

January 2, 2007

L-MT-06-087 10 CFR 50.90

.....

U.S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, DC 20555

Monticello Nuclear Generating Plant Docket 50-263 License No. DPR-22

Response to Request for Additional Seismic Information for a License Amendment Request for Contingent Installation of a Temporary Fuel Storage Rack in the Spent Fuel Pool (TAC No. MD0302)

- References: 1) NMC letter to U.S. NRC, "License Amendment Request for Contingent Installation of a Temporary Spent Fuel Storage Rack," (L-MT-06-013), dated March 7, 2006.
 - 2) NMC letter to U.S. NRC, "Supplement to a License Amendment Request for Contingent Installation of a Temporary Fuel Storage Rack in the Spent Fuel Pool (TAC No. MD0302)," (L-MT-06-044), dated May 30, 2006.
 - NMC letter to U.S. NRC, "Response to Request for Additional Information for a License Amendment Request for Contingent Installation of a Temporary Fuel Storage Rack in the Spent Fuel Pool (TAC No. MD0302)," (L-MT-06-058), dated September 7, 2006.

On March 7, 2006, as supplemented on May 30, 2006, the Nuclear Management Company, LLC (NMC) submitted a license amendment request for the Monticello Nuclear Generating Plant (References 1 and 2) to revise the licensing basis to allow temporary installation of a Programmed and Remote (PaR) Systems Corporation 8x8 (64 cell) high-density fuel storage rack in the spent fuel pool to maintain full core off-load capability.

On September 7, 2006, (Reference 3) the NMC provided additional information on the structural, seismic and thermal hydraulic design of the proposed temporary high-density fuel storage rack. On December 8, 2006, the U.S. Nuclear Regulatory Commission (NRC) during a teleconference with the NMC requested additional information pertaining to the seismic design of the fuel storage rack. Enclosure 1 provides the response to this request. Enclosure 2 provides a copy of a calculation performed by Stevenson & Associates on behalf of NMC to independently determine the natural frequencies of the PaR 8x8 fuel storage rack.

USNRC Page 2

This letter makes no new commitments or changes to any existing commitments.

I declare under penalty of perjury that the foregoing is true and correct.

Executed on January _____, 2007.

phint. Com

John T. Conway Site Vice President, Monticello Nuclear Generating Plant Nuclear Management Company, LLC

Enclosures: (2)

cc: Administrator, Region III, USNRC Project Manager, Monticello, USNRC Resident Inspector, Monticello, USNRC Minnesota Department of Commerce

SEISMIC RAI RESPONSE

Background

On March 7, 2006, as supplemented on May 30, 2006, (References 1 and 2) the Nuclear Management Company, LLC (NMC) submitted a license amendment request (LAR) for the Monticello Nuclear Generating Plant (MNGP) to revise the licensing basis to allow for the temporary installation of a Programmed and Remote (PaR) Systems Corporation 8x8 (64 cell) high-density fuel storage rack in the spent fuel pool (SFP) to maintain full core off-load capability.

On September 7, 2006, (Reference 3) NMC provided additional information on the structural, seismic and thermal hydraulic design of the proposed temporary high-density fuel storage rack. On December 8, 2006, the U.S. Nuclear Regulatory Commission (NRC) during a teleconference with the NMC requested additional information (RAI) pertaining to the seismic design of the fuel storage rack. The RAIs are shown in bold and the NMC responses are provided immediately thereafter in standard type.

NRC Request for Additional Information

NMC provided results of seismic analyses performed in 1977 for the following spent fuel storage rack configurations: 8x10, 8x11, 9x12, and 10x11 cells, using an lowa plant site response spectrum. NMC utilized the above analyses to qualify the PaR (8x8) spent fuel storage rack at Monticello plant.

The NRC staff reviewed the NMC submittals and has the following comments:

(1) The frequency ranges at which the maximum spectral acceleration amplitude appears differ significantly between Iowa, Monticello response spectra and that from an artificial time history, as tabulated below (based on Figure AA and BB of Enclosure 1 of the 9/7/06 submittal):

Specification Site	Frequency Corresponding to Maximum Horizontal Spectral Acceleration	Frequency Corresponding to Maximum Vertical Spectral Acceleration		
lowa	3.6 - 4.5 Hz	3.3 - 6.2 Hz		
Monticello	1.6 - 2.6 Hz	3.3 - 4.3 Hz		
Artificial Time History	4.5 - 5.5 Hz	3.3 - 4.3 Hz		

The Figure AA and BB and the above table indicate that the two response spectra (lowa and Monticello sites) are significantly different, especially for the horizontal component of the ground motion. More important, contrary to the assertion made by NMC (Section 3.0 (3) of Enclosure 1 to the 9/7/06 letter), the time history spectrum used in the seismic response analysis does

SEISMIC RAI RESPONSE

not envelop the specific spectrum (Monticello plant site) as required by RG 1.60.

The site design response spectrum for the fuel storage racks analysis at the MNGP was generated in compliance with the requirements of Regulatory Guide 1.60, "Design Response Spectra for Seismic Design of Nuclear Power Plants," Revision 1, dated December 1973. This site design response spectrum was used to generate the horizontal and vertical floor response spectra at the spent fuel pool elevation. These are the MNGP response spectra shown on Figures AA and BB.

While it is true that both the vertical and horizontal artificial time history response spectrums shown on Figures AA and BB do not envelope the MNGP floor response spectrum over the entire frequency range, the fundamental frequencies used in the PaR analysis are 14.0 Hz vertical and 8.0 Hz horizontal. In the range of fundamental frequencies for the PaR 8x8 fuel storage rack (23 Hz vertical, 9 Hz horizontal, Enclosure 2) to zero period (∞ Hz) the artificial time history response spectrum does bound the MNGP response spectrum by a wide margin. Thus the seismic loading used in the 1977 PaR Systems Report will bound loads from a seismic evaluation using the MNGP response spectrum.

It should be noted that the MNGP does not have a 6 percent damping response spectra. The 5 percent MNGP response spectra is plotted on Figures AA and BB to compare to the artificial time history response spectrum which was for a 6 percent damping. A 6 percent damping response spectra for the MNGP would be lower than the 5 percent shown.

(2) The submittals are lacking structural and seismic analyses for the proposed 8x8 spent fuel storage rack. The seismic analysis results provided by NMC were all for the existing fuel rack configurations at a different plant site, and those rack configurations do not envelop the proposed rack configuration. In addition, only two components (1 horizontal and 1 vertical) of ground motion were considered in the seismic analyses; this is not in compliance with the guidelines of RG 1.60.

The 1977 PaR Systems Report provided structural and seismic analyses for the various fuel storage rack sizes listed therein, which encompasses the 8x8 fuel storage rack to be installed at the MNGP in the event of a full-core offload was required. Although the PaR Systems Report did not specifically analyze all sizes and configurations of the fuel storage racks qualified in the report, the analyses performed on the fuel storage rack configurations bound the fuel storage racks listed within the report. Two response spectrums were generated, a horizontal and a vertical. The last paragraph on page 9 in Section 5.3 of the PaR Systems Report indicates that an equal load set was applied in an orthogonal plane and that the results were combined using the square-root-sum-of-the-squares (SRSS) method. This substantiates that the load and stress results are based on 3 components of

SEISMIC RAI RESPONSE

seismic motion, two simultaneous horizontal directions combined with the vertical direction.

During a teleconference with the NRC staff on December 8, 2006, the staff indicated that the PaR Systems Report (Reference 1) did not clearly identify that the frequencies for the evaluated fuel storage racks enveloped the 8x8 fuel storage rack proposed to be used, if necessary, at the MNGP. To resolve this issue, NMC directed Stevenson & Associates to perform a calculation to independently determine the natural frequencies of the PaR Systems 8x8 fuel storage rack. Enclosure 2 provides a copy of this calculation. The results of this calculation confirm the statements made by NMC in our September 7, 2006, RAI response (Reference 3). A summary of the analysis is presented below.

The simplified 2-dimensional dynamic model presented in the PaR Systems qualification report was recreated and validated by comparing the results to a SAP2000 computer program (Reference 4) run using the same fuel storage rack model (8x11) as given in the 1977 PaR Systems Report. The results for the recreated model indicate a horizontal first mode frequency of 8.2 Hz and a vertical frequency 17.2 Hz. These results are within three (3) percent of the PaR Systems Report values, thus validating that this modeling technique is capable of adequately capturing the dynamic properties of the PaR 8x8 fuel storage rack.

The PaR 8x8 fuel storage rack was then modeled by amending the input properties of the SAP2000 model. The properties were computed following the same methodology presented in the 1977 PaR Systems Report. The 8x8 fuel storage rack model yielded the following results: a first mode horizontal natural frequency of 9.0 Hz and a vertical frequency of 23.0 Hz. Since these values are bounded by (are higher than) the PaR Systems Report values and the response spectra used by PaR bounds the MNGP spectra for the frequency ranges of interest, these results confirm that the PaR Systems Report is conservative for the 8x8 fuel storage rack, that is proposed for use at the MNGP in the event that an emergency full-core offload is necessary.

SEISMIC RAI RESPONSE

REFERENCES

- 1. NMC letter to U.S. NRC, "License Amendment Request for Contingent Installation of a Temporary Spent Fuel Storage Rack," (L-MT-06-013), dated March 7, 2006.
- 2. NMC letter to U.S. NRC, "Supplement to a License Amendment Request for Contingent Installation of a Temporary Fuel Storage Rack in the Spent Fuel Pool," (TAC No. MD0302) (L-MT-06-044), dated May 30, 2006.
- 3. NMC letter to U.S. NRC, "Response to Request for Additional Information for a License Amendment Request for Contingent Installation of a Temporary Fuel Storage Rack in the Spent Fuel Pool (TAC No. MD0302)," (L-MT-06-058), dated September 7, 2006.
- 4. CSI, SAP2000, Integrated Software for Structural Analysis and Design, Version 10.0.2.

EVALUATION OF THE 8X8 SPENT FUEL STORAGE RACK TO DETERMINE THE NATURAL FREQUENCIES

BY

STEVENSON & ASSOCIATES

Engineering Chan	je				
Company Name : Nucl	ear Management Com	pany, LLC	Print	Date:	01/02/2007
EC Number : 0000 Status/Date : MODI Facility : MT	009757 000 FIED 01/02/2007 MONTICELLO			Committed to Nu	
Type/Sub-type: DOC			Pag	je:	1
EC Title: CA-06-114, NATURAL FF	EVALUATION OF THE EQUENCIES	E 8X8 SPENT FUEL RA	ACK TO DET	ERMINE 7	THE
Mod Nbr :	KW1: K	W2: KW3:	KW4:	KW5	:
Master EC : N	Work Group :		Temporary	:	N
Outage : N	Alert Group:	E-ME/CS DE	Aprd Reqd	Date:	12/29/2006
WO Required : N	Image Addr :		Exp Insvc	Date:	
Adv Wk Appvd: N	Alt Ref. :		Expires O	n :	
Auto-Advance: N	Priority :		Auto-Asbu	ild :	N
Caveat Outst:	Department :		Disciplin	e :	
Resp Engr : DENNI Location :	S A ZER(CHER			

Units

Fac	<u>Unit</u>	Description
ΜT	1	UNIT 1

Systems

Fac	<u>System</u>	<u>Descriptic</u>		
MT	STR	Structures	&	Buildings

	ngineering Change	Print Date: 01/02/2007
EC Number : 00 Status/Date : MO Facility : MT	000009757 000 DDIFIED 01/02/2007	Committed to Nuclear Excellence
Type/Sub-type: DO	OC I Indiana anala	Page: 1
EC Title: CA-06-11 NATURAL	14, EVALUATION OF THE 8X8 SPENT FUEL RACK FREQUENCIES	TO DETERMINE THE
Mod Nbr :	KW1: KW2: KW3:	KW4: KW5:
Master EC : N	Work Group :	Temporary : N
Outage : N	Alert Group: E-ME/CS DE	Aprd Reqd Date: 12/29/2006
WO Required : N	Image Addr :	Exp Insvc Date:
Adv Wk Appvd: N	Alt Ref. :	Expires On :
Auto-Advance: N	Priority :	Auto-Asbuild : N
Caveat Outst:	Department :	Discipline :
Resp Engr : DEN	INIS A ZERCHER	
Incation .		

and the part of th	and the local data				
APPROVED BY	12/28/2006	N104322	OHOTTO	JOSHUA	APPROVED
Vendor accept	ance performe	ed by site	personnel.		
CLOSE					CLOSED
DSGN VERIFY	12/27/2006	ZRCD01	ZERCHER	DENNIS	
This is a ver	ndor (Stevenso	on & Associ	iates) calculation.	See the	
calcualtion					
for the desc	gin verificati	ion complet	ted by Stevenson & A	ssociates.	
PREPARED (DOC)	12/27/2006	ZRCD01	ZERCHER	DENNIS	H/APPR

Engineering Change

EC Number : 0000009757 000 Facility : MT Type/Sub-type: DOC

Print	Date:	01/02/2007					
Committed to Nuclear Excellence							
Page	: 1						

Date

12/27/2006

PassPort

ZRCD01

Attributes

Attribute Sub-category: DOC

Attribute Name

Value SCR-06-0575

SCRN NO

Engi	ine	ering Change				
EC Number Facility Type/Sub-typ	: : e:	0000009757 000 MT DOC				Print Date: 01/02/2007 NMC Committed to Nuclear Excellence Page: 1
Topic From Panel	:	REVIEWER COMMENT. TIME100	S Last Last Text	Updated By Updated Da Status	te	:

Engi	nee	ering Chang	e								
EC Number Facility Type/Sub-typ	: ; e:	0000009757 MT DOC	000						Print I Commit	Date: Ni need to Nuclea	01/02/2007
									Page:	1	
Topic From Panel	:	JUSTIFICATIC TIME100)N	[[[Last Last Iext	Updated Updated Status	By Dat	: :e: :	ZRCD0: 12/27, UNLOCI	1 /2006 KED	
See attached storage rack	ca na	lcualtion for tural frequen	details cies.	of the	eval	uation	of t	:he	e spnt fu	el	

Eng.	ine	ering Chang	e							
EC Number Facility Type/Sub-typ	: : : :	0000009757 MT DOC	000				Ρ:	rint Date Committed to M	e: 01/02/	2007
								Page:	1	
Topic From Panel	:	DESCRIPTION TIME100		Last Last Text	Updated By Updated Da Status	/ ate	:	ZRCD01 12/27/20 UNLOCKED	06	
The purpose the PaR 8X8	of spei	this calcualt nt fuel stora	ion is to ge rack.	o determine	the natura	al	freq	uencies	of	

QF-0549 (FP-E-CAL-01), Rev. 1

NMC	

Calculation Signature Sheet

Document Information

NMC Calculation (Doc) No: CA-06-114	Revision: 0
Title:Evaluation of the 8X8 spent fuel storage rack to determ frequencies	nine the natural
Facility: 🖾 MT 🗌 PB 🗌 PI 🗌 PL 🗍 HU/FT	Unit: 🛛 1 🔲 2
Safety Class: 🛛 SR 📋 Aug Q 🛄 Non SR	
Special Codes: Safeguards Proprietary	
Calc Type (PassPort DOC-DESC-CODE): (if applicable, Pali	sades only)

NOTE: Print and sign name in signature blocks, as required.

Major Revisions

Major Revisions		
EC Number: 9757	Vendor Calc	
Vendor Name or Code:Stevenson & Associates	Vendor Doc No: 0	6Q4646-C-001
Description of Revision:Initial		
Prepared by: BY VENSOR	<u>_</u>	Date:
Reviewed by: DENNIS CERCHER /2	an Jak	Date: 12-21- 20 86
Type of Review: 🗌 Design Verification	Tech Review 🛛	Vendor Acceptance
Method Used (For DV Only): 🔲 Review 🗌	Alternate Calç 🔲 T	est
Approved by: Josh Ohotto	that	Date: 12 - 21-200(
	0	

Minor Revisions

EC No:	Vendor Calc:	
Minor Rev. No:		
Description of Change:		
Pages Affected:		
Prepared by:		Date:
Reviewed by:		Date:
Type of Review: Design Verification	Tech Review	Vendor Acceptance
Method Used (For DV Only): Review	Alternate Calc 🔲 Te	est
Approved by:		Date:

QF-0549 (FP-E-CAL-01), Rev. 1

(continued on next page)

• •

•

QF-0549 (FP-E-CAL-01), Rev. 1

NMC	
-	

Calculation Signature Sheet

EC No:	Vendor Calc:	
Minor Rev. No:		
Description of Change:		
Pages Affected:		
Prepared by:		Date:
Reviewed by:		Date:
Type of Review: Design Verification] Tech Review [Vendor Acceptance
Method Used (For DV Only): Review	lternate Calc 🔲 T	est
Approved by:		Date:

EC No:	Vendor Calc:	
Minor Rev. No:		
Description of Change:		
Pages Affected:		
Prepared by:		Date:
Reviewed by:		Date:
Type of Review: Design Verification	Tech Review	Vendor Acceptance
Method Used (For DV Only): Review	Alternate Calc 🗌 To	est
Approved by:		Date:

EC No:	Vendor Calc:	
Minor Rev. No:		
Description of Change:		
Pages Affected:		
Prepared by:		Date:
Reviewed by:		Date:
Type of Review: Design Verification] Tech Review [Vendor Acceptance
Method Used (For DV Only): Review	Alternate Calc 🗌 T	est
Approved by:		Date:

ſ

QF-0549 (FP-E-CAL-01), Rev. 1_____

NMC	Calculation Signature Sheet

all here. Only the input and output references need to be entered in PassPort.	NOTE:	This table is used for data entry into the PassPort Controlled Documents Module, reference tables. If the calculation references and inputs are all listed in the calculation directly, then only the inputs and outputs need to be listed here. If the calculation invokes this form for the list of references and inputs, then list them all here. Only the input and output references need to be entered in PassPort.
--	-------	--

Associated Document References:

#	Document Name	Document Number	Doc Revision	Control Doc and Doc Type (i.e. in Pass-Port) :	Type (input, output, general ref):
1	Fuel Storage System Design Report	none	3		input
2					
3					_
4					
5					
6					
7					
8					
9					
10					
11					
12					
13					
14					

Add additional lines if needed.

QF-0549 (FP-E-CAL-01),	Rev. 1
NMC	Calculation Signature Sheet

Associated Equipment or System References:

#	Facility	Unit	System	Equipment Type	Equipment Number
1	Monticello	1	FPC	Spent fuel storage rack	
2					
3					
4					
5					
6					
7					
8					
9					
10					

Add additional lines if needed.

Superseded Calculations

Facility	Calc Document Number	Title

Add additional lines if needed.

TITLE: CALCULATION COVI			ER SHEET	Revision 17 Page 1 of 1
Title	Ev rai	valuation of the 8X8 spent fuel storage ck to determine the natural frequencies	CA- <u>06</u> - <u>114</u> Re	v0
	10 0	CFR50.59 Screening or Evaluation No:	SCR-06-0575	

Associated Reference(s): EC 9757

Does this calculation:	YES	NO	Calc No(s), Rev(s), Add(s)]
Supercede another calculation?		\boxtimes		
Augment (credited by) another calculation?				
Affect the Fire Protection Program per Form 3765?			If Yes, attach Form 3765	
Affect piping or supports?		\boxtimes	If Yes, attach Form 3544	
Affect IST Program Valve or Pump Reference Values, and/or Acceptance Criteria?			If Yes, inform IST Coordinator and provide copy of calculation	

What systems are affected?

DBD Section (if any):	B.02.01
Topic Code (See Form 3805):	FPC
Structure Code (See Form 3805):	STR
Other Comments:	
Prepared by: DENNIS CERCIPOR Dury	Date: 12-21-2006

M/cah

QF-0547 (FP-E-MOD-11) Rev. 0

External Design Document Suitability Review Checklist

Exte	rnal I	Design Doo	cument Being F	Reviewed:	calculation	า			
Title:	E١	aluation o	f the 8X8 spent	fuel stora	age rack to	determ	ine t	he natural free	quencies
Num	ber:	CA-06-114	4			Rev:	0	Date:	2/21/06
This	desi	gn docume	ent was receive	d from:					•
Orga	nizat	ion Name:	Stevenson & Associates		PO or DIA	Referer	nce:	Located in EC	9757
The p an Ex Agree verific be evi	urpose ternal ment ation. dent i	e of the suitab Design Orgar (DIA) and is a Independent n the docume	ility review is to ens sization complies wi ppropriate for its int verification of the de nt, if required.	ure that a ca th the condit ended use. esign docum	alculation, ana ions of the pu The suitability ent supplied t	Ilysis or oth rchase orc review do by the Exte	her de ler an es no ernal (esign document pr nd/or Design Interfa t serve as an inde Design Organizatio	ovided by ace pendent on should
The re the de	eviewe esign o	er should use to a should use to a should use the should be a s	the criteria below as e reviewer is not rec	s a guide to a quired to che	assess the ov ck calculation	erall qualit is in detail.	y, cor	npleteness and us	efulness of
<u>REV</u>	IEW								Check
1.	Desi Orga	gn inputs c anization.	orrespond to the	se that we	ere transmit	ted to th	e Ex	ternal Design	\boxtimes
2.	Assu	umptions ar	e described and	reasonab	le.				\boxtimes
3.	App	licable code	es, standards an	d regulatio	ons are ider	ntified an	d me	et.	
4.	App	licable cons	truction and ope	erating exp	perience is o	consider	ed.		N/A
5.	App	licable struc	cture(s), system(s), and co	mponent(s)) are liste	ed.	•	\boxtimes
6.	Forr	nulae and e	equations are do	cumented	. Unusual s	ymbols a	are d	efined.	\boxtimes
7.	Acc	eptance crit	eria are identifie	d, adequa	te and satis	sfied.			\boxtimes
8.	Res	ults are rea	sonable compar	ed to inpu	ts.				\boxtimes
9 .	Sou	rce docume	ents are referend	ced.					\boxtimes
10.	The	document	is appropriate fo	r its intend	led use.				\boxtimes
11.	The	document	complies with th	e terms of	the Purcha	ase Orde	r and	d/or DIA.	\boxtimes
12.	Inpu by a	its, assump idequate pr	tions, outputs, e ocedural control	tc. which o	could affect y affected p	plant op procedure	erati es.	ion are enforce	d 🖂
13.	Plar pipi has	nt impact ha ng analyses been initiat	as been identifie a, the piping and red.)	d and eith support d	er impleme atabase is i	nted or c updated	ontro or a	olled. (e.g., For tracking item	\boxtimes

Completed by: United Date: 12-21-2006

+

Page 1 of 1

QF-0528 (FP-E-MOD-07) Rev. 0

.

Design Review Comment Form

Sheet ____ of ____

DOCUMENT NUMBER/ TITLE: CA-06-114/ Evaluation of the 8X8 spent fuel storage rack to determine the natural frequencies

REVISION: 0 DATE: 12-21-06

ITEM	REVIEWER'S COMMENTS	PREPARER'S	REVIEWER'S
#		RESOLUTION	DISPOSITION
1.			
	None		
Į			
}			
}			
t l			
l			
			,
1			
})
		[]	
}	·		
ł			
		1	1

,

inh Date: 12-21-06 Preparer: Reviewer: by Vendor Date: M

.

.

Client: Mo	onticello Nucle	ar Generating Plant	(MNGP) Ca	alculation N	o. 06Q46	646-C-001	
Title: <u>Ev</u>	aluation of the	8X8 spent fuel stor	age rack to del	termine the	natural frequ	encies	
Project: 	Evaluation of	the 8X8 spent fuel s	torage rack to	determine	the natural fre	equencies	
Method:	Explained wit	hin					
Acceptance (Criteria:	Explained within					
Remarks:							
		Davies Davies Mai					
		Other		Verification	Necessary	L Qualit	ication lest
Results:	See body of a	calculation					,
Computer Programs	Program Nam	le	Version/Revisi	on	Release Date	; ================	QA Verified
SAP2000			10.0.2		March 1. 200	6	Yes
		, 					
	<u></u>		REVISIONS				
Revision No.		0	 	, 		 	· · · · · · · · · · · · · · · · · · ·
Description		Original Is	sue				
Total Pages (Cumulative)		12 Verne Herry	ta				
By/Date		Sung-June Kim / 12/ Violeta Medina	18/06				
Checked/Date Violeta Medina A		Violeta Medina Andr	dres / 12/18/06				
Approved/Dat	e	Waller Øjørdjevic / 12	2/18/06			L	
		C	CALCULATIO		CC	NTRACT	ſNO.
			SHEET		06Q4646		
Steve	nson & Associates		FIGURE 2.9				

. . _ _ _ _

SA	JOB NO.: 06Q4646 Calculation: C-001 Client: Monticello Nuclear Generating Plant (MNGP) SUBJECT: Evaluation of the 8X8 spent fuel storage rack to	Sheet 2 of 12 Date: 12/11/2006 Revision: 0
STEVENSON & ASSOCIATES a structural-mechanical consulting engineering firm	determine the natural frequencies	By: SJK Check: VMA

TABLE OF CONTENTS

1.	OBJECTIVE	ł
2.	EXECUTIVE SUMMARY	ŀ
3.	REFERENCES4	ŀ
4.	METHODOLOGY	;
5.	DESIGN INPUTS	\$
6.	CALCULATION	;
6.	1 SAP2000 MODEL – 8X11 FUEL RACK	3
	6.1.1 Properties and Input	3
	6.1.2 Joint Coordinates	3
	6.1.3 Distributed Mass	7
	6.1.4 Model Validation	7
6	2 8X8 RACK MODEL	7
	6.2.1 Properties and Inputs	7
	6.2.2 Joint Coordinates	3
1	6.2.3 Distributed Mass)
	6.2.4 Modal Analysis	9
7.	CONCLUSION)
ATT A	ACHMENT 1 Time History Response Spectrum Comparison 2 pg	ļ

STEVENSON & ASSOCIATES a structural-mechanical	JOB NO.: 06Q4646Calculation: C-001Client: Monticello Nuclear Generating Plant (MNGP)SUBJECT: Evaluation of the 8X8 spent fuel storage rack to determine the natural frequencies	Sheet 3 of 12 Date: 12/11/2006 Revision: 0 By: SJK Check: VMA
	Table of Figures	_

Figure 1: Single Rack Attached Fuel Model (Fig. 2 [1]).....6

1. OBJECTIVE

The existing 8x8 spent fuel storage rack was obtained from Duane Arnold which procured the rack from PAR Systems in 1977 with a qualification. The seismic evaluation portion of the referenced report evaluates an 8x12, 9x12, 8x11 and 10x11 rack configuration, and determines the lateral and vertical fundamental frequencies to be 8 Hz and 14 Hz.

The objective of this calculation is to determine the natural frequency of the 8x8 spent fuel storage rack and show that the dynamic characteristics of the 8x8 fuel rack are within the range of the PAR Systems qualification.

2. EXECUTIVE SUMMARY

The objective of this calculation is to determine the natural frequency of the 8x8 spent fuel storage rack, which was obtained from Duane Arnold which procured the rack from PAR Systems in 1977 with a qualification. The simplified 2D dynamic model presented in the PAR Systems qualification report [1], was recreated and validated by comparing the results of a current run using the same rack model (8x11 fuel rack) as given in the aforementioned report [1].

The 8x8 fuel rack was then modeled by amending the input properties of the SAP2000 model. The properties were computed following the same methodology presented in referenced report [1]. The 1st horizontal natural frequency is found to be at 9.0 Hz. The "*Casting Bottom*" vertical mode is approximately 23 Hz.

Comparison between the Iowa Spec. M-303 response spectrum and the MNGP time history response spectrum at 5% damping shows that the Iowa Spec. M-303 envelopes the MNGP response spectrum both vertically and horizontally in frequency ranges that are approximately higher than 5 Hz and 2.5 Hz, respectively. Since the 8x8 fuel rack natural frequency lies within this range, it can be concluded that the Iowa Spec. M-303 Ioads shall always be larger than MNGP. Thus, the original qualification report [1] should insure the 8x8 fuel rack configuration as well.

3. REFERENCES

- 1. PAR Systems Report Sect. 5.3., "Model Description, Formulation and Assumptions for the Seismic Analysis of BWR Spent Fuel Racks at DAEC, JAF and Peach Bottom", Rev. 3, March 27,1978
- Roark's Formulas for Stress and Strain, Warren C. Young, 6th Edition, McGraw-Hill International Editions, 1989
- 3. CSI, SAP2000, Integrated Software for Structural Analysis and Design, Version 10.0.2.

CA	JOB NO.: 06Q4646 Calculation: C-001	Sheet 5 of 12
	Client: Monticello Nuclear Generating Plant (MNGP)	Date: 12/11/2006 Revision: 0
	SUBJECT: Evaluation of the 8X8 spent fuel storage rack to	
SIEVENSUN &	determine the natural frequencies	By: SJK
a structural-mechanical consulting engineering firm		Check: VMA

4. METHODOLOGY

The rack structure is a large rectangular tube enveloped by the side panels with no structural stiffness added for either the poison cans or fuel assemblies. Dynamic analysis of a detailed SAP IV model have determined a lower bound horizontal frequency for the 4 fuel rack configurations to be approximately at 8 Hz. A vertical diaphragm frequency of the bottom casting to be at 14 Hz [1].

A simplified ANSYS model (see Fig. 2 of [1]), consisting of a cantilever beam extending the height of the racks, attached to a horizontal beam at the base bottom casting elevation with leg beams connecting the ends of this member to the floor, show that the fundamental frequencies of this idealized system agree quite closely with the detailed model. Thus, this simplified model will be used to determine the natural frequency of the 8x8 rack.

The methodology consists of the steps outlined below. The detailed calculations, organized according to these steps, are provided in Sect. 6. The coordinate system used in the calculations follows the right hand rule, where the XY plane = floor plane and Z = Vertical.

- 1. Recreate and match the dynamic characteristics of the simplified dynamic ANSYS model (Fig. 2 of [1]) with the new SAP2000
- 2. Model a 8x8 fuel rack by amending the properties of the SAP2000 model; follow the same procedures presented in [1] for consistency
- 3. Perform a modal analysis in order to obtain the natural frequencies of the 8x8 fuel rack

Note that the 8x11 fuel rack was chosen for comparison since it was determined to have the lowest 1st horizontal frequency mode of all 4 fuel rack configurations.

5. DESIGN INPUTS

Metal Plate Properties [1]

Young's Modulus: Shear Modulus:	E = 10300 ksi G = 3800 ksi		
Cavity Loads [1]			
Dry Module Mass Dry Fuel & Channel Mass Entrapped Water Mass	136 lbf 745 lbf 181 lbf	Wet Module Weight Wet Fuel & Channel	78 lbf 672 lbf
Total Horizontal Mass	1062 lbf/cavity	Total Wet Wt.	750 lbf/cavity

Client: Monticello Nuclear Generating Plant (MNGP) STEVENSION & SESOCIATES activating engineering firm SUBJECT: Evaluation of the 8X8 spent fuel storage rack to By: SJK Check: VMA By: SJK Check: VMA S. CALCULATION S. CALCULATION S. 1 SAP2000 Model – 8x11 Fuel Rack S.1.1 Properties and Input First recreate the original 8x11 fuel rack model in SAP2000. The following properties are presented in Reference [1]. Module size = 8 x 11 Rack height = 167 in No. Cavity = 88 M2 = 32280 lbf M1 = 22374 lbf X1 = 232.1 in A2s = 66520 in ⁴ 4 A3 = 167 in ⁴ 2 A3s = 167 in ⁴ 2 A4 = 38 lin ⁴ 2 A5s = 78.5 lin ⁴ 2 Figure 1: Single Rack Attached Fuel Model (Fig. 2 [1]) Total weight of Section 2 is recomputed accordingly (include weight of Sect. 1), Total weight for Sect. 1 W1 = 65560 lbf [1] Total weight for Sect. 1 W1 = 65560 lbf [1] Total weight for Sect. 1 W1 = 65560 lbf [1] Total weight for Sect. 1 W1 = 65560 lbf [1] Total weight for Sect. 1 W1 = 65560 lbf [1] Total weight for Sect. 1 W1 = 65560 lbf [1] Total weight for Sect. 1 W1 = 65560 lbf [1] Total weight for Sect. 1 W1 = 65560 lbf [1] Total weight for Sect. 2 W2 = 27596 lbf [1] Total weight for Sect. 2 W2 = 27596 lbf [1] Total weight for Sect. 2 W2 = 27596 lbf [1] Total weight for Sect. 2 W2 = 27596 lbf [1] Total weight for Sect. 2 W2 = 27596 lbf [1] Total weight for Sect. 2 W2 = 27596 lbf [1] Total weight for Sect. 2 W2 = 27596 lbf [1] Total weight for Sect. 2 W2 = 27596 lbf [1] Total weight for Sect. 2 W2 = 27596 lbf [1] Total weight for Sect. 2 W2 = 27596 lbf [1] Total weight for Sect. 2 W2 = 27596 lbf [1] Total weight for Sect. 1 W1 = 65560 fbf [1] Total weight for Sect. 2 W2 = 27596 lbf [1] Total weight for Sect. 2 W2 = 27596 lbf [1] Total weight for Sect. 2 W2 = 27596 lbf [1] Total weight for Sect. 2 W2 = 27596 lbf [1] Total weight for Sect. 2 W2 = 27596 lbf [1] Total weight for Sect. 2 W2 = 27596 lbf [1] Total W2 = 232 <u>1 0</u> $\frac{1}{9} - 232 2 0$ $\frac{1}{9} - 232 2 0$ $\frac{1}{9} - 232 2 0$ $\frac{1}{9} - 232 2 0$ $\frac{1}$			JOB NO.: 06Q4646	C	alculation: C-001	Sheet 6 of 12
STEVENSOR & SUBJECT: Evaluation of the 8X8 spent fuel storage rack to determine the natural frequencies $g_{Y,S,K}$ (hed: VMA) a structural-indechanical $g_{Y,S,K}$ (hed: VMA) 5. CALCULATION 5. CALCULATION 5. CALCULATION 5. CALCULATION 5. SAP2000 Model - 8x11 Fuel Rack 5.1.1 Properties and Input First recreate the original 8x11 fuel rack model in SAP2000. The following properties are presented in Reference [1]. Module size = 8x 11 Reck height = 167 in No. Cavity = 888 W2 = 32780 lbf M1 = 22374 lbf X1 = 232 ln in 2 A3 = 167 in 2 (use total area, [1]) A4 = 280 in ⁴ A5 = 163 in ⁴ 2 A5 = 163 in ⁴ 2 Total weight of Section 2 is recomputed accordingly (include weight of Sect. 1). Total weight for Sect. 1 W1 = 65560 lbf [1] Total weight of Sect. 1 W1 = 65560 lbf [1] Total weight of Sect. 1 W1 = 65560 lbf [1] Total weight of Sect. 1 W1 = 65560 lbf [1] Total weight of Sect. 2 W2 = 27398 lbf [1] Total weight for Sect. 2 W2 = 27398 lbf [1] Total weight of Sect. 2 W2 = 27398 lbf [1] Total weight if $S = 93456$ lbf = W1 + W2 6.1.2 Joint Coordinates $\frac{100 + 10 + 232 + 0 + 0}{8 + 232 + 0 + 0} = 0$			Client: Monticello	Nuclear Gen	erating Plant (MNGP)	Date: 12/11/2006 Revision: 0
STEVENSON 8 ASSOCIATES a structural-intechanical consulting engineering firm 6. CALCULATION 8.1 SAP2000 Model – 8x11 Fuel Rack 5.1.1 Properties and Input First recreate the original 8x11 fuel rack model in SAP2000. The following properties are presented in Reference [1]. Wo Cavity = 88 W2 = 23.21n 12 = 66520 in ⁴ 4 A3 = 167 in ² A23 = 63 in ² 13 = 388000 in ⁴ 4 A3 = 167 in ² A33 = 167 in ² A44 = 38 in ² A55 = 76.5 in ² 2 Total weight of Sect. 1 W1 = 65560 lbf [1] Total weight for Sect. 2 W2 = 27898 lbf [1] Total weight of Sect. 1 W1 = 65560 lbf [1] Total weight W8 = 93456 lbf = W1 + W2 6.1.2 Joint Coordinates $\frac{1}{p_1 + p_2} = \frac{1}{p_2} + $			SUBJECT: Evalua	tion of the 8X8	spent fuel storage rack t	to
AssociatesCheck: VMACheck: VMACheck: VMASocialing engineering fromCheck: VMASocialing engineering fromSocialing engineering engineering fromSocialing eng	STEVENSO	ON &	determine the natu	ral frequencies	spent her storage fack i	By: SJK
consulting engineering time 6. CALCULATION 5.1 SAP2000 Model - 8x11 Fuel Rack 5.1.1 Properties and Input First recreate the original 8x11 fuel rack model in SAP2000. The following properties are presented in Reference [1]. Module size = 8×11 Rack height = 167 in No. Cavity = 88 W1 = 223780 lbf W1 = 223780 lbf W1 = 223780 lbf W1 = 223740 lbf $W1 = 2320 \text{ in}^{4}$ $A3 = 167 \text{ in}^{2}$ $B4 = 38 \text{ in}^{2}$ $A4 = 38 \text{ in}^{2}$ $A5 = 113 \text{ in}^{4}$ $A5 = 2113 \text{ in}^{4}$ $A5 = 2153 \text{ in}^{4}$ Figure 1: Single Rack Attached Fuel Model (Fig. 2 [1]) Total weight for Sect. 1, $W1 = 65560 \text{ lbf}$ [1] Total weight for Sect. 1, $W1 = 65560 \text{ lbf}$ [1] Total weight for Sect. 2, $W2 = 27898 \text{ lbf}$ [1] Total weight for Sect. 2, $W2 = 27898 \text{ lbf}$ [1] Total weight for Sect. 2, $W2 = 27898 \text{ lbf}$ [1] Total weight for Sect. 2, $W2 = 27898 \text{ lbf}$ [1] Total weight for Sect. 2, $W2 = 27898 \text{ lbf}$ [1] Total weight for Sect. 1, $W1 = 65560 \text{ lbf}$ [1] Total weight for Sect. 1, $W1 = 65560 \text{ lbf}$ [1] Total weight for Sect. 1, $W2 = 27898 \text{ lbf}$ [1] Total weight for Sect. 1, $W2 = 27898 \text{ lbf}$ [1] Total weight for Sect. 2, $W2 = 27898 \text{ lbf}$ [1] Total weight for Sect. 1, $W2 = 27898 \text{ lbf}$ [1] $\frac{10}{2} 2322 \text{ in} 0$ $\frac{10}{2} 232 \text{ in} 0$ $\frac{10}{2$	ASSOCIA .	LES chanical				Check: VMA
6. CALCULATION 8.1 SAP2000 Model - 8x11 Fuel Rack 8.1.1 Properties and Input First recreate the original 8x11 fuel rack model in SAP2000. The following properties are presented in Reference [1]. Module size = 8 x 11 Rack height = 167 in No. Cavity = 88 W2 = 3278 0 lbf W1 = 22324 lbf X1 = 22324 lbf X2 = 66520 in ⁴ 4 A2 = 126 in ⁴ 2 A3 = 167 in ⁷ 2 A4 = 280 in ⁴ A5 = 153 in ⁶ 2 A5 = 76.5 in ⁴ 2 Total weight of Section 2 is recomputed accordingly (include weight of Sect. 1). Total weight for Sect. 1 W1 = 65560 lbf [1] Total weight for Sect. 1 W1 = 65560 lbf [1] Total weight for Sect. 2 W2 = 27896 lbf [1] Total weight for Sect. 1 W1 = 65560 lbf [1] Total weight of Sect. 1 W1 = 65560 lbf [1] Total weight of Sect. 2 W2 = 27896 lbf [1] Total weight of Sect. 2 W2 = 27896 lbf [1] Total weight of Sect. 2 W2 = 27896 lbf [1] Total weight of Sect. 2 W2 = 27896 lbf [1] Total weight of Sect. 2 W2 = 27896 lbf [1] Total weight of Sect. 2 W2 = 27896 lbf [1] Total weight of Sect. 2 W2 = 27896 lbf [1] Total weight of Sect. 2 W2 = 27896 lbf [1] Total weight of Sect. 2 W2 = 27896 lbf [1] Total weight of Sect. 1 W1 = 65500 lbf [1] Total weight of Sect. 1 W1 = 65500 lbf [1] Total weight of Sect. 1 W1 = 65500 lbf [1] Total weight of Sect. 2 W2 = 27896 lbf [1] Total weight of Sect. 2 W2 = 27896 lbf [1] Total weight of Sect. 2 W2 = 27896 lbf [1] Total W2 = 27896	consulting engine	ering firm				
Solution for the formula of the formula of the following properties are presented in Reference [1]. No. Cavity = 88 x11 Rack height = 167 in No. Cavity = 88 M1 Rack height = 167 in No. Cavity = 88 M1 Rack height = 167 in No. Cavity = 88 M1 Rack height = 167 in No. Cavity = 88 M2 I = 232780 lbf M1 = 223274 lbf X1 = 23274 lbf X1 = 2320 in ⁴ 4 A2 = 126 in ⁴ 2 A3 = 167 in ⁴ 2 I3 = 388000 in ⁴ 4 A3 = 167 in ⁴ 2 A4 = 288 in ⁴ 2 A4 = 288 in ⁴ 2 A5 = 153 in ⁴ 2 A5 = 76.5 in ⁴ 2 Total weight of Sect. 1 W1 = 65560 lbf [1] Total weight for Sect. 2 W2 = 27896 lbf [1] Total weight for Sect. 2 W2 = 27896 lbf [1] Total weight Ws = 93456 lbf = W1 + W2 6.1.2 Joint Coordinates 100 +	6. CALCULA	TION Model – 8x	11 Fuel Rack			
First recreate the original 8x11 fuel rack model in SAP2000. The following properties are presented in Reference [1]. Module size = 8 x 11 Rack height = 167 in No. Cavity = 88 M2 = 32780 lbf M1 = 223.2 in I2 = 66520 in ^{A4} A2 = 126 in ^{A2} A2s = 63 in ^{A2} I3 = 388000 in ^{A4} A3 = 167 in ^{A2} A3s = 167 in ^{A2} A4s = 19 in ^{A2} A5 = 153 in ^{A2} A5s = 76.5 in ^{A2} Total weight of Sect 1 W1 = 65560 lbf [1] Total weight for Sect. 1 W1 = 65560 lbf [1] Total weight for Sect. 1 W1 = 65560 lbf [1] Total weight for Sect. 1 W1 = 65560 lbf [1] Total weight for Sect. 2 W2 = 27896 lbf [1] Total weight $Ws = 93456$ lbf = W1 + W2 6.1.2 Joint Coordinates $\frac{10 \text{ int ID} \overline{X(in)} \overline{Y(in)} \overline{Z(in)} \frac{1}{6} \frac{1}{232} \frac{1}{10} \frac{1}{0} \frac{1}{10} \frac{1}{232} \frac{1}{10} \frac{1}{10} \frac{1}{232} \frac{1}{10} 1$	6.1.1 Proper	ties and In	out			
First recreate the original 8x11 fuel rack model in SAP2000. The following properties are presented in Reference [1]. Reference [1]. Rack height = 167 in No. Cavity = 88 M2 = 32780 lbf M1 = 22374 lbf X1 = 23.2 in I2 = 66520 in ⁴ 4 A2 = 126 in ⁴ 2 A3 = 167 in ⁴ 2 A4 = 38 8000 in ⁴ 4 A4 = 38 in ⁴ 2 I5 = 2111 in ⁴ 4 A5 = 153 in ⁴ 2 A5 = 153 in ⁴ 2 Total weight of Sect: 1 W1 = 65560 lbf [1] Total weight for Sect. 1 W1 = 65560 lbf [1] Total weight for Sect. 1 W1 = 65560 lbf [1] Total weight for Sect. 1 W1 = 65560 lbf [1] Total weight for Sect. 2 W2 = 27896 lbf [1] Total weight for Sect. 2 W2 = 27896 lbf [1] Total weight Ws = 93456 lbf = W1 + W2 6.1.2 Joint Coordinates $\frac{\int \frac{1}{2} \frac{0}{\sqrt{110}} \frac{1}{\sqrt{10}} \frac$						
Module size = 8×11 Rack height = 167 in No. Cavity = 88 M2 = 32780 lbf M1 = 22374 lbf M1 = 22374 lbf M1 = 22374 lbf M1 = 2232 in I2 = 66520 in ^A 4 A2 = 126 in ^A 2 A2 = 6520 in ^A 4 A3 = 167 in ^A 2 I3 = 388000 in ^A 4 A3 = 167 in ^A 2 I4 = 2280 in ^A 4 A4 = 38 in ^A 2 A5 = 153 in ^A 2 Total weight of Sect. 1), Total weight for Sect. 1 W1 = 65560 lbf [1] Total weight for Sect. 2 W2 = 27896 lbf [1] Total weight for Sect. 2 W2 = 27896 lbf [1] Total weight Ws = 93456 lbf = W1 + W2 6.1.2 Joint Coordinates $\frac{10 \text{ int D} \frac{X(\text{in}) Y(\text{in}) \frac{X(\text{in})}{0 \text{ in } 11133}} \frac{X(\text{in}) \frac{Y(\text{in}) \frac{Z(\text{in})}{11}}{1 \text{ in } 0 \text{ in } 0 \text{ in } 11133}$	First recreate th Reference [1].	he original	8x11 fuel rack mod	el in SAP2000	. The following propertie	es are presented in
Rack height = 167 in No. Cavity = 88 M2 = 32780 lbf M1 = 22374 lbf X1 = 23.2 in I2 = 66520 in ^A 4 A2 = 126 in ^A 2 A2s = 63 in ^A 2 A3s = 167 in ^A 2 A3s = 167 in ^A 2 A3s = 167 in ^A 2 A4s = 19 in ^A 2 A4s = 19 in ^A 2 A5 = 153 in ^A 2 A5s = 76.5 in ^A 2 Total weight of Sect. 1 W1 = 65560 lbf [1] Total weight for Sect. 1 W1 = 65560 lbf [1] Total weight for Sect. 1 W1 = 65560 lbf [1] Total weight Ws = 93456 lbf = W1 + W2 6.1.2 Joint Coordinates $\frac{10 + 10}{7} + \frac{1}{232} + \frac{1}{10} + \frac{1}{$	Module size	= 8 x 11				
No. Cavity = 88 M2 = 32780 lbf M1 = 22374 lbf X1 = 223.2 in I2 = 66520 in ⁴ 4 A2 = 126 in ² 2 A3s = 63 in ² 2 I3 = 388000 in ⁴ 4 A3 = 167 in ⁴ 2 (use total area, [1]) I4 = 280 in ⁴ 4 A4 = 38 in ² 2 A5 = 153 in ² 2 A5 = 76.5 in ⁴ 2 Total weight of Sect. 1 W1 = 65560 lbf [1] Total weight for Sect. 1 W1 = 65560 lbf [1] Total weight for Sect. 1 W1 = 65560 lbf [1] Total weight for Sect. 2 W2 = 27896 lbf [1] Total weight Ws = 93456 lbf = W1 + W2 6.1.2 Joint Coordinates $\frac{1}{1} 0 \frac{1}{1} \frac{1}{1} 0 \frac{1}{1} \frac$	Rack height	= 167 in			† Z	
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	No. Cavity	= 88				
M1 = 223/4 tot X1 = 223/2 in I2 = 66520 in ⁴ 4 A2 = 126 in ⁴ 2 A2s = 63 in ⁴ 2 A3 = 167 in ⁴ 2 A4 = 38 in ⁴ 4 A4 = 38 in ⁴ 2 A5 = 153 in ⁴ 2 A5 = 76.5 in ⁴ 2 Total weight of Section 2 is recomputed accordingly (include weight of Sect. 1), Total weight for Sect. 1 W1 = 65560 lbf [1] Total weight for Sect. 2 W2 = 27896 lbf [1] Total weight for Sect. 1 W1 = 65560 lbf [1] Total weight for Sect. 1 W1 = 65560 lbf [1] Total weight for Sect. 1 W1 = 65560 lbf [1] Total weight for Sect. 1 W2 = 65560 lbf [1] Total weight for Sect. 1 W2 = 65560 lbf [1] Total weight for Sect. 1 W2 = 655	M2	= 32780	bf		1	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	M1	= 22374	bf			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	XI 12	= 23.2 in	n^4			¹ 2
$\begin{array}{cccc} & & = 120 \text{ in } 2 \\ A2s & = 63 \text{ in } 2 \\ B3 & = 388000 \text{ in } ^4 \\ A3 & = 167 \text{ in } ^2 \\ A3s & = 167 \text{ in } ^2 \\ A3s & = 167 \text{ in } ^2 \\ 43s & = 167 \text{ in } ^2 \\ 44s & = 280 \text{ in } ^4 \\ A4 & = 38 \text{ in } ^2 \\ A4s & = 19 \text{ in } ^2 \\ 15 & = 211 \text{ in } ^4 \\ A5 & = 153 \text{ in } ^2 \\ A5s & = 76.5 \text{ in } ^2 \\ A5s & = 76.5 \text{ in } ^2 \\ A5s & = 76.5 \text{ in } ^2 \\ Total weight of Section 2 is recomputed accordingly (include weight of Sect. 1), \\ Total weight for Sect. 1 W1 & = 65560 \text{ lbf [1]} \\ Total weight for Sect. 2 W2 & = 27896 \text{ lbf [1]} \\ Total weight Ws & = 93456 \text{ lbf } = W1 + W2 \\ 6.1.2 \text{ Joint Coordinates} \\ \hline \begin{array}{c} \hline 1 & 0 & 0 & 11133 \\ \hline 3 & 0 & 0 & 5567 \\ \hline 4 & 0 & 0 & 0 & 567 \\ \hline 4 & 0 & 0 & 0 & 567 \\ \hline 5 & -2322 & 0 & -10 \\ \hline 9 & 2322 & 0 & -10 \\ \hline 9 & 2322 & 0 & -10 \\ \hline 9 & 2322 & 0 & -10 \\ \hline 10 & 2322 & 1 & 0 \\ \hline 10 & 2322 & 1 & 0 \\ \hline 11 & 0 & 0 & 1 & 0 \\ \hline \end{array}$	1∠ Δ2	- 00520 = 126 in^	11° 4 2		< <u></u> →2 , '	¹⁴ 2
$\begin{array}{cccc} & & & & & & & & & \\ 3 & & & & & & & & &$	A2 A2s	$= 63 \text{ in}^2$	2			A _{2s}
A3 = 167 in ² (use total area, [1]) A3s = 167 in ² (use total area, [1]) A4 = 280 in ⁴ A4 = 38 in ⁴ 2 A4s = 19 in ⁴ 2 I5 = 211 in ⁴ 4 A5 = 153 in ⁴ 2 A5s = 76.5 in ⁴ 2 Total weight of Section 2 is recomputed accordingly (include weight of Sect. 1), Total weight for Sect. 1 W1 = 65560 lbf [1] Total weight for Sect. 2 W2 = 27896 lbf [1] Total weight for Sect. 2 W2 = 27896 lbf [1] Total weight $Ws = 93456 lbf = W1 + W2$ 6.1.2 Joint Coordinates $\frac{10 \text{ int ID} \ X(\text{in}) \ Y(\text{in}) \ Z(\text{in}) \ 0 \ 0 \ 55.677 \ 4 \ 0 \ 0 \ 0 \ 5 \ -23.2 \ 0 \ -10 \ 0 \ 8 \ -23.2 \ 0 \ -10 \ 0 \ 9 \ -23.2 \ 0 \ -10 \ 0 \ 0 \ 0 \ 0 \ 0 \ -11.33 \ 0 \ 0 \ -10 \ 0 \ 0 \ 0 \ -10 \ 0 \ 0 \ -10 \ 0 \ 0 \ -10 \ 0 \ 0 \ -10 \ 0 \ 0 \ -10 \ 0 \ 0 \ -10 \ 0 \ -10 \ 0 \ -10 \ 0 \ -10 \ -10 \ 0 \ -10 $	13	= 388000	in^4		1	ρ ₁ α ρ ₂
A3s = 167 in ⁴ 2 (use total area, [1]) I4 = 280 in ⁴ 4 A4 = 38 in ⁴ 2 A4s = 19 in ⁴ 2 I5 = 211 in ⁴ 4 A5 = 153 in ⁴ 2 A5s = 76.5 in ⁴ 2 Total weight of Section 2 is recomputed accordingly (include weight of Sect. 1), Total weight for Sect. 2 W2 = 27896 lbf [1] Total weight for Sect. 2 W2 = 27896 lbf [1] Total weight $Ws = 93456$ lbf = W1 + W2 6.1.2 Joint Coordinates $\frac{10 \text{ int ID} \times (\text{in}) \times (i$	A3	= 167 in^	2		↔3	I5, A5, A6s
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	A3s	= 167 in^	2 (use total area, [1])	I3, A3, A3s	at same elevation as
A4 = 38 in ² A4s = 19 in ² I5 = 211 in ⁴ A5 = 153 in ² A5s = 76.5 in ² Total weight of Section 2 is recomputed accordingly (include weight of Sect. 1), Total weight for Sect. 1 W1 = 65560 lbf [1] Total weight for Sect. 2 W2 = 27896 lbf [1] Total weight Ws = 93456 lbf = W1 + W2 6.1.2 Joint Coordinates $\frac{Joint ID}{1} \frac{X (in)}{1} \frac{Y (in)}{2} \frac{Z (in)}{1} \frac{Z (in)}{1} \frac{1}{2} \frac$	14	= 280 in^	4		$\langle \langle \rangle \rangle$	atends
A4s = 19 in ⁴ 2 15 = 211 in ⁴ 4 A5 = 153 in ⁴ 2 A5s = 76.5 in ⁴ 2 Figure 1: Single Rack Attached Fuel Model (Fig. 2 [1]) Total weight of Section 2 is recomputed accordingly (include weight of Sect. 1), Total weight for Sect. 1 W1 = 65560 lbf [1] Total weight for Sect. 1 W1 = 65560 lbf [1] Total weight for Sect. 2 W2 = 27896 lbf [1] Total weight for Sect. 2 W2 = 27896 lbf [1] Total weight Ws = 93456 lbf = W1 + W2 6.1.2 Joint Coordinates Joint 1D X (in) 1 0 1 0 Signe 1: Single Rack Attached Fuel Model (Fig. 2 [1]) Total weight for Sect. 1 W1 = 65560 lbf [1] Total weight Ws = 93456 lbf = W1 + W2 6.1.2 Joint Coordinates 0 0 0 0 0 0 0 0 <td>A4</td> <td>= 38 in^2</td> <td></td> <td>I4, A4, A</td> <td>_{4s} M1↑ \ / / ↑ M1</td> <td>1</td>	A4	= 38 in^2		I4, A4, A	_{4s} M1↑ \ / / ↑ M1	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	A4s	$= 19 \ln^2 2$		-	5 6	→X
$\begin{array}{rcl} \hline Joint 12 \\ A5s &= 76.5 \text{ in}^{2} \\ \hline Figure 1: Single Rack Attached Fuel Model (Fig. 2 [1]) \\ \hline Total weight of Section 2 is recomputed accordingly (include weight of Sect. 1), \\ \hline Total weight for Sect. 1 W1 &= 65560 lbf [1] \\ \hline Total weight for Sect. 2 W2 &= 27896 lbf [1] \\ \hline Total weight & Ws &= 93456 lbf = W1 + W2 \\ \hline 6.1.2 & Joint Coordinates \\ \hline \hline \frac{Joint ID}{2} & X (in) & Y (in) & Z (in) \\ \hline \frac{1}{2} & 0 & 0 & 111.33 \\ \hline 3 & 0 & 0 & 55.67 \\ \hline 4 & 0 & 0 & 0 \\ \hline 5 & -23.2 & 0 & 0 \\ \hline 6 & 23.2 & 0 & 0 \\ \hline 7 & -23.2 & 1 & 0 \\ \hline 8 & -23.2 & 0 & -10 \\ \hline 9 & 23.2 & 0 & -10 \\ \hline 10 & 23.2 & 1 & 0 \\ \hline 11 & 0 & 0 & 1 \\ \hline \end{array}$	10	- 211 III" - 153 in^	4 ว		877. M2 77.9	
Joint ID Figure 1: Single Rack Attached Fuel Model (Fig. 2 [1]) Total weight of Section 2 is recomputed accordingly (include weight of Sect. 1), Total weight for Sect. 1 W1 = 65560 lbf [1] Total weight for Sect. 2 W2 = 27896 lbf [1] Total weight for Sect. 2 W2 = 27896 lbf [1] Total weight Ws = 93456 lbf = W1 + W2 6.1.2 Joint Coordinates Joint ID X (in) Y (in) Z (in) 1 0 0 111.33 3 0 0 55.67 4 0 0 0 5 -23.2 0 0 6 23.2 0 -10 9 23.2 0 -10 10 23.2 1 0	A5s	= 76.5 in	2 N2			
Total weight of Section 2 is recomputed accordingly (include weight of Sect. 1), Total weight for Sect. 1 W1 = 65560 lbf [1] Total weight for Sect. 2 W2 = 27896 lbf [1] Total weight Ws = 93456 lbf = W1 + W2 6.1.2 Joint Coordinates Joint ID X (in) Y (in) Z (in) 1 0 0 167 2 0 0 111.33 3 0 0 55.67 4 0 0 0 0 5 - 23.2 0 0 6 23.2 0 0 6 23.2 0 0 7 -23.2 1 0 8 -23.2 0 -10 9 23.2 0 -10 10 23.2 1 0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	10.0 11	~	Figure	1: Single Rack Attached	d Fuel Model (Fig. 2 [1])
Total weight for Sect. 1 W1 = 65560 lbf [1] Total weight for Sect. 2 W2 = 27896 lbf [1] Total weight Ws = 93456 lbf = W1 + W2 6.1.2 Joint Coordinates	Total weight of accordingly (in	Section 2 clude weig	is recomputed ht of Sect. 1),			
Total weight Ws $= 93456 \text{ lbf} = W1 + W2$ 6.1.2 Joint Coordinates Joint ID X (in) Y (in) Z (in) 1 0 0 167 2 0 0 111.33 3 0 0 55.67 4 0 0 0 5 -23.2 0 0 6 23.2 0 0 7 -23.2 1 0 8 -23.2 0 -10 9 23.2 0 -10 10 23.2 1 0	Total weight fo Total weight fo	r Sect. 1 N r Sect. 2 N	V1 = 65560 lbf V2 = 27896 lbf	[1] [1]		
5.1.2 Joint Coordinates Joint ID X (in) Y (in) Z (in) 1 0 0 167 2 0 0 111.33 3 0 0 55.67 4 0 0 0 5 -23.2 0 0 6 23.2 0 0 7 -23.2 1 0 9 23.2 0 -10 10 23.2 1 0	Total weight	١	Vs = 93456 lbf	= W1 + W2		
Joint IDX (in)Y (in)Z (in)100167200111.3330055.6740005-23.200623.2007-23.2108-23.20-10923.20-101023.210	6.1.2 Joint C	Coordinates	3			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Joint ID	X (ir	i) Y (in)	Z (in)		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u>}</u> −−− <u></u> }			10/		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{2}{3}$		0 0	55.67		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4		0 0	0		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	-23	2 0	0		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	23.	2 0	0		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u>β</u>	-23	$\frac{2}{2}$ 1	0		
	<u>0</u>	-23.	2 0	-10		
	1 9 1			0		
	10	23	2] []			

STEVENSON & ASSOCIATES a structural-mechanical consulting engineering firm	JOB NO.: 06Q4646 Calculation: C-001 Client: Monticello Nuclear Generating Plant (MNGP) SUBJECT: Evaluation of the 8X8 spont fuel storage rack to	Sheet 7 of 12 Date: 12/11/2006 Revision: 0
	determine the natural frequencies	By: SJK Check: VMA

Per Reference 1, Section 5, which represents the vertical diaphragm of the "bottom casting", is located at the same elevation as Section 3 but is not attached to it. However, SAP2000 does not allow two different nodes to be assigned at the same location, therefore Section 5 is offset 1" in the Y – direction. Joints 5 & 7 and 6 & 10 are assigned *rigid body* constraints.

6.1.3 Distributed Mass

Concentrated fuel, racks and water mass at	=	40.33 lbf-s^2/in	= Ws / g / 6
nodes 1 and 4 in X-direction only			

Concentrated fuel, racks and water mass at = 80.66 lbf-s²/in = Ws / g / 3 nodes 2 and 3 in X-direction only

Concentrated fuel mass at node 11 = 84.9 lbf-s^2/in = M2 / g In Z-direction only

Concentrated masses at nodes 5 and 6 = 57.9 lbf-s²/in = M1 / g In Z-direction only

6.1.4 Model Validation

The results of the SAP2000 model for the 8x11 rack is presented in the following. The 1st and 2nd horizontal natural frequencies are given at 8.2 Hz and 33.7 Hz, respectively. The "Casting Bottom" vertical mode is approximately 17.2 Hz.

Mode	Frequency	Description
1	8.2	1 st horizontal mode
2	17.2	"Casting Bottom" vertical mode
3	33.7	2 nd horizontal mode
4	61.4	3 rd horizontal mode

Reference [1] determined the lower bound for the fuel rack configurations to be approximately 8 Hz. The results of the SAP200 model validates the reports statement. Also, the vertical diaphragm frequency of the bottom casting was computed to be at 17.7 Hz [1] (for the 8x11 fuel rack), which is also close to the recreated model 17.2 Hz (~ 3% difference).

Thus, the SAP2000 model is validated. It is concluded that the SAP2000 model is capable of capturing the dynamic properties of the 8x8 rack.

6.2 8x8 Rack Model

6.2.1 Properties and Inputs

The methodology in computing the following properties closely follow those that are presented in Reference [1]. This will ensure consistency between the models.

Module 8x8 fuel rack

<u>Properties</u>				
elastic modulus	E =	10300000	psi	given

	JOB NO.: 06Q4646	Calcu	lation: C	C-001	Sheet 8 of 12
	Client: Monticello N	uclear Generat	ing Plar	nt (MNGP)	Revision: 0
STEVENSON &	SUBJECT: Evaluatio	n of the 8X8 spe	nt fuel st	orage rack to	
ASSOCIATES	determine the natural	frequencies			By: SJK
a structural-mechanical consulting engineering firm					Check: VMA
the facultion in V direc	tion No.			sives	
# of cavilies in X direc	tion NX	- c))	given	
# of cavilies in Y direc	uon ivy	- 0)	given	
between fuel channel	c.c	= 6.625	5 in	for types simila	ir to those in IOV
outside length of fuel	channei lout	= 5.494	1 in	given	
inside length of fuel cl	nannel lin	= 5.273	3 in	given	
rack height	L	.= 167	7 in	given	
weight / cavity	Wt/cav	ity 74	5 lbf	given	
area of fuel channel	A	.= 2.38	3 in^2	= lout^2 - lin^2	2
moment of inertia of c	hannel	= 11.50) in^4	= (lout^4 - lin^	4) / 12
shear area	As	= 1.19	9 in2	= A / 2	-
Module Section Properti	<u>es</u>				
total # of cavities	N	= 64	4	= Nx x Ny	
distance between sup	ports X1	= 23.2	2 in	= (Nx - 1) x c.	c/2
Section 2					
rack depth	Ł) = 53.0) in	= Ny x c.c.	
rack width	r	i = 53.0) in	= Nx x c.c.	
area	A2	! = 106.0	0 in^2	= (2/2) x b + (2	2/2) x h
moment of inertia	12	2 = 51762	2 in^4	= h^3/12 + b >	(h/2 + 0.75)^2
shear area	A2s	;= 5:	3 in^2	= A2 / 2	
Section 3					
moment of inertia	K	38800	0 in^4	given	
area	A	s= 16	7 in^2	given	
Section_4					
moment of inertia	[4	= 28	0 in^4	given	
area	A	i= 3	8 in^2	given	
shear area	A4:	;= 1	9 in^2	= A4 / 2	
Section 5	Δ.		0 1-02	aivon	
design area	A] =	ษ เ∩ ^2	given = 1.36 x (10^-!	5) x Nx x Nv x (Nx -
mid span deflection [2] 2	<u>\</u> = 0.02	1 in	1)^2 x (Ny - 1)^ 1)^2)	2 / ((Nx - 1)^2 + (N
moment of inertia	l _e	_{ff} = 28	2 in^4	= 5 x Wt/cavity x c.c^3 / (384 x	x Nx x Ny x (Nx - ΄ Ε x Δ)
frequency of bottom	casting fv	v = 24.11	8 Hz	= π / (2 x (Nx - I _{eff} x g / (N x Wt c.c.))	1) x c.c.) x SQRT(l /cavity x (Nx - 1) x
	Δ.	F - 40	e inAg	= ((N x - 1) + ((Ny - 1)) x Ad
area	A	⊃ −	0 11 2	. – (()), – () – ($11y = 177 \times 700$

...

_

	JOB NO.: 06Q4646	Calculation: C-001	Sheet 9 of 12			
	Client: Monticello N	uclear Generating Plant (MNGP)	Date: 12/11/2006			
	SUBJECT: Evaluation					
STEVENSON & ASSOCIATES	STEVENSON & determine the natural frequencies		By: SJK			
a structural-mechanical			Check: VMA			
consuling engineering min	L <u></u>					
6.2.2 Joint Coordinates	3					
The same coordinates ar	e used as in the previo	ous 8x11 model.				
6.2.3 Distributed Mass						
Total weight for Sect. 1	N1 = 47680 lbf	= N x 745 lbf				
Total weight for Sect. 2	N2 = 20288 lbf	= N x (181 lbf + 136 lbf)				
Total weight	<i>N</i> s = 67968 lbf = \	W1 + W2				
Concentrated fuel, racks nodes 1 and 4 in X-direct	and water mass at tion only	= 29.33 lbf-s^2/in = Ws / g / 6				
Concentrated fuel, racks nodes 2 and 3 in X-direct	and water mass at tion only	= 58.65 lbf-s^2/in = Ws / g / 3				
Concentrated fuel mass a Z-direction only,	Concentrated fuel mass at node 11 InM2 = 23840 lbf = $\frac{1}{2} \times 64745$ lbfZ-direction only,m2 = 61.7 lbf-s^2/in = M2 / g					
Concentrated masses at nodes 5 and 6M1 = 16272 lbf = $\frac{1}{2} \times 64 \times 136 \text{ lbf}$ + $\frac{1}{4} \times 64 \times 745 \text{ lbf}$ In Z-direction onlym1 = $42.144 \text{ lbf-s}^2/\text{in}$ = M1 / g						
6.2.4 Modal Analysis						
The results of the SAP20 horizontal natural frequer vertical mode is approxin	100 model for the 8x8 ra ncies are given at 9.0 H nately 23 Hz.	ack is presented in the following. The 1 st Hz and 36.3 Hz, respectively. The "Castin	and 2 nd ng Bottom"			
ModeFrequencyDescription19.01st horizontal mode223.0"Casting Bottom" vertical mode336.32nd horizontal mode465.93rd horizontal mode						
7. CONCLUSION						
The simplified 2D dynamic model presented in PAR Systems qualification report [1], was recreated in SAP2000. Comparison of the results of a current run using the same rack model (8x11 fuel rack) as given in the aforementioned report [1] showed that the models matched well; the 1 st horizontal mode is above 8 Hz, and the " <i>Casting Bottom</i> " vertical mode only differentiates from the hand computed frequency by 3% (see Sect. 6.1.4).						
The 8x8 fuel rack was then modeled by amending the input properties of the SAP2000 model. The properties were computed following the same methodology presented in referenced report [1]. The 1 st horizontal frequency and the " <i>Casting Bottom</i> " vertical mode are found to be at 9.0 Hz and 23 Hz, respectively.						
The artificial vertical and horizontal time history response spectrum at 6% damping compared to lowa Spec. M-303 response spectrum overlaid with the MNGP time history response spectrum at 5% damping						

.

S A	JOB NO.: 06Q4646 Calculation: C-001 Client: Monticello Nuclear Generating Plant (MNGP)	Sheet 10 of 12 Date: 12/11/2006 Revision: 0
STEVENSON & ASSOCIATES a structural-mechanical consulting engineering firm	SUBJECT: Evaluation of the 8X8 spent fuel storage rack to determine the natural frequencies	By: SJK Check: VMA

is presented in Attachment A. The comparison shows that the Iowa Spec. M-303 envelopes the MNGP response spectrum both vertically and horizontally in frequency ranges that are higher than 5 Hz and 2.5 Hz, respectively. Since the 8x8 fuel rack natural frequency lies within this range, it can be concluded that the Iowa Spec. M-303 loads shall always be larger than MNGP. Thus, the original qualification report [1] should insure the 8x8 fuel rack configuration as well.

