February 26． 1938
ir．Charles E．MacDonald，Chief Transportation Branch
Division of Safnguards and Transportation．Miss U．S．Nuclear Regulatory Commission Washington，D．C． 20555

Dear fir．MacDonald：
The Department of Energy（DOE）requests renewal of the IRC Certificate of Compliance（ $\mathrm{C} \cap \mathrm{C}$ ）Number 9152 having an expiration date of March 31， 1983. DOE programs have a continuing need for the packaging．The operating history and a brief status of the package are given below：

o Maintenance of packaging has been carried out in accordance with
Section 8.2 of the SARP（EGU－T：11－8008）
There have been no changes in the packaging，design，hardware or contents daring the current period of certification．The Safety Analysis Report for Packaging（SARD）（EGG－TMI－8OOB）for the CNS 1－13C Il has been consolidated to include all amendments made to the SARP when previously held by Cheri Nuclear Systems，Inc．The CHS－1－13 II packaging was purchased by DOE．in April 1932.

Should you require any further information on this package or enclosures， please call mir（3r3－539．），or Erich Oppernan（35．3－3954）of my staff．

> Sincerely,
Marbifortueck
Charles J．Muck
Chief of Packaging Certification Office of Security Evaluations Defense Programs
6 Enclosures

3

SAFETY RMALYSIS REPORT
 FOR
 MODEL I-I3C II PACKAGIMG
 TO
 10 CFR 71 TYPE "B" FACKAGING REQUIREMENTS

DECEMBER 2987

Submitted By:
EG\&G IDAHO, INC.
1955 FREHONT AVE.
IDAHO FALIS, IDAHO 83415

LECEMBER 1987

```
            Sli&mitこed Sy:
                EG&G IDAFO, I\C.
                IG55 FREMCNT AVE.
                IDAHO FALIS, IDA%OO 334\5
```


TABLE OF CONTENTS

Page

1. GENERAL INFORMATION $1 \cdot 1$
1.1 Introduction 1-1
1.2 Package Description 1-3
1.2.1 Packaging 1-3
1.2.2 Operational Features 1-8
1.2.3 Contents of Packaging 1-8
1.3 Appendix $1-10$
2. STRUCTURAL EVALUATION 2-1
2.1 Structural Design 2-1
2.1.1 Discussion 2-1
2.1.2 Design Criteria 2-4
2.2 Weights and Centers of Gravity 2-6
2.3 Mechanical Properties of Materials 2.7
2.4 General Standards for all Packages 2-11

* 2.4.1 Minimum Package Size 2-11
2.4.2 Tamperproof Feature 2-11
2.4.3 Positive Closure 2-11
2.4.4 Chemical and Galvanic Reactions 2-11
2.5 Lifting and Tiedown Standards for All Packages 2-11
2.5.1 Lifting Devices 2-11
2.5.2 Tiedown Devices 2-51
2.6 Normal Conditions of Transport 2-66
2.6.1 Heat 2-66
2.6.2 Cold 2.77
2.6.3 Reduced External Pressure 2-79
2.6.4 Increased External Pressure 2-79
2.6.5 Vibration 2-81
2.6.6 Water Spray $2-81$
2.6.7 Free Drop 2-81
2.6.8 Corner Drop 2-91
2.6.9 Compression 2-91
2.6.10 Penetration 2-91
2.6.11 Conclusions 2-91

TABLE OF COMTEITS (CONT'D)

2.7 Hypothetical Accident Conditions 2-92
2.7.1 Free Drop $2-92$
2.7.2 Puncture 2-110
2.7.3 Thermal $2-112$
2.7.4 Immersion - Fissile Material 2-116
2.7.5 Immersion - All Packages 2-116
2.7.6 Summary of Damage 2-116
2.8 Special Form 2-117
2.9 Fuel Rods $2 \cdot 117$
2.10 Structural Evaluation Appendices 2-117
2.10.1 Analytic Methods 2-118
2.10.2 Finite Element Stress Summary $2 \cdot 152$
2.10.3 Lift Lug Analysis 2-154
2.11 Appendix - Engineering Drop Test for l-13C II Shipping Package 2-169
2.11.1 Scope 2-169
2.11.2 References 2-169
2.11.3 Detailed Prodedure: Conduct of Drop Test 2-171
2.11.4 Tést Results/Data 2-189
2.11.5 Interpretation, Correlation, and Conclusions 2-204
2.12 Attlachment 2-213
3. THERMAL EIVALUATION 3-1
3.1 Discussion 3-1
3.2 Summary of Thermal Properties of Materials 3-5
3.3 Technical Specifications of Components 3-8
3.4 Thermal Evaluation for Normal Conditions of Transport 3-8
3.4.1 Thermal Model 3-8
3.4.2 Maximum Temperatures 3-20
3.4.3 Minimum Temperatures 3-31
3.4.4 Maximum Internal Pressures 3-31
3.4.5 Maximum Thermal Stresses 3-36
3.4.6 Evaluation of Package Performance for Normal Conditions of Transport 3-36
3.5 Hypothetical Accident Thermal Evaluation 3-37
3.5.1 Thermal Model 3-37
3.5.2 Package Conditions and Environment 3-37
3.5.3 Package Temperatures 3-38
3.5.4 Maximum Internal Pressures 3-56
3.5.5 Maximum Thermal Stresses 3-56
3.5.6 Evaluation of Package Performance for Hypothetical Accident Thermal Conditions 3-66

TABLE OF CONTENTS (CONT'O)

3.6 Appendix 3-67
4. CONTAINMENT 4-1
4.1 Containment Boundary 4-1
4.1.1 Containment Vessel 4-1
4.1.2 Containment Penetration 4-1
4.1.3 Welds and Seals 4-2
4.1.4 Closure 4-2
4.2 Requirements for Normal Conditions of Transport 4-3
4.2.1 Containment of Radioactive Material 4-3
4.2.2 Pressurization of Containment Vessel 4-3
4.2.3 Containment Criterion 4-5
4.3 Containment Requirements for Hypothetical Accident Conditions 4-5
4.3.1 Fission Gas Products 4.5
4.3.2 Containment of Radioactive Material 4-5
4.3.3 Containment Criterion 4-8
4.4 Appendix A - Normal and Accident Radioactive Material Limits for the 1-13C II Cask 4-15
4.5 Appendix B - Parker Stat-O-Seal Information 4-30
5. SHIELDING EVALUATION 5-1
5.1 Discussion and Results 5-1
5.2 Source Specification 5-1
5.3 Model Specification 5-3
5.3.1 Damage Predictions - Corner 5-3
5.3.2 Damage Prediction - Side 5-8
5.3.3 Damage Prediction - Ends 5-10
5.4 Shielding Evaluation 5-13
5.5 References 5-18
6. CRITICALITY EVALUATION 6-1
6.1 Discussion and Results 6-1
6.2 Package Fuel Loading 6-1
6.3 Model Specification 6-1
6.4 Criticality Calculation 6-1
6.5 Critical Benchmark Experiments 6-2
6.6 Appendix 6-6

TABLE OF CONTENTS (COMT'D)

7. OPERATING PROCEDURES 7-1
7.] Procedures for Loading Package 7-1
7.2 Procedures for Unloading Package 7-6
7.3 Preparation of Empty Package for Transport 7-6
7.4 Procedures for Shipment of Packages Which Generate Combustible Gases 7-6
8. ACCEPTANCE TESTS AND MAINTENANCE PROGRAM $8-1$
8.1 Acceptance Tests 8-1
8.1.1 Visual Inspection $8-1$
8.1.2 Structural and Pressure Tests 8-1
8.1.3 Leak Tests 8-1
8.1.4 Component Tests 8-2
8.1.5 Tests for Shielding Integrity 8-2
8.1.6 Thermal Acceptance Tests 8-2
8.2 Maintenance Program 8-2
8.2.1 Structural and Pressure Tests 8-2
8.2.2 Leak Tests 8-2
8.2.3 Subsystem Maintenance 8.2
8.2.4 Valves and Gaskets on containment Vessel 8-3
8.2.5 Shielding 8 -3
8.2.6 Thermal $8 \cdot 3$
8.2.7 Appendix - Leak Test Procedures 8-3
8.3 Appendix $8-4$

1.0 GENERAL INFORMATION

1.1 Introduction

This Safety Analysis Report cescribes a reusable insulated and shock absorbing shipping package designed to protect radioactive material from both normal conditions of transport and hypothelical accident conditions. The package is designated as the Model l-13C II Package. It is intended to dellver fissile Class IIl material, irradiated reactor hardware, and other solid materials including process solids, in excess of Type A quantities.

The package is an improved lineal descendant of the CNS 1-13C, Package Identification Number USA/9081/B ()F, and the General Electric Model 1600 Shipping Cask. Package Identification Number USA/9044/B ()F.

The Improvements contalned in the Model 10-3C II Package include the following:

- A pair of circular shock or impact absorbing limiters, placed peripherally around both top and bottom of the circular cask body. They provide capability to protect the package from damage under hypothetical accident conditions.
- A fire shield surrounding the cylindrical cask body. The fire shield is designed to protect the package from damage during the hypothetical fire events.
- Numerous improvements to closure and sealing detalls providing greater containment integrity and improved decontamination features.
- Shipment of fissile material within the cask is accomplished through the use of varlous container configurations. The fissile material is radioactive fuel bearing debris samples with a maximum enrichment of 3% in U-235. Dependent upon the contalner utilized, size, geometry or mass of the sample will be controlled to preciude criticality.
A. General Debris Container Configuration

Shlpment of up to $15.4 \mathrm{~kg} \mathrm{VO}_{2}$ (400 grams of $\mathrm{U}-235$) can be placed in closed debris containers with a defined geometry. The debris containers are placed in DOT approved $2 R$ contalners. A shoring cage within the cavity of the cask segregates each of the three $2 R$ containers and ensures a close fit within the cask cavity. The $2 R$ containers provide the supplementary containment of the debris samples. The debris containers define the size and geometry conflguration of the debris within the cask cavity which. in turn, limits the mass of fissile material.

1.2 Package Descriotion

1.2.1 Packeging

$\therefore \quad$ Cask and Inpact Limiters (See CNS Drawing No. E-1-436-111)

The packaging system consists of a pair of circular impact limiters (or overpacks) placed peripherally around each end of a cylindrical cask. The cylindrical cask is 39.12 inches in diameter and 68.06 inches high. The cylindrical cask body is comprised of a $1 / 2$ inch stainless steel shell, Type 304 , overlaid with $1 / 4^{\prime \prime}$ stainless steel fire shield. Eetween these two materials is a .065 (16 gauge) stainless steel wire wrap, thus providing an air gap for additional thermal protection. The inner cylindrical shell of the cask, or cavity, is fabricated of $1 / 2$ inch stainless steel. Type 304. The annular space between these inner and outer shells is filled with lead, having a thickness of approximately 5 inches. The base of the cask consists of inner and outer circular plates, fabricated of $1 / 2$ inch stainless steel. Type 304, separated with a lead shield of approximately 6 inches thickness.

The cask lid is comprised of a conical sector attached top and bottom to inner and outer circular flat plates. The conical segment of lid is fitted within a step recess approximately 6 inches depth in the cask body. Conical surfaces and inner surfaces of the lid are fabricated of $1 / 2$ inch stainless steel, Type 304. The outer circular flat plate segment of lid is fabricated from a 1 inch plate, machined to approximately 0.8 inches thickness. A load bearing step of approximately 0.2 inches thickness, surrounds the periphery of this outer lid plate, reacting containment bolt preload forces and confining the flat gasket. A solid silicone 0 -ring exists near the edge of bottom of the lid. The space between inner and outer flat lid plates is filled with lead, having a thickness of approximately 5.78 inches.

The removable lifting lugs are attached to lifting pads integral with the cylindrical cask body. Tiedown lugs are integral to the top energy absorbing overpack assembly.

Each limiter has an external shell, fabricated from ductile low carbon steel. which allows it to undergo large deformations without f-acturinc. Each is secured to the cask body by six (6) one inch ratchet binders, connecting top ard bottom cverpacks. The volume between the inner and outer shell of the overpack is filled with a shock and thermal insulating material consisting of rigid polyurethane foam, having a density of approximately $16.5 \mathrm{lbs} / \mathrm{ft}^{3}$. The insulating material is poured into the cavity between the two shells and allowed to expand. complete'y filling the void. It bonds to the shells, credting a unitized construction of the packaging. Properties of these materials are further described in Section 2.j.

- Containment Vessel

The containment boundary of the package is defined as the inner stainless steel shell of the cask body together with closure features comprised of: the lower surface of the cask lid, 12 equally spaced $1-1 / 4$ inch closure bolts, a solid silicone flat gasket, and a silicone $0-r i n g$.

Refer to Section 4.0 for a complete description of the containment boundary for the 1-13C II Package.

- Neutron Absorbers

There are no materials used as neutron absorbers or moderators in the Model 1-13C II Package.

- Package Height

Gross weight for the package is approximately 27,000 pounds. This includes a payload weight of 3,000 pounds.

- Recertacles

There are no internal or external structures supporting or protecting receptacles.

frain/Yent Dorts

ihe cask is provided with two 1/2" 0.0. lines. These are used for the draining, venting and removal of entrapped liquids. Refer to Section 4.1.2 for drain/vent system descriptions.

Tiodouns

Tiedowns are a structural part of the package. From the General Arrangement Drawings shown in Appendix 1.3, it can be seen that four tiedown lugs are provided as an integral part of the top energy absorbing overpack assembly. Refer to Section 2.5 for a detailed analysis of their structural integrity.

bifting Devices

Lifting devices are a structural part of the package. From the General Arrangement Drawing shown in Appendix 1.3 , it can be seen that two removabie lifting lugs attached to the cylindrical cask body are provided. A single lifting lug is also provided for removal and handing of the lid. Refer to Section 2.5 for a detalled analysis of their structural integrity.

- Pressure Relief System

The drain port is provided with a plug, permitting venting of internal pressure within the containment cavity generated by decay heat, prior to lid removal. The top vent port is provided with the same plug for venting any pressure between the 0-ring and flat lid gasket prior to lid removal.

Refer to Section 4.1.2 for a description of this pressure relief feature.

- Diat Discieztion

There are no special devices used for the transfer or dissipation of heat. The package maximum design capacity is 800 watts. Refer to Section 3.0 for the thermal evaluation of the I-ijC II Package.

- Ccolants

There are no coolants involved.

- Protrusions

There are no outer or inner protrusions. Tiedown lugs are removed prior to transport.

Shielding

Cask walls provide a shield thickness of 5 inches lead and 1-1/4 inch steel. Cask ends provide a minimum of 6 inches lead and 1 inch steel.

The contents will be limited such that the shielding provided will assure compliance with dose rate limits as specified in 10CFR71.
3. Fissile Material Containers

1. General Debris Container

The general debris container configuratior as described in part A of Section $1 . i$ consists of a general debris container (loaded with either a fuel pin sample cell or debris container) loaded into a $2 R$ container in a shoring cage. A shipping configuration is shown in EG \& G orawing TMI 1113 in Section 1.3.

The following is a description of these components.

Gonoral Qopris Cantziner

ihis component is a handing insert which consists of a 300 series stainless steel vessel, with welded concentric sinells and encapsuiated iead shlelding. The external dimensions are nominally 8.0 in diameter by 12.75 in height. The cavity size is 2.75 in diameter by 7.79 in height. The nominal cavity volume is 2:300-2600 cubic centimeters. The cask exterior walls are smooth. A steel lid closes the upper fortion of the cavity. The lid is held in place by a jam-nut arrangement. A $1 / 4$ in drain line located in the lower portion of the container permits dewatering of the contents. A fine steel mesh screen covers the drain tube orifice.

The container permits debris loading into either of two small baskets: (1) The fuel pin sample cell, or (2) the debris basket (see Drawing 2E-3200-1040 in Section 1.3).

Efe bolts on the shielded container body are used for in-plant handing and are removed prior to shipping. The lead shielding in the container is solely required for in-plant handing, (it is not required to augment the cask shielding).

- $\quad 2 R$ Container

The $2 R$ container meets the $D O T$ requirements of 49CFR 178.34. It is fabricated from steel pipe and has external dimensions of 10 $3 / 4$ inches 0.0 by $141 / 4$ inches high. The bottom end is welded to the container walls. The container cover is one inch thick and is threaded to the container wall to provide closure. Per DOT requirements, a non-hardening thread lubricant is used and the lid closure is adequately torqued. The debris container is placed within the $2 R$ container or it may remain empty. Radial movement of the debris container within the container is accommodated by pine strip shoring (1"x2" $\times 10^{\prime \prime}$).

- Cask Cavily Shoring Cage

The wooden (pine) shoring is constructed in a cylindrical shape, and Includes Inner and outer $2 \times 1 / 8$ in. thick rings of carbon steel as strapping.

1.2.2 Operational Features

Refer to the General Arrangement Drawing of the packaging in Appendix 1.3. There are no complex operational requirements associated with the Model l-13C II package, and none have any transport significance.

1.2.3 Contents of Packaging

(1) Type and form of material
(1) Greater than Type A quantity of nonfissile rajloactive material as solldified or dewatered process solids (resins) within a sealed secondary contalner: or
(11) Greater than Type A quantity of irradiated solld reactor components within a sealed secondary contalner.
(111) Greater than Type A quantity of irradiated fuel debris (dewatered) within secondary contalners.
(2) Maximum quantity of material per package

For the contents described in (1)(1). (11), and (111):

Not to exceed a decay heat generation of 800 watts and 3,000 pounds including weight of the contents and secondary container: and
for the contents described in (1)(1):

Residual water in ti:e secondary container not to exceed the activity stated in Table 4.3.2-1.

For the contents described in (1)(111):

The maximum U-235 enrichment of the uraniur oxide fuel material must not exceed 3 weight $\%$. The average burnup of the fuel material must not exceed 3,165 MWD/MTU and must be cooled for a least six years.

- General Debris Container Configuration

Fissile contents not to exceed $15.4 \mathrm{~kg} \mathrm{UO}_{2}(400 \mathrm{grams} \mathrm{U}-235$ prior to Irradiation).

Revision 0

1.3 APPENDIX

1.3.1 Orawings

$\begin{array}{ll}\text { 1.3.1.1 CNS Orawing No. E-1436-111. Rev. D.. "CNS } \\ & \\ \\ & \end{array}$
1.3.1.2

GPU Nuclear Orawing No. 2E-3200-1040, Rev. O, "General Debris Shlelded Container - 1 Assy \& Fuel Pin Sample Shielded Contalner - 2 Assy"

1.3.2 Sketches

1.3.2.1 Model 1-13C II Package

Revision 0

FIGURE 1.3.2.1
MODEL 1-13C II PACKiGE

FIGURE WITHHELD UNDER 10 CFR 2.390

FIGURE WITHHELD UNDER 10 CFR 2.390

FIGURE WITHHELD UNDER 10 CFR 2.390

2.0 ciacturah

int; Chaoter identlfies and descrites the princlpal structural engineoring zasign ai the packaging, components, and systems. important to safaty ard io :empilince with performance requirements of 10 CFR 71.

2.1 Structural Dosign

$\therefore . i .1$ jiscussing

The purpose of the 1-1jC II Package is to provide a safe means of transport for radioactive materials in excess of iype A quantities. The package has bean designed to provide a shielded containment vessel that can withstand the : Hormai Conoltions of Transpoit as wellas those associated with the Hypothetical Accident Condition.

Principal structural elements of the system consist of:
i. Containment Vessel
3. Biological Shield
C. Fire Sineio
D. impact Limiters

Samecrents A-D desiçn and function in meeting the reauirements of 10 CfR 71子-9 Jiscusser below.
ine l-iミC l: assembly is designed to protect the payload from normal transport and hypothetical accident conditions. These include: transport environment. $j 0$ foct drop test. 40 inch puncture test. $1475^{\circ} \mathrm{F}$ thermal exposure and iransfar or disslpation of any internally generated heat.
 the 1-13C II fackage. The conacrvatye capabilities of chis package design have been conclustreig demonstrated by tio successive, or cimulatioc ful: scale hyorherlcal aceldent irop testa, gee Section 2.11. Zach of the four 3t:uciursi eleaencs are sumarized below.
2. A 1.1 Cgnesionent vezsed

The cask 13 comprised of inner and outer stalaless stecl shella Type 304, one-half inches in infcicness, enveloplas the lead biological shield. The Inner ahell acrvea an the packabe contalmant boundarj. d removable tapered 11d 13 attached to the cask body with taelve (12) equally spaced 1-1/4-7 UHC bolta. All velda are eubjected to non deatructive examination.

The lid to caak body interface employa hlgh cemperature, alid allicone $0-r i n g$ and a flat, hish temperature, illicone seal. The flat silicone seal is captured in a machined circumferential lid seep. This gep is designed to preclude overcompression of the flat gasket and O-rins materials under bolt preloads and inpact forces. all transport environments as vell as accident conditions, d.e., 30 foot drop, 40 lach puncture teat requifementa etc., are aet by the cxternal shell with impact limitera installed as discussed in Section 2.1.1.4 below. All thermal loading and diasipation requirementa are met as discussed in Sections 2.1.1.3 and 2.1.1.4 belov.
2.1.1.2 Biolosicel_shield

The area between the two shells digcussed in Section 2.1.1.1 is fllled with lead. The lend flll ds subjected to Gama Scan inapection to asaure lead antes:ity. The desfgned thlekness asaures that no blological hazard la presented by the $1-13 C$ II and all ahlelding requirements of 10 CFZ 71 are met. Lead bonding 13 not assumed to take place between the inner and outer shells.

 :he cask geructure and normal convection to the atmosphere.

The flre shicid coralating of .065 diameter atalnleas wire aplral wound on the outside sursace of the cask and covered ith $1 / 4$ stalaless steel cladding providea $=$ hermal procection during the 1475° thermal exposure test. The Impact limiters provide thermal protectlom for the ends of the package. During hypothetical flre accidents, eal temperature la malntalned below 360° : and lead temperacure la malntalned below $509^{\circ} \mathrm{F}$. These temperatures are vell below the design limit for the seal material and well below lead melt temperature.

2.1.1. Impase himbser

The impact ifmiters (overpacks) are deagned to protect the package from deformation durins the 30 foot drop and provide thermal protection aa discuazed in Section 2.1.1.3. Their construction consists of full welded steed ahells filled with foamed in place figid atructural polyurethane foam of a 16.5 lbffe ${ }^{3}$ density. The fom provides concrelled deformation rates duriag lmpact. The foam degrades at $400^{\circ} \mathrm{F}$ and form an al: space within the lmpact llalter sheli which propldes an effective thermal barrier during the $1.75^{\circ} \mathrm{F}$ thermal exposure test.
2.1.1.5 symuery

Detalled digcuasions of all componenta and material utilized in the CNS l-13C II package including stress, thermal, and presgure calculations are contained In the applicable sections of the SAR.

2.i.2 2esinsmitioria

Z:e :-13C i: has seen designed to be a simple strong package that will provite -aciamm ileatbility for multiple usage as well as minlmize potential exposure :a cperating personnel. its size and shialding capacity will allow y yariety oi axisting ard future payloads to be safely transported. The containment fessai is fuliy sealed and is fully isolated from the cask extertor by leac ani a heavy stenl jacket. Since the package ends represent the most critical jcrtion of the cask, they are further protected by impact limiters. Impac: ilaiters of this type have been successfully used on many Type "B" packages. ihey not oniy reduce impact loads but also provide efficient therm?: insulation for the ends of the package.

The dcminant loads imposed ufon any Type "8" package are due to the hypotietical accident drop events. Successive full scale drop tests have demonstrated the capabilities of the 1-13C II Package to survive these dominant icad without incurring stresses or strains measurably in excess of pisid values.
where appropriate, the evaluations of package structural integrity are based apen aemenstrated test results. Where not appropriate, analytic methods are used :o augment test data. In all cases, the package has been designeo to provide well defined load paths which lend themselves to simple, highly reliable structural analysis methods. No ney state-of-the-art approaches have been used for energy absorption, thermal insulation or analytic evaluation. All analytic techniques used throughout the SAR are proven methods that have been used in past submittals. Detalls of these methods have been used in iast sumfitials. Details of these methods appear in Section 2.10.

Rroulatory Gutde 7.6 "gestan Criterta for the Structural dnajyala of Shipflan Cask Contadrment fessels" was used in conjunction with Regulatorf Gu!de 7.8 " Soad Combinations for the Structural Analjais of Shipping Cabks" to evajuate the l-ljC il Packase. Materlad propertyes uaed In the analyala can be found on Table 2.3-1.
2.1.2.2.1 Containent jessel

The contalnment ressel is interpreted te be the inside stainless steel shell and its closures. Regulatory Guide 7.6 vas used for the evaluation of the contalnment vesael for both the Rormal Conditiona of Tranaport and the Hypotherical Aceident Conditions. Material properties used in the evaluation
 Code, Section III. Ciass I, 1977 Edition as amended.

2.1.2.2.2 Cask and Overpack

Si cuctural evaluation of non-contalnment vessel items such as the extermal sking, closures, overpacks, lifting and rledown fitting were evaluated agalnst yledd and ulthate materdal propertica as presented in the asme Code, section III, Class I. For Normal Conditions of Iransport, yield strensth was used as a maxlmum atress for the caak. The overpack la alloved co creed yleld atress for nomal condiciona; hence, ultmate evaluating dccident Conditions, ultimate stress or ultimate strains vere uaed as the acceptance criteria.

```
2.1.2.3 Qrher sriucsurgh Ealluremedes
```


The primary matcilal used in the cask 13304 atainleza steel. mis material does not expertence a fuctile to brittle transition in the temperature ranges of Incereat (down co $-40^{\circ} \mathrm{r}$) : hence 1 a afe from britele fracture.
2.1.2.3.2 Rusiondne

Buckilng per aegulatory Guide 7.6 is an macceptable fallure mode for the concalment vessel. The intent of this provision is to preclude large deformations which vould compromise the validity of linear analysis assumplions and quasi-linear atresa allnuable as given in paragraph C. 6 . of :RZ Regulatory Guide 7.6.

Successive d:op rests at the most critical orientacions of the package falled to induce any measurable diatortion of the contalnment vessel, or exterior shell. Under service conditions, intermil pressures would induce membrane blaxial tenslle atreas components in the contalnment reanel. Theae tenslle atcesses would tend to reduce compressive atresses due to hypothetical sccident impact induced Internal forces. Thus, under these conditiona, the package vould be less susceptable to bucillag fallures than under the condiciona tested. SInce no inciplent buckling was experienced during the Eest, it may be afely concluded that buckling la not a probable fallure mechandam for the l-13C. II package. Ro further conalderation of buckling la therefore provided in this report.

2.2 Weishts and Center of Grovity

The center of gravity of the $1-13 C$ II package is located at the geometric center of sravity and is show in the aketch found ai figure 2.5.2-1 on page 2-54.

```
"re!ght bteakcorn ls as follows:
    Cask Sody 17,955
    L|d 2,115
    Top Overpack 1,550
    Bottom Overpack 1,255
    Overpack Blndera 480
    Cont!ngency (2.8%)
        Net. Package
        Payload
        TOTAL GROSS PACKAGE WEIF.ETT:
```17,9552,1151,5501,255480645

24,000 16s.

2,000

27,000 Lba.

\subsection*{2.3 Mechandead Preperties of Marerials}

The Model l-13C II package is fabricated from stalniess steel, low carbon ateal, and atructural fonm. Draving E-I-4jb-111; Section l.j, dafinea the specific material used for each item of the package. Iable 2.3.1 presents material propertles used through the analyais ant references the sources of chese data.

The energy abarbing overpacks are constructed of riald polyurethane foam with a density of \(16.5 \mathrm{lb} / \mathrm{ft}^{3}\), foamed in place, acif-extinguishing. Figure 2.3-1 represents the atresa-etraln curve for the foam uaed for thia package. The curve provides both minimum and maximum compressive properties and was derived from eight samples of varjing density and grain direction. A 95x probability factor was applied to the atandard deviation to eatabllah the spread shown. Cllsi foam Specification No. 1-436-112 deflnes the detall foaming ceating procedure. It specifies that foam amples will be caken during the actual foaming procean and teated to verify that they are within \(\pm 102\) of the mean curve ar 10x, \(30 z\) and \(60 x\) strafna.

TABIE \(2.3-1\)
Mechanlcal Propertles of Materlals

Tabl - 1 (Continued)
Mech al Properties of Materlals
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Materlal} & \multirow[b]{2}{*}{Crade or Type} & \multirow[b]{2}{*}{Temperature} & \multirow[b]{2}{*}{\[
\begin{gathered}
\text { Yleld } \\
(1)
\end{gathered}
\]} & \multicolumn{2}{|l|}{Strength (xal)} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Elagtle } \\
\text { Moduluy } \\
\left(\times 10^{d} \mathrm{pasi}\right)
\end{gathered}
\]} & \multirow[t]{2}{*}{Thermal Exposnaton Cuetficient (5)
\[
1 \times 10-6 \mathrm{in} / \mathrm{ln} .
\]} \\
\hline & & & & Ulimate
(2) & \begin{tabular}{l}
Allowable(Sm) \\
(3)
\end{tabular} & & \\
\hline ASTH-X149 Bolts (Rachet Binder Bolts)
\[
\left[\begin{array}{lll}
\text { SAE } & J & 129
\end{array}\right]
\] & \[
\begin{gathered}
\lambda_{B} \\
{[5]}
\end{gathered}
\] & 70 & \[
\begin{aligned}
& 92 \\
& (8)
\end{aligned}
\] & \[
\begin{aligned}
& 120 \\
& 18)
\end{aligned}
\] & - & 29.9 & 6.07 \\
\hline 00-L-17le or ASTH B-29-5S (Lead Shlelding) & \begin{tabular}{l}
\(\lambda\) or C \\
Chemlcal
\end{tabular} & \(\therefore \quad 70\) & \begin{tabular}{l}
5.0 \\
Dynamlc \\
Compres- \\
slon Min \\
- 161
\end{tabular} & 10.0 & \[
\begin{aligned}
& 2 y^{3} \\
& \text { yeld) }
\end{aligned}
\]
\(\qquad\) (6) & 2.0 & \begin{tabular}{l}
\[
\left(50^{16.21}-22^{\circ} r\right)
\] \\
_-17)
\end{tabular} \\
\hline ASTM-A193 Bolts & \[
\begin{aligned}
& \hline \text { Class } 1 \\
& \text { Grade BA } \\
& \text { s LA, Gras }
\end{aligned}
\] & \[
5 \mathrm{BBA} 70 \text { or } 100
\] & \[
\begin{gathered}
30 \text { e } 100^{\circ} \\
(8) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
75 \text { \& } 100 \\
(B) \\
\hline
\end{gathered}
\] & & 28.3 ¢ 70 & \(6.07{ }^{\text {2 } 710}\) \\
\hline
\end{tabular}
ence:
(1) ASME Code, Section III, Appendices, Table i-2. for ferritic materiali Table l-2. 2 for austentc material.
(2) ASME Code, Section III, Appendices, Table I-3. for ferrltic materlalf Table l-3. for autentlc materials.
(3) ASME Code, Section III, Appendices, Table I-l. for ferritic materlali Table l-l. 2 for autentic
(1) ASME Code, Jection III, Appendices, Table I-6.0. Page 69.
(5) ASME Code, Section III, Appendices, Table I-5.0, Page 6B, coefficient B.
(6) Cask Designers Gulde, ORHL-NSIC-6B.
(7) Sandla lab report No. SAND 77-1872 (NUREG/CR-0481)
B) \(\lambda\) STM \(\lambda \times \times x^{*}\) Standard Specification for...... (xxx alloy designation)
(9) ASHE Code, Section III, Table I-1.], page 98.

\subsection*{2.4 Cinaral itindarids ior +11 rackages}

\section*{\(\therefore .4 .1\) M1n! 74 Packigasfen}
ine colindrical ask is 39.12 inches in diameter and 58.06 inches high.

\subsection*{2.4.2 Eimararogf Eatura}

Seal wires are attached to the designated ratchet blader top and bottcm pins.

\subsection*{2.4.3 EOSitjun Closura}

The positive closure system has been previously described in Section 1.2.1.

\section*{2.1.t Fhemical and Salvanir Remations}

The materials from which the packaging is fabricated (steel, lead, and polgurethane foam) along with the contents of the package will not causa significant chemical. galvanic, or other reaction in air. nltrogen, or water atmospheres.

\subsection*{2.5 Lifting and Tiedoun Standards for All Packages}

\subsection*{2.5.1 Lifting Dovices}

The i-lEC II Cask is provided with two lifting lugs attached to the side of the cask by which the cask and load can be lifted. The lid is provided with a 1fiting ring by which the lid may be removed from the cask. Neither the cask lifting lug nor the lid lift ring will be used for tiedown and each will be provided with a cap or locking device to prevent such use.

The lozd requirements for lifting devices are defined in 10 CFR 71, Subpart \(E\), Para 71.45 as being capable of supporting thrae times the weight without generating stresses in excess of its (the containers) yield strength.

The lugs can be used only with overpacks removed. Therefore, the total lffed welght is: \(W=27000-3280=23720 \mathrm{lbs}\).

The lus load 1s: \(P=(23720 \mathrm{lb})(3 \mathrm{~g}) / 2\) lugs \(=\) 35,580 lb/lus
a. Shear \(\operatorname{la}_{\text {Selts - each lifting lug ls attached to the container }}\) With 4 1-8 UIC-2A \(\times 2-3 / 4\), ASTM-A449 Eex Head cap acrewa. For each bolt: Tensile Stress Area \(=0.606 \mathrm{ln}^{2}\)

Nominal Shear Streas \(=\frac{(35,580) 1 b}{4(0.606) \mathrm{in}^{2}}=14678 \mathrm{psi}\)

The marlmum Shear Streas la found at the center of the bole cross section and \(134 / 3 x\) the nominal stress.

Therefore
\[
g_{5}=4 / 3(14678)=19570 \mathrm{psi} .
\]

The effects of this stress are evaluated when combined with the Tenslle Bolt Stress computed in the next section.

(1) Sumation of Forces \(1 / 2 \mathrm{qb}=\mathrm{F}\)
- (2) Sumation of Moments
\(M=F(L-1 / 3)\)
\(L=5 \mathrm{Inch}\)
\(v=5.5 \cdot \mathrm{nch}\)
\(A_{\text {bolt }}=0.606 \mathrm{in}^{2}\)

Estainlesa stecl \(=28.3 \times 10^{6} \mathrm{psi}\)
\(E_{\text {Bolt }}=29.9 \times 10^{6} \mathrm{pal}\)
(3) Condition of Compacibillty - Deflection Analysis
\[
\begin{aligned}
& \frac{\delta \text { bolt }}{\delta \text { plate }}=\frac{\frac{c \text { bolt }}{\frac{\text { Eolit }}{E_{s . s}}}}{\frac{\delta \text { bolt }}{\delta \text { plate }}=\frac{\sigma \text { bolt }}{1.05 q}=\frac{\frac{F}{1.06 q}}{2 R G t}}
\end{aligned}
\]

Also:
\[
\begin{aligned}
& \frac{\delta \text { bolt }}{\delta \text { plate }}=\frac{L-2}{1} \\
& \frac{1-1}{1}=\frac{\frac{F}{1.069}}{2 A}
\end{aligned}
\]
\(F_{l}=2 A Q(L-1)(1.06)\)
The above tirce equations contaln ehree unfnows:

F, \(q\), and 1 . Substituting the appropriate falues produces the following aet of equations.

By subatituting equation (1) Into equation (2), ve obtain
\[
\left.\begin{array}{rl}
& M \\
\text { or: } & \tag{4}\\
& =q b 1 / 2(L-1 / 3) \\
& q
\end{array}\right)=2 M / b 1(L-1 / 3)
\]

Sigllarly, substituting equation (1) in equation (3) gives:
\(1 q b R^{2}=2 A q(L-L)(1.06)\)
\(B L^{2}+4.24 A L-4.24 A L=0\)
\(1=\frac{-4.24 A \pm \sqrt{(4.24 A)^{2}+(4)(b)(4.24 A L)}}{2 D}\)
\(1=\frac{-2.12 A}{b} \pm \frac{1}{2 b}\left[(4.24 A)^{2}+(16.96 A L b)\right] t\)
\(1=1.39\) inches

Now, uslng equiation (4), she contact pressure \(!s\) found:
\(q=\frac{(2)(231270)}{(5.5)(1 . j \hat{y})(5.3-1.3 \overline{3})}=12012 \mathrm{its} / \mathrm{in}^{2}\)
Using equation (1), the bolt load is found as: \(\bar{r}=1 / 2 \mathrm{abl}=\frac{(12012)(5.5)(1.30)}{2}=45915 \mathrm{lbs}\)

Bolt tenalic stress if found as:
\(c_{b}=45915=37884\) psi (2)(.006)

Maximum lloral Stress Theory will be used for evaluaring the effects of the combined stresses (Tension and Shear) on the bolts. From Mohr's Circle the Maximum Principle Tensile Stress is computed as:
\(=p=\frac{0 t}{2}+\sqrt{\left(\frac{c t}{2}\right)^{2}+\sigma v^{2}}\)
\(=\)

\(=46178\) nsi

Therefore the factor of afety for the bolts is
\[
\text { F.S. }=\frac{22000}{46178}=+1.99
\]

Bearing safery factor versus yield ls found as:
\[
\text { F.S. }=\frac{30000}{} \frac{12012}{}=+2.50
\]

\section*{c. Lug Strasses}
rigure 2.5.1-1 depicts the lug configuration. The outstanding lug plate is attached to the flush plate with a vertical doubla ree weld. Net section is equal to the \(1^{\prime \prime}\) plate thickness of the outstanding lug piate. Shear stress is:
\[
f y=\frac{35580}{(13)(1)}=2737 \text { psi }
\]

Factor of Safety \(1 s\) :
\[
5.5 . v=\frac{30000 / \sqrt{3}}{2737}=+6.33
\]

Using a conventional \(40^{\circ}\) tearout relation, the capability of the lug at yield stresses is estimated as:
\[
P_{A}=2 F_{s y} t\left(E_{m}-d / 2 \cos \cdot 0\right)-127,689 \text { lbs. }
\]

Where:
\[
\begin{aligned}
& F_{s y=}=\frac{30000}{\sqrt{3}}=17.320 \mathrm{psi}: \text { istm-A240. Type } 304 \\
& t=1^{\prime \prime}
\end{aligned}
\]
\[
E_{m}=4-1 / 2^{\prime \prime}
\]
\[
d=2-1 / 8^{\prime \prime}
\]

The factor of safety versus tearout is therefore:
\[
\text { F.S. }-\frac{127689}{35580}-+3.59
\]

\section*{FIGURE WITHHELD UNDER 10 CFR 2.390}

3eadtng stress in the lus to fourd f:2m:
\(B=M c / I\)
\(M=(3) 1\)
\(I=3 h^{3} / 12\)

For the ilis and veld:
\(b=1\) inch
\(h=13\) inches
\(1=5-1 / 2\) 1nch
\(c=\mathrm{L} / 2\)
\(f_{b}=\frac{\operatorname{eng} / 2}{b h^{3} / 12}=\frac{621}{b h^{2}}=\frac{(6)(35580)(5.5)}{(1)(13)^{2}}=6948 \mathrm{psi}\)

The associated factor of afect is:
F.S. \(=30000=+4.32\)

6948
2.5.1.2 Reinforced Lug Plate

The removable lug discussed in the foregoing section bolts to a flat reinforced lug plate of 2 inch thichess. This lug plate is attached to the cask outer shell and integral ring with a \(1^{\prime \prime}\) efrcumerential bevel veld.

1. Shear Stress - Ss = P/A
\(A=\) (Perimeter) (Effective Weld Thichacss)
\(=((2)(8)+2(3.5))(1)\)
\(=27 \mathrm{in}^{2}\)
\(f: \frac{(25530) \text { 1bs }}{27 \mathrm{in}^{2}}=1318 \mathrm{pz}\)

Safety ractor \(\frac{30000 / \sqrt{7}}{1318}=+13.1\)
11. Bending Seress \(-f_{b}=\mathrm{Mc} / I\)
\[
M=(P x 1)
\]
```

= = olvez - I innez = (\frac{En}{i2})0-(\frac{b\mp@subsup{n}{}{3}}{12})
bm.7.50 \&... blo 5.50 1n.
\thereforem:3.0c in. {!=3.0 in.
\imath = 7.0 in.
= \therefore =0/2= =.0 in.
I= 2/22 ((7.50)(20) 3-(5.5)(8) 3) = 390 i: i
: = (35530)1bs (7.00) in (5.00) in.
290 17.
Z=3193 F3i
Sa\leqeこソ Eacさo: = 30000/3190=9.4
2.5.1.3 Oucer Shell and Integral Ring

```
 ：sch chick，located directly opposite the lifting lugs on the inside surface of the outer shell．

\(M_{2}=\) Moment in Lonsitudual Direction to shell
\(M_{C}=\) Moment \(\operatorname{In}\) Circumferential Disecelon to shell
it will be fecessary to determine the stress generated in the sheil tup :o the icading transmitted by the lliting lug. The presence of thi inner reinforcing ring will be accounted for using STARCYME, see Ezction 2.io.2.5, finite element idealization of the sheil and ring as :tionn in figure 2.5.1-2. The medel refresents a single quadrant fithe cuter shell, riag and relnforcting plate. or pad. The contritutions zi foner shell and lead shield are conservatively ignored.

Symetric ecundary cenditions are imposed ufon the planes of symmetry ahich siice through the model at the center line of the lifting pas and \(90^{\circ}\) away from this location.

Loads are introduced by a set of dcurikard lcad applied at the lower adge of the cuter shell. These loads are reacted by vertical :astraints at the center line of the lifting eye.

Ficjuras 2.5.i-3. -4, -5 , and -6 define the model geometry completely. figure 2.5.1-3 orasents the ceveloped surface of the cask outer shell auadrant shown in rigure 2.5.1-2. Figure 2.4.3-4 presents a detall of the reinforced pad installed in the cask outer shell. Modes 66-69 represent the points where the lift lug forces are transmitted to the cuter shell-ring mode. Figure 2.5.1-5 presents the idealized (symetric half) lift lug, with node 74 correspending to the center of the lug eye. Flgure 2.5.1-6 presents the developed surface of the reiniorcing rirg. Figures 2.5.1-7, - \(-2 .-10,-11\), and -12 present comcuter generated plots of the model visually verifying the example.
-igures 2.5.1-13, -14, -15, and -15 sumarize states of stress of ail finite elements surrounding the reinforcing plate or pad. Computer stress output for the entire model can be found in Section 2.10.4.

Elauses 2.5.i-13, \(-14,-15\), and \(-i 6\) lliustrate a predicted state of steess cons!stenc with expeceed outer shell and ring behavior. The offse: lif: lug load induces torsion in the ring. This torsion causes the top edge of the sing to deflect lnwary with coreesponding outiaid deformailon of the lover edze of the rins. These deformacions induce a concave deformation of shell elements above the ring and a clavex deformation below the ring. As expected, the concave deformation pattern induces compressive bending stresses on the shell outer surface above the ring. Simllarly, convex deformations induce tensile bending atresses on the shell outer aurface belov the ring. The spectific states of stress in the ahell elements fmedlately above and below the lug pad ase found from Figures \(2.5 .1-13\) and -14 as follovs:
\begin{tabular}{|c|c|c|}
\hline & Above(E1. 68) & Below(E1. 69) \\
\hline \multicolumn{3}{|l|}{Membzane \({ }^{(1)}\)} \\
\hline \(S_{x}\) (H00p) & -2137 & +903 \\
\hline & -2018 & +7103 \\
\hline \(s_{X Y}\) & + 536 & \(-1313\) \\
\hline \multicolumn{3}{|l|}{Bendinc \({ }^{(2)}\)} \\
\hline \(S_{x}\) & -8374 & +5805 \\
\hline \(S_{Y}\) & -3970 & -2040 \\
\hline \(5_{x y}\) & - 958 & - 802 \\
\hline
\end{tabular}
ietEs: (1) \(\quad S_{M}=\left(S_{0}+S_{1}\right) / 2\)
(2) \(\quad S_{B}=\left(S_{0}-S_{1}\right) / 2\)
(3) \(\quad S_{0}=\) Outside Stress
\(S_{1}=\) Inside Stress

\section*{EIGURE 2.5.1-3}

DEVELOFED SURFACE T NODELED GIJADRANT
\begin{tabular}{llll}
\\
\hline
\end{tabular}

FIGURE 2.5.1-5

\section*{REOiN " \({ }^{2}\) "}

NODE 74 IS THE CENTER OF LUG EYE

EICURE 2.5.1-6

```

(R=18.25")

```


FIGURE 2.5.1-7

COMPUTER GETERATED MODEL PLOT

FIGURE 2.5.1-9

FIGURE 2.5.4-10

COMPUTER GETERATED MODEL PLOT
ricuar 2.5.4-11

\begin{abstract}
(
\end{abstract}

compuier generated model plot

\section*{Revision 0}

computer gerteratid model plot

The predicied strasses all assume a jackage weichz of 23,iac ibs. This reight does not include 3250 lbs. of energy absorjing everpacks. The package is never lifted with overpacks
 asckage weight, when liftad, cannot excaed 23.720 lbs.

The maximun stress in the cask cuter shell in the regicn of the -einforcing ring is:
\[
f_{\max }=14.930 \text { psi } \quad \text { (Quad 15) }
\]

The maximum stress in the reinforcing ring is:
\[
f_{\max }=10.670 \text { psi } \quad \text { (Quad 63) }
\]

The maximum stress in the cask away from the reinforcing ring is:
\[
f_{\max }=21,870 \text { psi (Quad 43) }
\]

Quadriliteral element 43 is at the base of the model where point loads representing the total cask weight is applied. The model neglects cask endplate reinforcement existing at this location. All stresses in this region of the model are considered to be fictitious, although acceptable, and are not utilized in subsequent margin of safety calculations.

Under normal conditions of transport. the maximum temperature of the outer shell is \(188.7^{\circ} \mathrm{F}\). Therefore, the interpolated yield allowable in 204 avilable (ASTM A-240) is:
\[
f_{\text {allowable }}=25,565 \text { psi }
\]

\section*{Qevision 0}

The resultart min!min fac:or of safety versus yield in the oute: shelt and fategal rias is:
\[
\text { F.S.y }=\frac{25,565}{18,670}=+1.37
\]

FIGURE 2.5.1-13

?evision 0
Figuan 2.5.1-i:

FIGUEE 2.5.1-16

\section*{}

Eec:isn 2.5.1.: prorided a nomi:al evaluation of luz piace actachmene veld seresses. The staite clement analysis discussed tn inis secilon provides a Easis Eor detali evaluation of rias attachment veld stzesses. Zeferrir.s to E!ju:c 2.5.1-6, a 1/2" vee-g-oove weld jolns the ri.ss to shell alons node ifnes 76-32 and 83-89. A \(l^{\prime \prime}\) vee-groove veld attaching the ring to boss exterds srca nodes 75 :0 83. Corner forces applied to the ing at the node poin:s by the welds a:e as foliows:
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\begin{tabular}{l}
Joinさ \\
:iode
\end{tabular}} & \multirow[b]{2}{*}{\[
\text { (See Fic. }{ }^{9} \text {. 5.1-6) }
\]} & \multicolumn{3}{|l|}{Comer Force (Global Coord)} \\
\hline & & \[
\begin{aligned}
& \text { FX1 } \\
& \text { (Ebs) }
\end{aligned}
\] & \[
\begin{gathered}
\text { FX2 } \\
\text { (IDs) }
\end{gathered}
\] & \[
\begin{gathered}
E \times 3 \\
(I b s)
\end{gathered}
\] \\
\hline 76. & \(8.2928^{\circ}\) & -8075 & -7437 & -14449 \\
\hline 83 & \(8.2928^{\circ}\) & 11033 & -11516 & -9969 \\
\hline 77 & \(15^{\circ}\) & \(-3670\) & 18618 & - 5320 \\
\hline 84 & \(15^{\circ}\) & 4277 & \(-12832\) & - 1995 \\
\hline 78 & \(30^{\circ}\) & \(-8509\) & \(-17526\) & -2602 \\
\hline 85 & \(30^{\circ}\) & 6318 & - 9818 & 2028 \\
\hline
\end{tabular}
aunning veld forces may be computed by eransforming the global coordinate values to local coordinate values using the polar ansle \(\theta\). The transformation is as follows:
\[
\{E\}\left[\begin{array}{ccc}
\cos \theta & \sin \theta & 0 \\
-\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right] \cdot\left\{F_{X}\right\} G
\]

Shear and tension load per unit weld length are found by considering cotal 1n-plame and out-of-plane forces:
\[
\begin{aligned}
& F_{S}=\left(F_{L_{2}}^{2}+F_{L_{3}}{ }^{2}\right)^{\frac{1}{2} / 1}, 1 b s / i n \\
& F_{T}=F_{L_{L}} / 1
\end{aligned}
\]
where: \(l=e f f e c t i v e\) weld length per node as listed below.
\begin{tabular}{|l|l|l|}
\hline Node & & \(\ell(1 n)\) \\
\hline \(76 / 83\) & \(17+18.25\left(15^{\circ}-8.2928^{\circ}\right)\left(\frac{\pi}{180}\right)(4)\) & 5.068 \\
\(77 / 84\) & \(18.25 \frac{(\pi)}{180}\left(22.5^{\circ}-11.646^{\circ}\right)\) & 3.457 \\
\(78-85\) & \(18.25\left(\frac{\pi}{180}\right)(15)\) & 4.778 \\
\hline
\end{tabular}

The corresponding weld forces are found as:
\begin{tabular}{|l|c|c|c|}
\hline \multirow{2}{*}{\begin{tabular}{l}
Joint \\
\((\) Node \()\)
\end{tabular}} & \begin{tabular}{c}
Tension \\
\(\left(F_{T}\right)\)
\end{tabular} & \begin{tabular}{c}
Shear \\
\(\left(F_{S}\right)\)
\end{tabular} & \begin{tabular}{c}
EEFective \\
Shear \(\left(F_{V}\right)\)
\end{tabular} \\
\hline 76 & -1788. & +3102 & 3228 \\
83 & 2826 & 3230 & 3357 \\
77 & 368 & 5689 & 5692 \\
84 & 234 & 3948 & 3950 \\
78 & 292 & 4103 & 1106 \\
85 & 218 & 2450 & 2451 \\
\hline
\end{tabular}
\({ }^{*} F_{Y}=\left[F_{z}^{2}+\left(F_{T} / 2\right)^{2}\right] h\)

The =os: histaty sezessed deld locatien occurs at node 77. jus: beyord the lus pad locaticn. The veld cons!sis of a \(1 / 2\) " full genetzation ree-broove zeld alth a stear capacity of:

The fa: 0 or of satety in the veld is: E.S. \(=7380=+1.30\) 3692

Computer benerated corner forces and plate seresses is provided in Section 2.10.3.

G ast millif inan

1

\(!\)

1

 - B.8781002 ri : S.76710c1 pr - -t ? r (1t02 PY - - . 7201.01
 sf - - \(5.019(10)\)

HFACE 3x-2.3221004 5y.. 3.040 (10) 318- -1.0) 11 (100) \(3 y=-2.413(003\) 317e 1.011100)
sire - ?.4ystios -11ACI

1214Ct -4.9522.01-1.7494
. 03
3.740100
 .1038 .08 vi
6.731203
1.3821 .06
\(!\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \[
30.1 \quad 1,50
\] & \[
\begin{aligned}
& \text { ny } \\
& \text { nir }
\end{aligned}
\] & \[
\begin{gathered}
\text { • } 1.8111002 \\
-1.1401002
\end{gathered}
\] & & \[
\begin{gathered}
35 \cdot-1.6 \\
3110 \\
2.014 i 103
\end{gathered}
\] & －1FAC！ & －1．106toj & -1.1nvi.us & \[
\begin{aligned}
& 0.1(1800) \\
& 1.18 n 100
\end{aligned}
\] & 70．10\％ \\
\hline 12.37 & 11 & －-6.8481 .01 & －Ifact & 31．3．341810） & & & & & \\
\hline follon 31 & 18
18 & － 0.7281008 & & 17．2．304100） & －1tact & －301603 & －4．4341．018 & 6．11410） & －39．36．5 \\
\hline - asis & Hit & －－－343ich & & SEY－－ 3 ，120100） & & & vn & 0．1821001 & \\
\hline ． 11 na & \(\cdots\) & － 4.3241001 & －Jtact & \(38,-3.1441003\)
38.0 .111802 & －tfact & & －7．1391001 & & \\
\hline 92．－－－－－－－－－ 1 & mit & －－1．1．411．02 & & sife bivitiol & －1FACE & 2．327（0） & －7．73）\({ }_{\text {Vn }}\) & 4．16300 & 6）． 068 \\
\hline \(\because *\) & 11 & － 1.164101 & －llact & & & & & & \\
\hline 10100， 5 & 19 & －crecilocr & & 3r．lijncsor & －11ACt & 8．2JM「0） & －0．1311．01 & \(3.6 n+1001\) & －64．031 \\
\hline jotif） 5 & 18 & －－4， 7 4tilul & －－＊ & 3xy－－4．118！00） & & & Y／ & 1．jostous & \\
\hline \(\cdots 1\) & \(\ldots\) & －2．az3rin？ & －if1Ce & & & & & & \\
\hline & 8Y & －－3．0431．01 & & St．2．jnj（0） & －11ACE & 9．426（0） & 7．111101 & 4．hlloos & 11．101 \\
\hline AO．－－－－－＊－－－－＞1 & Mir & －－1．76．31．02 & & 32Y－4，14180） & & & vn & 4．1421．03 & \\
\hline 12． 34 & 11 & －1．8101402 & －114ct & 3x．－1．0631008 & & & & & \\
\hline ， & 17 & －．．．t．b721．02 & & 3r．．－1．10080］ & －PFACt & －1．013t．01 & －1，7301．08 & 0.1431 .03 & －In．ind \\
\hline －1011st 35 & Pir & －－3．j64fiot & & Sife－3．280803 & & & VM & 1．9421．08 & －\({ }^{\text {notir }}\) \\
\hline 1471 & M & －－ 7.0141002 & －lidel & 3x．1．7341008 & & & & & \\
\hline 1101 & Mr & －－1．26．4100 & & Sr．A．javioos & －18act & 1．0081904 & 1．6511－03 & 1．2031903 & 12．901 \\
\hline 11．－－－－－－－－－31 & Mrir & －－1．J341002 & & SIT．J．İSE0才 & & & Vn & 1．0301009 & \\
\hline 12．3s & F1 & －－2，401t002 & －IFACt & 3x－－2．212t00 & ．．．．．． & －．．．－－ & & ．．－．．．．．．． & ． \\
\hline 101＊10 & & －6．80nfoot & & ir－－2．103（00） & itrace & －2．827t．03 & －2．2201904 & \(9.1458: 01\) & －66．622 \\
\hline 1014n，3A & Fir & －－1．241801 & & S1r－－1．219tios & & & vi & \(2.101 t 04\) & \\
\hline －＇＊＊ & Pr & －－ 0 －171008 & －11AP！ & 3t．3．jcoicot & & & & & \\
\hline & Nr & －－1．017100 & & S7－3．J4SE03 & －IFACE & 2.3161004 & 3．2（．9100） & 0.0691001 & 1．838 \\
\hline & Pir & －－6．0798101 & & SEY－1．tevitos & & & Vn & 2．101E006 & \\
\hline 17.15 & 1 & －－）． 101 （10） & 1ff1Cl & 3x．－2．0cselot & & & & & \\
\hline －ハー．．． & 17 & －\(-7.1: 08101\) & & sr－－3．（4）7（0） & Iffict & －1．301803 & －2．2181104 & प． 5 ¢（ 100 ） & －10．135 \\
\hline minde A & Ax & －－－1．30800． & & S110－＊．0）4tios & & & \(v\)－ & 2．121800 & \\
\hline －1 491 & \(M 81\) & －－1．817tint & －tiACE & 3\％－1．1198．04 & & & & & \\
\hline 1111 & \(\cdots\) & －－1．7A11．03 & & & －11101 & 1．131EPOS & －1．n01E0） & 4．65750］ & 3.120 \\
\hline pn．－－－－－－－－－31 & Pir & & － & Sty－1．719t0］ & －－． & & Vh & 1，tiot－04 & \\
\hline 13．\({ }^{\text {a }}\) & 1 & －3．1191103 & 1 18ac！ & 3：－－－4）1（00） & & & & & \\
\hline －－－－－ & 1 & －3．7：A（10） & & 37－0．11／（10） & －1141 & 9．190：0］ & －1．101001 & 6．391（00） & －11． 107 \\
\hline & ＇ir & －1．0101．02 & & 317．－3．124（10） & & & \(v\) A & 1.1211008 & \\
\hline －1 101 & \(p\) & －－2．1041．03 & －ifact & S1．3．230100） & & & & & \\
\hline .111 & Pr & －5，3261003 & & ir－－ \(1.06(100)\) & －1f1ce & 6．689（0） 01 & －0．783101 & b．tivtios & 14.304 \\
\hline 19．－－－－－－－－－－11 & rir & －－）Spy\｛0n！ & & sir．6．0］e［ioj & & & vn & 1．1211004 & \\
\hline \(\because\) \＃＊ & 11 & －l．tpatict & －Ifare & 51．1．118104 & & & & & \\
\hline － & 11 & －2．171801 & & ir－－8．20n（10） & －Hict． & 1．147604 & －A．S41501 & 1．11108．04 & 1.960 \\
\hline －Jollont as & isr & －－1．m3ifon & & 517． \(7.606(00)\) & & & Vr & 1．1J41 114 & \\
\hline － 111 & \(m\) & －b．9141－0） & －1ract & B1－－4．jlar．03 & & & & & \\
\hline 1110 & ry & －－n．joif（0） & & ir－1，0e\％1000 & －111Ct & 1．164P04 & －1．0801006 & 1．0nctous & －10．188 \\
\hline 11．0．－－－．－－－－－11 & rir & －P．2101001 & & 3x10－4．86710） & & & YM & 1．ntulot & \\
\hline 18.1 & \(1 \cdot\) & －3．07400\％ & －HACl & Ss－－A．Sis（10） & & & & & \\
\hline －－－－－－ & 17 & －1．801t．01 & & （1）？J 7（100） & 1118＊ & 1．1701．0s & －1．1801．96 & 1．\({ }^{\circ} 18116\) & －91．6ns \\
\hline －\(\quad\) orian 1 ， & 19 & －－r．botrint & & 317－－1．1／6100 & & & \(\checkmark\) M & 2．10）0 & \\
\hline －＇\({ }^{\prime \prime}\) ， & \(\cdots\) & －－－6381．c1 & －110．0 & & & & & & \\
\hline 11 1 & F＇ & －l．llilot & & （r－－－initici & －ifact & 1．112106 & －M．1071011 & 1.1061 .15 & 11．1\％ \\
\hline & \(\cdots\) & －－－raiors & & vre 1．0itror & & & \(v \sim\) & 1．1／A10．l6 & \\
\hline
\end{tabular}

\subsection*{2.5.1.4 LId Iifeing Eye}

The xax!mun 1tfitng load exerted on the llf:tns eye of the easix 11d is based on:
\[
\begin{aligned}
& H_{L}=21151 \mathrm{bs} . \\
& P=3 H_{L} \\
& P=(3)(2115) 1 \mathrm{bs} .
\end{aligned}
\]
\(=6345\) lbs.

\section*{1. Tension in the lifting eye.}
2. Welding Around Lifting Eye
\[
\begin{aligned}
& A_{e f t}=\pi D t_{e f:}=\pi(1.0)\left(\frac{3}{8}\right)\left(\frac{\sqrt{2}}{2}\right)=0.833 i \pi^{2} \\
& \sigma_{s}=\frac{p}{2 A_{e f t}}=\frac{6345}{2(.833)}=3810 \mathrm{psi}
\end{aligned}
\]
\[
\text { Safety Eactor }=20200=5.30
\]
\[
3810
\]
\[
\begin{aligned}
& \text { C/2 } \\
& \sigma_{t}=\frac{p}{2 \lambda} \\
& \begin{aligned}
A & =\frac{\pi}{4}(1.0)^{2}=0.785 \mathrm{in}^{2} \\
\sigma_{t}^{2} & =\frac{(6345) 1 \mathrm{Ls}}{2(.785) \mathrm{in.}^{2}}
\end{aligned} \\
& \text { - } 1040 \text { psi } \\
& \text { Safect Factor }=\frac{35000}{4040}=8.66
\end{aligned}
\]

\subsection*{2.5.2 Ile-Donnenices}

The tie-down system for transporting the package is designed to load condicions defined !n 10 CRF 71, Pazagraph 71-45 (b)(1). This load condition \&s defined as follows \("\). . The system shall be capable of withstanding, Without generating stress in any material of the package in excess of les yield strength, a static force applied to the center of gravity of the package kaving verifcal component of two times che velght of the package and its contents, a horizental component along the difection in which the vehicle tavels of 10 elmes the veisht of che package uith its concents and a borizonial component in the transerse direction of 5 times the weight of the package vith its centeats."

The \(13 C\) II Cask has been provided uith a tie-down frame valch is integral vith che cop mounced overpack asaembly. The overpacks aurround the cask and are attached tofether with six (6) \(1^{\prime \prime}\) dismeṭer ratchet binders. These ratchet bindera primarily carry inertial loads only eince both end impact loads and cie-down loads are seacted by disect compession of the orerpack and the integral tie-doun frame upon the cask body.

The tie-down fiame is designed for the loading conditions previously described. For purposes of this analysis, the package is assumed to velgh 27,000 lbs. Slnce minimu factor of affety of 1.16 is calculated, the cie-down aymem is considered to atisfy the requirementa of 10 Criz 71 for package veights up to 31,300 lbs. The analyais in aubdivided into individual sections dealing vith: loads, lug atresses, atresses inciuded in the cask and tle-down frame stresses.

\subsection*{2.5.2.1 Tle-Downerces}

Stresa in the frame ia determined for the forcea transwited by the iledown cables, in resisting the "G" loading, to the frame. Since the cask will be blocked at the base on the
transporter to prevent sliding, the cable resisting forces u! il de those resisting tiffing.

The individual cable loads are determined from principals of static equilibrium as outlined below. The direction cosines for. the cables are found as: (Refer to the Tle-Down Geometry figure 2.5.2-1 an page 2-53 for notation.)
\[
\begin{aligned}
& a_{x}=\left[a-\frac{d_{c}}{2} \sin a\right] / i \\
& B_{y}=\left[\frac{w}{2}-\frac{d_{c}}{2} \cos a\right] / i \\
& B_{z}=h / 1
\end{aligned}
\]

Where:
\[
\begin{aligned}
& i=\left[\left(a-\frac{d}{2} \sin 0\right)^{2}+\left(\frac{w}{2}-\frac{d}{2} \cos a\right)^{2}+h^{2} j^{i}\right. \\
& 0=\tan ^{-1}(2 a / w)
\end{aligned}
\]

The 10 g longitudinal load is resisted by two cables, in tension. The individual cable force is obtained by taking moments about point "O":
\[
-10 w c+2 F_{c x} h+F_{c 2}\left(d_{2}+d_{c}\right)=0
\]

Bu: : \(F_{C X}={ }^{s} x \cdot F_{C_{1}}\)
\[
F_{c z}=B_{z} \cdot F_{c_{1}}
\]

Thus, the cable force due to a 10 g longitudinal load is:
\[
E_{c_{1}}=\frac{10 \mathrm{Wc}}{2 g_{x}+\xi_{2}\left(d_{0}+d_{c}\right)}
\]

The 58 lateral load is zes!sted by tro cables, in tension. The 1.dividual cable force is found trom che equilibrium expression:

But:
\[
\begin{aligned}
& -5 \text { Wc }+2 F_{c y} h+F_{c z}\left(d_{0}+d_{c}\right)=0 \\
& F_{c y}=B_{y} \cdot \bar{S}_{c_{2}} \\
& F_{c z}=S_{z} \cdot F_{c_{2}}
\end{aligned}
\]

Thus, the cable force due to a 5 lateral load is:
\[
F_{c_{2}}=\frac{5 W_{c}}{2 \varepsilon_{y} h+B_{z}\left(d_{0}+d_{c}\right)}
\]

FIGURE 2.5.2-1

The ig vertical load is rasisted by all four cables. in tension. ine individual cable force is icund from the equilibrium expression:
\(-2 H+4 F_{C Z}=0\)
Eut: \(\quad F_{c z}=3_{z} \cdot f_{c 3}\)
Thus, the cable force due to a 2 g verticai load is:
\[
F_{c 3}=2 H / 4 B_{z}
\]

Assuming the three loadings cccur simultaneously, the most severely loaded cable experiences a load of:
\[
F_{c}=W\left[\frac{10 c}{2 B_{x} h+B_{z}\left(d_{0}+d_{c}\right)}+\frac{5 c}{28_{y} h+B_{z}\left(d_{0}+d_{c}\right)}\right]+\frac{2}{4 B_{z}}
\]

This expression is evaluation with the following i-13C II properties and geometry:
```

iN=27000 lbs.
d = 40.00 inches
a = 76 Inches
h = 99-5/8 - 15 = 64.625 in.
c=58.75/2 + 15-7/8=50.25 in. w = 96 inches

```

The direction cosines of the cable are:
\[
\begin{aligned}
& B_{x}=.53829 \\
& B_{x}=.34004 \\
& B_{x}=.77105
\end{aligned}
\]

Cable length. 1 - 109.75 inches

\section*{The cable loads are:}

Leat Cose

10 g longitudinal
58 lateral
2 \& vertical
Combined

Hafnixde (its)

80650
50378
17509
148536

For atresa cualuacion of components, the corresponding load set based upoa simultancous application of the \(10 \mathrm{~g}, 5 \mathrm{~g}\), and 2 g load cases to the circular cie-down frame iaposes consistent cable forces (out of the plane of the ske:ch) as follows:

These forces nay be resolved tato components parallel and perpendicilar to the piane of the fiane with the following expressions:
\[
\begin{array}{ll}
F_{p}=\left(E_{x}^{2}+E_{y}^{2}\right)^{\frac{1}{2}} \cdot F_{c} & \text { (Parailej) } \\
F_{n}=E_{z} \cdot F_{c} & \text { (nomai) }
\end{array}
\]

The results a=e:

\subsection*{2.5.2.2 s-iesses :}

The efe-down luz is orfeated precisely dn line vith the catle fo:ee reciors evaluated ia the precedias section. As a consequence, the Ele-cown lus expetiences inplane loads only; no berdins loads are Induced in this element.

(a) Tescous Stress

Using a conventional \(40^{\circ}\) tearout relation, the capability of the lus at yleld stresses la estimated as:
\[
P_{\lambda}=2 F_{3 y}{ }^{2}\left(E_{m}-d / 2 \cos 40^{\circ}\right)=245060 \text { 1bs. }
\]
ihere:
\[
\begin{aligned}
F_{s y} & =\frac{1000 Q Q}{\sqrt{3}}=57735 \mathrm{psi}: \lambda S \operatorname{HM}-\lambda E 14 . \text { E.r. } 3 \\
t & =7 / 3 \mathrm{in} . \\
E_{\mathrm{n}} & =3 \mathrm{in} . \\
d & =1.5 \mathrm{in} .
\end{aligned}
\]

Thus, the factor of safety for lug tearout is
\[
\text { F.S. }-\frac{245060}{148536}-1.65
\]
(b) Met Section Tension Stress

The net section tension yield load capacity is:
\[
P_{A}=F_{t y^{A}}
\]
- (100000) (4-1.5) (.975) = 218750 lbs.
ihus, the factor of safety for lug tension is:
\[
\text { F.S. }-\frac{218750}{148536}=1.47
\]
(c) Welds to Frame

The tensile capacity of weld (1) is:
\(P_{W 1}=(100000)\) (4) (.a75) -350000 lbs.

The shear capacity of weld (2) is:
\(P_{W 2}=(100000)(1 / \sqrt{3})(.707)(.875)-35.716 \mathrm{lbs}\).

Collectioely, the weld capacity of the lug atiachment Is 395,722 lbs. Thus, the factor of safety !s:
\[
\text { E.S. }=\frac{285,722}{198,536}=2.60
\]

Therefore, should tie-down forces exceed che criteria specisled in 10 CFR 71, the lug \(\because=11\) fall at 240,625 lbs. (ultimate) in the aet tensile section. This fallure wlll not impair the ablilty of the cask or fts contents to meet other provisions of 10 CrR 71.
2.5.2.3

Tie-Dounframestresses

The reaction forces between the frame and cask are found from the forces of Section 2.5.2.1. The horizontal planar forces applied to the circilar tie-down plate may be viewed as the superposition of two force sees as shown below.

The vectors exterial to the circles are applied by the riedown cables; - hereas the vectors within the circles are applied by cask reactions.

\footnotetext{
These planas hor!zontal reactlen sorces are applied to she casio as a Laterai bea:ing load. The cor:esponding foree ac:s on the tif-doinn : anme as a lateral load applied to the 12 inch lons casik restiaint flanges located at each cie-down lug. Detall geometry and appited ioads are shom in Figure 2.5.2-2.

Bending stresses ase induced in the cask restrainc flange by this cask to \(\{5 a m e\) load. The moment area for this load ds conservatively estimated assuming the center of pressure at mid depth of the cask body top plate. The previous sketch indicates two critical sections where flexural stresses will be checked.
}

\section*{MIEDOHIL LUG DETiILS}

\section*{Sec:ign_1}

The section properties a:e:

\(\hat{A}=(.875)(12)+(.875)(4)=10.50+3.50=14.00 \mathrm{in}^{2}\)
\(\bar{x}=\frac{(10.50)(.4375)+(3.50)(.875+.4375)}{14}=.65625 \mathrm{in}\).
\(\therefore c=1.75-.65625-1.09375\) in.
\(I=\frac{(12)(.875)^{3}}{12^{2}}+\frac{(4)(.875)^{3}}{12}+(3.50)(.65625-1.3125)^{2}\)
\(+(10.5)(.65625-.4375)^{2}=2.9030 i n^{4}\)

The applied moment involves both the cask reaction force plus the cable force. Moment arms are scaled from the preceding skerch.
\[
M_{1}=(83436)(1.25)-(17509)(0.35)=981671 \pi-10 .
\]
\[
f_{b_{1}}=M c / I=\frac{(08167)(1.02375)}{2.9030}=36986 \text { p.s.1. }
\]

\section*{Section 2}

The moment at Section 2 involves the cask reaction force plus the cable force. Applied moment is:
\[
M_{2}=(83436)(1.688)-(17509)(0.52)=131,735 \mathrm{in}-1 \mathrm{~b} .
\]

\[
\begin{aligned}
& \frac{4}{2}-\frac{1}{4} \\
& b=2\left[(20,875)^{2}-20^{2}\right]^{\frac{2}{2}}=11.96^{\prime \prime}
\end{aligned}
\]

\section*{Thus the bending stress:}
\[
f_{b_{2}}-6 \mathrm{M} / \mathrm{br}^{2}=\frac{(6)(131735)}{(11.96)(.875)^{2}}=86319 . \mathrm{psi}
\]

The minimum factor of safety in the tie -down frame is therefore:
\[
\text { F.S. }=\frac{100000}{86319}=1.16
\]
2.5.2.4 Cist Tie-Down Secesess

The contact bearing stress due to lateral loads, calculated in paragraph 2.5.2.3, is:
\[
f_{b_{r}}=\frac{83436}{(12)(2.5)}=2,781 \mathrm{psi}
\]

The reatical forces exerced on the cask are defined at the end of 3arag=aph 2.5.2.1 as the sum of:

> 13500 lbs.
> 75685 lbs.
> \(1: 4529\) 1bs.
> 52344 lbs.

These loads exert a total donnward force on the cask external shell of 256,058 1bs.

The external shell is constructed of \(1 / 2^{\circ \prime}\) inlck 304 stainless steel. Resulcanc compressive stress is:
\[
f_{t}=P / A=\frac{256058}{\pi(37.5)(.5)}=4347 \mathrm{psi}
\]

Since the lead provides adequate restraint to the outer shell, crippling need not be considered. The resultant cask factor of safe:y !s:
\[
\text { F.S. }=\frac{30000}{4347}=6.90
\]

\subsection*{2.5 Normal Cendit!ons of Traneger:}

The Model l-IEC I! package has been designed and constructed, and the sentents are sc initited (as described in Section 1.2.3) that the periormance recuirements specified in 10 CFR 71 will be met when the package is subjected to the normal conditions of transport specified in 10 CFR 71. The ability \(\mathrm{oi}^{\circ}\) the Mcdel 1-13C II Package to satisfactorily withstand the normal conditions of transpor: has been assessed as described below:

\subsection*{2.5.1 Hest}

A detailed thermal analysis for normal conditions of transport can be found in Section 3.4. Internal heat loads up to 800 watts were considered.

The maximum cavity temperature was found to be \(214.4^{\circ} \mathrm{F}\). External package temperature was less than \(156.3^{\circ} \mathrm{F}\), assuming \(100^{\circ} \mathrm{F}\) ambient air and full solar insolation. These temperatures will have no detrimental effects on the package.

\subsection*{2.6.6.1 Summary of Pressures and Temperatures}

From Sections 3.4.2 and 3.4.4. It was found that the maximum temperatures and pressure are:

Pressure:
\[
P_{\max }=19 \text { psig }
\]

Temperature:
\begin{tabular}{ll}
Fire Shield & \(182.1^{\circ} \mathrm{F}\) \\
Lift Lug & \(209.1^{\circ} \mathrm{F}\) \\
Outer Shell & \(212.6^{\circ} \mathrm{F}\) \\
Outer Ends & \(214.3^{\mathrm{O}} \mathrm{F}\) \\
Containment Cavity & \(214.4^{\circ} \mathrm{F}\)
\end{tabular}

\subsection*{2.6.1.2 Difecrenclal Themal_Eipansion}

Erom the sumary temperatures shown in Section 2.6.1.1 and Section 3.1 !t car te seen that the temperature variations between the exteral shell and the tiner containment vessel are small, 1.e., \(212.6^{\circ} \mathrm{F}\) vs. \(214.4^{\circ} \mathrm{F}\), . respecifrely.

Since the lead bonding is not present, fabrication stresses are minimized because of the short term creep properties of lead. Therefore, a stress free :emperacure of \(70^{\circ} \mathrm{F}\) was assumed.

The analysis of package stresses due to differential thermal expansion has been perforned using a palr of axisymetric finite element models, figures 2.6.1-1 and 2.6.1-2, representins the cask and ild, respectively. These models are used for cask body analytic atress predictions throughout Section 2.6 and 2.7 of this report. The E3SAP p:ogram, described in Appendix 2.10.2.4, vas used for all these analyses.

The referenced figures completed deflne model geometry. All material properties of the model are caken directly from Table 2.3-1 for stafiess stecl. Type 304, and lead. To represent the unbonded lead, the lead shear modulus has been reduced by factor 10 . This assures that only secondary shear forces are transmitted between ateel shells and lead; yet permits proper freatment of difect atresses induced in steel shells due to differential thermal expansion effects.
\%

Comp:ehenstve s=eess sumaties for these tro medels are previfed tn dppendx

 7.5. Eor differential expansion loads, steess ineeristry resules are :epor:ct

in \(=\) he mid body \(=e g i o n\) of the casi, stresses are modest, u!ch li:=le variation

\begin{tabular}{|c|c|c|c|c|c|}
\hline & \multirow[b]{2}{*}{\begin{tabular}{l}
Element \\
Nurber
\end{tabular}} & \multicolumn{3}{|c|}{STRESSES (psi)} & \multirow[b]{2}{*}{(S.I.)} \\
\hline LOczt10n & & \[
\begin{aligned}
& \lambda x i a l \\
& \left(c_{2}\right)
\end{aligned}
\] & Hoop
\[
\left(\sigma_{\theta}\right)
\] & \[
\begin{gathered}
\text { RadIal } \\
\left(E_{r}\right)
\end{gathered}
\] & \\
\hline inner shel:
\[
\begin{aligned}
& -I . D . \\
& -0.0 .
\end{aligned}
\] & 23 & \[
\begin{aligned}
& +11520 \\
& +1: 890 \\
& +11350
\end{aligned}
\] & \[
\begin{aligned}
& +4406 \\
& +4578 \\
& +4225
\end{aligned}
\] & \[
\begin{aligned}
& -210 \\
& -294 \\
& -121
\end{aligned}
\] & \[
\begin{aligned}
& 11830 . \\
& 12184 . \\
& 11471 .
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { Qufer shell } \\
& \text { - I.D. } \\
& \text { - O.D. }
\end{aligned}
\] & 44 & \[
\begin{aligned}
& 12270 \\
& 12160 \\
& 12390
\end{aligned}
\] & \[
\begin{array}{r}
+18380 \\
18590 \\
18170
\end{array}
\] & \[
\begin{aligned}
& -265 \\
& -508 \\
& -\quad 16
\end{aligned}
\] & \[
\begin{aligned}
& 18645 . \\
& 19098 . \\
& 18186 .
\end{aligned}
\] \\
\hline
\end{tabular}
*The aeren reported cases were performed in rwo runs; Rim 1 contains a cases; Run 2 contains 3 cases. For clarity and brevity, they are idencified and discussed as 7 sequential cascs in this report.
 the solloutag e2masisons at icp and botcon of cask.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{こ0СגコIC:} & \multirow[b]{2}{*}{EiLEMEIT} & \multicolumn{2}{|l|}{STEESS TVTVISITY (2si)} \\
\hline & & CESTER & SUREACE \\
\hline Top - Inre: Shell & 30 & 13671 & 16342 \\
\hline - Outer Shell & 46 & 19503 & 19737 \\
\hline Base - Inrer Shell & 15 & 8005 & 9366 \\
\hline - Outer Shell & 31 & 18464 & 19942 \\
\hline
\end{tabular}

Stresses elsewhere in the cask body are less than these values excep:ang for locallzed stresses at the outer shell to base juncture, see elements 5 and 8. The membrane scresses here are:
\(\qquad\)

5 (inner shell)
8 (Outer Shell)

MEMERATE S.I. (2si)
19565.
28261.

The stresses observed ar elements 5 and 8 are highly localized; adjolning element stresses show extyemely rapld decay of the obvious classical damped sheil bending behavior. These high atresaes, sifghely in excess of yield, pose no threat to cask safety or integrity since they are self limiting secondary thermal stresses uhich disappear upon inftial yielding of the outer shell. The only consequence of these stzesses will be a slight outward ripple of cask outer surface subsequent to inftial loading.

St:esseg !n the \(1!d\), F!gure 2.6.1-2, are approxifately of the same magaitude as \(1:\) the cask body. The most hizhly stressed locat!on occirs at element 8. the state of stress of element 8 is as follous:
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Socation} & \multicolumn{4}{|c|}{St-ess (2s1)} \\
\hline & \(2 \times 1 a 1\)
\(\left(c_{2}\right)\) & \begin{tabular}{l}
Hoop \\
(\(c_{\epsilon}\))
\end{tabular} & Radlal
\[
\left(c_{r}\right)
\] & \[
\begin{gathered}
\text { In:ens!ty } \\
(S .1 .)
\end{gathered}
\] \\
\hline Center (Membrane) & 10550 & 22450 & +3174 & 19819 \\
\hline O.D. & 32440 & 29580 & 6124 & 26331 \\
\hline I.D. & -4735 & 18140 & 4735 & 23405 \\
\hline
\end{tabular}
ds in the cask body, the dominanc stress contributor is a bending stress a:Isfig from the connecion of the conical shell sector to the flat inner end d!sk.

\subsection*{2.6.1.3 Screse colculations}

Combinarion of chermal meresses discusaed in Section 2.6.1.2 uith intermal pressure (19 paig) atressea alizhtiy increasea the total atate of atress.

Stress intensitites for presare and temperature phenomena at those locations discussed in Secifon 2.6.1.2 are obtained directly from case 7 of Appendix 2.10.2, as follous:
\begin{tabular}{|c|c|c|}
\hline LOCATION & \begin{tabular}{l}
ELEME:TT \\
NUYBE?
\end{tabular} & \[
\begin{gathered}
\text { STRESS ives:is=TY } \\
\text { S.I. (psi) }
\end{gathered}
\] \\
\hline \multicolumn{3}{|l|}{CASK 30DY} \\
\hline \multirow[t]{3}{*}{\(\begin{aligned} \text { Inner Shell } & \text { - Center } \\ & -I . D . \\ & -O . D .\end{aligned}\)} & 28 & 11864. \\
\hline & - & 12224. \\
\hline & & 11510. \\
\hline \multirow[t]{3}{*}{\(\begin{aligned} \text { Oute= Shell } & \text { - Center } \\ & -I . D . \\ & -O . D .\end{aligned}\)} & 44 & 18788. \\
\hline & & 19252. \\
\hline & & 18326. \\
\hline \multirow[t]{3}{*}{```
Top - Inner Shell, Center
Surface
 - Outer Shell, Center
```} & 30 & 13696. \\
\hline & 30 & 16331. \\
\hline & 46 & 19645. \\
\hline Surface & 46 & 19871. \\
\hline \multirow[t]{2}{*}{Base - Inae = Shell, Center} & 15 & 8255. \\
\hline & 15 & 9592. \\
\hline - Outer Shell, Center & 31 & 18480 \\
\hline Surface & 31 & 19957 \\
\hline \multirow[t]{2}{*}{Juncture, Outer Side} & 8 & 28265 \\
\hline & 5 & 19590 \\
\hline \multicolumn{3}{|l|}{120} \\
\hline Center & 8 & 19664 \\
\hline O.D. & 8 & 26169 \\
\hline I.D. & 8 & 23809 \\
\hline
\end{tabular}
```

Maxtmun stress latenslties and factors of safety are as follows:

```
1. Conixintient Vessed (inner Sheill
(:IRC Reg. Guide 7.6, Para. C.2)
a. \(\quad S_{m}=20 \operatorname{xsi}\) e 214.4 \(4^{\circ}\) (Table 2.3-1)
dllowable Membranc Stress = \(S_{m}=20 \mathrm{ksi}\)
dllowable bending + membrare \(=1.5 \mathrm{~S}_{\mathrm{m}}=30 \mathrm{ks} 1\)
b. Maximum Membrane Stress e El. 44
\(f_{m}=18.788 \mathrm{ks1}\)
F.S. \(=20 / 18.788= \pm 1.06\)
c. Maximum Membrane + Bending e El. A4
\(f_{b}=19.252 \mathrm{ksi}\)
E.S. \(30 / 19.232= \pm 1,36\)
2. Clegure (idd) E1. 8
a. Maximum Membrane Strese
\(f_{m}=29.664 \mathrm{kai}\)
F.S. \(=20 / 19.664= \pm 1,02\)
3. Maximum Membrane + Bendins
\(f_{b}=26.169 \mathrm{ksi}\)
F.S. \(=30 / 26.169= \pm 1.15\)

\section*{3. 2uisesheir}
a. Ailouable Steess:
\(S_{y}=24.64 \mathrm{ksie} 224.4^{0} \mathrm{~F}\) (2able 2.3-1)
b. Maxtaun Stiess at El. 31, exceptins ju:cture:
\(f_{y}=19.957 \mathrm{ksi}\)
F.5. \(=24.64 / 19.957=-1.23\)
c. Max!mum Stress at Base Junciute, Ej. B
\(f_{m}=28.265 \mathrm{ksi}\)
F.S. \(=24.64 / 28.265=0.87\)

The slight (13Z) oversteess at Element is highly locallzed as shom by the factors of safery for adjoining elements.
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Element \\
Rumber
\end{tabular} & 2 Location
\(\qquad\) & \[
\begin{gathered}
t_{m} \\
(k+1)
\end{gathered}
\] & 5.S. \\
\hline 7 & 1.75 & 7.610 & 3.24 \\
\hline 8 & 5.00 & 28.265 & 0.87 \\
\hline 9 & 7.38 & 19.843 & 1.24 \\
\hline
\end{tabular}

This hishly locali=ad self-limiting thermal stress ylelding will produce a slightly outward ripple on the exterior cask shell approximately 5 inches above the base, well beyond the heat affected zone of shell to base plate veld.

This initial glelding cannot lead to progressive collapae or shakedown rupture of the shell since subsequent load and unload cycles will alvays induce. stresses vithin the elastic regime.
ihl: fac: is assured by the "gaushinger Effect" so long as the total :tress ranje l: lass than twice yleld stress. The dSME Bollur and pmessura Vas:ul: Oode. Section III, explicitly recognizes this fact by the allowable factor of \(\vdots S_{m}\) on :embined primary and secondary strosses \(\left(S_{m}-2 / 3 S_{y}\right)\). In ihis Insiance. :he zero to peak stress range is \(-1.14 i \mathrm{~S}_{y}\). Based on the "Buachinger Effoct" the factor of eafoty is recomputed as:
\[
\text { F.S. }-2 S_{y} / 1.147 S_{y}=+1.74
\]

This concition does not impair the effectiveness of the packaging to satisfy the requiremants for Normal Conditions of Transport as set forth in 10 CFR 71. Part 71.;1.
ihe pressure ( 19 psig) associated with normal transport produces insignificant loads upen the \(121-1 / 4^{*}-7\) UNC closure bolts (ASTM SA 354. Gr. B). The loads are assessed as follows:
\[
\text { F.B. }-(\pi /(4)(12))\left(33^{2}\right)(19)=1354 \text { los. }
\]
ine epfecilve section ared of the bolts is \(0.968 \mathrm{in}^{2}\). therofore, the stress 1s:
\[
f_{t}=13541.968=1400 \mathrm{psi}
\]

The allowable tensile stress for the bolting material. Table 2.3-1, is 125 \(k: 1\). Therefore, the factor safety is:
\[
\text { F.S. }-125 / 1.4=89
\]

Therefore, the Model i-13C II packaging can safely satisfy the requirements of thermal and pressure loading of the Hormal Conditions of Transport.

\footnotetext{
- IImosnenko. S. P., Strength of Materials. Part Il, "Advanced Theory and Problems" Third Edition. D. Van Kostrand Company. Inc., 1956, pp. 413.
}

\subsection*{2.6.2 cije}

The materials of constevcior for the packagins, tacludi:.8 the siataless steel, carbon steel, overpack and che seals themselves ate not signiflcanily affecied by an amblent temperature of \(-\Delta 0^{\circ} \mathrm{F}\). 3ri:tle fraciure has been
 the materials of construction.

There are two cold conditions correaponding to the \(-40^{\circ} \mathrm{F}\) amient alr event minlmum decay beat and maxlmum decay heat and maxlmum decay heac. in the flest instance, the differential theral expanslon coeffletents between stef and lead cause the lead and atecl to separate (gap) at temperatures below the \(70^{\circ}\) r stress-free temperature. Both lead and atecl then experience an unconstralned shrinkage; hence, approach a stress free condition.

In the second lastance with maximum decay heat, the predicted temperatures as stumarliaed in Table 3.4.3-1 are as follovs:
\begin{tabular}{|c|c|c|}
\hline Lecatien & RODE_S8. & TMEERSTURE \({ }^{\circ} \mathrm{E}\) \\
\hline Flre Shield & 9 & 37.4 \\
\hline Lift Lus & 2 & 74.8 \\
\hline Slde Outer Shell & 10 & 79.6 \\
\hline Top Outer Shell & 3 & 81.4 \\
\hline Cavity & 22 & 81.5 \\
\hline
\end{tabular}

Except for the fire shicid, all temperatures are very slishty abcve the \(70^{\circ}\) E seress-free cemperatures; the maximum temperature differential above this stress-free temperathre reference occura at the cavity and is \(11.5^{\circ} \mathrm{F}\). The cemperature gradient betveen the cavity and the exposed alde outer shell is:
\(\Delta \mathrm{I}=\mathrm{T}_{22}-\mathrm{I}_{10}=1.9^{\circ} \mathrm{F}\)
ihls is essentially identical to the naxinum gradent reported for "hot" cenclatons in iable 3.4.2-1.

A conservative estimate of thermal expansion stresses in the jies stel: laduced by alfferential coefficlents of thermal expanslion beiween sieel and lead is:
\[
\begin{aligned}
f & =E_{s} J T\left(\alpha_{\rho b}-\alpha_{s}\right) \\
& =\left(28.3 \times 10^{6}\right)(11.5)(16.4-9.11) \times 10^{-6}=2373 \text { ps } 1
\end{aligned}
\]

The stresses laduced by the gradent through the wall can be approximated by assuming a thick cylinder of steel. The stress is given in noark, 5 th Edi:ion, Case 16, Section 15.6, as:
\[
\begin{aligned}
& F=(\Delta \operatorname{REE} \mathrm{F}(1-) \ln (c / b)) \cdot\left(1-2 g^{2} k c^{2}-b^{2} j \cdot \ln (b / b)=-393\right. \text { psi } \\
& \text { where: } b=\text { Inner radus }-13.25 \mathrm{in} \text {. } \\
& 6 \text {. outer radlus - } 19.25 \mathrm{in} \text {. } \\
& g-b \text {, for outer surface stress } \\
& \text { - C, for inner surface stress }
\end{aligned}
\]
dssuming these two strasses are additive, the factor of safety is:
\[
\text { F.S. }-30,000 / 2373+393=10.8
\]

\section*{2.E.3 Sectued Ex=ezna: Exessuzo}

10 CER 71.71 (c)(3) requizes that the gackage shculd te able \(=0\) withstard a reduced external pressure of 3.5 esia. Conversely, the package should be able to withstard a 24.7-3.5-21.2 psi internai pressure. dssume the inne= shall is supporied by tha lead in rasisting tho internal pressure.
(1) End Plates - From Roark
\[
\begin{aligned}
& \sigma_{4}=3 / 32(D / t)^{2} P(3+v) \text { (Free Ends) } \\
& \text { D M Mean Diamater = } 27 \text { in. } \\
& p=11.2 \mathrm{psig} \\
& \text { Stool : t-0.5 ln. ; v-0.3 } \\
& \text { Lasd : } t=5 \text { in.1 } v=0.45 \\
& \text { Lead : }=3 / 32(27 / 5)(11.2)(3+0.45)= \\
& \text { C yiald - 203.03 pal for laad }
\end{aligned}
\]

For the lead and steel shells in contact, the yield of the zEaO1 plata will not ba axcoodadazantiza prozauracanbo taken by the lead without ylold.
2.6.4 Encreased Exさernal Pressure

The requirement for external pressure is that the cask must be able to withatand an extarnal prossure of 25 paig without the loss of contents. Assume the outer shell is supported by the lead in resisting the external pressure.

\[
\text { ogled }=1130 \text { ps l for Lead }
\]

For the dead and steel shells in contact, the yield of the steel plate will not ba exceeded as enter pressure can bo taken by the dad without yield.
(b) Cylindrical Shell - Buckling*
\[
\begin{aligned}
& p_{c}=\frac{2 t}{D}\left(\frac{\sigma_{y}}{2+\frac{\sigma^{Y}}{E}\left(\frac{D}{E}\right)^{2}}\right) \\
& E=\text { Modulus of Elasticisy-2日 } \times 10^{6} \text { psi } \\
& o_{y}=\text { Yield Strength }=30,000 \mathrm{psi} \\
& \text { D. }=37.5 \text { in. } \\
& t=0.50 \text { in. } \\
& P_{c}=\frac{(2)(.50)}{(37.5)}\left(\frac{30,000}{1+\frac{30,000}{28 \times 10^{6}}\left(\frac{37.5}{.5}\right)^{2}}\right)
\end{aligned}
\]
- 124 pal
\[
\text { Safety Factor: } S F=\frac{114}{25}-1.6
\]

\footnotetext{
Roark, R. J., Formulas Tor Stress and strain, Fourth Edition. McGraw-hili book Co.. New York, 1965 Chapter 22. page 298, Case 1.
}

\section*{2.5 .5 yitraticn}

Section \(1 . i\) cbserves that the Model i-lỉC II is an inproved lineai cescerden: of a proven package with well over ten years of cperational use in a iransicer: environment. ihis experience conclusively demonstrates that vibrations normally incident to transport will have no effect upen the Yocel l-i三C II zackage.

\subsection*{2.5.5 Watar Seray}

Since the package exterior is constructed of steel, this test is not required.

\subsection*{2.5.7 Eres Orod}

The package weight of 27000 pounds indicates that the Model 1-13C II package must survive a two foot free fall without substantially reducing its effectiveness in reacting subsequent accident conditions. The package has been designed and successfully tested to withstand 30 foot drops, see Section 2.i.1 and 2.11. Energies generated during the 30 foot drop are \(9.72 \times 10^{5}\) in-lbs. Energies associated with the two foot drop are:
\[
K E=(27000 \text { lbs })(24 \mathrm{in})=648,000 \text { in-lbs. }
\]

For impact energies of this magnitude, the computer generated data shown in Section 2.7.1 and described in Appendix. Section 2.10.1.1 provides maximum impact accelerations. These loads are summarized below:
\begin{tabular}{ll} 
Condition & 2foet Orgo (g's) \\
End & 62.2 (EYDROP) \\
Corner & 14.2 (CYDROP) \\
Side & 28.3 (SYDROP)
\end{tabular}

These energy balance icad gredictions werg vertfled by performing asikies dynamic analyeas ior a full range of fmpact orientations frcm near yer:ical io near horizental, as descitbed in Appendix Sec:ion 2.10.2.2. Load rasuits irem tite dynanlic analysas cenpare with the energy balance results, as follcws:
\begin{tabular}{|c|c|c|}
\hline & Energy & Oynamic \\
\hline Criantaticn & Ealance & analysis \\
\hline End & 52.29 & 25.79 ( \(22.5{ }^{\circ}\) ) \\
\hline Corner (29.70 & 14.2g & 14.23 \\
\hline Wrt. Vert.) & & \\
\hline Side & 28.39 & H/A \\
\hline
\end{tabular}

The corner orientation values agree precisely. For an end impact orientation. the difference appears to exceed a factor of two. The plotted dynamic response results. Figures 2.6.7-1 and 2.6.7-2, show why. is the orientation angie approaches \(0^{\circ}\), the dynamic response force predictions increase very steeply whlle the predicted deformation of the energy absorbing overpack decrases very razidiy. for assessment of stresses, the most conservative of the aliernative load predictions are employed.

\subsection*{2.5.7.1 Fndimpast}

Snd impacts produce the largest forces on the Model 1-13C II Package. At other orientations, the forces rapidly decrease. The end Impact acceleration of 62.2 g induces stresses in the cask and lid as reported in Case 3 . Afpend!x Section 2.10.3. Case 3 stresses are developed for 30 foot drop accident conditions with an acceleration of 100.184 g 's. Case 3 stresses must therefore be multiplied by the ratio of (62.2/100.184)w.6209 to correspond with the 2 foct drop provisions for normal conditions of transport. Maximum stresses are as follows:

EICURE 2.6.7-1
IMPACT FORCES (LBS) -2 FT DROP


SICUAE 2.6.7-2
CYERPACK DEFLECTION AND RESIOUAL CLEARANCE -2 FI DRCP


-Stresses at element 7 are aegiected due to the wrealistic concentrated support of the cask at the lover end of this element.

For the containment elements of the package, the minimum factors of afery in membrane and combined stress states of atresa are:
- Membranc (Cask Element 14)
\[
\text { F.S. }=\frac{20}{4.326}= \pm 4.62
\]
- Combined Membrane + Bendins (Cask Element 14)
\[
\text { F.S. }=\frac{30}{7.150}= \pm 4.20
\]

For the outer shell and \(11 d\), the mindmum factor of afety is at lid element it:
\[
\begin{aligned}
& \bar{z} . S=\frac{24,64}{22.493}= \pm 1,10 \\
& \left(5 y \times 24.64 \mathrm{ksi} \& 214.4^{\circ} \mathrm{F}\right. \text { per Table 2.3-1) }
\end{aligned}
\]

Then \(\operatorname{these}\) maximum stresses are combined with normal temperature and pressure stresses, Case 7, the minimum factors of afety become:
- Cask Element 14 - Membranc:
F.S. \(=\) \(\qquad\) 20
- \(\pm 28\)
\((4.326+6.093)\)
- Cask Element 14 - Combined:
F. S. \(\qquad\) 30
- \(\pm 2.20\)
\((7.150+6.507)\)
- We Element 17 (Tep surface)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Load & \({ }_{5}\) & \({ }^{0}\) & \({ }^{5}\) & \({ }^{\circ}\) & S.I. \\
\hline prop & 1176 & -20831 & -2328 & -9779 & 22494 \\
\hline press + Temp & -849 & + 1510 & 166 & 5566 & 6427 \\
\hline Combined & . +327 & -19321 & -2162 & -4213 & 20118 \\
\hline \multicolumn{6}{|c|}{\[
\text { F.S. }=\frac{24,64}{20.118}= \pm 1,22
\]} \\
\hline
\end{tabular}

Is is concluded that the Model l-13C II Package, Inclirdins overpack, afely Withstand thc end drop requirements for nomal transport conditions.

\subsection*{2.6.7.2 Sice inipac:}
 Section 2.6.7. This laterai acceleration induces bendias stresses in the package as it lands upon the overpack protected ends. The magnitude of ihe bending moment at mid length \(13:\)
```

$M=H 1 / B ; \quad H=(27000)(28.3) 18 s$.

1. 68 inches
```
\(=6.495=10^{6} \mathrm{ln}-18\).

The moment of inertia of the ateel aegments of the cask are:
\[
\begin{aligned}
I=7 / 4 & \left(R_{0}^{4}-R_{1}^{4}\right)=\pi / 4\left[\left(13.74^{4}-13.25^{4}\right)+\left(14.25^{4}-18.75^{4}\right)\right] \\
& =14,642 \mathrm{in}^{4}
\end{aligned}
\]

The bendins stresses in the outer shell and inner shell are:
\[
\begin{aligned}
& f_{b 0}=\frac{\left(5.405 \times 10^{6}\right)(12)}{14642}=8428 p s 1 \\
& f_{b 1}=\frac{\left(6.495 \times 10^{6}\right)(13.5)}{14642}=5988 p: 1
\end{aligned}
\]

These bending stresses must be added to the normal presaure stresses sumarized in Case 7, Appendix Section 2.10.2. Elements 23 and 29 correspond to the mid-lensth where the above beading utressea are calculated.

Seresses are sumarized as sollows:


The minimu factors of safety under alde lmpact and pressure and temperature condlefons are:
- The Inner Shell (Containment vesacl):
\[
\text { F.S. } \frac{20}{17.235}= \pm 1.16
\]
- The Outer Shell:
\[
\text { F.S. }=\frac{24.64}{22.243}= \pm 2.11
\]

It 1s concluded that the Model 1-13C II Package, Including overpack, can safely vithstand the alde drop requirements for normal transport conditions.

\subsection*{2.5.7.3 Carase imact}

Corner impact accelerations are a rather modest 14.2g's. as outlined in fippendix 2.10.1.2, moments are introduced into the cask body by these cblique impacts. Figure 2.5.7-3 depicts the moments produced in the cask body as a function of orientation angie. The maximum monent is found as:
\[
M=2.1 E 01 \times 10^{6} \mathrm{in}-1 \mathrm{~b} Q 51.3^{0} \text { wrt horizontal }
\]

This is approxinately a factor of three less than the moments examined for side impact, Section 2.6.7.2, and consequently will result in stresses less than those examined in that section.

It is concluded that the Model 1-13C II Package, including overpack. safely withstand the corner and oblique force drop requirements for normal transport cenditions.

\subsection*{2.6.7.4 Surmary of Results}
\begin{tabular}{|c|cc|cc|}
\hline & \multicolumn{2}{|c|}{ External Shell } & Containment Vessel \\
\cline { 2 - 5 } \begin{tabular}{c} 
Orop \\
Orientation
\end{tabular} & Stress & \begin{tabular}{c} 
Factor \\
of \\
Safety
\end{tabular} & Stress & \begin{tabular}{c} 
Facter \\
of \\
Safety
\end{tabular} \\
\hline End & 20118 & +1.22 & 10421 & +1.92 \\
Corner & - & - & - & - \\
Side & 22243 & +1.11 & 17235 & +1.16 \\
\hline
\end{tabular}

From the above it can be concluded that the package experience no inelastic deformation and all stresses are well below yield. Therefore, the Model l-13C II Packaging can safely satisfy the loading due to the drop condition asscciated with Mormal Conditions of Transport.

FIGURE 2.6.7-3
CASK BENDING MOMENT (IN-LB) -2 FT DROP


\subsection*{2.6.3 cemerning}

This reatizement is not applicable since ine Model l-13C II Packaging is fabricated of stecl and veighs more than \(1: 0\) lbs.

\section*{2.6 .9 Comeracion}

Not applicable alnea packape walaha mora than 10,000 lba,

\subsection*{2.6.10 ERnesrision}

Impact energles resulting from a 13 pound rod dropping from a helahe of \(A C\) Inchea wlil hava no alendfleant effect on the exterlor of the cask. The orerpack fully protects both ends of the package leaving only che central cask body which is manufactured from \(1 / 2\) inch chick steel and backed uith over 5 inches of lead. Ho valven, valve covera or fraglle protruslona exlat.

\subsection*{2.6.11 Conclusions}

As the result of the above assessment, it is concluded that under nomal conditions of transport the package complies with cifteria in 10 CFR 71, as follows:
1) There will be no release of radioactive material from the contalmuent vessel;
2) The effectiveness of the packaging will not be substantially reduced;
3) There will be no mixture of gases or vapors in the package which could, through any credible increase in pressure or an explosion, signifleantly reduce the effectiveness of the packase.

\subsection*{2.7 Hupothericsi_Accicent Candivians}

The Model l-13C II package has been designed and its contente are so li=ited that the performance requisements apecisied in 10 CFI ulli be met if the package is subjected to the hypothetical accident conditions apecified in 71.73 of 10 CFB 71.

To demonstzate the stactural integrity of the package and fes abillty to Withstand accident conditions, comprehensive full scale drop cest program has been conducted. These testa exployed an existins 1-13C II package modifled to bring the assembly into conformance with the configuration detalled in Section 1.3 .1 .1 . dralytic predletions are used to augment test data where copica have not been directly measured in teata.

\subsection*{2.7.1 Eree Drop}

Section 71.73 of 10 CFE 71 requifes that the package survive a 30 foot drop onto a flat esaentially unyielding surface. The test and analyals methods used to demonstrate this capabllity ciozely parellel the techalques uaed for past Type B packages. Araiytic techalques are completely described in Appendix Section 2.10.1. Teat methoda, plane, data, resulta, conclusions and interpretations are consolidated in apecial drop test Appendix, Section 2.11.

As described \(\ln\) Section 1.2, the Kodel 1-13C II package features circular energy abaorbins overpacks surroundins each end of the cask body. Theae orerpacks are deaigned to minlaize damage to the cask body during 30 foot drops at any orientation upon myifiding aurfaces. Test reaules, deacibed in Section 2.11, demonatrate that thesv orerpacka function as designed; the cask body experience no damage and incura no meazurable atralns in excess of Yield. This behavior under tested 30 foot drop conditions assures the complete effectiveneas of the cank cloaure features easentlal for preatration of packare containment integrity.

Overpacks loads and performance analyses preceded and followed the drop Eests. Analysis prior to test vere conducted to refine the geometry and properties of the overpacks and to select the most cricical dzop orientailons for these eests. daalyses subsequent to test were conducted usias actual physical properties of the test articles. These post-test analyses vere used co derive essential parametera not directly measured by test. An important result of these tests uas the vallcation of analytic overpack perforance prediceion methods described in Seceion 2.10.2.

Prior to conduct of the two drop teata described in Section 2.11, a full scale englneering prototype drop test vai conducted in July, 1980, using a imulated cask and protorype overpack. This ensineerins derelopment test, like the test described in Section 2.11, was completely succesaful and the aimulated cask suffered no damage. Notably, the almulated cask was fabricated of materials vith sigaificantly less robust atructural properties than the actual l-13C II cask. Tils engineering derelopment test resulted in silght modifications of crushable fosm properties and overpack ahell thicknesses co lmprove overpack performance. This development test data also reaulted in alight modifications of predictive methods for oblique impectn, Section 2.10.2.2, to improve the accuracy of pleching moment calculations. That da, the location of the effective impact force vas chansed to allov varlation as function of crushed orerpack footpriat geometry.

Ualng the methods of Section 2.10.1.1, three drop conditions for the package bave been -raluated, l.e., end, comer, and side. For each, relevant test results : ilscusaed. Analytic values are then correlated vith these data and comblned with appropriate analytic temperature and pressure data. These combined results are then compared vith applicable criterla to demonstrate compliance of the Model \(1-13 \mathrm{C}\) II package vith requirements for hypothetical accident conditione.

The :irst of two drop testa, discussed in Section 2.11 was an end impact upon the package base. Of all she potential orfentation angles, end drop produces one of the largest package deceleration fores.

Thege decelezation forces induce large edge bending forces on the edge supported and sealed lid. Test results indicated no degradation of containment integrity, and mo measurable change to the closure seometry.

These deceleration forces together with edge prying forces potentially induce severe loadings in the closure bolts. Test results, including instrmented bolt force measurements, indicate aurprisingly modest forces in closure bolts; at or below yield.

These deceleration forces also provide large forces which could induce siump of the wonded lead ahield. Gamancan test results indicated no lead alup; In fac:, there vas no measurable change to the lead ahield configuration of any fashion.

For a thirty foot end impact drop, measured dyname deformation of the orespack mounted to 4.46 inches. Post-test analytic predictions were adfusted to agree precisely with thin ralue, sa outlined in Section 2.11.5.2. These analytic predictions employed the computer program EYDROP, described in Section 2.10.1, and the energy absorbins foam properties of Figure 2.3-1. EYDROP output reaulta are ahown in Table 2.7.1-1. Peak deceleracion of 95.56 B was calculated. A alighty higher deceleration of 100.18 g vas forecast by the oblique dynamic analyses. For conservatism, the bigher value han been uged for atress calculation purposes.

4y


TADLE 2.7.1-1
Detalled cask siress caicilations vere conducted using the casix and lid finiseeiemene models inscussed in Secion 2.6.1, see Fizures 2.6.1-1 and 2.5.1-2.The stresses associated uith an end fmpact deceleration of loo.18g's zus: becombined vith max!mim nomal temperature and pressure stzesses, an ou:lined ininc Regila:ory Guide 7.8. Comblned stresses for this set of condicions asefound in Case 6, dppendix Section 2.10.3.
Max!man stresses are sumartised on the folloving page.
\begin{tabular}{|c|c|c|}
\hline \multirow[b]{2}{*}{\begin{tabular}{l}
Center \\
Locat:on
\end{tabular}} & \multicolumn{2}{|l|}{Stress Intensity (2si)} \\
\hline & (Membrane) & Sursace \\
\hline \multicolumn{3}{|l|}{Cask Bocy (\%)3, \(2,6,1-1)\)} \\
\hline Base - Inner Shell & 9554 (12) & - 14497 (12) \\
\hline - Outer Shell & 27257 (5) & 60493 (5) \\
\hline Side - Lower Quarier & & \\
\hline - Inner Shell & 10935 (15) & 13110 (14) \\
\hline - Oucer Shell & 44009 (9) & 65270 (7) \\
\hline Side - Mid Reight & & \\
\hline - Inner Shell & 10372 (25) & 10478 (25) \\
\hline - Oucer Shell & 18703 (40) & 19197 (40) \\
\hline Side - Top Quarter & & \\
\hline - Inner Shell & 13522 (30) & 16223 (30) \\
\hline - Outer Shell & 18703 (41) & 19197 (41) \\
\hline \multicolumn{3}{|l|}{Lde (Fis, 2, 6n-2)} \\
\hline - Base Playe & 14181 (2) & 27806 (4) \\
\hline - Side Cone & 21238 (9) & 34815 (9) \\
\hline - Iop plate & 11472 (16) & 38091 (16) \\
\hline
\end{tabular}
* ( ) Denotes element number.

Facrors of afety are calculated using allovable atresacs at a temperacure of 214.4 \({ }^{\circ}\) f, based on material properties from Table 2.3-1, as follows:

\section*{a Cominiment Yessel (i-mer Shell)}
(BRRC Res. Guide 7.6)
\[
\begin{aligned}
& S_{m}=20 \mathrm{ksi} \\
& S_{u}=70.28 \mathrm{ksi}
\end{aligned}
\]
- Membrane
\[
\begin{aligned}
& 2.45_{y}=(2.4)(20)=48 \mathrm{ksi} \\
& 0.7 S_{u}=(.7)(70.28)=49.20 \mathrm{ksi}
\end{aligned}
\]
- Membrane + Bendins
\(3.6 S_{m}=(3.6)(20)=72 \mathrm{ksl}\)
\(s_{u}=70.23 \mathrm{ksi}\)
- Quter Shell
\[
S_{u}=70.28 \mathrm{ksi}
\]

For the contalnment vessel the minimum factors of anfety are:
- Membrane (Lid Cone):
\[
\text { F.S. }=\frac{48}{21.238}= \pm 2.26
\]
- Bembrane + Bendine (idd Cone)
\[
\text { F.S. }=\frac{70.28}{34.815}= \pm 2.02
\]

For the exterior shell, the minimum factor of gafety (at lower cask alde, Element 7) 1s:
F.S. \(=\frac{70.28}{65.27}= \pm 1.08\)


The second of the two drop tests, discussed in Section 2.11 vas a comer drop, 11d end down, wish package oriented at \(40^{\circ}\) with respect to a horizontal plane. Inis orlencarion angle was chosen for ewo reasons:
- To minfmize overpack clearance margins, see rizure 2.7.1-2.
- To maximize aecondary "slap-down" loads on the lid closure and thereby maximize closure bolt loads.

Of note, the earlier engineering development test conducted in july, 1980 , was conducted at an orientation angle of about \(60^{\circ}\) vith respect to horizontal plane. This corresponded to the traditional c.s. over atruck comer oricneation.

\begin{abstract}
The test results indicated no change to the cask and no measurable residual strains exceptias for a single closure bolt that could have experienced a straln of as much as 0.44\%; about tulce the ralue of yield strain. See Section 2.11.5.1.3 for detalls on elosure bolt experimental strains.
\end{abstract}
dnalytic prediction. of package performance, uaed to decermine cask loads, employed two computer programs described in Appendix Section 2.10.1-CYDROP and OBLIQUE. CYDROP uacs an energy balance techalque to determine loads and deformations of the overpack. Since CYDROP assumes all drop energy is absorbed in deformation of the overpack, it provides valid results at the \(c .8\). over struck corner orientation (no rotational motions). cyDrop output for this orientation 1 s provided in Table 2.7.1-2.

```

a:e used 1: OBLIqUE, a dymamle analyses model that groperiy teeats rot=ei=naj
=orion effecis. E!gures 2.7.1-1 :0 i.7.1-3 sumariz`e predicied overpack
Eesponses for all ordentation angles from near verilcal io near horizonial.

```

``` cosces on the cask. Flgure 2.7.1-2 shows that the tested \(40^{\circ}\) orientation corcespords to mindmun cleazance between the impact plane and cask "hard polnes." Figure 2.7.1-3 maps terding moments induced in the cask body.
```

At the tested orientation, predicted dymanic overpack deformation amounts so 13.9 Inches. Post-test measurements of the deformed overpack, Flgute 2.11.4-6, shows about 9.1 inches residual deformation following recovery. The foam utlilzed in these overpacks recovers about $30 z$ follouing removal of load. Jils gives a iest based dynamic deformation estimated at (9.2/.7.) 13.1 Inches; about 6\% lower than the analytic predictions.

For cask stress evaluation purpose, moment and chrust forces are amax mum at $53.75^{\circ}$ vith respect to a horizontal plane. At this orientafion, cask loads are:

```
Moment = 12.634 \times 106 1n-1b.
Thrust = 1.399 < 10' lbs (51.8g)
```




FIGLRE 2.7.1-1


EIGURE 2.7.1-2

OYERPACK DEFLECTIDN RND RESIDURL CLERRANCE -30 FT DROP


Cfisk bending moment (in-lb) -30 ft drop


The mosent load produces a maximu bendlas stresses at the lower $1 / 3$ point of the cask hedotht (63/3 = 22.7") ; cortesponding to cask model elements 19 and 25, see Fisuze 2.6.ג-1. At this location, the bending stresses are:

$$
\begin{aligned}
& f_{b}=\mathrm{Mc} / I=11,6 d 9 \mathrm{psi}, \text { inner shell } \\
& \text { 16,394 psi, outer ahell } \\
& \text { Where: } M=12.634 \times 10^{6} \cdot 1 n-1 b \text {. } \\
& \text { c }=13.50 \mathrm{in}-\mathrm{in} \text { iner shell } \\
& 19.00 \text { in.- outer shell }
\end{aligned}
$$

$$
\left.\begin{array}{rl}
I=\pi & =\pi\left(L_{0}^{2}-R_{1}^{4}\right)=\pi
\end{array}\right]\left[19.25^{4}-18.75^{4}+13.75^{4}-13.25^{4}\right] ~=146421 \pi .4
$$

Stresses for chrust load effects ara obtalned by multiplying results for Case 3, Section 2.10.3, by the factor 51.8/100.184 =. 5170. Stresses for maximun normal presaure and temperature are obtalned fram Case 7. Stress predictions are ahown belou.

Stresses (psl)						
Locations		$\sigma^{\sigma}$	$0$	$\tau$	$0$	
Ingershell	Bending	-	$\pm 11649$	-	-	-
ment)	Temp (7)	47.	10550	-16	4566	10503
	Thrust (3)	0	-405	18	627	1033
	Combined	+47.	21794	$+2$	5193	21747.
			-1504			6697
Quter Shell	Bending	-	$\pm 16394$	-	-	-
	Press Temp (7)	-289	13750	0	19180	19469
	Thrust (3)	13	-6178	45	-719	6192
	Combined	-276	23966	45	18461	24242
			-8822			27283

The :esultanc factors of atifty us!ng allowables defined in Secion 2.7.1.1 are:
o Containent: F.S. $=\frac{48}{21.747}= \pm 2.21$
0 Outer 5hell: F.S. $=\frac{70.28}{27.283}= \pm 2.58$
2.7.1.3 Eree Dreo Tmpact Side Dreg

SIde drop impacts vere not tested in the drop test program; however, the sather shallow ansle oblique impact ( $40^{\circ}$ ) induced significant impact upon the second overpack. This test approximately aimulated a side drop event. As noted previously, the cask experienced no damage in these tests.

The most cifical phenomena investigated in aide drop evaluation are the bending stresaes induced in the cask body by the lapacts upon the end mounted overpacks. Behavlor of the orespacka har been evaluated using the program, SYDROP, described in Section 2.10.1. Resulta are shown in Iable 2.7.1-3. Peak acceleracion of $137.4 z$ vas calculated. This produces a midsection bendlns moment of:

$$
M=H 1 / 8=(27000)(137.48)(68) / 8=31.5 \times 10^{6} \mathrm{dn}-1 \mathrm{~b} .
$$

Inaer Shell
Outer Shell
$\pm 29,075$
$\pm 40,918$

These bending stresses must be superimposed upon the marimum normal pressure and icmperature stresses found in Case 7, Section 2.10.2. For midsection elements 23 art 39 , the resultant atresses are:



[^0]|  |  | Stresses (psi) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Locations (Element :lumber) | Load | $\sigma_{5}$ | $=$ | 52 | $\theta$ | S.I. |
| $\frac{\text { (23) }}{\text { (contatnment) }}$ | Bendins | - | $\pm 29075$ | - | - | - |
|  | Temp | 68. | 11240 | $-12$ | 4440 | 11172 |
|  | Combined | 68. | 40315 | -12 | 4440 | 40247 |
|  |  |  | -17835 |  |  | 22275 |
| $\frac{\text { Ouser Sheld }}{(35)}$ | Bending | - | $\pm 40918$ | - | - | - |
|  | Temp | -283 | 13560 | -12 | 19010 | 19293 |
|  | Comblned | -283 | 54478 | -12 | 19010 | 54761 |
|  |  |  | -27358 |  |  | 46368 |

The resultant factors of safety, using allowables deflned in Section 2.7.1.1 are:

- Containment: F.S. $=\frac{48}{40.247}= \pm 1.19$
o Outer Shell: F.S. $=\frac{70.28}{54.761}=+1.28$


### 2.7.2

 body or slde vall between the cverpacks.

The He!ms* puncture =elation is given as:

```
 c=(%/5)
where: t = shell thlckness = 1/2 (outer shell) and
 1/4 (slreshleld)
#* cask velght - Ibs.
S = ultimate tensile strengith of outer shedl
```

    - \(70,280 \mathrm{psi}\) e \(214.4^{\circ} \mathrm{F}\)
    The package welght causing puncture 1s:

$$
w=5 t^{1.4}
$$

Upon lmpact, the flreshield ls deformed and brought into difect contact ul:h she outer shell. At this point in the impact seenario, the fireshield is effectlvely "backed" by the outer shell and lead. The package welght to cause puncture of chis 1/4" fireshleld is:

$$
\gamma_{f}=(70.280)(.25)^{1.4}=10,091 \mathrm{lbs} .
$$

The corresponding weight to cause puncture of the $1 / 2^{\prime \prime}$ outer shell is:

$$
H_{s}=(70,280)(.5)^{1.4}=26,631163 .
$$

*Shappert, L.B., "Cask Designers Guide", ORML-MSIC-68, Page is.

Fi.us, the tozal refohe at rhich punceure of both fize shieid and oute: shell oceurs is:

$$
H=H_{f}+H_{s}=36,722 \text { ibs. }
$$

The actual package weight is 27,000 lbs; therefore, the factor of safety for puncture =es!stance on an energy basis is:

$$
\text { F.S. }=\frac{36,720}{27,000}= \pm 1.36
$$

When the cask impacts the puncture pin the force imposed upon the cask is estimated as:

$$
F_{I}=k_{3} \Lambda_{I}
$$

This force induces moment at the midsection of the cask. The moment is eatlmated as:

$$
M=E 1=\frac{\left(2.272 \times 10^{6}\right)(68)}{8}=10.8 \times 10^{6} \mathrm{In}-1 \mathrm{~b} .
$$

[^1] steesses ard the pressure and semperature stesses reported gives steess farenstites and fac:oss of safety of:

		Stresses (osi)		E, 5 ,
		Bendias	S.i.	
	Imer Shell   (Contaisment)	$\pm 9958$	21130	48/21.13= 221
0	Outer Sheld	$\pm 14014$	27857	70.28/27.86:2.52

### 2.7.3 The:nal



The maximu temperatures and pressures resuleing from the hypotherical accident conditicns presented 1 n Section 3.5 .3 and 3.5 .4 are sumarized beiou:

Maxtmum Contaitment Vessel Pressure $=184.4$ psis Temperatures:

- Cavity (Inaer Shell)
$=371.43^{\circ} \mathrm{F}$
- Outer shell Sides
$=434.56^{\circ} \mathrm{F}$
- Outer Shell Ends
$=363.35^{\circ} \mathrm{F}$


### 2.7.3.2 2: 20:0

21:ferenc!al themal expansion between the cal stelis of the cask and the lead shield produces signdflcant stresses. Stsesses have been asacssed by uac of the flndte element models discuased in Section 2.6 l, see Flzire'2.6.1-1 and 2.5.:-2.

### 2.7.3.3 Stiegscilculasions

Stress calculations for pressure and thermal loads vere performed using the condielons sumarized In Secifor 2.7.3.1, as Cases 2 and 1 of Appendix Section 2.10.3, respectively. These two cases are combined as Case 4 of the referenced section.

Maxtmun Stzesses a:e surmarized as fol:ows:

Location				
	Cerser		Suzface	
Cosk sife (Findere, 5, -1)				
- Lover Quarter				
- Inser Shell	27740	(18)	29042	(:8)
- Ourer Shell	33380		62903	(9)
- Mid Heighe				
- Inner Shell	32049	(26)	33611	(25)
- Outer Shell	34901	(35)	36641	(35)
- Iop Quarter				
- Inacr Shell	36322	(30)	44216	(30)
- Ourer Shell	36860	(46)	37917	(46)
Lid (ixure 2,5,1-2)				
- Ease Plate	18760	(5)	33325	(5)
- Side Cone	37963	(8)	58210	(10)
- Top Plate	31120	(16)	53494	(14)

[^2]```
2.- 4 Compa-isen Wi-h illouable St-Esses
A:\% دle steesses based upen the temperat:res of Secifcn 2.7.3.1 ard Table
:.3-1 are as follows:
    O Containment vesse: (Inaceshell) (I=3:1.43}\mp@subsup{}{}{\circ}\textrm{F}
\[
\begin{aligned}
& s_{=}=19.07 \mathrm{ksi} \\
& s_{u}=64.86 \mathrm{ksi}
\end{aligned}
\]
- Membrane:
\[
\begin{aligned}
2.45_{m} & =45.77 \mathrm{ksi} \\
.7 S_{u} & =45.40 \mathrm{ksi}
\end{aligned}
\]
- Membrane + Bending
\[
3.6 S_{\beth}=68.65 \mathrm{ksi}
\]
\[
S_{u}=64.86 \mathrm{ksi}
\]
- Outer Shell
\(\left(I=434.56^{\circ} F\right)\)
\[
s_{u}=64.09 \mathrm{ksi}
\]
For the containment vessel, the min!mum factors of safery are:
```

- Membrane
F.S. $=45,40= \pm 1.20$
37.963
- Membrane + Bending: F.S. $=64,86= \pm 1,11$
58.21

```
For the outer shell, the minimum factor of safety is:
```

```
F.S. = 64,09 = 21,02
```

F.S. = 64,09 = 21,02
62.805

```
        62.805
```


2.7.A Imersien-Elssile Marefial

The :equifement of 10 CER 71.73 (c)(4) is not applicable, stace no araangener: of the mi-2 core cebris samples contalned in the shielded debris candsters can result in a criefcal conflguration under any noral or accident conditions With the total mass limited to 29 kg by the volume restifeion. The aciual mass of approximately 15 kg will provide a safety factor of five.

2.7.5 Immersion - Ail Packages

10 CFR 71.73 (c) (5) requites an immeraion in water with a pressure of 21 psiz for eight hours. Revieu of the stresses in Section 2.6 .4 for a 25 pais pressure dndicafes the stresses are lov, and this test will have no significant effect on the package.

2.7.6 Summary of Damage

The structural integrity of the Model 1-13C II Package has been substantiated :or normal transport conditions as vell as hypothetical accident conditions.

Damage to the Model 1-13C II Package that results from the hypothetacal acc!dent condlelon 1s:

1. Impact limiters crush during the 30 foot drop condition producing a maximum bolt load on the contalment vessel. Bole stresses are maintained at or below yleld. Vessel atresses are less than those prescribed by NRC Regulatory Guide 7.6.
2. Small local defomaticns so the exfernal shell may zestit dusing the 40 inch puncture condition. There vill be no loss of shielding and the contafment vessel uill not be deforned.
3. Paesence of the overpack and hear shield limit remperatures in che concalnment vessel walls co less chan $372^{\circ} \mathrm{F}$, and inte:aal fiessures to 285 paig. Geometry and temperature integrity : the seals is madntained.

2.8 Special Form
Not applicable since no special form la claimed.

2.9 Euel Rods

Hot applicable since fuel rod cladding is not considered to provide con:adrment of radioactive material.

2.10 Stactural Evaluarion Appendices

This section contains three blocks of informational appendices supporting the structural eqaluations of the l-13C II Cask presented in Sections 2.1 through 2.9.

O Section 2.10.1 - Sumarizes the methodology of computer programs utilized to demonstiate structural compliance of the package with applicable provisions.

- Section 2.10.2-Contains finfte element atress sumaries for the cask under normal and accident conditions.
- Section 2.10.3-contains finite element atress sumaries for the cask lifting lug support ring.

Ahis seciton briefiy dockents the methodology empleyed for computer prozams used to demonstrate compliance of the package with applicable provisiors of io CFR 71 unde: noraal and acildent conditions. The fizst three subsections deaj :ith she calcularion of external and internal forces laposed upon the package, :hen subjected to drop events. These three subsecilons desc:ibe Eechniques and compurer programs developed by fuclear zackaging, Inc., of Iacoma, Washingion.

The fourth section descibes the E3SAP flaite element code employes for detallcu evaluation of package stresses under normal and aceident conditions. The E3SAP program vas developed by Boeing Computer Serpices Company based upon the vell known SAP IV prosiam developed by Dr. E. L. Hllson.

2.10.1.1 Overpack Defermation Behavier

The package is protected by foam fllled energy absorbing end buffers, called overpacks. For purposes of analysis, the overpacks are assuad to absorb, in plastic deformation of foam, the potential eneray of the drop event. That ls, the analyacs assume that none of the drop potential energy ds transferred to kinetic or strain energy of the target (the "unyleiding surface" assumpion of 10 CFR 7i) nor gtrain energy in the package body itself.

There are chree orlentationa of the package where the potential energy of drop is assumed cocally absorbed by plasilc deformacion of the overpacks. At other orfentations, where rotational effects are Important, the withods outlined in Section 2.10 .1 .2 are employed. These three orientations where rotational (or pitch) motions play no role in the evaluation of the impact event are:
o End erep - on the circular end su:face of the overpack.

0
5ide jicn - on the cylindrical side surface of the overpacks.

- Coner Drof - with package center of gravity dizectiy above the steucix corne: of the orerpack.

Sor these three orientations, the prediction of overpack beharior can be approached from seralghtforard energy balance principles:

$$
\begin{equation*}
E=H(h+\delta)=\quad \int_{0}^{\delta} \Sigma_{X} d x \tag{1}
\end{equation*}
$$

Where: $H=$ Package velshe
h = Drop height
$\delta=$ Maximum overpack deformation
$\Sigma_{x}=$ Force imposed upon target and package by the overpack at deflection equal to x.

1
*and

The left-hand teze represents the potential energy of the drop. The right hand term represents the strain energy of the deformed overpack.

Each of these three orientarions la treated by an individual compurer program reflecting the differing geometry characteristics of each event. All three employ cominon energy balance techniques to assess maximum overpack deformations. All three employ a comon description of the crushable energy absorbing soam.

This foam typleally exhibits a stress-atrain plateau of nearly constant stess up to a total strain of 40-60\%. Above this strain value, pronounced strain hardening effects comence reflecting the collaspe or consolidation of the entrapped bubbles uithin the foam. Accordingly, a tabular definition of foam stress-strain relations is employed in each of the three computer prosiams. This tabular definition is taken directly from measured properties and accurately reflects the strain hardening behavior of the foam up to strains of 90-95\%.

2his d!scussion of these theee computer prog:ans proceeds f:om the seametricalig simple (end d:op) to the most complex (comer drop).

1. End Drep_(EVDROP)

The force produced by the overpack is simply:

$$
\begin{equation*}
F_{x}=\lambda \sigma_{e} \tag{2}
\end{equation*}
$$

Where: $A=\pi_{-} D^{2}$, the end area of the package.
4
D $=$ effective diameter of package $\sigma_{e}=f(e)$, the foam crush stress at atrain of e (3) $\phi(e)=$ the tabular definition of foam stress atraln properties
$e=I / x_{u}$,
$x=$ deformation
x_{u}. end thictoness of overpack.

EYDROP gerfoms the calculations outined in Equations (1) to (3) for a tifal range of deformarion values, δ. For each trial value of cotal deformation, the energy balance of Equation (1) is mondtored and reported. Solution for total orerpack defomation is found by an Interpolated balance of Equation (1).

2. Sile Res (S:2ROP)

SiDnOR differs s:om the end drop solution only in the face that both desormation and strain vary from point to point and cotal force, at a given crush depth, must be found by geometsic integ:ation over these polats. The detalls on this geometry are found in figure 2.10.2-1. For each erial deformation value, the force is found as:

$$
F_{\delta}=\quad 21 \int_{0}^{x_{\max }} 0 \text { exdx }
$$

Where: $L=e f f e c i v e ~ l e n g t h ~ o f ~ o v e r p a c k ~$
$x_{\max }=\left[r_{0}^{2}-\left(5_{0}-8\right)^{2}\right] \quad 1 / 2$
$\sigma_{e x}=\phi\left(c_{x}\right)$, tabular definition of foam
atress-arrain properties.

- $e_{x}=$ The foam strain at location x.

The strain at point x is found by reference to figure
2.10.2-1 as:
$e_{x}=\frac{\text { Crush Dspth }}{0 r_{1} \operatorname{sinal} \text { Inick. }}=\frac{\delta-r_{0}(1-\cos \theta)}{r_{0} \cos \theta-s_{1} \cos v}$
hatere: $\theta=\sin ^{-1}\left(x / r_{0}\right)$
$v=\sin ^{-1}\left(x / I_{1}\right)$
3. Cermer Drep (CIDROP)

CYDROP is like SYDROP excepting that a tyo dimensional seometric integration is required to asaess the overpack crush force at each deformation. A detalled explanation follous.

EIGURE 2.10.1-1
SIDE PROP GERMETSK
(SYDROP)

 sutface. The package itself consists of a cylindifical payload poriten su: \quad ounded by a larger cylindrical volime composed of a crushable media. So Iong as the deformations of the crushable media are modest, the problem ady be approximately solved by assualng a undform crush stress exists over the ellipitcal surface of the crush planc (contact surface). CYDROP yas developed spectitially to address problems of large deformations of this crushable medta and $=0$:reat geometries where the cylindrical overpack envelope possesses axtsymetric cylindrical foids (e.8. does not completely cover the cylindrical erds of the payload package).

The large deformacion behavior of the crushable media fa accomodated by determining the actual stain of the crushable media at point. This atiain Is used to determine the corresponding atress from an implicit tabular definicion of media stress-strain characteristics. The total crush force is found by a double integration over the contact area of the crush plane.

Stiain energy absorbed by the crushable media is deterained by integrating the crush foree and its associated deformation. The package ls assumed to be at "rest" when the computed strain energy value equals the applied drop energy.

The geometric calculations for the contact surface and the associated atrains are carried out using m moving (x, y, z) coordinate gystem in which the $x-y$ plans corresponds to the erush plane, wee Figure 2.10.1-2. The crush plane fiself represents a segment of an elilpse. The contact area is this ellipse segment, provided no cylindrical end roid exists. Hen a cylindzical end vold exists, the contact area of the crush plane is reduced by the removal of a second ellipitcal region assoclated with the projection of chls vold into the contact plane.

Calculation of strain is somewhat more complex. In principal, fhe dis:a:ce from point (x, y) in the erush lane to the payload is found and denoted, $Z_{\text {top }}$ Similarly the distance to the undeformed external overpack enve:spe is found and denoted, $i_{\text {bot }}$. The strain represents deformarion divided by oris:nal thickness, of:

$$
=\frac{z_{\text {bot }}}{z_{\text {bot }}+z_{\text {top }}}
$$

de any point (x, y), the calculation of Ztop may follow three branches, according to location. The three possible branches relate to the payload surface intercepted. They are:

The Clicular Borsom of the Poylead

The bottom of the payload cylinder describes an ellipse in the crush plane. If (x, y) is inside this ellipse, the point is considered "backed" by the bottom of the payioad. An exception to this general atatement is noted in che discussion of the "Unbacked Region," aee below.

The Cylindrical Surface of the Payload

The cylindrical aurface of the payload describes a rectangular region tangent to the payload boctom elilpse at its major ares. If (x, y) is outside the bottom ellipse yet possesses an coordinate less than the radius of the payload bottom, the point ls conaldered "backed" by the payload cylinder.

Unbackad_Resions

Unbacked regions are of two forms - those associated with the cylindrical end vold and those near the external surface of the overpack. The unbacked region associated with the end void is a point in the crush plane which ifes uithin the ellipse defined by the roid circle lying in the plane of the payload bottom. The unbacked region associated with points near the overpack extrimitics is defined by those points (x, y) where the x coordinate exceeds the radius of the payload volume. Points which are "unbacked" employ a nominal crush atress for force integration purposes.

Fhe calculation of $Z_{\text {bot }}$, he distance to the undesormed orerpack erivelope, may follow tio branctes. These branches corzespond to latercepts with eithe: the cyllad:ical suriace of the overpack or the cireulat end of the overpack.

The analytics describing the geometry discussed above, consists of the sequential application of a series of geometifc eransformations of surfaces described in the coordinates of the cylindrical package ($K, Y, 2$) to the coordinates of the contact plane (x, y, z). The surfaces in package corrdinates are:

Oyeroack cylloder

$$
x^{2}+y^{2}=R_{c}^{2}
$$

Queroack Botson Clrele

$$
x^{2}+y^{2}=R_{c}^{2}
$$

$$
2 \quad=-1_{c} / 2
$$

Pa:ilosd Cilinder
$X^{2}+Y^{2}=R_{p}^{2}$

Pyyload Botsom Clrele
$X^{2}+Y^{2}=R_{p}^{2}$

2
$=-1_{p} / 2$

Vodecircle at Paylend
$x^{2}+Y^{2}=R_{f}^{2}$

2
$=-1_{p} / 2$

Toid circls as Overpact Exferler

$$
x^{2}+y^{2}=R_{f}^{2}
$$

2
$=-1_{c} / 2$

JIGURE 2.10.1-2
CORHER CILITDER IMPAC: GECMEATY

2.!0.1.2 Cblicue Imast Ounanic inalusis

lmpact at arbitrary orientation angles differ in two major respects from these that cccur at angles corresponding to stable or neutral equilibrium (end. side, and c.g. over stryck corner). In the neutral equilibrium conditions tise entire initial kinetic energy of drop is transformed into strain energy associated with plastic deformation of the overpack. At arbitrary orientation angles, oniy a portion of this kinetic energy is transformed into strain energy at the impacted end. The remainder of this kinetic energy becomes rotational motion of the package. The solution approach must properly reflect the continually changing transformation of initial translational kinetic energy into rotational kinetic energy and plastic deformation of the overpack energy absorber.

The second major difference between neutral equilibrium impacts and arbltrary angle impacts relates to the rather different load-deflection behavior ef the overpacks at low angle ($10-30^{\circ}$ from horizontal) orientations. Under neutral equilibrium conditions a major portion of the crush footprint is backed by the cylindrical body of the package, allowing strain hardening effects to stiffen the overpack load-deflection relation. At low angle orientations ($10-30^{\circ}$ from horizontal) much of the overpack crush footprint is unbacked. Thus, the low angle load- deflection relations are initially quite soft, then abruptly harden as portions of the crush footprints approach horizontal attitudes, this terminal stiffening phenomena becomes more pronounced.

There are two potential solution paths to problems of this nature - a momentum formulation or a direct solution of the equations of motion. The momentum approach provides an easy and simple means to assess the transformation of translational initial velocities into rotary velocities: hence, total plastic strain energy absorbed by the overpack energy absorber. Unfortunately, this momentum formulation does not produc intermediate values of crush force and crush deformation needed to assess overpack attachment forces nor does it conveniently provide a means to incorporate the varying load-deflection relationships of the overpack as a function of orientation angle. Thus, a direct solution of the equations of motion was selected. ihe model is fllustrated on the following page.

The three key problem variables (rush force, E, crush depth, i and orientation angle, 0) all vary with time for a given oritarafion angie, 0_{0}. The crush force is assumed to act at the centroid of th elliptical crush footprint. For the model shown in the sketch, three independent second order differential equations of motion can be formed:

$$
\begin{aligned}
& \ddot{M} \ddot{X}=F_{x} \\
& \begin{array}{l}
\dot{M} \dot{Y}=F_{y}-M g \\
\dot{I} \ddot{\theta}=\left[\left(\frac{\delta}{\sin E} \cdot \frac{(\Delta-c)}{c}+t_{B}+L / 2\right) \sin \theta\right] F_{x}-
\end{array} \\
& {\left[\bar{x}\left\{\frac{\delta}{\sin E} \cdot \frac{(\Delta-c)}{c}+t_{B}+i / 2\right) \cos \theta\right] E_{y}}
\end{aligned}
$$

```
There: \(M=\) the package mass \(=p l\)
    \(F=\) the crush force
    \(8=\) the gravitational constant, \(=386.4 \mathrm{in} / \mathrm{sec}^{2}\)
    \(I=\) the rotational mass moment of inertia \(=\left(p 1^{3} / 12\right)\)
    \(R=\) the radius of the body
    \(L=\) the length of the body
    \(\tau_{B}=\) overpack bottom thickness
    \(0=\) the instantaneous orientation angle of the package with
            respect to the horizon
    \(p=\) the mass per unit length
```

a. c, t_{B}, \bar{x} are footprint geometry quantities defined in Section 2.10.2.3.

These differential equations are integrated subjected to initial conditions, associated with the moment of impact, $t=0$, of:

$$
\begin{aligned}
& x=0, y=0, \theta=\theta_{0} \\
& \dot{x}=0, \dot{y}=\dot{y}_{0} \dot{\theta}=0 \\
& \theta_{0}=\text { impact angle, varies } \\
& \dot{y}_{0}=\sqrt{2 g h} \\
& h=\text { drop height }
\end{aligned}
$$

Each of the above differential equation a requires a continuously updated value of force, f, reflecting both crush depth and package orientation, or:

$$
r=\psi\left(t_{y}: \theta\right)
$$

This continuously updated value of force, F, is supplied to the integration process by means of a two dimensional Langrangian interpolation of crush depth, δ_{y}, and orientation angle, 0 . The tabular data used in this interpolation consists of aeries of complete force-deflection relations for separate orientation angles developed via the CYDROP (and SYDROP) computer pros rams, described in Section 2.10.2.1. The deflection, δ_{y}, is expressed In terms of problem variables as:

$$
\delta_{y}=\frac{L}{2}\left(\sin \theta-\sin \theta_{0}\right)+R\left(\cos \theta-\cos \theta_{0}\right)-Y
$$

The fo:egoing analygis p:ocess for evaluating tmpacts at oblique orientatisas vas consolidated in a NuPac developed computer program, OBLIQUE. OELIQUE t:regrates the equations of motion for each value of orientation angle verites ctar luncll maximim values are found for crush force, crush deformaticn, sheaz a:d body bendias moment. At each incremental time step (incremental crush ceformation) overpack attachment moments are computed, acanned for maximin -alues and ourput. By sweeping through a series of lalital orfentation angles, the maximu values of all internal loads are found.

2.10.1.3 Qveroack Force dnalyses

This section treats both external and interal forces imposed upon the package. Rey to the treatment of external force application locations is an understanding of crush footprint geowetry.

The crush footprint is a sector of the ellipse shown the next page. The location of the centroid, \bar{X}, is calculated relative to the elifse orisin.

From the above sketch, the geometric properties of the ellipelcal crush footprint are:

$$
\begin{aligned}
& a=5 / \ln \theta \\
& c=\delta /(\sin \theta \cos \theta)
\end{aligned}
$$

The area, A, and the centroidal offset, \bar{x}, of the crush footpint are defived as:

Risen c a :

$$
\begin{aligned}
& A=2 \int_{a-c)}^{a} y d x: y=\frac{b}{a} \sqrt{a^{2}-x^{2}} \\
& \lambda=\frac{2 b}{a} \dot{\left(a^{2}-x^{2} d x\right.} \\
& A=\frac{b}{a}\left[\frac{-a^{2}}{2}-(a-c)\left(2 a c-c^{2}\right)^{\frac{1}{2}}-a^{2} s i^{-1}\left(\frac{a-c}{a}\right)\right] \\
& A \bar{x}=\frac{2 b}{a} \int_{(a-c)}^{a} x \sqrt{a^{2}-x^{2}} d x \\
& \bar{x}=\frac{2 b}{3 a}\left(2 a c-c^{2}\right)^{3 / 2} / A
\end{aligned}
$$

r Fine $a<c \leqslant 2 a$:

$$
\begin{aligned}
& A=\pi a b-\lambda * \\
& \bar{x}=\frac{A^{*} \bar{x}}{\lambda}
\end{aligned}
$$

\dot{A} and \ddot{x} are as defined for λ and \bar{x}, except that c^{*} replaces c.

$$
c^{*}=2 a-c
$$

When c aa:

$$
\begin{aligned}
& \lambda=\pi a b \\
& \bar{x}=0
\end{aligned}
$$

Eos mos: orlentations and cirsh depths, the overpack crush force 1 s Eransinl:zed to :he cask bocy 1 n d!rect compression; hence, the forces transm!ted to the c!rcunferential overpack attachments are near.zero. ih!s is not tive for near vertical and near horizontal orientations of the package, at rer: modest c:ush deformations and crush forces. In these very limi:ed sltuations, the center of pressure of the crush force can lie beyond the outer extremeries of the cask body and exert a resultant moment force upon the overpack atrachments. Significantly, these moments exist oniy for very modest crush deformations and crush forces, regardiess of orientation angle. inls is because larger c:ush deformations move the center of pressure sovard the cask body. As maximum crush depth and maximum crush forec, for all angles of orientation, there are ne overpack attachment moments because the overpack laterface forces are all direct compression. The near vertical and near horizontal orientations where attachment moments exist are sketched below:


```
AtEachment Moment = M = E.ea or Ě.e.o
mhere: ea = Moment drm about adjacere corner
    c}=\mp@code{Moment Am about opposite corne:
```

The location of the crush force can be approximated as che centroid of the c:ush footpriat area. This approximation is consistently conservaifer. Specifically, for both near vertical and near horizontal orientations, foam stain hardening effects tend to move the center of force from the geometric center of the crush footprint toward the cask body. In both instances, this tendency reduces the actual moment ara of the crush force to less than that predicted by the location of the erush footprint centroid. The moment arm, as defined by crush footprint geometry is found belos.

The location of the center of pressure relative to the opposite and adjacent comers of the cask body can be obtalned from the geometry of the sketch shom on the following page.

The lacation of the center of pressure measured from a normal to the crust plane passed through the intercapt of package center line and tcoiy jaseplate (point c) is:

$$
\bar{e}=\bar{x}-\left[t_{3}+(a-c) \cos \partial \dot{j} \cos \theta\right.
$$

The moment arms, e_{0} and e_{a}, representing the distance from the center of pressure to the corners of the cask body, are thus given as:
$e_{0}=-(e+c)$: Moment Arm about opposite corner
$e_{a}=(e-q):$ Moment Arm about adjacent corner

Sign convention for these arms is such that the moment (F.e e_{0}) produces a clockinise (separation) moment about the opposite corner and moment ($F . e_{a}$) croduces a counter-clockwise (separation) moment about the adjacent corner. In other words, a positive moment must be resisted by overpack attachment bolts whereas a negative moment implies that the center of pressure is tctally resisted by compressive interface forces and there are no attachment bcit loads.
in summary, the attachment moment interface forces between the cverpack and body have been derived in terms of package geometry and three problem variables: orientation angle, crush force and crush deformation.

The casix is tceallzed as a beam fmpacting on the jowe end. The equa:tors of motion are formed and used to deflne state-wise accele:ations. These
 which vary along with the length of the package. when integrated, these forces provide a complete definizion ce Internal thrusts, shears and memen:s Eor the package as a function of toisl impact force and orłentacion angie. The derivation is as follous:

Ecr a planar $=!$ s!d body system, the behavior is totaliy defined by a solutisa
 An the above sketch, local coordinates are defined at the c.z. With axes paraliel and normal to the beam. The end impact force ls resolved into cemponents parallel to these local axes. Sumation of forces at the c.b. :eads to three rigid body equations of motion:

Sun_erno-ind_Fores $-\ddot{M Y}=F$ in α,

Sun ef Lensifudinal Ferces $-\ddot{X}=F \cos \alpha$, Suin of Mements - io $=-51 / 2 \mathrm{sin}$

Where:
$M=$ DI, the mass of the body
$I=M I^{2} / 12=\mathrm{Pl}^{3} / 12 ;$ the wass moment of Inertia of the body
p. the mass per unit lengeh of the body $\alpha=$ the vertical orientacion angle

Substituting for the mass and inertia terms:

$$
\begin{aligned}
& \ddot{y}=\Gamma / \rho 1 \sin \alpha \\
& \ddot{x}=\Sigma / \rho 1 \cos \alpha \\
& \ddot{\theta}=-6 F / \rho 1^{2} \ln \alpha
\end{aligned}
$$

$$
\begin{aligned}
& \ddot{s}_{n}=\ddot{\eta}+(=-i / 2) \ddot{\Xi} \\
& =\frac{\overline{\sin } \sin }{=\varepsilon^{2}}[i-6(=-i / 2)] \\
& \left.=\frac{25=5 n 2}{E f^{2}}(-2=+2 i) \text {, (vases with } r\right) \\
& \ddot{s}_{Y}=\ddot{x}=\frac{F \cos 2}{\partial i}, \text { (a constant }
\end{aligned}
$$

The lateral tertial force acting on the body at the fth location is:

$$
\frac{d y}{d I}==-\ddot{S}_{n}
$$

The corresponding expression for shear ia found by integrating this lateral force from the free end to the roth location:

$$
\begin{aligned}
& v_{y}=\frac{2 F s i=i}{y^{2}} \int_{\{ }^{\pi}(-3 x-2 \gamma) d r=\frac{2 F \sin }{2^{2}}\left[-\frac{3}{2}\left(x^{2} i^{2}\right)+2 i(x-i)\right] \\
& =\frac{2 F}{i^{2}} \frac{i n}{2}\left[-\frac{3}{2} z^{2}+\frac{3}{2} j^{2}+2 i=-2 s^{2}\right] \\
& v_{=}=\frac{F \sin a}{l^{2}}\left(?^{2}-4 l=+i^{2}\right)
\end{aligned}
$$

Similarly, the corresponding moment is found by lateg:ation of the shear expression:

$$
\begin{aligned}
& \frac{1:}{E:}=\ddot{r}_{=} \\
& \because=\frac{-5=-2}{i^{2}} \int_{i}^{5}\left(3 z^{2}-4 i z+i^{2}\right) d= \\
& M=\frac{\left.F \sin =\left[\left(z^{3}-i^{3}\right)-2 i\left(z^{2}-i^{2}\right)+i^{2}(=-i)\right], ~\right], ~}{i^{2}}= \\
& =\frac{F 5 i: i}{i^{2}}\left[z^{3}-i^{3}-2 i z^{2}+2 i^{3}+i^{2}=-i^{3}\right] \\
& M_{I}=\frac{\Gamma \sin 2}{i^{2}}\left[z^{3}-2 i r^{2}+i^{2} \Sigma\right]
\end{aligned}
$$

In order to verify these expressions for shear and moment, they are evaluated at the boundaries, $:=0,1$.

$$
\begin{aligned}
& I E \text { 2: } \\
& V_{I}=\frac{F \sin 2}{i^{2}}\left(3 r^{2}-4 i x+i^{2}\right) \\
&=\frac{E \sin \theta}{k^{2}}\left(3 i^{2}-4 i^{2}+i^{2}\right)=0 i
\end{aligned}
$$

$$
\begin{aligned}
& \therefore=\frac{E \sin }{i^{2}}\left[z^{3}-2 i z^{2}+i^{2} z\right] \\
& =\frac{F \sin 0}{i^{2}}\left[i^{3}-2 i^{3}+i^{3}\right]=0: \\
& \underline{I}=0 \text { : } \\
& v_{y}=\frac{F \sin I}{i^{2}}\left(3 I^{2}-i i=+i^{2}\right) \\
& =\frac{F \sin 3}{i^{2}}\left(i^{2}\right)=F \sin a ; \\
& M_{I}=\frac{F}{i^{2}} \frac{\sin 2}{\left.r^{2}-2 i r^{2}+z^{2} r\right\}}=0:
\end{aligned}
$$

Maximum moment occurs when the shear term, V_{r}, equals zero. jor this to occur

$$
\begin{aligned}
& 3 r^{2}-41 r+1^{2}=0, \text { and the location of the moment mini/max } \\
& \qquad 1 s \text { found as: } \\
& ==\frac{47 \pm \sqrt{i 15 i^{2}-4(3)\left(i^{2}\right)}}{6}=\frac{4 i^{ \pm} 2 i}{6}=1, \frac{1}{3}
\end{aligned}
$$

Substituting $r=1 / 3$ into the moment expression:

$$
\begin{aligned}
M_{I} & =\frac{F \sin \alpha}{\ell^{2}}\left[r^{3}-2 \ell I^{2}+\varepsilon^{2} I\right] \\
H_{\operatorname{Iax}} & =\frac{F \sin \alpha}{\varepsilon^{2}}\left[\frac{\ell^{3}}{27}-\frac{2 \varepsilon^{3}}{3}+\frac{\ell^{3}}{3}\right] \\
& =F \& \sin =\frac{2-6+9}{27} \\
M_{\operatorname{Max}} & =\frac{4}{27} F\{\sin 2, \text { at } I=\ell / 3
\end{aligned}
$$

She location of minimum shear can be found where the lateral scene expzesster equals zero:

$$
\begin{aligned}
\frac{d V^{\prime}}{d E} & =\frac{-25 \sin 2}{i^{2}}(-3 z+2 i) \\
\quad & =\frac{2}{3} i
\end{aligned}
$$

The magnitude of axial forces can be found as a function of location as:

$$
\begin{aligned}
\frac{d T}{d r} & =-0 \ddot{S}_{r}(a \text { constant) } \\
T & =-i \ddot{S}_{r} \int_{2}^{T} d r=-0 \ddot{S}_{r}(r-i) \\
& =E \cos 2(1-r / i)
\end{aligned}
$$

For convenience, the package internal forces are summarized as:

These forces are graphically illustrated on the next page.

:

E SAP

GENERAL INFORMATION
E<super>3SAP (the East). Efficient, and Enhanced Strac. ural Analysis Program was originally developed as SAP IV $2 t$ the University of California. $E^{3} S A P$. pronounced E-ihrec.SAP. is the BCS version of the program incorporating extensive modifications and eahanesme:.ts which provide

- Greater convenience
- Improved utihes
- Lower cost solutions

ANALYSIS CAPABILITIES

The purpose of $E^{3} S A P$ is to perform linear. static. and dynamic analysis of engineering staciures and piping systems E ${ }^{3}$ SAP offers comprehensive structural capabilities while providing a problem solving method that is easy to lear and easy to use. The analysis capabilities and assumptions inherent in $E^{3} S A P$ may be broadly categorized as.

- Linear static analysis
- Natural frequency and mode shape determina. ion
- Response spectrum analysis for earthquake shock studies
- Time history response to arbitrary force of acceleration functions
- Solution approaches based on proven statemp. the-ari finite element methods
- Orthotropic and temperature dependent material properties for a number of situations

MAINSTREAM:EKS

* Theoretical derivations assume hear ares reversible matenals

TYPICAL APPLICATIONS

E^{3} SAP. one of the most widely apphadle strut. lures, programs available today. is used 10 evaluate 2 variety of structures, including

- Framed Structures
- Buildings
- Bridges
- Off-hhore oil rigs
- Piping systems
- Railcars
- Transmission towers
- Plate and Shell Structures
- Nuclear containment structures
- Pressure vessels
- Storage tanks
- Ships and barges
- Solid Bodies
- Dams
c Tunnels
- Axisymmetric Structures
- Rotating machinery
- Pressure vessels
- Storage tanks

BCS ENHANCEMENTS

©CS erhane:neats p:ovide imporans benefils. Fre example:

- Gresier Conveniznes

- Problems may be solved intesaciively for quilk real-time answers or in baich for minimún cost
- Simplified conirol card procedures are piovided for bolh normal and restar: rurs
- Concentated loads may be spectified in arbirrary order
- Nodal data may be specified using the mesh generation fearure
- Comprehensive Debuf dids
- Exhaustive error checking is performed 10 lessen manual debusens
- Automatically senerated model details ase "iagfed" for easier ideriffication
- Stiffness matra printout is provided 10 assist in debusfing
- Auxiliar ciement characieristics (length. 25e2. volume, weaghi) ase provided io aid in interpiciation and debuzsing
- Improved Reliabilits
- Known SAP IV errors have been semoved
- Enhanced Oitput
- Ouipu: formais have been reorganized for clarity
- Simplified resuli file has been incorporated for ease of posi-processing
- Interactive and hardcopy plols of the model and ouiput results are available for checking -nd interpictation. Users are free to select om : varieiy of devices, such es Tekironix.
 Ge:ber. or Comp50 plesse:s.
- Lower Cosi and Grejser Efficicna:
- Automatic tandujdih resequens:is feaiu:es zssure $2 n$ efriziens set of equalions-solvet al 2 low cosi
- Dusing exection. core memorj is cjr.3m. icalls allocated to minimize uset cost and simplify the job control statements
- Improved solution apporithms and file man. agement for lower run cosi

FEATURES

InpulOurpur
E^{3} SAP. data follows a fixed fomal and consists of a description of the model, iss propenties. and the loading concitions relative to the selested analysis. Model zeometry may be expressed in eithes carcesian. cylindrieal or sphencal coordinates. Inpul $10 E^{3} S A P$ is generalls a dect of punched cards or a disk file containing card imafes. CMEDIT. ihe powerful editor offered on the inter. active (KJT) sysiem of EKS, provides the means for conversationally creating and modifying daia giles for use with E ${ }^{3}$ SAP.

Ouiput is eabular, and the input dat2, as well athe "tarsed" senerated and compured quantities. are listed. Results. such as displacemenis. siress. reaction. frequencies and mode ahapes, and dynamic time histories are conreniently displayed for easy interpretation. The output may optionally be seanned and spoi-checked al a low speed erminal prior to routing to an RUE terminal or 10 the BCS Data Center for printing. Add. tionally, eraphic displays of displacements and mode chapes are avaijable if desised.

Multiple Job Proctasing

Multiple jobs can be processed within a sinfle computer run by appropriate slacking of the input data. This time saving feature is pariculatls useful for the parametric evaluation of a stiveture.

Execution Options
'SAP may be exe:ules inie:az:ively or in batch ode Inte:active execu:ion of EJSAP diese:s solution results to the user, output fils in reathime. When time is not a factor, however. esonomisal solutions may be acheved by execullang $E^{3} S A P$ in the batch mode.

Input sequirements for both modes are identical. and only minor difeerences oceur within the job conirol statements As a eesult. users may alternate between the two modes with ease

Extensive Element Library

E^{3} SAP maintains a comprehensive, state-of-the-art inventor; of finite elemenis needed to perform most linear structural analysis. including.

- Three-dimensional truss
- Three-dimensional beam
- Twoodimensional membrane

Twodimensional axis mmeinc solid
. Aree-dimensional olid

- Thin-plase or thun-shell
- Taree-dimensional varable-number-of-nodes solid
- Boundary (or foundation) springs
a Three-dimensional pile
- Three-dimensional pipe (tangent and bend)

special features

User.Dafinad Motion Fatures

E^{3} SAP permits the linking of "slave" and "master" degress of freedom. This allows the realistic and accurate treatment of nipid body porions of a structure such as rigid of very stiff beams. diaphragms, and slabs.

In addition. skewed boundary degrees of freedom may easily be specified using the boundary spring es.

Diagnostic Aids

The E ${ }^{3}$ SAP prog:am may be run in 3 fa:a thei mode in this mode. the complets tats :nit: stream is checked and error messaf:s are frinte= :o indizate prohable eauses of any ce:saied e::ces

As an adさitional diapnostic aid. Eシ̄sap logr: important solutior job-step summan information in the user's EKS system day :! : A quiek examanathon of thas dayfile via in interactue reminal not ont: indieates whether or not the run is suciessful. but also what and where the protable sause of the efror might be

Comprehensive Result File

Frequently, there is 2 need 10 perform fes:processing analyses using $E^{3} S A P$ outpu: To facilitate this need. E ${ }^{3}$ SAP features an eas! 10 read result file containing complete geometr) information. as well as computed quanthies sush as displacements. stresses. and mode shapes

PROGRAM CAPACITIES

Because its memory requirements are complete! dynamic. there are no fixed capacity hames for E^{3} SAP. Utilizing the maximum computer capaits: of MAINSTREAM.EKS, static analysis probleme is large as 6000 nodes with a virually unlimited number of elements or load cases can be solved with E ${ }^{3}$ SAP. For dynamic analyses. the maximum problem size is governed by the product of the tolal number of nodes and the number of fre. quencies.

MAINSTREAM.EKS OPERATING ENVIRONMENT

E^{3} SAP and MAINSTREAM-EKS offer the nexibility for selecting the operational mode which best satisfies your solution needs. Both processing modes. interactive and batch, offer specific benefits. Interactive solutions provide teal-time answers. whereas batch solutions provide results at a minimum of cost.

Bx-3

PROGRAM SUPPORT

BCS provides $10 \cdot d$:pth technizal support for users of E3SAP. This support is provied hy personnal with strustural engineenang degrees who are familiar with both the program cots and reallife engunesing problems.

DOCUMENTATION

The following documenation is anatarle :hecupt. your local ECS Representative

Contsel your BCS Representane for fuather infemation regarding E3SAP.

STARDYNE

GENERAL INFORMATION

The STARDYNE Analysis System consists of a series of compatible programs for the static and dynamic analysis of sinuetures.

The static capability includes the computation of siructural deformations and member loads and stresses caused by an arbilrary sel of thermal, nodal applied loads and prescribed displacemenis.

Using the direct integration or the normal mode techniques, dynamic response analyses can be performed for a wide range of joading conditions. including transient, steady-state harmonic, random and shock spectra excitation types. Dynamic response resulis can be presented as structural :formations (displacements, velocities or accelerations) and/or internal member loads and stresses.

To aid the user in the interpretation of results. plots of stress contours, deformed and undeformed model seometry are available. Complete time histories of stresses, intermal member loads, displacements, velocities and accelerations may also be plotred.

Automated node and elemem generation capabilities reduce the lime and effor required for data input.

ANALYSIS CAPABILITIES

The STARDYNE system provides the following capabilities:

Satic Analysis

The static analysis is based on the "Stiffness" ("Displacement") method and conforms to small displacement theory.

MAINSTREAM:EKS

Subrtructure Analysis

An unlimited number of substructures may be individually modeled and subsequently tied together. Hence, there is no limit to the size of a complete structure for static analysis.

Lithof

The static response of structures containing lift-off and bottom-out points, $2 s$ well as tension only and compression only members, may be solved in a non-iterative exact solution, with the ratic analysis.

Extraction of Eigenvalues and Eigenvectors for the Structural System
Procedures include LANCZOS, Householdet-QR, Inverse Iteration and H-QR Guyan.

Complete Seismic Analysis

Earthquake response may be analyzed as a transient response in the time domain or as a random response using Power Spectral Density inputs or utilizing the shock response capability. Many standard earhquakes are built into the program.

Piping System Anslysis

A curved pipe and a straight pipe are available as finite eiements and can be subjected to any of the satic or dynamic analyses. The stiffness matrix can be formulated using the ASME flexibility factors at the user's option. Piping elements may be combined with any other elements in the STAR. DYNE library.

Dynamic Response Analysis (DYNRE) Programs

Program modules for the various dynamic analyses include:
10304.128

DYNREI－Transient Response Analysis．Hodal Method．Time Domain Solution
－The stresses．internal loads．and coordinate respon－ ：are caiculated for any time－dependent forees －pplied to the structure．Base motion response can be computed in either relative or absoluse coordinales．Sinusoidal forcing functions may be automatically generated．

Difire2－Steady Sute Harmonic Response Analyis．Frequency Domain Solution
The coordinate displacement，velocity and acceler－ ation and stress responses are computed for a steady state sinusoidal forcing functions or sinusoidal base motion．Point－to－point transfer functions are cal－ culated for unit sinusoidal excitations．

DYNRE3－Sutionary Random Vibration Analysis Calculates RMS nodal responses，element forces． stresses and Nodal Response Power Spectral Density（PSD）due to a user supplied PSD input forcing function．

DYNREH－Shock Rnalysis
：sses，intermal loads and coordinate responses ．．－calculated for either user－supplied shock spectra or standard earhquake spectra intermally supplied by the program．The program will do $2 n$ absolute upper bound or a root sum square or let the user select from a variety of other，modal combination methods currently in use by the engine ering community．

DYNRES－Shock Spectra Calculation
Using 2 DYNRE acceleration time bistory or one supplied by the user，the propram will calculate shock spectra which can be used as input to DYNRE4．

DYNRE6－Transient Response Analysis．Direct Integration，Time Domain Solution
In addition to the linear elastic structural com－ ponents，the model may contain non－linear，one－ dinencional elements to simulate such phenomena as gapping，bottoming out and soil．

TYPICAL APPLICATIONS

－Gearbox analysis and desien
－Building frames subjected to seismic loads
－Industrial piping systems
－Nuclear pressure vessels
－Solar collectors
－Offshore drilling platforms
－Electronic component housings
－Heary equipment design and manufacture

FEATURES

Input Dast Generation

Input data generation features are available for node points and finite elements on curved or fat planes．

Graphic Output

Plots of the original model as well as the deformed structural shape and stress contours are available on many different ploting devices．Complete time histories of stress，internal member loads． displacements，velocities and accelerations may also be plotted．

Lad Case Combinrtion

A port processor for complex load case combina－ －tions provides searches，output by load case or by element and stresses for＂worst direction＂of wind or wave loadings．

Extonsive Finita Eloment Library

STARDYNE provides a comprehensive，sate－or－ the－art inventory of finite elements needed to perform most structural analyses including：
－Beam and Pipe elements with shear stiffness in 3－D space
－Two Triangular Plate Elements（thick plate and thin plate）

Plate Bending
Sandwich（thick plate only）
In－plane（constant strain）
Shear Only（thick plate only）
－Quadrilateral Plate Element（isoparametric in－ plane）

Infinitely Rigid Membe:s
infs, nonstandard elements or substructures ay be entered in numenical form by direct alterations to the stifferss matrix.

- Hexahedron (Brick) Solid Element isoparame. tric)
- W'edge Solid Element (isoparametric)
- Tetrahedron Solid Elem:nt (constant strain)
- Nonlinear Springs

Calculation of Hydrodynamic Forces

STARDYNE may be used to compute hydrod) mamic foress on the iubular and circular beam members contained in the submerged portion of the model. The nuid forces can result from both wave motion and a steady current. The wave motion is defined by : Stoke's 5th ordes theory.

Nonlinear Foundation Aralysis

The program may be used to determine loads and deformations in a linear elastic structure supported Fan a nonlinear foundation and subjected io a istatic loading.

Exiensive Program Chocks

Numerous error, consistency and validity checks are pefformed throughout the program.

Automatic Bandwidth Reduction

Nodes are reordered intermally so as to produce 2 minimum bandwidth. This does not effect either input or output of data and can produce a substantial savings in run time and cost.

Geomery Phase Chocks

The user may complete an entire analysis in a single run: however on larges problems, it is advisable to terminate the run after the geometry phase in order 10 check the run time estimates and to inspect node and element data. Additional validation performed during this phase includes checks for problem size, duplicate or badly shaped elements and data inconsistency.

PROBLEM SIZE

There is no pracijeal limit to the number of elements which may be used in 2 single mode! or substructure nor in the number of nodes used in most dynamic analyses. Limitations on program capacity are imposed only by available memery storage.

MAINSTREAM-EKS OPERATING ENVIRONMENT

STARDYNE ON MAINSTREAM-EXS offers the nexibility for selecting the operational mode which bests satisfies a user's solution needs. Both processing modes interactive and batch. offer specific benefits. Interactive solutions provide real-time answers, whereas batch solutions provide resulis at 1 minimum of cos.

SUPPORT

User Documentation

Manual for the use of STARDYNE on MAINSTREAM-EKS is:

MAIASTREAM-EXS STARDYNE Uiser InformaHion Manual 10:08.136

Contact your BCS local representative for this document and for other information on MAINSTREAM-EKS.

Technical Support

BCS provides in-depth technical support for users of STARDYNE both at National Support Headquarters and in a large number of BCS sales offices throughout the nation. The support staff consists of engineers who have a thorough undentanding of STARDYNE and its application 10 a variety of practical engineering problems Stafl members can help you seiect an appropriate solution process from several options and assist in debursing and in the interpretation of results.

[^3]
2.10.2 Endte Eicment Steess Shimary

Zhis section provides resul:3 of cask and lid stess analyses using models depleted da flgurea 2.6.1-1 and -2. Results rere developed using the E3Sip program described in Section 2.10.1.4. λ comon organization of. results is used for both cask and lid analyses. Eych analysis consists of tio runs for a cotal of seven loading cases. The two rans vere used to reflect both accideni and normal temperature distributions, respectively. The seven cases are descibed as follows:

- Caze - Accident (Flre) Thertal Stiesses

> Decay Heat $=800$ uatts
> Stress-free temperature $=70^{\circ} \mathrm{F}$
> Other controlling temperatures:

| Component | Temperature
 (Table 3.5.3-1) |
| :--- | :--- |
| Cavity | $372.43^{\circ} \mathrm{F}$ |
| Outer Shell | $343.56^{\circ} \mathrm{F}$ |
| Botrom Outer Shell | $363.35^{\circ} \mathrm{F}$ |

0 Case 2 - Aceldent (Fire) Pressure Stresess

Intermal Presaure = 184.40 psis
(Section 3.5.4)

- Case 3 - Acsident (30 foot dree) Jmpest 5treases
(Section 2.7.1)
$n_{8}=2,704,256=100.1848^{\prime} \mathrm{s}$ 27,000
 Pressure Steesses

Case $1+$ Case 2

Case 5-Morma Thermal Siresses

$$
\begin{aligned}
& \text { Stiess Eree Temperature }=70^{\circ} \mathrm{F} \\
& \text { Decay Heat }=800 \text { vatts } \\
& \text { Amblent Air Temperature }=130^{\circ} \mathrm{F} \\
& \text { Body Temperature }=214.4^{\circ} \mathrm{F} \\
& \text { (Iable 3.4.2-1) }
\end{aligned}
$$

Case 6-Accident (Impest) Combined Stresses

```
Body Temperature \(=214^{\circ} \mathrm{F}\)
Incernal Pressure= 19 psis
ACial Load \(=100.184 \mathrm{~g}\)
Case \(6=\) Case \(5+(19 / 184.4)^{\circ}\) Case \(2+C a s e 3\)
```

Case 7 - Formal Combloed Temperatures and Pressures

```
Body Temperature = 214.4 % F
Internal Pressure = 19 psis
```

Gask stresses are proyided in Mictofiche form in Secifon 2.12. These data : © cilude complete results of finfte element stess analyses of cask and lif :o: ail cases described in Section 2.10.1. The traformation is contajned on the nicrofiche entitled "2.10.3 Finize Element Stress Analysis 1-13C II Cask, ard on :he Mic:ofiche entitled "Appendix 2.10.4 Lift Lug Analysis, August 1981.
1%

QUAD－PLATE CORHER 30 BASE HODE LDAD

1 FXI － $781094 \mathrm{MH}+$ $-.827742 E+72$ $.489886 E+03$ －494イ21E4
.901532 EtOS 5×1
$-321902 E+13$
$.662560 E+83$ $.153763 E+1$
－．494i2IEtes －${ }^{6} \times$
$-.593238 E 183$ $.593238 E 183$
$.683183 E 183$ $.638382 E+0$ $-.15376 J E+03$ 7 M
$-.445869 E+84$ $-4200.92 E+0$
－I17895E18
$-8 \times M$
－． $344635 E+84$ －22J919E104 $.163560 E+04$.428447 EtO ） \boldsymbol{x}
$-141380 E+14$
$.110220 E 184$
FORCES \quad FX2
－．14）511E104 $.314412 E 104$ $.143215 E+04$ $-.308117 E 104$
$-.778929 E$ ©3 $.211801 E+04$ $.102661 E+02$ $-.134935 E 104$
$.351513 E 433$
$-.336476 E 83$ $.336476 E 83$
$-.204771 E 103$ $-.102661 E 02$

| $j 2$ | 18 |
| ---: | ---: |
| 33 | 11 |
| J4 | 10 |
| WOUAD－PLATE | 110 | $.872043 E+13$ is M

| GLOBAL j1 | 18 | |
| :---: | :---: | :---: |
| | $j 2$ | 19 |
| | $j 3$ | 12 |
| | | 11 |

$$
\begin{array}{r}
18 \\
-.335624 E+33 \\
.671675 E+83 \\
.390739 E t B 3
\end{array}
$$

GLDBAL

11 mm
.232050 E ． 8
$.766720 E+80$
$.327439 E F O J$

| FXJ | HXI |
| :---: | :---: |
| ． 222962 E 04 | －． 127402 t 02 |
| ． 752348 ESO | ．675841E402 |
| －．298197E＋04 | ． 582780 E （02 |
| ．150030E－07 | －． $321726 \mathrm{E}+02$ |
| ．257237E33 | ．112274E403 |
| －． 1802858404 | －． 933765 E 02 |
| －． $436347 E 103$ | ． 176078 E －08 |
| ．203196E404 | －．190613ETOL |
| －． $601418 E+82$ | ．980475E41 |
| －．521904ET03 | －． 174459 E 03 |
| ．145697EJOS | ．168802E－08 |
| －436347ET3 | －．276486E－08 |
| －．569197E＋0J | －． $105573 \mathrm{E}+\mathrm{D}$ |
| ． 331586 E （03 | －． $287044 E+03$ |
| ．383310E403 | －． $756700 \mathrm{E}-08$ |
| －．145699E＋03 | －． $268479 \mathrm{E}-88$ |
| －．133345E43 | －．211008E03 |
| ． 376144 E ＋${ }^{\text {S }}$ | －． 364750 E403 |
| ． $140512 E+03$ | $.183718 \mathrm{E}-08$ |
| －．383310E＇03 | ． 749424 E －08 |
| ．189084E402 | －．311266E43 |
| ．121603ETOS | －． 371855 EDOS |
| －． $325963 \mathrm{E}-08$ | ．677232E－0） |
| －． 140512 E 03 | ．141426E－09 |
| ．261265E484 | －46929E3 ${ }^{\text {a }}$ |
| －．348434E402 | －． $377636 \mathrm{E}+\mathrm{O}$ |
| －．211223E44 | ．984254E402 |
| －．455554E103 | －．103839EIOJ |
| ．162393004 | ．517776E＋0」 |
| －．401023E104 | －．377905E183 |
| －．713835E93 | ．935765E02 |
| ． 310016804 | －．112274E4J |
| －． 1953 13E44 | ． 531848 E （13 |
| －． 17529 EE14 | －．312415E603 |
| ．112913E：14 | ．174459E：OJ |
| ．257683E104 | －．980495E01 |
| －．77333E313 | ．778610E403 |
| ．428913E10J | －． $329875 E 153$ |
| ．388458E43 | ．287044E03 |
| －．380342E402 | ．105513E03 |
| ． 975805 E 12 | ．762531E：3 |
| ． 587456 EtOJ | －． 188716 E103 |
| －．983377E402 | ． 364750 E （0J |

| $H \times 2$ | HX3 |
| :---: | :---: |
| ．653273Ed02 | ．199878E104 |
| －． $496151 \mathrm{EtO3}$ | －． 166271 E64 |
| －．278100E＋03 | －． 200471 E 04 |
| ．261934E－09 | ． 2143945104 |
| －．271853E183 | ．139334E404 |
| ． 225431 CH | －． 346288 Eto |
| －．232ASIE－08 | －．302041E60J |
| －460182E＋01 | ．221275E404 |
| －．127781E＋02 | ． 001897 E 02 |
| ． 227359 ESOJ | ．485348ETDJ |
| －． $337604 \mathrm{E}-08$ | ． 819648 EDOS |
| ． 165661 E －08 | ． 302041 cto3 |
| ．810088EJ02 | －．677301E63 |
| ． $220257 E 03$ | ．834899E：03 |
| ． $298314 E-08$ | ．118065E04 |
| ． $379805 \mathrm{E}-08$ | －． 819648 E103 |
| ．874023E102 | －．103042E＋04 |
| ．151084E103 | ． 102896 E64 |
| ． $851237 \mathrm{E}-09$ | $.126163 E 104$ |
| －．421460E－08 | －．118062E104 |
| －109789E102 | －．113945E404 |
| ．489557E：02 | ．112870E：04 |
| －．541435E－11 | ．178128E：04 |
| ． 386881 E －09 | －． 1261615104 |
| －． 225568 E） 04 | ． $295498 \mathrm{ES4}$ |
| ．183216E104 | ． 592959 E （03 |
| －．477527E403 | －． $114482[101$ |
| ．503794E40J | ．183956E104 |
| －． 122388 E 84 | ．200479E104 |
| ． 112342 C OJ | ．127225E104 |
| －．223431［803 | －．968240E）01 |
| ．271053E03 | ．139546E104 |
| | 12izて）EP穴 |
| －．892857E103 | ． 1212235104 |
| ．407225E03 | ．115102E104 |
| －．227359E403 | .566417 E 03 |
| ．127781E102 | ．275780［：03 |
| －． $397449 \mathrm{E}+3$ | ． 8631415103 |
| ． $253122 E+03$ | ．121067E104 |
| －． 220257 E （0） | ． $835138[03$ |
| －．8100S8E402 | －．J34684［10］ |
| －． 3158595803 | ． $486924 E 803$ |
| ．823109E102 | $.102925 E 104$ |
| －．151064EIOS | ．103189E104 |

| Et3 | －．567197E．03 |
| :---: | :---: |
| ． 654660 E63 | ． 331586 E 03 |
| 60763Et02 | ． 183310 E03 |
| 04771E＊3 | $145699 E+03$ |

| MYQUAD-rinIE HO | $-151018 \mathrm{Etis}$ | . 331063 E 04 | -. 65403854. | .480487E403 | -.165887E103 | . 1023668504 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| OLOBAL J1 88 | -.132043E404 | .627872EH3 | -.204827E484 | .866824E433 | -.114119EAS | -. 1135878104 |
| $J 231$ | . $379463 \mathrm{Et04}$ | -.146406E84 | . 216312 E104 | -i30113E10j | -.122531E+03 | .274971E103 |
| J3 82 | . 133479 E 05 | -. 431297 E03 | .213889[104 | .133154E104 | -.175301E+03 | . 450470 C104 |
| Ji | -.158222E105 | . 127348 E 04 | -.225414[104 | .884928E103 | -.116303E03 | -. 176476 E (04 |
| $\begin{aligned} & \text { MXQUAD-PLATE NO NO } \\ & \text { GLOBAL JIS } \end{aligned}$ | 6894 -53953 | 562027Et04 | | | | |
| J2 64 | . 325487 EjOJ | -.636731ESO4 | .178884E103 | .361634Etiz | -. 21384150103 | .1333865109 $.980046 E 103$ |
| $J 310$ | .164908E]日S | -.176926E+04. | .541928[103 | -.188155E102 | 259547[00] | . 15 85046E104 |
| J4 8 | -.150443E183 | . 250880 EHS | -. 222962 Et 04 | .4/3590E101 | -.653273E+02 | . 147240 [104 |
| MnQUAD-PLATE NO | $69 \times x$ | | | | | |
| CLOBAL Jl 29 | . $599024 E 102$ | 183294E404 | -. 177348E104 | 187904E182 | 259196E0] | -.153978EJ04 |
| 1291 | -. 160479ESOS | -. 323505 E 02 | -. 798228 E 04 | .743951E101 | . 103311603 | . 1070678104 |
| J3 65 | -.617001E103 | .311233E404 | .221280E104 | -.375423E102 | . $517860 \mathrm{E}+03$ | .353435[10] |
| 1422 | .717577E403 | -.571291E104 | .748491E*4 | .430269E102 | -.621105E.03 | .124416E104 |

091-2

$5 Y=1.903$
$5 X Y=3.102$ SXY= 3.110 L
 $5 X=-2.678 E 182$
$S Y=1.278 E: 03$ $5 Y=1.278 E: 0 J$
$5 X Y=-4.965 E 03$ $S X Y=-4.965 E 103$
$S X=-8.75 E 002$
-ZFACE $5 X=-9.875 E 002$
$S Y=1.7110103$ $S Y=1.711 E t 05$
$. S X Y=43 A E D S$
+2FACESX=2.878EOBS
$5 y=-2.983[101$ SXY $=-3.784 E+03$
-zface
$5 X=-2.551 E 103$
$S Y=3.124 E 802$
$S Y=3.124 E 502$
$S X Y=4.221 E 50$
+ZFACE SX $=3.515 E 103$
$S X=-2.515 E E O S$
$S Y=-2.4502$
$S X Y=-2.402 E: O Z$ $5 X Y=-2.402 E 403$

- 2FACE $5 X=-3.119 E 103$
$S Y=-3.87 E 102$ SXY=2.657E:0S
+2FACE $\begin{aligned} & 3 X=4.228 E: 03 \\ & S Y=4.403 E: 01\end{aligned}$ $S X=4.220 E \operatorname{SYO}$
$S X Y=$ $S X Y=-8.269 E: 02$
$S X=-4.146 E+03$ $S X=-4.146 E: 03$
$5 Y=-3.814 E: 02$ $S Y=-3.814 E 102$
$S X Y=8.836 E O 2$
- ZFACE
$S X=-2.897 E+3$
$S Y=$ $5 Y=1.101 E 603$ SXY $=-8.158 E+05$
-ZFACE
$S X=-3.795 E 102$
$S Y=1.890503$ $S Y=1.690 E 103$
$S X Y=-1.545 E+03$
-ZFACE SX $=-9.386 E$ A2 SY $=1.33$ BEIO2 SXY= -8.397E:0J
-ZFACE $S X=-2.275 E 02$
$S Y=3.062 E 801$ $S X Y=-2.602 E 103$

HZFACE
$5 X=1.830 E: O 3$
$S Y=-4.562502$ SY $=-4.562 E 02$ SXY=-1.523E+03 $S X=2.111 E: 02$
$S Y=-2.487 E 102$ $S X Y=-2.664 E t 03$

FZFACE SX $=2.619 E+03$ $S X=2.619 E 103$
$S Y=-2.453 E 102$ SXY=-5.231E1SJ
-2FACE SX $=5.0018102$ $S Y=-2.010 E 102$
+2FACE SX = 3.43JE:OS
-

| + ZFACE | 5.329E103-4.519E103 | $\begin{aligned} & 5.174 E: 03 \\ & 8.71][103 \end{aligned}$ | -49.423 |
| :---: | :---: | :---: | :---: |
| - 2FACE | $\begin{array}{r} 5.1925103-4.469 E 103 \\ \text { VI } \end{array}$ | $\begin{aligned} & \text { 4. AJIENOS } \\ & \text { B. JISEIOS } \end{aligned}$ | 53.110 |
| - ZFACE | 1.962EVOS-2.913E1O3 | $\begin{aligned} & 3.938 E: 03 \\ & 6.896 E: O J \end{aligned}$ | -37.238 |
| -LFACE | J.J36E53-3.381E103 | 4.458603 | 54.386 |

-25.974
60.963

-61.908
tZFACE B.211E10S-9.016Et03 8.614E103 -46.285
-ZFACE 2.518E103-2.695E403 2.606E403-46.531
-2FACE 7.957E+03-7.363E•03 7.660EIB3-42.178
-ZFACE 2.655E.03-2.693Ef03 2.674E.03 -42.534
-37.344
-39.793

| | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\times 2$. | $F X=-1.7655312$ | TZFACE | $5 x=1.37150^{+4}$ | | | | | |
| | FY = 6.109E102 | | $5 Y=4.125 E 1$ | - zface | 1.634E304 | 3.497E103 | 6.419 E103 | -12.7 |
| , ' 52 | FXY $=-2.1485101$ | | $5 X Y=-2.711 E$. | | | VM | 1.490E104 | |
| . 1 , 39 | HX $=6.671 E+02$ $H Y=1.210 E 02$ | -2FACE | SX ${ }_{5}=-1.641 E 1$ | | | | | |
| 38.---------x1 | HXY = -1.13才Et02 | | | | -1.208E+0J | 689E104 | $7.839 E 103$ $1.632 E 104$ | 1.988 |
| x2. 32 | $F X=-5.100 \mathrm{EFO1}$ | IZFACE | SX $=$ S.194Eios | | | | | |
| CQUAD/33 | FY $\mathrm{FXY}=6.064 E \pm 02$ | | SY $=2.1320103$ | -2face | 7.017E03 | -5.909E+02 | 4.2036103 | -34.687 |
| | FXY $=-3.9885401$ | | SXY=-3.934E103 | | | VH | | |
| 11160 | HY $=3.831 E+01$ | - Zrace | $5 X=-5.295 E 103$ $5 Y=2.934 E 102$ | -zface | 2.185E303 | -7.199E+03 | 4.697E+03 | 63.262 |
| 34.---------x1 | MXY $=-1.606 E 102$ | | SXY $=3.775 \mathrm{EVOS}$ | -zrace | 2.13SERO | YH | 8.512ESOS | |
| X2. 53 | $F X=7.2635101$ | t2FACE | SX $=-6.414 \mathrm{EtH3}$ | | | | | |
| /QUAD 34 | | | | +2FACE | 1.359E33 | -8.375E183 | $5.167 E 183$ | -64.171 |
| | FXY $H X Y$ H | | $5 X Y=-4.0535103$ | | | VH | | |
| , 1 | HY $=-4.324 \mathrm{EiO1}$ | -zrace | SY $=2.3615003$ | -ZFACE | 9.103E:03 | 6.238 ElO | 4.470E+03 | 38.468 |
| 1,-----. ----x1 | MXY $=-1658 \mathrm{E}$ (12 | | SXY $=3.907 \mathrm{E}+03$ | | | VM | 8.972E+03 | |
| x2. 54 | FX $=$ 1.783ED2 | - 2 Fice | 3 $X=-1.571 E+04$ | | | | | |
| | | | ${ }_{5 Y}{ }^{\text {SY }}=-1.696 E 103$ | t ZFACE | -1.167E103 | -1.634E1S4 | 7.638E103 | -78.291 |
| | FXY $=-2.508 E+01$ $H X=-6.690 E+02$ | -2FACE | $5 X Y=-3.036 E 103$ $5 X=1.640 E 104$ | | | VH | | |
| .1162 | HY $=-1.196 E+02$ | | $5 Y=4.0435+03$ | -zface | 1.706E404 | 3.391E103 | 6.83aE:03 | 12.709 |
| 61.-----x. ----x1 | MXY $=-1.244 E 802$ | | SXY $=2.935 E+03$ | | | VH | 1.564E104 | |
| X2. 35 | $F X=2.196 E 102$ | +2FACE | 3x $=-2.179 E 184$ | | | | | |
| 19UAD 58 | FY $=5.839 E \leq 02$ | | | +2FACE | -2.345E113 | -2.086EJO4 | 9.159E:33 | -86.476 |
| N : /QUAD, 36 | FXY $=-8.317 E+10$ | -zFACE | SXY $=-1.124 E 103$ | | | VH | 1.971E94 | |
| \% ${ }^{\circ}$ | HY $=-1.576 E 102$ | - | SY $=4.950 \mathrm{EO}$ | -2FACE | 2.174Et04 | 4.879E403 | A.432E43 | 3.716 |
| -62.-----. ----x1 | MXY $=-4.614 E 101$ | | SXY $=1.0915003$ | | | VH | 1.976E04 | |
| x2. 15 | $F X=-4.922 E+13$ | -2FACE | $5 X=-1.6350109$ | | | | | |
| | FY $=-4.319 E+03$ | | $5 Y \equiv=6.834 E+03$ | +2FACE | -3.519E+03 | -1.927E404 | -7.675E403 | -69.165 |
| - /QUAD/ 64 | FXY $=-3.334 E+13$ | | $5 X Y=-6.021 E+03$ | | | VM | 1.7645104 | |
| | MX $=-9.262 \mathrm{E}$ (13 | -2FACE | SX $=1.143 \mathrm{ETO4}$ | | | | | |
| $8.1 \text { - }{ }^{\circ}$ | MY $=-3.117 E+03$ $M X Y=-2.903 E 03$ | | SY $=2.516 \mathrm{Eti3}$ SXY | -2FACE | 1.218E104 | $\begin{array}{r} 1.768 E \div 03 \\ V H \end{array}$ | $5.206 E 503$ $1.140 E 04$ | 15.342 |
| X2. 68 | FX $=3.120$ E03 $^{\text {a }}$ | +2FACE | 5X $=-1.563 \mathrm{taj}$ | | | | | |
| x2. 61 | FY $=3.106 E+03$ | | $5 Y=6.958 E+03$ | +2face | 7.675E43 | -2.280E+63 | 4.917Es03 | -74.438 |
| - rQuad 66 | FXY $=1.719 \mathrm{EAO2}$ | | SXY= -2.513Etos | | | VH | 9.033E403 | |
| , 50% | HX $=-2.882 E 103$ | -IFACE | $5 \times=4.68 \mathrm{JE.0J}$ | | | | | |
| | $\begin{aligned} & \text { MY } \\ & \text { MXY }\end{aligned}=-2.9375003$ | | SY $=-1.852 E+13$ $5 X Y=2.744 E+0 J$ | -2FACE | 3.683E103 | $-2.852 E+03$ | $\begin{aligned} & 4.267 E+13 \\ & 7.525 E+03 \end{aligned}$ | 20.013 |
| $\times 2.66$ | FX = 4.449Et03 | +2FACE | SX $=8.7975083$ | | | | | |
| | FY $=2.217 E+0{ }^{\text {a }}$ | | SY $=-5.738 \mathrm{ESOS}$ | - ZFACE | 8.853E403 | -5.743E403 | 7.323E403 | 3.523 |
| | FXY $=-1.944 \mathrm{ETOJ}$ | | SXY= 8.982E.02 | RFACE | a.asse | VH | 1.278E:04 | |
| , 51/ 65 | MX $=$ MY $=-4.382 E: 03$ | -zface | SX $=-4.349 \mathrm{EPOJ}$ | | | | | |
| 67:-0-----6x1 | HXY $=1.247 \mathrm{ESOJ}$ | | | -ZFAcE | $8.579 E 103$ | -4.974E.83 | 1.18jE004 | -77.603 |
| X2. 61 | $F X=-1.2235003$ | - ZFACE S | $5 \mathrm{SX}=-3.8665183$ | | | | | |
| | $F Y=8.804 E 102$ | | $5 Y=3.294[103$ | +2FACE | $7.530 \mathrm{EtO3}$ | -8.101E103 | $7.815 \text { E10s }$ | -58.630 |
| | FXY $=-2.351 E 103$ $M X=-5.917 E 101$ | ACE ${ }^{\text {S }}$ | $\begin{aligned} & 5 x y=-6.947[103 \\ & 5 x=-1.025 E+03 \end{aligned}$ | | | VH | $1.354[104$ | |

$\times 2.81$

FX \quad FY 3.477Et FY $=6.121 E: 03$ HXY $=-3.832 E 02$
$M Y=3.685 E 0 J$
$H Y Y$ MY $=7.788 E: 0 J$
MXY $=-2.928 E O J$ $F X=-4.115 E: 15$
$F Y=-3.103 E: 03$ $F Y=-3.80 J E: O J$
$F X Y=-3.857 E O S$ FXY $=-3.457 E$ © $M X=1.584 E+01$
$M Y=-2.990 E+02$ HXY $=-2.790 E+02$
$=-4.232 E+02$
$F X=-4.708 E-89$
$F Y=2.849 E: 8)$ FXY $\begin{aligned} & \text { FY }-3.853 E+03\end{aligned}$ nX
$F X=2.273 E 103$ $F X=2.273 E+3$
$F Y=-1.644 E: S$ FXY $=3.652 E+13$ MX $=-5.016 E 102$
MY $=5.026 E 102$ MY $=5.026 E 102$
MXY $=-7.496 E+02$

FX
FY
FX
$H X$
$H Y$
$M X Y$ FX $=3.169 E+12$
FY $=1.454 E: 0$
FXY $=3.512 E: 0$
MX $=-1.240 E: 0$
MY $=1.220 E 10$
MXY $=-1.006 E: B$

$F X=-2.156 E 81$
$5 Y=2.277 E$
$3 X Y=-2.457 E$.
HZFACE $5 X=1.127 E 104$
-2FACE
$3=1.127 E 104$
$3 Y=1.4741104$
$S Y=1.4741184$
$S X Y=-4.58 S E 103$
$S X=-5.787 E 10 J$
$S Y=-8.622 E 10 J$
$S X Y=4.202 E 403$
tRFACE
$5 X=-3.920 E 103$
$5 Y=-5.5975103$
$X Y=-5.397 E 40$
$S X=-4 \cdot 110 E+03$
$S Y=-2009 E 03$
$S Y=-2.009 E 03$
$5 X Y=-9.171 E 05$
+ZFACE SX $=-4.708 E-09$
SY $=2.869 E 40 J$
$S Y=2.849 E+0 J$
$S X Y=-3.953 E 10 J$
-ZFACE
$5 X=-4.708 E-8$
$5 Y$
$S Y=2.849 E 40$
$S X Y=-3.53 E O$
SXY $=-3.153 E 01 \mathrm{~J}$
+ZFACE SX $=-7.373 E 182$
SY = 1.372E.0J
$S X Y=-1.446 E 40 J$
$S X=5.282 E 10 J$
-ZFACE
$S X=5.282 E+03$
$S Y=-4.658 E 403$
$5 Y=-4.858 E+03$
$5 X Y=7.547 E+03$
-2FACE SX $=-1.151 E: 1$
$S Y=-3.193 E 602$
$S Y Y=-2.59 E$ ©
$3 X Y=-2.590 E+15$
-ZFACE
$5 X Y=4.203 E 103$
$S Y=3.240 E+02$
$S Y=3.240 E+02$
$S X Y=1.852 E+84$
12FACE SX $=-1.971 E+2$
SY $=2.192 \mathrm{E} 02$
$S X Y=-2.522 E 10 \mathrm{~S}$
-2FACE
$5 X=1.291 E 103$
$5 Y=7.278101$
$S Y=7.278401$
$S X Y=9.547 E 403$
1ZFACE $3 X=2.229 E+2$
$5 Y=-2.858 E 102$
$5 Y=-2.858 E 102$
$5 X Y=-2.4615003$
$5 X Y=-2.461 E 103$
$S X=-15195103$
-2FACE
$5 X=-1.517[101$
$5 Y=1.817 E 102$
$S X Y=7.512 E 103$
-ZFACE $5 X=3.871 E 182$
$S X=-8.871 E 482$
$S Y Y=-490108$
$S X=-8.490 E 101$
$S X Y=-1.776 E 103$
$-2 F A C E$
$5 X Y=-1.776 E 101$
$5 X=-3.813 E 18 J$
SY $=-5.405 E 101$
SXY $=4.908 E 103$
4ZFACE SX = 7.993E402

| - ZFACE | $\begin{array}{r} 2.136 E 1 O S-2.134 E 1 O S \\ V H \end{array}$ | $\begin{aligned} & 2.535 E: 03 \\ & 4.409 E 40 J \end{aligned}$ | -32.4 |
| :---: | :---: | :---: | :---: |
| +2FACE | 1.791Et04 8.102E183 | $\begin{aligned} & 4.903 E 103 \\ & 1.53 J E 004 \end{aligned}$ | -35.383 |
| -2FACE | $\begin{array}{r} -2.770 E 103-1.164 E 104 \\ \mathrm{VH} \end{array}$ | $\begin{aligned} & \text { 4.43SE:OS } \\ & \text { 1.OSJESO4 } \end{aligned}$ | 35.680 |
| 12FACE | $\begin{array}{r} 1.297 E 105-1.081 E 104 \\ \text { VM } \end{array}$ | $\begin{aligned} & 6.053 E+03 \\ & 1.152 E+04 \end{aligned}$ | -41.020 |
| -2FACE | $\begin{array}{r} -1.663 E+D 3-4.434 E+03 \\ V H \end{array}$ | $\begin{aligned} & \text { 1. } 395 E: 0 J \\ & \text { J. S9SE:OS } \end{aligned}$ | -69.427 |
| - zface | $\begin{array}{r} 5.627 E+03-2.778 E+0 J \\ V H \end{array}$ | $\begin{aligned} & 4.202 E+0 S \\ & 7.417 E: O S \end{aligned}$ | -54.909 |
| -2FACE | $\begin{array}{r} 5.627 E 003-2.778 E \text { OJ } \\ \text { VM } \end{array}$ | $\begin{aligned} & \text { 4.202E:03 } \\ & 7.417 E+03 \end{aligned}$ | -54.909 |
| - ZFACE | $\begin{array}{r} 2.107 E+03-1.472 E+03 \\ V M \end{array}$ | $\begin{aligned} & 1.790 E: 03 \\ & 3.116 E 103 \end{aligned}$ | -63.050 |
| -2FACE | $\begin{array}{r} \text { 1.350EIOS -8.727EYOJ } \\ \text { VM } \end{array}$ | $\begin{aligned} & 9.039 E: O 3 \\ & 1.566[104 \end{aligned}$ | 28.319 |
| | | - | |
| -2FACE | $\begin{array}{r} 1.930 E: 03-3.301 E: 03 \\ V H \end{array}$ | $\begin{aligned} & 2.616 E: 83 \\ & 4.582 E+3 \end{aligned}$ | -49.021 |
| -2FACE | $\begin{array}{r} 1.296 E+04-8.436 E+03 \\ V M \end{array}$ | $\begin{array}{r} 1.870 E+84 \\ .1 .867 E \cdot 04 \end{array}$ | 39.778 |
| -2FACE | $2.342 E+13-2.320 E+O_{V H}$ | $\begin{aligned} & 2.531 E: O S \\ & 4.383 E S O S \end{aligned}$ | -47.359 |
| -2face | $\begin{array}{r} 1.125 E 104-8.884 E: 03 \\ V H \end{array}$ | $\begin{aligned} & 9.566 \text { E103 } \\ & 1.658[104 \end{aligned}$ | 43.175 |
| +2FACE | $\begin{array}{r} 2.441 E+03-2.507 E 183 \\ V H \end{array}$ | $\begin{aligned} & 2.474 E+B J \\ & 4.285 E+03 \end{aligned}$ | -42.032 |
| -2FACE | 6.839E103-8.275E103 | $\begin{aligned} & 7.357 E 11 S \\ & 1.311 E 104 \end{aligned}$ | 48.112 |
| -2FACE | $2.139 E 10]-1.557 E+13$ | $\begin{aligned} & 1.808 E: 83 \\ & 3.142[103 \end{aligned}$ | -30.645 |
| -2FACE | 3.J10Et0J-7.207E403 | $\begin{aligned} & 5 .: 55 E 10] \\ & 9 . y 15 E 105 \end{aligned}$ | 55.537 |

Quadridateral stresses and Forces for Output Vector
2.11 dPDETDIX

EiGgIEERIHG EROP TEST FOR i-13C II
SHIPPIRG PACKAGE

2.11 .1
 SCOPE

Fhis afpendix sumarizes the plans for, conduct of, and resulcs from she engineering dzop test for the l-13C II shipping package.
2.11.2 RESERENCES

P=ior to performing the drop test, numerous planning documents vere generated decaillas data collection procedures and acceptance cilieria. These refererce documents are included in microfiche form in Section 2.11 on the microfiche entitled " 2.11 Appendiz: Drop Test Report Reference Documents 1-13C II Shipping Package.n The documents include:
2.11.2.1 CNSI Procedure NE-TI-001, Rev. -, Drop Iest Procedure for CTS-1600 Shipping Package l-13C II: This document sumarizes the planned sequence of events for the package drop test.
2.11.2.2 Rupac Procedure DT-01, Rev. 2. Drop Test Requirements Kypotherical Accident Conditions (Type "B") for the l-13C Model 1600 Package: This document sumarizes the drop test objecrives, general strategy, and performance criteria. Included in this document are detalled procedures for obtaining bolt force measurements and dimensional survey data.
2.11.2.3 CMSI Procedure, 5-QP-004, Rev. -, "Liquid Penetrant Inspection Procedure: This inspection procedure, in conjunction with the Industrial mDT procedure QCP-401 reporting format, was used to perform dye penetrant pre- and post-tests.

| 2.11.2.4 | IUPac Decument Ci-01, Rev. O, Gama Scan of Cilsi Mceit 1600 Cask: Ihis docunent, in conjuaction with =eferences 2.12.2.6 and 2.:1.2.7, was used to perform the post-rest gama sean of the i-13C II cask body. |
| :---: | :---: |
| 2.11.2.5 | K-Ray, Inc. Procedure Π. VI-001 Visual Inspection of Weldments and Adfacent Materials. |
| 2.11.2.6 | Nupac Document GS-002, Zev. O, General Pzocedure for Garma Scan of Shielded Containers - Field Calibration Method. |
| 2.11 .2 .7 | Industeial KDT Procedure 601, Ulerasonic Testing for Metal Thictoness and Soundness. |

The l-13C II drop eest vas conducted in September, 1980, at the Chem-lucleat stie in Barnvell, South Carolina. Numerous pre-tests vere performed to establish shielding integ:ity, and package dimensions of a l-13C II cask. in the aci:al drop sequence, the cask was loaded uith a dumy payload, sealed, and fitted in lts transport operpack. The package was then lifted to a height of 30 feet and dropped verifically onto a concrete pad. After this botiom end flat drop, a new overpack palr was lagealled and the package was again dropped from a height of 30 feet, this time with the top (lid) end dowa and a package centerline orientation of approximately 40° with respect to horizontal. Following this top end oblique drop, post-test inspections were accomplished to document package chanses and to verify post-drop shielding integrity. The package survived both drops, mecting all post-test shlelding accpetance c:iteria. The overpacks, although deformed, did not fall. The cask itself. was intact except for one cracked lid bolt boss uhfch occurfed because of 1nterference between bolt force mearurements transducers and the overpack tiedown plate. This interference alloved the overpack to load lid bolt heads In bending introducins a severe and uncealistic moment into the boit boss. Furthermore, a dimenaional reviev shoved that if the marimum bolt head diameter (l.e., vidth across comers) vaa used, the edge of the 3 inch clearance hole in the overpack vould contact the bolt head before the intermal side wall of the overpack would contact the side of the cask. Modifications hiave since been made to the orerpack to enlarge this 3 inch clearance hole to 3.548 inches. This dimensional chanse allous for aufficient clearance to ellminate interference between orerpack tiedown plate and ild bolts. This modification $1 a$ expected to have no effect on the energy absorbing capabilitles of the overpacks. Also, $1 / 8$ inch thickness of neoprene has been added, as an option, to the lnner vertical walls of both the upper and lover overpacks. This neoprene vas added exclusirely to minimize any chaflng between the overpacks and cask,
and 13 not requized to eliminate any previous telerance proble= fr the azea of the cask lld bolts. In addition, flat vashers of $21 / 2$ Inches outaide d!amete: have been added under each of the twelve lid bolts co eliminate any potenclal of galling betacen the bolt heads and the contact surface of the ild.

The remainder of this section provides a sumary narrative of test procedures, w! th an emphas!s on those areas which deviate from the plarning dociments (references 2.11.2.1 through 2.11.2.8).

2.11.3.2 Pertest Liquid Penerrant Inspecsion

On September 23, 1980, a certified inspector f:om Industrial mDT Company, Inc., performed a liquid penetrant inspection of all package veldments. The llquid penctrant inspection vas observed by a CNSI Quality Assurance Representarife to verify the integricy of the data and adherence to the written inspection procedures.

2.11.3.3
 Pre-rese Game Scen

A pretest sama scan was performed on the l-13C II cask on Sepember 26, 1980, with the intention of comparing the results with post-drop data to derermine shielding lategrity. A Cobalt-60 (9 curies) source certified by Ple:sburgh Testing Laboratory vas used in the test. Unfortunately, following the conclusion of testing, the gama \cos technlcian discovered that the acincillacor being used had a cracked crystal, thus invalidating all of the pretest aman can data. The original atrategy was therefore revised so that poat-drop gamma acan data vere compared vich a calibracion curve equal to nominal cask lead thlctonesses. Acceptance criterla were also fevised so that any obtained readings exceeding nominal lead thickness minus 10% were designated fallure.

2.2:.3.i 23ckare Preparation

Eoliowlas dimenslonal measurementa of the package, the package vas loaded and sealed. A 3,000 pound dumy payload of sand and lead shot vab loaded tato the cask. The lid assket and lid were then put on the cask and the lid bolts corqued to 330 ft.-1ba. (lubricated). After instalifig bolt force measurement Instrumentation, the cask was fnserted in lts upper and lower overpacks. Ra:che: binders conaectias the overpacks were torqued to 70 ft.-lbs. and the entire package weighed. Flnal package weight, verified by CNSI Quallty Assurance representatives, was 26,500 pounds. Photo Fi shows the package belng put into the lifting silng just prior to the flat end vertical drop.

2.11.3.5 Photographic Docsmentatien

The drop test was documerited in great detail photographically. Actual drop sequence (botrom end verifcal and top end oblique) vere recorded using a hish speed $16 m$ morle camera shooring 500 frames per aecond on negative color film. The camera vas placed so that it would record the package faliing in f:ont of a plywood backdrop vith a 6 inch grid pattern. Drop sequences vere also recorded at normal sped (24 frames per second) on lominegative color film. In addition to the movies, still pictures were taken of the drop sequences (35m, ten frames per eccond). Finally, numerous 35m color sillis were obtained before and after each drop to provide detailed documentation of pre- and post-drop package condition.

2.11.3.7 Bolt Forse Messurement

Prior to installing the upper operpack, the ingtrumentation to measure bolt tension vas implemented. Bolt tension vas monitored by custom fabricated load cells. The cells vere designed to fit under bolt heads as vashers. They vere compreased between the bolt head and lid top surface when the bolts were torqued dom. Strain gage

1「1
2THACHING THE LIFIMG SLIMG in UPPER OUEPPACK.

Fluil CESK CRIEYTAIIOM al 30° Jusi pplor io antion eyd icrilcal drop.
cizcisits inside the cells benerated electrical siznals propo:ifonal to the so:se between bolt head and container lid, thereby allowing bolt tension determatiton. In the orifinal plan (see reference 2.11.2.2, Section 3.0), Etu: :orce load cells were to be installed beneath the lid bolts, equaly spaced at 90°. However, the General Electric techifian conducting the bolt :ension measurement alerted Chem-Nuclear personnel to the possibillty of force \#ashers belag damaged during the first drop. Slnce only four of the custor Sorce \quad ashers vere avallable for the entlre test, it was decided to instail two of them during the flrst drop. All four could then be used for the second drop if no damage occursed during the first drop. Accordingly, force vashers "1 and \#2 vere installed under two $11 d$ closure bolts 90° apart and electically connected to a Vlshay P-350A atrain indicator. In Photo Fl, cables conecing the force washers to the instrmentation are visible. Calibration resistors, supplied by the washer manufacturer, vere shunted across each washer's bridge circuit, and the indication per simulated force level was noted. The seallas bolts were torqued to 200 ft . -lbs. and the force washer outpur levels recorded. While the cask vas being prepared for the first drop and ralsed to the 30 foot drop helght, the force washers were consected to the Accudata Signal Conditloners, wifh vere in turn, tied into the instrimentation system. Imediately prior to the 10 second countdown, a calibration vas recorded on the tape recorder and oscillograph. Pre-test force washer readings with $200 \mathrm{ft} .-1 \mathrm{bs}$. of torque on the bolts were 15,700 pounds on 11, and 9,600 pounds on 12.

2.11.3.8 Eirst Drogi Vertical Bottom End

The cask and overpacks vere put in a lifting aling which was attached to a quick release book on the crane (sec photo 52). The entire package was then ralged to a hefight of 30 feet above the concrete dop pad as shown in photo F3. Also shown are the instrumentation cables and tag lines Photos F4 to F7 deplet the package during the actual drop: the cask impacted on the target, rebounded to helght of about 8 inches, then impacted agafn at a sifghty obllque angle and came to rest.

Fhotos 53 to Fig Illusteate in greater detall package behavior during the firse drop. Under secondary impact, the package rotated sifghty and fmpacter en the cosner between quadrants I and $I V$, causing slight mushroomins confined to the lower five inches of the lower overpack (see photo Fi6). No general crush of the lower overpack was erident at this time. The upper. aurface of the lower overpack demonstrated ballooning due to the compressive forces of the foam (see photos 514 and F15). The impact in quadrants I and IV caused the ratchet binders on that side to deform and to buckle (see photo Fl7). On the opposite side (quadrants II and III), the ratchet binders vere loaded with tenslle forces, but there vas little evidence of distress except in the attached clepis bolts, as seen in photo Fis. The upper overpack showed corresponding compression and tensile loading, although there was no distress to ratchet binder lugs or to the orerpack shell itself.

Although not evident in these photos, force vasher 2 had les lead lines severed 80 milliseconds after lmpact and experienced undetermined internal damage. Bolt force reasurement data shoved that the pre-test load (15,700 pounds on force washer 11 and 9,600 pounds on $\# 2$, vith 200 fto-lbs. of rorque on the bol:s) vere not permanenty reduced by the impact of the drop. In fact, they were silghty increased. Temporary reduction of the initial clamplag force by approximately $20 I$ vas seen for less than 4 milliseconds at impact. Otherwise, the clamping force was increased slishtiy and remained so after impact perturbations had ceased.

In sumary, pisual examination of the package indicated absolutely no damage to the 1-13C II cask body or ild. The orerpacks and ratchet binders did not fall, although the lover overpack austalned moderate damage.

2.11.3.9 Drop_Ii Top End oblique Drop

In preparation for this drop, the overpacks used in previous tests were removed and new ones installed. During this process, force

Flasi zant: zomich Eld veniticil jenp

- P4(LSFH)

1-1?C PACXLEE JUKT PRIOR
io :MITIAL Inpact.

F5 (RICHT) =
PACKAGE IN PEEOLHB
\&FER !MITIAL IMPACT.

F7 (RIEHI) -
packece at pest anta entin ew veatical drop.

1 F10
TEMSILE LOLDIHG OF PAICHET AIMDESS
IM QURDPRYT III:
MO DKYASE TO CASK.

1811
 14 0240gevi ll: 40 Divater 10 cisk.

-514 (L5F)
 - Cocxie cit- isin joe in erosessioy

F15(RIGH) -
 Vilw: is:o extelios lion nu:josit 11.

-••?

- 5 : 5 (5:Ti)
final lotea ditakex ontentatioy FOLOUMY METICAL DRGP. paiMt
 posilioy at mitial :ract.

F17 (RIGHT) $=$
phichet alkoer lug in jetwey OUANDPAKTS I AND IV SHOWIME CRIPPLING OF RATCHET BIMDER: ALSO. DUCTILE TEAR OF LUS TO OVEPPACK SHELL MELD: LUS REMAIMS FIRYLY - TAACHED TO vE:TICAL CYLIMDRICAL WALL OF OVEPSACX SHELL.

- Fls (Lrm)

RUTCHET בIYDCR (B. IN OUREPBMT 11) SHOUlYS FLEXUPL Y!EIEIME of BOLT TO LUS JYDER PATCHET EIYDER TEMSILE LCRjing: LuG aExilys fipuly ATTACHED TO OVEFPACX SHELL.

FIS (RICHT) -
UPPER OLERPACX LUG IN COUPRESSIVE PIGIOM; KO DISTPISS TO LUS OR TO OREPPACK SHELL: MO DKHAEE 10 UPPER Mreppacx or cask.

$\because a s t e=s$ " 3 and ; 4 were installed at 90° angle from fozce rashers $\| l$ ard $\|$. Ai=hough the $\# 2$ force washer had been damaged du:ing the fizst drop, as a:Eempe gas made to use $1:$ as vell as force washer il. The specialiy made iop :‥pact $1!\leq:$ Eizitue, orienting the package of 40°, was installed and the iorce vasher instrumentation cables vere secured so that they soild not be damaged or loosened during the cask drop. The package jas lifted to a heigite c: 30 seet and ortented at approxtmately 40° with respect $=0$ horizon. Phctos il and it deplc: preparation for the obllque drop.
inen the package was dropped, initial lmpact was on the Quadzant IV comer of the upper (itd end) overpack as shown in photo T5. It then rebounded, and the lowe: overpack experienced initial slapdown lmpact (see photo T6). The uppe: overpack impacted a second time uhile the lover overpack was seill in rebound (photo T7).

The lower overpack experienced second and third slapdown impacts, and the package came to rest (sce photo 78). $A t$ Initial impact, all four force washers vere destroyed and no significant data vas transmitted. Visual inspection of the package (discussed at lensth in the next section) after the obllque drop rezealed some crushing in both the top and bottom overpacks, but no botrom-out. Botrom-out vas defined as a deformation of the overpacks exceeding 95\% of the overpack foam thickness measured perpendicular to the crush plane. Had chis occurred, a chird (bottom end oblique) drop would have been necessary. The conditional thlrd drop vas valved and post-test 1nspect!ons comenced.

1 il
CRSK IM NEN EVEPPAOXS WITH SPEC:AL L?FT FIXTUEE ATIACHED.

122
sotailow cf pacyace io oslicue apop orleytatley.

1 13
 $40^{\prime \prime} 0^{\circ} 1 \mathrm{sifl\mid ci}$.

$1!4$

sELnHD פacp: idf syb celleue jenp

- 15 (LEFF)

IMITAL IMPACT: COBMES OF L'Pegs ove:pacx.

T6 (3lsiti) IIIITAL SLAPDGN OF LOKE? oveppack: upper nverpacx IT PEEOUSD.

- 17 (LEF)
cenidaty lipaci ff ludez
 in esjersid afiea slipjohy inple.
is (RJGHT) -
pacyace hi peci wita inf ehd net lour CPCP.

?hotos $T 9$ and $I 20$ 1llusteate post-test visuai examination findings. it should te noted that the drop orientation was selected to maximize potential danage to the cask ild and to the upper overpack shell. In splte of this ".zorst case" strategy, the upper overpack shell evidenced only moderate compression (photo 29). Furthermore, aithough the tiedown lugs deformed to conform to the overpack sheli shape, there was only moderate distress in the vicinity of the tiedown luss and to rupturing or tearing (photo Tl0).

The interior upper overpack shell likewise suffered little damage, although i: caused problems with the force vasher instrmentation. Photo Ilf shows that bolt relief holes fashioned to accomodate the force vasher instrumentation cables which had to be routed through the upper orerpack. Unfortunately, inadequate clearances in the rellef holes caused the vertical inner valis of the overpack to lapact on the aldes of the force vashers. This lateral impact greatly facreased the loads applled to the cask closure bolts. In the most extreme case, thls resulted in a crack around $3 / 4$ of the circumerence of a lid boit boss (photo T17). The boss vas also raised $1 / 8$ inch above che cask top surface. It should be noted that in service, no such loads vould be used. In addition, the clearance holes in the overpack which receive the lid bolts have been enlarged from 3 inches to 3.548 inches, and a $1 / 8$ inch thickness of neoprene has been added, as an option, to the inner vertical walls of both the upper ard lover overpacks. Hence, the fallure can be considered the result of an mealistic over-test. The lateral fmpact also deatroyet the force vashers (see photo I18).

Visual inspection of the lower overpack, which experienced three slapdown impacts, shoved only minor damage. In photo Il4, the cask registry can be acen runaing along the circumference of the inside lover plate. There was no rupturing or tearing of the interior shell, however. Also shom is silght paint distress indicating some yieldins along the vertical weld attaching ratcher binders in

- is (15:T)
 OCETPACK is Evicelc: zy palit CN DRDP P2D.

In (215it) --CDEPATE COPYER AND SIDE COPPESSICH CF UPPER CNE?PACK SHELL: CXLY MIYOR CEEDPצatICM CF CLTER CYLIMCRICAL WALL IH . VICIMITY CF TIE-jom Lles.

- I11 (LETT)

Eff:cts gf slaperay lupects CY LOXE? OUETPRCK SHELL: scallopeg Cefopyaticy causeo 2Y 9.ETETION CMAMS.

11? (RICHI) -

 2.5 1!ruts.

In (215hT) -
LCNER CEEPACK, HICH EXEPIEMCED tan siarigon lopacis, syon's yo E:̇EING CR DISTRESS: CASK lipal: ? PYS aLONS CIPCUMFEPEMCE OF LUNER TETPACK PLRTE.

 eusil nctios?

Quacrants II and III to the overpack inner shell. Photo ils shows additicnai Dafrt distress on the upper suriace of the lower overpack at the ratchet bincer iug attachment. Although this indicates modest strains above ma:ari:i slastic iimits, there kere no ruptures or tears of the cuter overpack sheii.

2.11.3.11 Rest-test Dinensional Checks and zolt Retorguing Values

The cask lid bolts were retorqued to their original values of 330 ft .-lbs. anc the number of degrees required to cbtain this value was documented. Hot surprisingly, the two boits requiring the most retorquing to obtain original values were those closest to the impact plane after the second drop. Lid bolts π_{5} and ${ }_{n} 9$ required 25° and 15° respectiveiy to obtain $330 \mathrm{ft} .-\mathrm{lbs}$.: both were adjacent to the torn boss insert under force 'Nasher ${ }^{\boldsymbol{n}} 2$.

Post-drop cask diametrical measurements were also cbtained. These measurements were identical to tee pre-drop measurements within error tolerance ($1 / 8$ inch).

2.11.3.12 Dove Panetrant Post-test

On October 2, 1980, the post-test liquid penetrant inspection was performed by Industrial NDT Company, Inc. Results were identical to pre-test findings with the exception of the cracked bolt hole boss discussed earller.

2.11.3.1: Past-test Gamma_Scan

Due to equipment officulties noted earlier, the post-test gama scan was not concluded until february, 1981. The test was performed by the Quality Assurance Manager of Nuclear Packaging, Inc., of Tacoma, Hashington. The following preliminary inspection were performed and verified:
A. Exterior surface wipe test.
B. Held integrity of external heat shield welds.
C. Cask dimensions

The cask surface vas gridded in four lach squares, and the probe and source were callbrated ln accordance with Gama Scan Procedure No. GS-002, Rev. 0. The casix was flest scanged without the 9 curie Cobalt 60 source, and all Esadings were recorded on a grid map corrsponding to the cask surface. Ithe source vas then laserted into the cask, calibration rechecked, and a nozal gama scan completed. The "background" readings (no source in cask) for each gadd were subtracied from readings obtalned eith the source in the cask. Obeain differences were the actual zama readings in mililrems per hour for each gild. Cask lead integity was shown to be fully acceptable with no derectable lead sertlement.

Gama scan of the cagk lid was not practical, so it vas subjected to ultrasonic soundness inspection, performed by a certified Industrial NDT techalcian. To relevant indicarions vere detected.

2.11.4 TEST RESLITS/DATA

2.11.4.1 Sumery

Inspections and tests of the l-13C II cask provided dramatic confimation that the package is structurally adequate to aurfive accideatial drops from 30 Eect, in any orientation. The overpacks, although deformed, did not fall. The lid was not deformed. The cask itgelf vas not deformed except in areas deformed by testing instruentation. post-drop package shielding capabilicies, as measured by gama scar data, vere clearly acceptable. The damage vhich vas sustained by the lid bolt boss noted previously is not expected to occur $1 f$ the cask is subjected to hypothetical accident conditions in the future.

A potential interference problem existed between the bolt hesd (i.e., width across comers) and the edze of the 3 Inch clearance hole in the overpack. The overpacks have since been modified to enlarge the lid bolt clearance holes from 3 inches to 3.548 inches. This eliminates any posidility of the overpack contacting the lid bolts when the package is subjected to hypothetical accident conditions.

Because of this design modification no damage is expecied if the cask is again subfected to the hypothetical accident conditions. Therefore, the pre-ač!den cask condition $\lfloor 3$ actually sepresentarlve of the post-accident cask condition. Moreove:, the pre-accident cask concition way be tested to demonstrate compliance with the post drop-test contalment requirements of iJiREG. 7.4 and ATSI $\|$ 14.5. This also affords the flexibility of making package desizn !mprovements without requiving additional testing. Addieional package design lmprovements are noted as follows: An o-ring has been added to the lid to facilitate leak testing in accordance with KUREG. 7.4 and AlSI N 14.5 for assembly verification. There vas no consideration given to this $0-r^{2} n g$ so enhance the sealins capabilizies of the package. Hovever, the addicion of this $0-r i n g$ does augment the existing sealing competence. The $3 / 8$ 1ach thick sillcone gasket kas been feduced to a thickness of $1 / 4$ inch to ensure metal to metal contact betwen the lid and the cask. This will resulit in more repeatable results when performing future leak tests.

2.11.4.2 2ye Pent:ant Inspections

Figures 2.11.4-1 and 2.11.4-2 shov the pre-Crop and post-drop dye penetrant taspections of the 1-13C II cask.

2.11.4.3 Rinensionsd_Chesks

Figure 2.11.4-3 shows the pre- and post-teat cask diametrical measurements. Pre-test figures are in the upper lerel and post-test measurements in the lover level. It vas determined from a post-test dimensional aurvey completed at Bariwell, South Carolina, by CNSI Quality Assurance personnel that all perfinent areas of the cask lid which might have been affected by the drop test remalned within fabilcation tolerances.

Fizure 2.11.4-4 is a sketch depleting the lover overpack after the bottom end Tertical drop. Deformation of the upper overpack after top end obllque drop is shown in Figure 2.11.4-5.

2.11.4.4 Gama Scsn 2a:2

Fibi:e 2.11.4-6 shows the calibracion curve obtained prior to gacma gesn of the 1-13C II cask. Also calculated in this flgure are the gama scan aceeptance criteria derived by subtracting 10% from cask nominal lead th!ckess (rhich was 5.00 inches except at the lif:ing ear support bond ard an the tapered lid fincrifon area) and correlating these figures pith calibration readings obrafned al:h lead plates of the same thickness. The reader ulll note that the acceptance thresholds were $49.5 \mathrm{mR} . / \mathrm{hr}$. at 11 fting ear support band and 26.0 MR. for the rest of the cask. The 49.5 mR/hr. figure was projected, since no calibration lead plate with 3.82 inches thickness was avaliable.

Figure 2.11.4-7 (3 pages) shove the post-test gama scan vith the 9 curie Cobalt 60 source inside the cask. No reading at lifting ear support band excecds the maximum allowable limit of $49.5 \mathrm{mR} . / \mathrm{hr}$. No reading for the res: of the cask body exceeds ine maxfmum allowable limit of 26.0 except in row 14. These higher readings are due to the taper present in the top area for Insertion of the matiag taper of the lid. At this taper, the cross section lead thickess is only about sox of chat in the main cask body.

2.11.4.5 Bols Ferce Messurement Data and Bolt Resorguina Dasa

Figure 2.11.4-8 shows a top down piew of the cask lid bolts and force vashers. Included in this sketch is the number of degrees to achieve original lid bolt torque values ($330 \mathrm{ft} .-1 \mathrm{~b}$.) after the two drops.

Bolt force time history for the first drop impact can be seen in Figure 2.11.4-9 (two pages).

FIGURE 2．11．4－1 PRE－TEST DYE PEMETRAMT RESULTS

クロッ CE！：ニミス OE
BOL＝HOLE 19
1
－In：her heio

OLTER WELD O．s．

FIGUEE 2.ii.1-2 FOST IEST DYE PERETPRATT FINDAMAS

RIGURE 2.11.4-3
cask diametrical measurements
stmmary data sheet
Iop Yew-looklng Doun

Slide Yley

| | | CIRCUMFERENTIAL POSITION - DIAMETER ($1 \mathrm{~N}, \pm 1 / 8^{\prime \prime}$) | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| A | 응훈눈 | 39-3/16 ${ }^{-}$ | 39-3/15 | 39-3/16" | 39-3/16" | 39-3/16" | 39-3/16" | 39-3/16" | 39-7/32- | 39-3/16" | 39-3/16 ${ }^{\text {n }}$ | 39-7/32- | 37-9/32 ${ }^{-1}$ |
| | | 39-1/16 ${ }^{\circ}$ | 39-3/32 | 39-1/16" | 39-1/8" | 39-1/8" | 39-1/16 ${ }^{\text {² }}$ | 39-1/16" | 39-1/8* | 39-5/32" | 39-3016 | 19-1/4" | 2^{*} |
| B | | 39-1/4" | 39-1/8" | 39-1/8" | 39-1/8" | 39-1/8" | 39-9/320 | 39-7/32" | 39-1/16" | 39-1/8" | 39-1/8"- | 3-1/8= | $39=3 / 16^{-}$ |
| | | 39-7/32 | 3-1/8 ${ }^{\circ}$ | 39-7/32" | 39-3/16* | 39-5/32* | 39-1/4" | 39-1/4" | 39-3/16" | 39-5/32* | 39-1/16* | 39-1/16" | 39-1/ |
| C | 응空学 | 26-7/16 | 26-7/16 ${ }^{\text {² }}$ | $26-11 / 32^{\prime \prime}$ | 26-3/8" | 26-3/8- | 26-11/32" | 26-11/32: | 26-3/8" | 26-11/32 | 26-7/16= | 26-7/16: | 26-15/32 |
| | | 26-7/16" | 26-3/8" | 26-3/8" | 26-3/8" | 26-3/8* | 26-5/16* | 26-5/16* | 26-11/32 | 26-3/8" | 26-7/16* | $26-1 / 2^{*}$ | 26-15/32 |
| 0 | | 26-11/32 | 26-11 13 | -7/16" | 26-7A6 | 26-15/ | -15/32** | 26-15/32: | $26-3 a^{-}$ | -3/8" | 26-5A6: | 26-9/32" | $26-13<32$ |
| | | 26-3/8* | 26-3/8* | 26-13/32* | 26-7/16" | 26-15/12- | (r-15/32- | 26-13/32- | $26-3 / 0^{-}$ | 26-5/16 ${ }^{\circ}$ | $26-5 / 16^{\circ}$ | 2-1/4* | 26-7118 |
| E | | 26-7/16" | 26-7/16 | -7/16" | $26-15 / 32^{*}$ | 26-7/160 | 2r-1/2" | $\underline{26-1 / 20}$ | 26-7/16 6^{-} | 26-3/8. | 26-3/8" | 26-3/8" | 26-7/160 |
| | | 26-3/8 ${ }^{-}$ | 26-7/16" | 26-3/8* | 26r-7/16" | $2 \mathrm{~m}-1 / 2^{\prime \prime}$ | 26-1/2" | 26-15/32- | 26-3/8* | 26-3/8- | 26-3/J | 2r,-3/8" | 26-1/2* |
| HITE: | | | | | | | | | | | | | |

FIGUKE 2.11.4-4

LOWER OVG:RPACK AFTER FIAT FIND DROP

FIGURE 2.11.4-5

-IRE 2.11.4-6 CALIbRATIOH CURVE, 1-13 C II CASK Y SCAN AT BARHWELL, 2/26/81

EIGURE 2.11.4-7
Gixat SCAi RedjI:ics Ill MR OF 1-13C II CiSk HITH 9 CUR:ES COBALI 60 SOUnCE

FIGURE 2.11.4-7
Ginua SCail readiligs in ix of l-13c il cask hizy g cuares COBALI 60 SOURCE (cent!nued)

| | | | | | | | | | | | | | | | | : |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | | | | | | | | | |
| | | | | | | | | 14.5 | - | PAD | | | | | | |
| | | | | | | | | | - | | | | | | | |
| 11 | 2 m .0 | 30.0 | | 33.0 | 33.0 | 30.0 | 29.0 | 26.0 | 26.0 | 27.0 | 26.0 | 25.0 | 25.0 | 25.0 | 25.0 | |
| 13 | 20.0 | 20.0 | 19.0 | 19.0 | 19.0 | 18.0 | | 7.0 | 17.0 | 17.0 | 17.0 | 17.0 | 17.0 | 17.0 | 18.0 | |
| 12 | 21.0 | 20.0 | 20.0 | ¢9.0 | 19.0 | 18.0 | 17. ${ }^{\text {c }}$ | | 15.0 | $\underline{28} 0$ | 27.0 | 17.0 | 27.0 | 19:0 | 15.0 | |
| Γ | 32.0 | 33.0 | FL. 0 | 23.0 | 32.0 | 32.0 | 2380 | 1i16 | 32.0 | 32.0 | 21.0 | 32.0 | 30.0 | 20.0 | 31.0 | |
| 10 | 32.0 | 31.0 | 13.0 | 12.0 | 32.0 | 32.0 | 2512 | \% | | 31.0 | 21.0 | 32.0 | 30.0 | 60.0 | 30.0 | : |
| 9 | 28.0 | 28.0 | 28.0 | F7.0 | 27.0 | 17.0 | 17.0 | 17.0 | 27.0 | 27.0 | 7.0 | 17.0 | 27.0 | F9.0 | $2 E .0$ | |
| 8 | 19.0 | 28.0 | 17.0 | 27.0 | 17.0 | 26.0 | 16.0 | 26.0 | 26.0 | 27.0 | 17.0 | 16.0 | 17.0 | 27.0 | 17.6 | |
| 7 | 19.0 | 17.0 | 27.0 | 27.0 | 26.0 | 16.0 | 25.0 | \% | 16.0 | 17.0 | 27.0 | 17.0 | 27.0 | $\begin{aligned} & v^{\prime \prime n} 66 \\ & 88.0 \end{aligned}$ | \mid | |
| 6 | 27.0 | 27.0 | 16.0 | 26.0 | 15.0 | 15.0 | 2.0 | 立. | 星 | 16.0 | 17.0 | 27.0 | 27.0 | 15.0 | 28.0 | |
| 5 | 27.9 | | 26.0 | 15.0 | 25.9 | 25.0 | 15.0 | 15.0 | 15.0 | 16.0 | 17.0 | 26.0 | 27.0 | 18.0 | 29.0 | |
| 6 | 17.0 | 26.01 | 15.0 | 15.0 | 2.0 | 21.0 | 2.0 | 2.0 | 25.0 | 25.0 | 15.0 | 26.0 | 26.0 | 27.0 | 29.0 | |
| 3 | 27.0 | 26.0 | 25.01 | 25.0 | 23.0 | 21.0 | 25.0 | 2.0 | 21.0 | 21.0 | 15.0 | 25.0 | 16.0 | 7.0 | 19.0 | |
| 2 | 17.0 | 26.012 | 15.0 | 2.01 | 12.0 | 21.01 | 2.0 | 12.0 | 13.01 | 21.0 | 2.0 | 15.0 | 16.0 | 7.0 | 28.0 | |
| | 23.d | 25.012 | | 2.0 | | 12.0 | 22.0 | 12.0 | 21.0 | 20.015 | 5.0 | 5.0 | 6.0 | | | |
| | 17 | 28. | 19 | 2 | 21 | 22 | $23 \cdot 2$ | 26 | . 25 | 26 | 27 | 28 | 2 | 30 | 31 | |

FIGURE 2.11.3-7
 COBALT 60 SCUACE (contanted)

LID BOLE STATUS FOLLOHING

oblique Implct

Degress indicate turn required to restore bolt preload corque.

ETGURE 2.21.1-9

TIGURE 2.11.4-9 (contsaued)

Thls secifon brdelly aumarizes algndflcant coments and conclusions. inere appropidate, correlations and zeanlngful interpretations are provided.

2.11.5.1 Cesk Bcherior

The drop testa conclualvely demonstrated the capabllity of the l-13C II cask to surgive the 30 foot drop provisions of the hypothetical accident efsments Of CFR 71. Successful survivel of tvo aequential 30 foot drops demonstrates the high degret of conservatism embodied in the l-i3C II design. Shield Integrity vas directly demonstrated by appropriate performance tests. Structural lategrity was almilarly demonstrated by the unchanged condition of che cask following these two drops, with the exception as previously noted.

2.11.5.1.1 shleid_nteselsy

The poat test gama scan described in Section 2.11 .4 .4 demonstates that the lead shleld auffered no damage or change durlng tvo succesalve drop tests. There vas no detectable lead actelement. All provisions of lo CrR 71 relative to survival of shlelding under hypothetical accident conditions are fully satisfled.

2.11.5.1.2 Heid Intescliy

Pre- and post-test dye penetration examinations fully demonstrated sufflcient veld integrity to atisfy hypothetical aceident conditions ag defined in 10 CFR 71. Hovever, there was one cracked lid bolt boss ahtch occurred because of interference between bolt force measurement transducera and the overpack tiedom plate. Under normal ahipping conditions, this interference altuation vould not prevall aince force washera would not be present. Moreover, the diameter of the clearance area of the overpack has been increased from 3 laches to 3.548 inches.

2tunstonal surfegs before ard after drop test stoow no change in casix
 ousside locations (top and bottom) and three inside locations within the casik cavity or containment vessel (top, widdle and botrom). None of these fre- ard posteteat measurementa differed by more than the $1 / 8^{\prime \prime}$ measurement accuracy. Lata fles, based on the very conservatife assumpton that any neasurement differences vere true physlcal changeg, show that maximum possible sera!n cannot exceed:

| Bendins | $.23 \%$ |
| :--- | :--- |
| Membrane | $.19 \%$ |

This 13 well belou the 40π ultate strain of the stainless steci cask matcrials, and well belou the peralssable strains set for cask requalificaticn following the test, sec paragraph 6.0 of reference 2.11.2.2. Thus, the cask meets the strain level requirements for return to seroice.

Closure bole stealns under two successive 30° drops were conservatively
 F!zare 2.11.4-8, Maximum probable closure bole strains are as follous:

ril:h one exception, bolt 15 , ali closure bol:s experienced stiains less than :he definition of engineering yield, 0.2% offset. The max!ain possible stain in bolt u5 is just slightly more than this value. These predictions are very conservative since a major faction of the retcrque afplied 13 probably relaced to the instantancous release of friction forces upon Impact.

Addf:ional very useful data regarding closure bolt performance can be extracted from th. end drop bolt force transducer al output, figure 2.11.4-9. Essentlally no hif. frequency response components may be observed. Additional frequency decomposition analyses of eransducer data confirm this conclusion. Thus, for. the l-l3C II package, bolt dynamic response effects due to wave propagation effecta in the cask body, way be safely ignored. The primary reason for the absence of elastic body dymanlc responses within the cask may be artsibured to the decouplins of excitation and response afforded by the energy absorbing overpacks.

2.12.5.2 0.jergack 3eha:!or

Where not dizectly measured or assessed by test, struc:ural fintegrity c: the package is demonstrated using stress values based upon analytic predictions or overpack performance. This section presents a comparison of test and analysis demonstazing a high degree of agreement.

The end drop cest provices an ideal vehicle to compare the prediction accuracy of overpack analyses since the geometry details are minimized as are complications arising from rotational motions during impact. Figure 2.11.5.2-1 represents a pair of high speed motion pleture photos at the instant of initial impact and atmaximum orerpack deformation. Total test deformation, as measured from these photos is 4.46 inches. Corresponding analycic predictions, essumins 50 effectiveness for mbacked foam, amounted so 5.5 inches. These values differ by approximately 23%.

Careful examination of data and comparison vith probable causes leads to the conclusion that these modest differences relate to "effectivess" assumprions for unbacked foam regions, l.e., that portion of the impact cross section that is not backed by the cask body. This unbacked "over-hang" clearly is capable of resiating loada up to some value where the foam fails in ahear. Examinarions of the post-test resulta for the lmpacted orerpack shou a shear fallure of the foam along the bond surface of the inner overpack shell. This 1s matched by tensile ruptures of the overpack shell as shown in photos fis and F15, Section 2.11.3. Thus, the unbacked foam generates a significant portion of the cotal impact force.

CASK at Instant of zmpact

To assess this effectifeness of linbacked refions, a series of e:d drep
 tapact areas. ?esults are as follcus:

| $\frac{\text { Disanetez }}{(\text { En. })}$ | $\frac{\lambda-e a}{\left(i n^{2}\right)}$ | $\frac{\text { Deflection }}{(i n)}$ |
| :---: | :---: | :---: |
| 40. | 1257 | 7.96 |
| 42.5 | 1419 | 7.29 |
| 45. | 1590 | 6.68 |
| 47.5 | 2772 | 6.13 |
| 50. | 1963 | 5.63 |
| 52.5 | 2165 | 5.19 |
| 55. | 2376 | 4.79 |
| 57.5 | 2597 | 4.14 |
| 60. | 2827 | 4.13 |
| $57.36{ }^{\prime \prime}$ | 2584 | 4.46 (See next sheet) |

The total end area of the overpack is $2584 \mathrm{in}^{2}\left(60{ }^{\prime \prime} 0.0\right.$.). The end area backed by the cask body is $1257 \mathrm{fn}^{2}$ (40" O.D.). Thug, the unbacked area of partial effectiveness is:

$$
2827-1257=1570 \mathrm{ln}^{2}
$$

| Pincralic velghi | . |
| :---: | :---: |
| GE DIANEIES | 57.31 (Ix) |
| OUERPACX DCP | 15.00 IIx |
| DKOP KEISHI | 30.10 |

| | | | +1+0 InPALT +itt | | +++1+ | ExERGI + | +t+t+1 | | | |
|---|---|---|---|---|---|---|---|---|---|---|
| | $\begin{aligned} & \text { D[PiM} \\ & (\\| x) \end{aligned}$ | Stralx | $\begin{aligned} & \text { fOKCE } \\ & \text { (LIS) } \end{aligned}$ | ACCLL. (5 | $\begin{aligned} & \text { IIXEIIC } \\ & \text { (Ix-LIS } \end{aligned}$ | SIkAIK $(\mid x-L \\|)$ | $\begin{aligned} & \text { KAIIO } \\ & (S E / X E) \end{aligned}$ | |
| .4e | . 50 | .033 | 1317381. | 18.8 | 1733501. | 321312. | . 131 | |
| | 1.00 | . 017 | 2285806. | 84.7 | 1747000. | 1230236. | . 128 | |
| | 1.50 | . 100 | 2151809. | 90.9 | 1700900. | 2115409. | . 247 | |
| | 2.00 | .13] | 2511271. | 13.0 | 1721000. | 3858151. | . 374 | |
| | 2.90 | .117 | 2508814. | 12.1 | 1787500. | 4llil24. | . 502 | |
| | 3.00 | .200 | 2180729. | 11.9 | 1801000. | \$159200. | . 828 | |
| | 3.30 | .233 | 2500180. | 92.6 | 9811500. | 7104489. | . 251 | |
| | 4.00 | . 217 | 2333019. | 13.1 | 9828000. | 8182799. | . 811 | 1.000 |
| $\longrightarrow 1.50$ | | . 100 | 2581093. | 15.7 | 9811300. | Y112095. | 1.111 | |
| 3.00 | | . 333 | 2864187. | 91.7 | 9855000. | 11254230. | 1.142 | |
| 3.50 | | . 317 | 2767851. | 102.5 | 9838300. | 12112314. | 1.278 | |
| 1.00 | | . 100 | 2891184. | 107.2 | 9882000. | 14027123. | 1.420 | |
| 1.50 | | .133 | 3037745. | 112.3 | 9895900. | 19510806. | 1.381 | |
| 7.00 | | . 167 | 3232988. | 119.7 | 9909000. | 17078489. | 1.724 | |
| 7.50 | | .500 | 3188326. | 129.2 | \$122500. | 18738457. | 1.191 | |
| 1.00 | | . 331 | 3798298. | 140.7 | 9936000. | 20580573. | 2.071 | |
| 8.50 | | . 367 | 4171975. | 134.5 | 1919500. | 22573116. | 2.201 | |
| 1.00 | | . 100 | 4191311. | 172.3 | 1963000. | 24778127. | 2.117 | |
| 1.30 | | .133 | 5309833. | 196.7 | 9178900. | 21219227. | 2.731 | |
| 10.00 | | . 817 | 1292187. | 231.1 | 1990000. | 30159102. | 3.019 | |
| 10.50 | | .700 | 2515952. | 279.3 | 10003500. | 33014507. | 3. 301 | |
| 11.00 | | .731 | 1147092. | 338.1 | 10017000. | 17742698. | 3.712 | |
| 11.30 | | .747 | 11510380. | 424.3 | 10030500. | 12947016. | 4.282 | |
| 12.00 | | . 800 | 11987710. | 555.1 | 10014000. | 49971516. | 4.935 | |
| 12.50 | | .693 | 19723899. | 710.5 | 10057500. | 51219155. | 5.792 | |
| 13.00 | | .167 | 27143738. | 1005.1 | 10071000. | 19981483. | 1.147 | |
| 13.50 | | . 100 | 37727710. | 1397.3 | 10084500. | 88185338. | 8.546 | |
| 14.00 | | . 133 | 31056576. 6613911. | 1891.0 2467 | 10094000. | 108181322. | 11.731 | |
| | | .967 | 66134911. | 2167.9 | 10111500.1 | - 1091. | 13.821 | |
| | | 1.000 | 1393028. | 3110.5 | 10125000. | 7 \$479. | 17.329 | |

 O.D.). The effecive area of the uabacked segion is shus ealculated as:

$$
2584-1257=1327\left\{\pi^{2}\right.
$$

The effectiveness ratio for chis unbacked region is:

$$
\text { Estec:t\%e \% = } \frac{1327}{} \frac{1570}{}=84.5 \%
$$

da alternate approach is the assessment of unbacked foam effectiveness would assume that full section effective up to the point where shear fallures of the Coan no longer permits additional load transfer. For the l-i3C II cask overpack, the shear plane shown in Photas Fl4 and Fl5 is idealized as follous:

2-211

Allouable shear stzesses for $16.5 \mathrm{lb} / \mathrm{ft}^{3}$ Eoam, as grordded by suppilers, are estimated as:

$$
\begin{aligned}
& =13.27 f^{2.2492}=440 \mathrm{psi} \\
& F_{\pi 2 x}=(440)(25)(\pi)(40)=1.383 \times 10^{6} \mathrm{lbs}
\end{aligned}
$$

The area of unbacied smpact cross section is

$$
\lambda_{u}=\frac{\pi}{4}\left(60^{2}-40^{2}\right)=1570{i i^{2}}^{2}
$$

Maximum crush stress in unbacked regions is:

$$
0=\frac{F_{\max }}{\lambda_{L}}=\frac{1.383 \times 10^{6}}{1570}=880 \mathrm{psi}
$$

The steess in backed regions at a defiection of 4.46 inches is found as approximately 1000 psi. Thus, the effectiveness of untacked foan is estimated as:

380 88%
1000

The lesser of these tio unbacked foam effectiveness values has been employed for all side, end and oblique orientation cask load analyses used in chis report. This adjustment corrects the analytic "over prediction" of overpack deformations observed in test measurement.

IIFORMATION IN MICROFICIE FORM

```
2.10.3 Finice Element Stress Analysis
    (1-13C II Cask)
2.11 Appendix: Drop Test Report Reference Documents
    (1-13C II)
```

Appendix 2.10.4 Lift Lug Analysia - August 1981.

3.0 Thegual evaluaticy

This chapter :dentifies and describes the frincipal thermai engineering cesien aspects of the l-iEC II fackage important to safety and to compliance with tine performance requirements of 10 CFR il.

3.1 Discussion

The C.VS 1-1:C II package is designed with a totally passive thermal system. The principal physical characteristics of this thermal system consist of an external thermal fira shield surrounding a cylindrical stainless steel shell. The $1 / 2$ inch cylindrical stainless steel shell surrounds a lead shield of afproximately 5 inch thickness. The inner surface of the package consist of an 26-1/2 inch diameter stainless steel shell. The cylindrical pacrage ends are sinilarly constructed of stainless steel and lead materials. Thase ands are enclosed in, and surrcunded by, cylindrical foam impact absorbers (also called overpacks) that effectively serve as adiabatic boundaries for these end surfaces. The above compenents are identified on the drawings as noted in ippendis 2.10.1

The principal operating features of the 1-13C II package thermal system are as follows:

1. Hormal Transport Cenditions

3. The decay heat of the payload is transferred to the inner surface of the package by radial radial heat transfer means.
b. This decay heat is transferred to the exterior of the cylindrical stainiess steel shell by radial conductive heat transfer through the lead shield.
c. Next, this decay heat is transferred to the exterior fire shield by radiant heat transfer.
d. The ilre shield dissipated this decay heat to the ambient anuirorment by conbined radiation and convection heat transfer.
a. Essentially no heat is disspated through package ends. The foan impact energy absorbers, enclosing these package ends, enforce abiabatic boundary conditions on all end surfaces.

2. Hyeotheirai Theral Accident

a. The heat of a hypothetical fire is imposed upon the exterior fire shield by radiant heat transfar means, as prescribed in 10 CFR 71.
b. This fire heat is transferred to the stainless steel cylindrical shell by radiant heat transfer.
c. Conductive heat transfer conveys this heat to the lead shield.
d. Eoth the lead shielding material and the steel end assemblies store heat during the period of the fire.
e. Subsequent to the fire, the stored fire heat is dissipatd to the ambient environment as described, above, for normal transport conditions.
f. During fire exposure portions of the foam end tmpact absorbers char but retain a cellular structure to trap a dead air void of equivalent dimensions.

The import maximum temperatures of the 1-13C II package for both normal transport and hypothetical thermal accident conditions are summarized below.

- iocmal T-3.spor: Condiziens

Cask Pedy Fixeshes:
$100^{\circ} \mathrm{F}$ dmblent il:*
$130^{\circ} \mathrm{E}$ dmblent il:*
$-40^{\circ} \mathrm{F}$ גmbient A1:

$$
\begin{array}{rr}
190.6^{\circ} \mathrm{F} & 156.3^{\circ} \mathrm{F} \\
214.4^{\circ} \mathrm{F} & 182.1^{\circ} \mathrm{F} \\
81.5^{\circ} \mathrm{F} & 37.3^{\circ} \mathrm{F}
\end{array}
$$

- ilyporhetical ri-s desident

$$
\text { Yode Temperazire }{ }^{\circ} \mathrm{E}
$$

Fife Shield
$9 \quad 1174.0^{\circ} \mathrm{F}$
Lift Lus
Side Outer Shell
$2 \quad 508.7^{\circ} \mathrm{F}$

Top outer shell
Bottom Outer Shell
$10 \quad 434.5^{\circ} \mathrm{F}$
$3 \quad 363.4^{\circ} \mathrm{F}$

Case Cavity
$16 \quad 365.1^{\circ} \bar{F}$
$22 \quad 371.4^{\circ} \mathrm{F}$
*Includes heatias due to solar insolation.
SHith maxdeum decay heat load $=800$ vates.

The important conclusions derifed from the above results include:

The lead shield does not melt under hypothetical theral accident conditions (marimum lead temperature $=508.7^{\circ} \mathrm{F}$ at lift lug; melt $=$ $621^{\circ} \mathrm{F}$).

The =emponen:s of the closure sjatems (bol:s, seals) at both e:ts a:e
 exeeitenc sealing propertaes up to 200° \%. The maximum predicied temperature of the pressurized contalnment cavity is 3il.4\% . This tempera:ure 13 used to derive max!mum contafment vessel pressure masoitudes.

The package has been eraiuated for payload decay heats ranging up to 800 - atiss. Karimuremperatures reported above correspond to the 800 watt case. Spectfic steady state (at $100^{\circ} \mathrm{F}$ amblent afr) and hypotherical accident trarsient analyses have been performed for decay hear values of: 150, 200, 300, $200,500,600,700$, and 800 watis.

- Shappere, L.B., Cask Designers Gulde, Oak Rigde National Laboratory, ORTL-NSIC-68, 1968, Table 2.3, Page 32.

 a:.d Cpezation of SMipping Casks for Nuciear dpplications", ORH-NSIC-58, page 160. These rroperties are as follous:

0
 Seurec Medel and Sire shlele Exterder

Zroperties for the external eurface of the cask and the source are taken directiy from requirements deflned in 10 CFR 71 such that the heat input to the package ia not less than that which vould result from exposure of the vhole package to a radiasion env!ronment of $1,475^{\circ} \mathrm{F}$ for 30 minutes with an emissivity cocficicient of 0.9 assuming the surfaces of the package have an absorption coefflctent of 0.8. Thus, the exterior surface of the package flre shield is assumed to possess an emisaivity and absorptivity of 0.8. The emissive power of the hypothetical accident source is assumed equivalent to a grey body vith emissivity of 0.9 at a terperature of $1475^{\circ} \mathrm{F}$. This is equivalent to black body source with a cemperacure of $1424.71^{\circ} \mathrm{F}$ as shown in che following calculations:

$$
\begin{aligned}
& I_{0}=\left[E_{0}\left(I_{0}\right)^{4}\right] i / 4 \\
& I_{0}=\left[(.9)(1475+459.69)^{4}\right]^{1 / 4}-459.60 \\
& I_{0}=1424.71^{0} \mathrm{~F}
\end{aligned}
$$

- Eire Shicly_incerar and Cask Exterier

Both bodies are 304 stainless steel and possess emissivity properifes varying with temperature. An empirical equation of the 50rm:

$$
c=A+B I^{C}
$$

Was fitced to avallable data from three sources. This fit fund coefficients of:

$$
\begin{aligned}
& A=.430 \\
& B=3.1359 \times 10^{-5} \\
& C=1.2850
\end{aligned}
$$

Rume:tcal evaluation at varjinz tempeatures zives values used an the aralyses:

| Temperatise | Endssivity_c |
| :--- | :---: |
| 50 | .43 |
| 200 | .46 |
| 400 | .50 |
| 600 | .54 |
| 800 | .60 |
| 1000 | .65 |
| 1200 | .71 |
| 1300 | .72 |
| 1400 | .78 |
| 1475 | .80 |

The data sources used for this emplefeal fic vere as follows:
(1) Kreith, Frank, Radiation Hest Trangter

Intemational Textbook Co., 1962, Table 2-5. ${ }^{\circ} \mathrm{E} \quad \underset{ }{C}$

| Type 301 | 96 | .44 |
| :--- | ---: | ---: |
| | 638 | .50 |
| | 1213 | .86 |
| Type 326 | 1710 | .90 |
| | 98 | .49 |
| | 665 | .52 |
| | 1193 | .61 |
| | 1575 | .89 |

(2) Solman, J.P., Heas Tianfier McGraw-iH!11 3ook Cow.pany, i:63, Table d-10.

| | ${ }^{\circ} \mathrm{E}$ | $\underline{\varepsilon}$ |
| ---: | ---: | ---: |
| Tjpe 301 | 450 | .54 |
| | 1725 | .63 |

(3) Batmeister, Theodore, Merk's Standerd Handbook fer Mechanical Ensineers. McGraw-Hill Book Co. Eighth Edicion, 1978, Iable 2, Page 4-73.

| | ${ }^{0} \mathrm{E}$ | \underline{c} |
| :--- | :--- | :--- |
| Type 304 | 428 | .62 |
| | 986 | .73 |

3.3 Techoical Specifications of components

Not Applicable.

3.A Thermi Ey luation fer nermal Condicions of Transpers

The chermal eqaluation of the l-13C II package to the Mormal Conditions of T:ansport, defined in 10 CFR 71, has been performed by analytic means. Eibht aleernate payload decay heat conflgurations have been considered, as described In Secion 3.1.

2.4.2 Thermal Model

A common thermal analysis model was used for both steady state evaluation of the normal conditions of transport and transient evaluation of the

 38 Ees:stor elements of both itrear (conducifon) and ron-lineat (=adatisn anta =snveciton) form. Figure 3.4.i-l depices eh!s shezai ldealizarion.
The zencral characterts :ies of chis model may be sumarized as:

- The model consists of three zones - tio end zones ard one mid-body zone.
- Each zone is comprised of 5 lead shfeld nodes and two atadaless stef nodes representing inner and outer shells. Wifhin a zone these nodes are connected by 6 conduction resiscors (R_{7} ro q_{24}).
- Coupling between each zone is achleved by a total of evelve conduction resistors (E_{25} to Z_{36}).
- The outer shell is enclosed by a fire ahield comprised of a $1 / 4^{\prime \prime}$ stafrless ateel plate offset from the cask outer shell by a 16 gauge (.065") wire spacer at $6^{\prime \prime}$ centers. This fire shield is thermally 11.aked to the cask outer shell by a radiation resistor (R_{6}).
- The fire shield $1 s$ penetrated by a pait of lug pads atraching to the lifting riag integraliy on the cask outer shell. Conductive resistors coupling this lus gad to the fire shield $\left(R_{38}\right)$, outer shell (R_{5}), and lead (Z_{37}) are provided.

- The ambient extemal envizorment is represented by a singie nete held at constant temperature, or at programmed temperatures versus :I=e for the hypochertcal theral accident. Every extermai node $=$ E the $1-i 3 C$ II package is linked to chis external environment node by a pais of :esistors - one for radiacion, one for free convection $\left(R_{1}\right.$ to $\left.R_{4}\right)$. Dusing the hypotherical thermal accident, the convecticn resistors are "sultched off".
- Solutions are achieved by using a conventional chermal analyzer prosiam, THAN, based on the well-known Lockheed Thermal Analyzer.

```
The separate ateady-atate conditions yere evaluated: efshe to establish 1ri:ial conditions for the hypothetical chermal acident analyses per RRC Regulatory Guide 7.8, paragraph C.1.a (all run at an ambient environmental temperature of \(100^{\circ} \mathrm{E}\) ): one at the "hot" conditions specified by 10 CFR 71 ( \(130^{\circ} \mathrm{F}\) ) for Normal Transport and one at the "cold" conditions ( \(-40^{\circ} \mathrm{F}\) ) specified for Rormal Transport.
```

The derivation of model properties follous:

$c_{i}=z_{i} \sigma_{p}$

| NOEE
 (i) | | VOLUTE (in ${ }^{\text {a }}$) | | c_{i} |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{r} 2 \\ 3 \\ 9 \\ 10 \\ 16 \\ 22 \end{array}$ | $\left.\right\|_{i} ^{\text {s:eel }}$ | $\begin{aligned} & (5.5)(8)(2)(2)=176 i^{3} \\ & -(3 / 4)(19.25)^{2}=873.1 i^{3} \\ & 2=(19.565)(1 / 4)(68.63)=2109.2 \mathrm{in}^{3} \\ & 2 \pi(1 / 2)(19)(68.6)=4094.8 \mathrm{in}^{3} \\ & \pi(1 / 2)(19.25)^{2}=582.1 \mathrm{in}^{3} \\ & 2 \pi(1 / 2)(13.25)^{2}+2=(55)(13.5)(5) \end{aligned}$ | | |
| $\begin{aligned} & 5 \\ & 6 \\ & 7 \\ & 8 \end{aligned}$ | Sclia Leac | $\begin{aligned} & v=\pi R_{j}^{2} t ; t=5.75 / 5 \\ & R_{j}=13.75+t(j-1) \\ & j=i-3 \end{aligned}$ | $\begin{array}{r} \frac{\left(1 n^{3}\right)}{623.1} \\ 802.1 \\ 930.7 \\ 1068.8 \\ 1226.5 \end{array}$ | $\begin{array}{r} 8.83 \\ 10.36 \\ 12.03 \\ 13.81 \\ 15.72 \end{array}$ |
| $\begin{aligned} & 11 \\ & 12 \\ & 13 \\ & 14 \\ & 15 \end{aligned}$ | $\frac{1}{9}$ | $\begin{aligned} & v_{j}==\left(R_{j+1}^{2}-R_{j}^{2}\right) \ell_{i} \\ & \ell_{j}=55+2(j-1) t \\ & t=5^{n} / 5 \\ & R_{j}=13.75+(j-1) t \\ & j=i-10 \end{aligned}$ | $\begin{aligned} & 5103.5 \\ & 5653.3 \\ & 6228.2 \\ & 6828.3 \\ & 7453.4 \end{aligned}$ | $\begin{aligned} & 65.94 \\ & 73.05 \\ & 80.47 \\ & 88.23 \\ & 96.31 \end{aligned}$ |
| $\begin{aligned} & 17 \\ & 18 \\ & 19 \\ & 20 \\ & 21 \end{aligned}$ | 7 | $\begin{aligned} & v_{j}= \pi R_{j}^{2} t: t=6 / 5 \\ & R j= 13.75+t(j-1) \\ & j=i-16 \end{aligned}$ | $\begin{aligned} & 712.75 \\ & 842.6 \\ & 983.3 \\ & 1134.8 \\ & 1297.2 \end{aligned}$ | $\begin{aligned} & 9.21 \\ & 10.89 \\ & 12.70 \\ & 14.66 \\ & 16.76 \end{aligned}$ |

- 2ssune gotrom Identical

site - Throuch =he thickness -

$$
R i j=\frac{1 \pi\left(E_{q} f:\right)}{2 \pi \mathrm{Ki}}
$$

| PESESTOR | VODE | Riv:US (in..) | $\begin{array}{r\|} \hline \text { LE:iGFH } \\ \text { (in.) } \end{array}$ | $\begin{gathered} \text { LEAD } \\ \text { PESISTORS } \end{gathered}$ | $\begin{gathered} \text { STEEi } \\ \text { RSSISTORS } \end{gathered}$ | $\begin{gathered} \text { So:ini } \\ \text { PsSISTORS } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 13 | 10 | 19.00 | 67.38 | | | |
| | | | | 76.809-6 | 67.814-6 | 144.62-6 |
| | II | 18.08 | 65.32 | | | |
| i4 | | | | 82.487-6 | | |
| | 12 | 17.17 | 63.25 | | | |
| 25 | | | | 90.882-6 | | |
| | 13 | 16.25 | 61.19 | | | |
| 16 | | | | 99.474-6 | | |
| | 14 | 15.33 | 59.13 | | | |
| 17 | | | | 108.16-6 | | |
| | 15 | 14.42 | 57.06 | | | |
| 18 | | | | 120.82-6 | 116.93-6 | 237.75-6 |
| | 22 | 13.50 | 55.00 | | | |

3-14

| PES:STOR | NODES | | FinivsI | $\underset{h}{\operatorname{HiLF}} .$ | MnTERİL | RESISTOR |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 2 | 3 | | | | |
| 25, 26 | 3 | 10 | 19.00 | 33.69 | Steel | 574.71×10^{-3} |
| 27. 28 | 4 | 11 | 28.08 | 32.66 | iead | 283.97×10^{-3} |
| 29. 30 | 5 | 12 | 17.17 | 31.63 | | 283.03-3 |
| 31, 32 | 6 | 13 | 16.25 | 30.60 | | 282.32-3 |
| 33, 34 | 7 | 14 | 25.33 | 29.57 | | 281.82-3 |
| 35. 36 | 8 | 15 | 24.42 | 28.53 | $\%$ | 281.45-3 |

「13 = On玉;
$0=.1714 \times 10^{-8}$
$\Sigma=.8(10$ CFR i1)
The exposed gross area of the shield is:
$A_{4}=2 R 2$

$$
z=19.565 \mathrm{in} .^{2}
$$

$$
1=68.63=2(10)=48.63 \mathrm{1n} .
$$

$$
\lambda_{4}=(2)(19.565)(48.63)(144)-41.515 \mathrm{ft} .^{2}
$$

The exposed nrea of the pad is:

$$
A_{2}=\frac{(S S)(8)(2)}{144}=0.611 \mathrm{Ft} .^{2}
$$

The net area of the fire shield is:
$\mathrm{A}_{4 \text { net }}=42.515-0.611=40.904 \mathrm{in}^{2}$
The excernal radiacion coefficients are:
$K_{4}=\left(.1712 \times 10^{-8}\right)(.8)(41.515-.611)=56.088 \times 10^{-9}$
$K_{2}=\left(.1714 \times 10^{-3}\right)(.8)(.611)=837.80 \times 10^{-12}$

$$
\begin{aligned}
& \lambda i=2:(19.315)(63.63) / 144=57.4196 t .^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { The:efo:e: Kij }=42.334 \times 10^{-9}
\end{aligned}
$$

7. CO:: E=ラ:CO PESTSTORS (R1 anc R3)

issume $T=130^{\circ} \mathrm{F}$ Tavg $=150^{\circ}:$
$T_{W}=170^{\circ} \mathrm{F}$
$G E=\left(\frac{E^{2} c}{i^{2}}\right)\left(\pi w-I-1 L^{3}\right.$
$=(1.305)(40)\left(\frac{68.63}{12}\right)^{3} \times 10^{6}=9.7649 \times 10^{9}$
 (GIPI) $=7 \times 10^{9}$

Therefore; the flow turbulent and we may use raxdans recormenciations:

$$
\text { Vert cyi: } h=.19 i T^{1 / 3} \quad \text { (sices) }
$$

The effective convection areas are: : :ode irea lisin $\begin{array}{lr}2 & 0.011 \\ 9 & 40.904\end{array}$

r

$$
\begin{aligned}
& R 5=\frac{\ln (r 0 /=i)}{2 \pi \times 1}=\frac{\ln (9.708 / 7.485 i}{(2 \pi)(11)(1 / 12)}=\frac{45.151 \times 20^{-3}}{R 38=\left(1 / 4^{n} \text { Fire Shield }\right)}=22.575 \times 10^{-j}
\end{aligned}
$$

237-Link to Leac

$$
\begin{aligned}
& R=\frac{t}{K A} \quad t=(1 / 12)(19.00-1808-.5)=.035 \\
& K=18.6 \\
& A=.611 \\
& R 37=\frac{.035}{(28.6)(.611)}=3.0797 \times 10^{-3}
\end{aligned}
$$

per 12 hour period.

The projected gross exposed area of the thermal shield is:

$$
\begin{aligned}
{ }^{2} 9 \mathrm{gzoss} & =(68.63-20)(2)(19.565) / 144 \\
& =13.215 \mathrm{fz}^{2}
\end{aligned}
$$

The projected area of the lug pad is:

$$
A_{2}=.611 / 2=0.306 E \pm 0^{2}
$$

The ne: projected area of the fire shield is:

$$
A_{\text {gre }}=13.215-.306=12.910 \leq \pm .^{2}
$$

The sola loads are:

$$
\begin{aligned}
& q_{2}=(.306)(1475 / 12) / 3.41=11.01 \text { waits } \\
& q_{9}=(12.910)(1475 / 12) / 3.41=465.20 \text { was ts }
\end{aligned}
$$

3.4.2 4asdien Temperatives
Maximin steady stace temperatures, under normal conditions of :=anspor:, fo: selected locations in the package are shown in Table 3.4.2-1. Essentially ali locations within the package, excepting the fire shield, exhibit near constant temperatures, for a given condleion. it can also be observed that the predicted temperatures are a nearly linear funciten of applled decay hear. Detalled analysis results are found in ables 3.4.2-2 to 3.4.2-10.
-ABLE 3.4.2-1: Selected Max imun Temperatures f thnal Conditions of Transport, 1-13 C 11

| | | AMBIENT** | | MAXIMU1 | E.MPL:RATUMES | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CASE I | $\begin{gathered} \text { DECAY } \\ \text { HEAT } \\ \text { (HATTS) } \end{gathered}$ | $\begin{aligned} & \text { AIR TEMP. } \\ & \text { (NF.) } \\ & \text { (NODE } 1) \end{aligned}$ | $\begin{aligned} & \text { FIRE } \\ & \text { SHIELD } \\ & \text { (NODE 9) } \end{aligned}$ | L.1FT LUC (NODE 2) | SIDE OUTER SIIELL (NODE 10) | Tor OUTER SHELI. (NOUE 3) | $\begin{gathered} \text { CAVI7Y } \\ \text { (HoDE: } 22 \text {) } \end{gathered}$ | DETAll. Tлll,: 1 |
| 1 | 150 | 100 | 131.20 | 137.26 | 138.00 | 138.33 | 130.35 | 3. 4. 2-2 |
| 2 | 200 | A | 133.28 | 141.24 | 142.23 | 142.67 | 142.70 | -3 |
| 3 | 300 | | 137.35 | 149.03 | 150.49 | 151.16 | 151.20 | -4 |
| 4 | 400 | | 141.32 | 156.60 | 158.53 | 159.42 | 159.47 | -5 |
| 5 | 500 | | 145.17 | 163.96 | 166.35 | 167.46 | 167.51 | -6 |
| 6 | 600 | | 148.96 | 171.16 | 173.98 | 175.32 | 175.39 | -7 |
| 7 | 700 | 7 | 152.66 | 178.16 | 181.42 | 182.97 | 183.06 | -4 |
| 8 | 800 | 100 | 156.27 | 185.00 | 188.67 | 190.45 | 190.55 | -9 |
| 9 | 800 | 130 | 182.09 | 209.11 | 212.55 | 214.34 | 214.43 | -10 |

- Includes Solar Insolation per NRC Regulatory Gulde 7.B.
table 3.4.2-2 : 1-13 C II NORMAL TRANSPORT TEMPERATURES 150 hatt decay lieat, $100^{\circ} \mathrm{F}$ Ambient. AIR

STEADY STATE PROBLEM

TOTAL MUMBER OF NEHTON ITERATIONS $=$ 8
humger of temperature dependent interpolations m a
no. OF NEhTON ITERATIONS FOR FINAL UPDATE = 1

CLASS 2 - TEMPERATURE, T

| 10 | OLEPEES F | 10 | | 10 | OEGREES F | 10 | OEGREES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 100.C.JCJOUO | 2 | 137.2513143 | 3 | 13t.3357349 | 4 | 138.3365007 |
| 5 | $130 \cdot 317: 4 \leq 6$ | t | 136.3373297 | 7 | 130.3413×24 | j | 139.34525 CG |
| 9 | 131.1•0tco3 | 10 | 13\%.003:330 | 11 | 130.0410264 | 12 | 13才.Ot24462 |
| 13 | 131.1is,73n | 16 | 11, 171: 1 ! | 1) | 1J3. 3311103 | 16 | 114.3107340 |
| 17 | 137.335,007 | 10 | 11!.117547\% | 12 | 13d.3393297 | 70 | 1Jt. 3410924 |
| 21 | 130.16,.5:1才 | 78 | 13+.17) 3064 | | | | |

table 3.4.2-3 : 1-13 C 11 normal transport1'ERATURES 200 hatt decay heat, $100^{\circ}{ }^{\circ}$ a amisiemt air
steady state problem

Total Humber of Newton Iterations $=\quad 8$
Number of Temperature Dependent Interpolations $=4$
No. of Newton Iterations for Final Update $=\quad 1$

CLASS 2 - Temperature, T
$\varepsilon \tau-\varepsilon$.

| 1. ${ }^{\text {f }}$ | 10 | Lriot: : F | 10 | OtGM-t, F | 10 | Dcuatas |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 100.002:1000 | $?$ | 141.2. | | | | |
| 162..)10134 | 13 | 142.3167217 | 3 | 142.0734202 | 4 | 142.6744 |
| 133.2.93) 12 | $11)$ | $19 ? .211)+54$ | 11 | 142.04213r1 | ${ }^{\text {A }}$ | 142.0260 |
| 1:2.Jut2) | 14 | 162.4nse子ts | $1 i$ | 162.2509326 | 12 | 142.330 .0 |
| | 12 | 14\%.t.tejsuc | 11 | 148.67-7817 | 10 | 142.3730 |

taule 3．4．2－4：1－13 CII nommal traisport ．．．Aperatures
300）hatt decay heat，ino ${ }^{\circ} \mathrm{F}$ ambient aik
steaily state protilem
total mlmber or hewton Iterations＝B
number of temperature dependeht imterpolations＝ 4
no．of mehton Iterations for final update $=1$

1．Jn．00cugoo
$\begin{array}{ll}1 & 1 . j n .00 L O C O O \\ 5 & 131.12 t 5 ? 2 J\end{array}$ 117．10，4114
$\begin{array}{ll}13 & 100.7414464 \\ 17 & 1 . j 1.1 .36960\end{array}$
$\begin{array}{ll}13 & 100.741446 \\ i 7 & 1.11 .1 .3616\end{array}$
$\therefore 1 \quad 131.1 \cdot 0412$

| 10 | DFGRc：F | 10 |
| :--- | :--- | :--- |
| 2 | 143.0361249 | 3 |
| 0 | 131.1731 .84 | 7 |
| 11 | 157.4044164 | 11 |
| 14 | $153.04653+0$ | 11 |
| 13 | 151.1666220 | 1% |

10
OiGRとLうF
IU $0 \leqslant G P_{E G} F$
$22151.1 \circ \mathrm{R13C5}$
$3 \quad 1: 1.18 .70035$
151.1753710

150．57J3C31
$150.4: 84479 \quad 16$
151．1701．60 20
151.1545364
$131.1^{42} 20412$
150.6374416

151．1ヒ30c3s
1：1．173）230
table 3．4．2－5：1－13 C 11 mormal trinsport Ic．．．eratures 400 hatt decay heat．ion of ambieht air
steady stait problem
total number of hehtom Iterations＝8
hunuer of temperature depenient interpolatiohs＝ 4
NO．OF MEHTOM ITERATIONS FOR FIMAL UPDATE $=1$

CLASS 2 －temperature，i
ω
ü
un

| 10 | | 10 | Dṫpfes F | 10 | DEGREES F | 10 | Dicinees F |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 10．）．300．） 0 | 2 | 176.6300463 | 3 | 159．4202341 | 6 | 159．6227HOH |
| 5 | | 5 | 1：9．4210248 | 7 | 150.43 ¢6602 | n | 13）．4630252 |
| 4 | 141．1123473 | 10 | 1リン31Juitb | 11 | 13H．6343tes | 12 | 13＊．1661642 |
| 13 | 1：1．71： 1.130 | 14 | 1）\％．しいでちく1 | 13 | | 16 | 15）．4こうこ361 |
| 17 | 1：3．4．32004 | 10 | 13）．4こ5nb22 | 19 | 150．4296248 | <0 | 150.43140462 |
| $? 1$ | 13．．i67日こつ） | ？？ | 1， 3.4370016 | | | | |

TAL 3．4．2－6：1－13 C 11 NORMAL TRAMSPIDR TEMPERATUR．
500 WATT DECAY HEAT， $100^{\circ} \mathrm{F}$ AMBIEMT AIH
steady state phodlem

TOTAL MUMBER OF NEWTON ITERATIONS＝ 5
NUMUER OF TEMPERATURE DEPEHOEHT IMTERPOLATIONS $=3$
NO．OF HEHTON ITERATIONS FOR FIMAL UPDATE＝ 1
CLASS 2 －TEMPERATURE，I

| 10 | UFOP－2；F | 10 | ノごきc： 1 | ： | OCLTEES + | 10 | JEGPE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 179．0しこうご0 | 2 | | | | | |
| 5 | 1ヵア．6cl－316 | t | $153 .-513043$ $137.6 \div 817: 4$ | 3 | 167.4357217 | 4 | 167．5scsa34 |
| n | 1ig．ticioul | 114 | 1AR．］inco？ | 11 | 1ヵ1．67n4／10 | 13 | 1का．6tthtuu |
| 13 | 14\％．1\％．1／14\％ | 14 | 1：1．．＝J\％2ion | 15 | | 12 | 169.6133511 |
| $\rightarrow 1$ | | 14 | 131.931010 | 1. | 167．467） | 16 80 | $167.45 j+21 p$ 167.476 .470 |

IDLE 3．4．2－7：1－13 C 11 hormal thansfout iempe ales

 600 Watt liecay lieat， $100^{\circ} \mathrm{r}$ ambient airstiady state prodlem

total number of hewton iterations＝

HUMBER OF TEMPERATURE DEPENOENT INTERPOLATIONS＝ 2
nO．OF MEhTOM Iterations for fimal update $=$ i
CLASS 2－temperature，it
نّ

| 15 | n＝¢0：こと | 10 | netorsym | 10 | necuets f | 10 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | inc．cocrcoo | $>$ | | | | 10 | OEGUEFS F |
| 5 | 17：1）1186 | A | 17：1540135 | $?$ | 173．31Nasp2 | 4 | |
| 9 | 142，0\％とここ16 | 10 | 17：03 1778170 | 7 | 175．151323H | 8 | 175.3549691 |
| 13 | 176．4006015 | 16 | | 11 | 176．1795373 | $1 ?$ | 174．30570）4 |
| 17 | 17：．11771： | 13 | | 15 | 174．9CN7017 | $1 t$ | $175.316+9+2$ |
| 21 | 17\％．2！ecaul | 77 | $17 \% .7761114$ $17 \% .3971414$ | 14 | 175．3112470 | 10 20 | $175.1165:+2$ $173.141353+$ |

IBLE 3．4．2－8：1－13 CII MORMAL TRANSPOIT TEMPER，．ES 700 hatt decay heat， $1000^{\circ} \mathrm{F}$ ambient air
stenily state problem
total numier of hehton iterations＝ 6
number of temperature dependent ilterpolations＝ 3
mo．of newton iterations foh fimal update＝$\quad 1$

CLASS 2 －temperature，t
ω
\vdots
\vdots
∞

| nreotesf | 17 | Difogics | 10 | DEGRESS F | 10 | DEGGEES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ire．coonrono | 7 | 17日．1031616 | 3 | 182．J737575 | 4 | 192．0773566 |
| 1H2．0973201 | 4 | （ヶ）－प J ¢ ¢7\％ | 7 | 1×3.0025403 | B | 183.01823 nz |
| 157．65＊1126 | 10 | 181．615：132 | 11 | 191．54．59．26 | $1 ?$ | 141.7342072 |
| 1e？．ccicicos | 16 | 102．2474073 | 15 | 1．）．4077727 | 16 | 142.0717303 |
| 197．$=17344 \mathrm{~L}$ | 1 H | 1－2．042）24？ | 10 | $1+2.9605785$ | 29 | 143．0J？Scch |
| | 77 | 103．Cs5＋C？ | | 1－2．095785 | | 1日3．0J．sc |

TABI．E 3．4．2－9：1－13C．11 MOMMAL II_{1} ．ORT TEMPERATURES $\because 00$ HATT UECAY HLAT， $100^{\circ} \mathrm{F}$ AMIIENT AIII

SIEADY STATE PROILEM
TOTAI．NIMAER OF MEWTOL ITEIATIOMS＝ 8
humber of temperatune depenocht imterpolations＝a
NO．OF NEWTOH ITERATIONS FOR FIHAL UPUATE＝ 1
CLASS 2 －TEMPERATURE，T

| 10 | WEftict F | 111 | づちくこご F | 10 | Cevois ${ }^{\text {c }}$ F | 10 | OCGOĖS F |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 110．nuvioco | 2 | 1才ち．リUاつ411 | 3 | 170．433uU11 | 4 | 170．4：71140 |
| 3 | 11：）．．） | 0 | 1．）j．47：2313 | 7 | 190.4554164 | － | 190．5030474 |
| 4 | 134．76＋3160 | 10 | 14.0 .6010346 | 11 | 1tH．U113742 | 12 | 164．1047674 |
| 13 | | 14 | | 15 | 104．4recte？ | 10 | 170．：330c11 |
| 17 | 14.6311140 | 1. | 1－2．6ちくら， 71 | 14 | 1：0．4122］2J | 20 | 1，0．60silab |
| 71 | 1－7．jcirs74 | 12 | 1－C．3：57：5\％ | | | | |

bon hati dic.ay iliat. i no י" ambiemitath
steapy statr probifn
intal nutag tf heyton fifrations -

fio. df hevion tiepations for fival update -
Class z - IEMDEDATjPE, t

| - | . 10 | regres f | $\cdot 10$ | destees f | 10 | degregs a | 10 | cegries f |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 1 | 130.0000000 | $?$ | 20.1090136 | 3 | 214.3410132 | 4 | 214.3451503 |
| | 5 | 214.3507337 | 0 | 214.3052914 | 7 | 214.3739486 | 0 | 214.3919336 |
| | 9 | 182.0957:35 | 10 | 212.5477833 | 11 | 212.7t95123 | 12 | 212.9931026 |
| | 13 | 213.734575 | 14 | 21?.5069864 | 19 | 213.7976 ¢ 4 | 16 | 214.3410132 |
| | 17 | 214.364573 | 19 | 216.2307337 | 19 | 214.3402914 | io | 214.3739846 |
| | 21 | 216.301033A | 22 | 214.4344639 | | | | |

 se;e:al of the plamed payloads posssess ferf low decay teats. The statniess steel and lead materiais of constiuction for the packas!ab a:e not s!gnificantly affected by an arblent temperaturt of -40° ह. For

 hea: pay!oad.
3.2.2 "axditipinceña Piessures

In:enal pressure 1 a the cask activity ls calcuiated assuming:

- Lhe cask is loaded ar a cemperacure of $70^{\circ} \mathrm{F}$ and is unpressurized.
- λ small but suffletent quantity of free vater is alvajs present. Fints conservativèf permits pressure calculations to be based on cabulated shermodranic properties of saturated vater and steam.

LE 3.4.3-1: 1-13 C 11 horral transport ienler, is 800 WATI UEC:AY IIEAT. -40° AMISIEIII AIR
strafy etate peralsm

IDTAI YUNAFR PF NEUTON IIIJATIIYS - 12

HI. UF NIWTCN ITEPAIITNS ARO FIVAL IIPDAIF. I
Class 2-TEnocoatire. i

3-32

| PFROESS | 17 | resoitse | 1 C | DEGVEis | 15 | CETRESS F |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -4c.ccccoos | $?$ | 74.t11373A | 1 | 91.3703387 | 4 | dI.3939329 |
| A1. .ra44AA | a | B1.3040?29 | 7 | 91.4125500 | 4 | +1.630400' |
| 37.3?01247 | 10 | $70.64 P \leq 305$ | 11 | 79.0375309 | $1 ?$ | $\pm 0 . C 31277 t$ |
| FC.2747AJ5 | 14 | +0.S46tenk | 15 | 4r.u? 31213 | $1 t$ | 11.3704747 |
| P1.1aici20 | 14 | Q 1. ? H (tsht | 10 | 41.3440329 | 20 | +1.4123503 |
| P: ¢ ¢ ¢arac | 73 | rl.67J1H74 | | | | |

The cask cav!: \because se:ves as the presjuse boundary of the system; corsesvacifeiy no pressure eftencion capabill:y la assumed fo: it.e payload ceritat..e: (llaes, drum, efc.)
 ai: and jater. i= the time of loading, the cotal pressure ls the suy of faridal pressures for al: and water and $1 s$ equal to atmospherlc pressu:e:

$$
\begin{equation*}
T_{F}=P_{\lambda \bar{I}}+P_{i \Gamma} \tag{1}
\end{equation*}
$$

mite:e: $\bar{I}_{\bar{F}}=$ Total Pressure

$$
\begin{aligned}
& P_{A F}=P_{a r t i a l} \text { pressure of alz, at temperature, } F \\
& P_{W F}=P_{a r t i a l ~ p r e s s u r e ~ o f ~ w a t e r, ~ a t ~ t e m p e r a t u r e, ~}^{F}
\end{aligned}
$$

The pascial pressure of air, at time of loading, is found as:

$$
\begin{equation*}
P_{\lambda F}=I_{\Gamma}-P_{i r} \tag{2}
\end{equation*}
$$

Jnce steady atate equllibrium temperatures are established, the total and gatge pressures $\mathfrak{l n}$ che package are found as:

$$
\begin{equation*}
I_{X}=P_{A x}+P_{i x x} \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
G_{X}=I_{X}-I_{F} \tag{4}
\end{equation*}
$$

Where: $x=$ the ateady atate equillbsium temperature of the coolest portion of cask cavityi l.e.. che condensation surface.
$G_{x}=$ Gauge pressure of cask at temperature, x
 aciatatíc c=ns:anc volume =elations:

$$
\begin{align*}
& \frac{Z \because}{Z}=\operatorname{constan}: \\
& I \\
& ?_{A G}=P_{A F} \cdot \frac{(150+x)}{(-60+\bar{E})} \tag{5}
\end{align*}
$$

The parifal pressures of water, $P_{\text {Ar }}$ and $P_{\text {dix }}$ are taken direcily from the themodynamic properites of saturated. water and stem. The tabulated values developed by Joseph H. Xeenan and Fredericy G. Keyes, "Themodyamic Propert!es of Steam", John Hiley \& Sons, 1936, are reproduced below:

Subs:ta:tion of equaticns (3), (5) and (2) lnto equa:izn (i) bifes a final expression for gauge pressures, G.i, in che package:

$$
\begin{equation*}
G_{X}=\left(I_{F}-?_{i r}\right) \frac{(460+x)}{(160+F)}+P_{r x}-I_{5} \tag{5}
\end{equation*}
$$

Ter :his evaluation the $: 01: 0 \%$ ng values a:e constant:

$$
F=70^{\circ} \mathrm{F} \text {, temperature at }: 111
$$

$P_{\text {rif }}=0.3631$ psi, partial pressure of water at loading temperature
$I_{F}=$ ia. 7 psi, at atmospheric pressure

Normal transpor: pressure results are sumazized for the l-13C II package, as \{ollows:

| Case No. | Desay Heat (riaこts) | дi: Temp. $\left({ }^{O} E\right)$ | Sola=
 Insol.
 present | $\begin{gathered} \text { Cayi=y } \\ \text { Temp. } \\ \left(\frac{5}{5}\right) \end{gathered}$ | $\begin{gathered} \text { Intezna? } \\ \text { pzessioye } \\ (p s i c) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 150 | 100 | Yes | 138.35 | 4.27 |
| 2 | 200 | A | A | 142.70 | 4.72 |
| 3 | 300 | | | 151.20 | 5.68 |
| 4 | 400 | | | 159.47 | 6.75 |
| 5 | 500 | | | 167.51 | 7.96 |
| 6 | 600 | | | 175.39 | 9.30 |
| 7 | 700 | \checkmark | | 183.06 | 10.77 |
| 8 | 800 | 100 | | 190.55 | 12.36 |
| 9 | 800 | 130 | Yes | 214.43 | 19.00 |
| 10 | 800 | -40. | so | 81.47 | O.4E |

Tabie 3.2.2-1 demonsteates that the cask body possesses iess thar a i $\because 0$ deg:ee bradtent throuph the valig, under a maximum decay heat payload e: 200 datts; thus, stesses due to differential radial thermal exparsions are neblisible. Corpichenslve evaluazion of pressure and axlal d!:ferential theral expans!ons are completely evaluatd in Secilon 2.5.:
 1:A. All stresses are found to be vell althin established limits for the naterials of conseraction.

ainspers

The chermal behavior of the l-13C II package is completely consistent With the allowables for all materials of construction. In parificular, the maximum predicted temperature of the payload cavity, $214.43^{\circ} \mathrm{F}$, is vell belov the established service 11 mit of $400^{\circ} \mathrm{F}$ for silicon seals.

Key findings used elsewhere in this report for detall seress analyses are simatized in Table 3.4.2-1.

3.5 Z̈:porherical herwi fefigent Evaiuacton

T.te :herna: evaiuation of the $1-13 \mathrm{CI}$ package for the mypostet:sa: the:mai aceident defined !n 10 CER 71, has been pe:Eormed anaiyticalig ustng essen:salig the same model as descitbed in Secion 3.4 for notmal : :anspor: condiciens. The elsht payload decay hears, discissed ia Sec:ion 3.4.2, have been thoroughly evaluared vessum the requ!:eme:.-s =: :0 CER 71.

3.5.1 Therog Model

The common rhemal model, described in Section 3.4. 1 , has been used fo: the transient analyses associated uith the iypotheticsi The:zal Acsident. Salient differences are as follows:

The amblent environment, node 1, is described by a tabular defini:ion of cemperature versus time. Up to a time of 0.5 hours thls environment \mathfrak{l} $1475^{\circ} \mathrm{F}$. Subsequent to chis :lae, the smblent environaene drops to $70^{\circ} 8$.

Irit:Ial conditions coreespond to the elght decay heats examined in Secifon 3.4.2 and defined in Table 3.4.2-1.

The external convection heat eransfer modes became effective only at the temination of the 0.5 hour accident event. Arece hours following she teminacion of the thermal accident, artifleial cooling is fntroduced by tacteasing the free convection flim coefficient by one hundred fold.

3.S. 2 2ackage Condifions and Environment

Free drop and puncture test damage do not measurably al:er the theraal behavior of the l-13C II package. Speclflcally, frec drop damage only affects the geometry of the overpack. This fact has been demonstrated conclusively by test, see Section 2.11. Since the net affect of the
overpaci $\leq s=0$ enforce near ad!abatic thermal boundary concteions on tim package ends, any change to the theralal chazacterastlcs of the ouerpaci: !3 of modest second order propor:tons. S!eliarly, sirice punciure deformations imposed upon the theral shicld can, at rorst, change lis the:mal behavior less chan one-half percent, the resultant charges $=a y$ be d!smissed as t:ivial.

Pariscularly important component temperatures are sumarized lin Sec:ion 3.1. able 3.5.3-1 sumarizes extreme temperatures encouncered for a: : decay heats examined. F!gures 3.5.3-1 co -16 plot the temperature vesus time response of key locations in the package.

19

Thanc 3.5.3-1 Selected Maximum Temperatures for
Hypothetical Accident Conditions, 1-13 C II

HPPOLHETECAL EITE ACEIEET:

EIGURE 3.5.3-2

gYpotheital fire ncciveit

EJCURE 3.s.3-5

t

::Gure 3.s.3-7

Mrpothericai suan acciosir

FIGURE 3.5.3-3

HYPOTHEZ:SAL EIRE ACCIJE:T:

FIGORE 3.5.3-9

HYPCTHETICRL FISE ACCIEE:F

FIGURE 3.5.3-12

Mipothe:Cil f:re accideit

H:POTHEAJCRL TISE ACCIJE:T

FiGUnE 3.5.3-14

HYPOTHETICAL EITE ACCIDEIT

Revision 0

Figuas 3.5.3-15

HYPOTMETCAL F:RE ACCIDELT

HYPOTHETICRL FIRE ACCIDETI

3.5.4 Masinum Incernal P-essures

The maxtmua tnetmal pressures under hypotheticsl aceident condi=ions are Sound using the methodology and assumptions discussed in Secion 3.4.4. decident peessure results are sumarized for the l-i3C II package as follows:

| | Decay | Cavity | Internal |
| :---: | :---: | :---: | :---: |
| Case | Heat | Temp. | Pressure |
| Sumber | (Hatts) | $\left.{ }^{\circ} \mathrm{E}\right)$ | (psig) |
| 1 | 150 | 320.42 | 96.64 |
| 2 | 200 | 324.67 | 102.45 |
| 3 | 300 | 332.98 | 114.27 |
| 4 | 400 | 341.06 | 126.75 |
| 5 | 500 | 348.93 | 140.04 |
| 6 | 600 | 556.62 | 154.21 |
| 7 | 700 | 364.11 | 168.99 |
| 8 | 800 | 371.43 | 184.37 |

3.5.5 Maxdmu Themal Stregses

Comprehensive evaluation of pressure and axial differential thermal expansions are completely evaluated in Section 2.7 .3 utilizing two axisymetric flalte element models for the cask body and lid. All stresses are found to be well within established limits for the materials of construction.

To illustrate the relatively lov magnitude of resultant stresses, a simple ANSYS axisymetric finite element solution was performed for the eight decay heats of the payload. A quasi-plane-strain solution was employed maintaining a comon axial deformation. By "quasi", we mean
molal distoriton of the body was allowed but che "plane-secion remained

 aishoush these do not occur at the same point in time. tie model used was as follows:

Notes: -Modes $1-8$ and $11-18$ are coupled in the vertical dizecion - Mode 1 !a supported vertically -Therfore, vertical displacement of nodes $1-8$ is always zero, and verticle displacements of nodes ll-18 are always equal $=0$
each other.

Tables 3.5.3-1 to cases. lo ce that the highest stress anywhere, 14,756 psi tension, oceans in the inner shell in the axial direction for the 800 vat load case.

1"n

| | MEU 111 000日 | ILE: | firl trak | INM 200 UAIIS | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | [1\% | 1 KOILES: | 111 | 122 AAT= | 1 | LSYAs I MOAEs | 0 | | | | |
| | U,IC= | 13.30 | -.suiv | IEMr= 381.0 | | Sx, SY, 11Y, $51=$ | 133.37 | 11298. | | .717185-08 | 12515. |
| | (l) | 2 MOPE5: | 212 | IJ 3 Mal= | 2 | IStinz 1 nutige | \checkmark | | | | |
| | IC, YC= | 14.25 | -. 5000 | 1thr- j0i.l | | | 355.70 | 559.13 | | -911125-09 | tan.1s |
| | El= |] NODES: | J 1] | 114 hal= | 2 | 151n: 1 MOIE = | \checkmark | | | | |
| | LL, Pl: | 15.25 | -. 5000 | llnPa 311.1 | | Sx, د, \|11, sl= | 348.80 | 123.83 | | . $19.895-09$ | . 43569 |
| $\stackrel{1}{6}$ | [1: | 4 NOPES: | 111 | is 5 MAI= | 2 | Isin: 1 Muibe | 0 | | | | |
| | IL, IL- | 16.25 | -.juvi | IEKP = J]:. 1 | | S1, 5r, ixy, 5l= | sii.s | -400.73 | | | -313.17 |
| | [l: | 3 NuPE5: | 3 is | It 6 KAI $=$ | ? | 15YA= 1 MOLE= | \checkmark | | | | |
| | IC, ic: | $1 \% .8$ | -. 5090 | IEnva s3s.1 | | Sx, 5i, 1x1, 51= | 268.d) | -867..4, | | .05083 - 19 | -798.11 |
| | [l: | 6 NODES | 616 | 177 mal= | 2 | 151n: 1 nulle | 0 | | | | |
| | IC, YC: | $1 \mathrm{H.13}$ | -. 5000 | 1EMt $=308.8$ | | S(,31,191,5l= | 20\%.8\% | -1032.5 | | - sdeunt-iv | -1rл•1 |
| | [L. | - Melless | 17 | 18 Y Anl = | 1 | SSIM: , MOHE | 0 | | | | |
| | XL, 16 | 17.00 | -. 3000 | 1enta sye.a | | sA,si.117,je= | 11.111 | $\because 312.8$ | | -.1431/2-v) | -0.13:-1 |

[^4]

[^5]2evisson

[^6]3oth vaïes are zell telor accepted sllowables for the stad:icss ste: tane: and cucer shells.

Dherma: Condi:ions

The thermal tehav!o: of the 1-13C II package ls completely consistent - at:h :he allowables for all materials of construction. Ia particulaz, :he maximu predicted temperature of the payload cavity, $363.4^{\circ} \mathrm{E}$, 15 well below the established service 11 intt of $400^{\circ} \mathrm{F}$ for silicon seals.
Key findings used elsewhere in chis sepore for detalled seress analys!s are sumarized in Tables 3.5.3-1 and in Section 3.5.4.

ミ.j i =:こncix

The shermai analysts prosentes in Sertion 3.0 sincws :ne aceavacy ai :ne cask to meet a heat icas of ECO N. ihis whll nct be exesedea by Usin. the jeneral debrit centainers or the shieicad debris :or:aitiers. Since the shlelded debris containers can contain a grazter Gdantity of fissile material than the general feoris cen:ainars, the shieided febris containers will be $u s$ is in ine calculation of an average heat load. The following calculation sincw that expected reat loads are far less than this value.

- ictai imi - II cors
cecay heat load s $15,000 \mathrm{~d}$

```
0 Total fuel loading
177 assembly \(\times \frac{263 \mathrm{Kg}}{\text { assembly }}=81.951 \mathrm{KgU}\)
```

c Maximum container fuel content 60KgU
Average heat load $-15.000 \mathrm{~W} \times \frac{50 \mathrm{Kgl}}{31.95 \mathrm{i}}=10.92 \mathrm{H}$ <s BOOW

4.0 corchincin

Mis chapter delineates the contalnment coniszuration oi the l-lin :i packase :oz no:mal :zansport and hypothetlcal accident cond!t!ons.

A: Coltalimsiti rotiod?

4.j.1 Conteirment Uessel

The package contalnment vessel is defined as the inner stell of the shielded transpore cask, cogether vith the associated lld seals and lld closure bolts. The laner shell of the cask, or conrainment vessel, consista of a righe circular cylinder of 26-2/2 inches inner diameter and 54 inches inside height. The sheli is fabricated of $1 / 2$ inch thick stalaless steel plate, Type 304 (ASTM A-240). At the base, the cylindrical shell is attached to a circular end plate with full penetration velds. At the top, similar construction techniques are used for the removable ild. The ild is attached to the cask bedy with tivelve equally spaced l-1/4 inch bolts in a 35.38 inches diameter bolt circle. See Section 4.1.4 for closure detalls.

A.1.2 Sentaloment Penetratien

There are two penetrations of the containment vessel, a drain ine and a vent line. At the base, the drain line consists of a $1 / 2$ inch $0 . D$. by 0.065 lach wall stainiess steel tube gravity line from the center of cayl:y botion to the side of the outer shell near the cask bottom. tit the top, a comparable vent/test line exlsts to the base of the recessed lid step. Eoth penetzations are aealed with silicone, one plece molded in place seals uith the rubber seallng element mechanfeally locked to a stainlesa stecl retainer. Both seals are protected from fire exposure by the "adiabatic" end overpacks. The fasteners installed in both lines are provided uith pressure relief features.

4.1 .3
 \#edㄹ and Seals

 Section III of the ASME Zoiler and Pressure Vessel Code. Seals are desc:ibed in Sections A.1.2 and 4.1.4.

4.i.4 Eiosure

The top closure consists of a shlelded lid, wich capered sideralls co assist in positionins and seallas. The lid is supporied on the outeraost top circular plate by a circumferntal step. This step conflaes a flat solid hizh emperature sillcone seal. λ solld ailicone O-ring also exises near the edge of the bottom of the lid. The atep prevents overcompression of the flat gasket and 0 -rins by the closure bolt preload forces and hypothetical accident impact forces. The lid ia attached to the casx body by twelve (12) equally spaced 1-1/4 inch - 7 UNC x 2-1/4 inch lons boles. These bolts are fabricated of ASTM A-354, Grade $3 D$ material. These boles are torqued to $270 \mathrm{ft}-\mathrm{lbs} . \pm 10 \approx$ (lubricated) or 360 £t-1bs. $\pm 10 \approx$ (dy). The lid bolt torque calculations are found in Appendix 4.A.3, p. 4-25.

The vent and draln penerations are sealed with Parker Stat-0-Seals (applicable catalogue excerpta may be found in Appendix 4.4.4, p. 4-30) Which are used beneath the heads of th S.S. 3/8-16 UNC Hex R.D. cap scieds at both locations. Overcompression of the silicone ls prevented because the allicone subber aealing element is molded and wechanically locked into a stainless stefl retalner. The vent and draln screve are torqued to $12 \mathrm{ft}-1 \mathrm{bs}$. Lubricared (1.e. 144 ln.-lb3.) which $1 s$ well above the 80 in-lbs. xinsmur torque requirements for sealing and well belou the 220 in-lbs. maximum torque for crushing the retalner.

4.2.2 Coneaifment of Radioacisyena:eq-3!

 In excess of lialts prescribed in N.R.C. Regularory Guide 7.A, "Leakage Teses on Packages for the Shipment of Radicactive Materials", under normal corditions of :=arsport.

The 1-12C II package 1 s designed to accomodate a variecy of payloads uith differing contents possessing a range of noral condition temperatures and pressures, each associated with a differing decay heat value.

Fisure 4.2.1-1 defines limitations on dissolved or suspended radioactive materials in residual fiulds which may be present in the package contalnment cavity for dewatered reains. These limitations are defined as a funcrion of payload decay heat. sppendix 4.5 sumarizes the derivation and application of this limit relation for normal conditions. Proyided these limi:s are not exceeded, compliance of the l-13C II package uith the requirementa of N.2.C. Regulatory Culde 7.4 is asaured. In accordance -1th che Regulatorf Position, paragraph C of this guide, compliance of the 1-13C II package With the requirements of Section 71.51 of 10 CFR 71, for "ro loss or dispersal of radioactive contents, as demonstreted to a senslefiplty of $10^{-6} \lambda_{2}$ per hour", Paragraph 71.51 (a)(i), is demonsteated.

4.2.2 P-egsurizasion of Contodnment jegsel

Section 3.4.4 aumarizes normal condicion temperatures and pressures within the contalnment vessel. The predicted pressure values congerfacively asame a sufficient quantity of free vater is present; thus all pressure predictions are based upon the properties of saturated vater and steam. These conservatye predictions of pressure and associated temperaturea are used to evaluate integrity of the 1-13C II package. $\| o n e$ of these conditions reduce the effectiveness of the package containment.

-.2.3
A.e centaliaent cel:erta of section 4.2 .1 are satisfled shiount the use c: leak :est procedures for fabricacion veriflcaricn, pestctic, annual and seal :eplacement for 1-13C II Fisanspor: Cask. Procedures are based on
 sh!pment of radioaciive materials.

The follouinz is an assessment of the packaging contalnment under hypotherieal accident conditions as a result of the analyses persormed fa Chapters 2.0 a.t 3.0 abcie. In sumary, the contalnment ressel was not affected by these tests (refe: to Section 2.7).

4.3.1 Eission Gas P-oduces

There are no flasion gas products present. dny fission products contained In the fissile debris has previousiy been released.
2.3.2 Contatrment of Radiosesivematerials

The l-13C II cask is designed to assure no release of radloactive material in excess of limits prescribed in N.R.C. Regulatory Guide 7.4, "Leakage Tests on Packages for Shipment of Radioactive Materials", under hypotherical accidenc condicions.

The 1-13C II package ls deagried to accommodate a variety of payloads afth differing contents possesing a range of accident condition temperatures and pressures, each associated with a differing decay heat value.

E!zure A.3.2-1 deflacs 1tmitations on suspended radioactife zacerials in
 These limizarions are defined as a function of payload decay tear. drpendix: A.5 surfarizes the derivation and applicacion of chis li=i= Eela:ion for accident conditions. Pzovided these limits are not exceeded, compliance of the $1-13 C$ II package with the requirements of N.Z.C. Regulacorf Guide 7.4 is assured. In accordance with the Regulacory Posicion, Paragraph C of this guide, compliance of the l-13C il package With the requirements of Section 71.51 (a)(2) of 10 CFR 71, for no selease of =adioactive material from the containment vessel exceeding specifled 1:चies is demonstested.

Exncainer: C-1:ce-in

 :To ieakage was defected at a temperature of $59^{\circ} 5$ and cask charge pressure of 12.0 paiz, using a leak detector calibrared for derecting leaks in excess of 0.21 oz/yr of dichlorodiflouromethane (Freon-12) at $=5^{\circ} \mathrm{C}$ and 1 ATM pressure.

The result of the desiga ve:iflcation leak test series t\%o purposes;
(1) !t provides a means to determine permissible activity concentations of the leakable medias for normal and accident conditions of tzansport.
(1.e., $\frac{C_{n}}{A_{2}}$ and $\frac{C_{\lambda}}{\dot{x}_{2}}$; Ze: Secsion Δ, A)
(2) It eatablished acceptance criteria for verisying leaktigheness upon fabrication of new packages, ifter the third use of the package, annually thereafter, and any time that the flat gasker O-ring or seals may need to be replaced.

4.3.3.1 R-oblem Descitesien

Tjplcally halogen detectors are designed to ideneify the presence of leaks. In excess of some threshold value. These thresholds are generally calibraced for detecting leakage of dichlorodiflouromethane (Freon-12) gas In terms of oz/y:.

Sor the $1-13 C$ II cask, permisaible leak rate limits are specifled for normal and accident conditions in atm-cm ${ }^{3} / \mathrm{sec}^{\text {e }}$ standard condicions per AHSI 14.5. These conditions imply the presence of a 1 atmosphere pressure differential at a temperature of $25^{\circ} \mathrm{C}$.

To test the adequacy of contalment, the threshold values of the sensor must be equated to the preacribed leak rate liafts for normal and aceiden: conditions. This may be achleved by proper selection of the Freon (R-12) charge pressure applled to the cask cavity.

joluticn Mothed

The threshoid sensitivity of the sensor is given in (cz/yr), a weight for Unit ti.ne. ih: must be converied to a voiumetric ilch (eçuivalen: to the sensor threshoio) becomes a variable expressed in terms of coth aressure and temperature.
ihe prascribed laakage limits for the cask are stated in terms of standart conditions. This, in effect, defines the permissible size of the leak orifice. If pressure and temperature vary, during test, from standard conditions, the acceptable test leak limit differs from the standard condition value. Thus the permissible leak rate is also a variable of both test pressura and temperature.

If sensor threshold, expressed in volumetric terms, is equated to test leak rate limits, an equation is formed in terms of pressure and temperature. For each value of temperature, a charge pressure value can be found that sets this detector threshold at the prescribed leakage limits.

Detecier Threshold

In fps units, the detector threshold may be expressed as:
$l_{H}-C_{1} i_{H}$
Where: 1_{H} - detector threshold in lbs/sec
i_{H} - detector threshold in oz/year

$$
c_{1}^{n}=\frac{1 \mathrm{ib}}{160 z \cdot \frac{1 \text { year }}{(3600)(24)(365) \mathrm{sec}}=1.3819 \times 10^{-9} 1 \mathrm{~b}-\mathrm{yr} / \mathrm{sec}-0 z}
$$

The rolumetsic equiralent of this threshold ls:

$$
\begin{aligned}
& L_{f}=\frac{1_{i}}{\left(M_{R} / V\right)} \\
& \text { Where: } L_{V}=\text { detector thereshold in } f^{3} / s e c \\
& \left(M_{R} / V\right)=s p e c i f l c \text { concentration of } R-12 \text { per wnit cavity } \\
& \text { voluae in lbs/ft }
\end{aligned}
$$

The specific concentration of trace sas, $\left(M_{R} / V\right)$ is obtained by use of the perfect gas law considering the partial pressures of crace gas and air ulthin the cask cavity. The total presaure in the cask cavity is:

$P_{Z}=p a r t i a l$ pressure of $R-12$
$P_{\lambda}=$ partial pressure of alr
$=(14.7)(144)=2116.81 \mathrm{~b} / \mathrm{ft}^{2}$
From the perfect gas law

$$
P_{R}=\left(\frac{M_{R}}{V}\right) \cdot B_{R} I_{R}
$$

Where: $T_{R}=t e m p e r a t u r e,{ }^{O_{R}}$

$$
R_{R}=\text { gas conatant }=1545.32^{(1)}=12.78
$$

$$
M_{R}^{R}=1 b \text { molecular wt. of } \mathrm{R}-12=120.93^{(2)}
$$

Thus: $\quad P_{I}=\left(\frac{M_{R}}{V}\right)^{R}{ }_{R} I+P_{A}$
and, the specifle concentration of trace gas ls found as:

$$
\frac{M_{R}}{V}=\frac{P_{A}\left(p_{T}-1\right)}{R_{R} I_{R}}
$$

Where: $P_{I}=\frac{P_{T}}{P_{\lambda}}$ the cotal presoure expressed in atm.

$$
L_{v}=\frac{1_{H}=C_{1} 1_{H}{ }_{R} T_{R}}{\left(M_{R} / V\right){ }_{R}^{P}\left(P_{2}-1\right)} \quad f E^{3} / 3 e c
$$

This can be expressed in 5. I. units as:

$$
L_{H}=C_{2} \cdot L_{V} \quad \mathrm{~cm}^{3} / \mathrm{sec}
$$

$$
\text { Where: } C_{2}=\left(1728 \ln 3 / \mathrm{ft}^{3}\right)(2.54 \mathrm{~cm} / \mathrm{in})^{3}=28316.35 \mathrm{~cm}^{3} / \mathrm{ft}^{3}
$$

Finally, the defector sensitivity may be expressed as:

$$
L_{a}=\frac{C_{3} \cdot 1_{A}{ }^{T} K}{\left(P_{T}-1\right)} \quad \quad \mathrm{cm}^{3} / \mathrm{sec} \quad \text { Eq. (A) }
$$

Where: $\quad C_{3}=\frac{c_{1} \cdot C_{2} \cdot R_{R} \cdot(9 / 5)}{{ }^{P_{A}}}$
$=\frac{\left(1.9819 \times 10^{-9}\right)(28316.85)(12.78)(9 / 5)}{2116.8}$
$=6.0988 \times 10^{-7}$
$T_{R}=$ temperature, ${ }^{\circ} X$

$$
\left(I_{Z}=9 / 5 \cdot T_{K}\right)
$$

As a check, standard conditions are inserted:

$$
\begin{gathered}
\left(P_{T}-1\right)=1 \mathrm{~atm} \\
T_{K}=25^{\circ} \mathrm{C}+273=298^{\circ} \mathrm{K} \\
\text { Then, } L_{H}=\frac{\left(6.0988 \times 10^{-7}\right)(298)}{1} \times 1_{H}=1.8 \times 10^{-4} 1_{\mathrm{H}} \mathrm{~cm}^{3} / \mathrm{sec}
\end{gathered}
$$

This cempares prectsciy rith the ralue stown on page do of the G. Z . Leaik Desector Masual, : $2-45 i 53$

तe:crences:

(1) C.l. 3rown, "Basic Thermodgnamics", McGray aill, 1951, p. 80
(2) iSHRAE Kandbook of Eundamentals, Table 2, Chapter iE, 1967

2emissible Leak Races Af_Test Pisssures

Equation $B 5$ of diSI 14.5 provides means to translate test conditions co Standard condityons:

$$
\begin{aligned}
& L_{t}= L_{s} n_{s}\left(P_{u}^{2}-P_{d}^{2}\right) t \\
& n_{E}\left(P_{u}^{2}-s_{d}^{2}\right) s
\end{aligned}
$$

hhere: subsceipts s and tefer to "standard" and "rest", respectively. subsc:ipts u and d refer to "upatream" and "downstream" respectively.
$\pi \quad$ viscosity of gas at temperature, in centipoises
P \quad pressure in atmospheres
L_{t} leak rates $\ln \mathrm{cm}^{3} / \mathrm{sec}$. E cese condicions
$\left(L_{S}\right)=$ standard permissible leak rate

For standard condltions:

$$
\begin{aligned}
& n_{3}=.0185 \mathrm{cP}\left(\text { ais at } 25^{\circ} \mathrm{C}\right) \\
& P_{\mathrm{us}}=1 \mathrm{~atm} \\
& \mathrm{P}_{\mathrm{ds}}=1 \times 10^{-2} \mathrm{~atm}
\end{aligned}
$$

For test conditions:

$$
\begin{aligned}
& n_{t}=.0126 \mathrm{cP}(3) \quad\left(R-12 \text { at } 80^{\circ} \mathrm{F}\right) \\
& P_{u t}=D_{1}, \text { atm. } \\
& P_{d t}=1, \text { atm }
\end{aligned}
$$

$$
\begin{gather*}
i_{i}=C_{4} I_{5}\left(p^{2}-i\right) \tag{3}\\
\text { There: } C_{4}=\frac{.0185}{0.0126\left(1-1 \times 10^{-4}\right)}=1.2634
\end{gather*}
$$

Reference:

(3) ASHRNE Handbook of Fundamentals, Table 4, Chapter $15,1967$.

Equations (d) and (3) represent the detector threshold flow rate and pe:alssible cask test leak rate, respectively. Equating these two gives:

$$
\begin{aligned}
& L_{H}=L_{I} \\
& \frac{C_{3} 1_{H} I_{X}}{\left(?_{I}-1\right)}=C_{A} L_{2}\left(P_{T}^{2}-1\right)
\end{aligned}
$$

The expression for charge pressure is found as:

$$
\begin{equation*}
P_{T}^{3}-P_{I}^{2}-P_{2}+1=\left(\frac{C_{3}}{C_{4}}\right) \frac{1_{H} I_{X}}{L_{3}}=0 \tag{C}
\end{equation*}
$$

A leak test vas performed for design leakeightness verification. No leakage was detected at a temperature of $59^{\circ} \mathrm{F}\left(288^{\circ} \mathrm{K}\right)$ and a charge pressure of 12 psis (1.816 atm) using a leak detector calibrated for detecting leaks in excess of $0.2102 / y 5$. Solving equation (c) for the equivalent leak rate of air at Standard conditions:

$$
L_{S}=\left(\frac{C_{3}}{C_{4}}\right)^{I_{B} I_{I}} \frac{2}{\left(\bar{P}_{I}-P_{I}\right.}{ }^{\left.-P_{T}+1\right)}
$$

Where:

$$
\begin{aligned}
& \frac{C_{3}}{C_{4}}=4.1534 \times 10^{-7} \\
& i_{H}=0.21 \mathrm{oz} / \mathrm{yr} \\
& T_{K}=288^{\circ} \mathrm{K} \\
& { }^{2} T=(1+12 / 14.7)=1.816 \mathrm{ATM} \\
& L_{S}=\frac{\left(4.1534 \times 10^{-7}\right)(0.21)(288)}{\left(1.816^{3}-1.816^{2}-1.816+1\right)} \\
& L_{S}=1.34 \times 10^{-5} \text { ATM }-\mathrm{cc} / \mathrm{sec} . \text { (Standard conditions, air at } \\
& 25^{\circ} \mathrm{C} \text { and } 1 \mathrm{ATM} \text { pressure } .
\end{aligned}
$$

 the cortat:mert vessel as defined in Paragraph 5.3.1 of fisi Standard : 7i4.3-1977. For the l-13C II package, the med!um ds assimed to be a saall quantity of zesidual vatez or atem, as appropriate.
 Eeiations. zarag:aph 4.t. 2 outlimes an crample application of the method to a parelcular payload.

4.A.1 Derivasion of ilals isiartons

A leak test for design leaktichtness verification (Re: P. 4-13) demonstrated that a nev l-13C II package did not leak at a gate of:

$$
L_{3}=2.34 \times 10^{-5} \mathrm{~atm}-\mathrm{cm}^{3} / \mathrm{sec}
$$

Tala rate is at Standard Coaditione per Paragraph 3.3 of ANSI N14.5 (. . . dry air at $25^{\circ} \mathrm{C}$ for a presaure differemelal at 1 atm. against a vacum of 10^{-2} atm. or less.)

Because of the procedure aensitivity requirements of ARSI N14.5, the cask may only be considered not to leak at a rate of two eimes the demonstiated leaktightness ralue or:

$$
L=2 L_{3}=2\left(2.34 \times 10^{-5}\right) \mathrm{atm}-\mathrm{cm}^{3} / \mathrm{sec}
$$ (Standard Conditions)

Adetianai testing, for information only, showed that the packs ti s net
 discussion purposes and because of the procedure sensitivity racuiranents
 normal and accident conditions was: (See Discussion, Section 2.ll. Paragraph 2.11.4.1. P. 2-233 showing that the pre-accident cask condition is actually representative of the post-accident cask condition).

$$
\therefore=2.53 \times 10^{-5} \mathrm{a}+\pi-i \mathrm{~m}^{3} / \mathrm{sec} \quad \text { (Standard Conditions) }
$$

respectively. These rates are at standard conditions per Paragraph 3.3 of AilS Standard 114.5 (. . . dry air at $25^{\circ} \mathrm{C}$ for a pressure differential a $: 1$ atm açainst a vacuum of 10^{-2} atm or less.)

For normal conditions, the permissible leak rate is given as:
$L_{i t}=\frac{R_{n}}{C_{n}} \mathrm{~cm}^{3} / \mathrm{sec}$
Where: $\quad R_{1}=2.73 \times 10^{-10} \mathrm{~A}_{2} / \mathrm{sec}$ (Table 1 , AnSI N14.5)
$C_{i N}=$ Permissible activity of medium, $\mathrm{Ci} / \mathrm{cm}^{3}$
\bar{A}_{2} - Maximum Activity for Type A Mixtures
$=\frac{\sum \mathrm{Cl}}{\left[\mathrm{Cl} / \lambda_{2}\right.}$
$A_{2}=$ Maximum Activity for Type A (para. 3.2. AISI M1A.5)
or:

$$
\begin{aligned}
& L_{W}=2.78 \times 10^{-10} \frac{\bar{A}_{2}}{C_{i 1}} \\
& \frac{C_{i}}{A_{2}}=\frac{2.78 \times 10^{-10}}{L_{N}}
\end{aligned}
$$

 (みater) at : smperatuees and jressures associated with normai iranspo:= cend!:łons. Corzelation of th!s quantity uith the demonstated leak zaze at scandayd conditions, $L_{i f}$, s achieved via use o: Equation (3.9) of ints N14.5:

$$
\begin{aligned}
& L_{N}=\frac{2 L_{n} n_{n}\left(P_{u}-P_{d}\right) N}{n_{i}\left(p_{u}^{2}-p_{d}{ }^{2}\right) n} \\
& \text { Yitere: } \quad L_{n}=2.5 E x 10^{-5} 2 \mathrm{tm}-\mathrm{cm}^{3} / \mathrm{sec} \\
& \pi_{n}=.01856 \mathrm{P} \text {, air yiscositiy } \\
& P_{\text {un }}=1 \text { atm } \\
& P_{d n}=1 \times 10^{-2} \mathrm{a}: m \text {. } \\
& r_{W}=\text { water viscosity, ci } \\
& P_{u N}=\text { vessel pressure, atm } \\
& =1+(p s i g / 14.7) \\
& P_{\partial N}=12 \pm
\end{aligned}
$$

The calculations for nomal conditions are found in the table below:

| $\begin{gathered} \text { Case } \\ \text { NC. } \end{gathered}$ | $\begin{gathered} \text { Decay Heat } \\ \left(\text { i's: }^{2}: 5\right) \end{gathered}$ | Cavity Temp. ($\left.{ }^{\circ} \mathrm{F}\right)$ | Internal
 Pressure (osig) | $\begin{gathered} \text { Maier } \\ \text { Yiscosity } \\ \text { (cp) } \end{gathered}$ | $\begin{gathered} \left.\left(\mathrm{C}_{\mathrm{K}} / \mathrm{I}_{2}\right)_{3}\right) \\ \left(\mathrm{C}_{\mathrm{K}} \mathrm{~m}\right) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 150 | 138.35 | 4.27 | . 4759 | 4.592×10^{-4} |
| 2 | 200 | 142.70 | 4.72 | . 4584 | 4.002×10^{-4} |
| 3 | 300 | 151.20 | 5.68 | . 4290 | 3.112×10^{-4} |
| 4 | 400 | 159.47 | 6.75 | . 4010 | 2.448×10^{-4} |
| 5 | 500 | 167.51 | 7.96 | . 3790 | 1.962×10^{-4} |
| 6 | 600 | 175.39 | 9.30 | . 3590 | 1.591×10^{-4} |
| 7 | 700 | 183.06 | 10.77 | . 3395 | 1.299×10^{-4} |
| 8 | 800 | 190.55 | 12.36 | . 3239 | 1.080×10^{-4} |

(1) Hancbook of Chemistry \& Physics, Chemical Rubber Company, Hew York Page 2181: Yiscosity \& fluldity of Kater, $0^{\circ}-100^{\circ} \mathrm{C}$.

For acticar: cons::ars. :re permissible leak rate is given as:
$L_{\lambda}=\frac{r_{i}}{c_{A}} \quad$ cini/sec
Where: $R_{A}=1 . E E \times 10^{-9} \mathrm{I}_{2} / \mathrm{sec}$ (Tate 1, d NE:
614.5)
$C_{A}=$ Permissible Activity of Mesiun, ci/c...2
λ_{2}. Maximum activity for Type a Mixtures
= ICY
E(LT/ $\left.\lambda_{2}\right)$
A . Maximum Activity for Type d
(Para. 3.2, ANSI K14.5)
or: $L_{A}=1.65 \times 10^{-9} \frac{\lambda_{2}}{c_{\lambda}}$
$\frac{C_{A}}{I_{2}}=\frac{1.65 \times 10^{-9}}{L_{A}}, 1 / \mathrm{cm}^{3}$
The quantity, L_{λ}, represents the permissible leak rate of the median (seam) at temperatures and pressures associated with accident conditions. Correlation of this quantity with the demonstrated leak rates at standard conditions, L_{a}, is achieved via use of Equation (B.5) of ANSI H14.5:

$$
L_{A}=\frac{L_{a} n_{d}\left(p_{u}^{2}-p_{d}^{2}\right)_{A}}{\eta_{A}\left(P_{u}^{2}-p_{d}{ }^{2}\right)_{d}}
$$

there: $L_{a}=2.68 \times 10^{-5} A \pm m-c m^{3} /$ sec

The caicuiciticns for ac：icer：conditions are fourd in she iavie Eei＝w：

| $\begin{gathered} \text { Base } \\ \text { N:SEr } \end{gathered}$ | $\begin{gathered} \text { ieszy } \\ \text { ieat } \\ (n a:: 5) \end{gathered}$ | Cari：y T8．．．i． （ ${ }^{\circ} \mathrm{F}$ ） | $\begin{gathered} \text { Iniernal } \\ \text { Pcessure } \\ \text { (esis) } \end{gathered}$ | $\begin{gathered} \text { Secan(i } \\ \text { Yisez: } \\ (C P) \\ \hline \end{gathered}$ | $\left(C d^{\prime} \dot{r}_{2}\right)$ $(1 / c-m)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 150 | －20．92 | 96．0： | ． $01: 54$ | 8． Eミュi $^{-7}$ |
| 2 | 200 | 324．67 | 102.45 | ．01：63 | 7．7Eミュ10 ${ }^{-7}$ |
| 3 | 300 | 332.98 | 112．27 | ．01483 | $6.45 E \times 1 C^{-7}$ |
| 4 | －CO | 3：1．C5 | 125.75 | ． 0150 | 5．：E：x： 0^{-7} |
| 5 | 500 | 340.92 | 140.04 | ．01519 | $4.60: \times 10^{-7}$ |
| 6 | 600 | 356.62 | 154.21 | ． 01537 | 3.904×10^{-7} |
| 7 | 7 CO | 364.11 | 168.99 | ． 01554 | 3.332×10^{-7} |
| 8 | 8co | 371.43 | 18：．37 | ． 01571 | 2．$\varepsilon \in \leq \leq 10^{-7}$ |

（1）Doolitcle，Jessa S．，＂nhermodyramics ：n：Engineers＂，Intemational Tex：book Company，1964，Flgure d－1：Viscosify of Gases，pp． 632.
$\lambda=$ the temperacu：es and presaures associated with accident conditions for different payload decay beats the actual actioity concentrations Of the vapor inside the cask vill vary．In order to deteraine the activity concentration of the vapor concentration（ m vacer／cm ${ }^{3}$ 7apor）must fisst be dete：mined as related ro payload decay beats．

$$
\begin{aligned}
& \text { Yaper Conserization }=\frac{1}{\text { 3pecitic rai. }}=\frac{\text { (Vensity ine:er) }}{i}=
\end{aligned}
$$

ire resulis of the calcula:iens are given in the following atle a:depi=ies grapinically on Fig. 4.4.1-1.

| xRTiS | cayity TERY. ${ }^{\circ} \mathrm{F}$ | partial YAPDR PAES. dsia* | SPEC. YOL. OF YAPCR* Ft /lbm | YAP. CONC.
 ml KhiER/
 c.m Yaion |
| :---: | :---: | :---: | :---: | :---: |
| 150 | 320.42 | 90.25 | 4.885 | 3.280×10^{-3} |
| 200 | 324.67 | 95.92 | 4.614 | 3.473×10^{-3} |
| 300 | 332.98 . | 107.52 | 4.146 | 3.865×10^{-3} |
| 400 | 341.06 | 119.77 | 3.737 | 4.288×10^{-3} |
| 500 | 348.93 | 132.85 | 3.390 | 4.727×10^{-3} |
| 600 | 356.92 | 147.37 | 3.070 | 5.220×10^{-3} |
| 700 | 364.11 | 161.40 | 2.814 | 5.695×10^{-3} |
| 800 | 271.43 | 176.57 | 2.582 | 6.207×10^{-3} |

* Interpolated from The Saiurated Steam: Temperature Table;
-Fundamentals of Classical Thermodynamics, 2nd Edition; Yan Kylen and Sonntag. 1973.

 :o :hese payleads possesstas scae potent!ally leakable por:ton, such as
 such as neution acituated reactor components, possess no leakable f:ac:ion. $d s$ a \quad esult. these solld zateriais comply al:h contairment :equatements so lenz as there is "no ejec:ion of contents."

To assess the contalnment requirements for materials such as devatered resins, the specific acti:Ities of isotopes within the leakable fraction zesults from restiual fiuld present in devatered restns.
ds an example, consider a vessel containing approximately 8 cu . ft. of ion exchange restns where the only leakable poriton of this payload is a small quantity of residual process fluid. There are no gaseous radioac:ive decay products present.

Examplei Rormal Condicions

Assume the radionuclide distribution and maximum concentration sor the residual vater in the resin are as given in Table 4.A.2-1.

ご 3 Bi : 2. $2.2-1$

| 150:0p5 | ACily:ity
 CF KaiER
 $\mathrm{Ci} / \mathrm{ml}$ | A_{2} YSLSE | $(c i / n) / h_{2}$ |
| :---: | :---: | :---: | :---: |
| Cesiun 134 | 2.730:-005 | 10.00 | 2.770E-005 |
| Cestum 137 | 1.720E-00: | 20.00 | 8.600E-006 |
| Sirontium 90 | 1.9005-005 | 0.40 | 4.7505-005 |
| Frisilu | 1.0005-006 | 1000.00 | 1.0005-009 |
| Niobiun 55 | 1.000E-C05 | 20.00 | 5.006E-011 |
| zirsonium 95 | 1.1005-009 | 20.00 | 5.500E-011 |
| Ruthenium 106 | 7.3005-008 | 7.00 | 1.043E-008 |
| An:imeny 125 | 1.5005-008 | 30.00 | 5.00CE-010 |
| :ocine 129 | 5.7005-012 | 2.00 | 2.850E-012 |
| Tellurium 125 | 1.2005-009 | 100.00 | 1.200E-011 |
| iellurium 127\% | 2.2005-008 | 40.00 | 5.500E-010 |
| Teliurium 129 | 4.4005-011 | 30.00 | 1.467E-012 |
| cobal: 60 | 1.4005-009 | 7.00 | 2.000E-010 |
| Manganese 5a | 1.2005-009 | 20.00 | 6.0005-011 |
| Geriunin las | 1.COOE-007 | 7.00 | 1.429E-C0E |
| Uranium 234 | 1 SOCE-C12 | 0.10 | 1.5605-011 |
| Uranium 235 | 1.570E-010 | 0.20 | 8.350E-010 |
| Uranium 236 | 4. 62 EE-012 | 0.20 | 2.310E-011 |
| Uranium 238 | 6.930E-009 | unlimited | --- |
| fluecniu.: 239 | 1.2905-011 | 0.002 | 6.4COE-OCS |
| Plutonium 240 | 1.050E-012 | 0.002 | 5.250E-010 |
| Plutoniun 241 | 1.540E-013 | 0.10 | 1.540E-012 |
| enerictum 241 | 8.110[-014 | 0.01 | 1.014E-011 |
| : $61 / m$ | 2.199E-004 | $I(C 1 / m l)$ | 5.890E-005 |
| $\text { Composite } \bar{\Lambda}_{2}=\frac{i(c i / m l)}{i(C i / m i) / A_{2}}=\frac{2.199[-004}{5.850 E-0 i 5}=3.733 \mathrm{ci}$ | | | |
| $C_{n}=2 C 1 / \mathrm{ml}=2.199 E-004$ | | | |

Fron risure d.z.i-1 :..e permissible acivity of the waier for a ziz we:: zeyloce tesey hea: is found io be:

$$
\frac{c_{4}}{i_{2}}=2.0<\times 10^{-i} 1 / \varepsilon_{2}^{2}
$$

\dot{z}_{2} - 3.7シう Ci as ceiermires preyicusiy

Therefere the pernissibie activity of the water is:

$$
c_{i}=\left(2.92 \times 10^{-4}\right) \times 3.733=1.09 \times 10^{-3} \mathrm{ci} / \mathrm{cin}^{3}
$$

ihe Cen:ainane: Facior of Safe:y is:
F.S. $\cdot \frac{C_{H}}{C_{n}}=1.09 \times 10^{-3} / 2.159 \times 10^{-4}=a$ number iarger :han 1.1

If :he facier of safe:y had been less then 1.0 the watage xas too high. d lower value xould then need to be assumec ars the calcula:iens revised unsil a positive F.S. is cb:aires.

Example: kesiden: Concitions
To deiermine the centaiment safety facior for accicent conditions the vapor concentration is determined from Figure 4.4.1-1 given an acial payload decay heat. The aciual aciivity concentration of the yapor (Ca) is then determined knowing the racionucilde distribuition and resicual fluid acivity concenirasions. The actual activity concentrations of the vaper are then conpared to the permissible vapor aciivity $\left(C_{A}\right)$ fourd from flgure 4.3.2-1 for the given payload decay heat anc the composite λ_{2} value determined previousiy.
 concenteations as the example for normal contitions and an actiad payload decay hear for actident condttions of 220 atatia, the apo: Csrecerazation is found to te $0.00392 \mathrm{Il/cn}^{3}$, Erom Fisire 4.4.1-i.

The vapor ectiv!ty 13 therefcre determined from icnoving the residual EIuld activity (deterained in the example for normal condisions) and =he rapor concentration.

Ca. Yaper lesiri:y $=2.199 \times 10^{-4}\left[i / r .1 \times 0.00392 \mathrm{mi} / \mathrm{cm}^{3}\right.$

- $8.62 \times 10^{-7}{\mathrm{ci} / 6 \mathrm{~m}^{3}}^{2}$

croputed for 320 wa: : payload decay hea: as foilews:

$$
\frac{C_{A}}{I_{2}}=6.25_{2} 10^{-7} 1 / \mathrm{cm}^{3}
$$

λ_{2} - 3.733 ©i as ceiermiries previously.
iherefore the permissible yaper aciivity C_{A} is founcto be:

$$
C_{A}=\left(6.2 \Xi 210^{-7}\right) \times 3.733=2.333 \times 10^{-6} 6 i / 6 \mathrm{c.}^{3}
$$

The ceri:ainerit factor of safety is:

$$
\text { F.S. } \quad \frac{C_{A}}{C_{a}} \cdot \frac{2.333 \times 10^{-6}}{8.62 \times 10^{-7}} \cdot 2.71
$$

If the facior of safe:y had been less than 1.0 the assmed maximin vaitage was $i 00 \mathrm{high}$. A lower value would then nest to be assuned aric the calculations revised unill a positive F.S. is otiained.

For racicnuclides and aciual residual fluid activizy concenirations different from those assumed in ithis example, the fackage operator may demons:rate compliance so the containment requirements by apirofrlate mocifications of the methods outlined herein.


```
Secezination of Requized Gaske: th{cicess and Zoiting zozque fc= the
:-i3C II Cask.
Gasker: Duro 50
.214"x 2.3", 32.90" I.D.
Max!=um lncerral pressure = iba psi
```

Using the dSEE Code \& Section Vill, Eivision 1, dppendix 2, Part d-Eianes
-alth ring type zaskets.
F. 0 design cond!:Ions must be considered.

1) Operation conditiona derermine bolt load resulting from the bydrostacic end force and the clamplag force necessary to =atntais a seal.
2) An faltial acatins load muat be applied to the joint to ssaure a complete seating of the sasket.
3) Ftom Paragraph 2-5(c) the operacing bolt load is derermined from:
$H_{=1}=H+H p=0.785 G^{2} p+\left(2 b \times 3.14 G_{\text {G }} P\right)$
Fhere
I $1 s$ the load due to hydrobtatic pressure and Hp_{p} is the zeaction. of the compressive load on the gasket required to ealntain a Eight joint.

Hp must be provided by the torquing of the bolts. From rormula (1) of the above paragraph:

Where
$b=$ gasket seating width determined from Table 2-5.2
$b=\sqrt{b_{0}} / 2, b_{0}=N / 2$
Fer at.e 1-13C 11. $y=1.3^{\prime \prime}$
$b=\sqrt{1.3 / 2} / 2=.403^{\prime \prime}$
$G=$ gaske: 00 - 25. $=35.5-2(0.403)=34.69:$
E. *. 5 for gaske: with<75R Shore Duraneter
$P=$ Internal pressure.
2) Check also minimum initial seating lasd wich is determines using Formia (2) of Paragraph 2-5(c)(2).

$$
\begin{equation*}
x_{m 2}=3.1480 \hat{y} \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
y= & \text { minimim design seating stress }=0 \\
& \text { Table } 2-5(1) \\
x_{2}= & 0
\end{aligned}
$$

Also fron formila (1) of the previous page: $H=0.7855^{2} p=0.785(34.694)^{2}(184)=173859$ lbs.

Toial initial bolt loas rgquired:
$K_{\text {min }}=H+H_{p}=173859+8111=182,000^{\circ} \mathrm{ibs}$. Load per boil: = $F_{b}=182,000 / 12=15167 \mathrm{lbs}$.

Finally, the miniman bolt load for fully seating the lid standoff aganst the top of the cask body will be detemined by following the arethod of Harris \& Crede on page 35-15 of "Shock : Yibration Handbook". Eqn. 35.8 is:

$$
E=\frac{F}{5}\left(\frac{h_{1}}{h-h_{1}}\right)
$$

```
where
    E * eiasitc compression modulus
        (use 375 psi for Dura 50 rutver)
        Seske:area 5 = \frac{2}{4}}(35.\mp@subsup{5}{}{2}-32.92)=13ミ.7 1\mp@subsup{n}{}{2}.
    F = compresive force in lbs.
    h = unstrained gasket thickness
    h}= siandoff he!gh: (i.e. gasket thickness when fully cowrressed)
    For a 1/4" gasket of Duro 50 naterial
        E = 375 psi
        h}=.21
        h=.250
        F=\frac{E(n-\mp@subsup{h}{1}{\prime})S}{\mp@subsup{n}{1}{}}
        - 375(.250-.216)139.7}=8246 los
```

The mindma. lead per bolt required to fully con-ress the gaske: infially is therefore:

```
\(F_{b}{ }^{\prime}=824 E / 12=687 \mathrm{Jbs} / \mathrm{bolt}\)
```

The bolt las required for nainisining the gasket sealing capabilities at the maximmexpeted pressures for accident conditions was shown to be:

$$
F_{b}=15157 \text { lbs. }
$$

Since $F_{b}>F_{b}$ ' the lid will be fully seated agains: the cask body when torqued initially.

```
Torque required:
    \(T=k F_{b}^{d}\)
there
    \(k=.20\) (dry)
        =. 25 (lubricited)
```

```
d = nominal diameter of bole = i.25"
Itrg=.20(i5i67)(1.25)=3792 i:2-its.
    =2:5_5-15s
FIubr. = .\S (15167)(2.25)=2924 15-153.
    =237 [--125
```

ror a 10% tolerance \ln a to:que urench the lid bolt torque requinemeris
for the $1 / 4$ gasket are as follows:
Lubricated: $I_{L}=\frac{237}{0.9}=263: t-1 b s$.
Dry: $I_{D}=\frac{316}{0.9}=351$
Use: 270 ft-lbs $\pm 10 \%$ lubricated
$360 \mathrm{ft}-1 \mathrm{bs} . \pm 10 \% \mathrm{dry}$.

ae\%isson 0.

$\therefore .5$:? PE:D:

--njplacable Catalogue Excerpes-

Siai-O-Seal* fezares

 molseginplate resis whin the nubet sesling alement mestanically bekec to the meia! risinep. staia Scu!s are designe= te xea! beresin the heas of the fasisie' as shomt to: bon INTERNA ang DTERNAL DTE surs igierts.

- .. --insizle of controlleo confine i illzs in me SiniASes!, As beeenter is lisritenes the rusoep sea: is comprosses. foring the sest Ing suriaess se:urely aroune the tasiener shank-bur withour souser. ing tere rubsei beyons its chasic limh o destroying ts Interent "memory." With ex Sulobeal there th tull met. atomeral convet of taping surtraes. The unique Stat-O.Seal oesizn pro. nioes:
- Ler cortarinc or sell
- vacuur scusing to mostrine men onesurle scaline (-ser Pactil)
- menntenzualstifotion
- Lore aciuicis sorne
- roor mider mitulerion
- moderett tomuinc
- mo artorouina
- outro nime martition
sato-seals are milable for imme. siale delivery in suncard sizes tor tolts and x crems. from the number 5 size thrs ore inch. sne will weal it - .". nuics and f :!es al temper :s from - $-\infty$ to 450° F. The ren...-l inlortation on the follow. trat peges mill exist pou in ordepling.

high pressure consideraions －or series 600 Siat－O－Seals

1
MAXIMUM SAIE OPERATINC PRES． SURES The operati：s pressiec ol a Sisiへ⿱宀八工力＇mis：be kefi well below the Dessule a：whish the retaine． me＇s＇＇a custire．The following is． be gives the maximum recommens．
 Siai．e．Seals as celermines from Lamé noop siress caltulations．A Wie：y fa He：of 3 mas azalies to ane tonsile riengen of the me：s：

| cartora atrituenmo．d | | | | |
| :---: | :---: | :---: | :---: | :---: |
| | Mumb mith | | | |
| | aleximu | 1010／100 | | conmermolt stios |
| \rightarrow | 1．30 | 10.100 | 11.100 | 18．602 |
| －8 | 7.100 | 8.100 | 1.500 | 14．80j |
| ． 10 | 6.000 | 6.80 | 7.500 | 12.600 |
| ．10 Cs | 4.20 | 4．30 | 5，3x | 8.85 |
| $\underline{1}$ | $4.9 x$ | B．000 | 6.100 | 10.200 |
| ＋ CS | 4．000 | 4，500 | 4.900 | 1，300 |
| $\underline{+}$ | 3.500 | 4.000 | 4.400 | 7.300 |
| 5－i | 3.30 | 3.800 | （4，100 | 6.900 |
| － | 1．600 | － 1.100 | 4．500 | 7.500 |
| H | 4.400 | \＄．000 | 6．500 | 9.100 |
| ＊ | 6.40 | 7.200 | 8.000 | 13，300 |
| $\stackrel{+}{4}$ | 7，00 | 8.000 | 8.800 | 14.75 |
| \pm | 8.900 | 4，700 | 7，400 | 12.350 |
| ＊ | 6．100 | 7.000 | 7.200 | 12．000 |
| $\cdot 1$ | 7.000 | 8.000 | 1.800 | 14.60 |

EOLT TORQUE Hizh peresure flulds aring undet the tea \leq of boll tens to ritetch H ．Itring the boll hess ofl He seat．Ymenthis tapoens，the spase rooses unot t the beh hess can per． it the Sui－OSest elastomet to 2 x ． srude and lail． n ls．the efore，Impor． tant in high pressure spplicalions to torque ine bolt well at assembly，pro－ riding enough prestress in the boll
to prevent strztcilng．
CLEARAKCI POR［XTRA RUBEEX Mosi Suio－Seals tave tome exars rubbet，ans，as roted on pait B ． ckannce must be provides to n－ ceive M．In bow pressure applications． ghis clearance may be elther in the mouriting surface or in a masher be twren the boll hease and the Suto． seat．In high pressure applications．
howevep，the nopmal chesianor must be on the high pressure sise of the siat－o－seal，with lille of no clear： ance on the bow pressure sibe．Giner－ wise，the lluld preaure will exiruse too much nubbet Into tire ckarance cop．resulting in a kek．
$c_{\text {Tit-O-Seal }}{ }^{6} 600$ series

1

| | Mainco | | crintirickumuna | \％18： |
| :---: | :---: | :---: | :---: | :---: |
| | －0cticiction | n－i：ifininum． | | |
| Fics fancheo itts | | | | |
| 6M゙io： | Stee． （n：5x：11：3：－7．） | Cu＝－um Piase
 （N： $5 x$ ： $1113: 1$ | Ni：role ！e madii
 （10： $5: \rightarrow: 11=3: 1=-$ ）
 | |
| 6x－0： | $\begin{aligned} & 10:=11=3=5.5+1 \\ & 1655-553 . \end{aligned}$ | | N：יIle（EJMs N） （W．．F．EE：Cisss 1 12 Cosee -m Nぐうにお | Ar．De：role - llurss．llue＇：c．e．reses．．
 Wニッにコ：
 |
| 80.215 | $\begin{aligned} & 70: 5: 6 \text { A1, } \quad \text { mun } \\ & 10=A .25=1221 \end{aligned}$ | $\begin{aligned} & \operatorname{Anxige} \\ & \text { (Wiades. Trpe II) } \end{aligned}$ | | |

| $605 \sim 2$ | 1：32 Cnronse Mory sife＇ 151
 （H1L．S18729） | Ca plate Dres 312：× 103 Paj Cl ． 2．Typlil | Nitose（EJnis．N）
 （Nis．r．tess Class 1
 22．Giose gil
 N4O6． 60 | Ar pe：roiesm llued．llue＇s ols．Eresesl

 |
| :---: | :---: | :---: | :---: | :---: |
| 60－139 | 3021302 Suintess Sise 1t！
 （N．．．S SOE 31 | Passivale 10こ．P．35： | Nutile（R ano N）
 （W．．．f．73氏2 Tyx II）
 4i．c．is | |
| 60×12 | $\begin{aligned} & \text { A:3: cnooms Ns:\% } \\ & \text { sire.js) } \\ & \text { (N..Siع:29) } \end{aligned}$ | | | |
| くプ | | $\begin{aligned} & C \text { Conumplate } \\ & 10=E=16 \text { Ci. } \\ & \text { Tyxe } 11 \end{aligned}$ | | sillate Ele～
 －EETB－2is．
 |
| 60.742 | 4：2：Enrome Moly Ster 1b！ （N．S：E：2Э． |
 Ci． 2 iype III | | |
| 600．313 | コこ2！3ニ～：：amicss
 Slee＇16：19：
 （N．i．S．Soss） | Passivite
 （05－P．35） | | Air．Petrole am fluys．silispre fluss． many beles and parovaic esters$\frac{-20^{\circ} \cdot{ }^{\circ}+1 \alpha^{\circ} \cdot}{\left(-20^{\circ}\right.}+$ |
| 心53142 | $\begin{aligned} & \text { Aij: Enrome Mols } \\ & \text { sireifs) } \\ & \text { (M16.s.18729) } \end{aligned}$ | Ci：hiumpiste Dyat sisencoppdiccl． 2 Tpeli） | | |
| 600－6015 | 7C7ST6 Aluminum 10こム．25＝1121 | | | Feirolejn fluids．alisone fluies，siliatie
 $(-54 \cdot 10+i 77 \cdot c)$ |
| COCSE32 | 322130م Suiniess Sire＇ 16 （416．5．5039） | $\begin{aligned} & \text { Pasinge } \\ & \text { (2-A. } 25 \text {) } \end{aligned}$ | | |
| $\cos 60^{2} 2$ | 1：30 cniorre Mols slell 5 （M16．518729） | | | |
| 600－233 | 322！35 Selnitas s：er 10 ：
 （M16．S5059） | Passhrie （C）3 5 ） | sllome$\text { (ANSS } 33301$$5600.7 c$ | $\begin{aligned} & \text { Air ins rase } \\ & \begin{array}{c} \left.-6 \cdot 0^{\circ}+20+232^{\circ} \cdot \mathrm{C}\right) \end{array} \end{aligned}$ |
| C00424 | 1130 Chroms Moly 5 Let（S） （M1L．518729） | Ca dmium Pisit Orra 8isel（QQP\＆16CI． 2 Trpe II） | | |
| 233 | 2e2：304 suinks．
 Slet：161
 （14．55059） | Passinte （0こ人．35） | Butil
 （AN．S 3238）
 8318.70 | St retrol．perophate este 7，wa：e：． stesm ane all
 $-65^{\circ} \cdot{ }^{\circ}+2255^{\circ}$ $\left(-50^{\circ}+107^{\circ} \mathrm{C}\right)$ |

1

RECOMKENDED BOLT TORQUE VAZUES FOR STAT-O.SEALS-POUND IHCHES

| | Monomemal | 2 | | 20\%mum | | Hommen | | camm | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Parmmomen | | | Nons il | | | | | |
| | 488 | $\cdots \mathrm{m}$. | nos. | x | mat | M- | ω_{0} | $\cdots \mathrm{n}$. | Mor |
| | 6 | 5 | 33 | 3 | 25 | - | - | 5 | 15 |
| | 2 | 10 | 0 | 10 | 50 | - | - | 10 | 75 |
| | 10 | 13 | 60 | 13 | 70 | 13 | 60 | 13 | ∞ |
| | 2005 | 13 | 60 | 13 | 20 | 13 | 60 | 13 | 95 |
| ;-4; | ψ | 10 | 100 | ω | 110 | ∞ | 100 | 4 | 145 |
| | ¢ | \& | 10 | 45 | 110 | 40 | 100 | 75 | 145 |
| | k | 60 | 18% | 70 | 85 | 60 | $14 ?$ | 75 | $18{ }^{\circ}$ |
| | * | 10 | 220 | 80 | 160 | 8 | 220 | 8 | 232 |
| | χ | 110 | 382 | 110 | 260 | 110 | 300 | 110 | 405 |
| | H | 135 | 56 | 130 | 360 | 135 | 420 | 130 | 600 |
| | x | 150 | 80 | 40 | 500 | 250 | 1000 | 40 | 1000 |
| | 4 | 630 | 1100 | 650 | 1015 | 350 | 1100 | 630 | 1700 |
| | | 850 | 290 | 550 | 1550 | 80 | 2950 | 650 | 380 |
| | $\%$ | 650 | 3980 | 650 | 1900 | 570 | 3900 | 652 | 5 |
| | 1 | 729 | 5950 | 800 | 280 | 700 | 5950 | 700 | 200 |

The vilues in this uole exorre permissible toraves to many bot meterists.
Da:s is for fine infixt. Hopicites. She Crose \& Behs.

fastening torques

Whenever fastening topques are dis cusses by engineers, there is almars controversy. There are many variables sueh as wienching methods and theesd friction inlluenced by lubrication, plating. surface finishes, kngith of grip, class of thresd, etc. Otien torque wenches are not eren wed. Machines do a lairly eonsistent Job, but 1 the seating surface k not tal, using pure torque values can cause diftientry.

Parket STAT-OSEALS provide a cep. bain amount of latitude in torque ie quirements. Actually, STAT-0 SEALS are ofiencapable ol sealins whenonly "linger tight" so that extra high fastening torques may not be mecessary. K extra firm seating is requires. STAT-O.SEALS should be forqued within the limits shown to avoid crusting the melat retsimet hate.

| 20:9 | $\cos ^{2 N}$ | งi. | zness | 3'monis | - nuinum | ni.s. | man |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | - n | An | 2n | -n | an | - | - n |
| $\begin{aligned} & 632 \\ & 6-60 \end{aligned}$ | 87 10.9 | $\begin{array}{r} 9.6 \\ 9.9 \end{array}$ | 7.9 | 8.9 | 5.2 | 761 127 | 95 |
| | | | | | | | 12.3 |
| 232 | 17.8 | 158 | 26.2 | 181 | 10.9 | 257 | 2: 2 |
| 236 | 198 | $2=.0$ | 180 | 20.1 | 12.0 | 23.0 | 2 F |
| 20.2: | 208 | 22 8 | 186 | 21.2 | 138 | 238 | 2! 9 |
| 1032 | 297 | 31.7 | 259 | 29.3 | 192 | 33.1 | 389 |
| | 65.0 | 75.2 | 81.3 | | | 788 | 2:3 |
| $4 \cdot .23$ | $\infty 0$ | 24.0 | 37.0 | 27.0 | 37.0 | 85 | 10E |
| K-18 | 129 | 132 | $10:$ | 123 | 3 | 138 | 145 |
| K-24 | 139 | 112 | 116 | 13: | 86 | 147 | 16 |
| 4. 16 | 2:2 | 235 | 192 | 219 | 143 | 229 | 25. |
| *. 22 | 232 | 259 | 212 | 20 | 157 | 271 | 25 |
| $x \cdot 14$ | 338 | 376 | 317 | 349 | 228 | 353 | 127 |
| $x \cdot .25$ | 261 | 4∞ | 327 | 371 | 242 | 418 | 451 |
| k. 13 | 485 | 517 | 422 | 180 | 313 | 812 | 88, |
| $k \cdot 20$ | 487 | B11 | 43 | 502 | 228 | 365 | $6: 3$ |
| | 613 | 62 | 858 | 02 | 413 | 713 | 774 |
| $x \cdot 18$ | 658 | 752 | 815 | 657 | 456 | 787 | $8 \leq 5$ |
| *-11 | 1000 | 1210 | 907 | 1035 | 715 | 1260 | 1332 |
| *-18 | 1140 | 12 H | 1016 | 1154 | 798 | 2351 | 145% |
| 4-10 | 1259 | 1530 | 1249 | 1416 | 28 | 1582 | 1832 |
| *-16 | 1230 | 1480 | 1220 | 1382 | 458 | 1558 | 1793 |
| | 1019 | 2328 | 1905 | 2100 | 3495 | 2430 | 2775 |
| | 1911 | 2313 | 2895 | 2130 | 1190 | 2420 | 2735 |
| 104 | 2232 | 240 | 2915 | 2185 | 2705 | $\therefore 3595$ | 4:30 |
| $2 \cdot .11$ | 2352 | 3110 | 2545 | 2885 | 1995 | 1250 | 3730 |

(i) The quantity of hydrogen genc:ated must be limited to a golar quant!ey that would be no more than $5 \approx$ by voline at $5 \pi p$ (ot equifalent itmiss for other inflamable gases) of the secondary contalner gas volt ($3 . e .$, no more than 0.0638 -woles/: 5^{3}); or
(1:) The secondary contalner and the cask caviry (if required) =ust be lnerted uith a djeuent to assure the oxjsen, including that radiolyticaliy generated, shall be llalted to $5 z$ by yoline la itose porsions of the package which could have hydrogen greacer than 5π.

The folloulng discussion establishes the safety assurance of che above citceria and describes how vessela vill be prepared such that the above criteria vill be met uhile the vessels are in shipaent.

Criterion (1) essentially stipulates that the quantity of hydrogen shali be limited to 5π of the secondary container gas void at STP. This 5z hydrogen gas volume at atandard conditions is equivalent to a,hydrogen partial presaure of 0.735 pai or 0.063 gram moles/cubic foot. By aceual experiment*, the $18 n i t i o n$ of $5 \pi\left(H_{2}\right)$ gas volume has been demonstrated to produce an approximate 2.3 psi incremental presaure increase above an inicial pressure of approximately acmospheric. The reason this is so is that the 0.063 gram moles of hydrogen per cublc foot provides guch a small source that the peak pressure rise resulting from ignifion of thls source is slight. It 13 felt that $1-13 C$ II $1 s$ able to sustaln an incremental 3 psi internal pressure rise from atmospheric pressure without fallure. This pressure increase is not considered in section 2.6 and Chapter 3 and 4 calculations as it is considered to be insignificant.


```
myd=osen cencent:ation potentially exceeds s% volune, release of inat
hydzosen to :he :hen ex!sting total volume (secondary contsine: %o!j p::3
Eas'k vo!d) wil! mot resule 1% a total m!xture of zreaier inan 5% vo:me
```



```
lower chan five (5) volure z assures a non-flammable aixture.**
* Ca=ison, L.in., e: al., "riame and Detonation Initisetion area Propagatica
in Var!ous Hojdrogen - dir Mlx:ures Wlth and Fithout Hater Spray", deosic
International Division of Rockwell International, Canoga Park, Callfornia, May 11, 1973. (The incremental pressuré rise is basically independent of the total rolume under test--1.e.,--that the 0.063 gram moles jer cublc foot relationship to 2.3 per rise ls valid for one or many cuble foor of spectmen volume.)
** Levis, B. and von Elbe, G., "Combustion, Flames and Explosions of Gases", Academic Press, New York, 1961, Second Edition, Appendix B.
```


5.0
 515:214G

5.1 2iscussicn ard Resili:s

This cask will be cperated such that the radioactive inventory within the cask will not rasult in dose ratas exceeding $200 \mathrm{mRem} / \mathrm{hr}$ on the ask surface, or $\mathbf{i} 0$...Rem/hr at six iegt fiom the surface of the cask.

The package shielding must be sufficient to satisfy the concitions on 10 CRF 71, Paragraph 71.73 for the hypothetical accident conditions. it is shown that shielding loss resulting fron either the 30 -foot drop or the ifie transient will not increase the external radiation dose rate to ncre than 1.000 mRems/hr at 3 feet from the external surface of the cask.

The fissile material to be loaded into the debris containers has experienced small burnup levels of only $3165 \mathrm{MWO} / \mathrm{MTU}$. This results in a very small neutron dose rate relative to the fuel gamma levels. Hence. the effect on shielding is insignificant.

5.2 Source Speciflcation

The equivalent point source, assuming CO^{60} energy. is determined fir the normal geometry. ihis equivalent source is then used to evaluate the effects of the hypothetical accidents.
$\theta_{y}=\frac{B S_{2} e^{-b}}{4 \pi z^{2}}$
$\phi_{Y}=$ Photon Flux, $\frac{Y}{\mathrm{~cm}^{2}-\mathrm{s}}$
S_{0} = Equivalent Source $=\frac{Y}{S}$
$b_{i} \times \sum_{i} u_{i} t_{i}$ for shielding


```
= = 2:s:ance f=en sc:=こe =0 case pci:=
D = X F
X=2.3\times1\mp@subsup{0}{}{-6}\frac{3/h=}{\mp@subsup{\epsilon}{\gamma}{}}=0=c\mp@subsup{0}{}{50}

Through the sice of the cask, the following values aze usee:
\[
\begin{aligned}
& \text { Lead: } t=5^{n}=12.7 \mathrm{~cm}, u / 0=.0600 \frac{\mathrm{~cm}^{2}}{\mathrm{gm}^{2}} \\
& \text { Stee:: } t=1 \mathrm{~m}^{\prime \prime}=3.175 \mathrm{~cm}, H / 0=.0515 \frac{\mathrm{~mm}^{2}}{\mathrm{~mm}^{2}}
\end{aligned}
\]

\section*{For these values:}
\[
\begin{align*}
& b_{1}=10.0 \\
& g=4.0 \tag{4}
\end{align*}
\]

For the two dose conditions:
\(D_{1}=10 \mathrm{mRem} / \mathrm{hr} . \quad y=6.31+36=42.31\) inch
\(D_{2}=200 \mathrm{mRem} / \mathrm{hr} . \quad I=6.31\) inches - Distance to surface of ca?i:豸.
\[
S_{0}=\frac{4 \pi r^{2} D}{B K e^{-b_{1}}}
\]

Substituting into the above expression:
(I) \(D=10 \mathrm{mRem} / \mathrm{hr} 3\) seet
\[
s_{0}=3.475 \times 10^{12} \mathrm{r} / \mathrm{s}
\]
(2) \(D=200 \mathrm{mRem} / \mathrm{hr}\) on Surface
\[
s_{=}=2.546 \times 10^{12} \mathrm{r} / \mathrm{s}
\]

The doserate on the surface governs and will be used in the accident analysis.

\subsection*{5.3 Model Specification}

Hypothetical accident drop tests described in Section 2.11 demonstrate conclusively that the cask and its shield are not altered in any fashion by the hypothetical accident conditions. Nonetheless, shielding analyses for accident conditions, are carried out assuming a damaged geometry presuming no overpack exists. These very conservative analyses are taken directly from the Safety Analysis Report supporting the l-13C II Packaging, USA/9081/B( ). In all instances, both impact and thermal damage assumptions due to hypothetical accident events are more severe than found by test, for drop events, (see Section 2.11) and analyses, for thermal events (see Section 3.0).

Shield displacements are assumed to result from either the 30 ft drop or from the lead melt in the fire transient. The maximum displacement for the drop will occur using the minimum dynamic flow pressure for lead given. This value is:
\(k=5000\) psi

The shielding deformation resulting from the 30 ft drop will be developed for each impact mode using this value.

The lead volume displacement for the fire transient is assumed as:
\(V_{F}=1305 \mathrm{in}^{3}\)

\subsection*{5.3.1 Damage Predictions - Corner}

The shielding displacement for the 30 ft corner drop will be determined for the combined displacement of the lead shield and the steel shell and fire shield.
```

 A..e voivue =: the uno:ula of a coldnce= !5:
 $$
y=\pi^{3} \pm 3.2:\{(\vdots) ;
$$

```
\(\stackrel{i}{\vdots}\)


The total displaced volume from kinetic energy considerations is:
\[
V_{z}=\frac{h H}{\bar{x}} \quad \text { Where: } \bar{x} \text { la the effective dynamic flow sties of she }
\]
\[
\text { issine: } \bar{x}=\frac{k_{s} v_{s}+k_{Z} v_{z}}{v_{s}+\ddot{z}_{z}}
\]
\[
F(2)=\frac{(360) \text { in }(25950) 15 s-\text { in }^{2}}{(.533)\left((45000)(19.50)^{2}-(40000)(1875)^{3} ; 1 b s-i n^{3}\right.}
\]
\[
=\frac{1.73 \times 10^{7}}{(3.337-2.637) 10^{8}}
\]
\[
=.248
\]

From Figure 5.3.1-1: \(\quad 0=1.225\) Radians
\[
=70.2^{\circ}
\]
\[
\begin{aligned}
& \text { Then: } \quad v_{m}=\frac{h R\left(v_{s}+v_{L}\right)}{k_{s} v_{s}+k_{L} v_{I}}=\frac{k \text { 约 }}{k_{s} v_{s}+k_{i} V_{i}} \\
& h w=x_{5} v_{5}+x_{i} v_{L}
\end{aligned}
\]
\[
\begin{aligned}
& =\left\{k_{s} R_{0}^{3}+R_{L}^{3}\left(x_{L}-k_{s}\right)\right\} \text { ana }\{(f)\} \\
& f(e)=\frac{h w}{\left.i k_{s} R_{0}^{3}-R_{L}^{3}\left(k_{S}-k_{L}\right)\right\} \operatorname{tana}} \\
& \text { Let: } f_{L}=\text { Lead Outer Radius } \times 18.75 \text { inch } \\
& R_{0}=\text { Cask Outer Radius }=29.50 \text { inch (hisch } \\
& \text { fi=e shield! } \\
& k_{s}=\text { Steel Dynamic Flow Stiess }=45,000 \text { psi } \\
& k_{L}=\text { Lead Dynamic Flow Stress }=5,000 \text { ps: } \\
& c=23.3^{\circ} \\
& h=360 \text { inch } \\
& H=25,950 \text { lbs. }
\end{aligned}
\]




\section*{C:TEE 1}



5

5te lead displacement for the geome:=ies alonㄷ..e si̇e ct the cask aze siown beion. the iispiacement fe= ihe Eize analysis assimes all the lead melt opposite the reinforcing rinc.

\[
\begin{aligned}
& \theta=59.9^{\circ} \text { (Ficure 5.3.1-1; } \\
& R=18.75^{n} \\
& \delta=\left(1-\cos \frac{E}{2}\right) R \\
& \delta=2.50 \text { inch } \\
& t=5.00 \text { inch } \\
& X_{I}=t-\delta=2.50 \text { inch }
\end{aligned}
\]
(に) E:=e
\[
\because_{y}=: \geq 0 \equiv: r^{2}
\]


\[
\begin{aligned}
& \varepsilon^{2}-17.75 j+\frac{v_{\mu}}{2 \pi H_{R}}=0 \\
& z=1.61 \text { inch } \\
& x_{E}=4.00-1.61 \\
& x_{F}=2.39 \text { inch }
\end{aligned}
\]



ct the cask. The displaconer: will be detemiseed
as follows.
\[
\begin{aligned}
& \text { 工 - Inez radius of lead }=13.75 \text { in. } \\
& \text { in - Cask We } \\
& \text { H - Drop Height }=360 \mathrm{in} \text {. } \\
& ={ }_{s} \text { - Steel Dynamic Flow Exes }=45,000 \text { psi } \\
& { }^{2}{ }_{p}=\text { - Lead D:anainc Elbow Stress }=5.000 \text { ps: }
\end{aligned}
\]

The thickness of the steel shell has been take: as the thickness of the cask outer shell. The displacement of the 0.25 inch thick fire shield has been neglected \(\mathfrak{f o r}\) conservatism...

\section*{}

\[
\begin{aligned}
\therefore= & \frac{(13.75) i n .(25950) 1 b 5 .(260) i n-i n^{2}}{\left.7(18.75)^{2}-(13.75)^{2}\right)(1.5)(45000)+(18.75)(5000 ; i} \\
& \quad i^{2}-125-i n .
\end{aligned}
\]
\(=\frac{\left(1.75 \times 10^{8}\right) \text { i.2. }}{-(162.5)\left(1.16 \times 10^{5}\right)}\)
- 2.96 in .
\[
x_{13}=t_{p b}-\Delta H
\]
- 3.04 inch


```

 =}\frac{(2.75\times1\mp@subsup{0}{}{8})}{-(162.5)(7.0\times1\mp@subsup{)}{}{7})
 = i.90 in.
 Xェ:* =ァッ - \therefore\because
=0.85 i.nch

```
            The deformation stops shor: of the cask cayi=y
            lic for this case. If the lid also deforms, the
            deformation model will be the same as for the botson
            end \(\mathrm{d}=\mathrm{op}\).
            \(A H=2.96 \mathrm{in}\).
\(x_{i 2}=G_{3 b}-24\)
    \(=2.79\) inch

\subsection*{5.4 5.2:}

 case as foilows:
\(\therefore=\frac{3 e^{-b}}{4: z^{2}} \quad\) Whe:e: \(\quad b_{1}=E:=\)
 to a dose point 3 feet from the outside su=face of the cask.

A stumazy of the perinent data is presented in the following table.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline CṅE & \[
\begin{gathered}
= \\
(c: \cdots)
\end{gathered}
\] & \begin{tabular}{l}
:-s=es: \\
1c．．．）
\end{tabular} & \[
\begin{aligned}
& =-: \geq a y \\
& (c \pi)
\end{aligned}
\] & 2, & \(e^{-i}\) & \(3^{14,5}\) & \(\therefore\) \\
\hline  & 100．17 & 3.93 & 4．75 & 4.39 & 7．531－3 & \(2.5 *\) & ：．\(:=\) Ex： \(0^{-1}\) \\
\hline  & 122.73 & 3．：3 & 20.54 & 3.52 & 1．995－i & 3．6． & 4．iEix： \(2^{-\equiv}\) \\
\hline Sここさーごミスで & 100.97 & 3.13 & 6.35 & 5.65 & 3．505－3 & 2．8＊ & 7．6E2x： \(0^{-8}\) \\
\hline くここさーミ゙ご & 107.47 & 5.72 & 6.07 & 6.509 & 1．491－3 & 9．0．＊ & \(9.24 E \times=9^{-3}\) \\
\hline  & 102.34 & 3.81 & 7.09 & 6.419 & 1．530－3 & 3．0＊ & 3． \(7: 5 \times 10^{-3}\) \\
\hline  & 102．34 & 3．2：5 & 7.72 & 6.59 & 1．376－3 & 3．0． & \(3.136 \times 10^{-3}\) \\
\hline
\end{tabular}
－Lise Bu：iさup fo：Lead，Figure 5．4－1 ＊＊：se ヨuilaup for Izon，Figu＝e 5．4－2



\[
\begin{aligned}
& 2=\operatorname{Rin} \\
& \therefore=2.3 \times: 2^{-5} \text {. } 2 / 20 \\
& s_{0}=1.546 \times 10^{12} \mathrm{i} / \mathrm{S} \\
& D=0.530 \mathrm{R} / \mathrm{h}=: 1.0 \mathrm{Ri} \mathrm{~h}
\end{aligned}
\]

\section*{Fherefore，the dose ate coliouins bypochetical accicen：events，assuming very conservative damage estimates，ts less chan the aximum permssible rates defined in 10 CFR 71．The Model \(1-13 C\) II jackage iulif compiles －ith all shielding requirements of 10 CFE il．}

：．inis，gage ：9
3．：3！2，page 4ム7
4．！5ID，page 430
5．iミころ，page i 22

\subsection*{6.0 SRITICAIITY EVALUATIOH}

\subsection*{6.1 Discussion and Results}

The general debris container configuration can be shown to be safe since the maximum quantity of material shipped is significantly less than the critical mass limited to ( \(15.4 \mathrm{~kg}-\mathrm{UO}_{2} / 400 \mathrm{gm} \mathrm{\&}-235\) ).

\subsection*{6.2 Package Fuel Loading}

Fissile material is shipped in the general debris containers with a limit of 400 grams as \(U-235\) in a solid form. the shipment meets the requirements of 10 CFT 71.22.

\subsection*{6.3 Model Specification}

Hot applicable

\subsection*{6.4 Criticality Calculation}
- A criticality evaluation on a shipment with the general debris containers considers the effect of the shipment of 400 grams of U-235 with the fuel debris. It is conservatively assumed that the maximum fuel enrichment in the Mi-2 core (prior to burnup) of \(3 \%\) comprises the sample. The configuration is shwon to be safe since the maximum quantity of material shioped is significantly less than the critical mass.

The original \(\mathrm{THI}-2 \mathrm{VO}_{2}\) fuel pellets has a maximum of \(3 \% \mathrm{U}-235\) (uranium dioxide with the uranium content enriched to \(3 \%\) U- 235 by weight). It is impossible to achicve a critical configurationof pure \(\mathrm{UO}_{2}\) enriched to \(3 \%\) with a mass of less than 75 kg assuming optimal moderation and full neutron reflection. Hence no arrangement of the TMI-2 core debris samples contained inthe shielded debris canisters can result in a critical configuration under any normal or accident
conditions with the total mass limited by 29 kg by the volume restriction. The actual mass of approximately 15 kg will provide a safety factor of five.

Isotopes of plutonium generated by neutron activiation can be ignored in the critically evaluation since the calculated total core inventory of 161 kg of Pu isotopes in the total core mass of approximately \(125,000 \mathrm{~kg}\) represents a negligible percent compared to the \(\mathrm{U}-235\) content.

\subsection*{6.5 Critical Benchmark Experiments}

Hot applicable.


FIGURE 6．4．1


FIGURE 6.4.2


FIGURE 6．4．3

\section*{}




\section*{}



i.i.l Leosen and release ratchet bincers securing upper overpack to lower cyorpack.
7.1.2 Remove ueper overpack by attaching suitable hocks to lifting lugs. Care shculd be taken during this operation so that the overpack is not damaged wile setting it down.
7.1.3 Cetermine if cask must be removed from lower overpack in order to load. If so, attach two lifting ears to cask walls and torque lifting ear bolts to 200 ft . -lbs . ( \(\pm 10 \%\) lubricated or dry). Cask may then be lifted vertically from lower overpack and carefully placed in position for loading.
7.l.4 Using proper radiological precautions, loosen vent plugs to relieve potential internal cask pressure prior to loosening and removal of the 12 bolts which secure the cask lid to the cask bcdy.
7.1.5 Remove the lid by attaching a suitable hook to the lid lifting iug. Care should be taken during this operation so that the lid gasket and 0-ring are not damaged.
7.1.6 Inspect the cask interior to ensure that .there are no loose articles.
7.1.7 Inspect and clean lid gasket, 0 -ring, orain seai, and vent seal and gasketed surfaces. Replace any gasket if it shows sign of wear or deterioration.
\begin{tabular}{|c|c|}
\hline 7．1．3．1 & Payload weignt shali not exceso j．OCO pcuncs．ifinen ：caded in a stomerged iashicn，both vent and grain Fiucs sticuid bs removej．Flugs should be reinstalled after cask cajity is draines．lhen positioning the lid onto the cask while loading in a submerjid fashion，the lid shall be shimmed cpen to allow \(\because=n t i n g\) and drairage from the area between che D－ring and flat lic gasket． \\
\hline
\end{tabular}

\section*{7．1．3．2 Special Cotions for loading rissile Matarial}

For guidelines formulated for the detailed procedure for collecting nuclear core assembly debris from the reactor vessel in the shielded container of \(2 R\) Vessel see section 7．1．8．2．1．For guidelines formulated for a detailed procedure of collecting fissile material or surface contaminated material from the reactor vessel by special buckets see section 7．1．8．2．2．

\section*{7．1．8．2．1 Shiclded Container with \(3 R\) Vessel option}

\section*{7．1．8．2．1．1 Samole Collection}
a．Weigh the debris shielded container with debris bucket or fuel pin sample cell prior to loading with core assembly debris．（See Section 1．3．1．2）．
b．Place an open debris shielded container on a platform with either the debris bucket or the fuel pin sample cell in the bottom of the debris shielded container．Lower the container into the reactor vessel．

```

 !#sj=i
    ```
3. Samples wiil je roilec:es i-ォ in reacior vessel.
b. Samples will be individual chunks of depris and/cr small gravel/itines whose volume will not exceed the volume of the cavity of the debris oucket in the debrij shielded ccintainer. (See Sミc:ion 1.3.1.2)
c. Other samples will be short sections of fuel rod fins whose volume will not exceed the volume of the fuel pin sampie cells. (See Section 1.3.1.2.)
7.1.8.2.1.3 Plgcompnt of samolos in debris ehiolded Container

Place the sample in the appropriate debris bucket or fuel pin sample cell within the shielded container.
7.1.8.2.1.4 Closura of Container

Ciose the lid on the debris shielded container.
7.1.8.2.1.5 Qrainer Container zed Samelo
a. Raise the platform with the debris shielded container(s) above the surface of the water.

    to srain anc zria-ity uñii ac water \(i=\)
    ais:harzed from :he containeri:
    c. iighten the lid locking bolt and jam
        nut on the container(s).
7.1.3.2.1.5 Placament of badod Dapris Shiolded containers in 22 yescels
a. Weigh the loaded shielded debriscontainer(s) after draining.
b. After a debris shielded container isthoroughly drained and weighed.transfer the container to a \(2 R\) vessel.Shore up the debris container in the \(2 R\)vessel as shown. (See Section 1.3.1.3.)
7.1.3.2.1.7 close \(2 R\) vescel per orescribed precedures
Lodoing Cask with \(2 R\) Vessels
Verify that the total net weight of thesamples to be placed in the shippingcask is less than 15.4 kg .
a. Place shoring for the first \(2 R\)vessel in the l-13C II cask. (SeeSection 1.3.1.3.)b. Transfer the first \(2 R\) vessel to the1-13C II cask, being sure thatvessel is aligned per shoringdrawing.
c. Place additional shoring over the first vessel and repeat the transfer and shoring procedure for the second and third vessels.
7.1.9 Remove the 110 shims and secure the 110 to the cask body by torquing the 12 lid bolts to \(270 \mathrm{ft}-\mathrm{lbs} \pm 10 \%\) lubricated \((360\) \(f t-1 b s \pm 10 \%\) dry).
7.1.10 Verify the leaktightness of the assembled package prior to each shipment according to Section 8.1.3.
7.1.ll If cask has been removed from lower overpack for loading, use lifting ears to place it back in lower overpack on transport vehicle. Remove lifting ears.

NOTE: UPPER OVERPACK WILL NOT FIT ON CASK TOP AND RATCHET binders cannot be tightened if lifting ears are left on cask.
7.1.12 Verify that package is orlented on transport vehicle per figure 7.1.1-1. Verify that distance from cask centerine to transport vehicle tledown lug is 76 inches.
7.1.13 Install the overpack, verlfying that tledown lugs are orlented to traller tiedown assemblies and that ratchet binder lugs are allgned vertically.
7.1.14 Attach and tighten ratchet binders attaching upper overpack to lower overpack.
7.1.15 Inspect the package for proper labeling required to meet applicable regulations.
7.1.16 Secure package to transport vehicle using approprlate liedowns.

\subsection*{7.2 Procedures for Unloading the Package}
7.2.1 Move transport vehicle to unloading site.
7.2.2 Perform a visual inspection of unopened package exterior. Record any significanil observations.
7.2.3 Repeat steps 7.1.1 to 7.1.3 above.
7.2.4 Loosen drain and vent plugs six (6) turns to vent pressure generated by decay heat.
7.2.5 Repeat steps 7.1.4 to 7.1.5.
7.2.6 Unload casi.

\subsection*{7.3 Preparation of Empty Packages for Transport}

The 1-13C II shipping package requires no special transport preparation when empty. Standard loading and unloading procedures outlined above shall be followed.

\subsection*{7.4. Procedures for Shlpment of Packages Which Generate Combustible Gases}

Procedures for preparing packages for shipment which radiolytically generate combustible gases are outlined below. These procedures are divided into two categories:
a. Combustible gas control by inerting, and
b. Combustible gas suppression.
a. Dewater the secondary contalner. The bulk of the free water is removed from the secondary contalner by displacing the water with nitrogen gas.
b. Inert the secondary contalner (and, If necessary, the cask). The inerting operation is done at the dewatering station just before the cask is loaded. Inerting is performed if the hydrogen generated will be greater than \(5 \%\) in any portion of the package. Inerting is Intended to limit the oxygen that is radiolytically generated. If a leak path can develop between the secondary contalner and the cask. the cask will also be inerted. (The inerting of the cask shall be performed according to a special procedure.)
c. Sample the gas in the package (and cask, if inerted).
d. Load the secondary contalner.
7.4.2 Combustible gas suppression
a. Dewater the secondary container.
b. Install the combustible gas suppression system (e.g., a vapor pressure catalytic recombiner).
c. Sample the gas in the secondary container and measure static pressure. This will assure that the combustible gas control method is working properly.
d. Load the secondary contalner.
```

Biujns 7.i.i-i

```


-..........

\section*{3.2 decerizane Tusis}
 pe: iosmed on the i-13C II package.
3.2.1 U:sual inspection

The entire pacixage, boch inside and out, shall be visually inspected prior :o losding, noting ang significant damage (caacks, punciures, broken Welds, etc.). Exeerior stemells and nameplates must be la place and legible. Seals and bolts must be in place and in good condition.

\subsection*{8.1.2 Structuril and Peessure Tests}
io structural or pregsure ceatias is required.

\subsection*{8.1.3 Leak Tests}

The package shall be leak rested before fisst use in accordance uith the
 Fabricarion Verification. The packaze will be leak rested every taclve months thereafter in accordance with the requirements of Allis 14.5, Paragraph 6.3.1 for periodic testing. After the third use of the package and whenever any gasket or seal is replaced, it will again be tested co the same levels as the fabrication verification test. dil the above tests will be per che leak test procedure of Appendix 8.3.

The flat lic aeal will be leak tested after each loading with radioactive material prior to shipment in accordance ulth the assembly verification test procedure (dppendix 3.3).




 sab-1cacion.

A 8 ama scan or equivalent test shall je performed on the l-iaC II pacliage polor to lalzial use : 0 detect any shieldi.ag deficiencies faon lead volds equal to or greater ihan \(10 \%\) of shielding thickness.
8.1.6 Thermal Acceprance Tes:a

No thermal acceptance test w111 be performed on the 1-13C II package. Please refer to Section 3.0 for thermal evaluation.

\subsection*{8.2 Maintenance Progiam}

The owner (US DOE) is committed to an ongoing preventative maintenance program for all shipping packages. The 1-13C II package will be subjected to routine and periodic inspections and tests as outlined in this section and DOE approved procedures.

\subsection*{3.2.1 St-ictural and Pressure Tesss}

Rourine visual examinations will be performed to detect damage or defects significant to package condition. Exterior stencils, nameplates, seals and bolts will be verified in place.

\subsection*{8.2.2 LeakTest}

Leak test procedures are discussed in dppendix 8.3.

\subsection*{8.2.3 Subsystem Maintenance}

The cask does not have any. subsystems.

\section*{}
danal =epiacement ixil be aade of all seals and gaskets.

\subsection*{3.2.5 Six:2dins}
: 0 o testa are zefuired for shielding pe:iozmance other than normai E=ansporiation compliance surveys.
3.2.6 Thermat
io theran teses are requitred.

APPEILDIX 8.3
2.3 ..... ECOPE
1.: P2:20seGhis proced:ae olil be used dn performance of Halosen Gas Leak玉es=ing of the 1-iEC II I:anspo:= Cask.
\(\therefore .2\) dpplisabllivy
This proceduze establishes the method for fabitcationverification, thifd use, annual and/or seal replacement leak=esting.
10-E: THTS POOCEDUPE TS HOT TO BE USED FOR ASSEMELZ VERIEICATIOH OF \& LOSDED CiSR
2.0 RETEREMCES
2.1 AUSI N14.5-1977, American National Standard for leak test onpackages fer shipment of radioactivec materials.
'2.2 Gencral Electeic Operating Instructions "The Eeriet LeakDetector" Ijpe K-25, No. 198-4540K15-001F, Dated 1/81.
2.3 CiiSI Drawing 1-436-111, Rev. D, sheets 1 and 2.
2.4 1-13C II Cask Handilng Procedure, TR-OP-026.

\section*{}
 วこっceさコこe．
4.0 DESCRTPTIOI

Leak cesti：n is performed to verifig the integrity and profer sealing of
 cask \(1 s\) pressurized and afier 10 ainutes the potential areas of leakage are checked．If leakage in excess of the specified acceptance citteria 1s detected，the cask mugt be disassembled to repair the leaks．

\subsection*{5.0 PECUIREMETTS}

5．1 Prereguisites
5．1．1 interior and exterior cask surfaces shall be clean and
Eree of concaminants which could affect leaje cest
sensicivicy．
5.2 Equipment

5．2．1 Leak Detec：or－General Electric Ijpe H－25＂The Eerret
Leak Detector＂or equivalent equipment．

5．2．2 Pressure Gauge－A gauge capable of indicating requized pressure uith a calibrated accuracy of \(\pm .25^{\circ}\) of gauge reading．

S．2．3 Temperature recording equipment capable of reading wichin \(\pm 2^{\circ} \mathrm{g}\) ．
 2－12；shall be ：he halozen gas．

5．2．5 Zュs：ミiz idaptor
5.0 E：TIEDiMENEAL CoMDIT：OHS

Ambent cond：ニ！ens
7.0 SPEC：HL Pasciuntonis

Proper radiolozical precautions should be used to prevent the spread of contamination which may oe present．
3.0 PROCEDUPE

8．1 Leak Detector Preparation
（1）Leak detector is to be callbraced and operated in accordance with zeference 2．2．
（2）Temperature measuring equipment shall be artached to cask with the temperature reading recorded．
（3）Callbration of the leak detector shall be established at .21 ounces／year for Freon R－12．（ \(3.86 \times 10^{-5} \mathrm{ATM}\) －ec／sec）
a． 2 Discussion of allowable leak rates derived from containment Section 4.0 of 1－13C II Safety Analysis Report．
 cask cha: :est.



mitere:
\(T_{x}=\) Cask Zemperatire, \({ }^{0} K\)
\(?_{t}=\) Requized Charge Pressure, \(\mathrm{AT:1}\)
\(L_{s}=\) ?emissable Standa:d Leak Race (Dry alz at \(25^{\circ} \mathrm{C}\) ard AT:1)
\(1.34 \times 10^{-5}\) init - ce/sec
 cs/sec)
3.3 Leak Testins
(1) Check all suzfaces with defector to determine cask is free of residuai halides :hich could affect test.
(2) Clean any surfaces found to have hallde levels above backbrcund irdications.
(3) Examine flat zasket and 0-rinz for damase or deterioration and replace as applicable.

(s) Recera zenpe:atuze =easurement ot caski.
(5) Coreect R-12 E:eon scurce to the cask d:ain pori using tes: :is adapta=
(i) P:essurize cask to the proper level as deterained by vaiue from figure 1 and record pressure
(3) ailod 10 ainuees diall time after pressu:ization of casis.
(9) Using leak detecior check area around vent and eest ris adaptor assembly for halides and record resulcs.
(10) Zemove vent seal plug and check orifice for halides and record results.
(11) It :esults of leak checks are acceptabie, proceed to next step.
If leakaze in excess of acceptarce level is detected, disassemble cask and inspect for damaga to the seals, cask, and test ris.

Return to 8.3 ( \((\) ) and repeat test and record results.
(12) Close off pressure line to cask drain port leaving cask pressurized and remove freon R-12 source.


(:3) Recormec E:eon ミ-:2 scurce a= vent po:t.
(14) Pressurize (area between gasket and 0 -ring) :o the establisned pressure from Eigure 1. Record pressure.
(15) Ailou \(: 0\) minties duell tame after pressurizacion of cask.
(16) Using ieak detector check area around contact surface between lid and cask, bolt connection areas, vent port and test ris adaptor assembly. Record Results
(17) If resulta of leak check are acceptable, proced to next step. If leakage rate in excess of acceptance criceria is detected, disassemble cask and inspect for damage to seals and casks surfaces. Repeat test as required. Record Results
(18) Record Temperature
(19) Verify the following leak checks have been completed:
(a) Vent and drain pores
(b) O-ring seal
(c) Flat gasket seal.
 azea. (Selease of R-iz dizecily \(=0\) Eest equizinent may cause camage.)
(2:) Remove Ezeon R-i2 sounce and open rent and deain pores to reiease pressure.
(22) Semove lid ard clean cask as necessary to remore zesidual halczen.
(23) Reassembie and prepare cask for shipment in accordance - ith Reference 2.4.
5.0 RECORDS, REPORTS AHD MOTEETGATIONS
5.1 Reports

Each leak test performed shall be documented by a repore which shall include as a minimum:
(a) Type of test - annual, sasket replacement,
(b) Equipment and callbration data,
(c) Temperature of cask surface prior to and after test
(d) Cinarze pressure of Ereon R-12,
(e) Results of all leak checks performed, and
(f) Date and signature of test operator.
5.2 Motifications

Any problems encountered during testing which will adversely affect test results shall be forwarded to US DOE representative for resolution immediately.

\(\therefore 2\) 5:5?

\section*{}

2h:s procedure will be used to petorm Halogen Gas deak Testing

2.2

This procedure establishes :he eethod fo: assembly verdetcation, leax testing prior to each shipment of a loaded i-13C II :ranspor: cask.

 LEATHESTS.

\section*{2.0 \\ }
2.1 ANSI \(\operatorname{ll} 14.5\) - 1977, Anerican Nat!onal Standard for leak test on packages for shipment of radioactivec matestals.
2.2 General Elecirtc Operating Instructions "The Ferfet Leak Uezector" ijpe H-25, :1c. 198-454CK.5-001r, Dazed 1/81.
2.3 CiSI Drawing 1-436-111, Rev. D, sheets 1 and 2.
2.4 1-13C II Cask Handling Procedure, TR-DP-026.
```

ま.: ?=ロ=ッquis:ces

```

```

 a:i phases o: chis ieari =est.
 3.1.2 The casir sial:l be e:camined v!sualig for we\d !nteg=i:%
 and cend!:{or of gas%et ard leak sur:aces.
 3.i.3 Cask surfaces shal: be clean and Eree of contaminants
 which could asfect leak test sens!tiv!t%.
 3.2 Tools, Materials and Equipment
The folloving equipment is required for Halogen Gas Leak Testing:
(1) Leak Detector - General Electrlc Type H-25 "The Ferret
Lesk Detector" or equ!valent equipment.
(2) Pressure Gause - A gauge capable of incicating required
pressure with a calibrated accurac% of 土 . 25% of gauge
zcading.
(3) Temperature recordine equ!pment capable of reading
wth1n }\pm2\mp@subsup{2}{}{\circ}\textrm{F}
(4) Malogen Gas Source (dichlorodifluoromeshane freon R-12)
shall be the halogen gas.
(5) Test R1\& Adapter

```

\section*{4.0 zeocenios}
A.) -a3: Detectar peparaston
 accordance w: : Reiere:ace 2.2.
(2) : mperature messuring equipment shall be attached to cask r!th :he =emperature reading zecorded.
(3) Callbration of the leak detector shali be established ar . 50 oz/yr for Freon R-12.
4.2 Discussion of allowable leak rateg derived from containment Section 4.0 of 1-13C II Safety Analysis Report.

The following calculations are show for the deteralnation of cask charze pressure based on the amblent temperatare at time of teat.
nOTE: THE GRAPH, FIGURE II, DEPICTS THE RESULTS OF THESE CALCULATIONS AID.WILL BE USED FOR ALL HOPMAL CORDITIOHS AT THE TIME OF LEAK TEST.


Where:
\(T_{k}=\) CLsk Temperature, \({ }^{\circ} \mathrm{K}\)
\(P_{t}=\) Required Charge Pressure, Ac:m
\(L_{3}=\) Permissable Standard Leak Race
\[
5.0 \times 10^{-4} \mathrm{Atm}-\mathrm{cc} / \mathrm{sec}
\]
```

 In = Derecior Sensi=i:izy = 0.ミ0 oz/yr
 2.3 Leak Tes:{.az
(:) Ye:!z:% cask :ias been prepared in ac=o-sance נ!:h
Reference 2.j and is ready for shipment.
(2) Check all surfaces ofth detector to detem:ine casi is
f:ee c: zes!dual ha!tdes *hich could atcect Eest.
(3) Clean any surfaces found to have hal:de levels above
background lacications.
(4) Record temperacure measurement of cask.
(5) Remove vent plus and connect R-12 Freon source to the
cask rent port.
(6) Pressurize cask to the proper levei as determined by
value from Flgure II. Record Pressure
Allow lo minutes dwell time after pressurization of
cask.
(3) Using leak detector, check area around contact surface
between lid and cask, bole conrection areas and test
ris adapter assembly. Record Results

```
(?)
5.0

> Record temperature
> (ii) Jurn off and remove leak testing equipment from test 3:ea. (Reiease of R-i2 directiy to test equipment may cause damage.)
> (12) Remove freon R-12 source, release pressure, and
> (23) Use appropriate means to purge Freon gas from cask.
> (ia) Complete cask assembly and prepare for shipment in accordance with Reference 2.4.
> : = =esults of leak check aze acceprabie, precest to
c:tes:ia ts detecteu, disassemble cask and tasfec: for
damage to seais and cask suriaces. Zecord Resulis

RECORDS. REPORES AHD MOTIEICATIOUS
5.1 Reports

Each leak test performed shail be documented by a report which shall include as a minimum:
(a) Type of test - assembly verification
(b) Equipment and callbration data,
(c) Temperature of cask surface prior to and after test,
(d) Charge pressure of Freon R-12.
(e) Results of all leak check performed, and (f) Date and signature of test operator.
シ.2 :ictifications
in: probiens encountered during testing which wlil adyerselyaffec: ecst resulta shall be fordarded to DOE representative Eorresolution temediately.
5.3 Records
A leak check data sheet shall be fordarded to रua: t:y issurancedepartment.
```


[^0]: $-$
 TADLI 2.7.1-1

[^1]: *Shappert, L.B., "Cask Designers Guide:, ORNL-NSIC-68, Page 64.

[^2]: * () Denotes element number.

[^3]:

[^4]: Stresses, 200 watts, 1-13C 1

[^5]: II วยt-:

[^6]:

