004 for these locations taken from calculation C-1302-187-E310-037 Revision 2. The 2006 means for each location are plotted on these figures. These show that the 2006 means are consistent with and are bounded by the 2004 projections. Therefore the margins and projections from 2004 remain valid and bounding. Table 1 provides the means and margin calculated in 2004.

Table 1 provides a breakdown of the mean thickness measured in 2004 and associated current margin for these two locations.

Elevation 51' 10"

Refer to the data in attachment 3 and the projection curve for location 13-32 in attachment 2.

The 2004 calculation identified location 13-32 as the most critical since it was the thinnest at this elevation. However the calculation concluded with 95% confidence that the location was not experiencing corrosion. Figure 4 provides a trend of the means of data collected from 1987 through 2004 for this location taken from calculation C-1302-187-E310-037 Revision 2. The 2006 mean for this location is plotted on this figure. Figure 4 also provides curves showing the 2004 calculated standard error of -/+ 0.0053 inches for the data from 1987 to 2004. The 2006 mean is well within the 2004 standard error band.

This shows that the 2006 mean is consistent with and bounded by the 2004 projection, which concluded that this location is not corroding. Therefore the margin and projection from 2004 remains valid and bounding. Table 1 provides the means and margin calculated in 2004.

Table 1 provides a breakdown of the mean thickness measured in 2004 and associated current margin.

Elevation 60' ' 10"

Refer to the data in attachment 3 and the projection curve for location 5-22 in attachment 2.

The 2004 calculation identified location 5-22 as the most critical since it was the thinnest at this elevation. However the calculation concluded with 95% confidence that the location was not experiencing corrosion. Figure 5 provides a trend of the means of data collected from 1992 through 2004 for these locations taken from calculation C-1302-187-E310-037 Revision 2. The

2006 mean for this location is plotted on this figure and shows that this value has virtually not changed since 2004.

Figure 4 also provides curves showing the 2004 calculated standard error of the data from 1987 to 2004. The 2006 mean is well within the 2004 standard error band.

Table 1 provides a breakdown of the mean thickness measured in 2004 and associated current margin

Elevation 87' 5"

Refer to the data in attachment 3 and the projection curve for location 9-20 in attachment 2.

The 2004 calculation identified location 9-20 as the most critical since it was the thinnest at this elevation. The calculation concluded that this location was experiencing a corrosion rate of 0.00075 inches per year with 95% confidence. Figure 6 provides the trend of the means of data collected from 1987 through 2004 for these locations taken from calculation C-1302-187-E310-037 Revision 2. The 2006 mean for this location is plotted on this figure. This shows that the 2006 mean is consistent with and is bounded by the 2004 projection. Therefore the margin and projection from 2004 remain valid and bounding. Table 1 provides the means and margin calculated in 2004.

Table 1 in attachment 1 provides a breakdown of the mean thickness measured in 2004 and associated current margin for these two locations.

Bay 15 Grid at Elevation 71' 6"

In 1R21 Oyster Creek performed first time inspections of two 6" by 6" areas above the transition weld at elevation 71' 6". The results of the 6" by 6" area in bay 15 showed several local readings less than the inspection specification acceptance criteria (ref. 4). The intent of the criteria in the specification was to provide a low threshold for inspection results so that unexpected readings would be evaluated. As a result IR 00556049 was issued. Review of the inspection results showed that the thinnest local reading was 0.449 inches.

The inspection specification criteria were purposefully set well above the design basis criteria. The minimum required design basis local thickness for this elevation is 0.300 inches (reference 2). Therefore the as found thickness at this location meets the design basis requirements. In addition even when assuming a 1 mil per year corrosion rate, this location will continue to meet design basis until well past 2008. Comparison of this new location to an existing monitored location that has been determined to be the most critical for the plates at this elevation (location 9-20) shows that the projections for the previously monitored location are bounding (refer to attachment 3 page 11).

Bay 17 Grid at Elevation 23' 76"

In 1R21 Oyster Creek performed first time inspections of two 6" by 6" areas above the transition weld at elevation 23' 6". The results of the 6" by 6" area in bay 17 showed several local readings

IR 553792 Assignment 02

less than the inspection specification acceptance criteria (ref. 4). The intent of the criteria in the specification was to provide a low threshold for the inspection results so that unexpected readings would be evaluated. As a result IR 00548459 was issued. Review of the inspection results showed that the thinnest local reading was 0.628 inches.

The inspection specification criteria were purposefully set well above the design basis criteria. The minimum required design basis local thickness for this elevation is 0.360 inches (reference 2). Therefore the as found thickness at this location meets the design basis requirements. In addition even when assuming a 1 mil per year corrosion rate, this location will continue to meet design basis until well past 2008. Comparison of this new location to an existing monitored location that has been determined to be the most critical for the plates at this elevation (location 15-23) shows that the projections for the previously monitored location are bounding (refer to attachment 3 page 14).

Conclusions

Table 1 demonstrates that current and projected margin in critical Drywell Vessel locations based on the comparison of recently obtained 2006 UT data and previously approved calculations remain adequate to continue to satisfy design bases requirements until 1R22. Comparison of the 2006 data to previously approved calculations, demonstrates that the conclusions in the previous calculations are still bounding the current data.

References

- 1) C-1302-187-E310-037 Revision 1
- 2) ECR 05-00575
- 3) C-1302-187-5300-030 Revision 1
- 4) Specification IS-328227-004 Rev. 13

Attachments

- 1) Margin Table 1 page
- 2) Review of 2006 means value to previous projections 6 pages

3) Drywell UT Inspection Data - 16 pages

Prepared by Pete Tamburro

I have performed an independent technical review of this technical evaluation in accordance with Section 4.3 of CC-AA-309-101, Revision 7. I have confirmed the correctness of the inputs, mathematics, and outputs. I have verified the methodology and compliance with design bases criteria are appropriate. The results accomplish the stated purpose.

Independent Review By Frank Stulb Date: 11/06/06

Manager Comments:

This technical evaluation was prepared and reviewed by qualified personnel to provide a summary of the 1R21 Drywell Inspection results performed in 2006. The conclusions demonstrate that the structural integrity of the drywell shell, based on its measured thickness at representative locations, remains acceptable based on the previously approved methodologies and acceptance criteria.

Approved for Use: Ray, F.H. 11/6/2006.

Summary of Oyster Creek Drywell Corrosion Monitoring Program Controlling Locations

Elevation/ Plate (Nominal Thickness Inches)	Location with Mean thinnest	Measur ement (inches)	When	Criteria	Margin in 2006	Percent	Measured Corrosion Rate. Inches/ year	Preliminary Projected margin in 2029 based on 95% confidence	Reference
								interval around the corrosion rate	
11' 3" (1.154")	19A	0.8066	10/2006	0.736	0.0706	9.6%	None	9.6%	C-1302-187- 5300-030
50' 2" (0.770")	Bay 5 Location 5-HI	0.7556	10/2004	0.541	0.2146	39.7%	0.0003	36.5%	C-1302-187- E310-037 Rev 2
50' 2" (0.770")	Bay 15 Location 23-HI	0.7573	10/2004	0.541	0.2163	40%	0.0004	36.4%	C-1302-187- E310-037 Rev 2
51 10" (0.772")	Bay 13 Location 32 Lo	0.6872	10/2004	0.518	0.1692	32.7%	None	32.7%	C-1302-187- E310-037 Rev 2
60' 10" (0.722")	Bay 5 Location 22	0.6928	10/2004	0.518	0.1748	33.7%	None	33.7%	C-1302-187- E310-037 Rev 2
87 [•] 5" (0.640")	Bay 9 location 20	0.6123	10/2004	0.452	0.1603	35.4%	0.00075	33.6%	C-1302-187- E310-037 Rev 2

00553792-02 Attachment 1 Prse 1: of 1.

Therefore the curve fit of the means does not have a slope and the grandmean is an accurate measure of the thickness at this location

$$\mu$$
grand measured. := mean(μ measured)

 σ grand measured := Stdev(μ measured)

GrandStandard
$$\operatorname{error}_{0} := \frac{\sigma \operatorname{grand}}{\sqrt{\operatorname{Total}}} \operatorname{means}$$

The minimum required thickness at this elevation is $Tmin_{gen} SB_i = 736$ (Ref. Calc. SE-000243-002)

840 Figure 820 $^{\mu}$ measured $\times \times \times$ µgrand measured 800 Tmin_gen SB 1996 σg medown 780 2006 σ_{g}_{meup} 760 740 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 Dates

Plot of the grand mean and the actual means over time

year predict₁₂ = $2.009 \cdot 10^3$ Thick $predict_{12} = 604.115$

Therefore the regression model shows that even at the lower 95% confidence band this location will not corrode to below Drywell Vessel Minimum required thickness by the plant end of life.

00553792-01 AH2 Case 6 06

No Pits have been identified for this location

REPORT # IRZILR-001

Pg lor 5

Conorol El	octric		1						r	Tile Marrie	N/	Á	_
General El	ecuic		1	!-	Th ! . I				<u> </u>	File Name:	PW	A	
Oyster Cre	ek			SONIC	INICKN	ess m	easure	ement		Date:	10/18/	2006	
Refueling	Outa ge -	1R21	4		Data	Sheet			<u></u>	JT Procedure:	ER-AA-3	35-00	4
Page	1 of	5	,	A						Specification:	IS-3282	27-004	4
Examiner:	Matt Wi	lson 🎢	att ().	la		Level:	11	Instrume	ent Type:	Paname	trics 37DL	Plus	
Examiner:	Leslie R	ichter	***			Level:	11	Instrume	ent No:	. 03	1125409		
Transduce	r Type:	DV 506		Serial #:	072	561	Size:	0.438"	Freq:	5 Mhz	Angle	: 0°	
Transduce	r Cable Ty	pe: Panam	etrics L	ength:	5'	Couplant:		Soundsa	lfe	Batch No:	196	20	
Calibration	Block Typ	e: C/S Ste	p Wedge		Block N	lumber:	CA	L-STEP-	088				
	· · · · · · · · · · · ·				SYSTE	M CALIB	RATION				۱.		-
INSTRU	JMENT SE	TTINGS	Initial C	al. Time	1	Calibration	Checks		Final	Cal. Time			
Coarse Ra	nge:	2.0"	1(00:00	See	Data	See	Data		14:32	· · · ·		-
Coarse De	lay:	N/A	Calibra	ted Swee	p Range =	0.300"	Inche	es to	1.500"	Inches	L		
Delay Calik););	N/A	Thermor	neter:	246	647	Comp	Temp	72°	Block Temp	819		-
Range Cal	b:	N/A	W/OI	lumber:	R209	0917				Totok remp.			
Instrument	Freq.	N/A	Total C	rew Dose		Drywe	II Contain	ment Ve	ssel Thicl	ness Examina	tion.	_	
Gain		67 db	254	mr			h	nternal U	T inspecti	ions.			
Damping:		N/A			L						ر بر المین خرج المحد ال ار		
Reject		N/A						1		V	·		1
Fillo		NVA		Te	mplate alig	ned to V	Stamps.		A	BCD	EF	G	
Euter.		NA	,)						1C	λΟ Ŏ O	ŌŌ	Õ :	1
155	3792	2 - 0 2	_ /	Thic	kness read	dings take	n at hole	в ′	20	പ്പ പ പ	$\cap \cap$	\cap	
				1	located	in templa	t e .			ĹĔ'Ă Ŏ		$\tilde{\mathbf{a}}$	(
1 Des	je 1	otu		L				I	4 3 C		00	0	<u> </u>
4000000									O	k			
Locati	on ID T		<u> </u>	Base		Elan I	441.00	1	50		$\hat{\mathbf{O}}$	Õ	
Locati			Ċ		3	EIEV.	11 3						
1	1 005	1.056	0.985	1 133	1 1 3 2	1 1 26	1 101		10	000	00	O	
2	0.896	0.927	1.067	1.037	0.974	1.077	1.069		7Ç	000	00	0	
3	0.751	0.883	0.975	1.071	1.033	1,105	1.123			<u> </u>		-	Ι.
4	0.885	0.993	0.949	0.984	0.995	1.022	1.041		ł				
5	0.980	0.968	0.936	0.942	0.880	0.927	0.998	Calibr	ation Ch	eck: 10:15	,		1
6	0.960	0.869	0.976	0.987	0.967	0.965	0.949	Ts	icr.	AVG.			1
7	0.968	0.967	0.963	1.004	0.947	0.892	0.943	.6	28	0.988			
									_				
		44.4		Berry						· · · · · · · · · · · · · · · · · · ·	· · · ·		_
Locatio			<u> </u>	Bay		Elev.	11.3	COM	AENTS:			·	
	0.005	0.922	0.920	0 902	<u> </u>	- F	0 797	Core P	lug locate	d at C04, C05, I	B04, B05.		
2	0.303	0.825	0.023	0.803	0.050	0.012	0.795						
3	0.720	0,766	0.858	0.731	0.762	0.669	0.784						
4	0.739	1.047	1.057	0.806	0.761	0.821	0.849	L		·] [
5	0.843	1.090	1.104	0.879	0.879	0.854	0.817	Calibr	ation Ch	eck: 10:32			
6	0.741	0.897	0.818	0.890	0.907	0.833	0.826	Ts	cr.	AVG.			
7	0.875	0.869	0.923	0.886	0.871	0.810	0.842	.6	28	0.846			
COMMEN	TS: File S	Specific Co	mments	located t	o right of r	eadings.							
1													
Location II	D 11C: T	he following	g templa	te holes	were paint	ed onto th	ne plate u	ising the	template	. The reading	s were the	en	
taken with	the temp	late remove	ed. This	was don	e due to th	ne Drywel	I Vent Att	achmen	t weld ob	structing the t	emplate.	Row	1
A Inrough	G, Row 2	A through	C, Row	/ C throu	igh D.								
·													
	FERON	LIM	Hall	7L 10-	20-06								
I													
			1		-				_				
Reviev	ved by: L	ee Stone	du-	2h	<u>></u>		Level		Date	10/18/	2006		

									IRZ	LR- 001	Pg Zors
General El	lectric									File Name:	N/A
Oyster Cre	ek		JUItra	asonic	Thickr	iess M	easure	ement		Date:	10/18/2006
Refueling (Outage -	1R21			Data	Sheet			i	JT Procedure:	ER-AA-335-004
Page	2 of	5	7		Duta	Uncor			G	rid Procedure:	IS-328227-004
×											
Locat	ion ID	1	10	Rav	11	Elow	14' 2"	Calib	ration Ch	ock. 10.46	
						E E				5CK. 10.40	
	OPET	0.774	1 002	0.042	0.707			COMN	IENTS: /	101 obstructed du	e to D.W
	0031	. 0.771	0.003	0.912	0.707	0.000	0.880	Vent atta	achment we	id. B01 reading f	aken adjacent to
2	1.056	1.046	0.904	1.094	1.036	1.118	1.029	D.w. aπ	acriment w	910.	
3	1.073	1.113	1.002	0.935	0.942	0.888	0.853			ve .	(
4	0.837	0.836	0.790	0.874	0.834	0.846	0.838				
5	0.850	0.825	0.869	0.889	0.833	0.866	0.875				
6	0.856	0.840	0.864	0.829	0.872	0.876	0.844	Ts	BCF.	AVG.	
7	0.861	0.877	0.879	0.885	0.880	0.849	0.876	.6	28	0.898	
				S.,			1				
Locati	on ID	1:	3A	Bav	13	Elev.	11'3"	Callbr	ation Ch	eck: 11:02	
		B	C	D	F	F	G				
1	0 887	0.833	0 887	0 908	1 046	0.051	0.022			750	
	0.823	0.000	0.774	0.000	0.007	0.301	0.702		22	5172-	OC \
<u> </u>	0.023	0.003	0.774	0.020	0.03/	0.870	0.783		10	ce 2	
	0.760	0.913	0.790	0.823	0.746	0.759	0.768		6		
4	0.845	0.895	0.875	0.848	0.788	0.799	0.852			A# 3	
5	0.880	0.811	0.861	0.869	0.798	0.846	0.840			11	
6	0.816	0.813	0.869	0.924	0.824	0.785	0.870	Ťŝ	Cr.	AVG.	
7	0.801	0.834	0.763	0.838	0.895	0.885	0.863	.6	28	0.846	
				1.0							
Locatio	on ID	13	D	Bay	13	Elev.	11'3"	Calibr	ation Ch	eck: 11:16	
	A	В	C	D	E	F	G				
1	1.114	1,117	1.132	1.083	1.068	1.106	1 1 1 9				
2	0.950	1.041	0.999	1.061	1.007	1 117	1 100				
3	0.986	0.950	0.837	0.833	0 949	1 099	1.100			•	
A	1 005	0.000	0.878	0.851	0.040	1.000	1.000				
5	0.000	0.077	0.874	0.001	0.911	0.300	0.331				
	0.000	0.307	0.907	0.074	0.020	0.910	0.500			41/0	
	0.944	0.020	0.001	0.00/	0.920	0.865	0.892	18	Cr.	AVG.	
	0.950	0.838	0.929	0.906	0.944	0.832	0.821	.0.	28	0.968	
		4 8									
Locatio		10		Bay	15	Elev.	11' 3"	Calibra	ation Ch	eck: 11:30	
L	A	8	C	D	E	F	G				
1	1.133	1.133	1.133	1.141	1.145	1.145	1.144				
2	1.094	1.109	1.087	1.142	1.129	1.119	1.131				
3	1.040	1.026	1.043	1.081	1.095	1.085	1.096				
4	0.978	0.948	0.975	1.029	1.030	1.096	1.068				
5	0.976	0.969	0.977	1.069	1.013	1.067	1.041				1
6	0.930	0.979	1.031	1.037	1.017	1.059	1.051	Ts	Cr.	AVG.	
7	0.922	0.972	0.996	1.031	1.005	1.033	1.052	.6	28	1.054	· ·
Locatio	n ID	17/		Bay	17	Elev	11' 3"	Calibra	ation Ch	Ck. 11.43	
	A	B	С	D	F	F					
1	1,110	1 149	1 154	1 138	1 120	1 170	4 460				
2	1 121	1 159	1 114	1 144	4 4 2 4	4 4 4 9	1.108				
	1.141	4.072	1.114	1.144	1.134	1.148	1.123				
	1.000	1.0/3	1.111	1.114	1.094	1.083	1.053				
	0.9/6	0.991	0.980	1.030	1.046	0.994	0.950				
5	0.962	0.926	0.909	0.950	0.869	0.938	0.967				
6	0.903	0.956	0.891	0.835	0.802	0.950	0.963	Tse	C r.	AVG.	
7	0.954	0.972	0.877	0.890	0.875	0.891	0.945	.62	28	1.015	
										2121	0-70-06
				All 1	0 15						
Exami	ined by <u>I</u>	Matt Wilson	<u>،</u>	// leth	Ila		Level_	11	Date	10/18/2	2006
Exami	ined by L	eslie Rich	ter 🦼	S	-20	_	Level	11	Date	10/18/2	006
Review	ved by: L	ee Stone					Level	11	Date	10/18/2	006

٠

										IRZILA	-001 Rg 30
General Ele	ectric		1					т	· · ·	File Name:	N/A
Oyster Cree	ek		Ultra	sonic	Thick	ness N	leasure	ement		Date:	10/19/2000
Refueling C	Dutage -	1R21	-		Data	Shoot				UT Procedure:	FR-44-335-004
Page	3 of	5			Dala	JUCEL		F		Specification:	IS-328227-004
		ļ				-			1	opeoindation.	10-020221-004
Locatio	on ID	17	7D	Bay	17	Elev	11'3"	Callbr	tion Cl	neck: 11.59	
	A	В	С	D	Ē	F	G	- COM	CNTO.		L
1	0.849	0.828	0.861	0.894	0.930	0 888	0 702		AENIS:		
2	0.806	0.802	0.717	0.806	0 736	0 756	0.648	Lore P	iug locati	ed at AU3, AU4.	and 803, 804.
3	0.998	0.823	0.752	0.733	0.822	0.730	0.667	11		•	
4	1.072	1.074	0.742	0.812	0.812	0.803	0.701	11			
5	0.814	0.841	0.850	0.816	0.852	0.856	0.860			1. The second	
6	0.792	0.829	0.888	0.846	0.888	0.855	0.000	Te	P.7	AVG	
7	0.824	0.897	0.837	0.887	0.801	0.000	0.000	6		0.922	
	0.024	0.007	0.007	0.007	0.031	0.330	0.000		.0	0.033	
Locatio	on ID	17/	19	Bay	47	Elou	44' 2"	Calibr	tion Cl	00ki 40.40	I
		R	i c		<u> </u>	EIGA.		Calibra		IECK: 12:12	
1	0.00	0 962	0 945	0 024		0.060	0.020			200	n 7
2	0.000	0.002	0 950	0.004	0.300	0.000	0.320	3	5 S	772-	
3	838.0	0.974	1 004	0.001	0.001	0.000	0.004		Dec	23	1
¥	1 022	0 959	0 967	0.307	0.302	0.005	0.524		ر ۽ م	10	1
5	0.960	0.962	0.000	0.0/4	0.000	0.300	0.302		A	ff "3	
Ř	1 001	0.002	0.001	0.000	0.543	0.302	1 004		NP		
7	0.995	1 019	1.012	0.929	1.000	0.046	1.001		فلو	AVG.	
	0.330	1.013	1.012	0.335	1.003	0.540	1.000	.02	.0	0.909	
Locatio	n D	19	A	Dav	40	Eleve	441 98	Calibra	tion Ch	ank: 40.00	
		B		Day	13	Elev.	11 3	Calibra		eck: 12:26	
1	0 692	0 788	0 743	0 648	0 600	0 702	0.725		ENTS:		
2	0.807	0.774	0.845	0.736	0.033	0.702	0.735	Core Pl	ug locate	ed at D04, D05,	and C04, C05.
3	0.813	0.812	0.892	0.995	0.747	0.724	0.773				
4	0.916	0.883	0.805	1 179	0.001	0.732	0.000				1
5	0.873	0.000	0.842	1 160	0.000	0.752	0.700				
6	0.844	0.768	0.834	0.859	0.001	0.752	0.0/0	Ter			
7	0.865	0.803	0 793	0.844	0.007	0.034	0.007	150	0	AVG.	
		0.000	0.100	0.044	0.070	0.017	0.000	.02	0	0.022	
Locatio	n ID T	19	3	Ray	10	Eloy	441.21	Calibra	tion Ch	ook: 42.20 7	•
	A	B	C	0	F	EIGY.		Valibia		CK. 12.39	
1	0.865	0.862	0.872	0.932	0 947	0 992	0 802				
2	0.842	0.883	0.780	0.840	0.915	0.332	0.866				
3	0.861	0.906	0.838	0.898	0.974	0.930	0.834				
4	0.869	0.883	0.807	0.801	0.766	0.834	0 774				
5	0.811	0.770	0.785	0.788	0.799	0.731	0.778				
6	0.828	0.787	0.885	0.891	0.934	0.834	0.738	Tec	r. 1	AVG	
7	0.872	0.822	0.904	0.828	0.843	0.875	0.871	62	8	0.847	
									-		
Location	n ID	190	<u>т</u>	Bay I	19	Elev.	11' 3"	Calibra	lon Ch	eck: 12-51	
	A	B	<u> </u>	D	E	F	- G				
1 .	0.809	0.768	0.862	1.059	0.968	0.961	0.920	Com	ENIS:		
2	0.679	0.745	0.695	0.814	0.766	0.865	0.845	obetrart	ng locate	u at FU3, FO4, (503, G04. F03
3	0.816	0.775	0.870	0.871	0.863	Ohet	0.896	A01-A07	ou uue IC ' takan n	n Vertical Maria	ION.
4	0.791	0.660	0.715	0.793	1,151	1.164	0.918		uaneti Q		· []
5	0.851	0.781	0.733	0.762	0.862	0 797	0 706				
6	0.866	0.830	0.880	0.757	0.867	0 750	0 752	Teo		AVG	
7	0.801	0.794	0.852	0.841	0 901	0 000	0.103	136		AVG.	
					5.	<u>v.avo </u>	0.040	.02(·I	0.038	at a los or
Examir	ned by N	fatt Wilson	1	Roth	J.I.		Level	13	Date	M 7 10/18#	M'10~20-06 2006
Examir	ned by L	eslie Richt	er	22	·····				Doto	40/40#	2000
Review	ed by: I	ee Stone						91 ····································		10/18/2	
I CHEW	ou by. L	CC OIUNE	dm	25			Level		Date	10/18/2	2006

2 ° 🚯

·	· · ·						near creek	
Seneral Electric		. T L.!				••••••••••••••••••••••••••••••••••••••	File Name:	N/A
Jyster Creek	Ultrasonic		iess M	easure	ement		Date:	10/18/2006
Refueling Outage - 1R21	4	Data	Sheet		ļ	U	T Procedure:	ER-AA-335-004
Page 4 of 5							Specification:	IS-328227-004
Location ID	D Bay	1 4	Floy	44' 2"	L Calibr	tion Ch		
A B		Ē	F	G			FCR. 13.05	
1 0.881 1.156	1.104 1.124	1.134	1.093	1.122	1			
					Ts	Cr.	AVG.	
/	~~ 774	57 -	02		.62	28	1.088	
/	5531	/ 4 \$/	_	/			,	
	gese	4		/				1
	145							1
	HHJ							
	0		<u></u>					
	Bay	3	Elev.	11'3"	Calibra	tion Ch	eck: 13:14	1
		4 450	F	G	{	1		
1 1.133 1.103	1.10/ 1.1/3	1.150	1.18/	1.155	Ta		AV/0	
					150	or.	AVG.	1
	T				.02	.0	1.160	
······			י <i>א</i>		i.			
Location ID 5	D / Bay		Elev.	11'3"	Calibra	tion Che	ck: 13:23	•
A B	C D	E	F	G				
1 1.1/4 1.191	1.187	1.187	1.184	1.184		-		
					150	ir.	AVG.	
	\backslash			/ 1	.02	<u>•</u>	1.185	
	\backslash		/	,				
•	\sim							
	<u> </u>						•	
	Bay	<u>├ </u>	Elev.	11'3"	Calibra	tion Che	ck: 13:31	
		E	F	G			·	
1 [1.144] 1.14/	1.14/ 11.138	1.102	1.135	1.116	Tar			
				ł	180	<u>;-</u>	AVG.	
				L	,02	<u> </u>	1.133	
								j
Location ID 94	Bay	9	Elev.	11' 3"	Calibrat	ion Che	ck: 13:40	
Location ID 94	Bay C D	9 E	Elev.	11' 3" G	Calibrat	ion Che	ck: 13:40	
Location ID 94 A B 1 1.158 1.159	Bay C D 1.162 1.159	9 E 1.159	Elev. F 1.153	11' 3" G 1.130	Calibrat	lon Che	ck: 13:40	
Location ID 9/ A B 1 1.158 1.159	Bay C D 1.162 1.159	9 E 1.159	Elev. F 1.153	11' 3" G 1.130	Calibrat	lion Che	ck: 13:40 AVG.	
Location ID 94 A B 1 1.158 1.159	Bay C D 1.162 1.159	9 E 1.159	Elev. F 1.153	11' 3" G 1.130	Calibrat Tsc .628	ion Che r.	ck: 13:40 AVG. 1.154	
Location ID 9/ A B 1 1.158 1.159	Bay C D 1.162 1.159	9 E 1.159	Elev. F 1.153	11' 3" G 1.130	Calibrat Tsc .620	ilon Che r. 1	ck: 13:40 AVG. 1.154	
Location ID 97 A B 1 1.158 1.159	Bay C D 1.162 1.159	9 E 1.159	Elev. F 1.153	11' 3" G 1.130	Calibrat Tsc .628	ilon Che r. B	ck: 13:40 AVG. 1.154	
Location ID 9/ A B 1 1.158 1.159	Bay C D 1.162 1.159	9 E 1.159	Elev. F 1.153	11' 3" G 1.130	Calibrat Tsc .628	ion Che r.	ck: 13:40 AVG. 1.154	
Location ID 9/ A B 1 1.158 1.159	Bay C D 1.162 1.159	9 E 1.159	Elev. F 1.153	11' 3" G 1.130	Calibrat Tsc .621	ion Che r.	ck: 13:40 AVG. 1.154	
Location ID 9/ A B 1 1.158 1.159	C D 1.162 1.159	9 E 1.159	Elev. F 1.153	11' 3" G 1.130	Calibrat Tsc .62	ilon Che r. I	AVG. 1.154	1020 -06
Location ID 94 A B 1 1.158 1.159	Bay C D 1.162 1.159	9 E 1.159	Elev. F 1.153	11' 3" G 1.130	Calibrat Tsc .62	ilon Che r. B	ck: 13:40 AVG. 1.154	10-20-06
Location ID 94 A B 1 1.158 1.159 Examined by Matt Wilson	Bay C D 1.162 1.159	9 E 1.159	Elev. F 1.153	11' 3" G 1.130	Calibrat Tsc .62	fion Che	Ck: 13:40 AVG. 1.154 7~(?~(^ 10/18/20	10-20-06 106
Location ID 9/ A B 1 1.158 1.159 Examined by Matt Wilson Matt Wilson Examined by Leslie Rich	Bay C D 1.162 1.159	9 E 1.159	Elev. F 1.153	11' 3" G 1.130 Level Level	Calibrat Tsc .62t	Date_Date	AVG. 1.154 グー(か(* 10/18/20 10/18/20	/02006 106

i.

IRZILR-OOI Py Sols

		, 									······	
Gener	al Ele	ctric		lilltra	onio	Thickn	ooo M	0001170	mont		File Name:	N/A
Oyster	r Cree	k			SUIIIC		1699 IVI	casuic			Date:	10/18/2006
Refue	ling O	utage -	1K21	4		Data	Sheet		ŀ	U	Procedure:	ER-AA-335-004
Pa	age o	or	5	L						,	Specification:	IS-328227-004
	catio		13	C	Bay	12	Elow	441 211	Calibr	ation Che	ck: 12.49	•
	Lauo					13 E	Elev.	113	Calibia		CK. 13.40	
		1 146	1 1 4 8	1 148	1 149	1 1 1 1 1 1	1 1 28	1 1 3 4			•	
'		1.140		1.1.40	1.140	1.1.4.4	1.120	1.104	Ts	cr.	AVG.	
									.6	28	1.142	
										A		
			4.0					1			والتكريم المراد والمتكر الأ	
LO	catio	n ID	15/	A	Bay	15	Elev.		Calibra	ation Che	ck: 14:00	
		<u>A</u>	<u>B</u>	<u>C</u>	D	E	F	<u> </u>				
		1.180	1.129	1.130	1.129	1.140	1.0//	1.049	Te	or T	AVG	
I									- 6	28	1 121	
											1.121	
		,	I.									
								,				
			1									
ľ												
4												
1				\mathbf{C}					<u> </u>			
								7				
				/ <	551	3797	2 -0		\sim			
		4		/ ~					\			
		I.		1	220	.5						
l				/	()							
				(1	1 #)						
						·						
[
1												
1												
					,					•		
I												
]												
Į				1								
L				.1							7.14.15.	- 70-06
,				All	ull	k .					mm ic	60.04
E	xamir	ned by I	Matt Wilson	'//\ /	MWN.	15	. .	Level	II	Date	10/18/2	006
E	xamir	ned by 1	eslie Richt	er	Xe	2			 II	Date _	10/10/2	006
Re	eview	ed by: I	ee Stone	<u> </u>			<u>-</u>		 II	Date _	10/10/2	
		ou by. L		~~~~	2			revei	11	Date	10/18/2	UUÖ

			•						IRƏILK	2-028	Rg lor
General Electric] .							File Name	: N/A	
Ovster Creek		Ultra	sonic	Thickn	ess Me	easure	ement		Date	: 10/23	/2006
efueling Outage -	1R21	1		Data	Sheet				JT Procedure	ER-AA-	335-004
Page 1 of	1	1			-				Specification	IS-328	227-004
Faye I VI	McNahb			_	Level:	11	Instrume	ent Type:	Panam	etrics 37DL	Plus
Examiner N/A	MCMADD				Level:	N/A	Instrume	ent No:	0	31124309	
Transducer Type:	DV 506		Serial #:	012	202	Size:	0.438"	Frea:	5 Mhz	And	e: 0°
Transducer Cable Tv	pe: Panam	etrics L	ength: £	5'	Couplant:		Soundsa	ife	Batch No:	19	6 20
Calibration Block Tvr	e: C/S Ste	p Wedge		Block N	lumber:	C/	AL-STEP-	139			
			· · ·	SYSTE	M CALIBI	RATION				······	•
INSTRUMENT SE	TTINGS	Initial C	al. Time		Calibration	Checks		Fina	Cal. Time		
Coarse Range:	5.0"	1:	:00	See	Data	See	Data		2:20		
Coarse Delay:	N/A	Calibra	ted Sweep	o Range =	0.500"	Inch	es to	1.000"	Inches		
Delay Calib:	N/A	Thermon	neter:	246	672	Comp.	Temp:	86°	Block Temp:	`72°	
Range Calib:	N/A	W/ON	lumber:	R209	1258				. Ŧ ,	•	
Instrument Freq.	N/A	Total Cr	ew Dose		Drywe	II Contai	nment Ve	ssel Thic	kness Examir	nation.	
Gain:	55 db	<u>48.</u>	<u>0 mr</u>			I	nternal U	T inspect	ions.		t
Damping:	N/A		÷		· · · · · · · · · · · · · · · · · · ·						
Reject:	N/A	, ¹	Te	mniete olig	ined to V	Stampe	7			<u></u>	· ·
Filter:	N/A			inhiare all		oramba.			ВСГ) F F	G
			Thic	kness read	dings take	n at hole	s	1Ć	ͲŌŎĊ	ŌŌÒ	ŏΙ
				located	in templat	te.		120	in o c	$n \cap O$	
					· · · · · · · · · · · · · · · · · · ·				くそうこう		
		• •									
								≯ 4C	$\circ \circ \circ \circ$	000	0 1
								50	000	000	0
Location ID	86-2	20	Bay	9	Elev.	87' 5"	1	60	\mathbf{b}	$n \circ o$	\mathbf{O}
A	В	C	D	E	F	G	1				õ
1 0.621	0.625	0.628	0.606	0.620	0.606	0.633		II'F			-Ă '
2 0.611	0.619	0.623	0.607	0.634	0.599	0.641	1			· · · · · · · · · · · · · · · · · · ·	1
3 0.605	0.603	0.588	0.623	0.630	0.621	0.622	ł				
4 0.614	0.604	0.640	0.500	0.620	0.630	0.602	Callb	ration Cl	eck: 14:30	٦.	
5 0.623 6 0.602	0.599	0.611	0.633	0.619	0.632	0.638	T	SCT.	AVG.	-	
7 0.593	0.596	0.596	0.585	0.629	0.636	0.620	0.	545	0.617	-	
				553 Paji A	3712- e 6 H]	.02					
COMMENTS: Uppe	er Elevatior	n Inspect	ion Loca	tion 9/20 (86-20)	•				•	
											•
						M/1	lathe	LiI	Ú 10-24-0	14	
Reviewed by:	Lee Stone	du	S			M/A Level	l'allut 11	L i I Date	€ 10/2	9 <i>64</i> 13/2006	

									18210	K-026	rg lot	
General Elec	ctric		· ·							File Name:	N	/A
Dyster Creel	k		Ultra	sonic	Thickn	ess M	easure	ment		Date:	10/23	/2006
Refueling Or	itage -	1R21	1		Data	Sheet			. L	JT Procedure:	ER-AA-	335-00
Dage 4	of	2	1						1	Specification:	IS-328	227-00
rage I		ichter /	20	2		Level.	"	Instrume	nt Type:	Paname	trics 37DL	Plus
xaminer.	Matt Wil		AL II	2915		Level:		Instrume	nt No:	0	31120708	
xaminer.	Tune:	DV 506	H W	Serial #	012	202	Size	0.438"	Freq	5 Mbz	And	e. 0.
Tansuucer (Cable Tv	DV 500	etrics Le	enoth: 5		Couplant:	01110.	Soundsa	fe	Batch No:	19	620
Calibration B	Block Typ	e: C/S Ste	n Wedge		Block N	lumber:	CA	L-STEP-	123		<u> </u>	
	SIOCK TYP	e. 0/0 0/0	pricago	<u> </u>	SYSTE	MCALIB	RATION			I		
INCTRUM		TTINGS	Initial C	al Time		Calibration	Checks		Final	Cal Time	<u>Г</u>	
INSTRUM		2.0"	14	.12	Soo	Data	See [lata	- Thick	15:19		
varse kang	ye.	2.U NI/A	Calibrat	ed Sweer	Rance =	0.300"	Inche	s to	1,000"	Inches	I	
oarse Dela	y	IN/A	Thermor	neter	04C	407	Como		86°	Block Tome	700	<u> </u>
Jelay Callo:		N/A		umber	240	431	Comp.	remp.		Telock Lettib:	12	.
kange Calib:		N/A	Total C-	under.	R209	1200 Deau	all Contain	ment Vo	sel Thick	Inese Evamin	ation	
nstrument F	req.	N/A		ew Dose		Drywe	ir contain Ir	ternal if	T inspecti	ONS.	auvii.	
Bain:		62 db	<u>01</u>	<u>1111</u>	L		•••••••••••••••••••••••••••••••••••••••					
Damping:		N/A						——]		v	<u>.</u>	
Reject:		N/A		Ter	mplate alio	ned to V	Stamps.			BCC) E F	G
-ilter:		<u>N/A</u>	1					1	1Ċ	hΟÕČ	οŌÒ	Ő
				Thick	kness read	dings take	en at holes	s	1/20	NO O C		$\overline{\mathbf{O}}$
					located	in templa	ate.			(፝፝፝፝፞፞፞፝፞፞፝፞ጟ፞ ှ		ž
				L	•			J	8 3 C			0
									14 AC	000	00	Ο
		- <u></u>	10/00				071 57		150			\cap
Locatio	n ID	86-28 (13/28)	Bay	13	Elev.	87.5"					$\tilde{\sim}$
	A	B 0.640	0.646	D 0.642	E		0 646		- 6C		000	0
	0.003	0.010	0.040	0.642	0.040	0.044	0.010		7C	000	00	0
- 2	0.034	0.042	0.649	0.610	0.024	0.653	0.654			6		
	0.607	0.637	0.636	0.563	0.601	0.653	0.653					
•			0.000	0.626	0.649	0.656	0.658	Calib	ration Ch	eck: 14:25]	
5	0.632	0.624	0.039				0.054				-	
5 6	0.632 0.597	0.624 0.640	0.639	0.656	0.652	0.640	0.004		scr.	AVG,		
5 6 7	0.632 0.597 0.636	0.624 0.640 0.633	0.639	0.656 0.658	0.652 0.652	0.640 0.640	0.654	0.	scr. 545	AVG. 0.636		
5 6 7	0.632 0.597 0.636	0.624 0.640 0.633	0.639 0.639 0.630	0.656 0.658	0.652 0.652	0.640 0.640	0.654	0.	scr. 545	AVG. 0.636	2.9	2
5 6 7	0.632 0.597 0.636	0.624 0.640 0.633	0.639	0.656	0.652	0.640	0.648	0.	scr. 545 [J]	AVG. 0.636	2-0	2
5 6 7 Locatio	0.632 0.597 0.636 n ID	0.624 0.640 0.633 86-31 (0.639 0.639 0.630	0.656 0.658 Bay	0.652 0.652 15	0.640 0.640 Elev.	0.654 0.648 87' 5"	0.	scr. 545	AVG. 0.636	2-0	2
5 6 7 Locatio	0.632 0.597 0.636 n ID A	0.624 0.640 0.633 86-31 (1 B	0.639 0.639 0.630 15/31) C	0.656 0.658 Bay D	0.652 0.652 15 E	0.640 0.640 Elev. F	0.654 0.648 87' 5" G	0.	scr. 545 545	AVG. 0.636 -5 37 9 cse 7	2-0	2
5 6 7 Locatio	0.632 0.597 0.636 n ID A 0.631	0.624 0.640 0.633 86-31 (* B 0.644	0.639 0.639 0.630 15/31) C 0.628 0.640	0.656 0.658 Bay D 0.638 0.631	0.652 0.652 15 E 0.607	0.640 0.640 Elev. F 0.621	0.654 0.648 87' 5" G 0.636	0.	scr. 545	AVG. 0.636 -5 37 9 cse 7	2-0	2
5 6 7 Locatio	0.632 0.597 0.636 n ID A 0.631 0.655 0.634	0.624 0.640 0.633 86-31 (* B 0.644 0.642 0.652	0.639 0.639 0.630 15/31) C 0.628 0.640 0.643	0.656 0.658 Bay D 0.638 0.631 0.632	0.652 0.652 15 E 0.607 0.647	0.640 0.640 Elev. F 0.621 0.638 0.618	0.634 0.648 87' 5" G 0.636 0.634 0.634	0.	scr. 545	AVG. 0.636 -5379 -5379 -5279	2-0	2
5 6 7 Location 1 2 3	0.632 0.597 0.636 n ID A 0.631 0.655 0.634 0.643	0.624 0.640 0.633 86-31 (* B 0.644 0.642 0.652 0.653	0.639 0.639 0.630 15/31) C 0.628 0.640 0.643 0.600	0.656 0.658 Bay D 0.638 0.631 0.632 0.628	0.652 0.652 15 E 0.607 0.647 0.645 0.615	0.640 0.640 Elev. F 0.621 0.638 0.618 0.628	0.634 0.648 87' 5" G 0.636 0.634 0.636 0.633	0.	scr. 545 5 6 7 7	AVG. 0.636 -5379 cse7 2177	2-0	2
5 6 7 Locatio 1 2 3 4	0.632 0.597 0.636 n ID A 0.631 0.655 0.634 0.643 0.655	0.624 0.640 0.633 86-31 (* B 0.644 0.642 0.652 0.653 0.642	0.839 0.639 0.630 15/31) C 0.628 0.640 0.643 0.600 0.659	0.656 0.658 Bay D 0.638 0.631 0.632 0.628 0.618	0.652 0.652 15 E 0.607 0.647 0.645 0.615 0.630	0.640 0.640 Elev. F 0.621 0.638 0.618 0.628 0.563	0.634 0.648 87' 5" G 0.636 0.634 0.636 0.633 0.633	Calib	scr. 545 S S A A A A A A A A A A A A A A A A A	AVG. 0.636 -5 37 9 -5 27 9	2-0	2
5 6 7 Location 1 2 3 4 5 6	0.632 0.597 0.636 n ID A 0.631 0.655 0.634 0.643 0.655 0.645	0.624 0.640 0.633 86-31 (* B 0.644 0.642 0.652 0.653 0.642 0.627	0.639 0.639 0.630 15/31) C 0.628 0.640 0.643 0.600 0.659 0.622	0.656 0.658 Bay 0.638 0.631 0.632 0.628 0.618 0.605	0.652 0.652 15 E 0.607 0.647 0.645 0.615 0.630 0.623	0.640 0.640 Elev. F 0.621 0.638 0.618 0.628 0.563 0.563	0.634 0.648 87' 5" G 0.636 0.633 0.633 0.633 0.633	Calibi	scr. 545 555 5 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7	AVG. 0.636 -5 37 9 -5 27 -5 26 -5 27 -5 27	2-0	2
5 6 7 Locatio 1 2 3 4 5 6 7	0.632 0.597 0.636 n ID A 0.631 0.655 0.634 0.643 0.655 0.645 0.645	0.624 0.640 0.633 86-31 (B 0.644 0.642 0.652 0.653 0.642 0.627 0.646	0.639 0.639 0.630 15/31) C 0.628 0.640 0.643 0.600 0.659 0.622 0.613	0.656 0.658 Bay D 0.638 0.631 0.632 0.628 0.618 0.605 0.640	0.652 0.652 15 E 0.607 0.645 0.645 0.615 0.630 0.623 0.622	0.640 0.640 Elev. F 0.621 0.638 0.618 0.628 0.563 0.606 0.620	0.634 0.648 87' 5" G 0.636 0.633 0.633 0.633 0.633 0.618 0.642	Calibi	scr. 545 555 555 545	AVG. 0.636 -5 37 9 -5 27 9	2-0	2
5 6 7 Location 1 2 3 4 5 6 7	0.632 0.597 0.636 n ID A 0.631 0.655 0.634 0.643 0.645 0.645	0.624 0.640 0.633 86-31 (* B 0.644 0.642 0.652 0.653 0.642 0.627 0.646	0.839 0.639 0.630 15/31) C 0.628 0.640 0.643 0.600 0.659 0.622 0.613	0.656 0.658 Bay D 0.638 0.631 0.632 0.628 0.618 0.605 0.640	0.652 0.652 15 E 0.607 0.645 0.615 0.630 0.623 0.622	0.640 0.640 Elev. F 0.621 0.638 0.618 0.628 0.563 0.563 0.606 0.620	0.634 0.648 87' 5" G 0.636 0.634 0.633 0.633 0.633 0.618 0.642	Calibi T: 0.	scr. 545 5 5 5 5 5 5 5 5 5 5 5 5	AVG. 0.636 -5 3 7 9 -5 2 7 -5 3 7 9 -5 7 9 -5 7 9 -5 7 9 -5 7	2.2-0	2
5 6 7 Locatio 1 2 3 4 5 6 7 ;OMMENT teadings for	0.632 0.597 0.636 n ID A 0.631 0.655 0.634 0.643 0.655 0.645 0.645 0.653	0.624 0.640 0.633 86-31 (B 0.644 0.642 0.652 0.653 0.642 0.627 0.646	0.839 0.639 0.630 5/31) C 0.628 0.640 0.643 0.600 0.659 0.622 0.613	0.656 0.658 Bay 0.638 0.631 0.632 0.628 0.618 0.605 0.640 accepta	0.652 0.652 15 E 0.607 0.645 0.615 0.630 0.623 0.622	0.640 0.640 F 0.621 0.638 0.618 0.628 0.563 0.606 0.620	0.634 0.648 87' 5" G 0.636 0.633 0.633 0.633 0.633 0.618 0.642	Calibi Ts 0. - 22).	scr. 545 S S ration Cr scr. 545 A M 'al	AVG. 0.636 -5 37 9 -5 37 9 -5 2 7 -5 37 9 -5 37 9	Z-06	2
5 6 7 Location 1 2 3 4 5 6 7 COMMENT Readings for	0.632 0.597 0.636 n ID A 0.631 0.655 0.634 0.643 0.655 0.645 0.645 0.653	0.624 0.640 0.633 86-31 (* B 0.644 0.642 0.652 0.653 0.642 0.627 0.646	0.839 0.639 0.630 15/31) C 0.628 0.640 0.643 0.600 0.659 0.622 0.613	0.656 0.658 Bay 0.638 0.631 0.632 0.628 0.618 0.605 0.640 accepta	0.652 0.652 15 E 0.607 0.645 0.615 0.630 0.623 0.622	0.640 0.640 F 0.621 0.638 0.618 0.628 0.563 0.606 0.620	0.634 0.648 87' 5" G 0.636 0.634 0.633 0.633 0.618 0.642	Calibo Ts 0.) - 22).	scr. 545 545 545 545 A.M. 'All	AVG. 0.636 -5 3 7 9 -5 3 7 9 -5 2 7 -5 3 7 9 -5 7 9 -5 7 9 -5 7 9 -5 7	27-0 2-0	2
5 6 7 Location 1 2 3 4 5 6 7 2 OMMENT Readings for	0.632 0.597 0.636 n ID A 0.631 0.655 0.634 0.643 0.655 0.645 0.653	0.624 0.640 0.633 86-31 (* B 0.644 0.642 0.652 0.653 0.642 0.627 0.646	0.839 0.639 0.630 15/31) C 0.628 0.640 0.643 0.600 0.659 0.622 0.613	0.656 0.658 Bay 0.638 0.631 0.632 0.628 0.618 0.605 0.640 accepta	0.652 0.652 15 E 0.607 0.645 0.615 0.630 0.623 0.622	0.640 0.640 Elev. F 0.621 0.638 0.618 0.628 0.606 0.620	0.634 0.648 87' 5" G 0.636 0.636 0.633 0.633 0.618 0.642	Calibi Ts 0. - 22).	scr. 545 S S C S S C S C S C S C S C S C S C S	AVG. 0.636 -5 37 9 -5 37 9 -5 2 7 2 17 7 1000000000000000000000000000000000000	2 - 0 2 - 0 2 - 0 6	2
5 6 7 Location 1 2 3 4 5 6 7 20MMENT Readings for	0.632 0.597 0.636 n ID A 0.631 0.655 0.634 0.643 0.655 0.645 0.653 S : ound be	0.624 0.640 0.633 86-31 (* B 0.644 0.642 0.652 0.653 0.642 0.627 0.646	0.839 0.639 0.630 15/31) C 0.628 0.640 0.643 0.600 0.659 0.622 0.613	0.656 0.658 Bay 0.638 0.631 0.632 0.628 0.618 0.605 0.640 accepta	0.652 0.652 15 E 0.607 0.647 0.645 0.615 0.630 0.623 0.622	0.640 0.640 F 0.621 0.638 0.618 0.628 0.663 0.620 ria, see p	0.634 0.648 87' 5" G 0.636 0.634 0.633 0.633 0.633 0.618 0.642	Calibi T: 0. - 22).	scr. 545 S S C S S C S C S C S C S C S C S C S	AVG. 0.636 -5 3 7 9 -5 3 7 9 -5 2 7 2 17 7 1000000 1000000000000000000000000000	2 - 0 2 - 0 2 2 4 - 0 6	2
5 6 7 Location 1 2 3 4 5 6 7 COMMENT Readings for	0.632 0.597 0.636 n ID A 0.631 0.655 0.634 0.643 0.655 0.645 0.645 0.653	0.624 0.640 0.633 86-31 (* B 0.644 0.642 0.652 0.653 0.642 0.627 0.646	0.839 0.639 0.630 15/31) C 0.628 0.640 0.643 0.600 0.659 0.622 0.613	0.656 0.658 Bay D 0.638 0.631 0.632 0.628 0.618 0.605 0.640 accepta	0.652 0.652 15 E 0.607 0.647 0.645 0.615 0.630 0.623 0.622	0.640 0.640 Elev. F 0.621 0.638 0.618 0.628 0.563 0.606 0.620	0.634 0.648 87' 5" G 0.636 0.634 0.633 0.633 0.633 0.642 0.642	Calibi Ts 0. - 22).	scr. 545 S S C ration Cr scr. 545	AVG. 0.636 -5 37 9 -5 37 9 -5 2 7 -5 3 7 9 -5 3 7 9 -	2 - 0 2 - 0 2 2 4 - 0 6	2

•

									IRDICK-00	6 rg cora
General Ele	ct ric		1 114		TI				File Name:	N/A
Oyster Cree	k		Ultras	sonic	Inickn	ess M	easure	ment	Date:	10/18/2006
Refueling O	utage -	1R21			Data S	Sheet			UT Procedure:	ER-AA-335-004
Page 2	of 2	2							Grid Procedure:	IS-328227-004
							•	1		
Locatio	on ID	50-2	22	Bay	1	Elev.	60'	Calibratio	n Check: 15:05	
	A	В	C	D	Ē	F	G			
1	0.685	0.711	0.679	0.682	0.681	0.668	0.707			•
2	0.715	0.703	0.703	0.703	0.716	0.722	0.658			
3	0.725	0.696	0.706	0.723	0.720	0.709	0.723			
4	0.697	0.661	0.675	0.720	0.726	0.712	0.623			
5	0.672	0.646	0.689	0.687	0.690	0.668	0.695			
6	0.665	0.652	0.675	0.700	0.667	0.636	0.650	Tscr.	AVG.	
7	0.681	0.739	0.725	0.699	0.676	0.559	0.729	.625	0.689	

553792-02 pese 8 AH 3

Examined by Leslie Richter Examined by Matt Wilson Reviewed by: Lee Stone 0

nim'allite i III

Level_	11	Date	10/23/2006
Level_	11	Date	10/23/2006
Level	11	Date	10/23/2006

				•				REPO	RT # 1	RZILRO	02 Rg	10f 2
General Ele	ectric									File Name:	N/A	
Oyster Cree	ek		JUltra	sonic	Thickr	ness M	easure	ement		Date:	10/18/20	006
Refueling C	Dutage -	1R21	1		Data	Sheet			L L	JT Procedure:	ER-AA-33	5-004
Page	1 of	2	1							Specification:	IS-328227	7-004
Examiner:	Lee Sto	ne du	5			Level:	11	Instrume	nt Type:	Paname	trics 37DL PI	us
Examiner:	N/A					Level:	N/A	Instrume	nt No:	03	1125009	
Transducer	· Type:	DV 506		Serial #:	072	2362	Size:	0.438"	Freg:	5 Mhz	Anale:	0°
Transducer	Cable Ty	pe: Panam	etrics L	ength: {	5'	Couplant		Soundsa	fe	Batch No:	19620)
Calibration	Block Typ	e: C/S Ste	p Wedge		Block N	Number:	CA	L-STEP-	123			
			•		SYSTI	EM CALIE	BRATION					
INSTRU	MENT SE	TTINGS	Initial C	Cal. Time		Calibratio	n Checks		Final	Cal. Time		
Coarse Rar	nge:	2.0"	14	4:30	See	Data	See I	Data		17:50		
Coarse Dela	ay:	N/A	Calibra	ited Sweep	Range =	0.300"	Inche	es to	1.500"	Inches		
Delay Calib	:	N/A	Thermor	neter:	246	534	Comp.	Temp:	72°	Block Temp:	79°	
Range Calil	b:	N/A	W/ON	Number:	R209	1258				. • .		
Instrument	Freq.	N/A	Total C	rew Dose		Dryw	eil Contain	ment Ve	ssel Thick	iness Examina	ation.	
Gain:		58 db	<u>20.</u>	<u>2 mr</u>	L		lr	itemal U	i inspecti	ons.		
Damping:		N/A	ł	<u>`</u>		•				v	1	
Reject:		N/A		Te	mplate ali	aned to V	Stamps.			BCD	FF	
Filter:		N/A	I			9			ll 1 Ĉ	πŌŎŎ	စ်စ်စ်	Š l
				Thic	kness rea	dings take	en at hole:	s				5
1					located	l in templa	ate.					
				L							000	2
									17 4C	000	000) k
Locatio	on ID	51.	5	Bay	Ē	Flore	501.01	1	50		$\hat{0}$	51
Locaut		B	C	Day		Elev.	00 Z					$\langle $
1	0.739	0.655	0.734	0.765	0.768	0.769	0.716				000	2
2	0.762	0.747	0.758	0.748	0.774	0.772	0.716		1170	000	000	2
3	0.769	0.755	0.650	0.678	0.756	0.759	0.758			<u> </u>		<u> </u>
4	0.739	0.761	0.690	0.660	0.704	0.766	0.772	A . III	-41	8		
	0.693	0.751	0.707	0.767	0.750	0.770	0.750		ation Ch	eck: 14:30		
7	0.758	0.763	0.764	0.732	0.772	0.761	0.724	0.0	520	0.741		
							0.700			0.741		
Locatio	on ID	51-0	1	Bay	5	Elev.	50' 2"	COMM	ENTS:			
	A	<u>B</u>	C	D	E	F	G	F4 obs	tructed by	Core Plug hole		
	0.753	0.602	0.762	0.737	0.749	0.760	0.746	E4 and	F5 readin	gs taken on Co	re Plug.	
	0.740	0.003	0.755	0.739	0.750	0.718	0.73/	1				
4	0.754	0.741	0.737	0.692	1,160	OBST	0.739			·····		
5	0.757	0.758	0.756	0.745	0.734	1,160	0.736	Callbr	ation Ch	eck: 14:54		
6	0.767	0.748	0.743	0.732	0.730	0.739	0.726	Ts	cr.	AVG.		
7	0.748	0.747	0.748	0.751	0.742	0.745	0.749	0.6	20	0.760		
COMMENT	r s : File S	specific Co	mments	located to	o right of r	eadings.	\wedge				`	
							· / S	2 2 3	192	-07		
							1	0	<u>~</u>	a	/	
								41	~) (`	/	1	
							(A	H]		/	
							$\overline{}$			$ \rightarrow $		{
ſ	_ '_	1	un l'al	1.1	10 20 00	6						
	EXELU		n n u	/ L	t, 1 +							
Review	ed by: H	(imberly W	ert X	bal	Wat	-	Level		Date	10/18/	2006	
				v								

General Electric Ultrasonic Thickness Measurement File Name: NA Oyster Creek Data Data Sheet Data: 10/18/200 Page 2 of 2 Data Sheet Ultrasonic Thickness Measurement Data: 10/18/200 Location ID \$1-13 Bay 13 Elev. 50' 2" Calibration Check: 16:32 Location ID \$1-13 Bay 13 Elev. 50' 2" Calibration Check: 16:32 1 0.702 0.649 0.771 0.761 0.763 0.774 2 0.697 0.627 0.788 0.793 0.744 0.771 2 0.697 0.627 0.788 0.763 0.774 0.775 3 0.649 0.671 0.766 0.730 0.743 0.769 5 0.629 0.761 0.764 0.733 0.769 .620 0.740 Location ID 52-13 Bay 13 Elev. 51' 10" Calibration Check: 15:52 A B <th></th> <th>IRZILR-00</th> <th>) PgZcfZ</th>											IRZILR-00) PgZcfZ
Oyster Creek Ultrasonic Thickness Measurement Date: 10/18/200 Refueling Outage - 1R21 Data Sheet UT Procedure: ER-AA-335- Grid Procedure: Page 2 of 2 6 2 Calibration Check: 15:32 A B C D E F G 1 0.702 0.649 0.771 0.751 0.763 0.771 0.751 0.763 0.772 3 0.649 0.667 0.768 0.763 0.741 0.768 0.763 0.772 3 0.649 0.761 0.768 0.776 0.768 0.769 0.769 5 0.629 0.701 0.758 0.699 0.771 0.768 0.769 0.769 6 0.730 0.774 0.764 0.733 0.769 .520 0.740 Location ID 52-13 Bay 13 Elev. 51' 10" Calibration Check: 16:52 A B C D E F G <	General Elec	ctric									File Name:	N/A
Refueling Outage - 1R21 Data Sheet UT Procedure: ER-AA-335-Grid Procedure: IR-AA-335-Grid Procedure: IR-3326227-C Location ID 0.6627 0.768 0.751 0.766 0.772 0.771 0.772 Calibration Check: 15:32 A B C D E F G 0.771 0.763 0.763 0.763 0.763 0.763 0.764 0.763 0.764 0.763 0.764 0.733 0.764 0.740 0.764 0.733 0.769 620 0.740 0.771 0.771 0.765 0.766 <td< td=""><td>Oyster Cree</td><td>k</td><td></td><td>]Ultra</td><td>sonic</td><td>Thickn</td><td>ess M</td><td>easure</td><td>ment</td><td></td><td>Date:</td><td>10/18/2006</td></td<>	Oyster Cree	k]Ultra	sonic	Thickn	ess M	easure	ment		Date:	10/18/2006
Page 2 of 2 Grid Procedure: IS-328227-0 Location ID 51-13 Bay 13 Elev. 50' 2" Calibration Check: 15:32 A B C D E F G 1 0.702 0.649 0.771 0.765 0.774 0.777 2 0.697 0.627 0.768 0.753 0.741 0.763 0.772 3 0.649 0.667 0.766 0.733 0.768 0.769 5 0.629 0.771 0.768 0.769 0.774 0.769 6 0.730 0.720 0.687 0.776 0.769 0.520 0.740 Location ID 52-13 Bay 13 Elev. 51' 10" Calibration Check: 15:52 A B C D E F G 1 0.712 0.788 0.702 0.762 0.740 Location ID 52-13 Bay 13 Elev. 51' 10" Cal	Refueling Ou	utage -	1R21]		Data	Sheet			U	T Procedure:	ER-AA-335-004
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Page 2	of	2							G	rid Procedure:	IS-328227-004
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$												
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Locatio	n ID	51-	13	Bay	13	Elev.	50' 2"	Calibi	ration Ch	eck: 15:32	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		· A	B	C	D	E	F	G				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	0.702	0.649	0.771	0.751	0.765	0.774	0.777			· ·	
3 0.649 0.667 0.766 0.730 0.743 0.768 0.765 4 0.699 0.701 0.758 0.699 0.771 0.768 0.769 5 0.629 0.758 0.689 0.776 0.768 0.772 0.763 6 0.730 0.720 0.687 0.776 0.764 0.733 0.771 Tscr. AVG. 7 0.772 0.771 0.776 0.764 0.733 0.769 .620 0.740 Location ID 52-13 Bay 13 Elev. 51' 10" Calibration Check: 15:52 A B C D E F G 1 0.712 0.716 0.712 0.698 0.709 0.705 2 0.711 0.667 0.713 0.684 0.712 0.672 3 0.717 0.667 0.713 0.684 0.712 0.672 4 0.719 0.613 0.	2	0.697	0.627	0.768	0.753	0.741	0.763	0.772				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	3	0.649	0.667	0.766	0.730	0.743	0.768	0.765				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	4	0.699	0.701	0.758	0.699	0.771	0.768	0.769				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	5	0.629	0.758	0.689	0.763	0.768	0.772	0.763				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	6	0.730	0.720	0.687	0.776	0.766	0.762	0.771	Ť	SCT.	AVG.	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	7	0.772	0.771	0.739	0.774	0.764	0.733	0.769	.6	20	0.740	
Location ID52-13Bay13Elev.51' 10"Calibration Check: 15:52ABCDEFG10.7130.7120.7160.7120.6980.7090.70520.7120.7110.6910.6960.7140.6700.70230.7170.6670.7130.6840.7120.6230.67240.7190.6130.7140.6170.7130.7120.56250.7170.7000.7180.7160.7190.67960.7110.7120.7200.7170.7160.67970.7180.7130.7200.7170.7170.713.67570.7180.7130.7200.7170.7170.713.67510.7350.7400.7500.7560.7650.7610.76220.7670.7420.7560.7640.7380.7180.75730.7320.7580.7540.7450.6330.7630.76430.7530.7360.7590.6720.7410.7450.745				_				1			÷	
A B C D E F G 1 0.713 0.712 0.716 0.712 0.698 0.709 0.705 2 0.712 0.711 0.691 0.696 0.714 0.670 0.702 3 0.717 0.667 0.713 0.684 0.712 0.623 0.672 4 0.719 0.613 0.714 0.617 0.713 0.562 5 0.717 0.700 0.718 0.716 0.719 0.562 5 0.711 0.712 0.720 0.719 0.716 0.679 6 0.711 0.712 0.720 0.717 0.717 0.713 .675 7 0.718 0.713 0.720 0.717 0.717 0.713 .675 0.699 1 0.735 0.740 0.750 0.756 0.761 0.762 2 Calibration Check: 16:15 A B C D E	Locatio	n ID	52-	13	Bay	13	Elev.	51' 10"	Calib	ration Ch	eck: 15:52	
1 0.713 0.712 0.716 0.712 0.698 0.709 0.705 2 0.712 0.711 0.691 0.696 0.714 0.670 0.702 3 0.717 0.667 0.713 0.684 0.712 0.623 0.672 4 0.719 0.613 0.714 0.617 0.713 0.712 0.562 5 0.717 0.700 0.718 0.716 0.719 0.562 5 0.711 0.712 0.720 0.719 0.716 0.679 6 0.711 0.712 0.720 0.719 0.717 0.713 .675 7 0.718 0.713 0.720 0.717 0.717 0.713 .675 7 0.718 0.713 0.720 0.717 0.717 0.713 .675 0.699 1 0.735 0.740 0.756 0.765 0.761 0.762 2 0.767 0.742 0.756 0.765 0.761 0.757 4 0.758 0.754 0.745 <td></td> <td>A</td> <td>B</td> <td>C</td> <td>D</td> <td>E</td> <td>F</td> <td>G</td> <td></td> <td></td> <td></td> <td></td>		A	B	C	D	E	F	G				
2 0.712 0.711 0.691 0.696 0.714 0.670 0.702 3 0.717 0.667 0.713 0.684 0.712 0.623 0.672 4 0.719 0.613 0.714 0.617 0.713 0.712 0.562 5 0.717 0.700 0.718 0.716 0.717 0.716 0.679 6 0.711 0.712 0.720 0.719 0.716 0.719 0.681 Tscr. AVG. 7 0.718 0.713 0.720 0.717 0.717 0.713 .675 0.699 Location ID 51-15 Bay 15 Elev. 50' 2" Calibration Check: 16:15 A B C D E F G 1 0.735 0.740 0.756 0.765 0.761 0.762 2 0.767 0.742 0.756 0.764 0.738 0.718 0.750 3 0.732 0.760 0.729 0.764 0.742 0.740 0.757 4 0.769 0.758 0.759 0	1	0.713	0.712	0.716	0.712	0.698	0.709	0.705				
3 0.717 0.667 0.713 0.684 0.712 0.623 0.672 4 0.719 0.613 0.714 0.617 0.713 0.712 0.562 5 0.717 0.700 0.718 0.716 0.717 0.716 0.679 6 0.711 0.712 0.720 0.719 0.716 0.719 0.681 Tscr. AVG. 7 0.718 0.713 0.720 0.717 0.717 0.713 .675 0.699 Location ID 51-15 Bay 15 Elev. 50' 2" Calibration Check: 16:15 A B C D E F G 1 0.735 0.740 0.756 0.765 0.761 0.762 2 0.767 0.742 0.756 0.764 0.738 0.718 0.750 3 0.732 0.760 0.729 0.674 0.742 0.763 0.764 3 0.758 0.754 0.745 0.638 0.763 0.764 4 0.769 0.759 0.672 0.745 0	2	0.712	0.711	0.691	0.696	0.714	0.670	0.702				
4 0.719 0.613 0.714 0.617 0.713 0.712 0.562 5 0.717 0.700 0.718 0.716 0.717 0.716 0.679 6 0.711 0.712 0.720 0.719 0.716 0.719 0.681 Tscr. AVG. 7 0.718 0.713 0.720 0.717 0.717 0.713 .675 0.699 Location ID 51-15 Bay 15 Elev. 50° 2" Calibration Check: 16:15 A B C D E F G 1 0.735 0.740 0.750 0.765 0.761 0.762 2 0.767 0.742 0.756 0.762 0.740 0.756 0.742 0.764 3 0.732 0.760 0.729 0.764 0.742 0.763 0.764 0.757 4 0.769 0.758 0.759 0.672 0.745 0.741 0.741	3	0.717	0.667	0.713	0.684	0.712	0.623	0.672	·.			
5 0.717 0.700 0.718 0.716 0.717 0.716 0.679 6 0.711 0.712 0.720 0.719 0.716 0.719 0.681 Tscr. AVG. 7 0.718 0.713 0.720 0.720 0.717 0.717 0.713 .675 0.699 Location ID 51-15 Bay 15 Elev. 50' 2" Calibration Check: 16:15 A B C D E F G 1 0.735 0.740 0.750 0.756 0.761 0.762 2 0.767 0.742 0.756 0.764 0.738 0.718 0.750 3 0.732 0.760 0.729 0.764 0.742 0.763 0.764 3 0.758 0.754 0.745 0.638 0.763 0.764 5 0.753 0.736 0.769 0.672 0.745 0.741	4	0.719	0.613	0.714	0.617	0.713	0.712	0.562				
6 0.711 0.712 0.720 0.719 0.716 0.719 0.681 Tscr. AVG. 7 0.718 0.713 0.720 0.720 0.717 0.717 0.713 .675 0.699 Location ID 51-15 Bay 15 Elev. 50' 2" Calibration Check: 16:15 A B C D E F G 1 0.735 0.740 0.756 0.765 0.761 0.762 2 0.767 0.742 0.756 0.764 0.738 0.718 0.750 3 0.732 0.760 0.729 0.764 0.742 0.763 0.764 5 0.753 0.736 0.769 0.672 0.745 0.741 0.741	5	0.717	0.700	0.718	0.716	0.717	0.716	0.679				
7 0.718 0.713 0.720 0.717 0.717 0.713 .675 0.699 Location ID 51-15 Bay 15 Elev. 50' 2" Calibration Check: 16:15 A B C D E F G 1 0.735 0.740 0.750 0.766 0.765 0.761 0.762 2 0.767 0.742 0.756 0.764 0.738 0.718 0.750 3 0.732 0.760 0.729 0.764 0.742 0.757 4 0.769 0.758 0.754 0.638 0.763 0.764 5 0.753 0.736 0.769 0.672 0.745 0.741	6	0.711	0.712	0.720	0.719	0.716	0.719	0.681	Ts	SCI.	AVG.	
Location ID 51-15 Bay 15 Elev. 50' 2" Calibration Check: 16:15 A B C D E F G 1 0.735 0.740 0.750 0.756 0.765 0.761 0.762 2 0.767 0.742 0.756 0.764 0.738 0.718 0.750 3 0.732 0.760 0.729 0.764 0.742 0.763 0.757 4 0.769 0.758 0.759 0.638 0.763 0.764 5 0.753 0.736 0.769 0.759 0.672 0.745 0.741	7	0.718	0.713	0.720	0.720	0.717	0.717	0.713	.6	75	0.699	
Location ID 51-15 Bay 15 Elev. 50° 2" Calibration Check: 16:15 A B C D E F G 1 0.735 0.740 0.750 0.756 0.765 0.761 0.762 2 0.767 0.742 0.756 0.764 0.738 0.718 0.750 3 0.732 0.760 0.729 0.764 0.742 0.740 0.757 4 0.769 0.758 0.754 0.638 0.763 0.764 5 0.753 0.736 0.769 0.672 0.745 0.741								×				
A B C D E F G 1 0.735 0.740 0.750 0.756 0.765 0.761 0.762 2 0.767 0.742 0.756 0.764 0.738 0.718 0.750 3 0.732 0.760 0.729 0.764 0.742 0.740 0.757 4 0.769 0.758 0.754 0.638 0.763 0.764 5 0.753 0.736 0.769 0.672 0.745 0.741	Locatio	n ID	51-'	15	Bay	15	Elev.	50' 2"	Calibr	ation Ch	eck: 16:15	
1 0.735 0.740 0.750 0.756 0.765 0.761 0.762 2 0.767 0.742 0.756 0.764 0.738 0.718 0.750 3 0.732 0.760 0.729 0.764 0.742 0.740 0.757 4 0.769 0.758 0.754 0.638 0.763 0.764 5 0.753 0.736 0.769 0.759 0.672 0.745 0.741		A	В	С	D	Ë	F	G				
2 0.767 0.742 0.756 0.764 0.738 0.718 0.750 3 0.732 0.760 0.729 0.764 0.742 0.740 0.757 4 0.769 0.758 0.754 0.745 0.638 0.763 0.764 5 0.753 0.736 0.769 0.759 0.672 0.745 0.741	1	0.735	0.740	0.750	0.756	0.765	0.761	0.762				
3 0.732 0.760 0.729 0.764 0.742 0.740 0.757 4 0.769 0.758 0.754 0.745 0.638 0.763 0.764 5 0.753 0.736 0.769 0.759 0.672 0.745 0.741	2	0.767	0.742	0.756	0.764	0.738	0.718	0.750				
4 0.769 0.758 0.754 0.745 0.638 0.763 0.764 5 0.753 0.736 0.769 0.759 0.672 0.745 0.741	3	0.732	0.760	0.729	0.764	0.742	0.740	0.757				
5 0.753 0.736 0.769 0.759 0.672 0.745 0.741	4	0.769	0.758	0.754	0.745	0.638	0.763	0.764				
	5	0.753	0.736	0.769	0.759	0.672	0.745	0.741				
6 0.765 0.768 0.727 0.762 0.717 0.702 0.769 Tscr. AVG.	6	0.765	0.768	0.727	0.762	0.717	0.702	0.769	15	SCT.	AVG.	
7 0.758 0.766 0.734 0.767 0.702 0.737 0.760 .620 0.745	7	0.758	0.766	0.734	0.767	0.702	0.737	0.760	.6	20	0.745	

¥

553792-02 page 10 AH)

M	pul 10.2: -060		
Examined by Lee Stone du S	Level II	Date	10/18/2006
Examined by N/A	Level N/A	Date	N/A
Reviewed by: Kimberly Wert Kinds Wart	Level II	Date	10/18/2006

Therefore the regression model shows that even at the lower 95% confidence band this location will not corrode to below Drywell Vessel Minimum required thickness by the plant end of life.

449.

IR	21	LR·	0	33	Ps	1	of	J
	_							-

General Ele	ctric									File Name:		_
Oyster Creek			Ultrasonic Thickness Measurement							Date:	10/26/2	006
Refueling O	utace -	1R21	1	_	Data	Sheet			1	T Procedure	ER-AA-33	5-004
Page		1	Í.	-						Specification:	15-32822	7-004
Evaminer	loremy	Tuttle	OD Pringl	SH12	}	Lovel	11	Upetrumo	nt Type:	Dependence Dependence	10-32022	
Examiner.	N/A	Tunic V	<u>. www.</u>	Think		Level.	<u></u>	Instrume	nt No:	raname	1124300	ius
Transducer	Type:	D7908	·····¥	Serial #	238	302	Size:	0.200"	Eme:	7 5 141-	Analos	
Transducer	Cable Ty	ne Panam	etrics 1	enath.	5'	Couplant		Soundea	fe	7.5 Minz	Angle:	0
Calibration	Block Tyr	e C/S Ster	Wedge	ongui.		umber		U-STEP-	123	BAICH NO.	1962	0
Calibration	SYSTEM CALIBRATION											
INSTRU	MENT SE	TTINGS	Initial C	al. Time		Calibratio	Checks		Final	Cal Time		
Coarse Ran	ae:	20"-50"	3	:10	See	Data	See		T ATEA	4·25		
Coarse Dela	IV:	N/A	Calibra	ted Swee	p Range =	0.500"	Inchi	es to	4 000"	Inches		
Delay Calib:	<u> </u>	N/A	Thermor	neter:	246	518	Comp	Temo [,]	62°	Block Temp	64°	
Range Calib		N/A	W/ON	lumber:	R209	1258	<u> </u>	· on p.		Divor remp.		
Instrument F	req.	N/A	Total C	rew Dose		Dryw	ell Contair	ment Ve	sel Thick	ness Examina	tion.	
Gain:		60-65 db	40.	0 mr	() 	nternal U	T inspecti	0 118.		
Damping:		N/A										
Reject:	,	N/A	71	' 6" Weld	Scan				I			
Filter:		N/A					,		17			
						I		May	<u>ז </u>	አዳዶዶ	<u> </u>	ବ
Locatio	n ID	71-15 w	eldup	Bav	15	Elev	71' 6"	0.678"				21
	A	B	C	D	F	F	G		H2C		O[O]	S
1	0.634	0.657	0.650	0.667	0.637	0.578	0.590		30	rag o		D
2	0.638	0.612	0.620	0.638	0.616	0.538	0.627		II ₄C	0000	≯n ૦ઁન	
3	0.625	0.660	0.609	0.664	0.624	0.514	0.631	Min				Area Below
4	0.615	0.659	0.649	0.643	0.678	0.661	0.659	0.449"	H°			.585"
5	0.638	0.637	0.647	0.665	0.665	0.665	0.672		6C	re Q O	0 94	7
6	0.612	0.639	0.645	0.628	0.593	0.633	0.628		70	000	XO O	ЭL
7	0.652	0.549	0.618	0.604	0.449	0.547	0.611					
	1				Calibrati	on Chec	k: 03:36		'	Wold		
1					180		0.000			B C D		
1						•	0.024	l	lıĉ	စ်ဂီဂီဂီ	ဂ်ဂ်	S
Locatio	n ID	71-15 w	elddn	Bay	15	Elev.	71'6"		20		$\tilde{0}$	ň
	A	B	С	-D	E	F	G	Min				K
1	2.527	2.575	2.518	(2.499)	2.560	2.620	2.646	2.428		0000	000	2
2	2.536	2.529	2.471	2.597	2.565	2.633	2.656		_ 4℃	QOO	0 0/0	D
3	2.534	2.513	2.485	(2.485)	2.466	2.562	2.527		5 C	000	oda	зII
	2.509	2.451	2.492	2.514	2.490	2.549	2.528				\tilde{a}	511
	2.549	2.500	2.030	2.518	2.481	2.530	2.526					<u> </u>
	2.601	2.530	2.536	2.532	2.545	2.025	2.409		170			ン
00-		 ^			Calibratio	on Chec	(: 03:50		لا			
r • • 5	CTY	- 55	- 378	2-07	Tsc	r, 1	2.550			I		I
		AH	2		Avg		2.530			Ma	x. 2.656"	
COMMENT	S.											
Forty nine (u. 49) readi	inas were t	aken usi	ina the S	"x 8" temni	ate to de	termine #		na raadin	•		
A 100% sca	n within	the 8"x 8"	area to d	determin	e the minin	num and	the maxin	num thic	kness	j .		
A scan of th	е ирреп	most 1" of I	norizona	i weld wa	as perform	ed, the m	inimum re	eading of	n the weir	was 0 700"	the maximu	m
reading on t	he weld	was 0.893'	". Unable	e to obtai	in readings	on the l	ower part	of weld o	due to rou	gh and non-r	arallel surf	aces.
spection a	rea cent	tered 13" rig	ght of ve	ertical sea	am weld be	etween pl	ate 71-1	and plate	71-2, loc	king outward	. Reference	9
Zrawing 2E-	187-29-0	001 RO.				•				1		
								Ma	(adw	LLI	10 - 27-	06
Deview		an Étana	آ ل	<								
Review		ee Sione	au				Level	11	Date	10/26/	2006	

				•						IR	JILR -	>34	Ps	1 OF	1
General Ele	ctric										File Nam	e:			
Ovster Cree	k		Ultrasonic Thickness Measurement							Date:			10/26/2	2006	
Pofueling Q	1R21	Data Sheet						UT Procedure:			re: E	R-AA-3	35-00	4	
Page 1	of	1									Specificatio	n:	IS-32822	27-004	
Fage	lommy	Tuttle Len	PARA A	Vitto	}	Level:	11	Instrume	nt Tv	De:	Pana	netrics	37DL	Plus	
Examiner.	N/A			TANDE		Level:	N/A	Instrume	nt No	<u>, po.</u>):	- Cilla	03112	4309		
Transducer	Type:	V		Serial #:	338	302	Size:	0.200"	Fr	ea:	7.5 Mhz	T	Angle	: 0°	
Transducer	Cable Tv	pe: Panam	etrics Le	ength:	5'	Couplant:		Soundsa	fe		Batch No:	_	196	20	
Calibration I	Block Typ	e: C/S Ste	Wedge		Block N	umber:	CA	L-STEP-	123		,				
			-		SYSTE	M CALIB	RATION								
INSTRU	AENT SE	TTINGS	Initial C	al. Time		Calibration	n Checks			Final	Cal. Time		1		
Coarse Ran	ge:	2.0" - 5.0"	5:	01	See	data	See	data			5: 48				
Coarse Dela	y:	N/A	Calibrat	ted Swee	p Range =	0.500"	inche	es to	4.0	000"	Inches				
Delay Calib:		N/A	Thermorr	neter:	246	518	Comp.	Temp:	6	2°	Block Tem	o :	64°		
Range Calib	:	N/A	W/ON	lumber:	R209	1258									
Instrument F	req.	N/A	Total Cr	ew Dose		Drywe	ell Contair	nment Ve	ssel	Thick	ness Exam	inatio	n.		
Gain:		60-65 db	<u>40.0</u>	<u>) mr</u>	L		i	nternal U	T ins	pecti	D ns.		_	1	
Damping:		N/A		,		. ,							,		
Reject:		N/A	, 71'	6" Weld	Scan				1		8				1
Filter:		N/A									ВÇ	נת	EE	G	
								Min.	1	1 C	00	\circ	0 0	0	
Locatio	n ID	71-19 W	eldup	Bay	19	Elev.	71'6"	0.554"	-	2C	00	O	0 0	Ο	1.
	A	B	C	D	E	F	G	l	1	3 C	00	00	0 0	0	
1	0.624	0.621	0.632	0.638	0.601	0.621	0.639		1.			$\overline{\mathbf{a}}$	50	Ň	
2	0.641	0.645	0.620	0.635	0.591	0.626	0.613	' I				\tilde{a}		$\tilde{\mathbf{a}}$	
4	0.617	0.639	0.644	0.617	0.605	0.629	0.554	Max.	4					0	
5	0.635	0.644	0.645	0.656	0.653	0.628	0.590	0.656	•	6C	00	0 (0 0	Ο	
6	0.644	0.612	0.629	0.642	0.626	0.598	0.622		-] 7C	00	00	0 0	0	1.
7	0.648	0.622	0.610	0.624	0.612	0.636	0.603		1	ļ			· · · ·		Ļ
0	cse 1	ז ני	5375	2-02	Calibration Chec		k: 05:27					/eld			- I
l "		1 7			130 Av	a.	0.626	{	L	A	BC	D	E	G	Г
	67 [75				<u>.</u>	0.010			1 C	00	9	50	Õ	
Locatio	n ID	71-19 w	elddn	Bay	19 Elev.		71'6"		2 (200	0 (0 C	0	
÷	A	B	C	D	E	F	G	. Min	. -	30	$\hat{0}$	\circ	СÓ	Ô	
1	2.634	2.644	2.658	2.655	2.639	2.642	2.659	2.59	9"			$\tilde{\circ}$		$\tilde{\circ}$	1
2	2.644	2.646	2.637	2.670	2.604	2.651	2.004							$\tilde{\mathbf{a}}$	
3	2.030	2.022	2.630	2.609	2.642	2.626	2.628	1		50	000	00	50	0	
5	2.629	2.639	2.649	2.656	2.657	2.651	2.696	1		6C	00	0 (0 C	Ο	
6	2.660	2.633	2.642	2.644	2.654	2.642	2.686	1		70	00	00	D O	\mathbf{Q}°	
7	2.640	2.650	2.664	2.639	2.650	2.657	2.671		>						L
					Calibrati	on Chec	k: 05:25	1							
						or.	2.000	{				Max.	2.671"		
					~~	8.	2.040	1							
COMMENT	'S :		4-1			1				م الم م	-				
Forty nine	49) read	lings were	taken us	ang the t	o the mini		the maxi	ine avera	ige i	eadir	ıg.				
A scan of t	an withir ne unnei	most 1" of	horizona	a weld w	as perform	ned the r	ninimum	reading r	on th	oo. Ie wei	d was 0.7	17" the	a maxir	ทมกา	
reading on	the weld	1 was 0.91	I". Unabl	e to obta	ain reading	s on the	lower par	t of weld	due	to ro	ugh and n	on-par	allel su	inface	es.
inspection	area cer	tered 4" le	ft of verti	cal sean	n weld bet	ween plat	e 71-2 a	nd plate	71-3	, lool	ing outwa	rd. Re	ference	3	
drawing 2E	-187-29	-001 R0.				•		÷							
			<u>-</u>						M	M'A	un L	11	10.2	1-04	P
Review	ed by:	Lee Stone	d.	Ē			l evel	11		Date	10	26/20	06		
L Neviev	icu by.	200 010110		~ <	<u> </u>		20101				10	-0.20	~~		

AmerGen

Calculation Sheet

Appendix 4

Sheet No.

Bay 15 Area 23 Subject: **Drywell Corrosion**

Calc. No. Rev. No. System No. C-1301-187-E310-037 1 187

A4-27 of 32

For the overall mean

upper_f := Thick predict_f ...

+
$$qt\left(1-\frac{\alpha}{2}t, \text{Total}_{\text{means}}-2\right)$$
 Standard error $\sqrt{1+\frac{1}{(d+1)}+\frac{\left(\text{year}_{\text{predict}_{f}}-\text{Thick}_{\text{actualmean}}\right)^{2}}{\text{sum}}}$

$$lower_{f} := Thick \operatorname{predict}_{f} \cdots + -\left[qt\left(1 - \frac{\alpha}{2}, Total \operatorname{means} - 2\right) Standard \operatorname{error} \sqrt{1 + \frac{1}{(d+1)} + \frac{(year \operatorname{predict}_{f} - Thick \operatorname{actualmean}}{sum}}\right]$$

General area Tmin for this elevation in the Drywell

Tmin_gen 51;=541 (Ref. Calc. SE-000243-002)

12122-023 PS 1.11 $m_s = -0.777$

max(upper)+30 Mean of plote i transi وں ب^ر Buy 7 750 Thick predict 700 upper lower μ measured 650 ٥ Thinnest Individual Reguling. Tmin_gen 51 553752 758 \diamond 600 Att 550 $\min(\text{Tmin_gen }_{51}) - 30$ 2005 2015 1985 1990 1995 2000 2010 2020 2025 2030 1.985·10³ year predict, year predict, year predict, Dates, year predict, 2006.8 2.029.10³

										11	RJILR-02	A PaloF/
	General Ele	ectric		1							File Name:	N/A
	Oyster Cre	ek		JUltra	sonic	Thickn	iess M		Date:	10/23/2006		
	Refueling C)utage -	1R21	Data Sheet						ι	T Procedure:	ER-AA-335-004
2	Page	1 of	21	11.25	106 A	\int					Specification:	IS-328227-004
	Examiner:	Jeremy	Tuttle 🗸	IN Com	N JU	TIL	Level:		Instrume	ent Type:	Paname	rics 37DL Plus
	Examiner:	N/A	T	<u>Gunn</u>	- ping		Level:	N/A	Instrume	ent No:	03	1120708
	Transducer	Type:	D7908		Serial #:	338	302	Size:	0.200"	Frea:	7.5 Mhz	Angle: 0°
	Transducer	Cable Ty	pe: Panam	etrics L	ength:	5'	Couplant	;	Soundsa	fe	Batch No:	19620
	Calibration	Block Typ	e: C/S Ste	p Wedge		Block N	lumber:	CA	L-STEP-	108		
				<u>.</u>		SYSTE	EM CALIE	BRATION				
	INSTRU	MENT SE	TTINGS	Initial (Cal. Time		Calibratio	n Checks		Final	Cal. Time	
	Coarse Rar	ige:	2.0" - 5.0"	2	2:10	See	Data	See	Data	2	23:24	
l	Coarse Dela	ay:	N/A	Calibra	ted Swee	p Range =	0.500"	Inche	es to	1.500"	Inches	
	Delay Calib	:	N/A	Thermo	neter:	246	518	Comp.	Temp:	52°	Block Temp:	56°
	Range Calit):	N/A	W/OI	Number:	R209	1258				_	······································
	Instrument I	Freq.	N/A	Total C	rew Dose		Dryw	ell Contain	ment Ve	ssel Thick	ness Examina	tion.
ľ	Gain:		60-70 db	<u>22.</u>	<u>0 mr</u>	<u> </u>		li	nternal U	T inspecti	ons.	
	Damping:		N/A	1					1 1/2"		· · · · · · · ·	Area
	Reject:	,	N/A	23	' 6" Weld	Scan	alc	ng weld t	11/2 De			Below H
Ľ	Filter:		' N/A				be	low .740"		111		
L										↓ 1 Ĝ	⊾්ර්ර්	ර්ර්ර්
I	Locatio	on ID	23-17 w	eldup	Bay	17	Elev.	23' 6"		Noc		
E		A	В	C	D	E	F	G				
	1	0.781	0.773	0.770	0.760	0.767	0.760	0.770		30		\mathcal{P}
	2	0.765	0.769	0.765	0.762	0.761	0.758	0.760		4C	NQ O O	000
	3	0.761	0.759	0.774	0.777	0.765	0.716	0.707		5C	0 0 0 0	000
	4	0.776	0.758	0.773	0.764	0.781	0.777	0.760	Min			
7	5	0.763	0.764	0.775	0.774	0.776	0.771	0.762	0.628"	H_{\circ}	' <u>Yur</u> g	
┢		0.771	0.765	0.761	0.7/4	0.772	0.762	0.758	0.020	[755	QOO	$\mathbf{Q} \mathbf{O} \mathbf{O}$
ŀ		0.7001	0.140	0.002	0.742	Calibrati	0.745	0.013		L Billing	blow	
	Qe	se /s	r g	-537	52-02	Tso	CF. 0.740			1000		
		F	AHS			Avg. 0.758			16		E F G	
			(+11)				×					
E	Location ID 23-17 we				Bay	17	Elev.	23' 6"		_/ 2 (νυφυ	000
		A	B	С	D	E	F	G	Min	7 3 C	O O O O	000
	1	1.157	1.169	1.141	1.154	1.168	1.162	1.147	0.867	4C	aloo	000
\mathbf{F}	<u> </u>	1.176	1.170	1.161	1.152	1.156	1.171	1.160			$\lambda \tilde{\lambda} \tilde{\lambda}$	
\mathbf{F}	3	1.1/5	1.183	1.170	7.166	1.165	1.162	1.176				
\mathbf{F}		1 100	1 105	1 195	1.188	1.190	1.171	1.151		6 Ç	0000	000
\mathbf{F}	6	1.195	1.176	1.188	1,192	1 192	1.195	1 120		7¢	000	0001
ŀ	7	1.177	1.175	1,180	1,181	1.183	1.193	1.100		_ل_		
r						Calibratio	on Checl	(; 22:48	·	_/		
I					ł	Tsc	r.	0.960	Area 1/	4" to 3/8"		ax 1,199"
					1 I	Avç	, 	1.176	along w	veld toe		
I					•				Delow .	900		
b	OMMENT	S:					·					
F	orty nine (49) readi	ings were t	aken us	ing the 8	"x 8" temp	ate to de	termine th	le avera	ne readin	n	
1	00% scan	of the wo	eld and 10	0% scan	within th	ne 8"x 8" ai	rea to def	ermine th	e minimi	um and th	e maximum fi	hickness
N	linimum re	ading on	weld was	0.689", I	Maximun	n reading o	on weld w	as 0.918"	•			
					* .	2						•
Ā	spection a	irea cent	ered 55" le	eft of ver	tical sear	n weld bet	ween pla	te 23-19 a	and plate	e 23-20, lo	oking outwar	d. Reference
d	rawing 2E-	187-29-0	001 R0.						74	malli	1 10 10	-25-06
	- ·		<u> </u>									
L.,	Review	ed by: L	ee Stone	un.				Level	<u> </u>	Date	10/23/2	2006

. *	•	•	•							IRDIIR-0	30 mm 10-15
General Fir	ectric		T						í – – – – – – – – – – – – – – – – – – –	File Name	/A
General Ex	ak		lilltra	sonic	Thickn	nose M	oseure	ment		The Hame.	
Oyster Cree	ek	Line	1	301110	Dete		casure	ment			10/24/2006
Refueling	Dutage -	1R21	- 1747AL 10 -	25-06	Data	Sneet			L	T Procedure:	ER-AA-330-004
Page	1 01	<u> </u>	<u> </u>	$-\mathcal{A}$		T				Specification:	IS-328227-004
Examiner:	Jeremy	Tuttle	llenny	C IUM	<u></u>	Level:	<u> </u>	Instrume	ent Type:	Paname	trics 37DL Plus
Examiner:	N/A			10		Level:	N/A	Instrume	ent No:		1120708
Transducer	Coble Ty	D/908		Senar #:	338	Couplant	Size:	0.200	Freq:	7.5 Mhz	Angle: 0°
Calibration	Block Typ	pe. Fanan		engui.	Block N	Jumber		J_STEP.	108	Batch NO:	19620
Calibration	DIOGR TYP		<u>p 1100g0</u>		SVSTR	M CALLE	PATION		100		
INSTRUMENT SETTINGS Initial Cal Time Coliberation Charles I Find Cal											······
Coarse Bar	nge.	20"-50"	2	:28	Soo	Data	See)ata	rillat	3.27	
Coarse Del	av:	N/A	Calibra	ted Swee	p Rance =	0.500"	Inche	s to	1.500"	Inches	
Delay Calib	:	N/A	Thermor	neter:	246	518	Comp	Temp [.]	52°	Block Temn	56°
Range Calil	b:	N/A	W/O	lumber:	R209	1258				Look remp.	
Instrument	Freq.	N/A	Total C	rew Dose		Dryw	ell Contain	ment Ve	ssel Thick	ness Examina	tion.
Gain:		60 db	9.0	mr	· ·		lı	nternal U	T inspecti	o ns.	
Damping:		N/A			-	1	·· <u>··</u> ·····			· · · · · · · · · · · · · · · · · · ·	
Reject:		N/A	23	' 6" Weld	Scan	. .			I		
Filter:	· .	N/A					· .		77	d	f
						•		· · ·	110	ා රී රී	। है है ह <u>ै</u> ।
Locatio	on ID	23-15 W	/eldup	Bay	15	Elev.	23' 6"				
	A	В	С	D	E	F	G			-4^{-1}	000
1	0.792	0.773	0.757	0.728	0.827	0.759	0.813		30	0000	000
2	0.796	0.765	0.770	0.765	0.827	0.738	0.831	MIN.	HT4C	0000	O Q O
3	0.745	0.728	0.655	0.787	0.827	0.826	0.823	0.055	5C	0000	
4	0.798	0.795	0.786	0.810	0.826	0.832	0.829				Max.
<u> </u>	0.799	0.790	0.705	0.825	0.020	0.022	0.830				0.832"
7	0.791	0.794	0.797	0.828	0.808	0.803	0.805				
DĊ	SP 1	141155	.7707	-0.4	Calibration Check		k: 03:04	03:04 0.740		Weld	
¥	. J.C. 17	your 3 2	2000	~ X			0.740			BCD	FFG
	AH	2			Av	g	0.795		1 C	ŌŎŎŎ	ŎŎŎĹ
Locatic	22.15 W	olddn	Base	48	Flore	001.01		2 C			
		C	D D D	15 F	⊏iev.	23.6					
1	1.154	1.153	1.149	1.154	1.156	1.187	1.147	Min.			
2	1.156	1.160	1.165	1.154	1.150	1.165	1.161	1.141	"┝┼╇┕		
3	1.154	1.160	1.158	1.154	1.157	1.153	1.171	L	┘ ₅C	0000	000
4	1.157	1.161	1.149	1.160	1.149	1.158	1.165		6C	000	000
5	1.167	1.155	1.145	1.170	1.157	1.160	1.150		70	000	000
- 6 - 7	1.1/5	1.15/	1.158	1 167	1.157	1.156	1.164				
	1.1/0	1,177	1.1//	1.100	Calibrati	on Check	c: 03:08				·
		e Al an		· h	Tsc	r. 1	0.960				Max. 1.186"
				ľ	Āvg	g.	1.160			L"	
OMMEN'	rs:										
Forty nine	 (49) read	inas were	taken us	ina the 8	"x 8" temn	late to de	termine t	ne avera	ne readir	a	
y	of the w	eld and 10	0% scar	within th	ne 8"x 8" a	rea to de	termine th	ne minim	um and t	e maximum	thickness
100% scan			0.865",	Maximur	n reading	on weld v	vas 1.029				
100% scan Minimum re	eading or	i welu was			-		i.				
100% scan Minimum re	eading or	i welu was								•	
100% scan Minimum re	eading or	tered 15" lo	eft of ver	tical sea	m weld be	tween pla	ate 23-18	and plat	e 23-19, l	ooking outwa	rd. Reference
100% scan Minimum re nspection rawing 2E	area cent -187-29-	tered 15" lo 001 R0.	eft of ver	tical sea	m weld be	tween pla	ate 23-18	and plate	e 23-19, I		
100% scan Ainimum re nspection rawing 2E	area cent	tered 15" lo 001 R0.	eft of ver	tical sea	m weld be	tween pla	ate 23-18	and plate V	e 23-19, I <u>MR`UU</u>	ooking outwa	rd. Reference 10 - 25 - 06
100% scan Minimum re nspection rawing 2E Review	area cent -187-29-4	tered 15" k 001 R0.	eft of ver	tical sea	m weld be	tween pla	i evel	and plate	e 23-19, I <u>M W W</u> Date	ooking outwa	rd. Reference 10-25-06