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A FLUID MECHANICS MODEL TO ESTIMATE THE LEAKAGE OF
INCOMPRESSIBLE FLUIDS THROUGH LABYRINTH SEALS

J. T. Han

ABSTRACT

An analytical model for estimating the leakage of incom-
pressible fluids through straight labyrinth seals is described.
Results from the model are in reasonable agreement with the
limited data available. The mass leak rate is shown to be
proportional to the seal clearance and pressure drop in the
following functional dependency: M C a(Ap)b, where 1.5 < a
< 3 and 0.5 < b < 1.

INTRODUCTION

Labyrinth seals [1-7] have been used in steam turbines and compres-

sors to reduce flow leakage for many years. These seals utilize a laby-

rinth path to increase resistance to flow.

Egli [1] developed a theoretical model for calculating the leakage

of compressible fluids (gases). Using the ideal gas law and assuming

isentropic expansion for the gas passing through each throttling passage

of the seal, he derived an equation showing leakage as a function of seal

inlet pressure and specific volume, seal outlet pressure, and total number

of throttlings in the seal. However, empirical coefficients in his equa-

tion were determined from superheated steam data. Other similar analyti-

cal studies and empirical correlations for gases can also be found in the

literature [2-7].

Recently, labyrinth seals have been used in the test section of two

sodium-cooled THORS pin bundles [8,9] to reduce the leakage and to account

for the differential thermal expansion between the heated test section and

its housing. The correlations for gases [1-7] are probably inapplicable

to sodium, and therefore a method for estimating the leakage of incompres-

sible fluids through labyrinth seals was needed.

This report presents an analytical model for estimating the leakage

of incompressible fluids through straight labyrinth seals. Recent de-

velopments [10-28] in theoretical (including numerical solutions) and
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experimental studies of the recirculating flow inside rectangular cavities

and of the channel flow between parallel plates (including the entrance

and exit effects) have been incorporated into the model. The approach

used in the model is different from that of previous ones in which the

gas-dynamics laws with some empirically determined coefficients were used.

In the present model, as well as previous ones [1-7], the straight

labyrinth seal is assumed to be stationary. The effect caused by the

rotating shaft of some of the seals has been experimentally found to be

small [1]. Furthermore, the analytical results by Tao and Donovan [29]

have also indicated that the rotating effect of the shaft is insignificant

for flow in a narrow annulus.

ANALYTICAL MODEL

Labyrinth seals are normally used in annular passages. Figure 1

shows the two kinds of straight labyrinth seals discussed here: rectangu-

lar cavity and helical thread types. Assumptions used in the present

model are (1) constant fluid properties based on average temperature and

pressure in the seal; (2) R/C >> 1 for cavity-type seals (see Nomenclature

for definition of symbols) and R/C >> 1 and also 2rR/S >> 1 for helical-

thread-type seals so that the flow can be treated as two dimensional in

the seal; (3) finite cavities and threads (e.g., H/B < 5 and A/B < 5);

and (4) Re = UB/v > an order of 100.c

The flow of fluid through the seal is driven by the pressure dif-

ference between the seal inlet and outlet. Letting AP be the "average"

driving pressure drop across each throttling of the seal (as represented

in Fig. 2),

AP 1 Pi -- Pou -- C PgL -- (Kc + Ke) T ' (i)N I i out 1c e u2

where C = 0 if the seal inlet and outlet are at the same elevation and

C = 1 (or C = -1) if the seal inlet is located vertically below (or
1 1

above) the outlet. The last term in Eq. (1) is the pressure loss caused

by the contraction and expansion of flow area at the seal inlet and outlet,

respectively [10].
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Fig. 1. Two kinds of straight labyrinth seals: (a) rectangular
cavity, (b) helical thread.
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Fig. 2. Friction drags in a unit of seal throttling: (a) rectangular
cavity, (b) helical thread.

For fully developed flow in the channel between two parallel plates

[11], AP is equal to the sum of various friction drags exerted on the flow

by the inner wall (Di), the outer wall (D 2 ), and the cavity flow (D3 ) as

shown in Fig. 2. Thus,

AP = (Di + D2 + D 3 )/(CW) (2)

For flow in the hydrodynamic entry length of the channel [11], the

right-hand side of Eq. (2) should include a term to account for the

increase in the total fluid momentum flux between the outlet and inlet

of the throttling. To simplify the equation, the momentum flux term is

included in the terms of D1 and D2 to be defined later. There is no

gravity term in Eq. (2) because it has already been taken into account

in Eq. (1).

The incompressible flow in the channel is approximated by the ideal

channel flow without the presence of cavities or threads and can be either

laminar or turbulent, depending on its Reynolds number. For laminar flow

in the channel [11] with Re = U2C/V < 2000, we have

D1 = 6C 2 PVSWU/C (3)
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and

D2 = 6C 2 pV(S - B)WU/C , (4)

where C2 is the laminar entry-length coefficient to account for the larger

pressure drop in the hydrodynamic entry length (above that in the fully

developed region) caused by the increase in the fluid momentum flux and

a larger viscous friction at the wall. (C 2 is generally greater than

unity and will be approximately equal to unity for the channel flow with

a much longer, fully developed region than the hydrodynamic entry length.)

For turbulent flow in the channel with Re > %2000, friction drags

are given either in empirical formulas or in the Moody diagram [12]. The

Blasius formula was chosen for the present study because of its simplicity

and accuracy:

To = 0.03955 oU 2 Re-°025 (5)

which is in excellent agreement with experimental data, at least up to

Re = 100,000.

Substituting Eq. (5) into D1 = C 3 ToSW and D2 = C 3 TO(S - B)W yields

D1 = 0,0333C3 p(V/C) 0 " 2 5 sWU1" 7 5  (6)

and

D2 = 0.0333C3 p(V/C) 0' 5 (S - B)WU1 7 5
, (7)

where C 3 is the turbulent entry-length coefficient (Ca • I).

The magnitude of drag D3 is equal to the shear force of the channel

flow exerted on the cavity flow (or flow inside the thread) to maintain

it in motion; therefore, D3 is equal to the flow resistance exerted on the

cavity flow by the cavity walls (two side walls and one bottom wall). In

order to estimate the value of D3 , one must understand the characteristics

of the flow inside the cavity (or thread).

A number of experimental and theoretical (including numerical solu-

tions of the governing equations) studies have been performed to investi-

gate the recirculating flow inside rectangular cavities of various height-

to-breadth ratios [13-28]. Batchelor [13] proposed that at large Reynolds
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numbers (Re = UB/V), two-dimensional cavity flow can be divided into twoc
regions: an inviscid core of uniform vorticity and a boundary-layer region

adjacent to the wall, as shown in Fig. 3. Based on Batchelor's idea, Squire

[14,15] solved the laminar boundary layer equation for flow inside a cylin-

der. Roshko [15,16] obtained velocity and pressure profiles on the walls

of a square cavity (H = B = 102 mm) in a wind tunnel. Figure 4 shows his

velocity measurements along the line normal to the midpoint on each of the

cavity walls at two external velocities; it is clearly shown that the

boundary-layer region does exist along the cavity walls, as Batchelor

suggested. Furthermore, the velocity at the outer edge of the boundary

layer (U c) is approximately 25 to 45% of the external velocity.

Although the boundary layer on the cavity walls (Fig. 4) will be

somewhat different from that on a flat plate because of pressure varia-

tions [16] inside the cavity, it is assumed in the present study that the

boundary layer along each of the three cavity walls is approximated by that

on a flat plate. (For instance, the boundary layer along the bottom wall

is approximated by that on a flat plate with its origin at the lower right

corner of the cavity.) If we introduce a modified cavity Reynolds number

(Rek) based on the maximum boundary layer velocity (taken Uc = 0.4U)

instead of external velocity (U), its value (using air properties at

ORNL -DWG 78 4769

U
DIVIDING STREAM LINE

jt ICORE
,.___-_ _

BOUNDARY LAYER

Fig. 3. Batchelor's cavity-flow model: an inviscid core of uniform
vorticity surrounded by a boundary layer region (Squire [14]).
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Fig. 4. Experimental velocity profiles on the walls of a square
cavity (H = B = 102 mm) at two external velocities (Roshko [16]).

room temperature) is found to be 170,000 and 61,000, respectively, cor-

responding to U = 64.0 and 22.9 m/s (Fig. 4). These values are still

below the upper limit of the Reynolds number, approximately at 500,000

for the laminar boundary layer on a flat plate [12]. Using Blasius'

solution [12] with 6 = 5.0 [VB/(2U c)] .5, one finds the laminar boundary-

layer thickness at the midpoint of each of three cavity walls (note that

H = B) to be at 6/B = 0.0086 and 0.014, respectively, for U = 64.0 and

22.9 m/s. These values are in excellent agreement with Roshko's experi-

ment (Fig. 4). Therefore, the use of flat-plate boundary-layer approxi-

mation is justified, at least for Roshko's experiment.

Batchelor [13] did not specify the lower limit of the cavity Reynolds

number (Re c) to sustain the boundary-layer flow on the cavity walls. How-

ever, from Roshko's experiment (Fig. 4) at cavity Reynolds numbers of the

order of 100,000, the boundary-layer flow did exist. All other experimen-

tal investigations [17-21] were devoted to flow visualization studies to

determine the sizes and locations of recirculating vortices inside rectang-

ular cavities of various height-to-breadth ratios; and therefore, it cannot
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be determined from those studies whether or not the boundary layer flow

exists along the cavity wall.

Numerical studies for laminar cavity flow have been reported in the

literature [17-18, 22-28]. Either the full Navier-Stokes equations or

the creep flow equations (Re ÷- 0) were solved numerically on a computerc

with Rec as high as 50,000. Figure 5 shows the streamlines and vorticity

distributions inside a square cavity calculated by Burggraf [22] (with the

top wall moving from the right to left). At Re < 100, there is no suchc

core region of constant vorticity; however, at Re = 400, the centralc

region of the cavity has a somewhat uniform vorticity. Figure 6 shows

Burggraf's velocity profiles on the vertical centerline of the square

cavity at various values of Re . (He obtained the result analytically atc

Re + - by using a linearized model for an eddy bounded by a circularc

streamline.) If the Blasius solution [12] is used to estimate the boundary-

layer thickness at the midplane of the bottom wall with Re = 400 (arbi-c

trarily using air properties at room temperature, U = 0.3U as shown inc

Fig. 6, U = 0.4 m/s, and B calculated from Re = 400 as 0.015 m), ac

value of 5 = 0.32B is obtained; this value is in excellent agreement

with that shown in Fig. 6 with the peak velocity at 6/B = Y/B = 0.3.

Therefore, in this report it is assumed that the boundary-layer flow exists

along the cavity walls at Re of approximately 400 or higher. Note thatc

the corresponding boundary-layer Reynolds number in the cavity (Re =

U B/V = C4 Re , where 0.25 < C4 < 0.62 as shown in Figs. 4 and 6) is at

least 100 or higher, which indeed satisfies the Prandtl assumption [12]

that the Reynolds number should be at least two orders of magnitude greater

than unity in order to have boundary-layer flow on a wall. (It is worth

noting that in a recent paper, Nallasamy and Krishna Prasad [23] concluded

from their numerical solutions for square-cavity flow that only at Re c >

30,000 will the cavity flow "completely" correspond to the Batchelor model,

where an inviscid core of uniform vorticity is surrounded by a boundary-

layer region next to the wall. However, the author believes that the value

of 30,000 is much too high for practical applications because the calculated

vorticity variations in the entire cavity core at Re = 30,000 are very
c

small -- less than 1% from a. constant value as shown in [23].)
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of a square cavity

In summary, in the present model the boundary-layer region on the

cavity walls (two side walls plus the bottom wall) is approximated by

that on a flat plate with each cavity wall being treated as a single plate;

the drag D3 is equal to the sum of friction forces exerted on the cavity

recirculating flow by the cavity walls. By use of the friction formulas

for flow on a flat plate [12], the following equations are obtained for

estimating D3. (The value of D3 in a deep cavity with H/B > 1 is taken to

be the same as that in a square cavity. Justifications will be described

later.)

Labyrinth Seals with Rectangular Cavities '(Fig. 2a)

For a laminar boundary layer on the cavity wall with Re < 500,000,

we have

D3 = 0.664pv0 " 5 WU 1 .5 (B 0 . 5 +-2H 0 . 5 ) for H/B < 1 (c 8)
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and

D3 = l.992pv°'sWB '5U 1.5c for H/B > 1 (9)

For a turbulent boundary layer on the cavity wall with Re k > 500,000,

we have

D3 = 0.036pv 0 .WU 1.8 (B 0 . 8 + 2H 0 . 8 )c for H/B < 1 (10)

and

D 3 = 0.108pv 0 .2 WBE' U 1.8
C for H/B > 1 . (11)

Similarly, for recirculating flow inside a thread (Fig. 2b) it is

also assumed that the boundary-layer flow exists along two lateral walls

of the thread at Re c an order of 100 (based on the thread breadth).

c
Labyrinth Seals with Helical Threads (Fig. 2b}

For a laminar boundary layer on the thread wall with ReX < 500,000,

we have

and

D3 = 1.328pvo- 5 WA°' 5 U 1.5
c

D3 = 1.328p0 °' 5WB°' 5U 1.5
c

for A/B < 1

for A/B > 1

(12)

(13)

For a turbulent boundary layer

we have

D3 = 0.072pv0
. 2WA°' 8 U 1.8

c

and

D3 = 0.072pv -2WBE'8U 1.8
c

on the thread wall with Re P, > 500,000,

for A/B < 1 (14

for A/B > 1. (15

)

)

Equations (9) and (11) apply for both square and deep cavities with

H/B > 1, and Eqs. (13) and (15) apply for the threads with A/B > 1.

Justifications for doing this are described below. For recirculating flow
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in a square or shallow cavity, there are generally a primary vortex in the

core and two small corner vortices on the bottom wall (Fig. 5). (The latter

are driven by the shear force from the former.) As the height of the

cavity becomes larger than its breadth, experimental flow visualizations

[17,18] and numerical solutions [17, 18, 25, 26] for H/B = 2 have shown

that a second core vortex exists underneath the primary vortex, which is

located right underneath the moving (top) wall. However, numerical solu-

tions have shown that the recirculating speed of the second vortex is

approximately two orders of magnitude smaller than that of the primary one.

As the height of the cavity becomes larger than twice its breadth, there

may be more than two vortices in the cavity. Numerical solutions of

Pan and Acrivos [18] with H/B = 5 show that there are four vortices in

the core - the primary vortex is on top, followed by the second, third,

and fourth. The recirculating speed of the second vortex is also approxi-

mately two orders of magnitude smaller than that of the primary one and,

in turn, the speed of the third one is about two orders of magnitude

smaller than that of the second.

The important point is that in a finite cavity (H/B < 5), the pri-

mary vortex is predominant over the other vortices in the core and its

height (defined as the vertical distance between the top cavity wall and

the lower stagnation point of the vortex) is approximately equal to one

cavity breadth. This is the reason that, for flow in a deep cavity

(H/B > 1) with a finite depth (H/B < 5), the drag D3 that acts on the

main channel flow in the seal (Fig. 2) is taken to be the same as that

in a square cavity [see Eqs. (9) and (11)].

However, this statement may no longer be valid for flow in an in-

finite cavity (H/L ý 10); the experiment of Pan and Acrivos [18] for flow

in a cavity with H/B = 10 (to simulate the infinite cavities) showed that

the height of the primary vortex increases from a value of 1 B up to 1.7 B

as Re increases from approximately 340 to 4000. (They also indicated thatc

the height of the primary vortex is approximately proportional to (Re )0.5

c
in the range of 1500 < Re < 4000, the highest value in their experiment.)

For recirculating flow in a thread as shown in Fig. 2b, the author

has found no flow visualization studies nor numerical solutions in the
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literature. However, it is likely that the arguments for rectangular

cavities can also be applied to the threads with various values of A/B.

The maximum boundary-layer velocity in the cavity is given by

U =C 4 U ,c (16)

where C4 is approximately in the range of 0.25 to 0.62 (Fig. 6).

Substituting Eqs. (3) through (7), Eqs. (8) through (11), and Eq. (16)

into Eq. (2) yields the following equations for various flow conditions in

straight labyrinth seals with rectangular cavities (Fig. la).

For laminar channel flow and laminar boundary-layer cavity flow with

Re j 2000 and Rep 9< 500,000, we have

AP = 6C 2 PVC
2 (2S - B)U + 0.664pv0• 5 C- 1

x (B°- 5 + 2Ho.)(CU)'-s for H/B < 1 (17)

and

AP = 6C 2 pVC-2 (2S - B)U + 1.992pV' 5

X C 1 B0 5_(C4U) 
1 .5 for H/B > 1 . (18)

For laminar channel

with Re < 2000 and Re) >

flow and turbulent boundary-layer cavity flow

500,000, we have

AP = 6C 2 PVC 2 (2S - B)U + 0.036pV '2C-1

X (B0"8 + 2O8(O " for H/B < 1 (19)

and

AP = 6C2PC-2 (2S - B)U + 0.108pvo' 2

x C-1B°'8(C4U)'. for H/B > 1. (20)

For turbulent channel flow and laminar boundary-layer cavity flow

with Re > 2000 and Rez < 500,000, we have

AP = 0.0333C3 pV 0 ' 2 5C1-"2 5 (2S - B)U 1 "7 5

+ 0.664pv• 5 C-'(B 0 . 5 + 2H°0 5)(COU)5' ffor H/B < 1 (21)
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and

AP = 0.0333C3P
0 0. 2 5'C-"25(2S - B)U1".1

+ l.992pv0' -5C- B0 5(C4U)1'
5 for H/B > 1 (22)

For turbulent channel flow and turbulent boundary-layer cavity flow

with Re > 2000 and Re z > 500,000, we have

AP = 0.0333C3PV0 ' 2 5C -1 2 5 (2S - B)U'.7 5

+ 0.036pv 0 2 C7'(B 0 + 2H0 -8 )(C 4 U) 1 8
for H/B < 1 (23)

and

AP = 0.0333C3P' .25C-1-25(2S - B)U1" 75

+ 0.l08pV0 .2 ,_B 0 '8 (C 4 U) 1 .8 for H/B > 1 . (24)

Similarly, substituting Eqs. (3) through (7), Eqs. (12) through (15),

and Eq. (16) into Eq. (2) yields the following equations for various flow

conditions in straight labyrinth seals with threads (Fig. lb).

For laminar channel flow and laminar boundary-layer thread flow with

Re < 2000 and ReP, < 500,000, we have.

AP = 6C 2 pVC- (2S - B)U + l.328p 0 °'C-'A 0A° 5 (C 4 U)'" 5

and

AP = 6C 2 pVC- 2 (2S - B)U + l.328p 0V 5 C 1'B 0 '5 (C4 U) 1 "5

for A/B < 1 (25)

for A/B > 1 . (26)

For laminar channel flow and turbulent boundary-layer thread flow

with Re < 2000 and Re > 500,000, we have

AP = 6C 2 PVC- 2 (2S - B)U + 0.072pV0 ' 2 C- 1 A' 8 (C 4 U)l" 8 for A/B < 1 (27)

and

AP = 6C2 PVC- 2 (2S - B)U + 0.072pv0 ' 2 C- 1 B°' 8 (C 4U) 1 " 8 for A/B > I . (28)
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For turbulent channel flow and laminar boundary-layer thread flow

with Re > 2000 and ReP, < 500,000, we have

AP = 0.0333C3PV0 ' 2 5 C-1. 2 5 (2S - B)U'.7 5

+ l.328p\V 0 5C_1A0 5 (CO)1 .5 ' for A/B < 1 (29)

and

AP = 0.0333C3PV0 .' 2 5 C- 1 . 2 5 (2S - B)U1"75

+ 1.328PV 0 5C-'BO 5 (C 4U)
1 .5 for A/B > 1 (30)

For turbulent channel flow and turbulent boundary-layer thread flow

with Re > 2000 and Re z > 500,000, we have

AP = 0.0333C3PV0.25C- .25(2S - B)U1'75

+ 0.072pv°' 2 C-1'A ' 8 (C4 U)1" 8

and

AP = 0.0333C3 PV '25C-1 25(2S - B)UI" 7 5

for A/B < 1 (31)

+ 0.072pv 0 2 C-'B 0 8 B(C4U)
1.8 for A/B > 1 .

Similarly, for laminar channel flow in a seal with no cavities or

threads, we have

AP = 12C2 PVC- 2 SU

For turbulent channel flow in a seal with no cavities or threads,

we have

AP = 0.0666C3 pV'. 2 5 C-1' 2 5 SU'1 7 5

(32)

(33)

(34)

In order to calculate the mean channel velocity U from one of the

equations given above [Eqs. (17) to (34)], the value of AP is calculated

first from Eq. (1) and then substituted into the equation chosen to ob-

tain U by trial and error, which is straightforward since AP monotonically

increases with U. Then the channel and boundary-layer Reynolds numbers
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(Re and ReP) are calculated (from U) to determine if the right equation has

been used in obtaining the channel velocity. As a first approximation to

the problem, it is recommended that the following values be used for the

coefficients: K = K = 0, C 2 = C 3 = 1, and C 4 = 0.4. The value ofc e

U thus obtained will be "larger" than the value obtained if the entrance

and exit losses of the seal as well as the hydrodynamic entry length of

the seal have been taken into account. However, if the value of U is

already tolerable, the calculation can be terminated. Otherwise, more

realistic values for those coefficients should be used.

The values of K and K perhaps can be estimated from those given inc e

Kays and London [10] (note that the maximum value of either K or K isc e

approximately equal to unity), the value of C2 or C3 can be estimated

from the velocity of the first approximation (obtained with C 2 = C 3 = 1)

with the use of existing friction coefficients taking entry length into

account as given in references [11,30], and the value of C4 can be esti-

mated from Fig. 6. Furthermore, since the turbulent channel flow will

become fully developed with a much shorter entry length (than that of the

laminar flow) and since the seal length L is generally much greater than

the clearance C, C3 = 1 is probably a good approximation. However, for

laminar channel flow in the seal (with Re < 2000), the flow will not fully

develop until a flow length of approximately 0.02 CRe has been reached

[11, 301; for the seal with L larger than this hydrodynamic entry length,

C2 TM 1 + 0.018 CRe/L, which is estimated by the present author from Han's

analytical result for flow in a channel [30].

The volumetric leakage through the seal is given by

Q = 27RCU , (35)

and the mass flow rate leaking through the seal is

M = PQ = 27TpRCU (36)

RESULTS AND DISCUSSION

Straight labyrinth seals have been used to minimize the flow leakage

in the test sections of two 19-pin sodium-cooled bundles, designated as
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THORS bundle 3C [8] and bundle 6A [9], to simulate the fuel assemblies

of the liquid metal fast breeder reactor (LMFBR). The seals are formed

in an annular passage with helical threads at the outer wall as shown in

Fig. lb and have the following dimensions: S = 3.05 mm, B = 0.6375 mm,

A = 1.23 mm, L = 25.4 mm, N = 8.33, R = 48.9 mm, and C = 0.0229 and 0.0343

mm for bundles 3C and 6A, respectively [8, 9]. Fluid properties used in

the calculations are for liquid sodium at the experimental temperature of

443%C (P = 845 kg/M3 and v = 3.05 x 10-7 m2 /s) and at 382%C (p = 860 kg/s

and V = 3.35 x 10-7 m2 /s) for bundles 3C and 6A, respectively. Equations

(1) and (26) are used with C1 = C 2 = 1, K = K = 0, and C 4 = 0.4.c e

Table 1 presents the volumetric sodium leakage Q through the laby-

rinth seal in THORS bundle 3C at various total driving pressure drops

across the seal [NAP defined in Eq. (1)]; the seal leakage is estimated

to be less than 1% of the total flow in the test section. Table 2 pre-

sents the volumetric sodium leakage through the labyrinth seal in THORS

bundle 6A, which has a seal clearance (C) 50% larger than that in bundle

3C; the seal leakage is estimated to be less than 2% of the total flow

in the test section. Since the seal leakage is no more than 2% of the

total test-section flow, it is deemed to be negligible.

The corresponding mass leak rates of sodium (M) passing through the

labyrinth seals in THORS bundles 3C and 6A are shown in Fig. 7. Obviously,

Table 1. Volumetric leakages of sodium through the labyrinth
seal in THORS bundle 3C (sodium properties

at 443 0 C are used in calculations)

Total Total Seal Percentage
test-section driving pressure leakage Q of total

flow drop NAP flow
[Z/s (gpm)j [kPa (psi)] [M/s (gpm)]

0.498 (7.9) 6.895 (1.0) 0.000360 (0.0057) 0.07
0.908 (14.4) 20.7 (3.0) 0.00108 (0.0171) 0.12
1.29 (20.4) 49.6 (7.2) 0.00258 (0.0409) 0.20
2.73 (43.2) 221 (32) 0.0114 (0.181) 0.42
3.71 (58.8) 379 (55) 0.0196 (0.310) 0.53
4.54 (72.0) 703 (102) 0.0362 (0.573) 0.79
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Table 2. Volumetric leakages of sodium through the labyrinth
seal in THORS bundle 6A (sodium properties

at 382 0 C are used in calculations)

Total Total Seal Percentage
test-section driving pressure leakageof total

flow drop NAP Weakge Q flow
[Q/s (gpm)] [kPa (psi)] M (gpm)] (%)

0.132 (2.1) 4.00 (0.58). 0.000630 (0.00998) 0.48
0.252 (4.0) 7.58 (1.1) 0.00119 (0.0189) 0.47
0.524 (8.3) 19.3 (2.8) 0.00303 (0.0480) 0.58
0.770 (12.2) 35.2 (5.1) 0.00551 (0.0874) 0.71
1.05 (16.7) 57.9 (8.4) 0.00909 (0.144) 0.86
1.57 (24.9) 110 (15.9) 0.0171 (0.271) 1.1.
2.07 (32.8) 174 (25.2) 0.0270 (0.428) 1.3
2.58 (40.9) 252 (36.5) 0.0389 (0.617) 1.5
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Fig. 7. Mass leak rate as a function of total driving pressure drop
and seal clearance for a straight labyrinth seal with helical threads.
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the mass leak rate increases with the driving pressure drop and seal

clearance. As the seal clearance is increased by 50% from 0.0229 to

0.0343 mm, the mass leak rate is increased by approximately 200%. (It

should be noted that slightly different properties have been used in cal-

culating the curves in Fig. 7. Nevertheless, the effect on the change of

seal leakage is insignificant.) From the energy balance using the flow

and temperature measurements in the pin bundles, it was estimated that

the leak rate through the seal was less than 10% of the total flow through

the experimental assembly; the analytical results shown in Fig. 7 and

Tables 1 and 2 are indeed within this range.

To further evaluate the validity of this model, comparisons were

also made with some existing gas data. Zabriskie and Sternlicht [4] cor-

related the mass flow rate as a function of P out/Pin for gas leakages

measured in a cavity-type labyrinth seal at two seal clearances (Fig. 5

of their paper). (Dimensions of the seal are S = 8.48 mm, B = 8.23 mm,

H = 9.53 mm, N = 29, and C = 0.584 and 1.37 mm.) Since the present model

is applicable to incompressible fluids only, the data chosen for comparison

are limited to those for which the value of P out/Pin is close to 1 and

the resulting Mach number (Ma) is still small [31, 10]. Table 3 presents

the comparisons between the experimental results [4] and theoretical cal-

culations, in which Eqs. (1) and (22) were used with C1 = K = K = 0,c e

C3 = 1, and C4 = 0.4 with air properties evaluated at average seal pres-

sure [= 0.5 (Pin + P out)] and an arbitrarily chosen temperature of 21'C.

Theoretical calculations are of the same order of magnitude as the experi-

mental results for gas, although the former are approximately 140 to 290%

higher than the latter. In calculations, the entrance and exit losses of

the seal as well as the hydrodynamic entry-length effect of the seal have

been neglected; otherwise, the resulting channel velocity in the seal U

should be'somewhat smaller and the comparisons would be better. Neverthe-

less, the simple model predicts the correct order of magnitude of fluid

leakage through the labyrinth seal despite the complex seal geometry in-

volved.

A topic of interest to a seal designer is the comparison of flow

leakage among labyrinth seals with cavities (Fig. la), with threads (Fig.

lb), and without cavities or threads. According to the model, the cavity-
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Table 3. Comparisons between experimental results [4] and theoretical
calculations for air passing through a labyrinth seal

Case No.

1 2 .3 . 4 5

C (mm) 0.584 0.584 0.584 1.37 1.37

Pout /Pin 0.83 0.80 0.71 0.83 0.80

Pt [kPa (psia)] 138 (20.0) 112 (16.3) 148 (21.4) 138 (20.0) 112 (16.3)in

U (m/s) 31 34 43 35 42
exp

Ucal (m/s) 75 80 107 136 145

U cal/Uexp 2.4 2.4 2.5 3.9 3.5

(U -- U exp)/U (%) 140 140 150 290 250

Ma = U /a 0.090 0.099 0.12 0.10 0.12
exp

*
Arbitrarily chosen values.

type seal offers more flow resistance than the thread type (due to three

walls in a cavity vs two walls in a thread), if all other conditions are

kept the same (e.g., C, B, L, S, fluid properties, and seal pressure drop).

A comparison of Eq. (18) with Eq. (26) shows that the second term on the

right-hand side of the former is 50% larger than that of the latter. The

same conclusion can also be reached by comparing Eqs. (20) and (28), Eqs.

(22) and (30), or Eqs. (24) and (32). Consequently, the flow leakage

through the labyrinth seal with cavities is likely to be smaller than that

through the seal with threads.

The comparison of flow leakage for a seal with cavities and that with

no cavities depends on several parameters, including seal clearance C,

cavity breadth B, cavity height H, fluid properties, and pressure drop

through the seal. For most designs, fluid properties and seal pressure

drop are given; by choosing various values for seal clearance and cavity

dimensions (generally under the constraint of the cost and operating con-

ditions of the system where the seal is in use), the seal leakage can be

estimated from one of Eqs. (17) through (24). The result can be compared

with the flow leakage through a seal with no cavities, which can be

easily calculated from either Eq. (33) or Eq. (34). One can then decide
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which type of seal to use in his system. Similarly, a comparison can

also be made between the seal with threads and that with no threads.

CONCLUSIONS

An analytical model for estimating the leakage of incompressible

fluids through straight labyrinth seals has been described. Recent de-

velopments in theoretical and experimental studies of recirculating flow

inside rectangular cavities and of flow in a channel have been incorporated

in the model to solve a practical problem. The approach used in this

model is different from those of previous ones for compressible fluids

in which the gas-dynamics laws with some empirical coefficients determined

from gas data were used. The seal leakages predicted by the model are in

reasonable agreement with those measured indirectly in sodium and those

obtained for gas at low Mach number and small pressure variations.

It can be concluded from this study that the labyrinth seal formed

with cavities (Fig. la) has less leakage than the one formed with threads

(Fig. lb) if all other conditions are the same. Furthermore, the fluid

leakage through straight labyrinth seals (for both cavity and thread types)

is strongly dependent upon the seal clearance and pressure drop: M - Ca

(AP) b, where 1.5 < a < 3 and 0.5 < b < 1.

NOMENCLATURE

A Lateral dimension of seal thread (Fig. 1)

a Speed of sound

B Breadth of seal cavity or thread (Fig. 1)

C Radial clearance of seal

C1 Elevation coefficient (IC 1 I j 1)

C2  Laminar entry-length coefficient (to account for the larger pres-
sure drop in the hydrodynamic entry length above that in the fully
developed region, C 2 Ž 1)

C 3  Turbulent entry-length coefficient (C3 ý 1)

C 4  Ratio of U /U (C 4 < 1)
c

D Drag force (Fig. 2)
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g Acceleration of gravity

H Height of seal cavity (Fig. 1)

K Abrupt contraction (entrance) coefficient at seal inletc

K Abrupt expansion (exit) coefficient at seal outlete

L Seal length in flow direction (Fig. 1)

M Mass leak rate [Eq. (36)]

Ma Mach number, Ma = U/a

N Total number of throttlings in seal, N = L/S

P Pressure

AP Average driving pressure drop of each throttling [Eq. (1)]

Q Volumetric leak rate [Eq. (35)]

R Radius of the annular seal passage or the channel (Fig. 1)

Re Reynolds number based on the hydraulic diameter of seal channel,
Re = U2C/v

Re Cavity (or thread) Reynolds number, Re = UB/Vc c

Re Reynolds number for boundary-layer flow inside the cavity,
Re k = U cB/V = C 4Re (except for A/B < 1, Re. = UcA/V)

S Axial length of a seal throttling (Fig. 1)

u Local velocity inside the seal cavity (parallel to the wall)

U Mean velocity in the annular seal passage (namely, the channel)

U Maximum boundary-layer velocity inside seal cavity or thread,C
U = COU

c

W Seal depth (normal to the plot in Fig. 1), W = 2rR

y Coordinate normal to the cavity wall

Subscripts

cal Value calculated from the model

exp Experimentally determined value

in Seal inlet

out Seal outlet

Greek

5 Boundary layer thickness (based on U )c

V Average kinematic viscosity of fluid

p Average fluid density

TO Wall shear stress
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