YANKEE ATOMIC ELECTRIC COMPANY

Telephone (413) 424-5261

49 Yankee Road, Rowe, Massachusetts 01367

August 31, 2006 BYR 2006-073

U.S. Nuclear Regulatory Commission Attention: Document Control Desk Washington, D.C. 20555-001

References: (a) License No. DPR-3 (Docket No. 50-29)

- (b) BYR 2004-133, Submittal of Revision 1 to the Yankee Nuclear Power Station's License Termination Plan
- (c) Yankee Nuclear Power Station Issuance of Amendment 158 Re: License Termination Plan
- Subject: Submittal of YNPS-FSS-NOL04-00, the Final Status Survey Report for Survey Area NOL-04

Dear Madam/Sir:

This letter submits YNPS-FSS-NOL04-00, Final Status Survey Report for survey area NOL-04. This report was written in accordance with Section 5 of the YNPS License Termination Plan, "Final Status Survey Plan," and is consistent with the guidance provided in the Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM).

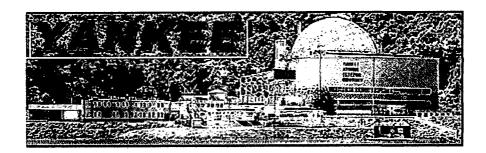
We trust that this information is satisfactory; however if you should have any questions or require any additional information, please contact Alice Carson at (301) 916-3995 or the undersigned at (413)-424-2261.

Sincerely, YANKEE ATOMIC ELECTRIC COMPANY

Joseph R. Lynch Regulatory Affairs Manager

Enclosure: YNPS-FSS-NOL04-00 (2 hard copies plus CDs)

U.S. Nuclear Regulatory Commission BYR 2006-073, Page 2


cc (w/o encl):

S. Collins, NRC Region I Administrator
Marie Miller, Chief, Decommissioning Branch, NRC Region I
J. Kottan, Region I
D. Everhart, Region I
J. Hickman, NRC Project Manager
M. Rosenstein, US Environmental Protection Agency, Region 1
R. Walker, Director, MA DPH
W. Perlman, Executive Committee Chair, FRCOG
T.W. Hutcheson, Chair, Franklin Regional Planning Board
L. Dunlavy, Executive Director, FRCOG
P. Sloan, Director of Planning & Development, FRCOG

cc (w/encl on CD)

D. Howland, Regional Engineer, MA DEPM. Whalen, MA DPHD. Katz, CANJonathan Block, CAN

Yankee Nuclear Plant Station Final Status Survey Report For NOL-04

Yankee Atomic Electric Company

YANKEE NUCLEAR POWER STATION FINAL STATUS SURVEY REPORT

REPORT NO.: YNPS-FSS-NOL-04-00

Date: P - 29 - 06Date: 8 - 29 - 06Date: 8/29/06Prepared by: Ren hack, FSS Radiological Engineer chael Ľ Reviewed by: C. Messier, FSS Radiological Engineer

Approved by: Martin Erickson, FSS Manager

EXECUTIVE SUMMARY IDENTIFICATION OF SURVEY AREA AND UNITS DATES(S) OF SURVEY NUMBER AND TYPES OF MEASUREMENTS COLLECTED SUMMARY OF SURVEY RESULTS CONCLUSIONS FSS PROGRAM OVERVIEW SURVEY PLANNING SURVEY DESIGN SURVEY DESIGN SURVEY IMPLEMENTATION SURVEY JATA ASSESSMENT QUALITY ASSURANCE AND QUALITY CONTROL MEASURES SURVEY AREA INFORMATION SURVEY AREA INFORMATION SURVEY AREA DESCRIPTION HISTORY OF SURVEY AREA DIVISION OF SURVEY AREA INTO SURVEY UNITS	
DATES(S) OF SURVEY NUMBER AND TYPES OF MEASUREMENTS COLLECTED SUMMARY OF SURVEY RESULTS CONCLUSIONS FSS PROGRAM OVERVIEW SURVEY PLANNING SURVEY DESIGN SURVEY DESIGN SURVEY IMPLEMENTATION SURVEY DATA ASSESSMENT. QUALITY ASSURANCE AND QUALITY CONTROL MEASURES SURVEY AREA INFORMATION SURVEY AREA DESCRIPTION HISTORY OF SURVEY AREA	
NUMBER AND TYPES OF MEASUREMENTS COLLECTED	
SUMMARY OF SURVEY RESULTS	
CONCLUSIONS SS PROGRAM OVERVIEW SURVEY PLANNING SURVEY DESIGN SURVEY IMPLEMENTATION SURVEY DATA ASSESSMENT QUALITY ASSURANCE AND QUALITY CONTROL MEASURES SURVEY AREA INFORMATION SURVEY AREA INFORMATION SURVEY AREA DESCRIPTION HISTORY OF SURVEY AREA	
FSS PROGRAM OVERVIEW Survey Planning Survey Design Survey Implementation Survey Data Assessment Quality Assurance and Quality Control Measures SURVEY AREA INFORMATION SURVEY AREA INFORMATION Survey Area Description	
SURVEY PLANNING SURVEY DESIGN SURVEY IMPLEMENTATION SURVEY DATA ASSESSMENT QUALITY ASSURANCE AND QUALITY CONTROL MEASURES SURVEY AREA INFORMATION SURVEY AREA INFORMATION HISTORY OF SURVEY AREA	
SURVEY DESIGN SURVEY IMPLEMENTATION SURVEY DATA ASSESSMENT QUALITY ASSURANCE AND QUALITY CONTROL MEASURES SURVEY AREA INFORMATION SURVEY AREA DESCRIPTION HISTORY OF SURVEY AREA	
SURVEY IMPLEMENTATION SURVEY DATA ASSESSMENT QUALITY ASSURANCE AND QUALITY CONTROL MEASURES SURVEY AREA INFORMATION SURVEY AREA DESCRIPTION HISTORY OF SURVEY AREA	
SURVEY DATA ASSESSMENT Quality Assurance and Quality Control Measures SURVEY AREA INFORMATION Survey Area Description History of Survey Area	
QUALITY ASSURANCE AND QUALITY CONTROL MEASURES	••••••
SURVEY AREA INFORMATION Survey Area Description History of Survey Area	*****
SURVEY AREA DESCRIPTION HISTORY OF SURVEY AREA	
HISTORY OF SURVEY AREA	
DIVISION OF SURVEY AREA INTO SURVEY UNITS	
SURVEY UNIT INFORMATION	••••••
SUMMARY OF RADIOLOGICAL DATA SINCE HISTORICAL SITE ASSESSMENT (HSA)	
1 0	
SURVEY UNIT FINAL STATUS SURVEY	••••••
SURVEY PLANNING	
•	
0	
DATA QUALITY ASSESSMENT	1
QUALITY ASSURANCE AND QUALITY CONTROL	1
INSTRUMENT QC CHECKS	
SELF-ASSESSMENTS	1
	SUMMARY OF RADIOLOGICAL DATA SINCE HISTORICAL SITE ASSESSMENT (HSA) Chronology and Description of Surveys Since HSA

i

Table	List of Tables	Page
TABLE 1 DATE OF SURVEYS		1
TABLE 2 SURVEY AREA NOL	-04 Design Parameters	6
TABLE 3 SOIL DCGL VALUES		6
TABLE 4 FSS ACTIVITY SUM	ARY FOR NOL-04 SURVEY UNITS	7
TABLE 5 DIRECT MEASUREM	ENT SUMMARY	8
TABLE 6 ISOCS SCAN SUMM	ARY	9

List of Appendices

Appendix A – YNPS-FSSP-NOL-04, "Final Status Survey Planning Worksheets

Appendix B – YA-REPT-00-015-04, "Instrument Efficiency Determination for Use in Minimum Detectable Concentration Calculations in Support of the Final Status Survey at Yankee Rowe"

Appendix C – ALARA Evaluations, NOL-04

Appendix D – YA-REPT-00-018-05, "Use of In-situ Gamma Spectrum Analysis to Perform Elevated Measurement Comparison in Support of Final Status Surveys"

List of Attachments

Attachment A – Maps and Posting Plots

Attachment B - Data Quality Assessment Plots and Curves

Attachment C – Instrument QC Records

Attachment D – ISOCS Scan Data

Attachment E - ORTEC Direct Measurement Data

(In the electronic version, every Table of Contents, Figures, Appendices and Attachments, as well as every mention of a Table, Figure, Appendix or Attachment is a hyperlink to the actual location or document.)

List of Abbreviations and Acronyms

AL	Action Level
	As Low As Reasonably Achievable
c/d	Counts per Disintegration
DCGL	Derived Concentration Guideline Level
DCGL _{EMC}	DCGL for small areas of elevated activity
DCGL _W	DCGL for average concentration over a wide area, used with statistical tests
DQO	Data Quality Objectives
EMC	Elevated Measurement Comparison
ETD	Easy-to-Detect
FSS	Final Status Survey
FSSP	Final Status Survey Plan
GPS	Global Positioning System
Н _о	Null Hypothesis
	Historical Site Assessment
	Hard-to-Detect
ISOCS	In-situ Object Counting System [®]
LBGR	Lower Bound of the Grey Region
LTP	License Termination Plan
MARSSIM	Multi-Agency Radiation Survey and Site Investigation Manual
MDA	Minimum Detectable Activity
MDC	Minimum Detectable Concentration
PAB	Primary Auxiliary Building
QAPP	Quality Assurance Project Plan
QC	Quality Control
RCA	Radiological Controlled Area
RP	Radiation Protection
RSS	Reactor Support Structure
SFP	Spent Fuel Pool
VC	Vapor Container
VCC	Vertical Concrete Cask
VSP	Visual Sample Plan
YNPS	Yankee Nuclear Power Station

1.0 EXECUTIVE SUMMARY

A Final Status Survey (FSS) was performed of Survey Area NOL-04 in accordance with Yankee Nuclear Power Station's (YNPS) License Termination Plan (LTP). This FSS was conducted as an open land area FSS with soil DCGLs.

1.1 Identification of Survey Area and Units

NOL-04 is the land area within the RCA that is bounded by the NOL-05 on the north, NOL-03 on the east, OOL-10 on the south and west. NOL-04 has a single Survey Unit, NOL-04-01 which is a Class 1 Survey Unit.

1.2 Dates(s) of Survey

Table 1 Date of Surveys						
	Survey Start	Survey End	DQA			
Survey Unit	Date	Date	Date			
NOL-04-01	5/17/2006	6/19/2006	7/20/2006			

1.3 Number and Types of Measurements Collected

Final Status Survey Plan (FSSP) was developed for this Survey Unit in accordance with YNPS LTP and FSS procedures using the MARSSIM protocol. The planning and design of the survey plan employed the Data Quality Objective (DQO) process, ensuring that the type, quantity and quality of data gathered was appropriate for the decision making process and that the resultant decisions were technically sound and defensible. A total of 20 systematic direct measurement measurements were taken in the Survey Unit, providing data for the non-parametric testing of the Survey Area. In addition to the direct measurement samples, ISOCS and hand-held survey instrument scans were performed to provide 100 percent coverage of the Survey Area.

1.4 Summary of Survey Results

Following the survey, the data were reviewed against the survey design to confirm completeness and consistency, to verify that the results were valid, to ensure that the survey plan objectives were met and to verify Survey Unit classification. Direct measurement surveys indicated that none of the systematic measurements exceeded the DCGL_W, depicted in <u>Attachment B</u>. Retrospective power curves were generated and demonstrated that an adequate number of samples were collected to support the Data Quality Objectives. Therefore, the null hypothesis (H_o) (that the Survey Unit exceeds the release criteria) is rejected.

1.5 Conclusions

Based upon the evaluation of the data acquired for the FSS, NOL-04 meets the release requirements set forth in the YNPS LTP. The Total Effective Dose Equivalent (TEDE) to the average member of the critical group does not exceed 25 mrem/yr, including that from groundwater. 10CFR20 Subpart E ALARA requirements have been met as well as the site release criteria for the administrative level DCGLs that ensure that the Massachusetts Department of Public Health's 10 mrem/yr limit will also be met.

2.0 FSS PROGRAM OVERVIEW

2.1 Survey Planning

The YNPS FSS Program employs a strategic planning approach for conducting final status surveys with the ultimate objective to demonstrate compliance with the DCGLs, in accordance with the YNPS LTP. The DQO process is used as a planning technique to ensure that the type, quantity, and quality of data gathered is appropriate for the decision-making process and that the resultant decisions are technically sound and defensible. Other key planning measures are the review of historical data for the Survey Unit and the use of peer review for plan development.

2.2 Survey Design

In designing the FSS, the questions to be answered are: "Does the residual radioactivity, if present in the Survey Unit, exceed the LTP release criteria?" and "Is the potential dose from this radioactivity ALARA?" In order to answer these questions, the radionuclides present in the Survey Units must be identified, and the Survey Units classified. Survey Units are classified with respect to the potential for contamination: the greater the potential for contamination, the more stringent the classification and the more rigorous the survey.

The survey design additionally includes the number, type and locations of direct measurements/samples (as well as any judgmental assessments required), scanning requirements, and instrumentation selection with the required sensitivities or detection levels. DCGLs are developed relative to the surface/material of the Survey Unit and are used to determine the minimum sensitivity required for the survey. Determining the acceptable decision error rates, the lower bound of the gray region (LBGR), statistical test selection and the calculation of the standard deviation and relative shift allows for the development of a prospective power curve plotting the probability of the Survey Unit passing FSS.

2.3 Survey Implementation

Once the planning and development has been completed, the implementation phase of the FSS program begins. Upon completion of remediation and final characterization activities, a final walk down of the Survey Unit is performed. If the unit is determined to be acceptable (i.e. physical condition of the unit is suitable for FSS), it is turned over to the FSS team, and FSS isolation and control measures are established. After the Survey Unit isolation and controls are in place, grid points are identified for the direct measurements/samples, using Global Positioning System (GPS) coordinates whenever possible, consistent with the Massachusetts State Plane System, and the area scan grid is identified. Data is collected and any required investigations are performed.

2.4 Survey Data Assessment

The final stage of the FSS program involves assessment of the data collected to ensure the validity of the results, to demonstrate achievement of the survey plan objectives, and to validate Survey Unit classification. During this phase, the DQOs and survey design are reviewed for consistency between DQO output, sampling design and other data collection documents. A preliminary data review is conducted to include: checking for problems or anomalies, calculation of statistical quantities and preparation of graphical representations for data comparison. Statistical tests are performed, if required, and the assumptions for the tests are verified. Conclusions are then drawn from the data, and any deficiencies or recommendations for improvement are documented.

2.5 Quality Assurance and Quality Control Measures

YNPS FSS activities are implemented and performed under approved procedures, and the YNPS Quality Assurance Project Plan (QAPP) assures plans, procedures and instructions have been followed during the course of FSS, as well as providing guidance for implementing quality control measures specified in the YNPS LTP.

3.0 SURVEY AREA INFORMATION

3.1 Survey Area Description

NOL-04 is the land area within the RCA that is bounded by the NOL-05 and the radioactive waste warehouse on the north, NOL-03 on the east, OOL-10 on the south and west.

3.2 History of Survey Area

In addition to the normal migration of minor levels of contamination in the RCA NOL-04 was contaminated by temporary storage of packaged radioactive material awaiting shipment. The Storm Drain System is an affected (contaminated) system that traverses this survey area.

3.3 Division of Survey Area into Survey Units

NOL-04 has a single Survey Unit, NOL-04-01 which is a Class 1 Survey Unit.

4.0 SURVEY UNIT INFORMATION

4.1 Summary of Radiological Data Since Historical Site Assessment (HSA)

4.1.1 Chronology and Description of Surveys Since HSA

Isolation and control measures were implemented for the FSS. The condition of NOL-04 Survey Area at the time of FSS was a bare ground surface.

4.1.2 Radionuclide Selection and Basis

During the initial DQO process, Cs-137, Co-60, and Ag108m were identified as the radiological nuclides of concern. Characterization survey data from adjacent Survey Units indicated no other LTP-specified radionuclides warrant consideration in the NOL-04 Survey Area, however, the soil samples were evaluated for all LTP listed nuclides.

4.1.3 Scoping & Characterization

Forty samples from the HSA data were used to provide the characterization data for survey unit NOL-04-01. The characterization data weighted sigma is 0.112:

4.2 Basis for Classification

Based upon the radiological condition of this Survey Area identified in the operating history and as a result of the decommissioning activities performed to date, Survey Area NOL-04 is identified as a Class 1 Area.

4.3 Remedial Actions and Further Investigations

Ten investigations were performed in NOL-04-01. Nine ISOCS investigations were performed, along with one direct sample investigation (64k particle found/removed). Scans were performed and all results were well below the DCGLw.

4.4 Unique Features of Survey Area

Survey Area NOL-04 has no unique features; it is an open land area containing soils.

4.5 ALARA Practices and Evaluations

An ALARA evaluation was developed for Survey Area in the NOL-04-01 which concluded that additional remediation was not warranted. This evaluation is found in <u>Appendix C.</u>

5.0 SURVEY UNIT FINAL STATUS SURVEY

5.1 Survey Planning

5.1.1 Final Status Survey Plan and Associated DQOs

The FSS for NOL-04 Survey Unit was planned and developed in accordance with the LTP using the DQO process. Form DPF-8856.1, found in YNPS Procedure 8856, "*Preparation of Survey Plans*," was used to provide guidance and consistency during development of the FSS Plan. The FSS Plan can be found in <u>Appendix A</u>. The DQO process allows for systematic planning and is specifically designed to address problems that require a decision to be made in a complex survey design and, in turn, provides alternative actions.

The DQO process was used to develop an integrated survey plan providing the Survey Unit identification, sample size, selected analytical techniques, survey instrumentation, and scan coverage. The Sign Test was specified for non-parametric statistical testing for this Survey Unit, if required. The design parameters developed are presented below.

Survey Unit	Design Parameter	Value	Basis
NOL-04-01	Area	978 m2	Class 1, ≤2,000 m2
	Number of Direct Measurements	15 (calculated)	α (Type I) = 0.05
		+ 5 (added)	β (Type II) = 0.05
		Total: 20	σ: 0.123
		Bias Samples: 4	Relative Shift: 2
			Adjusted LBGR: 0.754
	Sample Area	48.9m2	Area / Sample #
	Sample Grid Spacing: Triangular	7.5m	Square Root (Area/(0.866*Sample #))
	Scan area	978 m2	Class 1 Area – 100%
	Scan Investigation Level	Co-60: 2.9E3 dpm/100cm2 Cs-137 : 1.1E4 dpm/100cm2	Soil 1m 180 Degree Calumniator See Appendix D

Table 2 Survey Area NOL-04 Design Parameters

5.1.2 Deviations from the FSS Plan as Written in the LTP

The FSSP design was performed to the criteria of the LTP; therefore, no LTP deviations with potential impact to this Survey Area need to be evaluated.

5.1.3 DCGL Selection and Use

For the final evaluation of the NOL-04 Survey Area and throughout this report, the administrative acceptance criterion of 8.73 mr/yr has been set for Soil LTP-listed radionuclides.

Table 3 Soil DCGL Values					
Nuclide	Soil 8.73 mr/yr (pCi/g)	Nuclide	Soil 8:73 mr/yr (pCi/g)		
Co-60	1.4E+00	H-3	1.3E+02		
Nb-94	2.5E+00	C-14	1.9E+00		
Ag-108m	2.5E+00	Fe-55	1.0E+04		
Sb-125	1.1E+01	Ni-63	2.8E+02		
Cs-134	1.7E+00	Sr-90	6.0E-01		
Cs-137	3.0E+00	Tc-99	5.0E+00		
Eu-152	3.6E+00	Pu-238	1.2E+01		
Eu-154	3.3E+00	Pu-239	1.1E+01		
Eu-155	1.4E+02	Pu-241	3.4E+02		
Am-241	1.0E+01	Cm-243	1.1E+01		

5.1.4 Measurements

Error tolerances and characterization sample population statistics drove the selection of the number of fixed point measurements. 15 measurements were needed in the event the Sign test may have been used. In addition to the 15 statistical measurements needed, 5 additional samples were added to the statistical measurements, 4 biased, 1 recount, 2 split, and 1 investigation samples were also collected.

The direct measurement sampling grid was developed as a systematic grid with spacing consisting of a triangular pitch pattern with a random starting point. Sample measurement locations are provided in <u>Attachment A.</u>

5.2 Survey Implementation Activities

Table 3 provides a summary of daily activities performed during the Final Status Survey of Survey Units in NOL-04.

Table 4 F35 Activity Summary for NOL-04 Survey Units					
Survey Unit	Date	Activity			
NOL-04-01	5-16-06	Performed walk-down of Survey Unit			
	5-12-06	Established Isolation and Controls			
	5-10-06	Performed Job Hazard Analysis			
	5-8-06	Performed Unit Classification			
	5-11-06	Performed Sample Quantity Calculations, established DQOs			
	5-11-06	Generated FFS Sample Plans			
	5-17-06 to 6-19-06	Initiated Scans, and Direct measurements.			
	7-20-06	Performed DQA, FSS Complete			

Table 4 FSS Activity Summary for NOL-04 Survey Units

5.3 Surveillance Surveys

5.3.1 Periodic Surveillance Surveys

Upon completion of the FSS of Survey Area NOL-04, the Survey Unit was placed into the program for periodic surveillance surveys on a quarterly basis in accordance with YNPS procedure DP-8860, "Area Surveillance Following Final Status Survey." These surveys provide assurance that areas with successful FSS remain unchanged until license termination.

5.3.2 Surveillance Resurveys

A resurvey was performed on 08/03/2006 due to non-radioactive contaminant remediation performed post FSS in the southern portion of the area. The resurvey sample results were evaluated against the original FSS sample data and no statistical differences were found. The resurvey demonstrated that there was no change in the Survey Area's status due to the post FSS remediation of the non-radioactive contaminant.

5.3.3 Surveillance Investigations

No additional investigations were required for this Survey Unit due to surveillance surveys.

5.4 Survey Results

Direct measurement surveys indicated that NOL-04-01 had no systematic measurements that exceeded the DCGL_W, depicted in <u>Attachment B</u>. Retrospective power curves were generated and demonstrated that an adequate number of samples were collected to support the Data Quality Objectives. Therefore, the null hypothesis (H_0) (that the Survey Units exceeds the release criteria) is rejected.

Table 5 Direct Measurement Summary				
Sample Description	Sum of Fractions			
NOL-04-01-001-F	0.005			
NOL-04-01-002-F	0.008			
NOL-04-01-003-F	0.009			
NOL-04-01-004-F	0.009			
NOL-04-01-005-F	0.011			
NOL-04-01-006-F	0.014			
NOL-04-01-007-F	0.025			
NOL-04-01-008-F	0.005			
NOL-04-01-010-F	0.044			
NOL-04-01-011-F	0.022			
NOL-04-01-012-F	0.003			
NOL-04-01-013-F	0.239			
NOL-04-01-014-F	0.006			
NOL-04-01-015-F	0.165			
NOL-04-01-016-F	0.008			
NOL-04-01-017-F	0.045			
NOL-04-01-018-F	0.001			
NOL-04-01-019-F	0.141			
NOL-04-01-020-F	0.306			
*NOL-04-01-026-F-I	0.054			

Table 5 Direct Measurement Summary

8

Maximum Sum of Fractions	0.306
Normalized Standard Deviation	0.074

* Sample NOL-04-01-009 was mislabeled as NOL-04-01-026-I. It is not an investigation, it was mislabeled.

Sample Title	Unity	Sample Title		Sample Title	Unity
NOL-04-01-101-F-G	0	NOL-04-01-144-F-G	0	NOL-04-01-185-F-G-I	0
NOL-04-01-102-F-G	0	NOL-04-01-145-F-G	0.983	NOL-04-01-186-F-G-I	0
NOL-04-01-103-F-G	0	NOL-04-01-146-F-G	0	NOL-04-01-187-F-G-I	0
NOL-04-01-104-F-G	0	NOL-04-01-147-F-G	0.09	NOL-04-01-188-F-G-I	0
NOL-04-01-105-F-G	0	NOL-04-01-148-F-G	0	NOL-04-01-189-F-G-I	0
NOL-04-01-106-F-G	0	NOL-04-01-149-F-G	0	NOL-04-01-190-F-G-I	0
NOL-04-01-107-F-G	0	NOL-04-01-150-F-G	0	NOL-04-01-191-F-G-I	0
NOL-04-01-108-F-G	0.726	NOL-04-01-151-F-G	0	NOL-04-01-192-F-G-I	0.183
NOL-04-01-109-F-G	0.172	NOL-04-01-152-F-G	0.163	NOL-04-01-193-F-G-I	0
NOL-04-01-110-F-G	0	NOL-04-01-153-F-G	0	NOL-04-01-194-F-G-I	0
NOL-04-01-111-F-G	0.663	NOL-04-01-154-F-G	0	NOL-04-01-195-F-G-I	0
NOL-04-01-112-F-G	0	NOL-04-01-155-F-G	0	NOL-04-01-196-F-G-I	0
NOL-04-01-113-F-G	0	NOL-04-01-155-F-G	0	NOL-04-01-197-F-G-I	0
NOL-04-01-114-F-G	0.606	NOL-04-01-156-F-G	0	NOL-04-01-198-F-G-I	0.056
NOL-04-01-115-F-G	0.739	NOL-04-01-157-F-G	0	NOL-04-01-199-F-G-I	0
NOL-04-01-116-F-G	1.022	NOL-04-01-158-F-G	0	NOL-04-01-200-F-G-I	0
NOL-04-01-117-F-G	0	NOL-04-01-159-F-G	0	NOL-04-01-201-F-G-I	0
NOL-04-01-118-F-G	0	NOL-04-01-160-F-G	0.586	NOL-04-01-202-F-G-I	0
NOL-04-01-119-F-G	0	NOL-04-01-161-F-G	0	NOL-04-01-203-F-G-I	0
NOL-04-01-120-F-G	0	NOL-04-01-162-F-G	0.091	NOL-04-01-204-F-G-I	0.045
NOL-04-01-121-F-G	0	NOL-04-01-163-F-G	0	NOL-04-01-205-F-G-I	0
NOL-04-01-122-F-G	0	NOL-04-01-164-F-G	0	NOL-04-01-206-F-G-I	0
NOL-04-01-123-F-G	0	NOL-04-01-165-F-G	0	NOL-04-01-207-F-G-I	0
NOL-04-01-124-F-G	0.192	NOL-04-01-166-F-G	0	NOL-04-01-208-F-G-I	0
NOL-04-01-125-F-G	0	NOL-04-01-167-F-G	0	NOL-04-01-209-F-G-I	0
NOL-04-01-126-F-G	0.396	NOL-04-01-168-F-G	0.114	NOL-04-01-210-F-G-I	0
NOL-04-01-127-F-G	0	NOL-04-01-169-F-G	0	NOL-04-01-211-F-G-I	0
NOL-04-01-128-F-G	0	NOL-04-01-170-F-G	0	NOL-04-01-212-F-G-I	0
NOL-04-01-129-F-G	0	NOL-04-01-170-F-G	0.197	NOL-04-01-213-F-G-I	0
NOL-04-01-130-F-G	0	NOL-04-01-171-F-G	0.214	NOL-04-01-214-F-G-I	0.03
NOL-04-01-131-F-G	0	NOL-04-01-172-F-G	0.734	NOL-04-01-215-F-G-I	0
NOL-04-01-132-F-G	0.61	NOL-04-01-173-F-G-I	0	NOL-04-01-216-F-G-I	0
NOL-04-01-133-F-G	0	NOL-04-01-174-F-G-I	0	NOL-04-01-217-F-G-I	0
NOL-04-01-134-F-G	0	NOL-04-01-175-F-G-I	0	NOL-04-01-218-F-G	0
NOL-04-01-135-F-G	0	NOL-04-01-176-F-G-I	0	NOL-04-01-219-F-G	0
NOL-04-01-136-F-G	0	NOL-04-01-177-F-G-I	0	NOL-04-01-220-F-G	0
NOL-04-01-137-F-G	0	NOL-04-01-178-F-G-I	0.331	NOL-04-01-221-F-G	0
NOL-04-01-138-F-G	0	NOL-04-01-179-F-G-I	0	NOL-04-01-222-F-G	0
NOL-04-01-139-F-G	0	NOL-04-01-180-F-G-I	0	NOL-04-01-223-F-G	0
NOL-04-01-140-F-G	0	NOL-04-01-181-F-G-I	0	NOL-04-01-224-F-G	0.076

Sample Title	Unity	Sample Title	🗧 Unity 🔬	Sample Title	Unity
NOL-04-01-141-F-G	0	NOL-04-01-182-F-G-I	0	NOL-04-01-225-F-G	0
NOL-04-01-142-F-G	0	NOL-04-01-183-F-G-I	0	NOL-04-01-226-F-G-I	0
NOL-04-01-143-F-G	0	NOL-04-01-184-F-G-I	0		

5.5 Data Quality Assessment

The Data Quality Assessment phase is the part of the FSS where survey design and data are reviewed for completeness and consistency, ensuring the validity of the results, verifying that the survey plan objectives were met, and validating the classification of the Survey Unit.

The sample design and the data acquired were reviewed and found to be in accordance with applicable YNPS procedures DP-8861, "Data Quality Assessment"; DP-8856, "Preparation of Survey Plans"; DP-8853, "Determination of the Number and Locations of FSS Samples and Measurements"; DP-8865, "Computer Determination of the Number of FSS Samples and Measurements" and DP-8852, "Final Status Survey Quality Assurance Project Plan".

Upon review of the data set for NOL-04-01, the range of data are within two standard deviation with the exception of one value for each Co-60 and Cs-137 (Co-60= 0.38 pCi/g and Cs-137= 0.46 pCi/g) which were statistically higher than the rest of the data, however, both values were less than their associated DCGLw. The frequency plots show a normal distribution with a slight positive skew. The scatter plots generated graphically illustrate that the data varies about their respective Mean with the exception of the above mentioned two data points. The quantile plots are skewed slightly to the right with some asymmetry in the bottom indicative of a large number of low values in the data set. The posting plots do not clearly reveal any systematic spatial trends. Based upon the graphical representation of the data, the data set verifies the assumptions of the statistical test.

The Data Quality Assessment power curves, scatter, quantile and frequency plots are found in <u>Attachment B</u>. Posting Plots are found in <u>Attachment A</u>.

6.0 QUALITY ASSURANCE AND QUALITY CONTROL

6.1 Instrument QC Checks

Operation of the portable ISOCS was in accordance with DP-8871,"Operation of the Canberra Portable ISOCS System," with QC checks performed in accordance with DP-8869,"In-situ (ISOCS) Gamma Spectrum Assay System Calibration Procedure" and DP-8871, "Operation of the Canberra Portable ISOCS System." Operation of the E-600 w/SPA-3 was in accordance with DP-8535,"Setup and Operation of the Eberline E-600 Digital Survey Instrument," with QC checks preformed in

accordance with DP-8540, "Operation and Source Checks of Portable Friskers." Instrument response checks were performed prior to and after use for the E-600 w/SPA-3 and once per shift for the Portable ISOCS. Any flags (i.e. anomalies in the QC results) encountered during the ISOCS QC Source Count were corrected/ resolved prior to surveying. All instrumentation involved with the FSS of NOL-04 satisfied the above criteria for the survey. QC records are found in <u>Attachment C.</u>

6.2 Split Samples and Recounts

One recount and two split 'QC" samples were gathered and within tolerable limits in accordance with DP-8864,"*Split Sample Assessment for Final Status Survey*".

6.3 Self-Assessments

No self-assessments were performed during the FSS of NOL-04.

7.0 CONCLUSION

The FSS of NOL-04 has been performed in accordance with YNPS LTP and applicable FSS procedures. Evaluation of the direct measurement data has shown none of the systematic direct measurements exceeded the DCGL_w, depicted in <u>Attachment B</u>. Retrospective power curves were generated and demonstrated that an adequate number of samples were collected to support the Data Quality Objectives. Therefore, the null hypothesis (H₀) is rejected.

NOL-04 meets the objectives of the Final Status Survey.

Based upon the evaluation of the data acquired for the FSS, NOL-04 meets the release requirements set forth in the YNPS LTP. The Total Effective Dose Equivalent (TEDE) to the average member of the critical group does not exceed 25 mrem/yr, including that from groundwater. 10CFR20 Subpart E ALARA requirements have been met as well as the site release criteria for the administrative level DCGLs that ensure that the Massachusetts Department of Public Health's 10 mrem/yr limit will also be met.

List of Appendices

Appendix A – YNPS-FSSP-NOL-04, "Final Status Survey Planning Worksheets

Appendix B – YA-REPT-00-015-04, "Instrument Efficiency Determination for Use in Minimum Detectable Concentration Calculations in Support of the Final Status Survey at Yankee Rowe"

Appendix C - ALARA Evaluations, NOL-04

Appendix D – YA-REPT-00-018-05, "Use of In-situ Gamma Spectrum Analysis to Perform Elevated Measurement Comparison in Support of Final Status Surveys"

List of Attachments

Attachment A – Maps and Posting Plots

Attachment B – Data Quality Assessment Plots and Curves

Attachment C – Instrument QC Records

Attachment D – ISOCS Scan Data

Attachment E - ORTEC Direct Measurement Data

(In the electronic version, every Table of Contents, Figures, Appendices and Attachments, as well as every mention of a Table, Figure, Appendix or Attachment is a hyperlink to the actual location or document.)

Final Status Survey Planning Worksheet

Page 1 of 9
GENERAL SECTION
Survey Area No.: NOL-04 Survey Unit No.: 01
Survey Unit Name: Southwestern Upper RCA Yard
FSSP Number: YNPS-FSSP-NOL04-01-00
PREPARATION FOR FSS ACTIVITIES
Check marks in the boxes below signify affirmative responses and completion of the action.
1.1 Files have been established for survey unit FSS records.
1.2 ALARA review has been completed for the survey unit. If Refer to <u>YA-REPT-00-003-05</u>
1.3 The survey unit has been turned over for final status survey.
1.4 An initial DP-8854 walkdown has been performed and a copy of the completed Survey Unit Walkdown Evaluation is in the survey area file. ☑
1.5 Activities conducted within area since turnover for FSS have been reviewed.
Based on reviewed information, subsequent walkdown: 🗹 not warranted 🛛 warranted
If warranted, subsequent walkdown has been performed and documented per DP-8854.
OR
The basis has been provided to and accepted by the FSS Project Manager for not performing a subsequent walkdown.
1.6 A final classification has been performed.
Classification: CLASS 1 🗹 CLASS 2 🗆 CLASS 3 🗆
DATA QUALITY OBJECTIVES (DQO)
1.0 State the problem:
Survey Area NOL-04 consists of the surface area of Southwestern Upper RCA Yard. The open land area is owned by YNPS and is comprised of soil. Survey Unit NOL-04-01 is a sub unit of survey area NOL-04 an is bordered by NOL-05-01 & 02 to its north, NOL-03 to its east and OOL-10-01 to its west and south. It is approximately 978 square meters of surface area.
The problem as defined by this survey plan is to demonstrate that the years of plant operation did not result i an accumulation of plant-related radioactivity that exceeds the release criteria.
The planning team for this effort consists of the FSS Project Manager, FSS Radiological Engineer, FSS Fiel Supervisor, and FSS Technicians. The FSS Radiological Engineer will make primary decisions with th concurrence of the FSS Project Manager.
2.0 Identify the decision:

Does residual plant-related radioactivity, if present in the survey unit, exceed the release criteria? Alternative actions may include no action, investigation, resurvey, remediation and reclassification.

DPF-8856.1

Page 1 of 9

3.0 Identify the inputs to the decision:

Sample media:	Soil
Types of measurements:	Soil samples, ISOCS Assays and gamma scans
Radionuclides-of-concern:	Cs-137, Co-60, Ag108m

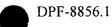
Applicable DCGL:		to annual DCGL adj	doses of 8.7 usted for the d	this survey pla mrem/y (the ose contribution res and tritiur	e 10-mrem/y ons from sub-
Nuclide	DCGL (pCi/g)	Nuclide	DCGL (pCi/g)	Nuclide	DCGL (pCi/g)
Co-60	1.4E+0	Eu-152	3.6E+0	Sr-90	6.0E-1
Nb-94	2.5E+0	Eu-154	3.3E+0	Tc-99	5.0E+0
Ag108m	2.5E+0	Eu-155	1.4E+2	Pu-238	1.2E+1
Sb125	1.1E+1	H-3	1.3E+2	Pu-239/240	1.1E+1
Cs-134	1.7E+0	C-14	1.9E+0	Pu-241	3.4E+2
Cs-137	3.0E+0	Fe-55	1.0E+4	Am-241	1.0E+1
		Ni-63	2.8E+2	Cm-243/244	1.1E+1

Forty (40) samples from the HSA data were used to provide the characterization data for survey unit NOL-04-01. The data is sufficient to support FSS planning of Survey Unit NOL-04-01.

Based on a review of the characterization data, Co-60, Cs-137 and Ag-108m are the only plant-related radionuclides that were identified consistently in the characterization samples analyzed. The results from the characterization data are summarized below:

- Co-60 (11 detects) Co-60 is present in 27.5 % of the characterization samples.
- Cs-137 (16 detects) Cs-137 is present in 40 % of the characterization samples.
- Ag-108m (3 detects) Ag-108m is present in 8 % of the characterization samples.
- Other YNPS ETD There were no other easy to detect nuclides identified >MDA.
- YNPS HTD There were no hard to detect nuclides identified in the four samples analyzed.

The presence of all LTP-listed radionuclides (gamma-emitters, HTD beta-emitters, and TRUs) in the soil will be evaluated under this survey plan. The YNPS Chemistry Dept. will analyze each FSS soil sample for all LTP-listed gamma-emitting nuclides, except Cm-243/244. In addition, 2 FSS soil samples will be sent to an independent laboratory for analyses of gamma-emitters, HTD beta-emitting radionuclides, and alpha-emitting radionuclides, which will include Cm-243/244.


	Survey Design / Release Criteria
Classification:	Class 1
Average Cs-137 concentration:	0.106 pCi/g
Standard deviation Cs-137 (σ):	0.259 pCi/g
Average Co-60 concentration:	0.041pCi/g
Standard deviation Co-60 (σ) :	0.118 pCi/g
Average Ag-108m concentration:	0.016 pCi/g

DPF-8856.1

Page 2 of 9

Standard deviation Ag-108m (o).	0.053 pCi/g
Weighted sum (σ):	0.122
Surrogate DCGL:	N/A (a surrogate DCGL will not be used)
LBGR	Initial = $0.5 \times DCGL = 0.5$ Adjusted = 0.76
Number of Samples	Calculated = 15
Survey Unit Area	978 m^2
Grid Area (A/N)	65.2 m^2
$DCGL_{EMC}$: Cs-137	8.671 pCi/g (based on AF = 2.9)
$DCGL_{EMC}$: Co-60	1.968 pCi/g (based on AF = 1.4)
DCGL _{EMC} : Ag-108m	3.046 pCi/g (based on AF = 1.2)
DCGL _{EMC} . Ag-108m	5.040 peng (based on AP = 1.2)
Investigation Level for soil	• >DCGL _{EMC} for either Cs-137, Co-60 or Ag-108m -or-
samples:	• A sum of $DCGL_{EMC}$ fractions > 1.0 -or-
	• >DCGL for Cs-137, Co-60 or Ag-108m and a statistical outlier as defined in the LTP.
	<u>Note</u> : The same criteria will be applied to any other LTP-listed nuclide if identified in the soil samples.
ISOCS Assay Coverage:	100% of the surface area, ensured by overlapping field-of-views using ISOCS in the 1m-detector height with 180° open collimation configuration.
Investigation Level for ISOCS	• 0.28 pCi/g Co-60
measurements:	• 1.20 pCi/g Cs-137
	• 0.42 pCi/g Ag-108m
	 -or- a sum of their fractions >1.0
	Note: The investigation levels for the ISOCS assays were derived by
	multiplying the $DCGL_{EMC}$ associated with a $1m^2$ area by the ratio of the
	MDC for the full field of view $(38.5m^2)$ to the MDC for a $1m^2$ area at the
	edge of the full field of view. Additional details regarding the investigation levels for ISOCS assays can be found in VA PERT 00.
	investigation levels for ISOCS assays can be found in YA-REPT-00- 018-05. The investigation levels developed in this manner are sensitive
	enough to detect the DCGL _{EMC} values based on the grid area.
MDC's for ISOCS	
measurements:	MDC MDC MDC MDC (CC(c))
	Nuclide (pCi/g) Nuclide (pCi/g) Nuclide (pCi/g) Co-60 1.97E-1 Sb-125 1.34E+0 Eu-152 4.31E-1
	Nb-94 3.03E-1 Cs-134 3.65E-1 Eu-154 4.32E-1
	Ag-108m 3.05E-1 Cs-137 8.67E-1 Eu-155 1.67E+1
	<u>Note</u> : The MDC's listed in the above table are 10% of the DCGL _{EMC} values (based on nuclide-specific AF value for 75 m ² from LTP, Appendix 6Q). If the MDC values in the above table cannot be achieved in a reasonable count time, then an MDC no greater than 5X the table value must be achieved.

Page 3 of 9

•	•	

SPA-3 Gamma Scan

of an ISOCS assay or surrounding a FSS sample location that exceeds Coverage: the investigation criteria. The SPA-3 scan will cover 100% of the ISOCS assay total field-of-view area (38.5m²) or a 1-m radius around the FSS sample location $(3.14m^2)$. Reproducible indication above background using SPA-3 and audible Investigation Level for SPA-3 discrimination. The expected background range for SPA-3 scans is Scans: between 7,000 cpm and 15,000 cpm. Radionuclides for analysis: All LTP nuclides with the focus on Cs-137, Co-60 and Ag-108m MDCs for gamma analysis of 10% - 50% of DCGL (pCi/g) Nuclide soil samples: Co-60 1.4E-01 - 7.0E-01 Nb-94 2.5E-01 - 1.3E+00 Ag-108m 2.5E-01 - 1.3E+00 Sb-125 1.1E+00 - 5.6E+00 Cs-134 1.7E-01 - 8.7E-01 Cs-137 3.0E-01 - 1.5E+00 Eu-152 3.6E-01 - 1.8E+00 Eu-154 3.3E-01 - 1.7E+00 Eu-155 1.4E+01 - 6.9E+01 The desired MDCs in the laboratory analyses of FSS soil samples will be the 10% DCGL values. If it is impractical to achieve those, the 50% DCGL values must be achieved in the laboratory analyses of the FSS soil samples. MDC's for HTD nuclide: 10% - 50% DCGL (pCi/g) Nuclide 1.3E+01 - 6.4E+01 H-3 C-14 1.9E-01 - 9.7E-01 Fe-55 1.0E+03 - 5.1E+03 2.8E+01 - 1.4E+02 Ni-63 Sr-90 6.0E-02 - 3.0E-01 Tc-99 5.0E-01 - 2.5E+00 Pu-238 1.2E+00 - 5.8E+00 Pu-239 1.1E+00 - 5.3E+00 Pu-241 3.4E+01 - 1.7E+02 Am-241 1.0E+00 - 5.1E+00 Cm-243 1.1E+00 - 5.6E+00 The MDC values for difficult to detect nuclides will be conveyed to the outside laboratory via the sample chain-of-custody form DPF-8823.1 which will accompany the soil samples. The accompanying table in Attachment 1 provides MDCR values by MDCR for SPA-3: various background levels. The accompanying table in Attachment 1 provides MDC values by MDC (fDCGL_{surveyor-emc}) for SPA-3 scans: various background levels. QC checks and measurements: • QC checks for ISOCS will be in accordance with DP-8869 and DP-8871.

SPA-3 scans will be performed for surface soil within the field-of-view

DPF-8856.1

Page 4 of 9

YNPS-FSSP- NOL-04-01-00

- QC checks for the Leica GPS will be performed in accordance with DP-8859.
- QC checks for the SPA-3 will be performed in accordance with DP-8504.
- <u>Two</u> QC split samples will be collected (note: this is in accordance with and exceeds DP-8852 requirements.)
- <u>One</u> QC recount for soil samples will be performed by the YNPS Chemistry Lab (note: this is in accordance with DP-8852 requirements.)

4.0 Define the boundaries of the survey:

- Boundaries of Survey Unit NOL-04-01 are as shown on the attached map. This area is bordered by NOL-05-01 & 02 to its north, NOL-03 to its east and OOL-10-01 to its west and south.
- The survey will be performed under appropriate weather conditions (as defined by instrumentation limitations and human tolerance). Surveys may be performed on any shift of work.

5.0 Develop a decision rule:

Upon review of the FSS data collected under this survey plan:

- (a) <u>If</u> all the sample data show that the soil concentrations of plant related nuclides are below the 8.73 mrem/year DCGLs and the sum of fractions of nuclides are below unity, <u>then</u> reject the null hypothesis (i.e., Survey Unit NOL-04-01 meets the release criteria).
- (b) If the investigation levels are exceeded, then perform an investigation survey.
- (c) If the average concentration of any LTP-listed nuclide exceeds its respective DCGL_w or the average sum of fractions for any LTP-listed nuclide exceeds one, <u>then</u> accept the null hypothesis (i.e., Survey Unit NOL-04-01 fails to meet the release criteria).

Note: Alternate actions beyond investigations are not expected to be necessary within this survey unit.

Null hypothesis:	Residual plant-related radioactivity in Survey Unit NOL-04-01 exceeds the release criteria.
Probability of type I error:	0.05
Probability of type II error:	0.05
LBGR:	The applicable soil (8.73-mrem/y) DCGL ÷ 2
	LBGR = 0.5 (Unity Rule)

6.0 Specify tolerable limits on decision errors:

7.0 Optimize Design:

Type of statistical test: WRS Test □ Sign Test ☑ (background will not be subtracted)

Number and Location of Samples: Twenty (20) soil samples will be collected at locations based on a random start, systematic triangular grid (refer to accompanying DPF-8853.2).

Biased samples: A minimum of four (4) biased sample locations will be selected before, or at the time of sample collection and their locations will be added to the map, with the letter "B" added to the sample

DPF-8856.1

Page 5 of 9

number. The addition of these samples and the relocation of any samples may be added to the map without requiring a revision. The coordinates of the biased sample locations will be determined and added to the record.

Biased sample locations: • The four (4) biased sample locations will be determined in the field by the Rad Engineer based on historical data and process knowledge of the area.

GENERAL INSTRUCTIONS

- Where possible, measurement locations will be identified using GPS in accordance with DP-8859. Each location will be marked to assist in identifying the location. Any locations that are not suitable for soil sampling will be relocated to the nearest suitable location and documented in the field log in accordance with DP-8856.
- 2. Soil samples will be collected in accordance with DP-8120.
- Chain of Custody form will be used in accordance with DP-8123 for all soil samples sent to an off-site laboratory.
- 4. All soil samples will be received and prepared in accordance with DP-8813. Note: Split samples to be sent to an off-site lab will not be dried prior to counting on site or shipping.
- 5. Collect ISOCS measurements in accordance with DP-8871 to provide 100% scan coverage of the survey unit.
- Survey instrument: Operation of the E-600 w/SPA-3 will be in accordance with DP-8535 with QC checks performed in accordance with DP-8504. The instrument response checks shall be performed before issue and after use.
- All SPA-3 scans will be performed with the audible feature activated. FSS Technicians will listen for upscale readings to which they will respond by slowing down or stopping the probe to distinguish between random fluctuations in the background and greater than background readings.
- The job hazards associated with the Survey described in this package are addressed in the accompanying Job Hazard Assessment (JHA) for NOL-04-01.
- 9. All personnel participating in this survey shall be trained in accordance with DP-8868.

SPECIFIC INSTRUCTIONS

- All designated measurement locations will be identified by GPS per DP-8859 or by use of reference points and tape measure as necessary. If a designated sample location is obstructed for any reason, the FSS Radiological Engineer or the FSS Field Supervisor will select an alternate location in accordance with DP-8856. A detailed description of the alternate location will be recorded on form DPF-8856.2, the survey unit map will be annotated appropriately, and the alternate location will be conspicuously marked to facilitate re-visiting to identify and record the coordinates with GPS in accordance with DP-8859 or by measurement from a known reference point when GPS is not available.
- 2. Sample Requirements:
 - Collect twenty (20) random 1-liter soil samples in accordance with DP-8120. Two (2) of the twenty (20) random soil samples will be analyzed as QC split samples to fulfill the QC requirement of DP-8852. The same QC split samples will also be analyzed for Hard-to-Detect nuclides in accordance with section 5.6.3.2.1 of the LTP and DP-8856.
 - Collect four (4) biased 1-liter soil samples in accordance with DP-8120. The radiological engineer assigned to this survey unit will determine the locations of the biased samples.

DPF-8856.1

Page 6 of 9

YNPS-FSSP- NOL-04-01-00

3. Soil Sample Designation:

FSS soil samples:	NOL-04-01-001-F through NOL-04-01-020-F corresponding to FSS sample locations 001 through 020.
Biased soil samples:	NOL-04-01-021-F-B through NOL-04-01-024-F-B corresponding to the biased sample locations 021 through 024.
QC split samples:	NOL-04-01-012-F-S and NOL-04-01-020-F-S are to be designated as QC split samples. These samples will be sent to the off-site laboratory as collected from the field (i.e., without drying). YNPS Chemistry will count these samples in the "wet" condition prior to shipment to the offsite laboratory.
Recount samples:	NOL-04-01-006-F-RC is to be counted twice on site. The results will be compared in accordance with DP-8864.

4. Sample Analysis:

- Gamma analysis will be performed on all soil samples. If any of the gamma analyses show that an investigation level has been exceeded an investigation survey will be conducted at that sample location as directed in specific instruction # 6.
- YNPS Chemistry will analyze NOL-04-01-001-F through NOL-04-01-020-F and NOL-04-01-021-F-B through NOL-04-01-024-F-B for gamma-emitting nuclides.
- YNPS Chemistry will analyze NOL-04-01-006-F as a sample recount. The recounted sample will possess the naming convention NOL-04-01-006-F-RC.
- YNPS Chemistry will analyze NOL-04-01-012-F-S and NOL-04-01-020-F-S for gamma-emitting nuclides prior to being sent to the off-site laboratory. These samples will be analyzed for gammaemitting nuclides and HTD at the off-site laboratory.
- On-site gamma analysis of the FSS samples shall achieve the MDC values stated in the DQO section of this plan. The MDC's will be communicated to the laboratory using an attachment to the Chain-of-Custody form.
- 5. ISOCS Assays.
 - Collect the appropriate number of ISOCS measurements in accordance with DP-8871 to provide 100% scan coverage of the survey unit.
 - ISOCS assays are designated as NOL-04-01-xxx -F-G where "xxx" continues sequentially from the last number assigned to an FSS measurement.
 - QC checks shall be performed at least once per shift in accordance with DP-8869 and DP-8871. Resolve flags encountered prior to survey.
 - ISOCS assays to be performed with 180° collimator at 1m unless otherwise directed by the FSS Engineer. Make note on the daily survey journal (DPF-8856.2) if other geometries are used.
 - For ISOCS assay locations shown on map "ISOCS Scans", position the detector downward facing keeping the detector perpendicular to the ground.
 - Designate additional assay locations in continuing sequence from the last number assigned to an FSS measurement. Record detailed information about additional assay locations on the daily

DPF-8856.1

Page 7 of 9

survey journal.

- If the results on any ISOCS assay exceed an investigation level, investigate the area within the field of view (7m diameter 38.5m² area for 180°-1m) for that assay as directed in Specific Instruction # 7.
- Remove standing water prior to performance of ISOCS assays. Contact the FSS Engineer for directions if conditions are such that standing water cannot be removed.
- 6. If the results of any FSS sample (statistical and/or biased points) analysis exceed an investigation level, perform a first level investigation as follows:

Note: Detailed descriptions of investigation actions shall be recorded in the daily survey journal (DPF-8856.2).

- Review ISOCS data for assays in which the sample requiring investigation may have been in the field of view.
- Scan a 1m radius footprint around the sample location with a SPA-3 in rate-meter mode moving the detector at a speed of 0.25m or less per second, keeping the probe at a distance of approximately 3" from the surface and following a serpentine path that includes at least 3 passes across each square meter. The area of scan should be increased as necessary to bound any areas of elevated activity identified.
- Mark the boundaries around any detected elevated areas in the soil and identify the boundaries on a survey map. Measure the total area of each outlined area in square centimeters.
- Mark the location of the highest identified activity for each of the elevated areas in the soil and on the survey map.
- At each of the highest identified activity area
 - Perform and record a 1-minute scaler mode SPA-3 measurement. Designate the reading as "NOL-04-01-xxx-F-SC-I" where "xxx" continues sequentially from the last number assigned to an FSS measurement.
 - Obtain a soil sample at the location. Designate the sample as "NOL-04-01-xxx-F-I" where "xxx" continues sequentially from the last number assigned to an FSS measurement.
 - Perform and record a post sample 1-minute SPA-3 measurement. Designate the reading as described above.
- 7. If the results of an ISOCS assay exceed an investigation level, perform a first level investigation as follows:

Note: Detailed descriptions of investigation actions shall be recorded in the daily survey journal (DPF-8856.2).

- Scan the ISOCS footprint with a SPA-3 in rate-meter mode moving the detector at a speed of 0.25m or less per second, keeping the probe at a distance of approximately 3" from the surface and following a serpentine path that includes at least 3 passes across each square meter.
- Mark the boundaries around any detected elevated areas in the soil and identify the boundaries on

DPF-8856.1

Page 8 of 9

YNPS-FSSP- NOL-04-01-00

a survey map. Measure the total area of each outlined area in square centimeters.

- Mark the location of the highest identified activity for each of the elevated areas in the soil and on the survey map.
- At each of the highest identified activity area
 - Perform and record a 1-minute scaler mode SPA-3 measurement. Designate the reading as "NOL-04-01-xxx-F-SC-I" where "xxx" continues sequentially from the last number assigned to an FSS measurement.
 - Obtain a soil sample at the location. Designate the sample as "NOL-04-01-xxx-F-I" where "xxx" continues sequentially from the last number assigned to an FSS measurement.
 - Perform and record a post sample 1-minute SPA-3 measurement. Designate the reading as described above.
- Re-perform the ISOCS assay. Designate the assay as "NOL-04-01-xxx-F-G-I" where "xxx" continues sequentially from the last number assigned to an FSS measurement.

Prepared by FSS Radiological Engineer

Reviewed by

FSS Radiological Engineer

5/11/00 Date

Date 5/11/06

Approved by FSS Project Manager

Date 5/11/06

Page 9 of 9

YNPS-FSSP- NOL-04-01-00

YNPS-FSSP-NOL-04-01-00

Attachment 1

<u>SPA-3 Scan Table</u>

BKG(cpm)	MDCR	MDC(fDCGL _{emc})
7000	845	6.21E-01
8000	904	6.64E-01
9000	959	7.04E-01
10000	1011	7.42E-01
11000	1060	7.78E-01
12000	1107	8.13E-01
13000	1152	8.46E-01
14000	1196	8.78E-01
15000	1238	9.09E-01
16000	1278	9.39E-01
17000	1318	9.67E-01
18000	1356	9.95E-01
19000	1393	1.02E+00
20000	1429	1.05E+00
21000	1464	1.08E+00
22000	1499	1.10E+00
23000	1533	1.13E+00
24000	1565	1.15E+00

8/11/04

TECHNICAL REPORT TITLE PAGE

Instrument Efficiency Determination for Use in Minimum Detectable Concentration Calculations in Support of the Final Status Survey at Yankee Rowe

Title

YA-REPT-00-015-04 REV. 0

Technical Report Number

Approvals	\frown	(Print & Sign Name)	·	·
Preparer:	he me		Date:	10-7-04
Reviewer: Jam		Hummer	Date:	10/4/04
Approver (Cognizant	• •	Chuth	Date:	10/7/04

YA-REPT-00-015-04 Rev. 0

TABLE OF CONTENTS

1.0		Page			
1.0	Executive Su	mmary:			
2.0	2.0 Introduction:				
3.0	Calibration S	ources:			
4.0	4.1 Alpha 4.2 Sourc 4.2.1	etermination: 6 and Beta Instrument Efficiency (E _i): 6 e to Detector Distance Considerations: 7 Methodology 7 e (or Surface) Efficiency (E _s) Determination: 8			
5.0	Instrument Co	onversion Factor (E) (Instrument Efficiency for Scanning):			
6.0	Applying Eff	ciency Corrections Based on the Effects of Field Conditions for Total Efficiency:9			
7.0	Conclusion				
8.0	References:				
		Tables			
Table	3.1 Nuclie	les and Major Radiations: Approximate Energies			
Table	4.1 Instru	ment Efficiencies (ɛ _i) 7			
Table Table		ment Efficiencies (ε _i)			
	4.2 Sourc				
Table	4.2 Sourc4.3 Sourc	e to Detector Distance Effects on Instrument Efficiencies for α - β Emitters			
Table Table	4.2 Sourc4.3 Sourc	e to Detector Distance Effects on Instrument Efficiencies for α- β Emitters			
Table Table Table	4.2 Sourc4.3 Sourc	e to Detector Distance Effects on Instrument Efficiencies for α- β Emitters			
Table Table Table APPE	4.2 Source4.3 Source5.1 Energe	e to Detector Distance Effects on Instrument Efficiencies for α- β Emitters			
Table Table Table APPE APPE	4.2 Sourc4.3 Sourc5.1 EnergNDIX A	e to Detector Distance Effects on Instrument Efficiencies for α- β Emitters			

YA-REPT-00-015-04 Rev. 0

Page 2 of 26

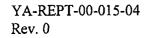
APPENDIX E	MicroShield, SPA-3 Soil scan - 28 cm radius 1pCi/cm3 Ag-108m 16
APPENDIX F	Microsoft Excel Ag-108m Calculation Sheet 17
APPENDIX G	MicroShield, SPA-3 Soil scan - 28 cm radius 1pCi/cm3 Sb-125 18
APPENDIX H	Microsoft Excel Sb-125 Calculation Sheet 19
APPENDIX I	MicroShield, SPA-3 Soil scan - 28 cm radius 1pCi/cm3 Cs-134 20
APPENDIX J	Microsoft Excel Cs-134 Calculation Sheet 21
APPENDIX K	MicroShield, SPA-3 Soil scan - 28 cm radius 1pCi/cm3 Cs-137 22
APPENDIX L	Microsoft Excel Cs-137 Calculation Sheet
APPENDIX M	MicroShield, SPA-3 Soil scan - 28 cm radius 1pCi/cm3 Cs-137 24
APPENDIX N	Microsoft Excel Cs-137 Calculation Sheet 25
APPENDIX O	Calculated Energy Response 26

1.0 Executive Summary:

The minimum detectable concentration (MDC) of the field survey instrumentation is an important factor affecting the quality of the final status survey (FSS). The efficiency of an instrument inversely impacts the MDC value. The objective of this report is to determine the instrument and source efficiency values used to calculate MDC. Several factors were considered when determining these efficiencies and are discussed in the body of this report. Instrument efficiencies (ε_i), and source efficiencies (ε_s), for alpha beta detection equipment under various field conditions, and instrument conversion factors (E_i), for gamma scanning detectors were determined and the results are provided herein.

2.0 Introduction:

Before performing Final Status Surveys of building surfaces and land areas, the minimum detectable concentration (MDC) must be calculated to establish the instrument sensitivity. Table 5.4 of the License Termination Plan (LTP) [8.6] lists the available instrumentation and nominal detection sensitivities; however for the purposes of this basis document, efficiencies for the $100cm^2$ gas proportional and the 2"x2" NaI (Tl) detectors will be determined. Efficiencies for the other instrumentation listed in the LTP shall be determined on an as needed basis. The 100 cm² gas proportional probe will be used to perform surveys (i.e., fixed point measurements). A 2" x2" NaI (Tl) detector will be used to perform gamma surveys (i.e., surface scans) of portions of land areas and possibly supplemental structural scans at the Yankee Rowe site. Although surface scans and fixed point measurements can be performed using the same instrumentation, the calculated MDCs will be quite different. MDC is dependent on many factors and may include but is not limited to:


- instrument efficiency
- background
- integration time
- surface type
- source to detector geometry
- source efficiency

A significant factor in determining an instrument MDC is the total efficiency, which is dependent on the instrument efficiency, the source efficiency and the type and energy of the radiation. MDC values are inversely affected by efficiency, as efficiencies increase, MDC values will decrease. Accounting for both the instrument and source components of the total efficiency provides for a more accurate assessment of surface activity.

3.0 Calibration Sources:

For accurate measurement of surface activity it is desirable that the field instrumentation be calibrated with source standards similar to the type and energy of the anticipated contamination. The nuclides listed in Table 3.1 illustrate the nuclides found in soil and building surface area DCGL results that are listed in the LTP.

Instrument response varies with incident radiations and energies; therefore, instrumentation selection for field surveys must be modeled on the expected surface activity. For the purposes of this report, isotopes with max beta energies less than that of C-14 (0.158 MeV) will be considered difficult to detect (reference table 3.1). The detectability of radionuclides with max beta energies less than 0.158 MeV, utilizing gas proportional detectors, will be negligible at typical source to detector distances of approximately 0.5

Page 4 of 26

inches. The source to detector distance of 1.27 cm (0.5 inches) is the distance to the detector with the attached standoff (DP-8534 "Operation and Source Checks of Proportional Friskers")[8.5]. Table 3.1 provides a summary of the LTP radionuclides and their detectability using Radiological Health Handbook [8.4] data.

Nuclide	a Energy (MeV)	E _{βmax} (MeV)	Average E _β (MeV)	Photon Energy (MeV)	α Detectable w/ Gas Proportional	β Detectable w/ Gas Proportional	Y Detectable w/ Nal 2x2"
H-3	<u> </u>	0.018	0.005				
C-14		0.158	0.049				t
Fe-55				0.23 (0.004%) bremsstrahlung			
Co-60		0.314	0.094	1.173 (100%), 1.332 (100%)		1	V
Ni-63		0.066	0.017				
Sr-90		0.544 2.245 (Y-90)	0.200 0.931			V	
Nb-94		0.50	0.156	0.702 (100%), 0.871 (100%)		. 🗸	V
Tc-99	[0.295	0.085			1	
Ag- 108m		1.65 (Ag- 108)	0.624 (Ag- 108)	0.434 (0.45%), 0.511 (0.56%) 0.615 (0.18%), 0.632 (1.7%)			V
Sb-125		0.612	0.084	0.6, 0.25, 0.41, 0.46, 0.68, 0.77, 0.92, 1.10, 1.34		1	1
Cs-134		1.453	0.152	0.57 (23%), 0.605 (98%) 0.796 (99%), 1.038 (1.0%) 1.168 (1.9%), 1.365 (3.4%)		V	V
Cs-137		1.167	0.195	0.662 (85%) Ba-137m X- rays		V	V
Eu-152		1.840	0.288	0.122 (37%), 0.245 (8%) 0.344 (27%), 0.779 (14%) 0.965 (15%), 1.087 (12%) 1.113 (14%), 1.408 (22%)		V	V
Eu-154		1.850 (10%)	0.228				
Eu-155		0.247	0.044	0.087 (32%), 0.105 (20%)		1	
Pu-238	5.50 (72%) 5.46 (28%)	•		0.099 (8E-3%) 0.150 (1E-3%) 0.77 (5E-5%)	V		
Pu-239	5.16 (88%) 5.11 (11%)			0.039 (0.007%), 0.052 (0.20%), 0.129 (0.005%)	V		
Pu-241	4.90 (0.0019%) 4.85 (0.0003%)	0.021	0.005	0.145 (1.6E-4%)			
Am-241	5.49 (85%) 5.44 (13%)			0.060 (36%), 0.101 (0.04%)	1		
Cm-243	6.06 (6%) 5.99 (6%) 5.79 (73%) 5.74			0.209 (4%), 0.228 (12%), 0.278 (14%)	1		

Table 3.1

YA-REPT-00-015-04 Rev. 0

Page 5 of 26

NUREG-1507 and ISO 7503-1 provide guidance for selecting calibration sources and their use in determining total efficiency. It is common practice to calibrate instrument efficiency for a single beta energy; however the energy of this reference source should not be significantly greater than the beta energy of the lowest energy to be measured.

Tc-99 (0.295 MeV max) and Th-230 (4.68 MeV at 76% and 4.62 MeV at 24%) have been selected as the beta and alpha calibration standards respectively, because their energies conservatively approximate the beta and alpha energies of the plant specific radionuclides.

4.0 Efficiency Determination:

Typically, using the instrument 4π efficiency exclusively provides a good approximation of surface activity. Using these means for calculating the efficiency often results in an under estimate of activity levels in the field. Applying both the instrument 2π efficiency and the surface efficiency components to determine the total efficiency allows for a more accurate measurement due to consideration of the actual characteristics of the source surfaces. ISO 7503-1 [8.2] recommends that the total surface activity be calculated using:

$$A_{s} = \frac{R_{S+B} - R_{B}}{(\varepsilon_{i})(W)(\varepsilon_{s})},$$

where:

 A_s is the total surface activity in dpm/cm²,

 R_{S+B} is the gross count rate of the measurement in cpm,

R_B is the background count rate in cpm,

 ε_i is the instrument or detector 2π efficiency

 ε_s is the efficiency of the source

W is the area of the detector window (cm^2)

4.1 Alpha and Beta Instrument Efficiency (ε_i) :

Instrument efficiency (ε_i) reflects instrument characteristics and counting geometry, such as source construction, activity distribution, source area, particles incident on the detector per unit time and therefore source to detector geometry. Theoretically the maximum value of ε_i is 1.0, assuming all the emissions from the source are 2π and that all emissions from the source are detected. The ISO 7503-1 methodology for determining the instrument efficiency is similar to the historical 4π approach; however the detector response, in cpm, is divided by the 2π surface emission rate of the calibration source. The instrument efficiency is calculated by dividing the net count rate by the 2π surface emission rate (q $_{2\pi}$) (includes absorption in detector window, source detector geometry). The instrument efficiency is expressed in ISO 7503-1 by:

YA-REPT-00-015-04 Rev. 0

$$\varepsilon_i = \frac{R_{S+B} - R_B}{q_{2\pi}}$$

where:

 R_{S+B} is the gross count rate of the measurement in cpm, R_B is the background count rate in cpm,

q $_{2\pi}$ is the 2π surface emission rate in reciprocal seconds

Note that both the 2π surface emission rate and the source activity are usually stated on the certification sheet provided by the calibration source manufacturer and certified as National Institute of Standards and Technology (NIST) traceable. Table 4.1 depicts instrument efficiencies that have been determined during calibration using the 2π surface emission rate of the source.

Source	Emission	Active Area of Source (cm ²)	Effective Area of Detector	100 cm ² Gas Proportional HP-100 Instrument Efficiency (ε _i) (Contact)
Tc-99	ß	15.2	100 cm^2	0.4148
Th-230	α	15.2	100 cm^2	0.5545

Table 4.1									
Instrument Efficiencies	(2)								

4.2 Source to Detector Distance Considerations:

A major factor affecting instrument efficiency is source to detector distance. Consideration must be given to this distance when selecting accurate instrument efficiency. The distance from the source to the detector shall to be as close as practicable to geometric conditions that exist in the field. A range of source to detector distances has been chosen, taking into account site specific survey conditions. In an effort to minimize the error associated with geometry, instrument efficiencies have been determined for source to detector distances representative of those survey distances expected in the field. The results shown in Table 4.2 illustrate the imposing reduction in detector response with increased distance from the source. Typically this source to detector distances, however they may differ for other surfaces. Table 4.2 makes provisions for the selection of source to detector distances for field survey conditions of up to 2 inches. If surface conditions dictate the placement of the detector at distances greater than 2 inches instrument efficiencies will be determined on an as needed basis.

4.2.1 Methodology:

The practical application of choosing the proper instrument efficiency may be determined by averaging the surface variation (peaks and valleys narrower than the length of the detector) and adding 0.5 inches, the spacing that should be maintained between the detector and the highest peaks of the surface. Select the source to detector distance from Table 4.2 that best reflects this pre-determined geometry.

YA-REPT-00-015-04 Rev. 0

Page 7 of 26

Source to Detector Distance (cm)	Instrument Efficiency (E _i)	
	Tc-99 Distributed	Th-230 Distributed
Contact	0.4148	0.5545
1.27 (0.5 in)	0.2413	0.1764
2.54 (1 in)	0.1490	0.0265
5.08 (2 in)	0.0784	0.0002

Table 4.2Source to Detector Distance Effects on Instrument Efficiencies for α - β Emitters

4.3 Source (or Surface) Efficiency (ε_s) Determination:

Source efficiency (ε_s), reflects the physical characteristics of the surface and any surface coatings. The source efficiency is the ratio between the number of particles emerging from surface and the total number of particles released within the source. The source efficiency accounts for attenuation and backscatter. ε_s is nominally 0.5 (no self-absorption/attenuation, no backscatter)—backscatter increases the value, self-absorption decreases the value. Source efficiencies may either be derived experimentally or simply selected from the guidance contained in ISO 7503-1. ISO 7503-1 takes a conservative approach by recommending the use of factors to correct for alpha and beta self-absorption/attenuation when determining surface activity. However, this approach may prove to be too conservative for radionuclides with max beta energies that are marginally lower than 0.400 MeV, such as Co-60 with a β max of 0.314 MeV. In this situation, it may be more appropriate to determine the source efficiency by considering the energies of other beta emitting radionuclides. Using this approach it is possible to determine weighted average source efficiency. For example, a source efficiency of 0.375 may be calculated based on a 50/50 mix of Co-60 and Cs-137. The source efficiencies for Co-60 and Cs-137 are 0.25 and 0.5 respectively, since the radionuclide fraction for Co-60 and Cs-137 is 50% for each, the weighted average source efficiency for the mix may be calculated in the following manner:

(0.25)(0.5) + (0.5)(0.5) = 0.375

Source Effi	ciencies as listed in	ISO 7503-1
	$> 0.400 \text{ MeV}_{max}$	\leq 0.400 MeV _{max}
Beta emitters	$\varepsilon_s = 0.5$	$\varepsilon_{\rm s} = 0.25$
Alpha emitters	$\varepsilon_s = 0.25$	$\varepsilon_{\rm s} = 0.25$

Table 43

Table 4.3 lists guidance on source efficiencies from ISO 7503-1.

It should be noted that source efficiency is not typically addressed for gamma detectors as the value is effectively unity.

YA-REPT-00-015-04 Rev. 0

Instrument Conversion Factor (E) (Instrument Efficiency for Scanning): 5.0

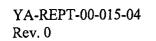
Separate modeling analysis (MicroshieldTM) was conducted using the common gamma emitters with a concentration of 1 pCi/g of uniformly distributed contamination throughout the volume. MicroShield is a comprehensive photon/gamma ray shielding and dose assessment program, which is widely used throughout the radiological safety community. An activity concentration of 1 pCi/g for the nuclides was entered as the source term. The radial dimension of the cylindrical source was 28 cm, the depth was 15 cm, and the dose point above the surface was 10 cm with a soil density of 1.6 g/cm³. The instrument efficiency when scanning, E_i , is the product of the modeled exposure rate (MicroShieldTM) in mRhr⁻¹/pCi/g for and the energy response factor in cpm/mR/hr as derived from the energy response curve provided by Eberline Instruments (Appendix O). Table 5.1 demonstrates the derived efficiencies for the major gamma emitting isotopes listed in Table 3.1.

Isotope	Calculations for E _i	\mathbf{E}_{i}
	See appendix A through L	(cpm/pCi/g)
Co-60	See Appendix Aand B	379
Nb-94	See Appendix C and D	416
Ag-108m	See Appendix E and F	637
Sb-125	See Appendix G and H	210
Cs-134	See Appendix 1 and J	506
Cs-137	See Appendix K and L	188
Eu-152	See Appendix M and N	344

Т	ABLE	5.1	l	
1 - 00		~		 -

. Ei pes

When performing gamma scan measurements on soil surfaces the effective source to detector geometry is as close as is reasonably possible (less than 3 inches).


6.0 Applying Efficiency Corrections Based on the Effects of Field Conditions for Total Efficiency:

The total efficiency for any given condition can now be calculated from the product of the instrument efficiency ε_i and the source efficiency ε_s .

$$\varepsilon_{tot} = \varepsilon_i \ge \varepsilon_s$$

The following example illustrates the process of determining total efficiency. For this example we will assume the following:

- Surface activity readings need to be made in the Primary Auxiliary Building (PAB) on the concrete wall surfaces using the E-600 and C-100 gas proportional detector.
- Data obtained from characterization results from the PAB indicate the presence of beta emitters with energies greater than 0.400 Mev.
- The source (activity on wall) to detector distance is 1.27 cm (0.5 in detector stand off). To calculate the total efficiency, ε_{tot} , refer to Table 4.2 "Source to Detector Distance Effects on Instrument Efficiencies for α - β Emitters" to obtain the appropriate ε_i value.
- Contamination on all surfaces is distributed relative to the effective detector area.

Page 9 of 26

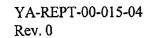
- When performing fixed point measurements with gas proportional instrumentation the effective source to detector geometry is representative of the calibrated geometries listed in Table 4.2 "Source to Detector Distance Effects on Instrument Efficiencies for α β Emitters".
- Corrections for temperature and pressure are not substantial.

In this example, the value for ε_i is 0.2413 as depicted in Table 4.2 "Source to Detector Distance Effects on Instrument Efficiencies for α - β Emitters". The ε_s value of 0.5 is chosen refer to Table 4.3 "Source Efficiencies as listed in ISO 7503-1". Therefore the total efficiency for this condition becomes $\varepsilon_{tot} = \varepsilon_i x$ $\varepsilon_s = 0.2413 \times 0.5 = 0.121$ or 12.1%.

7.0 Conclusion:

Field conditions may significantly influence the usefulness of a survey instrument. When applying the instrument and source efficiencies in MDC calculations, field conditions must be considered. Tables have been constructed to assist in the selection of appropriate instrument and source efficiencies. Table 4.2 "Source to Detector Distance Effects on Instrument Efficiencies for α - β Emitters" lists instrument efficiencies (ϵ_i) at various source to detector distances for alpha and beta emitters. The appropriate ϵ_i value should be applied, accounting for the field condition, i.e. the relation between the detector and the surface to be measured.

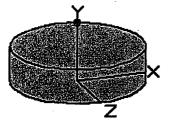
Source efficiencies shall be selected from Table 4.3 "Source Efficiencies as listed in ISO 7503-1". This table lists conservative ε_s values that correct for self-absorption and attenuation of surface activity. Table 5.1 "Energy Response and Efficiency for Photon Emitting Isotopes" lists E_i values that apply to scanning MDC calculations. The MicroshieldTM model code was used to determine instrument efficiency assuming contamination conditions and detector geometry cited in section 5.6.2.4.4 "MDCs for Gamma Scans of Land Areas" of the License Termination Plan [8.6].


Detector and source conditions equivalent to those modeled herein may directly apply to the results of this report.

YA-REPT-00-015-04 Rev. 0

8.0 References

- 8.1 NUREG-1507, "Minimum Detectable Concentrations with Typical Radiation Survey Instruments for Various Contaminants and Field Conditions," 1998
- 8.2 ISO 7503-1, "Evaluation of Surface Contamination Part I: Beta Emitters and Alpha Emitters," 1988-08-01.
- 8.3 ISO 8769, "Reference Sources for the Calibration of Surface Contamination Monitors-Beta-emitters (maximum beta energy greater 0.15MeV) and Alpha-emitters," 1988-06-15.
- 8.4 "Radiological Health Handbook," Revised Edition 1970.
- 8.5 DP-8534, "Operation and source Checks of Portable Friskers".
- 8.6 Yankee Nuclear Plant Site License Termination Plan, Rev.0, November 2003.


APPENDIX A

MicroShield v6.02 (6.02-00253)

Page DOS File Run Date Run Time Duration	:1 :SPA3-EFF-Co-60.ms6 : September 10, 2004 : 8:56:50 AM : 00:00:00	File Ref Date By Checked	
Run Date Run Time	: September 10, 2004 : 8:56:50 AM	Ву	

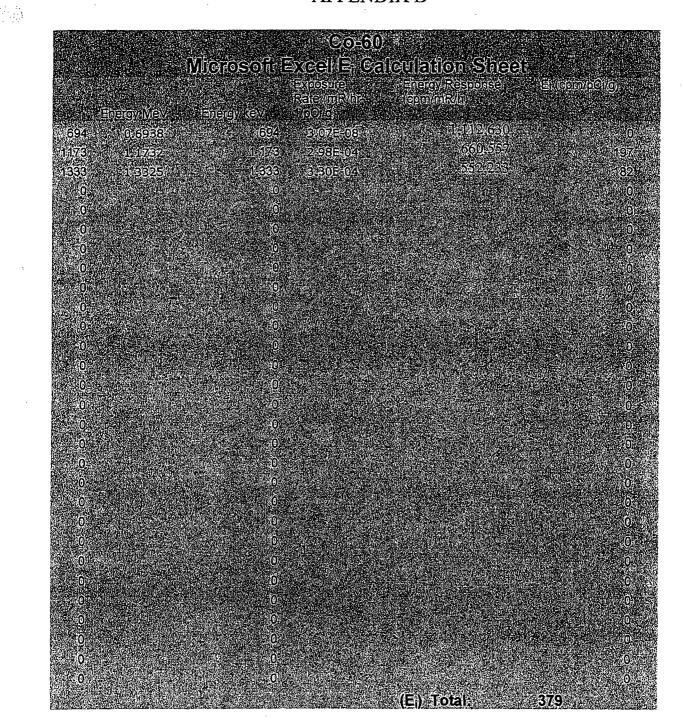
Case Title: SPA3-EFF-Co-60 Description: SPA-3 Soil scan - 28 cm radius 1pCi/cm3 Co-60 Geometry: 8 - Cylinder Volume - End Shields

•	Source D	mensions:	
Height	15.	0 cm	(5.9 in)
Radius	28.	0 cm	(11.0 in)
•	Dose	Points	
A	x	Y	Z
# 1	0 cm	25 cm	0 cm
۰	0.0 in	9.8 in	0.0 in

Shields				
Shield N	Dimension	Material	Density	
Source	3.69e+04 cm ³	Concrete	1.6	
Air Gap		Air	0.00122	

Source Input : Grouping Method - Actual Photon Energies					
Nuclide	curies	becquerels	µCi/cm³	Bq/cm³	
Co-60	3.6945e-008	1.3670e+003	1.0000e-006	3.7000e-002	

Buildup	: The material	I reference is - Source
	Integration	Parameters


Radial	20
Circumferential	10
Y Direction (axial)	10

			Results			
Energy MeV	Activity Photons/sec	Fluence Rate MeV/cm²/sec No Buildup	Fluence Rate MeV/cm²/sec With Buildup	Exposure Rate mR/hr No Buildup	Exposure Rate mR/hr With Buildup	
0.6938	2.230e-01	9.055e-06	1.590e-05	1.748e-08	3.070e-08	
1.1732	1.367e+03	1.098e-01	1.669e-01	1.962e-04	2.982e-04	
1.3325	1.367e+03	1.293e-01	1.904e-01	2.244e-04	3.303e-04	
Totals	2.734e+03	2.391e-01	3.573e-01	4.205e-04	6.286e-04	

YA-REPT-00-015-04 Rev. 0

Page 12 of 26

APPENDIX B

YA-REPT-00-015-04 Rev. 0

Page 13 of 26

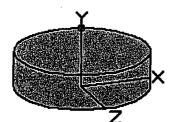
APPENDIX C

MicroShield v6.02 (6.02-00253)

Page	:1	File Ref
DOS File	:SPA3-EFF-Nb-94.ms6	Date
Run Date	: September 16, 2004	Bý
Run Time	: 3:22:38 PM	Checked
Duration	: 00:00:00	Спескеа

Case Title: SPA3-EFF- Description: SPA-3 Soil scan - 28 cm r Geometry: 8 - Cylinder Volume	adius 1pCi/cm3	Nb-94	
	Source D	imensions:	
Height	15	.0 cm	(5.9 in)
Radius	28	.0 cm	(11.0 in)
•	Dose	Points	
A	X	Y	z
# 1	0 cm	25 cm	0 cm

9.8 in


0.0 in

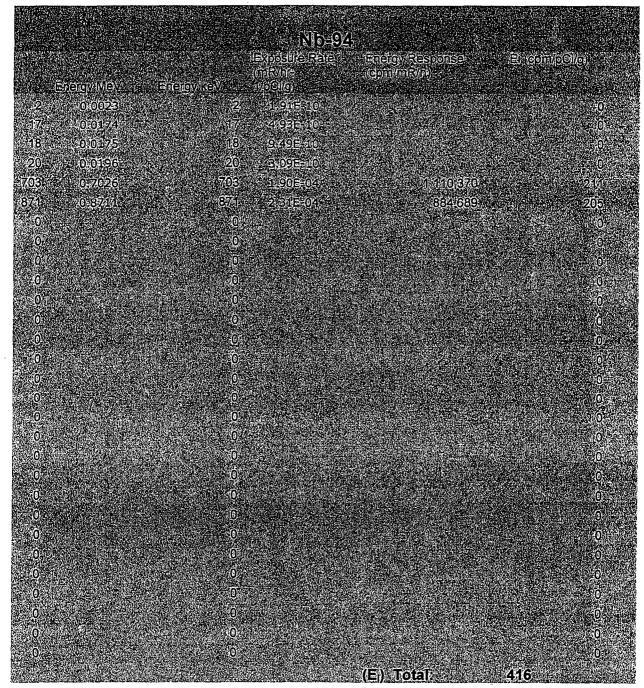
0.0 in

:

:

:

	Shiel	ds	
Shield N	Dimension	Material	Density
Source	3.69e+04 cm ³	Concrete	1.6
Air Gap		Air	0.00122


	Sou	rce Input : Groupii	ng Method - Actual	Photon Energies	
Nuclid	e curi	es be	cquerels	µCi/cm³	Bq/cm ³
Nb-94	3.6945	2-008 1.30	570e+003	1.0000e-006	3.7000e-002
		······	aterial reference i ration Parameters		
	Radial			20	
	Circumfer	ential		10	
	Y Directio	n (axial)		10	
			Results		
Energy MeV	Activity Photons/sec	Fluence Rate MeV/cm ² /sec	Fluence Rate MeV/cm ² /sec	Exposure Rate mR/hr	Exposure Rate mR/hr

Energy MeV	Activity Photons/sec	Fluence Rate MeV/cm²/sec No Buildup	Fluence Rate MeV/cm²/sec With Buildup	Exposure Rate mR/hr No Buildup	Exposure Rate mR/hr With Buildup
0.0023	9.067e-02	1.391e-10	1.430e-10	1.861e-10	1.913e-10
0.0174	4.834e-01	8.762e-09	9.129e-09	4.729e-10	4.927e-10
0.0175	9.260e-01	1.719e-08	1.792e-08	9.104e-10	9.491e-10
0.0196	2.720e-01	7.924e-09	8.356e-09	2.925e-10	3.085e-10
0.7026	1.367e+03	5.643e-02	9.872e-02	1.088e-04	1.904e-04
0.8711	1.367e+03	7.464e-02	1.228e-01	1.405e-04	2.312e-04
Totals	2.736e+03	1.311e-01	2.216e-01	2.493e-04	4.216e-04

YA-REPT-00-015-04 Rev. 0

APPENDIX D

YA-REPT-00-015-04 Rev. 0

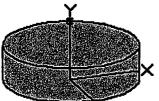
Page 15 of 26

APPENDIX E MicroShield v6.02 (6.02-00253)

Page DOS File Run Date Run Time Duration

: 00:00:00 Checked	:1 :SPA3-EFF-Ag-108m.ms6 : September 16, 2004 : 3:30:40 PM : 00:00:00	File Ref Date By Checked
--------------------	---	-----------------------------------

Case Title: SPA3-EFF-Ag-108m Description: SPA-3 Soil scan - 28 cm radius 1pCi/cm3 Ag-108m Geometry: 8 - Cylinder Volume - End Shields


	Source D	imensions:	
Height	15.	.0 cm	(5.9 in)
Radius	28.	.0 cm	(11.0 in)
	Dose	Points	
Α	X	Y	Z
# 1	0 cm	25 cm	0 cm
	0.0 in	9.8 in	0.0 in
,	.,		

:

:

:

:

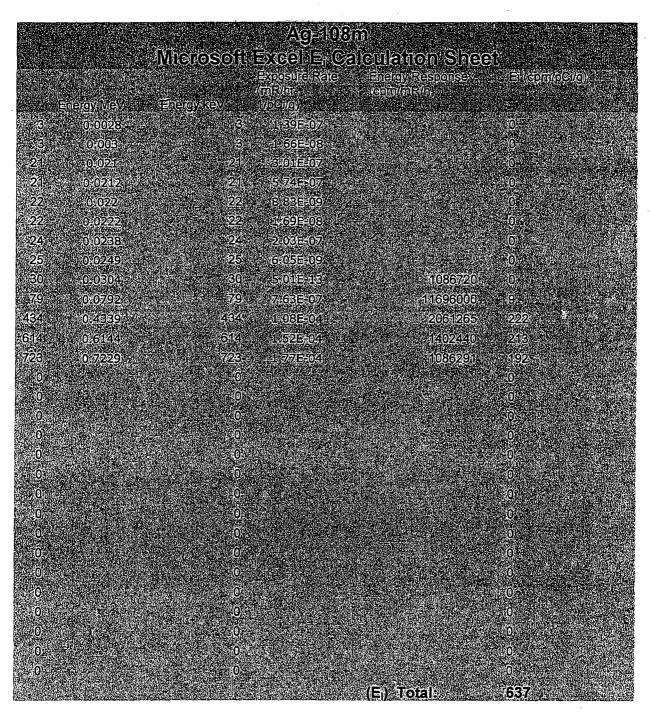
Shield N	Dimension	Material	Density
Source	3.69e+04 cm ³	Concrete	1.6
Air Gap		Air	0.00122

10 10

	Source Input : (Grouping Method - J	Actual Photon Energie	S
Nuclide	curies	becquerels	µCi/cm³	Bq/cm³
Ag-108m	3.6945e-008	1.3670e+003	1.0000e-006	3.7000e-002

Buildup : The material reference is - Source Integration Parameters 20

Radial	
Circumferential	
Y Direction (axial)	


			Results		
Energy MeV	Activity Photons/sec	Fluence Rate MeV/cm²/sec No Buildup	Fluence Rate MeV/cm²/sec With Buildup	Exposure Rate mR/hr No Buildup	Exposure Rate mR/hr With Buildup
0.0028	6.580e+01	1.252e-07	1.287e-07	1.351e-07	1.388e-07
0.003	7.853e+00	1.568e-08	1.612e-08	1.612e-08	1.657e-08
0.021	2.491e+02	9.534e-06	1.015e-05	2.824e-07	3.007e-07
0.0212	4.727e+02	1.862e-05	1.985e-05	5.389e-07	5.744e-07
0.022	7.024e+00	3.202e-07	3.434e-07	8.233e-09	8.831e-09
0.0222	1.330e+01	6.251e-07	6.714e-07	1.568e-08	1.685e-08
0.0238	1.501e+02	9.273e-06	1.010e-05	1.863e-07	2.029e-07
0.0249	4.289e+00	3.145e-07	3.464e-07	5.492e-09	6.050e-09
0.0304	2.902e-04	4.431e-11	5.248e-11	4.230e-13	5.010e-13
0.0792	9.687e+01	2.008e-04	4.802e-04	3.190e-07	7.629e-07
0.4339	1.229e+03	2.705e-02	5.514e-02	5.294e-05	1.079e-04
0.6144	1.236e+03	4.282e-02	7.808e-02	8.347e-05	1.522e-04
0.7229	1.237e+03	5.300e-02	9.194e-02	1.019e-04	1.768e-04
Totais	4.768e+03	1.231e-01	2.257e-01	2.398e-04	4.389e-04

YA-REPT-00-015-04 Rev. 0

Page 16 of 26

APPENDIX F

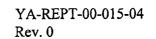
YA-REPT-00-015-04 Rev. 0

Page 17 of 26

APPENDIX G

MicroShield v6.02 (6.02-00253)

Page	:1	File Ref	
DOS File	:SPA3-EFF-Sb-125.ms6	Date	•
Run Date	: September 16, 2004		•
Run Time	: 3:34:07 PM	B <u>y</u> Cheeled	
Duration	: 00:00:00	Checked	•


Case Title: SPA3-EFF-Sb-125 Description: SPA-3 Soil scan - 28 cm radius 1pCi/cm3 Sb-125 Geometry: 8 - Cylinder Volume - End Shields

Y
×
7

Height	15.	0 cm	(5.9 in)
Radius	28.0 cm		(11.0 in)
	Dose	Points	
A	х	Y	Z
# 1	0 cm	25 cm	0 cm
	0,0 in	9.8 in	0,0 ir

Shields

	_			Shields		
			Shield N Source	Dimension 3.69e+04 cm ³	Material Concrete	Density 1.6
			Air Gap	3.0%ETV4 CIIT	Air	0.00122
		Source Input : G	rouping Method - Actual Pho	oton Energies		
Nuclide	curi		Becquereis	µCi/cm²	•	lq/cm²
Sb-125	3.6945e	-008	1.3670e+003	1.0000e-006	3.70	000e-002
		Buildup :	The material reference is - S Integration Parameters	ource		
	Radial		integration varameters	20		
	Circumferential			10		
	Y Direction (axi	al)		10		
			Results			
Energy	Activity	Fluence Rate	Fluence Rate	Exposure Rate		osure Rate
MeV	Photons/sec	MeV/cm ² /sec	MeV/cm ² /sec	mR/hr		mR/hr
	6.540	No Buildup	With Buildup	No Buildup		h Buildup
0.0038	6.762e+01	1.708e-07	1.756e-07	1.388e-07		427e-07
0.0272	1.748e+02	1.785e-05	2.020e-05	2.376e-07		689e-07
0.0275	3.262e+02	3.453e-05	3.922e-05	4.461e-07		067e-07
0.031	1.132e+02	1.857e-05	2.221e-05	1.670e-07		997e-07
0.0355	5.693e+01	1.492e-05	1.918e-05	9.090e-08		169e-07
0.117	3.568e+00	1.380e-05	3.715e-05	2.146e-08		778e-08
0.159	9.531e-01	5.634e-06	1.499e-05	9.416e-09		505e-08
0.1726	2.478 c+ 00	1.634e-05	4.295e-05	2.787e-08		326e-08
0.1763	9.422e+01	6.392e-04	1.674e-03	1.096e-06		870e-06
0.2041	4.410e+00	3.630e-05	9.230e-05	6.435e-08	1.	636e-07
0.2081	3.324 c+ 00	2.805e-05	7.103e-05	4.994e-08	١.	264e-07
0.2279	1.796e+00	1.708e-05	4.229e-05	3.098e-08	7.	670e-08
0.321	5.701e+00	8.474e-05	1.899e-04	1,620e-07	3.	632e-07
0.3804	2.045e+01	3.792e-04	8.052e-04	7.364e-07	1.	564e-06
0.408	2.486e+00	5.051e-05	1.049e-04	9.853e-08	2.	047e-07
0.4279	4.009e+02	8.668e-03	1.774e-02	1.695e-05	3.	470e-05
0.4435	4.130e+00	9.356e-05	1.894c-04	1.832e-07	3.	709e-07
0.4634	1.415e+02	3.395e-03	6.781e-03	6.658e-06	1.	330e-05
0.6006	2.430e+02	8.174e-03	1.501e-02	1.595e-05	2.	930e-05
0.6066	6.864e+01	2.340e-03	4.283e-03	4.564e-06	8.	355e-06
0.6359	1.548e+02	5.609e-03	1.012e-02	1.091e-05	1.	967e-05
0.6714	2.478e+01	9.640e-04	1.710e-03	1.867e-06	3.	311e-06
Totals	1.916e+03	3.060e-02	5.901c-02	6.046e-05	1.	158e-04

APPENDIX H

			S154124	5	
			૱ઌઌ૱ ૱ૡ	Septempion Response	
	Energy Mex		net of the source of the sour		
4	0.0038	4.		6:618:312	0
27	0.0272	27	2696407	510,290	NOTE STATE
284	0.0275		5.07/E=07	554334	in Oliver and the second
31	0.031	3H	2.001=07	1,219,281	0
36	0.0355	36	1.478-07	2,448,948	0
117.4	0.117	17	578E-08	9/167/000	
159.5	0.169	159	2.51:E-08	8917000	0
173	.u. x0-1726-12	176	7.36(240)8	6859000	
1764.	0.1763	176	2:874E=06	6102600	18
-204	0.2041	204		60111300	
2087	0 2081	208	1.26E-07	4073050	
228	0.2279.	228 321	7.67E-08 3.63E-07	3110500	0.00
321 380	0.321	- 380	01000001562	3000500 2348000	
4085	0.408	408	2.047/E=07/	2155800	0
428	0.400	428	0.0000347	2083/165	
444	0.4435	44 <u>4</u>	-S 709E=07	2026225	
463	0.4634		0:0000188	1953590	26
601	0.6006	601	0.0000298	1452810	43
607)	0.6066	607	0.000008355	1430910	12
636	0:6359	- 636	0100001967	1323965	26
67.1			0.0000038611	1194390	1
<u> </u>					
<u>, 0</u> ,		0	and a second		
0.5		0			0
ĊŎ.		S (1997)			
(m. 0 v)		0.14			SOM STREET
13. 0 .		0			te Oralesti oga statisti Matematika
0		0			0
				(E) Total:	210

YA-REPT-00-015-04 Rev. 0

Page 19 of 26

•

APPENDIX I MicroShield v6.02 (6.02-00253)

Page	:1	File Ref	:
DOS File	:SPA3-EFF-Cs-134.ms6		:
Run Date	: September 16, 2004	Date	•
Run Time	: 3:39:09 PM	By	:
Duration	: 00:00:00	Checked	:

Case Title: SPA3-EFF-Cs-134 Description: SPA-3 Soil scan - 28 cm radius 1pCi/cm3 Cs-134 Geometry: 8 - Cylinder Volume - End Shields

Y	
X	
Z	

Height	15.	.0 ćm	(5.9 in)
Radius	28.	28.0 cm	
	Dose	Points	
Α	x	Υ Y	Z
#1	0 cm	25 cm	0 cm
	, 0.0 in	9.8 in	0.0 in
	,		,
	•		

Source Dimensions:

Shields				
Shield N	Dimension	Material	Density	
Source	3.69e+04 cm ³	Concrete	1.6	
Air Gap		Air	0.00122	

	Sour	ce Input : Groupin	ig Method - Actual	Photon Energies	
Nuclid	e curie	es bec	querels	µCi/cm³	Bq/cm³
Cs-134	3.6945e	-008 1.36	570e+003	1,0000e-006	3.7000e-002
				-	
		•	aterial reference is ration Parameters		
	Radial	anteg		20	_
	Circumfere	ential		10	
	Y Direction			10	
	1 Direction			10	
			Results		
Energy MeV	Activity Photons/sec	Fluence Rate MeV/cm²/sec No Buildup	Fluence Rate MeV/cm²/sec With Buildup	Exposure Rate mR/hr No Buildup	Exposure Rate mR/hr With Buildup
0.0045	1.222e+00	3.658e-09	3.760e-09	2.507e-09	2.577e-09
0.0318	2.931e+00	5.271e-07	6.386e-07	4.391e-09	5.320e-09
0.0322	5.407e+00	1.014e-06	1.236e-06	8.157e-09	9.943e-09
0.0364	1.968e+00	5.611e-07	7.321e-07	3.188e-09	4.160e-09
0.2769	4.839e-01	5.931e-06	1.391e-05	1.113e-08	2.610e-08
0.4753	1.996e+01	4.950e-04	9.808e-04	9.712e-07	1.924e-06
0.5632	1.146e+02	3.545e-03	6.648e-03	6.940e-06	1.302e-05
0.5693	2.109e+02	6.619e-03	1.237e-02	1.295e-05	2.421e-05
0.6047	1.334e+03	4.529e-02	8.300e-02	8.836e-05	1.619e-04
0.7958	1.167e+03	5.668e-02	9.564e-02	1.079e-04	1.820e-04
0.8019	1.193e+02	5.852e-03	9.853e-03	1.113e-05	1.874e-05
1.0386	1.367e+01	9.377e-04	1.472e-03	1.717e-06	2.696e-06
1.1679	2.461e+01	1.964e-03	2.990e-03	3.514e-06	5.349e-06

5.936e-03

2.189e-01

6.993e-06

2.405e-04

YA-REPT-00-015-04 Rev. 0

1.3652

Totals

4.156e+01

3.058e+03

4.055e-03

1.254e-01

Page 20 of 26

1.024e-05

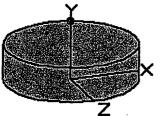
4.202e-04

APPENDIX J

STREET, STREET, STREET, ST							
			CS-1	EA HAR MELTA AND A MARKED			
		Migrosofte	excenter ()	a cultura a	Sheet		
			Exposure	Eiegy ses	Dorse , is:		Ci/g)
	naraw Mew	. Silenovake	Rater(mR/line 1/pCi/g)	(ឲ្យចាក់វិកាដី/កែ)			
14455			2585409			<u>.</u>	
	0-0318	32	5.82E-09	4. 1	406 947	(0	
32 32	0:0322	32 32	S-S2E-09 	Us	505 273		
- 36 - 36	0.0364	36.	16E-09		596 122	0	
277	0.2769	277	2.614E=08		3 37 (000)	0	
475	0:4753	47/5	J.92E-06	Construction State and All Internet	910 155	44 S	
563	0.5632	563	1.305-05		589,320	201	
569	0:5693	569	2,425-05	CARL STATISTICS OF A DATA STATISTICS	567/055	38	
605	0.6047	605	1:628-014	 A second s	437 845	283	
796	0.7958	796	····1-82E-04		998,082	182	
802	0.8019	802	1.876-05		939/149	18	
1039	1.0386	1.039	2 705-06		752 085	-0	
1168.2-	1.1679	1 168	5,355:061		664 464	4	
1365 4	1.3652	1.865	1.026-05		573. 13 6	6.	
0.0		0				0	
0		0					
0		0				0	
0						0.0	
0		0				Ũ.	
0.00						0	
0						0	
0						0.00	
						0	
0		0				.01	
0						0	
23 <u>0</u> 8						0	
0		0				0.0	
- 0 - L		0.				0	
0		Ö -				0.0.0	
						506	
NECOLOGICAL STREET, ST	ang ang di sing ang ang ang ang ang ang ang ang ang a	name for any diversity of the state of the s	an a			an anna ann an an an an an an an an an a	**************************************

YA-REPT-00-015-04 Rev. 0

Page 21 of 26


APPENDIX K

MicroShield v6.02 (6.02-00253)

Page	:1	Cil.	Ref		1	
DOS File	:SPA3-EFF-Cs-137.ms6			•		
Run Date	: September 10, 2004	Dat	e	:		
-		Bv		:		
Run Time Duration	: 8:52:18 AM : 00:00:00	Che	cked	:	· · . · · ·	

Case Title: SPA3-EFF-Cs-137 Description: SPA-3 Soil scan - 28 cm radius 1pCi/cm3 Cs-137 and Daughters Geometry: 8 - Cylinder Volume - End Shields

		Source Di	mensions:	
	Height	15.	0 cm	(5.9 in)
	Radius	28.	0 cm	(11.0 in)
		Dose	Points	
\mathbf{v}	A	x	Y	Z
	# 1	0 cm [°]	25 cm	0 cm
	,	0.0 in	9.8 in	0.0 in

Shields					
Shield N	Dimension	Material	Density		
Source	3.69e+04 cm ³	Concrete	1.6		
Air Gap		Air	0.00122		

Source Input : Grouping Method - Actual Photon Energies				
Nuclide	curies	becquerels	µCi/cm³	Bq/cm ³
Ba-137m	3.4950e-008	1.2932e+003	9.4600e-007	3.5002e-002
Cs-137	3.6945e-008	1.3670e+003	1.0000e-006	3.7000e-002

Buildup : The material reference is - Source Integration Parameters

Radial	20
Circumferential	10
Y Direction (axial)	10

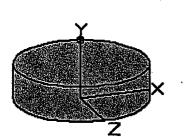
			Results		
Energy MeV	Activity Photons/sec	Fluence Rate MeV/cm²/sec No Buildup	Fluence Rate MeV/cm²/sec With Buildup	Exposure Rate mR/hr No Buildup	Exposure Rate mR/hr With Buildup
0.0045	1.342e+01	4.020e-08	4.133e-08	2.755e-08	2.833e-08
0.0318	2.677e+01	4.815e-06	5.834e-06	4.011e-08	4.860e-08
0.0322	4.939e+01	9.260e-06	1.129e-05	7.452e-08	9.084e-08
0.0364	1.797e+01	5.126e-06	6.688e-06	2.912e-08	3.800e-08
0.6616	1.164e+03	4.442e-02	7.913e-02	8.611e-05	1.534e-04
Totals	1.271e+03	4.444e-02	7.915e-02	8.628e-05	1.536e-04

YA-REPT-00-015-04 Rev. 0

APPENDIX L

		GS-1	and the second state of th		
	Microsofi	CEXCONEN Smoshe Reight	Calculation Si	i)een Isi/(eon/	ତିଆ ହା
A LENERGY MEV	NEMERGY KEV	00R/100 /(060/g)	VENCION RESIDENSE (Continues in the second se		
5. 0.0045 32 0.0318		38E=08-1 36E=08/1	14106(947)	±0.0 0 − 1/2	
3221/0103221	32	oose:@s	41505,273	0.00	
36 0.0364 662 0.6616		80f=08 53E-04	1.2289700	0 188	
0 0 0	0		pirons - Alexand	0 0	
0. 0.	0			0 = 0.2 0	
0	0 0			0 01	
01	0			0	
0	0			or o	
0	- 20 0			0 	
0	0.				
0 0	0 m			0 	
0	00 de			0.000	
O O-Surface and Add	0. 0.			0 (0	
0	Constant Operation			0. 0	
C. Market Street	0			-0	
Ör en strand som en som en Or en som en s	0; {0			0.12 - 0.12	
0	0			0 E	
O O	0 0			0:0:0:0:0 0:0:0:0:0:0:0:0:0:0:0:0:0:0:0	
			(E) Total:	188	

YA-REPT-00-015-04 Rev. 0


Page 23 of 26

APPENDIX M

MicroShield v6.02 (6.02-00253)

Page	:1	File Ref	 :
DOS File	:SPA3-EFF-Eu-152.ms6		:
Run Date	: October 7, 2004	Date	;
Run Time	: 11:25:11 AM	By	
Duration	: 00:00:00	Checked	[!]

Case Title: SPA-3-EFF-Eu-152 Description: SPA-3 Soil scan - 28cm radius 1 pCi/cm3 Eu-152 Geometry: 8 - Cylinder Volume - End Shields

Y Direction (axial)

	Source Dir	nensions:	
Height	15.0	i cm	(5.9 ln)
Radius	28.0	cm ²	(11.0 in)
	Dose F	Points	······································
Α	x	Y	Z
# 1	0 cm	25 cm	0 cm
	0.0 in	9.8 in	0.0 ln
١		ı	
			:
		···· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·	• ••••• ••• ••• •••
т с с <u>с с</u> ело с	Shie	lds	· · · · · · · · · · · · · · · · · · ·
Shield N	Dimension	Material	Density

Shield N	Dimension	Materiai	Density
Source	3.69e+04 cm ³	Concrete	1.6
Air Gap		Air	0.00122

Source Input : Grouping Method - Standard Indices Number of Groups : 25 Lower Energy Cutoff : 0.015 Photons < 0.015 : Included Library : Grove

			Library r drove		
Nuclide	curies	becquerels	µCi/cm³	Bq/cm³	:
Eu-152	3.6945e-008	1.3670e+003	1.0000e-006	3.7000e-002	
		•	material reference is · gration Parameters	Source	
	Radial			20	
	Circumferential			10	

Results

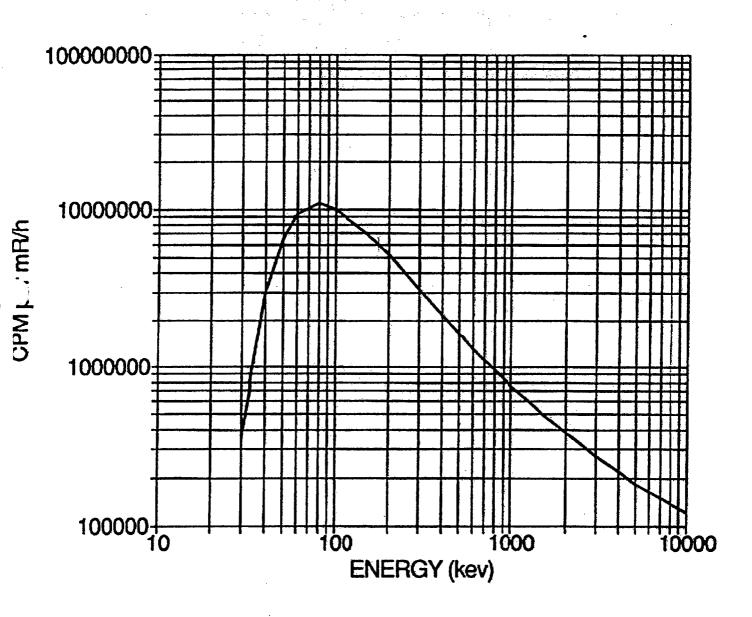
10

				-		
Energy MeV	Activity Photons/sec	Fluence Rate MeV/cm²/sec No Buildup	Fluence Rate MeV/cm²/sec With Buildup	Exposure Rate mR/hr No Buildup	Exposure Rate mR/hr With Bulidup	
0.015	2.077e+02	2.087e-06	2.146e-06	1.790e-07	1.841e-07	
0.04	8.088e+02	3.131e-04	4.331e-04	1.385e-06	1.916e-06	:
0.05	2.022e+02	1.507e-04	2.467e-04	4.014e-07	6.572e-07	
0.1	3.887e+02	1.189e-03	3.118e-03	1.819e-06	4.770e-06	
0.2	1.024e+02	8.207e-04	2.097e-03	1.448e-06	3.700e-06	
0.3	3.696e+02	5.029e-03	1.151e-02	9.540e-06	2.184e-05	•
0.4	8.590e+01	1.701e-03	3.555e-03	3.314e-06	6.926e-06	
0.5	7.711e+00	2.043e-04	3.984e-04	4.010e-07	7.819e-07	
0.6	5.797e+01	1.948e-03	3.579e-03	3.802e-06	6.985e-06	
0.8	2.434e+02	1.190e-02	2.005e-02	2.263e-05	3.813e-05	
1.0	5.849e+02	3.820e-02	6.058e-02	7.042e-05	1.117e-04	2
1.5	3.171e+02	3.490e-02	4.999e-02	5.871e-05	8.411e-05	
Totals	3.376e+03	9.635e-02	1.556e-01	1.740e-04	2.817e-04	· ···

APPENDIX N

1. 11. A. A.

15 Orois 7	Rate TEnergy KeV 101/65	osura (e. Ei AndEVint (e Vo) (e SdElov	oengy/Response onvnork/htt	Elkebin/alc	
40 + 42 004 / 5 50 005 + 1005 + 100 001	50 s	92566 -576:07 77/5306	3:897,600 - 6:500:000 - 9:958:333	4	
200 0.25 0.25 300 0.3 400 0.4	200 S 300 2	70E.06 18E:05 93E:06	4.850.000 3.200.000 2.185.000	18 70 15	
500 015 600 100 0060 800 0060	500 - 7 600 - 6	82E07 29E06 81E05	1:820.000 1:455:000 993:000	10 - 38	
10000 115 1500 115	11000	J2E:04 44(≘-05	788(019) 530(000)	87 45 50	
0 0 0				0 0 0	
0 0 0	0			0	
0 600 00000000000000000000000000000000	0 0 0 0			0 0 0 0	
0 O O	0 0 0 0 0			0 0 0	
				0 0 0	
0	03	(E) Total:	0 344	


. •.

YA-REPT-00-015-04 Rev. 0

Page 25 of 26

Calculated Energy Response (Eberline Instruments) CPM/mR/h

YA-REPT-00-015-04 Rev. 0

Page 26 of 26

Generic ALARA Evaluation Comparison Worksheet

Survey Area:	VOL-04	Survey Unit:01	·
Reference Generic	ALARA Evaluation No.:	YA-REPT-00-00	3-05
Applicable Generi	c ALARA AL: <u>165</u>	_	
Radionuclide	Average Concentration	DCGL	fraction DCGL
1. <u>Co-60</u>	0.04	<u> 1.4 </u>	0.03
2. <u>Cs-137</u>	0.11		0.04
3			
4		Σ (fraction DCGL) =	0.07
		2(If action DCOL) =	0.07
Check one: <u>X</u> Generic AL	ARA AL <u>IS</u> satisfied.		
Generic Al	LARA AL <u>IS NOT</u> satisfi	ed.	
Prepared by:	S Radiological Engineer	Date: <u>5</u> Date: <u>5 /</u> 2	18/04
Reviewed by: FS	S Project/Manager	Date: <u>5/</u> /	0/04

÷

7

DPF-8867.1 Rev. 2 Page 1 of 1 Use Of In-Situ Gamma Spectrum Analysis To Perform Elevated Measurement Comparisons In Support Of Final Status Surveys

YA-REPT-00-018-05

Approvals	(Print & Sign Name)	
Preparer: Greg Astrauckas/	7 P. all	Date: 1910/05
Preparer: Gordon Madison, C	E/	Date: 10/11/05
Reviewer: Jim Hummer, CHP	2. Hummer	Date: 10/18/05
Approver (FSS Manager): Dann Smith, CHP/	Dight	Date: 11/4/05

Rev. 0

P_lq

YA-REPT-00-018-05 Rev. 0

/

Technical Report YA-REPT-00-018-05, Rev. 0

1

Use Of In-Situ Gamma Spectrum Analysis To Perform Elevated Measurement Comparisons In Support Of Final Status Surveys

TABLE OF CONTENTS

1.0	Report		2
	1.1	Introduction	2
	1.2	Discussion	2
		1.2.1 Detector Description	2
		1.2.2 Traditional Approach	3
		1.2.3 Innovative Approach	4
		1.2.4 Investigation Level	4
		1.2.5 Detector Sensitivity	8
		1.2.6 Area Coverage	8
		1.2.7 Moisture Content in the Soil Matrix	9
		1.2.8 Discrete Particles in the Soil Matrix	10
		1.2.9 Procedures and Guidance Documents	10
		1.2.10 Environmental Background	11
		1.2.11 Quality Control	11
		1.2.12 Data Collection	12
		1.2.13 Efficiency Calibration	13
		1.2.14 Data Management	13
	1.3	Conclusions/Recommendations	14
	1.4	References	14
<u>Att</u>	achments		
	Attachme	nt 1, ISOCS [®] Detector System Photos	15
	Attachme	nt 2, Field-Of-View Characterization	16
	Attachme	nt 3, Typical Grid Pattern For In-Situ Gamma Spectroscopy	18

3

1.0 **REPORT**

1.1 Introduction

The ISOCS In-Situ Gamma Spectrum detector system manufactured by Canberra Industries is being employed to perform elevated measurement comparison (EMC) surveys in support of the Final Status Surveys at Yankee Atomic's Yankee Rowe facility. This system uses an HPGe detector and specialized efficiency calibration software designed to perform in-situ gamma-spectroscopy assays. The ISOCS system will primarily be employed to evaluate survey units for elevated measurement comparisons. The ISOCS system can obtain a static measurement at a fixed distance from a pre-determined location. Count times can be tailored to achieve required detection sensitivities. Gamma spectroscopy readily distinguishes background activity from plant-related licensed radioactivity. This attribute is particularly beneficial where natural radioactivity introduces significant investigation survey efforts. Additionally, background subtraction or collimation can be employed where background influences are problematic due to the presence of stored spent fuel (ISFSI).

This technical report is intended to outline the technical approach associated with the use of ISOCS for implementing a MARSSIM-based Final Status Survey with respect to scanning surveys for elevated measurement comparisons for both open land areas and building surfaces. While the examples and discussions in this report primarily address open land areas, the same approach and methodology will be applied when deriving investigation levels, grid spacing and measurement spacing for evaluating building surfaces.

Validation of the ISOCS software is beyond the scope of this technical report. Canberra Industries has performed extensive testing and validation on both the MCNP-based detector characterization process and the ISOCS calibration algorithms associated with the calibration software. The full MCNP method has been shown to be accurate to within 5% typically. ISOCS results have been compared to both full MCNP and to 119 different radioactive calibration sources. In general, ISOCS is accurate to within 4-5% at high energies and 7-11% at 1 standard deviation for low energies. Additionally, the ISOCS technology has been previously qualified in Yankee Atomic Technical Report YA-REPT-00-022-04, "Use Of Gamma Spectrum Analysis To Evaluate Bulk Materials For Compliance With License Termination Criteria."

1.2 Discussion

1.2.1 Detector Description

Two ISOCS-characterized HPGe detectors manufactured by Canberra Industries have been procured. Each detector is a reverse-electrode HPGe

YA-REPT-00-018-05 Rev. 0

Ŋ

detector rated at 50% efficiency (relative to a NaI detector). Resolution for these detectors is 2.2 keV @ 1332 keV. As the project progresses, other ISOCS detectors (e.g. standard electrode coaxial), if available, may be used to increase productivity. The key element regarding the use of other types of $ISOCS^{\text{@}}$ detectors is that specific efficiency calibrations will be developed to account for each detector's unique characteristics.

The HPGe detector is mounted on a bracket designed to hold the detector / cryostat assembly and associated collimators. This bracket may be mounted in a wheeled cart or in a cage-like frame. Both the wheeled cart and frame permit the detector to be oriented (pointed) over a full range from a horizontal to vertical position. The frame's design allows the detector to be suspended above the ground. Photographs of the frame-mounted system are presented in Attachment 1. During evaluations of Class1 areas for elevated radioactivity, the detector will generally be outfitted with the 90-degree collimator. Suspending the detector at 2 meters above the target surface yields a nominal field-of-view of 12.6 m^2 .

The InSpector (MCA) unit that drives the signal chain and the laptop computer that runs the acquisition software (Genie-2000) are mounted either in the frame or on the wheeled cart. These components are battery powered. Back-up power supplies (inverter or UPS) are available to support the duty cycle. A wireless network has been installed at the site so that the laptop computers used to run the systems can be completely controlled from any workstation at the facility. This configuration also enables the saving of data files directly to a centralized file server. Radio communication will be used to coordinate system operation.

1.2.2 Traditional Approach

With respect to Class 1 Survey Units, small areas of elevated activity are evaluated via the performance of scan surveys. The size of the potential area of elevated activity affects the $DCGL_{EMC}$ and is typically determined by that area bounded by the grid points used for fixed measurements. This area in turn dictates the area factor(s) used for deriving the associated $DCGL_{EMC}$.

These scan surveys are traditionally conducted with hand-held field instruments that have a detection sensitivity sufficiently low to identify areas of localized activity above the DCGL_{EMC}. Occasionally, the detection sensitivity of these instruments is greater than the DCGL_{EMC}. In order to increase the DCGL_{EMC} to the point where hand-held instrumentation can be reasonably employed, the survey design is augmented to require additional fixed-point measurements. The effect of these additional measurement points is to tighten the fixed measurement grid spacing, thus reducing the area applied to deriving the DCGL_{EMC} and increasing the detection sensitivity criteria. Background influences (from the ISFSI) and natural terrestrial sources further impact the sensitivity of these instruments. To address these impacts, the fixed-point grid spacing would again need to be reduced (requiring even more samples) in order to increase the $DCGL_{EMC}$ to the point where hand-held instrumentation can be used. Generally, the collection of additional fixed measurements (i.e. samples) increases project costs.

Survey designs for Class 2 and Class 3 survey units are not driven by the elevated measurement comparison because areas of elevated activity are not expected. In Class 2 areas, any indication of activity above the DCGL_w requires further investigation. Similarly, in Class 3 areas, any positive indication of licensed radioactivity also requires further investigation. Because the DCGL_{EMC} is not applicable to Class 2 or Class 3 areas, adjustments to grid spacing do not occur. However, the increased field-of-view associated with the in-situ gamma spectroscopy system improves the efficiency of the survey's implementation.

1.2.3 Innovative Approach

In-situ assays allow fixed-point grid spacing to be uncoupled from the derivation of applicable investigation levels. In contrast to the traditional approach where the $DCGL_{EMC}$ (based on grid size) determines both investigation levels and detection sensitivities, the use of this technology provides two independent dynamics as follows:

- Detection sensitivity is determined by the DCGL_{EMC} associated with the (optimal) fixed-point grid spacing.
- Investigation levels are based on the detector's field-of-view and adjusted for the smallest area of concern (i.e. 1 m²).

1.2.4 Investigation Level

Development of the investigation (action) levels applied to in-situ assay results is a departure from the traditional approach for implementing a MARSSIM survey. Examples are provided for both open land areas (i.e. soil) and for building surfaces, however the approach for both is identical.

To support the use of in-situ spectroscopy to evaluate areas of elevated activity the HPGe detector's field-of-view was characterized. Attachment 2 presents data from the field-of-view characterization for a detector configured with a 90-degree collimator positioned 2 meters from the target surface. Alternate configurations will be evaluated in a similar manner before being employed. As exhibited in Attachment 2, when the detector is positioned at 2 meters above the target surface the field-of-view has a radius of at least 2.3 meters. This value was rounded down to 2.0 meters for implementation purposes, introducing a conservative bias (approximately 9%) in reported results. The example provided in this technical report assumes a 2-meter source-to-detector distance, yielding a nominal field-of-view surface area of 12.6 m².

Occasionally, alternate source-to-detector distances (using the 90-degree collimator) may be employed, particularly in a characterization or investigation capacity. In such cases, the detector's field-of-view will be calculated by setting the radius equal to the source-to-detector distance, thereby maintaining the conservative attribute previously described. If alternative collimator configurations are used to perform elevated measurement comparisons, then specific evaluations will be documented in the form of a technical evaluation or similar. Associated investigation levels will be derived using the same approach and methodology outlined below in this section.

After the detector's field-of-view is determined, an appropriate investigation level is developed to account for a potential one-meter square area of elevated activity. $DCGL_{EMC}$ values for a one-square meter area are presented in Table 1.

	TABLE	I, SOIL DC	GL _{EMC} FOR 1 m ²	
	Soil	Soil		DCGL _{EMC}
	DCGLw	DCGLw	Area Factor	for 1 m ²
	(pCi/g)	(pCi/g)	for 1 m ²	(pCi/g)
	(NOTE 1)	(NOTE 2)	(NOTE 3)	(NOTE 4)
Co-60	3.8	1.4	11	15
Ag-108m	6.9	2.5	9.2	23
Cs-134	4.7	1.7	16	28
Cs-137	8.2	3.0	22	66

NOTE 1 - LTP Table 6-1

NOTE 2 - Adjusted to 8.73 mRem/yr

NOTE 3 – LTP Appendix 6Q

NOTE 4 - Soil DCGLw (adjusted to 8.73 mRem/yr) for a 1 m² area

The ^{1m2}DCGL_{EMC} values listed in Table 1 do not account for a source positioned at the edge of the field-of-view. Therefore, the ^{1m2}DCGL_{EMC} values are adjusted via a correction factor. To develop this correction factor, a spectrum free of plant-related radioactivity was analyzed using two different efficiency calibrations (i.e. geometries). The first scenario assumes radioactivity uniformly distributed over the detector's 12.6 m² field-of-view. The second scenario assumes radioactivity localized over a 1 m² situated at the edge of the detector's field-of-view. The resultant MDC values were compared to characterize the difference in detection efficiencies between the two scenarios. As expected, the condition with localized (1 m²) radioactivity at the edge of the detector's field-of-view yielded higher MDC values. The ratio between the reported MDC values for the two scenarios is used as a correction factor. This correction factor is referred to as the offset geometry adjustment factor. The investigation levels for soils presented in Table 2 were calculated as follows:

Nuclide Investigation Level $(pCi/g) = (DCGL_{EMC}) * CF$

Where: $DCGL_{EMC} = (DCGL_W \text{ or } DCGL_{SURR}) * AF_{(1 m^2)}$, and CF = Mean offset geometry adjustment factor

TABLE 2	. SOIL	. INVESTIGATION LEVEL DERIVATION	Ň

	MDC pCi/g (NOTE 1)	MDC pCi/g (NOTE 2)	RATIO (NOTE 3)	DCGL _{EMC} for 1 m ² (NOTE 5)	INVESTIGATION LEVEL pCi/g (NOTE 6)
Co-60	0.121	1.86	0.0651	15	1.0
Ag-108m	0.184	2.82	0.0652	23	1.5
Čs-134	0.189	2.90	0.0652	28	1.8
Cs-137	0.182	2.78	0.0655	66	4.3
Offset Ge	Offset Geometry Adjustment Factor				

(NOTE 4)

NOTE 1 - Assumed activity distributed over the 12.6 m² field-of-view.

NOTE 2 - Efficiency calibration modeled for a 1 m² area situated (off-set) at the edge of the detector's field-ofview. The model assumes that all activity is distributed within the 1 m².

NOTE 3 – Ratio = $(12.6 \text{ m}^2 \text{ MDC} \div 1 \text{ m}^2 \text{ MDC})$.

NOTE 4 - The mean value of the ratios is applied as the off-set geometry adjustment factor.

NOTE 5 - DCGL_{EMC} values for 1 m² (from Table 1)

NOTE 6 - Investigation levels derived by applying of the off-set geometry adjustment factor (e.g. 0.0653) to the DCGLEMC for a 1 m² area for each radionuclide.

With respect to building surfaces, the development of the investigation level is identical to that for soil surfaces. The one-meter square DCGL_{EMC} for building surfaces are presented in Table 3.

TABLE 3, BUILDING SURFACE DCGL _{EMC} FOR 1 m ²					
	Bldg DCGL _W (dpm/100m ²) (NOTE 1)	Bldg DCGL _W (dpm/100cm ²) (NOTE 2)	Area Factor For 1 m ² (NOTE 3)	DCGL _{EMC} For 1 m ² (dpm/100cm ²) (NOTE 4)	
Co-60	18,000	6,300	7.3	46,000	
Ag-108m	25,000	8,700	7.2	62,600	
Cs-134	29,000	10,000	7.4	74,000	
Cs-137	63,000	22,000	7.6	167,000	
NOTE 1 - I TP	Cable 6-1		C		

NOTE 2 - Adjusted to 8.73 mRem/yr

NOTE 3 - LTP Appendix 6S

NOTE 4 - Building DCGLw (adjusted to 8.73 mRem/yr) for a 1 m² area

Using the same approach described for soils, a correction factor to account for efficiency differences due to geometry considerations is developed the onemeter square DCGL_{EMC}. ISOCS efficiency calibrations for activity distributed over the detector's field-of-view and for activity within one-square meter located at the edge of the detector's field-of-view were developed. The MDC values for these two geometries were compared to characterize the difference in detection efficiencies. As expected, the condition with localized (1 m^2)

radioactivity at the edge of the detector's field-of-view yielded higher MDC values. The ratio between the reported MDC values for the two scenarios is used as the offset geometry adjustment factor. The MDC values, the associated ratios, and the derived investigation level for building surfaces are presented in Table 4.

	12.6 m ² MDC (dpm/100cm ²) (NOTE 1)	1 m ² MDC (dpm/100cm ²) (NOTE 2)	RATIO (NOTE 3)	DCGL _{EMC} For 1 m ² (dpm/100cm ²) (NOTE 5)	BUILDING SURFACE INVESTIGATION LEVEL (dpm/100cm ²) (NOTE 6)
Co-60	785	12,400	0.0633	46,000	2,900
Ag-108m	839	13,000	0.0645	62,600	3,900
Cs-134	900	14,200	0.0634	74,000	4,700
Cs-137	922	14,600	0.0632	167,000	10,600
Offset Geometry Adjustment Factor (NOTE 4)		0.0636			

TABLE 4. BUILDING SURFACE INVESTIGATION LEVEL DERIVATION
--

NOTE 1 - Assumed activity distributed over the 12.6 m² field-of-view.

NOTE 2 – Efficiency calibration modeled for a 1 m² area situated (off-set) at the edge of the detector's field-ofview. The model assumes that all activity is distributed within the 1 m².

NOTE 3 – Ratio = $(12.6 \text{ m}^2 \text{ MDC} \div 1 \text{ m}^2 \text{ MDC})$.

NOTE 4 - The mean value of the ratios is applied as the off-set geometry adjustment factor.

NOTE 5 – DCGL_{EMC} values for 1 m^2 (from Table 3)

1

NOTE 6 – Investigation levels derived by applying of the off-set geometry adjustment factor (e.g. 0.0636) to the one-square meter DCGL_{EMC}.

In summary, effective investigation levels for both open land areas (i.e. soils) and for building surfaces can be derived and applied to in-situ gamma spectroscopy results. Note the MDC values associated with the detector's field-of-view were well below the derived investigation levels.

The investigation levels presented in Table 2 and Table 4 do not address the use of surrogate DCGLs. Use of surrogate DCGLs will be addressed in Final Status Survey Plans, particularly where it is necessary to evaluate non-gamma emitting radionuclides on building surfaces. When surrogate DCGLs are employed, investigation levels will be developed on a case-by-case basis using the approach outlined in this document. Similarly, the offset geometry adjustment factor presented in Table 2 and Table 4 will vary for different geometries. Although unlikely, if different geometries are employed, this value will be determined on a case-by-case basis using the methodology reflected in Table 2 and will be documented in the applicable Final Status Survey Plan.

For both open land areas and for building surfaces, when an investigation level is encountered, investigatory protocols will be initiated to evaluate the presence of elevated activity and bound the region as necessary. Such evaluations may include both hand-held field instrumentation as well as the in-situ HPGe detector system. After investigation activities are completed,

subsequent (follow-up) scanning evaluations will most likely be conducted using the in-situ gamma spectroscopy system.

1.2.5 Detector Sensitivity

For Class 1 scan surveys, the minimum detectable concentration is governed by the DCGL_{EMC} associated with the grid area used to locate fixed-point measurements. The system's count time can be controlled to achieve the required detection sensitivity. Therefore, the grid spacing for the fixed-point measurements can be optimized thus eliminating unnecessary increases to the number of fixed-point measurements while ensuring that elevated areas between fixed measurement locations can be identified and evaluated.

Based on preliminary work, it has been determined that a count time of 900 seconds will yield an acceptable sensitivity for many areas on the site. This count time provides MDC values well below the investigation levels presented in Table 2 and Table 4. Count times will be adjusted as necessary as survey unit-specific investigation levels are derived or where background conditions warrant to ensure that detection sensitivities are below the applicable investigation level. Since each assay report includes a report of the MDC values achieved during the assay, this information is considered technical support that required MDC values were met.

1.2.6 Area Coverage

Based on the nominal 12.6 m^2 field-of-view, a 3-meter spacing between each survey point will result in well over 100% of the survey unit to be evaluated for elevated activity. This spacing convention typically employs a grid pattern that is completely independent from the grid used to locate fixed-point measurements. An example of the grid pattern and spacing is presented in Attachment 3.

Alternate spacing conventions may be applied on a case-by-case basis. For instance, spacing may be decreased when problematic topographies are encountered. Note that decreased grid spacing in this context is not associated to the fixed-point measurements. Occasionally it may be necessary to position the detector at one meter or less from the target surface to evaluate unusual (e.g. curved) surfaces or to assist in bounding areas of elevated activity. In cases where it may be desirable to increase the field-of-view via collimator or source-to-detector distances, grid-spacing conventions (and applicable investigation levels) will be determined using the approach described in this document.

1.2.7 Moisture Content in the Soil Matrix

In-situ gamma spectroscopy of open land areas is inherently subject to various environmental variables not present in laboratory analyses. Most notably is the impact that water saturation has on assay results. This impact has two components. First, the total activity result for the assay is assigned over a larger, possibly non-radioactive mass introduced by the presence of water. Secondly, water introduces a self-absorption factor.

The increase in sample mass due to the presence of water is addressed by the application of a massimetric efficiency developed by Canberra Industries. Massimetric efficiency units are defined as [counts per second]/[gammas per second per gram of sample]. Mathematically, this is the product of traditional efficiency and the mass of the sample. When the efficiency is expressed this way, the efficiency asymptotically approaches a constant value as the sample becomes very large (e.g. infinite). Under these conditions changes in sample size, including mass variations from excess moisture, have little impact on the counting efficiency. However, the massimetric efficiency does not completely address attenuation characteristics associated with water in the soil matrix.

To evaluate the extent of self-absorption, (traditional) counting efficiencies were compared for two densities. Based on empirical data associated with the monitoring wells, typical nominally dry in-situ soil is assigned a density of 1.7 g/cc. A density of 2.08 g/cc, obtained from a technical reference publication by Thomas J. Glover, represents saturated soil. A density of 2.08 g/cc accounts for a possible water content of 20%. A summary of this comparison is presented in Table 5.

Γ	Effici	encies	Deviation due to density
keV	1.7 g/cc	2.08 g/cc	increase (excess moisture)
434	3.3 E-6	2.7 E-6	-18.7%
661.65	2.9 E-6	2.4 E-6	-17.5%
1173.22	2.5 E-6	2.1 E-6	-15.4%
1332.49	2.4 E-6	2.1 E-6	-14.8%

TABLE 5, COUNTING EFFICIENCY COMPARISONS

In cases when the soil is observed to contain more than "typical" amounts of water, potential under-reporting can be addressed in one of two manners. One way is to adjust the investigation level down by 20%. The second way is to reduce the sample mass by 20%. Either approach achieves the same objective: to introduce a conservative mechanism for triggering the investigation level where the presence of water may inhibit counting efficiency. The specific mechanism to be applied will be prescribed in implementing procedures.

The presence of standing water (or ice or snow) on the surface of the soil being assayed will be accounted for in customized efficiency calibrations applied during data analysis activities.

1.2.8 Discrete Particles in the Soil Matrix

Discrete particles are not specifically addressed in the License Termination Plan. However, an evaluation was performed assuming all the activity in the detector's field-of-view, to a depth of 15 cm, was situated in a discrete pointsource configuration. A concentration of 1.0 pCi/g (Co-60), corresponding to the investigation level presented in Table 2, correlates to a discrete pointsource of approximately 3.2 μ Ci. This activity value is considered as the discrete particle of concern. Since the presence of any discrete particles will most likely be accompanied by distributed activity, the investigation level may provide an opportunity to detect discrete particles below 3.2 μ Ci.

Discrete particles exceeding this magnitude would readily be detected during characterization or investigation surveys. The MDCs associated with handheld field instruments used for scan surveys are capable of detecting very small areas of elevated radioactivity that could be present in the form of discrete point sources. The minimum detectable particle activity for these scanning instruments and methods correspond to a small fraction of the TEDE limit provided in 10CFR20 subpart E. Note that the MDC values presented in Table 2 are significantly lower than those published in Table 5-4 of the License Termination Plan.

When the investigation level in a Class 1 area is observed, subsequent investigation surveys will be performed to include the use of hand-held detectors. The detection sensitivities of instruments used for these surveys have been previously addressed in the LTP. Furthermore, discrete point sources do not contribute to the uniformly distributed activity of the survey unit. It is not expected that such sources at this magnitude would impact a survey unit's ability to satisfy the applicable acceptance criteria.

Noting that Class 2 or Class 3 area survey designs do not employ elevated measurement comparisons, associated investigation levels are based on positive indications of licensed radioactivity above the DCGL_w or above background. Because such areas are minimally impacted or disturbed, potential discrete particles would most likely be situated near the soil surface where detection efficiencies are highest.

1.2.9 Procedures And Guidance Documents

General use of the portable ISOCS system is administrated by departmental implementing procedures that address the calibration and operation activities as well as analysis of the data. These procedures are listed as follows:

- DP-8869, "In-Situ (ISOCS) Gamma Spectrum Assay System Calibration Procedure."
- DP-8871, "Operation Of The Canberra Portable ISOCS Assay System."
- DP-8872, "ISOCS Post Acquisition Processing And Data Review."

Where the portable ISOCS[®] system is used for Final Status Surveys, the applicable FSS Plan will address detector and collimator configurations, applicable (surrogated) investigation levels, MDC requirements, and appropriate Data Quality Objectives, as applicable.

A secondary application of the portable ISOCS[®] system is to assay surfaces or bulk materials for characterization or unconditional release evaluations. Use of the portable ISOCS[®] system for miscellaneous evaluations will be administrated under a specific guidance document (e.g. Sample Plan, etc.). Operating parameters such as physical configuration, efficiency calibrations, count times, and MDCs will be applied so as to meet the criteria in the associated controlling documents. Such documents will also address any unique technical issues associated with the application and may provide guidance beyond that of procedure AP-0052, "Radiation Protection Release of Materials, Equipment and Vehicles."

1.2.10 Environmental Backgrounds

If background subtraction is used, an appropriate background spectrum will be collected and saved. Count times for environmental backgrounds should exceed the count time associated with the assay. In areas where the background radioactivity is particularly problematic (e.g. ISFSI), the background will be characterized to the point of identifying gradient(s) such that background subtractions are either appropriate or conservative. Documentation regarding the collection and application of environmental backgrounds will be provided as a component of the final survey plan.

1.2.11 Quality Control

Quality Control (QC) activities for the ISOCS system ensure that the energy calibration is valid and detector resolution is within specifications. A QC file will be set up for each detector system to track centroid position, FWHM, and activity. Quality Control counts will be performed on a shiftly basis prior to the system's use to verify that the system's energy calibration is valid. The Na-22 has a 1274.5 keV photon which will be the primary mechanism used for performance monitoring. If the energy calibration is found to be out of an acceptable tolerance (e.g. greater than ± 4 channels), then the amplifier gain may be adjusted and a follow-up QC count performed. If the detector's resolution is found to be above the factory specification, then an evaluation

will be performed to determine if the detector should be removed from service and/or if the data is impacted. Evaluations associated with QC counts shall be documented. Such documentation may be limited to a remark directly on the applicable QC report or in a logbook if the resolution does not render the system out of service. Otherwise the evaluation should be separately documented (e.g. Condition Report, etc.) so as to address the impact of any assay results obtained since the last acceptable QC surveillance.

Where it is determined that background subtraction is necessary, a baseline QC background will be determined specific to that area or region. When background subtraction is required, a QC background surveillance will be performed before a set of measurements are made to verify the applicability of the background to be subtracted. Due to the prevailing variability of the background levels across the site, the nature and extent of such surveillances will be on a case-by-case basis and should be addressed in the documentation associated with the applicable survey plan(s).

In addition to the routine QC counts, each assay report is routinely reviewed with respect to K-40 to provide indications where amplifier drift impacts nuclide identification routines. This review precludes the necessity for specific (i.e. required) after-shift QC surveillances. It also minimizes investigations of previously collected data should the system fail a before-use QC surveillance on the next day of use.

1.2.12 Data Collection

Data collection to support FSS activities will be administered by a specific Survey Plan. Survey Plans may include an index of measurement locations with associated spectrum filenames to ensure that all the required measurements are made and results appropriately managed. Personnel specifically trained to operate the system will perform data collection activities.

Data collection activities will address environmental conditions that may impact soil moisture content. Logs shall be maintained so as to provide a mechanism to annotate such conditions to ensure that efficiency calibration files address the in-situ condition(s). In extreme cases (e.g. standing water, etc.) specific conditions will be addressed to ensure that analysis results reflect the conditions. As previously discussed with respect to water, when unique environmental conditions exist that may impact analysis results, conservative compensatory factors will be applied to the analysis of the data.

1.2.13 Efficiency Calibration

The central feature of the portable ISOCS technology is to support in-situ gamma spectroscopy via the application of mathematically derived efficiency calibrations. Due to the nature of the environment and surfaces being evaluated (assayed), input parameters for the ISOCS efficiency calibrations will be reviewed on a case-by-case basis to ensure the applicability of the resultant efficiency. Material densities applied to efficiency calibrations will be documented. In practice, a single efficiency calibration file may be applied to the majority of the measurements.

The geometry most generally employed will be a circular plane assuming uniformly distributed activity. Efficiency calibrations will address a depth of 15 cm for soil and a depth up to 5 cm for concrete surfaces to account for activity embedded in cracks, etc. Other geometries (e.g. exponential circular plane, rectangular plane, etc.) will be applied if warranted by the physical attributes of the area or surface being evaluated. Efficiency calibrations are developed by radiological engineers who have received training with respect to the ISOCS[®] software. Efficiency calibrations will be documented in accordance with procedure DP-8869, "In-Situ (ISOCS) Gamma Spectrum Assay System Calibration Procedure."

1.2.14 Data Management

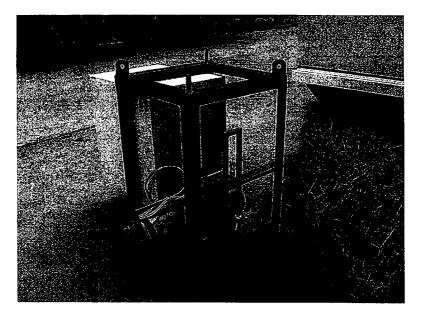
Data management will be implemented in various stages as follows:

- An index or log will be maintained to account for each location where evaluations for elevated activity are performed. Raw spectrum files will be written directly or copied to a central file server.
- Data Analysis After the spectrum is collected and analyzed, a qualified Radiological Engineer will review the results. The data review process includes application of appropriate background, nuclide libraries, and efficiency calibrations. Data reviews also verify assay results with respect to the applicable investigation levels and the MDCs achieved. Data reviews may include monitoring system performance utilizing K-40. When the data analysis is completed, the analyzed data file will be archived to a unique directory located on a central file server.
- Data Reporting The results of data files whose reviews have been completed and are deemed to be acceptable may be uploaded to a central database for subsequent reporting and statistical analysis.

• Data Archiving – Routinely (daily) the centralized file server(s) where the raw and analyzed data files are maintained will be backed up to tape.

1.3 Conclusions/Recommendations

The in-situ gamma spectroscopy system is a cost-effective technology well-suited to replace traditional scanning survey techniques to evaluate areas for elevated radioactivity. The static manner in which this system is operated eliminates many variables and limitations inherent to hand-held detectors moving over a surface. This system provides a demonstrably lower detection sensitivity than those offered by hand-held field instruments. This attribute qualifies this system as an alternative technology in lieu of hand-held NaI field instruments in areas where background radiation levels would prohibit the use of such detectors to evaluate for elevated gross activity. The MDC to which this system will be operated satisfies (or exceeds) criteria applied to traditional scan surveys using hand-held field instruments.


Effective investigation levels for both open land areas (i.e. soils) and for building surfaces can be derived and applied to in-situ gamma spectroscopy results. Where surrogate DCGLs are employed, investigation levels will developed on a case-by-case basis using the approach outlined in this document.

The manner in which investigation levels are derived employs several conservative decisions and assumptions. Additionally, adequate spacing applied to scanning survey locations yields an overlap in surface coverage providing 100-percent coverage of Class 1 areas and redundant opportunities in a significant portion of the survey area to detect localized elevated activity.

1.4 <u>References</u>

- 1. YNPS License Termination Plan, Revision 1
- 2. Multi-Agency Radiation Survey And Site Investigation Manual (MARSSIM) Revision 1, 2000
- 3. Canberra User's Manual Model S573 ISOCS Calibration Software, 2002
- 4. Decommissioning Health Physics A Handbook for MARSSIM Users, E.W. Abelquist, 2001
- 5. Canberra's Genie 2000 V3.0 Operations Manual, 2004
- 6. In-Situ (ISOCS) Gamma Spectrum Assay System Calibration Procedure DP-8869, Revision 0
- 7. Operation of the Canberra Portable ISOCS Assay System DP-8871 Revision 0
- 8. Technical Ref., by Thomas J. Glover.

Attachment 1 Portable ISOCS[®] Detector System Photos

YA-REPT-00-018-05 Rev. 0

Attachment 2 Field-Of-View Characterization

Generally, the HPGe detector will be outfitted with a 90-degree collimator situated at 2 meters perpendicular to the surface being evaluated. Note that characterizing the detector's field-of-view could be performed without a source by comparing ISOCS-generated efficiencies for various geometries. If a different collimator configuration is to be employed, a similar field-of-view characterization will be performed.

To qualify the field-of-view for this configuration, a series of measurements were made at various off-sets relative to the center of the reference plane. The source used for these measurements was a $1.2 \ \mu$ Ci Co-60 point-source with a physical size of approximately 1 cm³. Each spectrum was analyzed as a point source both with and without background subtract. It was observed that the detector responded quite well to the point source.

Figure 1 presents the results with background subtraction applied. Note that there is a good correlation with the expected nominal activity and that outside the 2-meter radius of the "working" field-of-view (i.e. at 90 inches) some detector response occurs. This validates that the correct attenuation factors are applied to the algorithms used to compute the efficiency calibration.

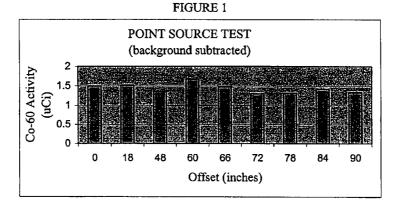
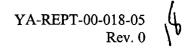
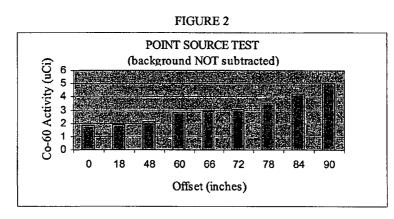
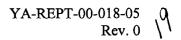
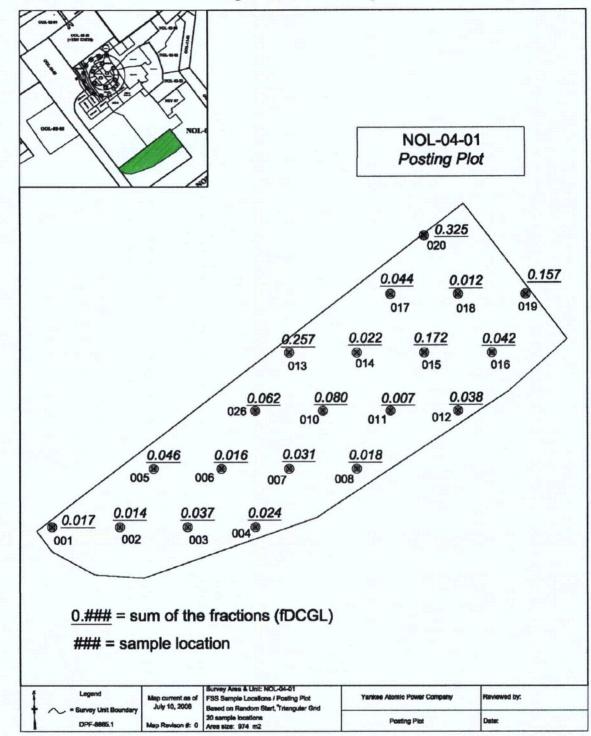





Figure 2 shows the effect of plant-derived materials present in the reference background, which indicates an increasing over-response the further the point source is moved off center. Detector response outside the assumed (i.e. 2-meter) field-of-view would yield conservative results. Normally, source term adjacent to the survey units should be reduced to eliminate background interference.



Attachment 3 Typical Grid Pattern For In-Situ Gamma Spectroscopy

 $\langle \cdot \rangle$


Attachment A – Maps and Posting Plots

List of Figures

.

Figure	Page	
FIGURE 1 NOL-04-01 POSTING PLOT		2

Figure 1 NOL-04-01 Posting Plot

2

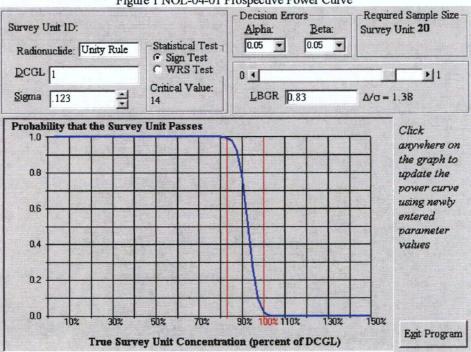
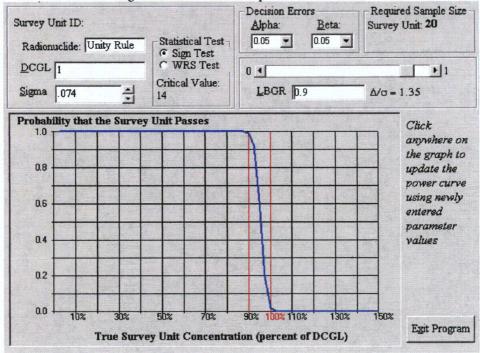
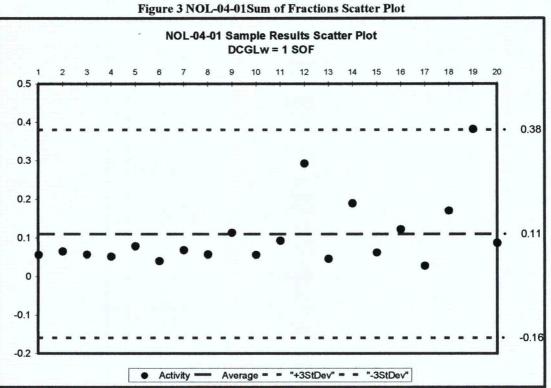
Attachment B

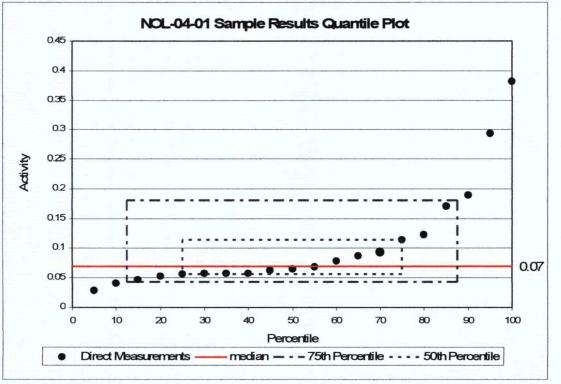
Data Quality Assessment Plots and Curves

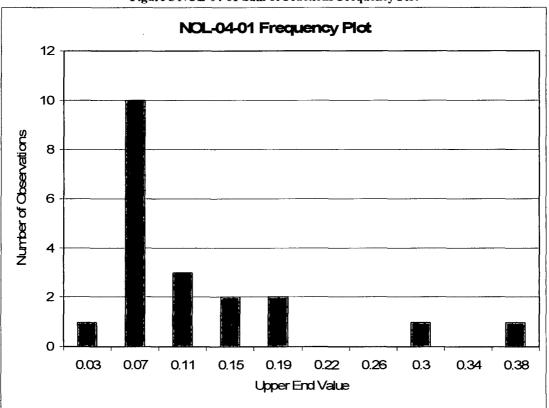
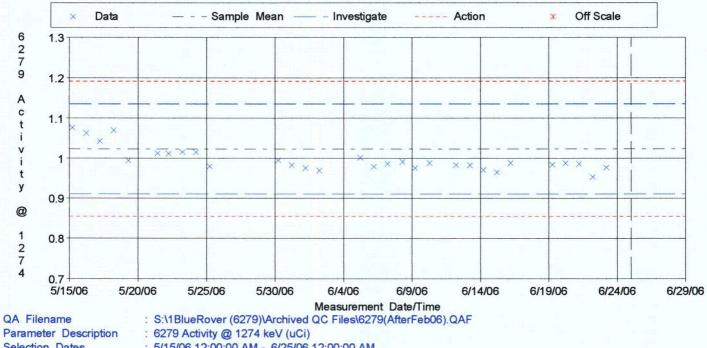
List of Figures

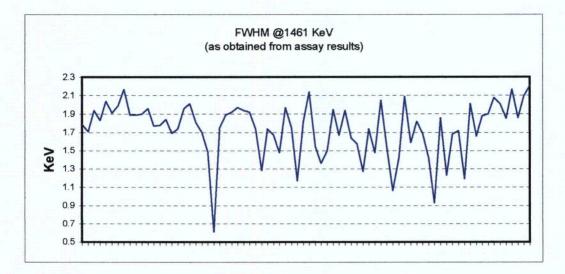
Figure	Page
FIGURE 1 NOL-04-01 PROSPECTIVE POWER CURVE	2
FIGURE 2 NOL-04-01 RETROSPECTIVE POWER CURVE	2
FIGURE 3 NOL-04-01 SUM OF FRACTIONS SCATTER PLOT	3
FIGURE 4 NOL-04-01 SUM OF FRACTIONS QUANTILE PLOT	3
FIGURE 5 NOL-04-01 SUM OF FRACTIONS FREQUENCY PLOT	4

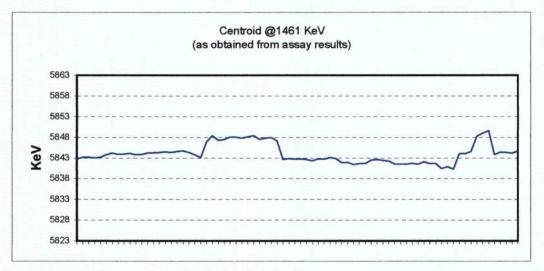
The LBGR on the Power Curves have been adjusted to demonstrate the actual power of the survey.

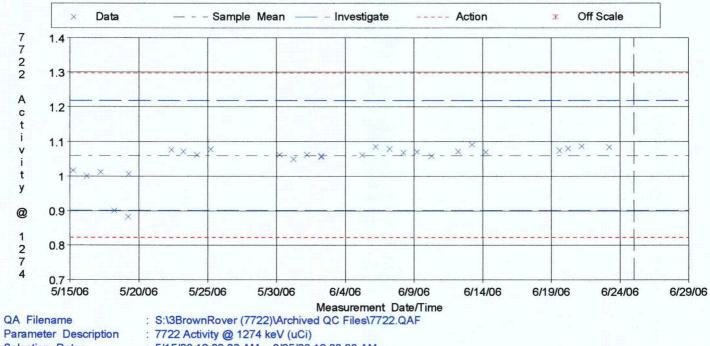





Figure 1 NOL-04-01 Prospective Power Curve

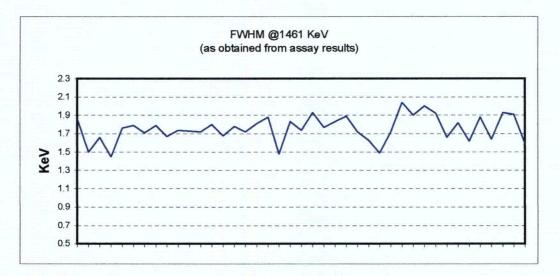

Figure 5 NOL-04-01 Sum of Fractions Frequency Plot

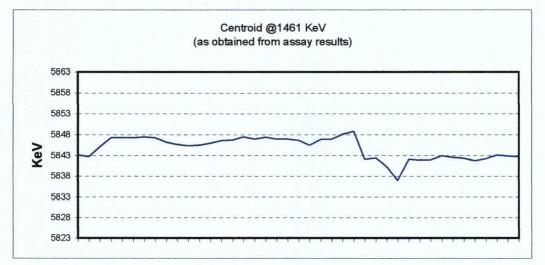


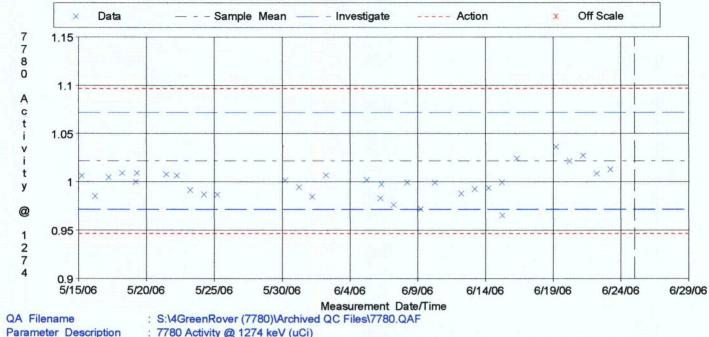

Selection Dates Sample Mean +/- Std Dev : 1.023 +/- 0.056

: 5/15/06 12:00:00 AM - 6/25/06 12:00:00 AM

NOL-04-01 ISOCS DETECTOR 6279

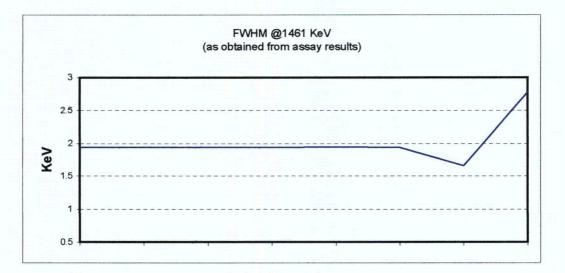


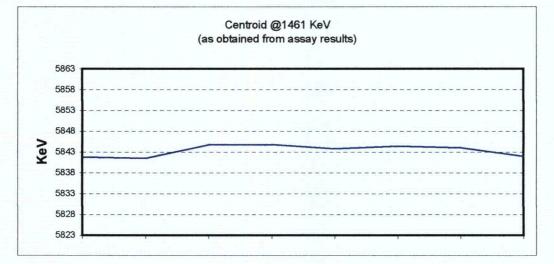


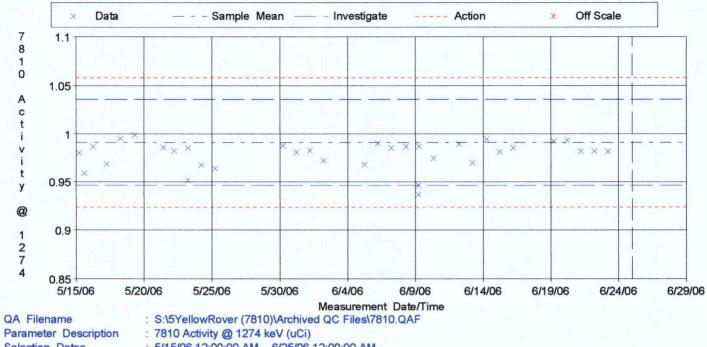

Parameter Description Selection Dates Sample Mean +/- Std Dev : 1.060 +/- 0.079

: 5/15/06 12:00:00 AM - 6/25/06 12:00:00 AM

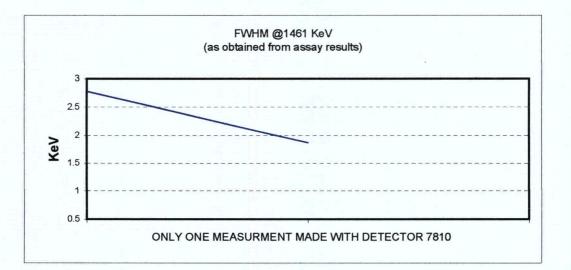
NOL-04-01 ISOCS DETECTOR 7722

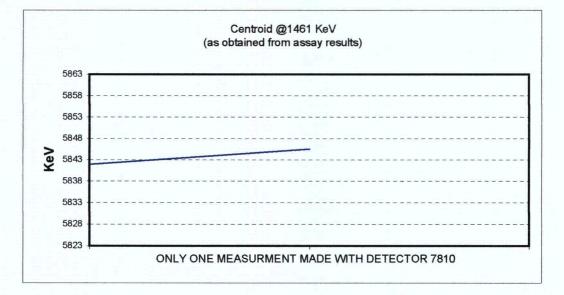

Parameter Description Selection Dates Sample Mean +/- Std Dev : 1.022 +/- 0.025


: 7780 Activity @ 1274 keV (uCi) : 5/15/06 12:00:00 AM - 6/25/06 12:00:00 AM



NOL-04-01 ISOCS DETECTOR 7780





Selection Dates Sample Mean +/- Std Dev : 0.991 +/- 0.022

: 5/15/06 12:00:00 AM - 6/25/06 12:00:00 AM

NOL-04-01 ISOCS DETECTOR 7810

, ÷.

Page 1 of 1

	#: YNPS-FSS			· · · · · · · · · · · · · · · · · · ·
			KI, M. SWEET, S. P	
Instruments		D. WALKER, S	S. ERICKSON, M. MISH	EMAN (isocs)
	Serial #:	ISDES (BLUE)	18005 (BROWN)	· · ·
_	Cal. Due.		7605 - 5.17.00	· • • • • • • • • • • • • • • • • • • •
,	Pre-op source ✓:		<u>04/07</u> Sat.で	
	Post-op source \checkmark :		Sat. Date:	Sat. Date:
FIME		URVEY DATE		Bat. D Date.
0700	Animulaton Dan	Y CARCON TRING NO	TOWARD YNPS - FSSP - 1	JAC ON SDINOD
0870			D SOIL SAMPLE LU	
0835	1		TH BROWN AND	
1000			+117 # 101 MOVED	
	SOUTHEAST	TO STAY WITHIN S	JEVEY UNIT BOUNDARY	/
1540	Soil SAMPLIN	IG BEGAN IAW DI	P BIZO AND HAPS F	15- NOL 04-01-00
1630		UNC HALTED FOR		
1645			V THE FIELD. PAPET	ZWORK
<u></u>	TASSED ON T	NIGHTSHIFT		<u></u>

			····	
,,, <u>,,,,,,,,,,,,,,,,,,</u> ,,,,,,,,,,,,,,,		•		
				· · · · · · · · · · · · · · · · · · ·
				•
				······
				······
	- A			
Comp	leted by 2015a	L Med	Date 5 · 1	7.06
Сотр		S Field Supervisor	Date 5.1	7.06
-	FSS	LMW S Field Supervisor	Date5.1 Date7[[7.06 9/07
-	wed by	S Field Supervisor	Date(7.06 9/07
-	wed by	X	Date(7.06 9/07
-	wed by	X	Date(7.06 9/07
Revie	wed by	X	Date(7.06 9/07

Pane		

Survey Area U	nit No.: NoL - O	4 - 01	Survey Date: 5	-18:06
		SP- Nor 04 -01		
	·			
Instruments:	E. NBEL	CIEW: S. ERICKLON N	MATWELL, M. SWEET,	D. WALKER, R. GRIEVEN
	Model:	150CS (BROWN)	1SOCS (LIREEN)	
	Serial #:			
	Cal. Due.		04/07	
and the second se	Pre-op source 🖌 :	Sat.	Sat.	
P	ost-op source 🖌 :	Sat. D'Date:	Sat. D Date:	Sat. Date:
TIME	NOTES FOR S	URVEY DATE		
0700	DAILY SAFET	Y MEETING FSSP	- NOL04-01-00	BRIEFED
0815			N PLACE AND SC	
	BEGAN.	· · · · · · · · · · · · · · · · · · ·		
0820		AND R. GRIPPEN	ATTOMPTING TO	PERFORM LEVEL
			OF ELEVATED ISOE	
	ALEAS.			
2840	LEVEL D.NE	INVESTIGATIONS AR	E BEING HALTED D	UE TO ELEVATED
			WE'LL WAIT UNTIL	
	CAN BE PUT	•		
0920			ESUMING SOIL SAN	NPLING PER DP 812
1130			TO COMPLETE 100	
1135			or as # 170. TH	
	-		STOBE CORRECTED	
1645			- S SHOTS REM	
1650			ET UNIT HAVE BE	
		FIVED AT SP.T.		
			- <u></u>	
		Aut	<u> </u>	
Comple		ml Mul	Date S -	18-06
	FSS.	S Field Supervisor		
Review	ed by	f1 .	Date 3(19	2/04
		S Radiological Engine		* { - · · -
	\bigcirc			
PF-8856.2			`.	
ev. 5 age 1 of 2				
-0			· .	

CONTROL POINT

PORTABLE INSTRUMENT ACCOUNTABILITY FORM

	IT		.						
	Instrument Type 5 YAEC or DE63 #	Batt	Cal Due	Brc √ Out	Location and/or Reason For Use	Date and Time Out	Tech Name	Date and Time In	Szce
	E-600 # 02488 SPA-3 # 2055 -	V	~		NOL-04-01	Starple Dienty	Cormon	5/14 1615	In
	6600 # 5156 999-3 # 07005 6-600 - 26 20		V	6-	Rened	5/2061/0152	Perhoel	5000 15	V
	584-3 4-726357 ELOO - 076 19	~			Remed.	5-22-06 0650	moyers_	5-22-06 0250	V
406	NOA- 3 200 1C		-	2	Ess	5-22-50 000	Shalon E	J. 22 02000	
	E6000 45140 3ph-2 61035	V	~	v	FSS	5-22-0607.50	Shajox c	522-230	
	COAD AND	[]				1			\$}
	E 600 # 2620 SPA3 # 726557	~	~	/	FSS	5.22.06 0830	E.Non	S Jarlore 1620	V
	E600 5140 SPA3 61035	~	~	A.	<u>Fss</u>	5-22-06 800	SharenE	\$27/00 1500	K
ļ					·····				{
ľ	Ŵ				•		÷		
╞		. 							
┢	·								
Ĺ	. ,								
┡	<i>*</i>								
┢			 [·····		· · ·		
					·				
	AADY	,				4			
	CUPT								
┡			<u> </u>					· · · ·	
L				<u> </u>	-				i

RP Supervisor Review_ /uanfe_____(1)

⁽¹⁾ If any post-use source check failures occur, ensure that the condition is documented by a Condition Report.

.

.

DPF-8504.1 Rev. 17

PORTABLE/GAMMA FKIS & SOURCE CHECK FORM

						7									
	Me	(OO ter ype	Det	A.3 ector ype	-	6/635 Detector Number	-	-	277 Source ID		<u>1957/C</u> Net Acceptar Criters - 20%	ice	<u>29356</u> Net Acceptand Criteria + 20%	ce	
]	PRE USE	CHECKS		•				·	POST US	E CHECKS			
Date	Time	Audible Check	Alarm Check	BKG Counts	SRC Counts	Net Counts	Int	Date	Time	Audible Check	Alarm Check	BKG Counts	SRC Counts	Net Counts	Int
5400	6530	"SAT	NA	5040	247000	241960	- Ag-	59-04	1640	SAT	No	4990	249000	244010	M
5-11-04	0810	SAT	AIA	4150	247000	24,2850	3h	5-11-00	1700	545	MA	4698	848000	243310	645
5-15-06	0540	SAT	N/A	4260	248000	243740	is	5-15-6	1300	517	NA	5270	250000	244730	Gir
5-15-6	13:00	SAT	NA	5710	250000	244730	ae	5-15-000	1640	545	NA	5010	249.000	243990	940 24
416-06	0540	Shr	NIA	5000	247000	212000	WS	5146	1700	FAR	AVA_	5400	250 000	244600	cje
5-17-04	0540	SAT	A/A-	5350	248000	242450	105	5-17-00	nos	SAT	No	6060	846000	239940	ut
5-18-06	0545	317-	MA	4600	248000	243400	45	5-18-4	15:20	SAT	UA	51.80	247000	241320	ac
5-506	0550	SAT	MA	5750	246000	240250	10	5-9-6	14:00	SAT	40	5460	125000	1	4
5-72-6	0725	SNI	No	4680	248000	243320	LIC	5.77-04	1210	SAT	MA	4890	248000	243110	6
5-72-ap	1210	505	MA	4890	2.8000	243110	12	5-22-6	1520	SAT	UA_	5790	247000	241210	40
5-23-06	0550	397	MM	5380	246000	240620	p/s	↓	<u> </u>		1	+			*
5-24-00	6540	Silor	MA	5330	844000	238670	115	5-244	1655	Set	NA.	1930	244000	239070	Æ
3-26-06	0.540	SHO	Ma	5440	244000	238560		57500	1507	SAT	MUK	0210	247000	240790	int.
9.20-06	0540	375	Mo	5000	247000	242000	us	5-20-6	1605	SAT	NA	4730	234000	233270	g
\$-31-04	0545	SAT	-nil n-	4950	245000	240050	us_	5-31-6	1635	SAT	NA	5200	243000	237800	C

RP Supervisor Review: Bartana Erickoon (1)

COPY

(2)

If any post-use source check failures occur, ensure that the condition is documented by a Condition Report.

DPF-8504.5 Rev. 17

Page <u>1</u> of <u>2</u>

Survey Plan #	+ VADE From	- DOL 5.23.06 NOL	- 04 - 01 - 00		
Supervisor:					
Instruments:		LIGH. S. EILICKS	ON, M. MAXWELL,	D. WALKER,	
		E600 / SPA 3	150CS (YELLOW)	Eles/SPA3	1500
	Serial #:	5140/61035	7810		
	Cal. Due.	10.7.06/10.6.06			
	Pre-op source ✓ :	Sat. 9 uns. 54 . 239	Sat.	SAT DE	
	Post-op source 🖌 :		Sat. Date:	Sat. 🗆 Date:	
TIME	NOTES FOR S	URVEY DATE			
0700	CONDUCTED I	AILY SAFETY BRE	FING TOWARD YNPS	FSSP-NOL DY-01-00	
0915			10204-01-112-F-G		
	OF A CORRU	PTED INITIAL S	CAN .		
		1	NS AN ISSUE. BRUCE	JOJO HAS BEEN	
		D WICL WORK WITH			
1030		1 .	VESTIGATION SCRAS 11	AREAS ASSITICUED	
	1 .		ATED ACTIVITY BASED	1	
			BY CRAWE ADJACENT		
			THER METHOD WILL BE		
		FROM ISFSI.	THE PERIOD CHIEF BE		-
1230			RK. AN INTERMODAL · B	THERE ISEST AND	
			EEMS TO BE WORKING		
1330			KGRD - 16-22K can No	u	
13.00		ACTIVITY FOUND	•	INDICATIONS	
			IAW FSSR NOL-ON	1-01-00 AT	
1.110-		TE OF 5-6"/			
1400		1	16K-25Kcpm. No	INDICATIONS OF	
	ELEVATED A			·	
Comple	eted by The	Lolled In	Date S.	22.06	
		Field Supervisor	<i>D</i> aw		
Review	red by	MI	Data ali	alab	
VEALEM		Radiological Engine	Date		
			-		
OPF-8856.2	\bigcirc				
lev. 5					
Page 1 of 2					

Area/Unit # NoL 04.01 Page Z of Z Date: 5.22.06

TIME	NOTES FOR SURVEY DATE
1415	INVESTIGATIONS OF 15005 # 115, 116, 8132.
	BKGD - 16K-25Kcpm NO INDICATIONS OF ELEVATED ACTIVITY
	FOUND.
1445	INVESTIGATION SCAN OF 13003-4 160. BKGD 15K19K cpm
	NO INDICATIONS OF ELEVATED ACTIVITY FOUND.
1500	INVESTIGATION SCAN OF ISOCS # 145. BKG6 14K- TOK gun
	NO INDICATIONS OF ELEVATED ACTIVITY FOUND.
Comple Review	eted by <u>ILFN</u> Date <u>5.22.06</u> FSS Field Supervisor Ved by <u>FSS Radiological Engineer</u> Date <u>1</u> [9]06

DPF-8856.2 | Rev. 5 Page 2 of 2

.*...

ę

Page 1 of _

Survey Area U	nit No.: NOL - O	1-01	Survey Date: 6	1-06		
		P - NOL 04-01-				
	E.NEEL	Crew: M. MAXNELL	M. SWEET			
Instruments:				· · · · · · · · · · · · · · · · · · ·		
·		ISOCS (BLUE)				
	Serial #:	62,79				
	Cal. Due.		Sat.			
	re-op source ♥ : ost-op source ♥ :		Sat.□ Date:	Sat. Date:		
TIME	NOTES FOR SI			Jat. 1 Date.		
	+	<u> </u>				
0645		AILY SAFETY BR.	IEFING TOWARD F.	SS ACTIVITIES		
	FOR TODAY					
0945	CRANE AND	LRANE OPERATOR	2 IN PLACE BEG	INNING SOCS		
	INESTIGATION	S OF ORIGINAL	ISOCS MEASUREM	ENTS, LOCATION		
	DETERMINED	BY FSS ENG. 7	0 BE #S 10B, 111	114 115, 116,		
	1	160, 172, AREAS WILL BE SPLIT INTO 4 QUADRANTS				
			" COLLIMATOR WILL			
			STARTING WITH Z			
1004			EG-I SET UP IN F			
		1 .	-F-G FOR ZMIN C	· · · · · · · · · · · · · · · · · · ·		
1014			TTIME CHANGED			
1019		1	IT TIME CHANGED			
1028	1 1		T TIME CHANGED TO			
1040			NT TIME CHANGED			
1131	POR FLC FNG	12TH SHOT CON	NT TIME CHANGED	BACE ID CHIN		
1302	POR FSS EN	16 15TH CHAT A	OUNT TIME CHANG	OD Smill		
1430	• • • • • • • • • • • • • • • • • • • •		AL SHOT PER IN			
	TO BE TAKE		OR OPIGINAL S			
	TO BE DEE	ynecerci do				
Complete	ed by This	12 Shel	Date 6.	1.06		
-	FSS	Field Supervisor				
Reviewe	aby J.J.	1	Date 7	906		
		Radiological Engine	er			
	()					
DPF-8856.2	~					
Rev. 5						
age 1 of 2						
		:				

ţ

Area/Unit # <u>NoL 04-01</u> Page <u>2</u> of <u>2</u> Date: <u>6-1.06</u>

TIME	NOTES FOR SURVEY DATE
1630	TURNOVER PERFORMED WITH NIGHTSHIFT
	TO FINISH SHOTS IN NOL 04.01.
	SEFAR, 3 INVESTIGATION MEASUREMENTS
	HAVE BEEN POSITIVE FOR LISENCED MATCRIAL
	IN INVESTIGATIONS OF 145-F-G, 115-F-G,
	AND III - F-G. THESE AREAS ARE TO BE
	FOLLOWED UP WITH SPA3 TOMORROW.
	· · · · · · · · · · · · · · · · · · ·
Com	pleted by
Revie	wed by FSS Radiological Engineer Date 1/19/04
DPF-8856.2 Rev. 5 Page 2 of 2	

•••

Page 1 of _

		1450 1 01 _					
Survey Area Un	it No.: Nol o	4.01 Survey Date: 6.2.06					
Survey Plan #:	YNPS, FSS	P-NOL 04.01.					
Supervisor: E.N	KEEL	Crew: GRIPPEN S.	PENNOCK, M. MAXNEL				
Instruments:							
	Model:	ISOCS (BLUE)	E.600 / SPA.3	E.600 /SPA.3			
	Serial #:	6279	2419 / 2056	5756 1 70052			
	Cal. Due.	3.07	9/13/26 / 9/9/24	Apr/06/ 9/0/04			
and the second	e-op source ':		Sat.	67			
	st-op source 🖌 :		Sat. Date:	Sat. Date:			
TIME	NOTES FOR S	URVEY DATE					
0630	CONDUCTED D	AILY SAFETT BRIE	FING TOWARD FSS ACT	TIVITIES .			
0725			NS WITH BLUE ROU				
	AT I METER2 ,	COUNT TIME - 5M	nind .				
0735			OF IDENTIFIED INVI	BTIGATION APEAS .			
			145-F-G AND 116-1	N 6/100 8/			
			AND AREAS IDENTIFIC	••			
			115-F-G AND 111-				
0800	ISOES INVEST	GATIONS Come	EPLETED				
1100	Completio	el SPA-3.	Scan of Seci	Lors 111 115			
			other Elevated				
	Nohe d		- <u> </u>				
1300	Romour	1 44 Kenm	particle f	romit 14			
			6 Sector 19				
			morellung				
			SC-I CASter.				
	21.8 10	i					
1410	· · ·	9/-220-F.G	I taken on	4 100-60			
	Peak I	D No otte.	ľ				
Complete	4/1-	ONIA	D. (.1	Ob			
Complete		Field Supervisor	Date 6.4				
	× / / ×	P		iala			
Reviewed by FSS Radiological Engineer Date 7/19/04							
		Comological Englic					
DPF-8856.2	\bigcirc						
Rev. 5							
age 1 of 2							
	•	i i					

Area/Unit # NO2.04.01 Page Z of Z Date: 6.2.06

TIME	NOTES FOR SURVEY DATE
1430	INVESTIGATION SOIL SAMPLE COLLECTED AT LOCATION WHERE HOT PARTICLE WAS LOCATED AND
	DESIGNATED NOL 04.01-025-F-I @ 1340 By RG
LATE ENTRY 6.17.06	
	1410 AND ASSIGNED # NOL 04-01-220-F-G-I WILL
	BE CHANGED TO NOL 04-01-226-F-G-T DUE TO
	DUPLICATE # ASSIGNMENT
Completed b	
Reviewed by	FSS Field Supervisor Date 7/906 FSS Radiological Engineer
DPF-8856.2 Rev. 5 Page 2 of 2	

CONTROL POINT

PORTABLE INSTRUMENT ACCOUNTABILITY FORM

Instrument Type & YAZC or DE&S #	Batt	Cal Due	Szc ✓ Out	Location and/or Reason For Use	Date and Time Out	Təch Name	Date and Time In	Srcs / In
5-600 # 02619 5PA-3 & 2056		~	~	NOL-4	6/2/06 0655	Grip	06/02/06	v
E-600 # 5156 SPA-34 70052		~	~	NOL-4	1/2/2/ 0655	GAP	6/00/00 1420	v
5-600 4 02468 SPA 3 # 2055 -600 4 5140	V	V	~	NOL-3	0675 6-2-06	Marie	6:2.06 1300	<u>v</u>
58A-34 61035	~	~	$\boldsymbol{\nu}$	Aren I.	6-2-05 0450		6.2.06 1	v
500 # 26000 SPA3-4 726557	~	4		TART SEPTIC LEACH	6-2-06 07:05	MAXWELL	1300. 06.01.00 0257	2
·								
					·			
	+			··				
with the second								
	Ţ							
			·					
·····								
			<u></u>					
		-+						
						~~~~{~ ,		

RP Supervisor Review_ (Wow f

⁽¹⁾ If any post-use source check failures occur, ensure that the condition is documented by a Condition Report.

COPY

DPF-8504.1 Rev. 17

PORTABLE/GAMMA FLe & SOURCE CHECK FORM

		co ter ype		ector ype		2056 Detector Number	-	-	<u>ארג</u> Source ID		(81748 Net Acceptar Criter: - 20%	nce La	ACCEptano Criteria + 20%	ce	
			PRE USE	CHECKS		. ,					POST US	E CHECKS			
Date	Time	Audible Check	Alarm Check	BKG Counts	SRC Counts	Net Counts	Int	Date	Time	Audible Check	Alàrm Check	BKG Counts	SRC Counts	Net Counts	Iñt
5-10-04	1125	SAT	MA	5210	228000	222990	Yes	5-10-04	1725	SAT	MA	4550	229000	224450	LAS
5-11-06	0600	SAT	NI	5710	228000	222290	A	5-11-06	n15	SAT	Ma	5880	228000	222120	us
5-15-164	0920	SAT	MIA	4620	227000	282350	wb	5.15.06	1635	SAT	NA	4440	228000	223560	us
6-19-0	0630	St	DA	5480	226000	220520	cic.	5-19-10	1410	SAT	NA	5150	247000	241850	cde
5-22-4	0730	SOT	2Q	4110	224000	221890	c.c.							<u> </u>	4
5-23-04e	0350	STAT	HAF.	4540	2 25000	220440	05					L	<u> </u>	<u></u>	*
5-24-04	0540	SAT	MA	4590	224000	219410	as	5-24-06	1055	SAT	MA	5100	2260223	220900	NS
524-04	1055	SAT	NA	5100	nucco and	220900	VB	5-24-6	1700	SAT	IJÀ	5090	126000	220910	ЧC
5-75-04	0840	SAT	MA	2000	225000	219400	5						1		×
53000	0540	SAT	where -	5370	226000	220630	W	5-301	500	SAT	AU	540D	225000	219600	go
5-31-06	0585	SAT	MA	4520	28.500	220480	ws						<u> </u>		*
64.04	0550		MA	589.0	226000	220110	45	6-1-6	1700	Spr	AN	5670	226000	220330	<u> Gic</u>
62-04	0 540	SAT	MA.	5260	anoc	221740	115	6-2-4	14:30	SAT	120	4950	227000	222050	ere.
67-04	050	505	MA	590	126000	220010	<i>a</i> \$	6.7-06	1515	SAT	419	4800	224000	219200	as
6-8-04	0550	Sor	MA	5210	225000	219790	tros	68.6	1630	SAT	NA	4120	224000	219880	cje,
			•				0	1	S	÷.					

RP Supervisor Review: Barbarn Cuckoon (1)

Notused

COPY

*

⁽¹⁾ If any post-use source check failures occur, ensure that the condition is documented by a Condition Report.

DPF-8504.5 Rev. 17

PORTABLE/GAMMA FRIS. & SOURCE CHECK FORM

	Me	ype		ector Cype		70052 Detector Number	-	-	<u>277</u> Source ID	 -	<u>/9/00</u> Net Acceptar Criter - 208	ncè La	<u>287cc</u> Net Acceptan Criteri; + 20%	 ce	
			PRE USE	CHECKS	- <u>.</u>	·				•	POST US	E CHECKS			
Date	Time	Audible Check	Alarm Check	BKG Counts	SRC Counts	Net Counts	Int	Date	Time	Audible Check	Alarm Check	BKG Counts	SRC Counts	Net Counts	Int
5-15-0L	0540	SAT	N/A	5910	239000	233090	às	5-15-6	13:10	SM.	KA-A	5350	241000	235650	4c
x-15-6	13:10	START	NA.	5350	241000	235650	cto		· 						*
5-16-06	0545	Shr	MA	5440	239000	233560	0		÷						×
517-04	0540	SAT	4/14-	4650	838000	233350	5		·		1	<u> </u>			*
5-18-06	0545	SAT	NA.	4970	228000	234030	AD	5-18-4	1510	SAT	AG	9540	236000	23046C)	4C
5-19.00	0545	SAT	MA	4010	240000	235390	A	~							4
5-21-06		SAT	NA	5520	23,8000	232480	WS		:	ļ					*
5-22-04	6745	SAT	Ma	4800	22400	279700	Ø	5-22-4	15401	SAT	124	5200	139000	233500	cic
5-23-04		.5117	MA.	4730	237000	232270	US								*
5-24-06	0540	SAT	N(A	5210	235000	23,2760)	65	5-24-4	1550	SAt	NK_	5380	139000	233020	Ket-
5.75.40	0540	505	NA	4890	239000	234110	ws	6-25-6	12:00	SAT	40	4100	239000	832900	CF-
5-20-04	0540	547	NA	5540	241000	245460	vo	5.226		SET	ALA	5200	243000	237800	g
5-37-06	0545	.505	MA	5160	235000	23,2840	UB	5.71-6	1640	SAT	NA	4010	238000	233910	ça.
61.04	\$550	Sui	Ma	5020	239000	233980	ports -	61.4	1430	SAT	44	5010	23,000	230910	đ
6206	0540	SAT	An	350	238000	232850	20	42-6	1425	SAT:	NA.	5210	241000	235RO	

RP Supervisor Review: Barbara Eucleon (1)

NOT USED

COPY

If any post-use source check failures occur, ensure that the condition is documented by a Condition Report.

DPF-8504.5 Rev. 17

(1)

ar y

Page $\underline{1}$ of $\underline{1}$

		4-01 / NOL-05-01		1	Date: 06/15/06
		IOL-04-01-00 and YN	PS-FSSP-NO	DL-05-01-	-00
		Crew: S. Pennock			<u> </u>
Instruments:					r
	Model:		E-600 / SP.	A-3	
	Serial #:	6279	-		
·	Cal. Due.	· · · · · · · · · · · · · · · · · · ·			
	re-op source ✓ :	Sat. 🗆	Sat. □		
	st-op source ✓ :	Sat. Date:	Sat. 🗆 D	ate:	Sat. Date:
TIME		SURVEY DATE		<u></u>	
0700		ily safety briefing and			
0815	Excavation of	soil above geo-tech f	abric in NOL	-04-01 co	mmenced IAW dig
	plan. No equi	pment available to loa	id into so soil	is being p	piled for now.
0930	For equipmen	t accessibility the exc	avation hole	near ISOC	CS shots 109 and 110
· · · · · ·	is being back	filled with the stockpi	led dirt tempo	orarily.	·······
1015	Blue rover is	being set up in NOL-	05-01 remedia	ation area	to obtain investigation
	scan of the ar	ea.			······
1145	Excavation of	geo-tech fabric in N	OL 04-01 con	nplete. St	ock pile of dirt remains
		nightshift. Activities		•	
				·····	
		·····			
		######################################	· · · · · · · · · · · · · · · · · · ·		
•					
4		· · · · · ·			<u>, , , , , , , , , , , , , , , , , , , </u>
			<u> </u>	v	
<u> </u>					
	····				
		A	A		······································
Com	pleted by	FSS Field Super	rvisor	Date	06-15-2006
Revi	iewed by	FSS Radiological I		Date	7/19/06
DPF-8856.2 Page 1 of 2	7				

.

		0 –	
Survey Area No	o.: NOL-04	Survey Area Name:	Survey Date: 6/15/06
Survey Unit No	and Name:	NOL-04-01	
Supervisor: D Ja	wayne Neel ack Sprucinski		Crew: Mike Maxwell Mike Sweet Steve Pennock
Instruments: I	SOCS	ISOCS	ISOCS
Pre-op source Post-op source Sa		Pre-op source Sat. X Post-op source Sat. Date	Pre-op source Sat. 🛛 Post-op source Sat. 🗌 Date
TIME	NOTES FOR	SURVEY DATE	
1100	Area cleaned	up and all marafie was removed	from area
1230	Shot locations develop a san	s inputed with the gps pole and lo ppling plan	cations delivered to eng. To
1500	Have sample	plan for NOL-04 area to be used	5/16/06
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
· ·)	
Comple	ted by	FSS Field Supervisor	Date $\frac{15}{26}$
Review	ed by	FSS Radiological Engineer	Date <u>1/19/06</u>
DPF- 88 56.2 Rev. 5 Page 2 of 2	\bigcirc		

Page 1 of

Page <u>1</u> of <u>1</u>

	.	I ago <u>I</u> (/* <u>*</u>			
Survey Area	Unit No.: NOL-04	4-01		Survey	Date: 6/16/	06
Survey Plan	#: YNPS-FSSP-N	JOL-04-01				
Supervisor:	Jack Sprucinski		Crew:	Mike Sw	eet, Dennis	Walker
Instruments:	· · · · · · · · · · · · · · · · · · ·	·	1	· · · · · · · · · · · · · · · · · · ·	<u> </u>	
	Model:	the second s	ISOCS		ISOCS	
	Serial #:			<u></u>	· · · ·	
	Cal. Due.			·		
	re-op source [:	Sat. 🗆	Sat. □		Sat. 🗆	
	st-op source [:	Sat. Date:	Sat. 🗆 D	ate:	Sat. □	Date:
TIME		R SURVEY DATE				
0715		ric. # Nover-01-219				
0818		inal shots for the area				
1050	Final shots co the NOL-09-0	mpleted for the remed 2 area.	liation of NO	L-04-01, I	Blue ISOCS	s moved to
LATE ENTRY		· · · · · · · · · · · · · · · · · · ·				
6.19.06	#NOL-04.	01-219-F-G MIS	LARFLED	AS N	01-04-0	1-214-F-G
		Dam FILLED OUT				
		•	·			
	*******		······································			
						·····
			<u> </u>		., ., .,	
• • •		······································				
		·····				
					· • • • • • • • • • • • • • • • • • • •	
		<u> </u>				·
			<u> </u>			<u></u>
Magazina and an and a second second state of the second second second second second second second second second						
Com	pleted by			Date	<u> </u>	
		FSS Field Super	visor			
Revi	ewed by			Date		<u> </u>
		FSS Radiological E	Ingineer			
DPF-8856.2 Page 1 of 2						

,

 $\pm \delta$

Page <u>1</u> of <u>1</u>

Survey Area Unit No.: NOL-04-01 Survey Date: 06/19/06					
	#: YNPS-FSSP-C			·	
Supervisor: I	Dockins C	Crew: D. Payeur			
Instruments:					
	Model:				
	Serial #:			· .	
	Cal. Due.				
Pre-op	source check :	Sat. 🗆	Sat. □	Sat. 🗆	
Pre-op	source check :	Sat. □ Date:	Sat. Date:	Sat. Date:	
TIME		R SURVEY DATE			
1930	Received inst	ruction from D. Neel t	hat sample number NO	DL-04-01-009-F	
			geo-tech fabric remova		
2000	Conducted sat	fety briefing and gave	instruction for work a	ctivities to crew.	
2100	Soil sample co	ollected at 2040 by D.	P. Sample given # NC	DL-04-01-026-F.	
		· · · · · · · · · · · · · · · · · · ·			
		·			
<u></u>					
				·····	
				<u> </u>	
			······	······	
			·····		
<u> </u>					
		<u></u>			
Comp	pleted by	engen el FSS Field Super	Date visor	06-19-2006	
	ewed by	FSS Radiological E	Date	1/19/04	
DPF-8856.2 Page 1 of 2		-			

Daily	Survey	Journa	al
-------	--------	--------	----

e stra

Page 1 of

Survey Area No	0.: NOL- 04 &05	Survey Area Name:	Survey Date:				
Survey Unit No	. and Name:	NOL - 04 &	05				
Supervisor: Dy Ja	wayne Neel ck Sprucinski		Crew: Mike Maxwell Mike Sweet Steve Pennock				
Instruments: IS	SOCS	ISOCS	Sharon Erickson Jimmy White ISOCS				
CDD							
Pre-op source Post-op source Sa		Pre-op source Sat. X Post-op source Sat. Date	Pre-op source Sat. X Post-op source Sat. Date				
TIME	NOTES FOR	SURVEY DATE					
0830	start to remov	e the soil and maraphie.	ater from the tank basin before we				
1300		e areas will not be completed toda else where. Will continue on 6/14					
LATE ENARY OBO	* MALAPH	HE (GEOTECH FABRIC) WAS	IDENTIFIED AFTER SEVERAL				
	RAIN EVENT	3 EXPOSED IT IN THE SOUTH	TERN SECTION OF THE SURVEY				
	UNIT. F	SS ENGENEERS DIRECTED T	HE REMOVAL OF SOILS ABOVE				
	THE FABRIC						
		π					
Comple	Completed by Date Date Date Completed by FSS Field Supervisor						
Reviewed by FSS Radiological Engineer Date $2 604$							
DPF-8856.2 Rev. 5 Page 2 of 2	\bigcirc						