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ABSTRACT

The COBRA/TRAC computer program has been developed to predict the
thermal-hydraulic response of nuclear reactor primary coolant systems to small
and large break loss-of-coolant accidents and other anticipated transients.
The code solves the compressible three-dimensional, two-fluid, three-field
equations for two-phase flow in the reactor vessel. The three fields are the
vapor field, the continuous liquid field, and the liquid drop field. A five-
equation drift flux model is used to model fluid flow in the primary system
piping, pressurizer, pumps, and accumulators. The heat generation rate of the
core is specified by input and no reactor kinetics calculations are included
in the solution. This volume describes the finite-difference equations and
the numerical solution methods used to solve these equations. It is directed
toward the user who is interested in gaining a more complete understanding of
the numerical methods used to obtain a solution to the hydrodynamic equations.
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NOMENCLATURE

A area

ALAT area through which a vertical velocity convects transverse momentum
Cp specific heat at constant pressure

D deformation tensor

Q* deleted deformation tensor

e internal energy

E error

F mass flow rate

F total force due to viscous and turbulent shear stress

E anisotropy tensor

FA flow area for connection to the vessel

g gravitational acceleration

H heat transfer coefficient

h enthalpy

hfg enthalpy of vaporization

i unit vector in the x direction

J unit vector in the y direction

K drag coefficient

k unit vector in the z direction

2 mixing length

A% transverse length increment

n unit normal vector '

NA number of connections to top of mesh cell

NB number of connections to bottom of mesh cell

NCA number of connections to top of transverse momentum cell

NCB number of connections to bottom of transverse momentum cell
NCON total number of connections to a cell

NKA number of connections to top half of vertical momentum cell
NKB number of connections to bottom half of vertical momentum cell
NKII number of transverse connections to the II face of a transverse

momentum cell
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NKJJ

NKK
NG

NVCONIL

- - <4 n n n O 0o v

< c
&+

AX

number of transverse connections to the JJ face of a transverse
momentum cell

Total number of transverse connections to a scalar mesh cell
number of transverse connections to a transverse momentum cell that
are orthogonal to the transverse momentum cell velocity

number of connections to the vessel in any one piping Toop
pressure

interfacial heat flux

sensible heat _

width of transverse connection

source

net entrainment rate

turbulent and viscous shear stress terms

stress tensor

Reynolds stress tensor

time increment

vertical velocity

transverse velocity in Y direction

transverse velocity in Z direction

mesh vertical length increment

Greek Symbols

= 3
—

A lla © ¥

volume fraction — — z/z=¢;a/4222¢1422:'~:_ 7z
linear variation of

net rate of vapor generation

thermal diffusivity

turbulent thermal diffusivity

fraction of vapor generation coming from the entrained liquid
viscosity

turbulent viscosity

density

fluid-fluid stress tensor

interfacial drag force
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Subscripts

B

C

c

CE
CL
cv
ce
CcL
cv
CONV

es
ev
EL
EV

IA
IB
II

Jd

KA
KB

bulk property

condensation

continuity cell

entrained drop mass error

continuous 1iquid mass error

vapor mass error

source of entrained liquid mass

source of continuous liquid mass

source of vapor mass

convection area

deposition or de-entrainment

evaporation or entrainment

entrained drop phase

liquid energy source

vapor energy source

1iquid energy error

vapor energy error

saturated liquid

saturated vapor

energy mixing length

counter on vertical stacks (channels) of computational mesh cells
interfacial

counter on connections to top of transverse momentum cell
counter on connections to bottom of transverse momentum cell
mesh cell on the upstream side of a transverse momentum cell
vertical level for scalar (mass, energy) mesh cell

vertical level for vertical momentum mesh cell

mesh cell on the down stream side of a transverse momentum cell
counter on transverse connections between vertical stacks of mesh
cells

 phase k

counter on connections to top of mesh cell
counter on connections to bottom of mesh cell



L counter on transverse connections to a cell
L continuous 1iquid phase
LA counter on transverse connections to top of vertical momentum cell
LB counter on transverse connections to bottom of vertical momentum cell
mixture property
momentum mixing length
momentum cell
me entrained 1iquid momentum source
me continuous 1iquid momentum source
mv vapor momentum source
p pipe
r relative velocity
sink related to a pressure sink boundary condition
v vapor phase
ve drag between vapor and drops
Ve drag between vapor and continuous 1liquid
W wall
Superscripts
n new time value
T turbulent
t transpose
' per unit length
*

donor cell quantity

xi






COBRA/TRAC - A THERMAL-HYDRAULICS CODE FOR TRANSIENT ANALYSIS
OF NUCLEAR REACTOR VESSELS AND PRIMARY COOLANT SYSTEMS
VOLUME 2: COBRA/TRAC NUMERICAL SOLUTION METHODS

1.0 INTRODUCTION

The COBRA/TRAC computer program was developed to predict the thermal-
hydraulic response of nuclear reactor primary coolant systems to small and
large break loss-of-coolant accidents and other anticipated transients. It
was derived from the merging of COBRA-TF and TRAC-PD2 (Ref. 1).

The COBRA-TF computer code provides a two-fluid, three-field
representation of two-phase flow. Each field is treated in three dimensions
and is compressible. Continuous vapor, continuous liquid, and entrained
liquid drop are the three fields. The conservation equations for each of the
three fields and for heat transfer from and within the solid structures in
contact with the fluid are solved using a semi-implicit finite-difference
numerical technique on an Eulerian mesh. COBRA-TF features extremely flexible
noding for both the hydrodynamic mesh and the heat transfer solution. This
flexibility provides the capability to model the wide variety of geometries
encountered in vertical components of nuclear reactor primary systems.

TRAC-PD2 is a systems code designed to model the behavior of the entire
reactor primary system. It features special models for each component in the
system. These include accumulators, pumps, valves, pipes, pressurizers, steam
generators, and the reactor vessel. With the exception of the reactor vessel,
the thermal-hydraulic response of these components to transients is treated
with a five-equation drift flux representation of two-phase flow. The vessel
component of TRAC-PD2 is somewhat restricted in the geometries that can be
modeled and cannot treat the entrainment of liquid drops from the continuous
liquid phase directly.

The TRAC-PD2 vessel module was removed and COBRA-TF implemented as the
new vessel component in TRAC-PD2. The resulting code is COBRA/TRAC. The
vessel component in COBRA/TRAC has the extended capabilities provided by the
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three-field representation of two-phase flow and the flexible noding. The
code has been assessed against a variety of two-phase flow data from
experiments conducted to simulate important phenomena anticipated during
postulated accidents and transients in 1ight water nuclear reactors.

The documentation of the COBRA/TRAC program is contained in five separate
volumes. Volume 1 contains a description of the basic three-field
conservation equations and constitutive models used in the vessel component
(COBRA-TF).

The constitutive relations included in COBRA-TF include state-of-the-art
physical models for the interfacial mass transfer, the interfacial drag
forces, the liquid and vapor wall drag, the wall and interfacial heat
transfer, the rate of entrainment and de-entrainment, and the thermodynamic
properties of water. In addition, a mixing length turbulence model has been
included as an option. Volume 2 contains a description of the finite-
difference equations for the vessel and the numerical techniques used to solve
these equations. The coupling between the TRAC-PD2 equations and the COBRA-TF
vessel equations is also described. Volume 3 is the Users' Manual and
contains line-by-line input instructions for COBRA/TRAC. Volume 4 is the
Assessment Manual, containing the results of simulations run to assess the
performance of the code. Volume 5 is the Programmers' Guide and provides
information on the basic code structure and auxiliary programs required to run
COBRA/TRAC.

This volume, Numerical Solution Methods, describes the finite-difference
equations and the numerical solution methods used to solve these equations.
The finite-difference equations are presented in Sections 2 and 3. The

numerical solution méthod is described in Section 4.
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2.0 THREE-FIELD CONSERVATION EQUATIONS

The three-field conservation equations for multidimensional flow in the
vessel component (COBRA-TF) are presented in Volume 1 of this manual. The
reader should refer to Volume 1 for a more complete discussion of these
equations and a description of the physical models required for their
closure. The finite-difference form of these equations will be presented here
and the term by term correspondence between the conservation equations and the
finite-difference equations will be pointed out.

The finite-difference equations are written in a semi-implicit form using
donor cell differencing for the convected quantities. Since a semi-implicit
form is used, the time step, At, is Timited by the material Courant Timit

at < 18X (2.1)

where Ax is the mesh spacing and V is the fluid velocity.

The finite-difference equations are written such that they may be solved
on Cartesian coordinates or using the subchannel formulation in which some of
the convective terms in the transverse momentum equations are neglected and
idealistic assumptions are made concerning the shape of the transverse
momentum control volumes.

The computational mesh and finite-difference equations are described
using the generalized subchannel notations. These equations are equivalent to
the three-dimensional Cartesian equatiohs when the limiting assumptions of the
subchannel formulation are not used and the mesh is arranged on a rectangular
grid (see Volume 1, Section 2).

2.1 COMPUTATIONAL MESH AND VARIABLE PLACEMENT

The equations are solved using a staggered-difference scheme where the
velocities are obtained at the mesh cell faces and the state variables such as
pressure, density, enthalpy, and void fraction are obtained at the cell
center. The mesh cell is characterized by its cross-sectional area, A, its

2.1



height, Ax, and the width of its connection with adjacent mesh cells, S. The
basic mesh cell is shown in Figure 2.1. The basic mesh cell may be used to
model any one, two, or three-dimensional region. The dimensionality of the
flow is dependent upon the number of faces on the cell that connect with
adjacent mesh cells.

The size of a mesh cell used to model the flow field inside of a reactor
vessel is generally quite large because the volume of the reactor vessel is
very large and the cost of using a fine mesh in solving the two-fluid
equations for the whole vessel would be prohibitive. However, many important
flow paths and flow phenomena may be overlooked when a large mesh size is used
in some areas of the vessel. This can be minimized by allowing a variable
mesh size within the vessel. A finer mesh can be used in areas where a more
detailed calculation of the flow field is required. The vessel component has
been set up to allow such a variable mesh size. Examples of the flexibility
this allows in modeling various geometries are given in the users' manual
(Volume 3) and the applications manual (Volume 5). The variable

/

S

e

FIGURE 2.1. Basic Mesh Cell
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mesh is formed by connecting two or more cells to any or all of the faces of a
mesh cell, as illustrated in Figure 2.2. A single mesh cell with area Al is
shown connected to four mesh cells above it with areas A2, A3, etc. These
four mesh cells may connect through transverse connections S2, S3, etc., to
allow transverse flow in that region, or they may not connect to each other
forming one or more one-dimensional flow paths that connect to mesh cell 1. A
more detailed discussion of the mesh is given in the Users' Manual (Volume 3).

The mesh cells shown in Figures 2.1 and 2.2 represent the mesh for the
scalar continuity and energy equations. The momentum equations are solved on
a staggered mesh where the momentum mesh cell is centered on the scalar mesh
cell surface. The mesh cell for vertical velocities is shown in Figure 2.3,
and that for transverse velocities in Figure 2.4.

FIGURE 2.2. Variable Mesh
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The vertical velocities are subscripted with I and j where I identifies
the location of the mesh cell within the horizontal plane and j identifies its
vertical location. The mesh cells for the scalar equations carry the same
subscripts, but their mesh cell centers 1ie a distance Ax/2 below the mesh
cell center for the correspondingly subscripted velocity and are denoted by
the capital letter J in the discussion below.

Transverse velocities are subscripted with k and J where k identifies the
location of the mesh cell in the horizontal plane and J identifies its
vertical location. The node centers for the scalar equations and transverse
momentum equations l1ie in the same horizontal plane.

The finite-difference equations are written based on the mesh as defined
above using this subscripting convention.

2.2 FINITE-DIFFERENCE EQUATIONS

The finite-difference equations follow. Quantities that are evaluated at
the new time carry the superscript n and donor cell quantities carry the
superscript *. Those quantities that have the superscript * or no superscript
are evaluated at the old time and form the explicit portions of the
equations. The corresponding term in the conservation equation for each term
in the finite-difference equation is provided in the brackets below each
equation, along with a verbal description of the term. The subscripts I and k
are assumed to be obvious and are not shown. h
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2.2.1 Mass Equations

Vapor Mass Equation:

-gg[ x ’ %lA *
N (a,p,) U A1 - [(a,p,) U, A 1]
[loyeydy = fogpylgd g Y Vi M kel Y Vi My
At C AX
J J
n
S
NKK * r cv
J J
+ 7 0S, [lap ) VI, + >+, (2.2)
L=1 L vive v J AxJ AxJ
Liquid Mass Equation:
NB * NA *
n b [lage) U0 A 1 - ¥ [lap,) UNA ]
ooy ~foppgdg 1 kBar — %% % Miake kEL M E 4 " ka
At C AX
J J
n
S
NKK . (1-m) 17 s ca
* J J J
+ 5 s [lap,) V01, - N (2.3)
L=1 L e 2L J AxJ AxJ AxJ
Entrained Liquid Mass Equation:
NB * NA *
n ] [lage) U0 A 1 - § [lap) UTA ]
Llagey); {?epz)a]A _kB=1 %R &Mk kasL o S & MiTka
At CJ AX
J
n
N%K * nrg SJ SceJ (2.4)
+ S[(ap) V]_ + + 2.4
L=1 L e’ . e J AxJ AxJ AxJ



Rate of Change of Mass Rate of Mass Efflux in the Vertical
Direction
= - 30, p, U

3 % Pk k
A 3?'(“kpk) j —gc— A
Rate of Mass Efflux in Rate of Creation'— —Mass Eff]ux- Phase |
the Transverse Direction of Vapor Mass Due Due to Source

to Phase Change Entrainment Term
- + + +
] ]

b - ot - . - - J

The reader should refer to the nomenclature list for the definition of each of
the variables. The rate of mass efflux in the transverse direction is given
as the sum of the mass entering the cell through all transverse connections to
all of the faces. The total number of transverse connections to the cell is
NKK. The rate of mass efflux in the vertical direction is given as the sum of
the mass entering (or leaving) the cell through all vertical connections to
the top and bottom of the cell. The total number of connections to the top of
the cell is NA and the number of connections to the bottom of the cell is

NB.

The velocity in each of the convection terms is taken to be the new time
value while the convected quantity, in this case (akpk)*, is taken at the old
time. The mass creation term is evaluated at the new time. However, it
consists of an implicit and explicit part. The rate of mass generation due to

phase change, T'., is given by

J

)n
1172 T1'V \J

n
(HiAidy (hg - )" (HiA;), (hg -
sz h va h

(2.5)

(= ]

fg fg

The product of the interfacial area and heat transfer coefficient, the
specific heats, and the heat of vaporization are all evaluated at the old time
value and form the explicit portion of the mass creation term, while the
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enthalpies are evaluated at the new time value forming the implicit portion.
This term is also multiplied by the ratio (1—a3)/(1-av) for vaporization

or aC/av for condensation. This is done to provide an implicit ramp that will
cause the interfacial area to go to zero as all of the donor phase is
depleted. An explicit ramp is also applied to the product (H;A;) to cause it
to go to zero as the volume fraction of the donor phase approaches zero. The
entrainment rate S is explicit and is also multiplied by implicit and explicit
ramps that force it to zero as the donor liquid phase is depleted.

The last term in the equations is the phase mass source term and is
evaluated at the new time. This term accounts for sources of vapor mass that
are exterior to the vessel mesh. These sources include one-dimensional
component connections such as pipes, mass injection boundary conditions, and
pressure boundary conditions. These source terms will be defined in the next
section,

2.2.2 Fluid Energy Equations

Vapor Energy Equation:

[(a,p 0,07 = (a,p,n ) IA

‘U_v vvy J .
it
NB . NA .
$ [laph) U A 1 - 3 [aph) U"A ]
kg=1 VYV Vi Mk kasr VYV V5 Ty
- (2.6)
J
o S L) nooQ " - p)A
NKK £ n Jlgy vy YvyooS v o'vJ 3¢,
* S, Lloyehy ) Vy Jg + ==t e+ 5 ¥ Aiv Gt 33
L=1 L J J J J J
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Liquid Energy Equation:

n
{[(az + “e)pzhzla - [(ae + “g)pzhz]J}Ac

J

J
At B
NB NA *
1 * n * n n
—{) [la,p,h,) U A+ (aph,) U A J.-3 [la,ph,) U A
AxJ KB=1 A ) 2j-1 mJ._1 e 2 % ej_1 @j_lKB KA=1 L7 %
NKK
*n - * n *.n
+ lagpghg) Ug Ay Jepd + TS| Dlagech ) Vo + (agegh ) Vg
J L=1 L L
M Q7. Q nooQb o, (" - P, A
3"f. %y e, S 2 3 J e
J J J el J + J J (2.7)
el vy v vy - S v 53 :
J J J J J
- - -
Rate of Change of Enthalpy Rate of Efflux of Enthalpy
in the Vertical Direction
AL (o 0h) 3 (o ph U, )
3t %Pk ] X kKKK |
[ o] [ i
Rate of Efflux of Enthalpy Energy Efflux Due To Mass
in the Transverse Direction Transfer Between Fields
+ +
E (akpkhkvk)LSL I‘khk
L - = p— - - - - —
=
Interfacial Heat Transfer Heat Addition Fluid Convection{ | Pressure
from Solid and Turbulent‘ Derivative
Heat Flux
+ + + +
' T o oP
q} Qy VLo (g, + g) ]J L
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Again, the rate of energy efflux in the transverse direction is the sum
of all transverse connections on all faces of the cell and that in the
vertical direction is the sum of all connections to the top and bottom of the
cell. New time velocities convect the donor cell (akpkhk)* which is evaluated
using old time values. New time -enthalpies are convected in the phase change
term. The interfacial heat transfer term, like the vapor generation term, has
an implicit temperature difference and an explicit heat transfer coefficient
and interfacial area. The wall heat transfer is explicit. The energy source
terms corresponding to the mass source terms will be defined in the next
section. The fluid conduction and turbulent heat flux are explicit and will
be expanded in the next section.

2.2.3 Momentum Equations in the Vertical Direction

Vapor Phase:

vivov'j vivov’j

)
o KB=1 o

[la o U )" - (ap.U )-]Amj B [(avvav)*UvJ]K A

*
Na Lleye Up) Uy o Jea Ay NKB S
- J* KA 4 % DlaypgUy) Vg 1y p =2 (2.8)
k=1 B LE=1 %Pyl v,iLB T2 .

n
NKA . S (P q-P.)
LA J+1 J
+7  [la,e,U,) V o= -(a,p,): gA - o A
LA=1 vivov vJ+1 LA 2 vv'] mj ij Vj mj
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n n n
- Kv.(ZUv.- u, ) - sz.[z(uV - Uz)j - (uv - uz)j] - Kvegzwv - ue)j - (U,- ue)j]
J Jj J J J
[T-U - (1-n)Tl. = nrcl 1. Smy
Cv E"g E"e’j + J + TT
- AX X, V.
J J J
Liquid Phase:
n %B *
[la,p,U); - (a,p,U,).]A [{a,pU ) U ], A
LA 2 AN 27872 m, _ KB=1 274787 4,7KB Tmyp
At AX .
- Jj
NA N
K§=1[(“z°zuz) U2J+1]KA AmKA NKB N S_g
- AX, + 1 [legegUp) Vy Jig 7 (2.9)
J LB=1 J
NKA N S
LA
* le\=1 [lage U,) VzJH]LA - (agpli g Amj
n
] (PJ»+1 - PJ) . a
AX . . m.
X5 23 "

(1-n) [T.U - r.U].
n n _ _ Cv E" 273
Kz.(ZUR.- Uz.) * sz.[Z(Uv - Uz)j (Uv Uz)j] * AX

J J J J J
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S
(SDUe - SEUZ)j m,

h| T
+ + - + T
AX, : i
X & %
Entrained Liquid Phase:
NB Y
n A } [lapU) U, Jn A
[(agpolely = (agpoUgdylimy gy ereter "ey7KB Tmyp
At A,
J
T L)
o_p U
KA=1 € * € e KA AL s . s
- AX 2+ L [lagegUy) Vo I —%E
J - LB=1 J
NKA . S
LA
+ Y [lap,U)V 1, 5—-(ap,): gA (2.10)
LA=1 es"e’ "eq LA 2 e 8] m;
| n
(PJH' . PJ) a A
AX - .,
%3 % "
g nlr.U - ru ],
n n Cv Ee”j
- Kej (2Uej— uej) + KveJ. [2(Uy = Ug)5 - (U, = Ug) 5T + =

S
(SDUe - SEUz)j ) .mej
AX. .
*j M
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.
Rate of Change
of Vertical = -
Momentum
3o Uy )

A g _

-

L

- i
Pressure- Gradient
Force

ap
% X

Momentum Exchange Due
to Mass Transfer
Between Fields

Ty + SU

Rate of Efflux of Momentum in| Gravitational
the Transverse Direction Force

Rate of Effiux of Momentum at Bottom of Cell. Rate-1
of Efflux of Momentum at Top of Cell

9
A x CacndYUg)

- F '

Qk pkg

i 7 i 7

Wall Shear Interfacial Shear

- W - -
Momentum Source Term Viscous and Turbulent
Shear Stress

:
| | R

|

The rate of momentum efflux in the vertical direction is given as the sum of
the momentum entering (or leaving) the cell through all vertical

connections. The total number of momentum mesh cells facing the top of the
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cell is NA and the total facing the bottom of the cell is NB. The rate of
momentum efflux in the transverse direction is given as the sum of the
momentum entering (or leaving) the cell through all transverse connections.
The total number of transverse connections to the top half of the momentum
cell is NKA. The total number of connections to the bottom half of the cell
is NKB. In order to achieve stability with this semi-implicit formulation of
the momentum equation, donor cell momentum, (akpkUk)*, is convected by the
velocities at the momentum cell face through the area of the connections at
the momentum cell face. A simple linear average between adjacent momentum
cell velocities is taken to obtain the velocity at momentum cell faces since
velocities are not computed at this location:

(2.11)

Likewise, linear averages are used to obtain other variables at a location
where they are not defined. The void fraction of the momentum cell is given
as

a, + «a

_ J J+1
O.j = 4——-2-‘—— (2012)

and the density is given as

P, + p
by = "L (2.13)

Velocities are obtained from the flow computed by the momentum

equations, (akpkUkAm), by dividing it by the momentum cell macroscopic density
and momentum cell area
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(o o UpAn) 5

kj - '(akpkﬁnij (2.14)

U

The pressures in the pressure force term are taken at the new time as are the
velocities in the wall shear and interfacial shear terms. The shear terms
have been weighted toward the new time velocity by differencing them in the
form: K(2u" - U). A1l other terms and variables are computed using old time
values. The donor phase momentum is convected during mass exchange between
fields. The explicit viscous and turbulent shear stresses will be expanded in
the next section.

2.2.4 Momentum Equations in the Transverse Directions

Vapor Phase:

NKII

*
n T [la,p, V), V, S Iax
[(avpvvv) - (avpvvv)]J SJAxJ L5 viviviy Vi L -”9
Fxa - AzJ
NKJJ . NG xS
Lzl Llayo V) VvLSL]AXJ Lzl[(“vpvvv)d va f—JAXJ
- : +
8L 5%
NCB N NCA *
Z [(avvaV) Uv ALATIB] z [(avvav) Uv ALATIA]
, 121 1B 1A=1 I (2.15)
i - AL .
J J
n
.| JJ(PJJ - Prp) Sy ) )
- = - K, (2v, - Vv, ) -K, . [2(v, =V ), - (V. -V).]
Azd vJ vJ vJ vzd v 'd v L'd
S
[tV - (1 = n)rV, = nrov. ] mv
- Ky [20V, = V)] = (v, - V)] - Ly Er Eed, J,qT
4 v e A%, AL vy
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Liquid Phase:

n
[lagogVg)™ - fagpgVy)ly Sg&y 1oy

782

NKII .

Y [(ago V), VQLSL]AXJ

AT

NKJJ .
Lzl [lagpgVo); VzLSL]AxJ

Ald

NG . S
Lzl [lagp Vo), sz ’Z']AXJ

ARJ

+

AEJ

NCB N NCA Y
Y [{a,0,V,) U, ALAT .] Y [(a,pV,) U, ALAT,,]
N 1B=1 L2 % 213 1B i 1A=1 A A A zlA IA
ARJ Azd .
N (P.. - P.)" S A
CASSRRRRE. AR § S Rt o ) o
- — - K, (2v, -V, ) +K  [2(v, -V
ARJ 20 RJ RU sz vV
[(1-n)TWV, - (1-m)TV. 1, “ma
. C'v E'2d , 0, 4T
AL AR L
J J

2.16

(2.16)



Entrained Liquid Phase:

NEII .
n [(a.p,V, ), V. S lax
[lage V)™ - lage Vo)l Syxy ) 2y ee'e’d Te L7
- AT - AL
J
NEJJ * gG * S
[(ep,V. ), V. S Iax [(ap V), W LIAx
L e"g'e’d e L7 & e"g'e’'d e =— 4
L=l = L , L=l L2
J ' J
NCB * NCA *
Z_ [(aepre) Vg ALATIB] Z [(aepzve) Ug ALATIA]
+ 1B=1 1B I1A=1 IA (2.17)
AR - Ag :
J J
n .
RISRLAVIS s LR ALY ] ]
- As, - KeJ(zved' VeJ) * KveJ[Z(Vv - Ve)J -y - Ve?J]
S
R (nI‘CVv - nI'EVe)J , me ;
AR.J AQ,J
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[Rate of Change] [ Rate of Transverse 7 [Rate of Transverse
of Transverse Momentum Efflux Momentum Efflux
Momentum by Transverse Convection by Orthogonal
Transverse Convection
= - +
a2t et ETAATRN
I ot | I ) 1 | k kNK NK |
Rate of Transverse Pressure Gradient Transverse
Momentum Efflux Force Wall Shear
by Vertical Convection
+ - - -
3 BP (1]
37 %Pk kYA %Ay 3T “wk,, K
L. . L. . L .
r . 5 7
Interfacial Drag Interfacial Drag
Between Vapor Between Vapor
and Continuous and Drops
Liquid
+ +
' A oA
12vk k 1evk k
! ] i i
[Transverse Momentum i [Transverse Momentum ] [Viscous and Turbulent]
Exchange Due to Mass Source Term Shear Stress
Transfer Between Fields
+ + +
T
B | L Sm ] | Ve lqlg + T )]

As in the vertical momentum equations, the pressures in the pressure
force term and the velocities in the wall and interfacial drag term are the
new time values while all other terms and variables are computed using old
time values. The rate of momentum efflux by transverse convection is given as
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the sum of the momentum entering (or leaving) the cell through all transverse
connections. Momentum convected by transverse velocities (that are in the
direction of the transverse velocity being solved for) is the sum of the
momentum entering (or leaving) through mesh cell faces connected to the face
of the mesh cell for which the momentum equation is being solved. NKII is the
number of mesh cells facing the upstream face of the mesh cell and NKJJ is the
number facing the downstream face of the mesh cell. Momentum convected out
the sides of the mesh cell by velocities thét are orthogonal to the velocity
to be solved for, but lie in the same horizontal plane, is given by the sum of
the momentum convected into (or out of) cells connected to the sides of the
transverse momentum mesh cell. The number of cells connected to the mesh cell
under consideration, whose velocities are orthogonal to its velocity, is given
by NG. The momentum convected through the top and bottom of the mesh cell by
vertical velocities is the sum of the momentum convected into (or out of)
cells connected to the top and bottom of the mesh cell and depends on the
number of cells connected to the top (NCA) and bottom (NCB) of the mesh

cell.

A simple linear average is used to obtain velocities at mesh cell faces

VL = (2.18)

Lineaf averages also are used to obtain other variables at a location where
they are not defined. Velocities are obtained from the flows computed by
transverse momentum equations by dividing the flows by the momentum cell
macroscopic density and transverse momentum flow area

_ (ukkakSAX)J
kJ (akaSZX)J

(2.19)
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Donor cell differencing is used for all convective terms and the donor phase
momentum is convected in the mass transfer terms. The viscous and turbulent
shear stresses are discussed in the next section.

2.20



3.0 SOURCE, VISCOUS, AND TURBULENCE TERMS

Terms not fully expanded in the presentation of the finite-difference
equations in Section 2 are presented in this section. These include the mass,
energy and momentum source terms; the viscous shear stress tensors; the
turbulent shear stress tensors; the fluid conduction vector; and the turbulent
heat flux vector.

3.1 MASS, ENERGY, AND MOMENTUM SOURCE TERMS

Two types of source terms are required for the mass, energy and momentum
finite-difference equations. The first type is associated with one-
dimensional component connections to the vessel mesh and the second type is
associated with arbitrary boundary conditions that may be specified anywhere
in the vessel mesh.

" 3.1.1 Vessel Connection Source Terms

The vessel connection energy and mass source terms have an implicit and
an explicit term arising from the five-equation drift flux model used in the
one-dimensional components. The mixture velocity in the source terms is taken
at the new time and represents the implicit portion of the source term. The
donor ée]] quantities (denoted by the * superscript) and the relative velocity
are computed using currently known values and are therefore explicit. The
donor cell is determined by the sign of the mixture and relative velocities,
respectively. If flow is leaving the vessel, then vessel properties are
used. If flow is entering the vessel, then properties in the one-dimensional
component are used. The finite-difference form of the source terms is as
follows:

Vapor Mass Source Term

- *n PPy *
Sey © (avpv) VmpFA + [av(l-av) o ] VrpFA (3.1)
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Liquid Mass Source Term

’ * PPy *
Seg = ([(1-a)p,TV0 FA - [q (1-a,) —¥1°V,_ FA} (1-n) (3.2)
' P m p
Entrained Liquid Mass Source Term
* n PoPy.* *
Sce = {L{1-a ) TV FA - [a (1-a) —p——] V. FAIn (3.3)
' p m p '

Vapor Energy Source Term

_ *on PPy P \q*
S v - [av(pvev + P)] Vm FA + [uv(l-av) 'ET“'(e + 5 )] V. FA  (3.4)

€ p mo VAT
Liquid Energy Source Term

s, = [(1-a)( PITVY FA - Lo (1-a) -2Y (e + B7*

ey = L(1-a,)(ppe, + P)] m T Le Ty . (e, +'Bz)] VrpFA

(3.5)

The velocities are calculated at the junction between the vessel and the one-
dimensional component using the five-equation drift flux model, hence the
subscript p (for pipe). They are based on the flow area at the junction, FA.

The momentum source terms for the vessel connections are somewhat more
complex as they depend on the orientation of the pipe connection. Both
horizontal and vertical pipes may be connected to the vessel mesh. However,
only one pipe connection is allowed per vessel mesh cell. In all cases it has
been assumed that the pipe is normal to the face of the vessel mesh cell. The
momentum sources are as follows:
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Transverse Momentum Convected Out a Vertical Loop

o - -(avpVVv)J vaFA if flow is out of vessel (Vv positive)
my 0 if flow is into vessel (VV negative)
P
(3.6)
(a0, V,), V, FA V., >0
L8 2°d R J'A
0 vV <0
*p
- (c:tep}lee)‘J VR,pFA V!Lp >0
Sme = (308)
0 V. <0
%
Transverse Momentum Convected by a Horizontal Loop
Normal of cell face is orthogonal to the pipe axis:
I- (avpvvv)J VVJSkAx if flow is out of vessel (Vv positive)
S = P
mv l
0 if flow is into vessel (VV negative)
P (3.9)
- (alpzvl)d VRJSKAX V,Lp >0
sz = (3.10)
0 V <0
*p
- (aepzve)JVeJSkAx V2 >0
Sne = P (3.11)
0 Vz <0
p
Normal of cell face is parallel to the pipe axis:
Vv ¥ Vv
* .
- —J___P A
Smv (ayp V) 7 Acony (3.12)
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VQ + V2

- * J p
Smg = (ogpeVp) {=————") Acony (3.13)
v + vV
= ( o N, (3.14)
Sme - aepzve) (——”'2 ) ACONV *

In the latter case, the donor cell quantity (apv)* is computed using pipe
variables if the flow is into the vessel or vessel variables if flow is out of
the vessel. The area Acony through which momentum is convected is the minimum

of the pipe flow area, FA, and the area of the vessel mesh cell face SkAx. The
same logic holds for the following source term.

Vertical Momentum Convected by a Vertical Loop

Uu +v
% V. v
- _J P
Spy (ayoyUy) (=5=—5) Aoy (3.15)
u, +Vv
i T B
Smp = legegUp) | 7 Acony (3.16)
u +v
x L
Sne = (agpyle) (=) Aggyy (3.17)
Vertical Momentum Convected by a Horizontal Loop
(avvav)j UvjAm va >0
va - (3.18)
0 Vv <0
p
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Sng = (3.19)
0 v <0
*p
(“epg”e)j U, A, v, >0
Sne = J P (3.20)
0 V2 <0
p

The pipe velocities are computed from the mixture and relative velocities used
in the five-equation drift flux model as follows:

g (3.21)
V.=V -2y .
2,p m pm r
1-ele, (3.22)
V. =V 4 ———2y .
Vp m pm r

The pipe velocity for the entrained liquid phase is always assumed equal to
the 1iquid velocity in the pipe since only two velocity fields (vapor and
1iquid) are available in the one-dimensional components.

3.1.2 Boundary Condition Source Terms

There are five basic types of boundary conditions that may be specified
within the vessel mesh. The first type allows the user to specify the
pressure and the mixture enthalpy in any cell. The normal momentum equations
are then solved on the cell faces to obtain flows into or out of the cell.
Properties specified within the cell are convected to surrounding cells if the
flow is out of the cell. Properties of surrounding cells are convected into
the specified cell if the flow is into the cell. However, since the
properties of the cell are specified, the pressure, temperature, and void
fractions do not change accordingly, so the pressure boundary condition can
act as a mass, energy and momentum sink, if flow is into the cell, or source,
if flow is out of the cell.
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The second type of boundary condition allows the user to specify the
mixture enthalpy, and pressure within the cell and the continuity mass flow
rate at the top of the cell. It is assumed that all three phases have the
same velocity at the cell face. No momentum solution is performed at the top
of the cell for this case'since the flow is specified. Otherwise, the
boundary condition behaves in the same way as the first type of boundary
condition, acting as a source (or sink) of mass, momentum, and energy,
depending on the direction of flow.

The third type of boundary condition sets the flow on any mesh cell face,
and therefore does not produce any mass, momentum, Or energy sources.

The fourth type of boundary condition allows the user to specify a mass
and energy source in any computational cell without changing the .computed
fluid properties within the cell. Again, all three phases are assumed to
travel at the mixture velocity and the amount of flow is determined by the
volume fraction of each phase specified in the boundary condition. Momentum
of this source is added only if the flow is in the transverse direction and
into the vessel mesh, or if flow is out of mesh.

The final type of boundary condition allows the user to specify a
pressure sink to be connected to any cell. A simple momentum equation is
solved between the sink pressure and the cell pressure, and the resulting flow
produces a mass, momentum, and energy sink if flow is out of the vessel and a
mass and energy source if the flow is into the vessel. The sink vapor
momentum equation is as follows:

n _ At
(agp VoM ik = (o VAo + & Asink (Psing = o)

- K " -k (U -U) k (U - U)

n n
- (3.23)
vSINK vSINK Ve 'V 2" SINK ve''vy e’ SINK

Transverse and vertical momentum is convected out of the vessel mesh by the
sink velocity computed from the above equation in the same way that
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vessel/pipe connections convect momentum from the mesh, and the same equations
may be used to represent the sink momentum sources if the pipe velocity is
replaced with the sink velocity in the source equations.

3.2 VISCOUS AND TURBULENT SHEAR STRESS TENSORS AND HEAT FLUX VECTORS

The viscous and turbulent shear stress tensors represented in the finite-
difference equation given in Section 2 by le are expanded in this section.
This term represents the viscous and turbulent stress
tensors, V . [ak(o + Tk)], of the partial differential equations. The

viscous stress tensor may be written as

okxx ckxy okxz
9 = ° kyx kay okyz (3.24)
okzx Okzy okzz
T

The turbulent stress tensor Tk may be written in a similar way. Further,

Ve Ly (g + T1 = Gy o+ TZ )] + & Loy (5, * T,Iyx)]

3 T , 3 T
t+=—=1Tla (o + T, JIMH + = [an(g, + T, )]
8z “% %k, Ky ™= ax % kxy k

Xy
+ 3?'[°k (o + TZ )] + = [ak(ok + TI )11
yy vy zy zy
3 T 5 T 3 T
+ {(— [, © + T, Y1 +—1¢o + T, )] +—1[a (o + T, )]X
ax “% Tk, UK, 3y kyz kyz z "% k,, k=

The coordinate system used is shown in Figure 3.1.
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RECTANGULAR COORDINATES VELOCITY
COMPONENTS

 J
~N
£

FIGURE 3.1. Coordinate System and Nomenclature

The first subscript on the shear stress denotes the face the stress is
acting on and the second subscript the direction the stress acts in. (For

example, oy is the shear stress acting on face i in the j direction.)
ij
The viscous and turbulent stresses are defined in terms of the bulk

deformation tensor, Dk s given by

=B
Dy = %—[Vu + (Vu)t] | (3.26)
=B - -
or

ou 1 ,8u ov 1 ,3u w
X 7 (55 + %) 7 (52 + %)

f 1 ,0u, ov v 1 ,ov , oW
1l du ow v oW oW
2 (82 + Bx) %’(32'+ 3;) 37

Eliminating the normal stresses such that the diagonal term is zero gives the

deleted bulk deformation tensor Dt
._-—_B'
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Neglecting the viscous contribution to the normal stresses and
eliminating the normal stress due to pressure already accounted for in the
finite-difference equation leaves

*
thus,
u v
fo] = g = u(—-—-{- -—-) (3-29)
kXy kyx y X
au ow
o = g = yl—=+ =) (3.30)
kXZ kzx z ax
v w
g =g = yle= + =) (3.31)
kyz kzy 9z 3y

The turbulent stress tensor is given by

T T T *

PT is the turbulent pressure. F is the anisotropy tensor which is assumed to
be equal to the unit tensor in general. uT is the turbulent or "eddy"
viscosity. The above tensor, TT’ may be written in matrix form as
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The

and

The

( T
-P F
k kXx

T ,9u oV
llk ("é‘i'*' '37)

T ,3u ow
W bz * %)

turbulent viscosity is gi

the turbulent pressure by

T 2, *
Pk = pklm (2 ng . __[_)_.kB)

\

T ,0u v T ,9%u oW
W (3)7"' "é;(') Wy (_3-Z+ 'S'x‘)
T T ,9v ow
- P F e (57 + 57)
k kyy k ‘3z " 3y
T ,9 ow T
b (= + =) - P, F (3.33)
k '3z " Yy k kZZ )
ven by

(3.34)

(3.35)

double dot product of two second order tensors A and B is defined as

In this case this gives

ou v
= (4

: D —
Dy P R Tyt )

(3.36)

2 u w, 2 v ow, 2

3.10



Now that all of the terms for the viscous and turbulent shear stresses
have been expanded, the finite-difference form of the terms can be
presented. The total force resulting from viscous and turbulent shear
stresses acting on a mesh cell may be obtained using the divergence theorem:

F = V e ‘ + TN dx = n e + T3)1ds (3.38)
= Jé{ Loy (:? =¥)] X sui#ace“ Loy (o =¥)J
The finite-difference approximation for this total force is

. T | T
F=1i.+ {olfc + T, ), ayaz ~ o (o + T, )l dysz
- T k kxx kxx X * kxx kxx X

T T
+ a lo + T, ), &xéz - oo + T, )| . axaz
K%k, T Tk LAV
+ ak(ok + TI )|+ZAxAy - ak(ok- + TI )l_zAXAy}
ZX ZX ZX ZX

. T T
+3j e {afo + T, Y, aypz - oo, + T, ) _ayaz
< K kxy kxy +X % kxy kxy -X

MAZ ~ ak(ak + TZ Yi . AxAz

T
¥ ak(ak + Tk )l_‘_‘y -y

Yy Yy Yy Yy

T T
+ q f{o + T, Y, axay ~ o (o + T, ) _axay)
k kzy kzy +2 % kzy kzy -z

T T
+k ¢ {a, (o + T, ), Ayaz - oo + T, )| _Ayaz
- K kxz kxz X * Kyz kxz -X

T T
+ ak(okyz + Tkyz)lfyAXAz - ak(okyz + Tkyz)l'yAXAz
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T
+a (o + T, ). Mxty - oo + T, )| _axdy (3.39)
k kzz kzz z * kzz kzz -z

The various stresses (o , Tl s O s T{ , etc.) must be evaluated on
XX XX X
various surfaces of vertical and transverse momentum cells. For example, the
stresses acting in . the vertical direction on a vertical momentum cell are

shown in Figure 3.2.

T .
o, (O +T )| AYAZ
K kox  Kxx 14X
(o, +T. )| axay
% K, x zx |-2 | T
| a o T ) AXDZ
1 | yx Kyx Y
! || A
i
o ' 5
| |
A A
3
~
~

AXAY

T
ak(ok +T ) o

\( zZx kzx
T

o (o +T )| AYAZ
k kxx kxx -X

FIGURE 3.2. Vertical Stresses Acting on Vertical Momentum Cell
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The velocity gradients are calculated by taking differences between
adjacent cell velocities to obtain values for Au/Az and Aw/ A2 on continuity
cell edges. This is illustrated in Figure 3.3.

In this figure, the velocity gradient at point A is given by:

U, - u W, - W
(57 * 5l > (7 * ) (3.40)

The derivatives for the other edges (B, C, D, E, F, G, H, I, J, K, L) are

computed in a similar fashion and the process is repeated for other cells.
a solid surface bounds the cell in the transverse direction, it is assumed
that the velocity gradient is zero at the wall. Velocity is assumed to be

zero at the wall for solid surfaces that bound the cell in a vertical
direction.

} AR -

FIGURE 3.3. Velocity Gradient for Point A
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The derivative at the mass cell center is obtained by taking a four-point
average of the derivatives on the cell edges:

U . W _1 ou |, aw U . W
(57 * 3x)cell center = T sz * 50a * (57 * 58
U w W ow
2 4 2= — 3.41
tlzrsdet Gzt ! (3.41)

(B + 2 ang (2L + 2
The same procedure is used to find “3y ~ dx a 9z~ 3x' at the mass cell

* *
center. The quantity 2D, : D, at the cell center is then calculated from
Equation 3.37 using theseBaveraBed derivatives. The turbulent viscosity and
turbulent pressure are then calculated at the cell center using Equations 3.34
and 3.35.

The shear stress acting on the sides of the momentum ceil is computed
from the appropriate velocity gradients calculated on that face and the fluid
properties at these locations are computed using a four-point average of the
properties in the surrounding four mass cells.

The turbulent thermal diffusivity for the mass cell center is computed
from the double dot product of the deformation tensor in the same manner as
the turbulent viscosity was obtained using the expression:

T g Yoo D (3.42)
k= i Y20 ¢ D

€, = %

The sum of the conduction and turbulent heat flux between two mass cells is
then computed from

)
T _ T J+1 J-1
(qu + qu)|+x = - pk(ek + ek) AXJ (3.43)
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~

The heat fluxes from all surrounding cells are summed up to give the net heat
flux into cell J.

Since the viscous and turbulent shear stresses are computed explicitly,
the time step is limited by the criterion

At < min lT
2(ptp ), _u
7 AX
LpAX
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4.0 NUMERICAL SOLUTION

The equations shown in Sections 2 and 3 form a set of algebraic equations
that must be solved simultaneously to obtain a solution for the flow fields
involved. These equations must be simultaneously satisfied not only for each
cell but for the entire computational mesh. The numerical scheme chosen to
solve these equations must be as efficient as possible in order to obtain a
solution in a reasonable amount of computer time. While the equations can be
solved directly using Gaussian elimination, the computer time required for
problems with many mesh cells would be prohibitive. Therefore, it is
desirable to reduce the number and complexity of the equations being solved as
much as possible and use the most efficient scheme possible to obtain a final
solution. Note that the equations in Sections 2 and 3 have already been
greatly simplified over the conservation equations they are intended to
represent since they are written in a semi-implicit form., It is assumed that
these semi-implicit equations converge to the correct solution if a time step
size smaller than that required by the Courant criterion is used. The methods
used to solve these equations will now be described.

4.1 SOLUTION OF THE MOMENTUM EQUATIONS

The momentum equations are solved first in the solution procedure using
currently known values for all of the variables, to obtain an estimate of the
new time flow. Al1 explicit terms and variables in the momentum equation are
computed in this step and are assumed to remain constant during the remainder
of the time step. The semi-implicit momentum equations (Equations 2.8 - 2.10
and 2.15 - 2.17) have the form:

Liquid

FL = A1 + Bl AP + clrL + DlFV (4.1)
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Yapor

Fy=A, +B

v 2 2_AP + C,F, + D,F, + E_F

2 L 2’V 2 E

Entrained Liquid

FE = A3 + B3 AP + D3FV + E3FE

(4.2)

(4.3)

Ay, Ay and A5 are constants that represent the explicit terms in the

momentum equations such as the momentum efflux terms and the gravitational
force. B1» Bz, and B3 are the explicit portion of the pressure gradient force

term, Cl’ and C, are the explicit factors that multiply the liquid flow rate

in the wall and interfacial drag terms.

Dl, Dz, D3, Ez, and E3 are the

corresponding terms that multiply the vapor and entrained 1iquid flow rates.
Fi is the 1iquid mass flow rate, Fy s the vapor mass flow rate, and Fg is the

entrained 1iquid mass flow rate.
form as

-Cl-l D, o fFL‘
?Cz D1, J Fy | - )
0 0, E,-1 Fe
8 - \ \

)
- A1 - B1 AP
- A2 - 82 AP
- A3 - B3 AP

These equations may be written in matrix

(4.4)

Equation 4.4 is solved by Gaussian elimination to obtain a solution for the
phasic mass flow rates as a function of the pressure gradient across the

momentum .cell, AP:
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L=t
FV = G2 + H2 AP
Fp = Gy + Hy P (4.5)

The mass flow rates given by Equation 4.5 are computed based on the mass of
each phase contained within the momentum control volume. Velocities may be
computed from these flow rates using Equation 2.14. Once the tentative
velocities have been obtained from the momentum equations. the continuity and
energy equations can be solved. '

4.2 LINEARIZATION OF THE MASS AND ENERGY EQUATIONS

If the right hand side of each of the mass and energy equations is moved
to the left hand side, the sum of the terms on the left side should be
identically equal to zero if the current values of all variables satisfy the
equations. The energy and mass equations will not generally be satisfied when
the new velocities computed from the momentum equations are used to compute
the convective terms in these equations. There will be some residual error in
each equation as a result of the new velocities and changes in the magnitude
of some of the explicit terms in the mass and energy equations such as the
vapor generation rate. The vapor mass equation, for example, has a residual
error given by

*x ~
na Lloge,) Uy Aj]KA

[(avpv)g - (avpv)J]Ac ;

J
+ 1
At KA=1 AxJ

* A~
ng Lleyey) Uy o Ay dep .
- 1 I Y s Hleye,) T, ],
KB=1 J L=1 L
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(4.6)

A1l terms are computed using currently known values for each of the
variables. The ~ symbol over the velocities indicates that they are the
tentative values computed from the momentum equations (Equation 4.5). The
mass equations for the liquid phases and the two energy equations also have
residual errors: Eg¢|, Eces EEV’ and EEL' The equations are simultaneously
satisfied when ECV’ ECL’ ECE’ EEV’ and EeL for all cells in the mesh
simultaneously approach zero. The variation of each of the independent
variables required to bring the residual errors to zero can be obtained using
the block Newton-Raphson method (Ref. 2). This is done by linearizing the
equations with respect to the independent variables P, o, “vhv’ (l'av)hz’
and aq to obtain the following equation for each cell.

- h 7~
3Eg g 3¢, 9, g g 3¢, . j ft W
3a, do b FI-a Th, Ja, ) P, P _NCON " cL
%Eey gy OBy gy 3R 3L, Epy sah c
aav aavhv 811-av) h!, Bae 8PJ 3P_i=1 ap1'=NCON v EV
kg, 3Eg g, O 3y BE %€, et n |- -J e |
Jo, Ja . 3(T-a T h, & WP, W, P _NCON N Ty EL
BECE BECE aECE aECE aECE aECE aECE o :
%a, doh oT-aVh 3@ P W, E . ;% L e
ey gy gy 3y ey 3Epy %Fev " c
T, Joh I ) h, T W, W, W con J eV

Pi=1

S 4 =NCON

L J

4.4



This equation has the form:

[RIX)]{8(x)} = -E (4.7)

for each cell. Det [R(X)] is the Jacobian of the system of equations
evaluated for the set of independent variables given by the vector X, § is the
solution vector containing the linear variation of the independent variables,
and -E is a vector containing the negative of the residual errors required to
bring the error for each equation to zero. The matrix R(X) is composed of
analytical derivatives of each of the terms in the equations with respect to
the independent variables. The velocities are linearly dependent on the
pressures so derivatives of velocities with respect to pressure may be
obtained directly from the momentum equations, Equation 4.5. The linear
variation of velocity with respect to pressure is given by:

6V

H, (6P, - sP. )

L 1 J J+1
GVV = H2 (GPJ - GPJ+1)
st = H3 (aPJ - 6PJ+1) (4.8)

The derivatives of the other dependent variables such
as p,s pys h,, and h - are obtained from the thermal equations of state

©
"

Py (P.hz)

©
]

p, (Psh ) (4.9)
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and from fundamental identities involving partial derivatives. For example,
the derivative of oy with respect to the independent variable “vhv is given by

pr pr Bhv
= = T SeF (4.10)
vV v vV .

The derivative apv/ahv is obtained directly from the thermal equation of
state, while the derivative ahv/aavhv is obtained from the identity

h
h =YV (4.11)

The term in the numerator is the independent variable with respect to which
the derivative is being taken and the denominator is the independent
variable o, which is assumed to be held constant while taking the
derivative. From Equation 4.11 we then obtain

oh -
v _ 1 . .
RN S e Tl o A — e (H1D)

vy v

Derivatives of the independent variables are obtained directly from

Equation 4.6 and the comparable equations for the other four residual

errors. For'example, the derivative of the temporal term of Equation 4.6 with
respect to @, is given by

Ma p ) 20 3p. 0
vV _ \J v, =
e, = Py ma ) T Ay (4.13)
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Once all of the derivatives for the five equations have been calculated,
Equation 4.7 is reduced using Gaussian elimination to obtain solutions for the
independent variables of the form

N%ON , )
8P, = a_ + g. P, (4.14
N E T
and
NCON ‘
Say = 3, + e,fa + f4apj + 121 g4ispi (4.15)
NCON
5[(1-av)hz] = a, + d3 6[(1-av)h2] + e36ae + f"35P‘J + 1’21 931 6P'i
(4.16)
| NCON
Sa h =a,+c, sah +d, 5[(1'av)hz] te,8a + f 0P + izl g, 1.6P1.
(4.17)
NCON
Gav - a1 ¥ blsqv * Clsq'vhv * dla[(l-av)hzl ¥ elsaé ¥ fIGPJ * .2 g1 6Pi

i=1 i

(4.18)

The computer time required to solve Equation 4.7 is greatly reduced if the
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nonlinear coefficients a, through g, are assumed to remain constant during a
time step and a solution is obtained only for the linearized system of
equations (Equations 4.14 through 4.18). Time step controls are then imposed
to assure that the variation of the nonlinear terms between time steps remains
within acceptable limits so that a stable solution is obtained. A great
savings in computer time is realized when this is done since the matrix
equation (Equation 4.7) is reduced only once per time step.

4.3 SOLUTION OF THE SYSTEM PRESSURE MATRIX

The linear variation of the pressure in cell J as a function of
surrounding cell pressures is given by Equation 4.14. A similar equation may
be derived for each cell in the mesh. This set of equations for the pressure
variation in each mesh cell must be simultaneously satisfied. The solution to
this equation set may be obtained by direct inversion for problems containing
only a few mesh cells or by using a Gauss-Siedel iterative technique for
problems containing a l1arge number of mesh cells.

The efficiency of the Gauss-Siedel iteration is increased in two ways.
First, a direct inversion is carried out over groups of mesh cells specified
by the user. The pressure variation for cells within the group are solved
simultaneously while the pressure variations in surrounding mesh cells are
assumed to have their last iterate value. A Gauss-Siedel iteration is then
carried out over the groups of cells where the pressure variations of bounding
cells for each group are updated with their lTast iterate value. As far as the
iterative solution is concerned, solving groups of cells by direct inversion
has the effect of reducing a large multidimensional problem down to a simpler
one-dimensional problem that has the same number of cells as the large problem
has groups of cells. Convergence difficulties that are typical of problems
with large aspect ratios (long, narrow cells) are also eliminated by placing
cells with large aspect ratios between them within the same solution group.
The iteration is assumed to have converged when the change in linear pressure
variation between time steps is below a specified limit.

The second method for increasing the efficiency of the iteration involves
obtaining the initial estimate for the pressure variation in each cell. This
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is done through a process called rebalancing. Rebalancing is simply the
process of reducing the multidimensional mesh to a one-dimensional mesh for
the vessel and then obtaining a solution for the pressure variation at each
level of the one-dimensional problem by direct inversion using the methods
described above. The one-dimensional solution for the linear pressure
variation at each level is then used as an initial guess for the linear
pressure variation in each mesh cell on that level in the multidimensional
problem. This process greatly enhances the rate of convergence in many
problems since the one-dimensional solution generally gives a good estimate
for the magnitude of the linear pressure variation in the multidimensional
problem. Rebalancing is op;iona1 and must be specified by the user. If this
option is not used then the initial guess for the linear pressure variation in
each cell is zero.

4.4 UNFOLDING OF INDEPENDENT AND DEPENDENT VARIABLES

Once a solution for the linear pressure variation in each cell has been
obtained, the linear variation in the other independent variables is unfolded
using Equations 4.15 through 4.18. The new value for each of the independent
variables is then updated as follows:

n-
PJ —PJ + GPJ
ac = av + Gav
an= a_ + 8a (4.19)
e e e *

n-
(avhv) = avhv +6avhv

[(1-a,)h, 2" = (1 - a)h + &(1 - a)h,

The new time liquid volume fraction is simply, ag =1.0 - ac - ag.

The dependent variables h, and h2 are calculated as follows:
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(ah,)"

n_‘'vyv
hv T Tn
%
[(1 - a,)h,1"
hy = 2 (4.20)
(1-a,)
v
The new time densities are then obtained from the equations of state
n _ n.n
pV = pV(P ’hV)
n _ n.n
Py = pl(P ,hz) (4.21)
The velocities are then updated by
n —

where 8§V,

k is given by Equation 4.8.

4.5 PRESSURE EQUATION FOR CELLS CONNECTED TO ONE-DIMENSIONAL COMPONENTS

The equation for the linear pressure variation in vessel mesh cells that
connect to one-dimensional components is slightly more complicated than
Equation 4.14 since the cell pressure is dependent on the pressures within the
one-dimensional component. If the one-dimensional component forms part or all
of a loop connecting to one or more additional cells within the vessel, then
the pressure variations within the one-dimensional components are functions of
the pressure variation within each vessel mesh cell to which the loop
connects. The equations for the one-dimensional components in each loop are
reduced in TRAC to the form
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NVC%NIL

8V, = A, + B. 5P (4.23)
i i J=1 J vy
where
NN (4.24)
GPVJ =ag + 121 g5 8, + ¢ 8V, .

where 6P is the linear variation in pressure for the vessel computational
cell J, 69 are the linear variations in pressure for other cells that connect
to cell J, and GV1 is the linear variation in the junction velocity connecting
a one-dimensional TRAC component to cell J.

Combining Equations 4.23 and 4.24, one obtains

NCON NVCONIL
8P, =d, + ) e 8P, + ) f &P

(4.25)
I 151 k=1 k™ k

for the linear variation in pressure for the vessel computational cell J. The
second term on the right hand side accounts for the effect of pressure
variations in surrounding cells on the pressure in cell J and the third term
accounts for the effect of pressure variations in cells that connect to the
same one-dimensional component loop as is connected to cell J. This equation,
combined with the remaining linearized equations in the vessel model, provides
a closed set of linear equations that may be solved by the methods described
above. The junction velocities are obtained from Equation 4.23 after the
pressures for each cell in the vessel have been obtained.

4.6 TIME STEP CONTROL

Checks are made on the value of each of the new time variables to assure
that the variation of the new time variables from the o0ld falls within
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reasonable limits. If the new time variables have nonphysical values (e.g.,
void fractions less than zero or greater than 1.0) or if the variation of the
new time variable from the old is unreasonably large, then the solution is
backed up to the beginning of the time step, the variables are set to their
old time value, the time step is halved, and the time step is repeated. This
is done so that the linearized equations will be sufficiently representative
of the nonlinear equations to provide an acceptable level of accuracy in the
calculation. The time step size is also controlled by the rate of change of
the independent variables for the same reason. The stability of the solution
is further enhanced by using logrithmic damping between the old and new time
values of some of the explicit terms, in particular the interfacial drag and
heat transfer coefficients.
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