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ABSTRACT

The COBRA/TRAC computer program has been developed to predict the
thermal-hydraulic response of nuclear reactor primary coolant systems to small
and large break loss-of-coolant accidents and other anticipated transients.
The code solves the compressible three-dimensional, two-fluid, three-field
equations for two-phase flow in the reactor vessel. The three fields are the
vapor field, the continuous liquid field, and the liquid drop field. A five-
equation drift flux model is used to model fluid flow in the primary system
piping, pressurizer, pumps, and accumulators. The heat generation rate of the
core is specified by input and no reactor kinetics calculations are included
in the solution. This volume describes the finite-difference equations and
the numerical solution methods used to solve these equations. It is directed
toward the user who is interested in gaining a more complete understanding of
the numerical methods used to obtain a solution to the hydrodynamic equations.
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NOMENCLATURE

A area

ALAT area through which a vertical velocity convects transverse momentum

Cp specific heat at constant pressure

Ddeformation tensor

Ddeleted deformation tensor

e internal energy

E error

F mass flow rate

F total force due to viscous and turbulent shear stress

Fanisotropy tensor

FA flow area for connection to the vessel

g gravitational acceleration

H heat transfer coefficient

h enthalpy

hfg enthalpy of vaporization

i unit vector in the x direction

j unit vector in the y direction

K drag coefficient

k unit vector in the z direction

X mixing length

AX transverse length increment

n unit normal vector

NA number of connections to top of mesh cell

NB number of connections to bottom of mesh cell

NCA number of connections to top of transverse momentum cell

NCB number of connections to bottom of transverse momentum cell

NCON total number of connections to a cell

NKA number of connections to top half of vertical momentum cell

NKB number of connections to bottom half of vertical momentum cell

NKII number of transverse connections to the II face of a transverse

momentum cell
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NKJJ number of transverse connections to the JJ face of a transverse

momentum cell

NKK Total number of transverse connections to a scalar mesh cell

NG number of transverse connections to a transverse momentum cell that

are orthogonal to the transverse momentum cell velocity

NVCONIL number of connections to the vessel in any one piping loop

P pressure

q interfacial heat flux

Q sensible heat

S width of transverse connection

S source

S net entrainment rate

T turbulent and viscous shear stress terms

I stress tensor

TT Reynolds stress tensor

At time increment

U vertical velocity

V transverse velocity in Y direction

W transverse velocity in Z direction

Ax mesh vertical length increment

Greek Symbols

a volume fraction - -- - 7
6 linear variation of

r net rate of vapor generation

Ethermal diffusivity

eT turbulent thermal diffusivity

n fraction of vapor generation coming from the entrained liquid

11 viscosity
T
11Tturbulent viscosity
p density

afluid-fluid stress tensor

ri interfacial drag force
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Subscripts

B bulk property

C condensation

c continuity cell

CE entrained drop mass error

CL continuous liquid mass error

CV vapor mass error

ce source of entrained liquid mass

cY, source of continuous liquid mass

cv source of vapor mass

CONV convection area

D deposition or de-entrainment

E evaporation or entrainment

e entrained drop phase

ex liquid energy source

ev vapor energy source

EL liquid energy error

EV vapor energy error

f saturated liquid

g saturated vapor

h energy mixing length

I counter on vertical stacks (channels) of computational mesh cells

i interfacial

IA counter on connections to top of transverse momentum cell

IB counter on connections to bottom of transverse momentum cell

II mesh cell on the upstream side of a transverse momentum cell

J vertical level for scalar (mass, energy) mesh cell

j vertical level for vertical momentum mesh cell

JJ mesh cell on the down stream side of a transverse momentum cell

K counter on transverse connections between vertical stacks of mesh

cells

k phase k

KA counter on connections to top of mesh cell

KB counter on connections to bottom of mesh cell

x



L counter on transverse connections to a cell
Xcontinuous liquid phase

LA counter on transverse connections to top of vertical momentum cell
LB counter on transverse connections to bottom of vertical momentum cell
m mixture property
m momentum mixing length
m momentum cell

me entrained liquid momentum source

mY, continuous liquid momentum source

mv vapor momentum source
p pipe

r relative velocity
sink related to a pressure sink boundary condition

v vapor phase
ve drag between vapor and drops

vX drag between vapor and continuous liquid
w wall

Superscripts

n new time value
T turbulent

t transpose
per unit length

* donor cell quantity

xi





COBRA/TRAC - A THERMAL-HYDRAULICS CODE FOR TRANSIENT ANALYSIS

OF NUCLEAR REACTOR VESSELS AND PRIMARY COOLANT SYSTEMS

VOLUME 2: COBRA/TRAC NUMERICAL SOLUTION METHODS

1.0 INTRODUCTION

The COBRA/TRAC computer program was developed to predict the thermal-

hydraulic response of nuclear reactor primary coolant systems to small and

large break loss-of-coolant accidents and other anticipated transients. It

was derived from the merging of COBRA-TF and TRAC-PD2 (Ref. 1).

The COBRA-TF computer code provides a two-fluid, three-field

representation of two-phase flow. Each field is treated in three dimensions

and is compressible. Continuous vapor, continuous liquid, and entrained

liquid drop are the three fields. The conservation equations for each of the

three fields and for heat transfer from and within the solid structures in

contact with the fluid are solved using a semi-implicit finite-difference

numerical technique on an Eulerian mesh. COBRA-TF features extremely flexible

noding for both the hydrodynamic mesh and the heat transfer solution. This

flexibility provides the capability to model the wide variety of geometries

encountered in vertical components of nuclear reactor primary systems.

TRAC-PD2 is a systems code designed to model the behavior of the entire

reactor primary system. It features special models for each component in the

system. These include accumulators, pumps, valves, pipes, pressurizers, steam

generators, and the reactor vessel. With the exception of the reactor vessel,

the thermal-hydraulic response of these components to transients is treated

with a five-equation drift flux representation of two-phase flow. The vessel

component of TRAC-PD2 is somewhat restricted in the geometries that can be

modeled and cannot treat the entrainment of liquid drops from the continuous

liquid phase directly.

The TRAC-PD2 vessel module was removed and COBRA-TF implemented as the

new vessel component in TRAC-PD2. The resulting code is COBRA/TRAC. The

vessel component in COBRA/TRAC has the extended capabilities provided by the
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three-field representation of two-phase flow and the flexible noding. The

code has been assessed against a variety of two-phase flow data from

experiments conducted to simulate important phenomena anticipated during

postulated accidents and transients in light water nuclear reactors.

The documentation of the COBRA/TRAC program is contained in five separate

volumes. Volume 1 contains a description of the basic three-field

conservation equations and constitutive models used in the vessel component

(COBRA-TF).

The constitutive relations included in COBRA-TF include state-of-the-art

physical models for the interfacial mass transfer, the interfacial drag

forces, the liquid and vapor wall drag, the wall and interfacial heat

transfer, the rate of entrainment and de-entrainment, and the thermodynamic

properties of water. In addition, a mixing length turbulence model has been

included as an option. Volume 2 contains a description of the finite-

difference equations for the vessel and the numerical techniques used to solve

these equations. The coupling between the TRAC-PD2 equations and the COBRA-TF

vessel equations is also described. Volume 3 is the Users' Manual and

contains line-by-line input instructions for COBRA/TRAC. Volume 4 is the

Assessment Manual, containing the results of simulations run to assess the

performance of the code. Volume 5 is the Programmers' Guide and provides

information on the basic code structure and auxiliary programs required to run

COBRA/TRAC.

This volume, Numerical Solution Methods, describes the finite-difference

equations and the numerical solution methods used to solve these equations.

The finite-difference equations are presented in Sections 2 and 3. The

numerical solution method is-described in Section 4.
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2.0 THREE-FIELD CONSERVATION EQUATIONS

The three-field conservation equations for multidimensional flow in the

vessel component (COBRA-TF) are presented in Volume 1 of this manual. The

reader should refer to Volume 1 for a more complete discussion of these

equations and a description of the physical models required for their

closure. The finite-difference form of these equations will be presented here

and the term by term correspondence between the conservation equations and the

finite-difference equations will be pointed out.

The finite-difference equations are written in a semi-implicit form using

donor cell differencing for the convected quantities. Since a semi-implicit

form is used, the time step, At, is limited by the material Courant limit

At < 1`xi(2.1)

where Ax is the mesh spacing and V is the fluid velocity.

The finite-difference equations are written such that they may be solved

on Cartesian coordinates or using the subchannel formulation in which some of

the convective terms in the transverse momentum equations are neglected and

idealistic assumptions are made concerning the shape of the transverse

momentum control volumes.

The computational mesh and finite-difference equations are described

using the generalized subchannel notations. These equations are equivalent to

the three-dimensional Cartesian equations when the limiting assumptions of the

subchannel formulation are not used and the mesh is arranged on a rectangular

grid (see Volume 1, Section 2).

2.1 COMPUTATIONAL MESH AND VARIABLE PLACEMENT

The equations are solved using a staggered-difference scheme where the

velocities are obtained at the mesh cell faces and the state variables such as

pressure, density, enthalpy, and void fraction are obtained at the cell

center. The mesh cell is characterized by its cross-sectional area, A, its
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height, Ax, and the width of its connection with adjacent mesh cells, S. The

basic mesh cell is shown in Figure 2.1. The basic mesh cell may be used to

model any one, two, or three-dimensional region. The dimensionality of the

flow is dependent upon the number of faces on the cell that connect with

adjacent mesh cells.

The size of a mesh cell used to model the flow field inside of a reactor

vessel is generally quite large because the volume of the reactor vessel is

very large and the cost of using a fine mesh in solving the two-fluid

equations for the whole vessel would be prohibitive. However, many important

flow paths and flow phenomena may be overlooked when a large mesh size is used

in some areas of the vessel. This can be minimized by allowing a variable

mesh size within the vessel. A finer mesh can be used in areas where a more

detailed calculation of the flow field is required. The vessel component has

been set up to allow such a variable mesh size. Examples of the flexibility

this allows in modeling various geometries are given in the users' manual

(Volume 3) and the applications manual (Volume 5). The variable

FIGURE 2.1. Basic Mesh Cell
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mesh is formed by connecting two or more cells to any or all of the faces of a

mesh cell, as illustrated in Figure 2.2. A single mesh cell with area Al is

shown connected to four mesh cells above it with areas A2, A3, etc. These

four mesh cells may connect through transverse connections S2, S3, etc., to

allow transverse flow in that region, or they may not connect to each other

forming one or more one-dimensional flow paths that connect to mesh cell 1. A

more detailed discussion of the mesh is given in the Users' Manual (Volume 3).

The mesh cells shown in Figures 2.1 and 2.2 represent the mesh for the

scalar continuity and energy equations. The momentum equations are solved on

a staggered mesh where the momentum mesh cell is centered on the scalar mesh

cell surface. The mesh cell for vertical velocities is shown in Figure 2.3,

and that for transverse velocities in Figure 2.4.

A 2

2

A 1

x

-1

FIGURE 2.2. Variable Mesh
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The vertical velocities are subscripted with I and j where I identifies

the location of the mesh cell within the horizontal plane and j identifies its

vertical location. The mesh cells for the scalar equations carry the same

subscripts, but their mesh cell centers lie a distance Ax/2 below the mesh

cell center for the correspondingly subscripted velocity and are denoted by

the capital letter J in the discussion below.

Transverse velocities are subscripted with k and J where k identifies the

location of the mesh cell in the horizontal plane and J identifies its

vertical location. The node centers for the scalar equations and transverse

momentum equations lie in the same horizontal plane.

The finite-difference equations are written based on the mesh as defined

above using this subscripting convention.

2.2 FINITE-DIFFERENCE EQUATIONS

The finite-difference equations follow. Quantities that are evaluated at

the new time carry the superscript n and donor cell quantities carry the

superscript *. Those quantities that have the superscript * or no superscript

are evaluated at the old time and form the explicit portions of the

equations. The corresponding term in the conservation equation for each term

in the finite-difference equation is provided in the brackets below each

equation, along with a verbal description of the term. The subscripts I and k

are assumed to be obvious and are not shown.
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2.2.1 Mass Equations

Vapor Mass Equation:

S n
[(NaPv) n ( P) I

At Acj

NB
IKB=I [(avpv )* Un

vi-'
A]%mj-1 

KB
Axj

NA
- I [(c Pv)

KA=I

* n AmI)u ]V m KA

NKK )* ]
+ I S L (a Vp ) V

L=I V VLJ

Liquid Mass Equation:

rf Scv

+ _T J
Ax AX

(2.2)

NB * NA *

n( (ap ) ] Z [(PI)a U Am - I [(Ua P U"Am]
- A = _ _ ~KA

[_ _dat_ jlK B K A :I i_ _

N K K * ( l- n )r j
L=l V L]J3Ax

Sj

A- +

n
c P.
Axd (2.3)

Entrained Liquid Mass Equation:

[(a p ) n_ (a p ) I
[(epkJ -- eY c

NB
I [(aeP) Ue

KB= . e

NA
Am ] - [(aeP)

j-1•j-1 KB KA= e
Ax3

* n An
j j KA

1
U

NKK * nVnI - n + Sj
L= L P. e(L • Ax- " Ax +

cej

Axj
(2.4)
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Rate of Change of Mass Rate of Mass Efflux in the Vertical

Direction

A ack PkUkAat (akPk) ax

Rate of Mass Efflux in Rate of Creation 1 Mass Efflux Phase

the Transverse Direction of Vapor Mass Due Due to Source

to Phase Change Entrainment Term
+ 1 + +

V (tpV)~ 5L S1 Sc
L LJ

The reader should refer to the nomenclature list for the definition of each of

the variables. The rate of mass efflux in the transverse direction is given

as the sum of the mass entering the cell through all transverse connections to

all of the faces. The total number of transverse connections to the cell is

NKK. The rate of mass efflux in the vertical direction is given as the sum of

the mass entering (or leaving) the cell through all vertical connections to

the top and bottom of the cell. The total number of connections to the top of

the cell is NA and the number of connections to the bottom of the cell is

NB.

The velocity in each of the convection terms is taken to be the new time

value while the convected quantity, in this case (a kpk) , is taken at the old

time. The mass creation term is evaluated at the new time. However, it

consists of an implicit and explicit part. The rate of mass generation due to

phase change, rj, is given by

n (HiAii ' (h f - h )n (HiAi)v (hg - hv) n

r = Cpz hfg v g (2.5)

The product of the interfacial area and heat transfer coefficient, the

specific heats, and the heat of vaporization are all evaluated at the old time

value and form the explicit portion of the mass creation term, while the
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enthalpies are evaluated at the new time value forming the implicit portion.

This term is also multiplied by the ratio (1-ctn)/(1-av) for vaporization
nv

or a v/v for condensation. This is done to provide an implicit ramp that will
cause the interfacial area to go to zero as all of the donor phase is

depleted. An explicit ramp is also applied to the product (HiAi) to cause it

to go to zero as the volume fraction of the donor phase approaches zero. The

entrainment rate S is explicit and is also multiplied by implicit and explicit

ramps that force it to zero as the donor liquid phase is depleted.

The last term in the equations is the phase mass source term and is

evaluated at the new time. This term accounts for sources of vapor mass that

are exterior to the vessel mesh. These sources include one-dimensional

component connections such as pipes, mass injection boundary conditions, and

pressure boundary conditions. These source terms will be defined in the next

section.

2.2.2 Fluid Energy Equations

Vapor Energy Equation:

[(avphv v)n (a•pvhv)j ]AcvvJ vv Jc

NB . Un ] NA . n
I [(cvPvhV) Ia v v v v. m

KB= v vj- 1 m- 1 KB KA=- v j h KA (.
Ax J (2.6)

NKK n nqvj Qv n QT pn _ p)

+ + Vv vSL[(avPvhv V]j + Ax+- + Ax_ A A +L= I A J J
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Liquid Energy Equation:

+ a~ )p 2h I n _ [(ae + a,,) ph Z. ]j}JAc

NB

J KB=1
[ ( a p.h p d U Unj-I Amj- 1

+(aph)* n A] NA *
ee Uj_ m KB -KI[(aph ) Uz YAm

j-1 - KA= 1 2..2 i

* n NKK *Vn +*( nh+ (aePhz) U e.A mKAI +LI SL [( 2.h X + (a e2Ph. Ve ]d
SL=1 L L

AX~ AX i AX i

Sn
+ eX

AX

QT ( n p jSj a. (p - P) Acj

AX At (2.7)

Rate of Change of Enthalpy

A a (a•kpkhk)

Rate of Efflux of Enthalpy

in the Vertical Direction

a~ h

-5- (akPkhkUk)

Rate of Efflux of Enthalpy

in the Transverse Direction

I (akPkhkVk)LSL
L

+

Energy Efflux Due To Mass

Transfer Between Fields

rkhk

+

+

Interfacial Heat Transfer] Heat

from

Addition

Sol id

Fluid Convection

and Turbulent

Heat Flux

V.[ak(qRk + qk) T

Pressure

Derivative

aP
+ + +

qi!
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Again, the rate of energy efflux in the transverse direction is the sum

of all transverse connections on all faces of the cell and that in the

vertical direction is the sum of all connections to the top and bottom of the

cell. New time velocities convect the donor cell (akPkhk) which is evaluated

using old time values. New time enthalpies are convected in the phase change

term. The interfacial heat transfer term, like the vapor generation term, has

an implicit temperature difference and an explicit heat transfer coefficient

and interfacial area. The wall heat transfer is explicit. The energy source

terms corresponding to the mass source terms will be defined in the next

section. The fluid conduction and turbulent heat flux are explicit and will

be expanded in the next section.

2.2.3 Momentum Equations in the Vertical Direction

Vapor Phase:

[(a PvUv)j - (avPvUv)j]Am NB [(avPvUv) UV I Am
___~ 3 _ KB KB=Z Ax.

KB=1 t

NA vNvv Uv J+I]KA AmKA NKB , LB
AX. A + I [( av PvUv) Vv TLB - (2.8)

KA=1 LB=1 V

NKA * SLA (PJ+I - PJ)n

+ L [(avPvUv) Vv ]LA 2- (avPv)j g A - AX avjA
LA 1 vv J+1 AY vj m. Ax vm.
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- K v 2 U-U -K [2(U - U ) n U - U K [2(U _ U )n _ (U-U).]v. v.i v. v k v I 3 k ye. v e j v e j

[rcUv - (l-n)rEU Y,

Ax.

- nrEuel j
Smv

+ 3Ax. + TT
v.

Liquid Phase:

[(ct p .U)f ( a p xU x). ]Am =
NB .
I [(a p UI

KB=I1
Ax.

3

UxiIKB AmKBm

At

NA*
L [(a XpUU ] KAKA' ~ 9.l KA mKA

KA 1 J+1
Ax.

3

NKB .
+ I [(ctpU•)

L B= I
V j]LB

SLB
T7 (2.9)

NKA
+ 1LA=I [(axpx U ) v9. 1l~ LA

SLA

2- (appl)j g Am.
J

(P - PJ)nAxj aj Amj

- K (2U . U .) + K [2(U - U ) -
9J 9. J. J V

(Uv- UX )] +
(1-n) [rcUv - rEU ]j

Ax.3
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(SDUe - SEUd. )j

Ax.3
+ -i+ TTAX. j .

Entrained Liquid Phase:

NB

[ t U Un _ (aePt Ue)j]Amj K [(ePxUe) Uej KB Am KB
At AX.

3

NA
J [(aep-Ue) Ue +IKA Am

KA=1 e eKA *

Ax.+ K E [(ctpU)
3 LB=I

SLB
VjLB T

NKA

LA=1
[(ceP•Ue) Vej+ ILA

SLA

-2- ( eP)j d Am. (2.10)

(PJ+I - P J) n

Axj e Am.

- Ke.
3

(2U.-U ) + Ke. e. ye.
3 3 3

' n ~~n[rcU - r~~
[2(Uv -Ue)j - (Uv Ue)j] + Cv rEe]j

e

(SDUe - SEU9 )j me.

Ax. Axj
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Rate of Change

of Vertical

Momentum

3(akPkUk)

Rate of Efflux of Momentum at Bottom of Cell. Rate

of Efflux of Momentum at Top of Cell

Ax- ( ak PkUkUk)

Rate of Efflux

the Transverse

of Momentum in

Direction

Gravi tational

Force

+

I
L
(a kPk Uk V OL SL

Pressure- Gradient

Force
aP

'k U

Momentum Exchange Due

to Mass Transfer

Between Fields

rU + SU

Wall Shear

w

+

Interfacial Shear

T. + T.

1v9, 1ve

Viscous and Turbulent

IShear Stress

Momentum Source Term

+ +

L
+

Sm V. ( + TT)]

The rate of momentum efflux in the vertical direction is given as the sum of

the momentum entering (or leaving) the cell through all vertical

connections. The total number of momentum mesh cells facing the top of the
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cell is NA and the total facing the bottom of the cell is NB. The rate of

momentum efflux in the transverse direction is given as the sum of the

momentum entering (or leaving) the cell through all transverse connections.

The total number of transverse connections to the top half of the momentum

cell is NKA. The total number of connections to the bottom half of the cell

is NKB. In order to achieve stability with this semi-implicit formulation of

the momentum equation, donor cell momentum, (ckPkUk)*, is convected by the

velocities at the momentum cell face through the area of the connections at

the momentum cell face. A simple linear average between adjacent momentum

cell velocities is taken to obtain the velocity at momentum cell faces since

velocities are not computed at this location:

U j + Uj_1 (2.11)
UJ 2

Likewise, linear averages are used to obtain other variables at a location

where they are not defined. The void fraction of the momentum cell is given

as

. +7J3 3+ (2.12)

and the density is given as

-P J + P J+I 2.3
P 3+ (2.13)

Velocities are obtained from the flow computed by the momentum

equations, (a kPkUkAm), by dividing it by the momentum cell macroscopic density

and momentum cell area
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Uk (a'kPkUkAm~j
3~~~ j-ck~-l) (2.14)

The pressures in the pressure force term are taken at the new time as are the

velocities in the wall shear and interfacial shear terms. The shear terms

have been weighted toward the new time velocity by differencing them in the

form: K(2Un - U). All other terms and variables are computed using old time

values. The donor phase momentum is convected during mass exchange between

fields. The explicit viscous and turbulent shear stresses will be expanded in

the next section.

2.2.4 Momentum Equations in the Transverse Directions

Vapor Phase:

NKI II

[(vPvVv)n - (avPvVv)]J SjAxjL= I [(%vPvV)J VvLL AXJL=1 L

NKJJ .
I [(avPvVv)j Vv S] Ax

L=1 v L

NG *
I [(at,~VPvVj WV T-]7-Axd

L=1 vL2
A2.

NCB . NCA
IB=I [(vPvv UVIBALATIB]I A= [(avPvVv) Uv ALAT IA

+IB=1 _______ - A IA IA( 1)+ AY 
t

(2.15)

a (Pij - P I) n S A

Azj
- K ( 2vn - Vv ) - Kvi [ 2 (Vv - V )n - (V -V

Ji Ji vi tj - v

n-Kve [2(Vv - Ve) -(Vv - Ve)l-
rcVv - (1 - n)rEV X- nrEVe]J + + TT

A2j A j vj
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Liquid Phase:

[k Pt vk) n zc P'tv )]3 S3iAX3i

NKII

L:I
[(ag •V• J Vy xLSL]AXJ

ci

NKJJc

L=l
[(tz vpv S V LSL] AxJ

NG

1L=I
[( a Xp Y.V k)

W zL

S
AX

A X i
+

NCA .
Z [(cpa V,) U •IALATIA]

IAIA

NCB
I [(a P V )

+B=I

U xALATIB]
--IB (2.16)

a (P ii - P11) nS 3Ax i

[(1-n)rc v 1 -n)rEV x i +

A t

-K (2 Vn

x i "

n-VIl + Kvxj[2(Vv - Vd) - (VV - Vd)j

+

Sm j

+ TT

ki
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Entrained Liquid Phase:

[( ePylVe) n

NKII

L=I(a ~e't ve )] S AX i
[(aepVe)j Ve LS L]Ax

At Atj

NKJJ

L=1
[(ce p V ) V S IAXe te VeL L

NG*

L=1L ~T-J
+

NCB

IB=I [(aeepVe) Ue ALATIE
IB

"I-

At j

cie-33 (Pjj - PII)n S3 AXj

A t

NCA .
I E [( aePVe) Ue ALAT I]~ e ~ eIA IA

IA=I AZ3  (2.17)

Ke ( 2 V -V )+ K [2(V - Ve) - (V - V ]_ e e ve3 v eVe v e

+ (nrcVv - nrEVe)J +AZ÷
AtZ
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Rate of Change

of Transverse

Momentum

a(a k V k)
at

F
Rate of Transverse

Momentum Efflux

by Vertical Convection

a C7 kPk~VkUkA

Rate of Transverse

Momentum Efflux

by Transverse Convection

3( ok PkVkVkA)

Pressure Gradient

Force

akAK -E

+

Rate of Transverse

Momentum Efflux

by Orthogonal

Transverse Convection

IK ck PkVkVkSWýK)-NK kkk NK N

Transverse

Wall Shear

T"'ý A
wkKK

+

Interfacial Drag

Between Vapor

and Continuous

Liquid

L t'' Ak
vk

Interfacial Drag

Between Vapor

and Drops

t"' Ak
ev k

+ +

Transverse Momentum

Exchange Due to Mass
Transfer Between Fields

rV + SV

Transverse Momentum

Source Term

Sm
+

Viscous and Turbulent

Shear Stress

TV [a0 + Vk).
+ +

As in the vertical momentum equations, the pressures in the pressure

force term and the velocities in the wall and interfacial drag term are the

new time values while all other terms and variables are computed using old

time values. The rate of momentum efflux by transverse convection is given as
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the sum of the momentum entering (or leaving) the cell through all transverse

connections. Momentum convected by transverse velocities (that are in the

direction of the transverse velocity being solved for) is the sum of the

momentum entering (or leaving) through mesh cell faces connected to the face

of the mesh cell for which the momentum equation is being solved. NKII is the

number of mesh cells facing the upstream face of the mesh cell and NKJJ is the

number facing the downstream face of the mesh cell. Momentum convected out

the sides of the mesh cell by velocities that are orthogonal to the velocity

to be solved for, but lie in the same horizontal plane, is given by the sum of

the momentum convected into (or out of) cells connected to the sides of the

transverse momentum mesh cell. The number of cells connected to the mesh cell

under consideration, whose velocities are orthogonal to its velocity, is given

by NG. The momentum convected through the top and bottom of the mesh cell by

vertical velocities is the sum of the momentum convected into (or out of)

cells connected to the top and bottom of the mesh cell and depends on the

number of cells connected to the top (NCA) and bottom (NCB) of the mesh

cell.

A simple linear average is used to obtain velocities at mesh cell faces

Vj +Vj

v II (2.18)VLII t

Linear averages also are used to obtain other variables at a location where

they are not defined. Velocities are obtained from the flows computed by

transverse momentum equations by dividing the flows by the momentum cell

macroscopic density and transverse momentum flow-area

Vk = (•kPkVkSAX)J (2.19)
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Donor cell differencing is used for all convective terms and the donor phase

momentum is convected in the mass transfer terms. The viscous and turbulent

shear stresses are discussed in the next section.

2.20



3.0 SOURCE, VISCOUS, AND TURBULENCE TERMS

Terms not fully expanded in the presentation of the finite-difference

equations in Section 2 are presented in this section. These include the mass,

energy and momentum source terms; the viscous shear stress tensors; the

turbulent shear stress tensors; the fluid conduction vector; and the turbulent

heat flux vector.

3.1 MASS, ENERGY, AND MOMENTUM SOURCE TERMS

Two types of source terms are required for the mass, energy and momentum

finite-difference equations. The first type is associated with one-

dimensional component connections to the vessel mesh and the second type is

associated with arbitrary boundary conditions that may be specified anywhere

in the vessel mesh.

3.1.1 Vessel Connection Source Terms

The vessel connection energy and mass source terms have an implicit and

an explicit term arising from the five-equation drift flux model used in the

one-dimensional components. The mixture velocity in the source terms is taken

at the new time and represents the implicit portion of the source term. The

donor cell quantities (denoted by the * superscript) and the relative velocity

are computed using currently known values and are therefore explicit. The

donor cell is determined by the sign of the mixture and relative velocities,

respectively. If flow is leaving the vessel, then vessel properties are

used. If flow is entering the vessel, then properties in the one-dimensional

component are used. The finite-difference form of the source terms is as

follows:

Vapor Mass Source Term

*PmV]r p FA (3.1)Sv= (av'v)*Vmn FA + [av(1-av) Pm*
cP vP ~
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Liquid Mass Source Term

Sc = {[(l-cv)pk]*V nFA - [av(l-av) Ptm&] ]]*V FA} (1-n) (3.2)
P m p

Entrained Liquid Mass Source Term

. vV *n* (3.3)
S = {[(1-a )p ] Vm FA - [av(1-cv) Pm-] FA}n
ce v P, --v- Vr

p p

Vapor Energy Source Term

Sev = [av(pe + P)]*Vn FA + [a (1-a ) -- (ev + E-)] Vr FA (3.4)ev v v vmp v Pm v v rp

Liquid Energy Source Term

S = [(1-av)(P e + P)] V nmFA - [av(l-av) -pm (e. + p•)]*Vr FA
et. v 2.2. m V P m . p9.  r

(3.5)

The velocities are calculated at the junction between the vessel and the one-

dimensional component using the five-equation drift flux model, hence the

subscript p (for pipe). They are based on the flow area at the junction, FA.

The momentum source terms for the vessel connections are somewhat more

complex as they depend on the orientation of the pipe connection. Both

horizontal and vertical pipes may be connected to the vessel mesh. However,

only one pipe connection is allowed per vessel mesh cell. In all cases it has

been assumed that the pipe is normal to the face of the vessel mesh cell. The

momentum sources are as follows:
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Transverse Momentum Convected Out a Vertical Loop

m -(cvpvVv)j V FASm MV 0

S -g 0(atpV i)j V X FA
Sme = p e J

(ep Ve)dV FA

SV p
Sme

Transverse Momentum Convected by a

Normal of cell face is orthogonal

(a V V9 SkAx

S = 
v

(0

SV• 9 )d VX S kAX

,0

-e (a ePxVe) JVejiSk A

Sme o 0

Normal of cell face is parallel to

if flow is

if flow is

V~>0

Vp <V X( >0

Vp O

V X k0

Horizontal

to the pipe

if flow is

if flow is

V p > 0

V p 40

V Xp > 0

Vp <
Vt pi a0

the pipe a~

out of vessel (V v positive)

into vessel (Vv negative)

(3.6)

(3.7)

(3.8)

Loop

axis:

out of vessel (V positive)

into vessel (V negative)
(3.9)

(3.10)

(3.11)

(is:

V +V
. vj V*

Smv = (avPvVv) ( 2 A CONV (3.12)
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VL +V,
S (= p V )* ( J2. " ) A (3.13)

m2 X 2. x X CN

Ve + V
Sme = (ePVe) ) ACONV (3.14)

In the latter case, the donor cell quantity (apV)* is computed using pipe

variables if the flow is into the vessel or vessel variables if flow is out of
the vessel. The area ACONV through which momentum is convected is the minimum

of the pipe flow area, FA, and the area of the vessel mesh cell face SkAx. The
same logic holds for the following source term.

Vertical Momentum Convected by a Vertical Loop

U + VvSmv = (c•vPvUv ). (v2 P ACONV (3.15)

Uo VSmi = (epUe )* - I- ) ACONV (3.16)

Ue + V
Sm= (a * P) A(3.17)Se e eP.Ue) 2 ACONV

Vertical Momentum Convected by a Horizontal Loop

( (vPvUv) UvAm Vv > 0

Smv 0 (3.18)

0 V 4 0Vp
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SmZPUPI) U PA V >0 (3.19)

0V <0

A ePzUe) e V X > 0

Sme 1 0 VeI UYU0(3.20)

The pipe velocities are computed from the mixture and relative velocities used

in the five-equation drift flux model as follows:

ctp
=PV A V (3.21)
= pm

VV = Vm + P V (3.22)

The pipe velocity for the entrained liquid phase is always assumed equal to

the liquid velocity in the pipe since only two velocity fields (vapor and

liquid) are available in the one-dimensional components.

3.1.2 Boundary Condition Source Terms

There are five basic types of boundary conditions that may be specified

within the vessel mesh. The first type allows the user to specify the

pressure and the mixture enthalpy in any cell. The normal momentum equations

are then solved on the cell faces to obtain flows into or out of the cell.

Properties specified within the cell are convected to surrounding cells if the

flow is out of the cell. Properties of surrounding cells are convected into

the specified cell if the flow is into the cell. However, since the

properties of the cell are specified, the pressure, temperature, and void

fractions do not change accordingly, so the pressure boundary condition can

act as a mass, energy and momentum sink, if flow is into the cell, or source,

if flow is out of the cell.
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The second type of boundary condition allows the user to specify the

mixture enthalpy, and pressure within the cell and the continuity mass flow

rate at the top of the cell. It is assumed that all three phases have the

same velocity at the cell face. No momentum solution is performed at the top

of the cell for this case since the flow is specified. Otherwise, the

boundary condition behaves in the same way as the first type of boundary

condition, acting as a source (or sink) of mass, momentum, and energy,

depending on the direction of flow.

The third type of boundary condition sets the flow on any mesh cell face,

and therefore does not produce any mass, momentum, or energy sources.

The fourth type of boundary condition allows the user to specify a mass

and energy source in any computational cell without changing the computed

fluid properties within the cell. Again, all three phases are assumed to

travel at the mixture velocity and the amount of flow is determined by the

volume fraction of each phase specified in the boundary condition. Momentum

of this source is added only if the flow is in the transverse direction and

into the vessel mesh, or if flow is out of mesh.

The final type of boundary condition allows the user to specify a

pressure sink to be connected to any cell. A simple momentum equation is

solved between the sink pressure and the cell pressure, and the resulting flow

produces a mass, momentum, and energy sink if flow is out of the vessel and a

mass and energy source if the flow is into the vessel. The sink vapor

momentum equation is as follows:

n
(vPvVvA)SINK = (avPvVvA)SINK + -5 ASINK (PSINK - PJ)

K U U)n n
SINK v SINK kvX Uv - P.)SINK - kve(Uv - Ue)SINK (3.23)

Transverse and vertical momentum is convected out of the vessel mesh by the

sink velocity computed from the above equation in the same way that
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vessel/pipe connections convect momentum from the mesh, and the same equations

may be used to represent the sink momentum sources if the pipe velocity is

replaced with the sink velocity in the source equations.

3.2 VISCOUS AND TURBULENT SHEAR STRESS TENSORS AND HEAT FLUX VECTORS

The viscous and turbulent shear stress tensors represented inT
difference equation given in Section 2 by Tkj are expanded in this

This term represents the viscous and turbulent stress

tensors, v * [ak(ok + TT)], of the partial differential equations.

viscous stress tensor may be written as

kxy kxz
k 0 k k a

k = ayx kyy yz

yk Yk °kzz

the finite-

section.

The

(3.24)

The turbulent stress tensor Tk may be written in a similar way. Further,

V • [ k (k + Tk - [(ak
xx

+TT )]+
xx

'ay[ N ( ak yx
TT

Tk
yx

+ -!3-[ak (akxk

+ ck (akyy

+ E.i [t a'
lt-x k kxz

+ TT )]}i + a
kzx I [ ( ckxy

+TT+Tk )]
kxy

+ TkT )] + 7 [ a k(o k
yy zy

+ TT )3}
zy

+ T )] + -Lak
xz kyz

+ TT kz +-az k ( k
+ TT )]}k

kzz

The coordinate system used is shown in Figure 3.1.
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RECTANGULAR COORDINATES VELOCITY
COMPONENTSi

Ix
9

U
k

W

V

y

FIGURE 3.1. Coordinate System and Nomenclature

The first subscript on the shear stress denotes the face the stress is

acting on and the second subscript the direction the stress acts in. (For

example, ak . is the shear stress acting on face i in the j direction.)

The viscous and turbulent stresses are defined in terms of the bulk

deformation tensor, Dk , given by
=B

1t
Dk = 1 [Vu + (Vu) t

=kB'-2B
(3.26)

or

au
= 1 au

D1 (au
+ avv

+w)

1 au av

av
ay

7 av +aw

1 au aw1 + 7)

1 ( Lv + aw

ýw

(3.27)

Eliminating the normal stresses such that

deleted bulk deformation tensor Dk

the diagonal term' is zero gives the
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Neglecting the viscous contribution to the normal stresses and

eliminating the normal stress due to pressure already accounted for in the

finite-difference equation leaves

k= 20 k
= -B

(3.28)

thus,

O kxy kyx

CF ak°kxz kzx

ak = ak
yz zy

au ax

= A u(- + )

= 1av + w)
3- ay-~

(3.29)

(3.30)

(3.31)

The turbulent stress tensor is given by

T T PT F iT D*Tk p= Fk Tk_2_DkB=- +2 B (3.32)

pT is the turbulent pressure. F is the anisotropy tensor which is assumed to
= T

be equal to the unit tensor in general. v is the turbulent or "eddy"

viscosity. The above tensor, TT may be written in matrix form as
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T
k F"P~xx

T (au +w
"k ay axP

T 3u aw
P1k (i + -X

T T
Tk

T au avTk ( + ')

- TF

T (av aw
k ( +ay

T , 9u + aw
Tk a ax

T a-v 3w)
P'k az + a

TkF
kzz

(3.33)

I

The turbulent viscosity is given by

T"k Pkk2 V2D~ k D k
Km B = B

(3.34)

and the turbulent pressure by

T 2 *
pT= Pkxm (2 B k -DB

The double dot product of two

(3.35)

second order tensors A and B is defined as

A : B = Aij Bji

In this case this gives

(3.36)

20
= B

D k
- B

B a v )2 + u + w 2T-- 1 7 + 13+ + av aw 2
(z+ a (3.37)
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Now that all of the terms for the viscous and turbulent shear stresseshave been expanded, the finite-difference form of the terms can bepresented. The total force resulting from viscous and turbulent shearstresses acting on a mesh cell may be obtained using the divergence theorem:

F-- [c ( TT)]dx = suiace n - [9(ak + T= ds

The finite-difference approximation for this total force is

(3.38)

F=i-{a (a + T ) I AyAz - ak (ak + T T I- 4AyZ
kxx

+ akjca + T Ty) I~yXZ-•(•ykyx yAAz-a( kY
+TT )I AXAZ

k X-Y

+ T T k)i + T hT~~~ )I &kx4ZY++ Ya zx zX ZAX~ - a~c~kzx kzx

+ I {k (Ock
+ TkTy)ITk ) +xAyaz - aCk(Ok

xy xy
+ T~ T yý

+ a k ( kyy

+ k(kZY

+ T )T AXAZ -k(kyy - ky

+ TT )T AXAy - akzy 
kzy

+TkT AX AZ
kyy -

" TT zAxAY}k zy -

+k {ak(ak + TT )I AY Az - ck (ak + TT)I-AZk k z kxz + x Tk)Ixz y

+ N c'kya +Tk )I AXAZ -
+y z 

yz
+ TT ) I ~AxAz

kYZ -
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+ k(a k + Tk ) I +z AxAy - ak( ak
ZZ ZZ ZZ

+ Tk )I-zAXA•y
zz

(3.39)

The various stresses (ak T , a k , etc.) must be evaluated on•x " xx k"yx " yx _
various surfaces of vertical and transverse momentum cells. For example, the

stresses acting in the vertical direction on a vertical momentum cell are

shown in Figure 3.2.

k(Y' (CT +TkT 11 AYAZCk °kxx+ kxx +X

a'k("k ±T+k x-

+TzT ) AXAZ
k yx+Y

OLk(ak)+T T IL<XAZ

N z

+T) T )I AXAY

FIGURE 3.2. Vertical Stresses Acting on Vertical Momentum Cell
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The velocity gradients are calculated by taking differences between

adjacent cell velocities to obtain values for Au/Az and Aw/Ax on continuity

cell edges. This is illustrated in Figure 3.3.

In this figure, the velocity gradient at point A is given by:

(auw + W u2 -LI W2 + -
3z ~ax A A. AX

(3.40)

The derivatives for the other edges (B, C, D, E, F, G, H, I, J, K, L) are

computed in a similar fashion and the process is repeated for other cells. If

a solid surface bounds the cell in the transverse direction, it is assumed

that the velocity gradient is zero at the wall. Velocity is assumed to be

zero at the wall for solid surfaces that bound the cell in a vertical

direction.

I
AX

I
z

A k

FIGURE 3.3. Velocity Gradient for Point A
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The derivative at the mass cell center is obtained by taking a four-point

average of the derivatives on the cell edges:

3u +w 1 au +w + u +w

(• + •cell center = 3'az + 3X)A + x+ axB

(L + L) + (z + !W-)D (3.41)

(u +v a v 3w
The same procedure is used to find - + and +- 3 at the mass cell

center. The quantity 2 Dk : Dk at the cell center is then calculated from

Equation 3.37 using theseBaveraled derivatives. The turbulent viscosity and

turbulent pressure are then calculated at the cell center using Equations 3.34

and 3.35.

The shear stress acting on the sides of the momentum ceil is computed

from the appropriate velocity gradients calculated on that face and the fluid

properties at these locations are computed using a four-point average of the

properties in the surrounding four mass cells.

The turbulent thermal diffusivity for the mass cell center is computed

from the double dot product of the deformation tensor in the same manner as

the turbulent viscosity was obtained using the expression:

.T V/2D (3.42)•k = hfm :k3.2
=B= B

The sum of the conduction and turbulent heat flux between two mass cells is

then computed from

(qkj + qT )'+x = k( + ek) (hjAl -Xh
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The heat fluxes from all surrounding cells are summed up to give the net heat

flux into cell J.

Since the viscous and turbulent shear stresses are computed explicitly,

the time step is limited by the criterion
I- -1

At 4 min 1
2 (.+p T)+ u

P Ax 2 Ax

J
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4.0 NUMERICAL SOLUTION

The equations shown in Sections 2 and 3 form a set of algebraic equations

that must be solved simultaneously to obtain a solution for the flow fields

involved. These equations must be simultaneously satisfied not only for each

cell but for the entire computational mesh. The numerical scheme chosen to

solve these equations must be as efficient as possible in order to obtain a

solution in a reasonable amount of computer time. While the equations can be

solved directly using Gaussian elimination, the computer time required for

problems with many mesh cells would be prohibitive. Therefore, it is

desirable to reduce the number and complexity of the equations being solved as

much as possible and use the most efficient scheme possible to obtain a final

solution. Note that the equations in Sections 2 and 3 have already been

greatly simplified over the conservation equations they are intended to

represent since they are written in a semi-implicit form. It is assumed that

these semi-implicit equations converge to the correct solution if a time step

size smaller than that required by the Courant criterion is used. The methods

used to solve these equations will now be described.

4.1 SOLUTION OF THE MOMENTUM EQUATIONS

The momentum equations are solved first in the solution procedure using

currently known values for all of the variables, to obtain an estimate of the

new time flow. All explicit terms and variables in the momentum equation are

computed in this step and are assumed to remain constant during the remainder

of the time step. The semi-implicit momentum equations (Equations 2.8 - 2.10

and 2.15 - 2.17) have the form:

Liquid

FL =A 1 + B1 AP + CIFL + DIFv (4.1)
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Vapor

Fv = A2 + B2 AP + C2FL + D2Fv + E2FE (4.2)

Entrained Liquid

FE = A3 + B3 AP + D3Fv + E3FE (4.3)

A1 , A2 , and A3 are constants that represent the explicit terms in the

momentum equations such as the momentum efflux terms and the gravitational

force. B1 , B2 , and B3 are the explicit portion of the pressure gradient force
term, C1 , and C2 are the explicit factors that multiply the liquid flow rate

in the wall and interfacial drag terms. D1 , D2 , D3 , E2 , and E3 are the

corresponding terms that multiply the vapor and entrained liquid flow rates.

FL is the liquid mass flow rate, Fv is the vapor mass flow rate, and FE is the

entrained liquid mass flow rate. These equations may be written in matrix

form as

CI-1 D 0 FL A - B AP11 1 1
C D0-1 E F --A -BAP
2 2 2 V 2 2

0 D3 E3 -1 FE -A3 -B 3
~ (4.4)

Equation 4.4 is solved by Gaussian elimination to obtain a solution for the
phasic mass flow rates as a function of the pressure gradient across the

momentum cell, AP:
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FL = G1 + H1 AP

Fv = G2 + H2 AP

FE = G3 + H3 Ap (4.5)

The mass flow rates given by Equation 4.5 are computed based on the mass of

each phase contained within the momentum control volume. Velocities may be

computed from these flow rates using Equation 2.14. Once the tentative

velocities have been obtained from the momentum equations the continuity and

energy equations can be solved.

4.2 LINEARIZATION OF THE MASS AND ENERGY EQUATIONS

If the right hand side of each of the mass and energy equations is moved

to the left hand side, the sum of the terms on the left side should be

identically equal to zero if the current values of all variables satisfy the

equations. The energy and mass equations will not generally be satisfied when

the new velocities computed from the momentum equations are used to compute

the convective terms in these equations. There will be some residual error in

each equation as a result of the new velocities and changes in the magnitude

of some of the explicit terms in the mass and energy equations such as the

vapor generation rate. The vapor mass equation, for example, has a residual

error given by

v)n - (a vp) ]A [(avpv) U vjAj]KA

At I Ax
KA=1 I

NB [(avpv) Uv jy Aj-1]KB NKK
- KBI _ Axj - I SL [(avPv) VvL]j

KB=1 J L=1 L
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rj Ax S i = ECV
Ax 5

(4.6)

All terms are computed using currently known values for each of the

variables. The - symbol over the velocities indicates that they are the

tentative values computed from the momentum equations (Equation 4.5). The

mass equations for the liquid phases and the two energy equations also have

residual errors: ECL, ECE, EEV, and EEL. The equations are simultaneously

satisfied when ECV, ECL, ECE, EEV, and EEL for all cells in the mesh

simultaneously approach zero. The variation of each of the independent

variables required to bring the residual errors to zero can be obtained using

the block Newton-Raphson method (Ref. 2). This is done by linearizing the

equations with respect to the independent variables P, a•, avhv' (1-o%)hk,

and a e to obtain the following equation for each cell.

C CL DE CL 3ECL

3 (v avh 3(1-ct ) hX

EV EV EV
3at v c aav 3(1-a v) h x

3EEL 3EEL 3EEL

v v v v X.

3E CE3E 3ECE

Ba 3a h M(l-a ) h

3EV 3EV 3ECV

Ta 1 3 (1 5-a ) hIv vEv vEcv

3ECL 3ECL

CEL CEL

Ira
e c

DE 3EV E

e ci
3E 3EcEL EL

e ~

3E CE 3ECE
;)a aP

3ECV aECV

e c

3E CL aECL

p "1 " i=NCON

KEV aEEV
i=1 . Pi=NCON

aEEL aEEL

1 i=1 . . . aPi=NCON

3ECE DECE

aPi=1 " i=NCON

aECV 3FCV

a 1 " Pi=NCON

6 av

6ctvh v

6(1-aV h2.

ECL

EEV

EEL

ECE

ECV

aae

6Pj
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This equation has the form:

[R(X)]{6(x)} = -E (4.7)

for each cell. Det [R(X)] is the Jacobian of the system of equations

evaluated for the set of independent variables given by the vector X, 6 is the

solution vector containing the linear variation of the independent variables,

and -E is a vector containing the negative of the residual errors required to

bring the error for each equation to zero. The matrix R(X) is composed of

analytical derivatives of each of the terms in the equations with respect to

the independent variables. The velocities are linearly dependent on the

pressures so derivatives of velocities with respect to pressure may be

obtained directly from the momentum equations, Equation 4.5. The linear

variation of velocity with respect to pressure is given by:

6VL = H1 (SPj -6P J+1)

6VV = H2 (W6 - P J+1)

6VE = H3 (6P - 6P J+1) (4.8)

The derivatives of the other dependent variables such

as pt, Pv' ht, and hv are obtained from the thermal equations of state

pi = py (P,h 9)

Pv = Pv (PhV) (4.9)
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and from fundamental identities involving partial derivatives. For example,

the derivative of pv with respect to the independent variable avhv is given by

Pv Pv vhv
v - v (4.10)

v v v v v

The derivative p v/Phv is obtained directly from the thermal equation of

state, while the derivative h v/9avhv is obtained from the identity

avh
h - (4.11)
v v

The term in the numerator is the independent variable with respect to which

the derivative is being taken and the denominator is the independent

variable a v which is assumed to be held constant while taking the

derivative. From Equation 4.11 we then obtain

hv 1 (4.12)
av v v 7

Derivatives of the independent variables are obtained directly from

Equation 4.6 and the comparable equations for the other four residual

errors. For example, the derivative of the temporal term of Equation 4.6 with

respect to a v is given by

p( VP) 9a v p 0

V avp v aV V
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Once all of the derivatives for the five equations have been calculated,

Equation 4.7 is reduced using Gaussian elimination to obtain solutions for the

independent variables of the form

and

NCON
= a + 95 6Pi6Pj a5 i=1 g5i

NCON

6a =a +e6a +f6P + g4 SPiaCe a4 e4 e 4 f4P i=1 1~

NCON6[(l-a v)h] Y. a3 + d63 6[(1-a v)h k] + e 36ae + f3 SPji +

(4.14)

(4.15)

g•P

g3i i

(4.16)

NCON
6avh v =a2 + c 2 6avhv + d 2 6[(1-a )h ] + e 2 6a f26Pj +

i=l (4i 7i

(4.17)

NCON
Sv = a1 + b1 SOLv + c1 hv + d1 SN(1-a v )hX] + el e + fl1PJ+ + g1 i Pi

(4.18)

The computer time required to solve Equation 4.7 is greatly reduced if the
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nonlinear coefficients ak through gk are assumed to remain constant during a

time step and a solution is obtained only for the linearized system of

equations (Equations 4.14 through 4.18). Time step controls are then imposed

to assure that the variation of the nonlinear terms between time steps remains

within acceptable limits so that a stable solution is obtained. A great

savings in computer time is realized when this is done since the matrix

equation (Equation 4.7) is reduced only once per time step.

4.3 SOLUTION OF THE SYSTEM PRESSURE MATRIX

The linear variation of the pressure in cell J as a function of

surrounding cell pressures is given by Equation 4.14. A similar equation may

be derived for each cell in the mesh. This set of equations for the pressure

variation in each mesh cell must be simultaneously satisfied. The solution to

this equation set may be obtained by direct inversion for problems containing

only a few mesh cells or by using a Gauss-Siedel iterative technique for

problems containing a large number of mesh cells.

The efficiency of the Gauss-Siedel iteration is increased in two ways.

First, a direct inversion is carried out over groups of mesh cells specified

by the user. The pressure variation for cells within the group are solved

simultaneously while the pressure variations in surrounding mesh cells are

assumed to have their last iterate value. A Gauss-Siedel iteration is then

carried out over the groups of cells where the pressure variations of bounding

cells for each group are updated with their last iterate value. As far as the

iterative solution is concerned, solving groups of cells by direct inversion

has the effect of reducing a large multidimensional problem down to a simpler

one-dimensional problem that has the same number of cells as the large problem

has groups of cells. Convergence difficulties that are typical of problems

with large aspect ratios (long, narrow cells) are also eliminated by placing

cells with large aspect ratios between them within the same solution group.

The iteration is assumed to have converged when the change in linear pressure

variation between time steps is below a specified limit.

The second method for increasing the efficiency of the iteration involves

obtaining the initial estimate for the pressure variation in each cell. This
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is done through a process called rebalancing. Rebalancing is simply the

process of reducing the multidimensional mesh to a one-dimensional mesh for

the vessel and then obtaining a solution for the pressure variation at each

level of the one-dimensional problem by direct inversion using the methods

described above. The one-dimensional solution for the linear pressure

variation at each level is then used as an initial guess for the linear

pressure variation in each mesh cell on that level in the multidimensional

problem. This process greatly enhances the rate of convergence in many

problems since the one-dimensional solution generally gives a good estimate

for the magnitude of the linear pressure variation in the multidimensional

problem. Rebalancing is optional and must be specified by the user. If this

option is not used then the initial guess for the linear pressure variation in

each cell is zero.

4.4 UNFOLDING OF INDEPENDENT AND DEPENDENT VARIABLES

Once a solution for the linear pressure variation in each cell has been

obtained, the linear variation in the other independent variables is unfolded

using Equations 4.15 through 4.18. The new value for each of the independent

variables is then updated as follows:

nPj =P + SPj

n =a + 6a
v v v

nne• + Se (4.19)

(avhv) n = a vhv +5vhv

[(1-a v)h 1 n = (1 - av)hx + S(1 - av)hX

n =1.0
The new time liquid volume fraction is simply, an L1.0 - % - ne"

The dependent variables hv and hk are calculated as follows:
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hn 
(avh 

) fn

v- nctv

h n= (1 - )h (4.20)

The new time densities are then obtained from the equations of state

n pn nPv =Pv( P' v)

n = 91(Pn hn) (4.21)

The velocities are then updated by

V = V + 6Vk (4.22)

where 6 Vk is given by Equation 4.8.

4.5 PRESSURE EQUATION FOR CELLS CONNECTED TO ONE-DIMENSIONAL COMPONENTS

The equation for the linear pressure variation in vessel mesh cells that

connect to one-dimensional components is slightly more complicated than

Equation 4.14 since the cell pressure is dependent on the pressures within the

one-dimensional component. If the one-dimensional component forms part or all

of a loop connecting to one or more additional cells within the vessel, then

the pressure variations within the one-dimensional components are functions of

the pressure variation within each vessel mesh cell to which the loop

connects. The equations for the one-dimensional components in each loop are

reduced in TRAC to the form
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NVCONIL
6Vi = Ai + I Bj 6P (4.23)

J=1 j

where

NCON
SPv= a5 + I g5  6P'. + c.j6V. 1 (4.24)

J =1 1 3

where SP is the linear variation in pressure for the vessel computational
v

cell J, i are the linear variations in pressure for other cells that connect

to cell J, and 6Vi is the linear variation in the junction velocity connecting

a one-dimensional TRAC component to cell J.

Combining Equations 4.23 and 4.24, one obtains

NCON NVCONIL
6Pv = d. + I e.6P. + I fk6Pk (4.25)J i=1 k=1

for the linear variation in pressure for the vessel computational cell J. The

second term on the right hand side accounts for the effect of pressure
variations in surrounding cells on the pressure in cell J and the third term
accounts for the effect of pressure variations in cells that connect to the

same one-dimensional component loop as is connected to cell J. This equation,
combined with the remaining linearized equations in the vessel model, provides
a closed set of linear equations that may be solved by the methods described

above. The junction velocities are obtained from Equation 4.23 after the

pressures for each cell in the vessel have been obtained.

4.6 TIME STEP CONTROL

Checks are made on the value of each of the new time variables to assure
that the variation of the new time variables from the old falls within
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reasonable limits. If the new time variables have nonphysical values (e.g.,

void fractions less than zero or greater than 1.0) or if the variation of the

new time variable from the old is unreasonably large, then the solution is

backed up to the beginning of the time step, the variables are set to their

old time value, the time step is halved, and the time step is repeated. This

is done so that the linearized equations will be sufficiently representative
of the nonlinear equations to provide an acceptable level of accuracy in the

calculation. The time step size is also controlled by the rate of change of

the independent variables for the same reason. The stability of the solution

is further enhanced by using logrithmic damping between the old and new time

values of some of the explicit terms, in particular the interfacial drag and

heat transfer coefficients.
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