Nine Mile Point Unit 1 Alternative Source Term

Calculation H21C090

"U1 FHA, AST Methodology" (Fuel Handling Accident)

Engine Servi			Cł	AL:CU	LATIC)N (COVERS	SHEE	T	Page Total Last	1 (Next 18 Attachn	2) nent 2	
	E MILE POIN	IT NUCLEA	AR STA				Unit (1,2			_1	Discipl	ine: _CR	<u></u>
Title U1 FHA, A	AST Method	ology					(Sub)system(s		H21C(Building N/A		Floor Elev. N/A	Index N/A	No.
Driginator(s) H	I. Pustulka												
Reviewer(s)/Ap	prover(s) M. B	erg				N	MP Acceptanc	e: GRS	<u></u>	180	P.C.	12/14	106
		<u> </u>	Eval.	, CR, or		. 1	<u> </u>		J+(1(00+		<u> </u>	(/40
Rev	Description		Chan	ge No.		Prepa	red By	Date	Reviev		Date	Арр	Date
0 Initial Issu	ie		3≠ 4 NI N#A -8	1-2004 56-11	Heathe	<u>~Rs</u>	tulke	12/12/06	place .	c. rec	e12/13/06	u c. Be	212/13/0
uperseded Doo	t/Microfilm separa cument(s): s Reference(s) - Fi Document No.			-			ut provided?		reference If yes (Y/N)	s, group(s)	iated Design	R	Report.
<u>Sec p</u>	<u>age 5 (2)14</u>	766 											
Domarke:	nces: 1 page 5 12/ lculation p equired (Yes/No):	rojidos a	basi3	for the	AST	Lice	use Ame	ndure	int leg	sunst irnover	12/14/64		

Key Words: Fuel Handling Accident , FHA, Design Basis, Dose, Accident

Component ID(s)(As shown in MEL):

N/A

Unit: __1__ Disposition: Project: Nine Mile Point Nuclear Station Calculation No. Originator/Date Reviewer/Date Revision M. Berg 12/13/06 H. Pustulka 12/12/06 H21C090 0 Ref. List of Effective Pages Page Latest Page Page Latest Latest Page Latest Page Latest Page Latest No. No. No. Rev. No. Rev. No. Rev. No. Rev. Rev. Rev. 0 A1-A5 0 1 2 0 Attach 1 0 3 0 Attach 2 0 4 0 5 0 6 0 7 0 0 8 0 9 0 11 Total Number of Calculation Pages____18___

1

Station Unit:1	[Disposition: <u>N/A</u>
Reviewer/Date M Berg 12/13/06	Calculation No. H21C090	Revision O
Reviewer/Date M. Berg 12/13/06 Table of Con SHEET SHEET eet for the Calculation of Offsite C rification Report (1 Page)	Calculation No. H21C090	Revision 0 1 2 3 4 5 5 5 5 5 6 7 8 9
	Reviewer/Date M. Berg 12/13/06 Table of Cor SHEET	Reviewer/Date Calculation No. M. Berg 12/13/06 H21C090 Table of Contents SHEET SHEET eet for the Calculation of Offsite Control Room Doses (5 Pages) trification Report (1 Page)

ect: Nine Mile Point Nuclear	Station Unit:1_		Disposition: <u>N/A</u>		
^{nator/Date} Pustulka 12/12/06	Reviewer/Date M. Berg 12/13/06	Calculation No. H21C090	Revisio 0		
			<u> </u>		
Purpose					
The purpose of this calcu	lation is to provide an analysis of	the Fuel Handling Accident (FHA	() for Nine Mile		
Point Nuclear Station. T	his update provides (1) implement	ation of the Reference 1 (AST) so	ource terms and		
(2) both offsite and contr	of room doses.				

Project: Nine Mile Point Nucle	ear Station Unit:1_	~	Disposition: 📈
^{Originator/Date} H. Pustulka 12/12/06	Reviewer/Date M. Berg 12/13/06	Calculation No. H21C090	Revision O
Ref.	2. 126		

Summary of Results

Table 1 shows the results of this calculation:

Table 1 Dose Results	TEDE (rem)	Limit ¹ (rem)
Control Room	8.47E-01	5
EAB	4.47E-01	6.3
LPZ	3.84E-02	6.3

¹ per Reference 1

The results show that the applicable limits are met at all locations.

Methodology

This dose analysis fully complies with NRC Regulatory Guide 1.183 [Ref 1]. Following accident initiation (24 hours after shutdown), the radionuclide inventory from the damaged fuel pins is assumed to leak out to the environment instantaneously (even though releases to the environment could be assumed to occur over a 2-hour period [Ref 1]).

In no case is RBEVS filtration credited. Due to these simplifying, conservative assumptions, a spreadsheet is used to calculate the control room, EAB, and LPZ doses.

Releases account for:

- a 1.02 multiplier on licensed power,
- a radial peaking factor of 1.8,
- 5% gap activity (except 10% for Kr85 and 8% for I131),
- a pin failure fraction of 0.376% corresponding to 2 assemblies out of 532 assemblies,
- an overall iodine DF of 200 for the refueling pool (where elemental iodine has a DF of 268) and an infinite DF for other radionuclides except for noble gas.

The TEDE values obtained from the revised analysis are compared with the 6.3 rem FHA TEDE limit for offsite doses and the 5 rem TEDE limit for the control room [Ref 1].

Assumptions

Assumption 1: The accident is assumed to occur 24 hours after shutdown. Consequently, core inventories were calculated for that decay time.

Justification: Reference 2, Item 1.4

1

Proje	ect: Nine Mile Point Nuclear S	tation Unit:1_		Disposition: N/A
	nator/Date	Reviewer/Date	Calculation No.	Revision
	Pustulka 12/12/06	M. Berg 12/13/06	H21C090	<u> </u>
Ref.	-		efueling floor occurs within two hour	S.
	Justification: Reference	- 1		
			eed 200 for iodine, (DF of 268 is used and the DF for other radionuclides is	
	Justification: Reference	1		
	Assumption 4: No credit is	needed (or taken) for RBEVS	filters.	
	Justification: Conservat	ive		
	References			
	,	ical Source Terms for Evalua egulatory Guide 1.183, Revis	ting Design Basis Accidents at Nucl ion 0, July 2000	ear Power
	2. PSAT 4026CF.QA.03 Mile Point", Revision		ication of the Revised DBA Source	Term to Nine
			Model for Radionuclide Transport ar National Laboratories, December 199	

ł

itor/Date	Reviewer/Date	· · · · · · · · · · · · · · · · · · ·	Calculation No.	Disposition: <u>N/A</u> Revisi
ustulka 12/12/06	M. Berg 12/13/06	<u>} </u>	H21C090	0
Destan Innuto				
Design Inputs				
Docime Innut Data (R)	eference 2 for all inputs, It	the numbers given in '		
Design niput Data (155	Sterence 2 for an inpus, r	iem numoers grven me	JTACKEIS)	
Power Level: 1887 M	Wt			[1.1]
C is to be at about	•			[1 0]
Core inventory at shut	ldown			[1.2]
Total number of fuel a	assemblies in core: 532 as	ssemblies		[2.5]
Number of damaged p *8x8 assembly is bounding	pins: 125 (63 for dropped a	assembly +62 for struc	k assembly) pins	[2.11]
*8X8 assembly is obuilding	1			
Gap release fractions:			•	
	<u> </u>			
	Radio-nuclide Group	Release Fraction fr Gap to Coolant		
	Kr-85	10%		
	Other NG	5%		
	I-131	8%		
	Other Iodines	5%]	r1 51
				[1.5]
Peaking factor: 1.8				[1.3]
-				
Control Room Free V	olume: 1.35E+05 ft ⁻			[3.9]
X/Q values in sec/m ³ :				
EAB:	1.9E-	-04		[5.1]
LPZ:	1.63E	E-05		[5.2]
CR:	4.82E	3-04		[5.3]
Breathing Rate in m^3/s	s (from start of release for	CR): 3.5E-4		[5.4]
Dicating rate) (HOIII SHILL OF LEADER 12-			ر، .د
	% elemental, 0.15% organ			[4.5]
	mical form not critical sin			
adjusted to ob	otain overall iodine of DF	of 200 per Reterence 1	. No DF applied to c	rganic iodine

ator/Date		Reviewer	/Date		Calcul	ation No.		Revision
Pustulka 12/12/00	6	M. Bei	g 12/13/06		H21	C090		0
Calculatio	'n							
The starting 1.2. To get t	point of the ca he total curies le curies resul Table 2.	alculatior s of the is ting from	was the t = otope of int decay in cl	= 0 shutdowr erest one m nains in whi	n inventories ust add the c	heet methodolog (Ci/MWt) from uries resulting fro ghter product. T	Reference 2, It om its direct	
		hutdown	Adjusted ¹	Branching	24 Hours ³	K		
N	1	Ci/MWt)	(Ci/MWt)	Fraction 2	(Ci/MWt)	Decay /sec		
	······································	.82E+03		N/A	1.66E+02	4.30E-05		
1		.82E+03	same 7.86E+02	N/A N/A	7.86E+02	2.05E-09		
		.30E+02	same	N/A N/A	2.81E-02	1.51E-04		
1		.30E+04 .83E+04		N/A N/A	5.23E+01	6.78E-05		
	1	.83E+04 .97E+03	same *	1N/A. *	5.25E⊤01 *	6.42E-06		
II		.97E+03 .71E+04	4.34E+04	N/A	4.00E+04	9.98E-07		
		.04E+02	same	0.011	4.00E+04 3.03E+02	6.74E-07		
		.04E+02 .85E+04	*	*	5.05E⊤02 *			
		.83E+04 .92E+04		N/A		2.46E-06		
1			same	N/A N/A	3.21E+04	8.37E-05		
II.	1	.51E+04	same		2.48E+04	9.26E-06		
		.63E+03	same	0.029	1.48E+03	3.67E-06		
		.27E+04	same	0.971	5.09E+04	1.53E-06		
		.16E+04	same *	N/A *	4.18E+03 *	2.91E-05		
	(.09E+04				7.56E-04		
	e135 1 denotes where	.91E+04	same	0.835	1.23E+04	2.12E-05		
1.	The adjusted gap release f iodines=5%) listed for shu Branching fr Xe radionuc	l column r fractions (l [Ref 1]. ' utdown. ractions 'F lide.	nultiplies Kr8 Kr85=10%, I Same' refers _B ', multiplier	35 by 2 and 1 131=8%, all 6 to the fact th	131 by 1.6 to other noble ga at it is the sar the iodine pare	account for the uses and ne as the value nt of the specific		

$$a_{t} = a_{0} * e^{-Kt} + \frac{F_{B} \cdot a_{p0} \cdot K}{K - K_{p}} \cdot (e^{-K_{p}t} - e^{-Kt})$$

'p' denotes parent value, and 'a' is activity in(Ci/MWt) and K is the decay constant

• It should be noted that the above equation is expanded for Xe133 and Xe135 to accommodate the presence of two parent nuclides.

ginator/Date	Reviewer/Date	Calculation No.	Revisio
Pustulka 12/12/06	M. Berg 12/13/06	H21C090	0
Note: For Kr83m, Kr89 No credit is taken Offsite and control ro A. The spreadsheet in Scaling Factors (Row Scaling Factor 1 is the activity. Scaling Factor 1 is the activity. Scaling Factor 1 of DF (Row 7) DF for Elemental I and Source in Ci/MW(t) of Values are taken from	9, Xe135m, Xe137, Xe138 and I13 a for the RBEVS filtration. bom doses are analyzed using a spr- nputs are described below. 75 4, 5 & 6): e Power Level in MW(t), used to c tor 2 is the peaking factor. Scaling 532 assemblies). ad Alkali metals are 268 and 1 resp (column 2):	4, the activity left after 24 hrs is neg eadsheet methodology as discussed onvert the core inventory concentra Factor 3 is the gap fraction, multip	gligible. in Appendix ation to total blied by the
No additional Nuclid calculation.		, the values in this column are set to	o unity for this
Results			
		to obtain the dose results for a FH. A with the following notable except	
this o o The	locument. Nuclide Specific Scaling Factor has	4 hours as described in the Calculat s been set to 1 for all nuclides becau n in the 'Adjusted' column of Table	use the scaling

			<u> </u>	erg 12/13/0	6	<u> </u>	21C090			0
			TARI		after a Fuel	Handling	Accident			
	NMP1 FH	A	EAB	LPZ	CR	Hanuing	Accident]		
	Dispersion		1.90E-04	1.63E-05	4.82E-04	sec/m3				
	CR Vol =	135000			ma correction		0.046212			
	Scaling Fac		1887	MW(t)			0.010212			
	Scaling Fac		1.8	Peaking Fac	ctor					
	Scaling Fac		1.88E-04	•	act x 2 assy ou	it of 532)				
	DF for Eler		268	DF for Alka		1				
	Column	Column	Column	Column		Column	Column	Column	Column	Colu
	1	2	3	4	5	6	7	8	9	10
			Nuclide-	WB	CEDE	TEDE	CR	EAB	LPZ	CI
		Source:	Specific	DCF	DCF	DCF	DCF	TEDE	TEDE	TEL
	<u>Units</u>	<u>Ci/MW(t)</u>	Scaling	<u>rem-m3</u>	<u>rem/C</u> i	rem-m3	1	rem	rem	rer
	Nuclide		Factor	<u>Ci-sec</u>		<u>Ci-sec</u>	<u>Ci-sec</u>			
	Kr83m	0	1	5.55E-06	0	5.55E-06		0.00E+00	0.00E+00	0.00E
	Kr85m	1.66E+02	1	0.0277	0	0.0277	0.00128	5.58E-04	4.79E-05	6.54E
	Kr85	7.86E+02	1	0.00044	0	0.00044	2.03E-05	4.20E-05	3.60E-06	4.92E
	Kr87	2.81E-02	1	0.152	0	0.152	0.007024	5.18E-07	4.45E-08	6.08E
	Kr88	5.23E+01	1	0.501	8.36E+01	0.53026	0.052412	3.36E-03	2.89E-04	8.44E
	Kr89	0	1	0.323	0	0.323	0.014926	0.00E+00	0.00E+00	0.00E
	Xe131m	3.03E+02	1	0.00144	0	0.00144	6.65E-05	5.29E-05	4.54E-06	6.21E
1	Xe133m	1.48E+03	1	0.00507	0	0.00507	0.000234	9.10E-04	7.81E-05	1.07E
	Xe133	5.09E+04	1	0.00577	0	0.00577	0.000267	3.56E-02	3.06E-03	4.18E
	Xe135m	0	1	0.0755	0	0.0755	0.003489	0.00E+00	0.00E+00	0.00E
	Xe135	1.23E+04	1	0.044	0	0.044	0.002033	6.57E-02	5.63E-03	7.70E
	Xe137	0	1	0.0303	0	0.0303	0.0014	0.00E+00	0.00E+00	0.00E
	Xe138	0	1	0.213	0	0.213	0.009843	0.00E+00	0.00E+00	0.00E
	I131Org	6.00E+01	1	0.0673	3.29E+04	11.5823	11.51811	8.43E-02	7.23E-03	2.13E
	I132Org	4.81E+01	1	0.414	3.81E+02	0.54735	0.152482	3.19E-03	2.74E-04	2.26E
	I133Org	3.71E+01	1	0.109	5.85E+03	2.1565	2.052537	9.71E-03	8.33E-04	2.34E
	I134Org	0.00E+00	1	0.481	1.31E+02	5.27E-01	0.068078	0.00E+00	0.00E+00	0.00E-
	I135Org	6.26E+00	1	0.307	1.23E+03	0.7375	0.444687	5.60E-04	4.81E-05	8.57E
	I131Elem	4.00E+04	1	0.0673	3.29E+04	11.5823	11.51811	2.10E-01	1.80E-02	5.29E
	I132Elem	3.20E+04	1	0.414	3.81E+02	0.54735	0.152482	7.93E-03	6.80E-04	5.60E
	I133Elem	2.47E+04	1	0.109	5.85E+03	2.1565	2.052537	2.41E-02	2.07E-03	5.82E
	I134Elem	0.00E+00	1	0.481	1.31E+02	0.52685	0.068078	0.00E+00	0.00E+00	0.00E-
	I135Elem	4.17E+03	1	0.307	1.23E+03	7.38E-01	0.444687	1.39E-03	1.19E-04	2.13E
	Rb86	0	1	0.0178	6.62E+03	2.3348	2.317823	0.00E+00	0.00E+00	0.00E-
	Cs134	0	1	0.28	4.63E+04	16.485	16.21794	0.00E+00	0.00E+00	0.00E-
	Cs136	0	1	0.392	7.33E+03	2.9575	2.583615	0.00E+00	0.00E+00	0.00E-
	Cs137	0	1	0.101	3.19E+04	11.266	11.16967	0.00E+00	0.00E+00	0.00E-
	Cs138	0	1	0.4255	1.15E+02	0.465904	0.060067	0.00E+00	0.00E+00	0.00E-
1]	fotal TEDE	4.47E-01	3.84E-02	8.47E
]	fotal TEDE	4.47E-01	3.84E-02	8.47

η

Project: Nine Mile Point Nuclear St	tation Unit:1_		Disposition: <u>N/A</u>	
Originator/Date H. Pustulka 12/12/06	Reviewer/Date M. Berg 12/13/06	Calculation No. H21C090	Revision 0	
Ref.				
		ffsite dose limit for the FHA is 6.		
considerable margin for th		ared to these limits. Note that the	ere is	
0				
Conclusions				
	d offsite doses are well within th	peir Reference 1 limits		
	a offshe doses are went whill h	ien reference i mints.		
	·····			

ject: Nine Mile Point Nucle ginator/Date	lear Station Unit:	Calculation No.	Disposition: N/A Revision
Pustulka 12/12/06	M. Berg 12/13/06	H21C090	0
A Spre Background/Me	Appen eadsheet for the Calculation o		Doses
1	implicity in many cases to calculate assumptions. These are as follow	-	or a given accident
 dependent mech filtration or hol <u>It is assumed</u> the instantaneous, a activity release, exposure time i <u>It is assumed</u> the of radionuclide. <u>It is assumed</u> the and elemental. No credit for condition of the by a single value <u>It is assumed</u> the by a single value <u>It is assumed</u> the the concentration <u>It is assumed</u> the Effectively, this in order for the <u>It is assumed</u> the Effectively, the in order for the <u>It is assumed</u> the Effectively the Effectively the effectively the Effectively the effectively the Effectively the effectively the effectively the effectively the Effectively the effectively the eff	hat the release of activity may be chanisms that modify the amount of ldup). The release is instantaneous an as well. Therefore, no radioactive of A, may, in fact, occur over a give is equal to duration of the release, the release is limited to cooland as are included in the sheet). That the chemical/physical form of the chemical/physical form of the atmospheric dispersion for the of X/Q for each location (EAB the exchange rate of the control on of activity inside the control ro- that the breathing rate of exposed i is means the release actually must LPZ dose not to be overstated. The control room occupancy far spreadsheet to be consistent with thes 2 and 3 must be used. These are t files of Reference 4. Breathing	of activity that's released; e.g., ad complete, and the transport to e decay needs to be considered ven time duration, t, at a rate A/ , time cancels out of the integran at and/or gap activity (i.e., only The iodine as it is released is line in (i.e., filtration) is assumed. The duration of the release may b, LPZ, and control room). To room with the environment is bom is equal to that in the atmo individuals is a constant 3.5E-4 to occur over a period of no more actor is unity.	no delayed o the receptor is . Note that the /t. As long as the ated dose analysis. a limited number mited to organic y be characterized s infinite so that ophere. m ³ /sec. e than eight hours

τ

	ect: Nine Mile Point Nuclea		Unit: <u>1</u>		Disposition: <u>N/A</u>
	nator/Date Pustulka 12/12/06	Reviewer/Date M. Berg 12/13/0	16	Calculation No. H21C090	Revision 0
Ref.	Spreadsheet Deve The spreadsheet is di At the top of the spre the second row may control room volume finite volume correct	elopment splayed at the end o adsheet (in the first be found the EAB, I in ft ³ is given in the ion factor for gamm	f this section, just row) is the title. A PZ, and control ro third column. It	before the references An example might be bom X/Qs in units of is included to provide	"NMP1 MSLB". In seconds/m ³ . The
	of the control room w The next three rows p all of the calculated of core-wide activity av of the core, a second affected fuel bundles core's activity that is assumed to be in the drop). Space is avail DFs are specifically p elemental iodine and	brovide scaling facto loses (EAB, LPZ, an ailable for release is may be the peaking may be greater than released from the da gap multiplied by th able next to each sca	d control room). expressed as Ci/M factor to account f the core average, amaged bundles (i e fraction of the co lling factor to anno row after the scali	For example, in an Fl AWt, one scaling fact for the fact that the sp and the third may be .e., the fraction of the ore fuel bundles that a otate what each value ng factors. One DF i	HA analysis, if the for may be the power becific activity in the the fraction of the core activity are damaged by the represents.
	The "Source" column under "Source" to ide radionuclides identifi In the third column, t example, gap fraction radionuclide-specific the "Source" for I-13 That factor may be en In the fourth column,	entify the units of "S ed in the first colum here is a place for sc as that differ from th scaling factors. If the 1 would have to be in attered in the third co	ource". For each an, a "Source" entre raling factors unique general gap fract the I-131 gap fraction ncreased by a fact lumn.	of the coolant and/or y may be made. ue to individual radio tion may be accommo on is 8% vs. the gene or of 1.6 to account f	gap release onuclides. For odated using these eral value of 5%, then for that difference.
	taken from Reference by 3.7E12 to convert Effective" values from rem/Ci. Note that the half-life less than 90 exception has been m Rb-88 have been add	4 TID.INP and FGI Sv-m ³ /Bq-sec to rem n FGR60.INP have ese DCFs include sho minutes and (2) the o ade to this rule. Bec	R60.INP with the m-m ³ /Ci-sec. In the been multiplied by ort-lived decay date daughter has a half cause of its import	multiplication of "Clo the fifth column, the "I the same 3.7E12 to the	oudshine-Effective" Inhaled-Chronic- convert Sv/Bq to the daughter has a nes the parent. One hter, the DCFs for

	Reviewer/Date	Calculation No.	Revision
Pustulka 12/12/06	M. Berg 12/13/06	H21C090	0
		• • • •	
slightly greater than	10% of its parent Kr-88 (170.4	minutes).	
In the civth column	a TEDE DCF is prepared which	is the sum of the immersion D	TE and the
· · · · · · · · · · · · · · · · · · ·	es the assumed breathing rate of	_	
initialition Der tille	is the assumed breathing rate of	5.5E 4 m / 500.	
In the seventh colum	nn, a control room DCF is define	ed which is similar to the TEDE	DCF. However
the immersion DSF	is diminished by the finite volur	ne correction factor defined as the	he following in
Reference 1:			
	$DDE_{\bar{n}nite} = \frac{D}{2}$	DE_V ^{0.338}	
	DDE _{finite} =	1173	
For a control room v	volume of 135,000 ft ³ , for examp	ble, the factor is 0.0462. Note th	at this factor
appears next to the c	ontrol room volume at the top o	f the spreadsheet. It is ~unity for	or a control roon
volume of $1.2E9$ ft ³ .			
	s the EAB dose, the product of (
	3 X/Q. Note that if a release of t		
	t assuming a unit scaling factor	-	•
1 -	ntration present at the X/Q locat		
	tiplied by the DCF (Column 6) i		
	ation, t. As long as it is assumed		
	nen the immersion + inhalation of nn 8, the EAB dose is summed :		
	dose, the elemental iodine dose		
	is reduced by the DF for alkali		
the and motal dose	is reduced by the D1 for alkali	moturs.	
In Column 9, the Co	lumn 8 results are adjusted by th	he ratio of the LPZ X/Q to the E	AB X/Q to obtai
the LPZ dose.	2 1		
	0, the Column 8 results are adju	•	•
EAB X/Q and by the	e ratio of the control room DCF	to the TEDE DCF to obtain the o	control room
EAB X/Q and by the dose contribution for	e ratio of the control room DCF reach radionuclide. As with the	to the TEDE DCF to obtain the optimized and the LPZ doses, these	control room
EAB X/Q and by the dose contribution for	e ratio of the control room DCF	to the TEDE DCF to obtain the optimized and the LPZ doses, these	control room
EAB X/Q and by the dose contribution for	e ratio of the control room DCF reach radionuclide. As with the	to the TEDE DCF to obtain the optimized and the LPZ doses, these	control room
EAB X/Q and by the dose contribution for	e ratio of the control room DCF reach radionuclide. As with the	to the TEDE DCF to obtain the optimized and the LPZ doses, these	control room
EAB X/Q and by the dose contribution for	e ratio of the control room DCF reach radionuclide. As with the	to the TEDE DCF to obtain the optimized and the LPZ doses, these	control room
EAB X/Q and by the dose contribution for	e ratio of the control room DCF reach radionuclide. As with the	to the TEDE DCF to obtain the optimized and the LPZ doses, these	control room
EAB X/Q and by the dose contribution for	e ratio of the control room DCF reach radionuclide. As with the	to the TEDE DCF to obtain the optimized and the LPZ doses, these	control room

,

ginator/Date Pustulka 12	/12/06		Reviewer/Date M. Berg 12/	13/06	<u></u>	Calculation No. H21C090		,	Revision
			Sprea	dsheet for S	implified 1	Dose Evalu	ation		
TITLE	TITLE EAB LPZ CR]		
Dispersion		x.xxE-xx	x.xxE-xx	x.xxE-xx					
CR Vol =		ft3 w/ fini	nite volume gamma correction =			0.999			
Scaling Fac		1							
Scaling Fac		1							
Scaling Fac		1							
DF for Eler	nental I =	1		cali Metals =	1				
		Nuclide-	WB	CEDE	TEDE	CR	EAB	LPZ	CR
	Source:	Specific	DCF	DCF	DCF	DCF	TEDE	TEDE	TEDE
Units >>		Scaling	<u>rem-m3</u>	rem/Ci	rem-m3	rem-m3	rem	rem	rem
Nuclide		Factor	Ci-sec	-	Ci-sec	Ci-sec	0.00-0-	· · · ·	
Kr83m	0	1	5.55E-06	0	5.55E-06	5.54E-06	0.00E+00	0.00E+00	0.00E+0
Kr85m	0	1	0.0277	0	0.0277	0.027666	0.00E+00	0.00E+00	0.00E+0
Kr85	0	1	0.00044	0	0.00044	0.000439	0.00E+00	0.00E+00	0.00E+0
Kr87	0	1	0.152	0	0.152	0.151813	0.00E+00	0.00E+00	0.00E+0
Kr88	0	1	0.501	8.36E+01	0.53026	0.529643	0.00E+00	0.00E+00	0.00E+0
Kr89	0	1	0.323	0	0.323	0.322603	0.00E+00	0.00E+00	0.00E+0
Xe131m	0	1	0.00144	0	0.00144	0.001438	0.00E+00	0.00E+00	0.00E+0
Xe133m	0	1	0.00507	0	0.00507	0.005064	0.00E+00	0.00E+00	0.00E+0
Xe133	0	1	0.00577	0	0.00577	0.005763	0.00E+00	0.00E+00	0.00E+0
Xe135m	0	1	0.0755	0	0.0755	0.075407	0.00E+00	0.00E+00	0.00E+0
Xe135	0	1	0.044	0	0.044	0.043946	0.00E+00	0.00E+00	0.00E+0
Xe137	0	1	0.0303	0	0.0303	0.030263	0.00E+00	0.00E+00	0.00E+0
Xe138	0	1	0.213	0	0.213	0.212738	0.00E+00	0.00E+00	0.00E+0
I131Org	0	1	0.0673	3.29E+04	11.5823	11.58222	0.00E+00	0.00E+00	0.00E+0
I132Org	0	1	0.414	3.81E+02	0.54735	0.546841	0.00E+00	0.00E+00	0.00E+0
I133Org	0	1	0.109	5.85E+03	2.1565	2.156366	0.00E+00	0.00E+00	0.00E+0
I134Org	0	1	0.481	1.31E+02	5.27E-01	0.526258	0.00E+00	0.00E+00	0.00E+0
I135Org	0	1	0.307	1.23E+03	0.7375	0.737122	0.00E+00	0.00E+00	0.00E+0
I131Elem	0	1	0.0673	3.29E+04	11.5823	11.58222	0.00E+00	0.00E+00	0.00E+0
I132Elem	0	1	0.414	3.81E+02	0.54735	0.546841	0.00E+00	0.00E+00	0.00E+0
I133Elem	0	1	0.109	5.85E+03	2.1565	2.156366	0.00E+00	0.00E+00	0.00E+0
I134Elem	0	1	0.481	1.31E+02	0.52685	0.526258 0.737122	0.00E+00	0.00E+00	0.00E+0
I135Elem	0	1	0.307	1.23E+03 6.62E+03	7.38E-01 2.3348	2.334778	0.00E+00 0.00E+00	0.00E+00	0.00E+0
Rb86	0	1	0.0178 0.28	6.62E+03 4.63E+04	2.3348 16.485	2.334778 16.48466	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.00E+0
Cs134 Cs136	0	1	0.28	4.03E+04 7.33E+03	2.9575	2.957018	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.00E+00 0.00E+00
Cs130 Cs137	0	1	0.392	3.19E+03	11.266	11.26588	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.00E+00
			0.101		0.465904				
Cs138	0	1	0.4233	1.15E+02		0.46538	0.00E+00	0.00E+00	0.00E+00
					Т	otal TEDE	0.00E+00	0.00E+00	0.00E+00

nator/Date	Reviewer/Date	Calculation No.	Revisio
Pustulka 12/12/06	M. Berg 12/13/06	H21C090	0
Basis Accider A-2 K.F. Eckerma Dose Convers Report 11, EF	tide 1.183, "Alternative Radiolog hts at Nuclear Power Reactors", J n et al., "Limiting Values of Radi sion Factors for Inhalation, Subm PA-520/1-88-020, Environmental n and J.C. Ryman, "External Exp	uly 2000 onuclide Intake and Air Concer ersion, and Ingestion," Federal Protection Agency, 1988.	ntration and Guidance
Soil," Federal 1993 A-4 NUREG/CR-6	Guidance Report 12, EPA-402-1 604, "RADTRAD: A Simplified Dose Estimation", December 19	R-93-081, Environmental Prote Model for <u>RAD</u> ionuclide <u>T</u> ran	ction Agency,

H2\Cφ9Φ-ΦΦ ATTACHMENT 1: DESIGN VERIFICATION REPORT

Document being design-verified: DCP ZCalc Spec NER DBD Other

Doc#, Rev and Title: H21C090, Revision 0 : U1 FHA, AST Methodology

Extent of Design Verification (Briefly describe):

This calculation was design verified by 1) validating all input with respect to the input database (with the exception of the Dose Conversion Factors which were validated utilizing the FGR 11 and 12 parent documents), making sure that the appropriate input values were used; 2) assuring that all assumptions are conservative and conform to the Reg.Guide 1.183 AST requirements; 3) validating the calculation methodology and calculation tools (i.e. spreadsheet) as being acceptable for the task; and 4) validating final results to make sure that they are as expected.

Method of Design Verification:

☑ Design Review □ Alternate Calculations Qualification Testing
 Applicability of Proven Design

Results of Design Verification:

I Fully acceptable with no issues identified

□ Fully acceptable based on the following issues identified and resolved:

All input were appropriate and all assumptions valid (no further validation of assumptions are required). The calculation methodologies were appropriate for the task. All calculated values conform to as expected results. The calculation made several assumptions which simplified the analysis, and also added significant conservatism. Among these conservatisms is the control room being essentially open to the environment, so that no Habitability Zone protections were taken into account (such as filtration, delayed inflow, etc.). Minor issues were commented upon and corrected prior to final draft of the calculation.

Continuation Page Follows

Discipline Invol	vement and Approvals:		
Lead Design Verifier:	M. Berg	place c. Berg	12/13/06
	Name	Signature	Date
Discipline Desigr N/A	Verifiers, if required:		
Discipline	Name	Signature	Date

ATTACHMENT 2: DESIGN VERIFICATION CHECKLIST

H21C494-44

The following questions are required to be addressed based on the Nine Mile Point commitment to NQA-1 (1983) for design verification activities. This checklist is intended to assist when using the Design Review method of design verification to ensure relevant items are addressed in the verification effort. Each "No" answer will require correction or resolution by the originator of the document being verified prior to full acceptance by the design verifier(s).

Doc #: H21C090, Rev 0

Lead Design Verifiers M. Berg Name:

[Items Addressed with Basis of Review Answer		Review Check		
	Items Addressed with Dasis of Review Answer	Yes	No	N/A	
1.	Were the inputs correctly selected ?	x			
2.	Are assumptions necessary to perform the design activity adequately described and reasonable? Where necessary, are the assumptions identified for subsequent re-verifications when the detailed activities are completed?	x			
3.	Was an appropriate design method used?	X			
4.	Were the design inputs correctly incorporated into the design ?	x			
5.	Is the design output reasonable compared to design inputs ?	x			
6.	Are the necessary design input and verification requirements for interfacing organizations specified in the design documents or in supporting procedures or instructions ?			Х	