NUREG/CR-6421
UCRL-ID-122526

- A Proposed Acceptance
- Process for

Commercial Off-the-Shelf (COTS)
Software m Reactor Applications

Prepared by
G. G. Preckshot, J. A. Scott

Lawrence Livermore National Laboratory

| Prepared for
U.S. Nuclear Regulatory Commission

AVAILABILITY NOTICE
Availability of Reference Materials Cited in NRC Publications

Most documents cited in NRC publications will be available from one of the following sources:

1. The NRC Public Document Room, 2120 L Street, NW., Lower Level, Washington, DC 20555-0001

2. The Superintendent of Documents, U.S. Government Printing Office, P. O. Box 37082, Washington, DC
20402-9328 .

3. The National Technical Information Service, Springfield, VA 22161-0002

Although the listing that follows represents the majority of documents cited in NRC publications, it is not in-
tended to be exhaustive.

Referenced documents available for inspection and copying for a fee from the NRC Public Document Room
include NRC correspondence and internal NRC memoranda; NRC bulletins, circulars, information notices, in-
spection and investigation notices; licensee event reports; vendor reports and correspondence; Commission
papers: and applicant and licensee documents and correspondence.

The following documents In the NUREG series are available for purchase from the Government Printing Office:
formal NRC staff and contractor reports, NRC-sponsored conference proceedings, international agreement
reports, grantee reports, and NRC booklets and brochures. Also availabie are regulatory guides, NRC regula-
tions In the Code of Federal Regulations, and Nuclear Regulatory Commission Issuances.

Documents avallable from the National Technical Information Service include NURE G-series reports and tech-
nical reports prepared by other Federal agencies and reports prepared by the Atomic Energy Commission,
forerunner agency to the Nuclear Regulatory Commission.)

Documents available from public and special technical libraries include all open literature items, such as books,
journal articles, and transactions. Federal Register notices, Federal and State legislation, and congressional
reports can usually be obtained from these libraries.

Documents such as theses, dissertations. foreign reports and transiations. and non-NRC conference pro-
ceedings are available for purchase from the organization sponsoring the publication cited.

Single coples of NRC draft reports are available free. to the extent of supply, upon written request to the Office
of Administration, Distribution and Mail Services Section, U.S. Nuclear Regulatory Commission, Washington,

DC 20555-0001.

Coples of Industry codes and standards used in a substantive manner in the NRC regulatory process are main-
tained at the NRC Library, Two White Flint North. 11545 Rockville Pike, Rockville, MD 20852-2738, for use by
the public. Codes and standards are usually copyrighted and may be purchased from the originating organiza-
- tlon or, if they are American National Standards. from the American National Standards Institute, 1430 Broad-

way, New York, NY 10018-3308.

DISCLAIMER NOTICE

This report was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Govemment nor any agency thereof, nor any of their employees, makes any warranty,
expressed or implied, or assumes any legal liability or responsibility for any third party’s use, or the results of
such use, of any information, apparatus, product, or process disclosed in this repon, or represents that its use
by such third party would not infringe privately owned rights.

NUREG/CR-6421
UCRL-ID-122526

A Prop'osed Acceptance
Process for

Commercial Off-the-Shelf (COTYS)
Software in Reactor Applications

Manuscript Completed: September 1995
Date Published: March 1996

Prepared by
G. G. Preckshot, J. A. Scott

Lawrence Livermore Nétional Laboratory
Livermore, CA 94551

J. Gallagher, NRC Technical Monitor

Prepared for

Division of Reactor Controls and Human Factors
Office of Nuclear Reactor Regulation -

U.S. Nuclear Regulatory Commission
Washington, DC 20555-0001

NRC Job Code L1857

ABSTRACT

This paper proposes a process for acceptance of commercial off-the-shelf (COTS) software products for use in
reactor systems important to safety. An initial set of four criteria establishes COTS software product identification
and its safety category. Based on safety category, three sets of additional criteria, graded in rigor, are applied to
approve (or disapprove) the product. These criteria fall roughly into three areas: product assurance, verification of
safety function and safety impact, and examination of usage experience of the COTS product in circumstances
similar to the proposed application. A report addressing the testing of existing software is included as an appendix.

ii NUREG/CR-6421

CONTENTS

ACKDOWICAGINENLooncececmnieisniensnsisissnsesssssisssssssistrsssssssssssnssasssirssssessasassessarttssssss sbsssess assssssns .vii
Executive Summary .. evesreesveneesastessneatnt sasseestossuettnsanens ket hustShnbnsa e bsR s Rsb Lo s sbe s snsatss ix
1.0 Introduction ... reveaens : eteereeeeeaeat st nas s ananastsbes 1
1.1 SCOPE.cccircnrusarnasasasssenns , ‘ .1
1.2 Purpose sttt st ass s s esa s neans resbesrsssstarssi st asasn e eans weenns 1
1.3 DEfMHONS.c.ccorvereerasssssenmanntesseosessssnissssssasssenssessssntnsesssessssssssessssesessatsss ss sessastssnssssssastsnsnssas sussssssasansessassssssossass 1
1.4 Background............ooceermeecrsssasascscsseonsrescsansmsareosassres retriesesnsscensssstsaserasassnens ' 2
1.4.1 COTS Background and Feamblhty eerererersasaeantasasaas e 2
1.4.1.1 Commercial-Off-the-Shelf Software and its ACCEPIADILLYccceccvvvrrererrereerannrnescecnsanenes 2
1.4.1.2 Feasibility ISSUEScccecevemrmsunrerencnaenserenseesesseressaserense “ R
1.4.1.3 Perspectives on Acceptability Evaluations.................. .3
1.4.2 Background on the Proposed Acceptance PIOCESS ..coveveenrrennonsvissenaa 5
1.4.2.1 ClasSIifICAtOMN.ccccomirrrerrerersrseserstrtasiesisssessssssassesesssssestrsssssesisssssasssssssessnsssomsteserensssanssssnstons 5
1.4.2.2 Basis for the AcCeptance CrLEria.........urvemrriererrverienrissererersessssensssssssessasssasns 5
1.4.2.3 Acceptance Process, Criteria, and Conclusnons 6
2.0 SAfELY CaEOMIES...ccviiarcrerisnsesssssesisnssssisiassisastsssssssisessinssassasssssasssasess sassesssssns stsssssasssssssosonsnssansassassons 7
2.1 TEC 1226 CAEGOTIES ...vvvvrusisnsseressaneacsssssasssnsisismsensassssssssensasatasessesessesatssssssssnsssassasatsstns suetessssssssasssasessnsansensastass 7
2.2 COTS Usage Categoriesccwcerersssasssacasesan eeesteneseeestaaaesestesaestsesases e tnasaarasasans - 7
2.3 Special Note on Compilers, Linkers, and Operating SYStEIISccceerereererarrenrseseesssrsrssrinsessssssssesessssassasssans 7
3.0 Overview of Standards REVIEWE(........cocoviineionennenrensiennineseisiensesssesesseesssensns eeteerretetessestsanne et et snnssssans 9
3.1 IEEE 730 (NOW 730.1).c.ccuiiriintninesiaisissseseseesssseesisassesssessssasnsssasssssasasss resessasssessnsssensasssssannsasesssasnssssns .9
3.2 IEEE 983 (P730.2, Draft 5). possesensaranarsen reeeerserenebentessnenenenans cereeseeesnsrennons 9
3.3 IEEE 828......cccocvuntricseecccsnsnssssosssssesmensrsssosssesssssssssmrssssessassasssssnsssssses sasnesesassasans 9 -
34 IEEE 1042.....oomerereevcncnenenssssnescnssessasnsassons . .- 9
3.5 1SO 9000-3 Crerereenes eeteststesssereinestsibseeeaestesestatatsthe et et se et ess st e s saateAeneteseree bt anantatassanatasereens 9
3.6 ANSIHANS-10.4.......cocomrceremrrrnansesnsseesacesriescsssssssessnsmssssssssssssssenns 9
3.7 ANSIIEEE 1012 ... oecieeeeeeeicricstnsisesseesiessssessssseseasssssassmsassasasesttas sensessassasassssatenssssensesssessssassassnssansanans 10
3.8 TEC 880 ..ccueeueeceirrnarnseesescssssssesrasssansonsesesssssensussensesasasnsess sesasssssnsssansesas ssessssansosasssnssestss seasssasssassss stsnsasnes 10
3.9 TEC 0BT .ueeeeeeeesercrreciseesnesessasssssssseiasesessssasseasasassasasessssensessasssssasesssssasasensssssassasarasasessnssnasnsasasses .10
3.10 IEC 880, First Supplement to IEC 880 (DIaft)cceccrreerieesnrrciessrneencsesssssrsssserssssssescssssnsssnesssessassessssssssaese 10
3.11 IEEE-7-4.3.2-1993 ... nsninssssenssesssssssssessassssesessasasasssassbase Cereveusasssenesraberessanennes .10
312 IEC 1226...uccueuererercecennne eeeteeeeseseesessssessssseesiteeteteteesestetesestntetaneaenrasntesn easesararinsnsets 11
4.0 Proposed ACCEPIANCE PTOCESSccceveetiveesirereasrsmesssamssscssessesesestasesssstsssnsessasesasasess st ssassessssesssasassasessessassesassasnsnses 13
4.1 Commercial-Grade Dedication for Class-of-Service eetenreteaene st eneseanesrensatar tsnenaasesaares 13
4.2 Preliminary Phase of the Proposed Acceptance Process. eeereasrssssaesanas erereeeseeetesessasererestssensarasreate 14
4.2.1 Acceptance Criterion 1-—Risk and Hazards ADalysescoimnmerninessssssssssssssssssssassssonnans 14
4.2.2 Acceptance Criterion 2—Identification of Safety FUNCHODScccccovvrveniccrsesnerasnanasssasssasensa .14
4.2.3 Acceptance Criterion 3—Configuration Managementcceereeeeeererensonsssesssssorssnssssmssssssssssesran 14
4.2.4 Acceptance Criterion 4—Determination of Safety Categorycececomeririeecceresrsrsrsesesessssnsesesessonsass 15
4.3 Detailed Acceptance Criteria fOr CAtEZOIY A ... veoeverecererennairmesesssssessssssssssssssssssssssssscnssssassssssrssssnesess 15
4.3.1 Acceptance Criterion A5—Product ASSUFANCE..........cceoeeiecmrcersoessnssmssesisrasssenssessssssessessssassssssssssonssans 15
4.3.2 Acceptance Criterion A6—Product DOCUMENLAtON...........cceceeeecmrerrenrensarersseessrersassssasessssessesassarasans 16
4.3.3 Acceptance Criterion A7—Product Safety Requirementsccoveececnscecscsanaessenenens 16
4.3.4 Acceptance Criterion A8—SYSIEIM SAELYccvveueerrererieriesrenarssssassnseeoscasmessessiassssssessaressesssssess 16
4.3.5 Acceptance Criterion A9—Interface REQUITEMENLS..........cccoveueieiieiresinnmircceinereeneseessnseneseenssesanasans 17
4.3.6 Acceptance Criterion A10—Experience Database eetereteseennenessessssransnsen) w17

v) NUREG/CR-6421

4.3.7 Acceptance Criterion A11—Error Reporting Requirement 17

4.3.8 Acceptance Criterion A12—Additional V&V Requirement s reeese st srems e e satas e enmns 17

4.4 Detailed Acceptance Criteria for Category Boccvevmivccnnercennnciiinns VRO ¥ |
4.4.1 Acceptance Criterion B5—Product Assurance ebemtersettanterssastentn esreatesarensranestrrenssnans 17

442 Acceptance Criterion B6—Product DOCUIMENEAtONcreveuunessssesssessssssssesssonsssssssssssesssssansssses 17

4.4.3 Acceptance Criterion B7—Product Safety Requirementsc.cocevrconicacessens . .17

4.4.4 Acceptance Criterion B8—System Safety 18

4.4.5 Acceptance Criterion B9-—Experience Databaseccovvniisnsssnssisiesenereeceeseenseecssscsessnnasanses 18

44.6 Acceptance Criterion B10—FError Reporting REQUITEMENEcccmeiseaecisisessnirennsesessscsseserssssenssenes 18

4.5 Detailed Acceptance Criteria for Category C e teeseraes et s s ses b ba A st st s manenesonesas 18
4.5.1 Acceptance Criterion C5—Product Assurance................ dirveseenesernsranaen 18

4.5.2 Acceptance Criterion C6—Product DOCUINENLALONccccuveriecccsaresernsesserssssssssassssasasesansnsnessaserens 18

4.5.3 Acceptance Criterion C7—Product Safety RequUifementsccoceveeeereecrenesesneenensnncs 18

4.54 Acceptance Criterion C8—System Safety v sarens 19

4.5.5 Acceptance Criterion C9—Experience Databaseccveemeesirennesinsracseraane A 19

4.5.6 Acceptance Criterion C10—Error Reporting Requirementcoovseseneees 19

5.0 CONCIUSIONSvoveeeesereseesesessssssensssssasssssesessasasnssssenssnsssssstasessatestasssessess sesssss stsesssnsses stosesssssssssssassssnsssesasentassasssnsssases 21
RELEIEIICESuvevieeiciinicrccanstssaesesorsorssrssnsasasssssassnssssessnsasssssssnnsastasassasss sosesse soserssasesssossrssnsunestssnssssassastossassassssnss 23
Appendix A—Preliminary List Of FACIOLScveicemieierietiniesssie st ssresssnsse s sanccnseasesessssssssssassiscasaacans 25
Appendix B—Testing Existing Software for Safety-Related Applications...... eresmemes e etn s e s es et assanane 35

TABLES

Table 1. Safety CAEGOTIESc.cccccerrrercreeresnsesssssresessrsasrsseosmonsarsseressssseasassssassnss eruserarannsaensaratet asrsssrrensnraeseraansrrnasnas 8
Table 2. COTS USAZE CALELOMIESccceeerreruersnnsreasnsensessssssasessesssassesssssssssssssssssmnsaeassmmssassssns sessnsasssssasssnsssss 8
Table 3. COTS Safety Category Criteria . . JUUIRIURIURTRPRRRRII .
Table 4. Preliminary COTS Acceptance CIItEIia......ccoovenvierrecisissoiscssionsssmsisemisiosasmstsssssssssisssssmescsssssrassnsssssessssssnss 13
Table 5. Category A COTS Acceptance Crteriaccveaminemiieesnciiiccinissscscsissiesssosnsssssmnssesssaes 15
Table 6. Category B COTS ACCEPLANCE CHIETIA .uvvnrrunresrersnsseresssssssssmssssssnerseneessnsssnssassesasesssssmmsossssssasas reersennsinnennnes 18
Table 7. Category C COTS Acceptance CIteriacercrorvererroracicectssnsssssisossessasinsessessanssnsassssessssssssssssosssassnass 19
Table A-1. Failure Consequence Criteria.........ccomrenresssisiresnsissisisnsessssssmssssesissssesssissesisessorssssssessssessssensssssesesssssas 25
Table A-2. Plan Existence CHiteria...........ccovvveererrisinsennssssiessnnnssniesnsnesessssesennns e s bbbt bt SR estens 25
Table A-3. SQA CIIEIIAccccoueuerrereectnrereeneeressnieeiesmesssinstesensesasstasesntasssassassossssssssssssessrssssasssssnsssssssassensesensessosesasssses 26
Table A4. Software Configuration Management Criteriaccocecencenennereecnsnsccssnescsscsssssecsons 27
Table A-5. Software V&V Criteria veereuernseneresesassssaasens 28
Table A-6. Actions t0 Take WhHen Data iS MASSINGcceveieeeereerecieieeisieinseresissesenssasssssessssessssssessssssassasssesastssssssss 29
Table A-7. Minimum SQA Documentation................eeeeeeerenecrrene rtetestersasatetesassasensasetsssserans 29
Table A-8. Minimum Required SQA Reviews and AUGLS...........ccocceviinmnssnnitinienssinscsssisssissinissssssssssssssonssssss 29
Table A-9. SQA, SCM, and V&V for Other Software Suppliersccreverrennencs ereieareseraens 30
Table A-10. Suggested Additional DOCUMERALON «........c..uevrveeseereeseseessssssseenee eereesesess s s ses e sesssseees 30
Table A-11. Suggested Areas of Standardizationcccoeeercereisencsionrnnsinns ereereesresseteneanas 30
Table A-12. MiniMUI V&YV TASKScccoceerererreemmsresssassrossssaesesaesosasacsesosmaesesesesesteseasatamsassesssssssesssestosssenssssenesessmsnn 31
Table A-13. Minimum Documentation Needed for a POSteriori V&Vocievanninienceneenenesecsnionssessesassssassens 32
Table A-14. Typical Policies and Directives of a Configuration Management Operationcccceececriercerscesenecanane 33

NUREG/CR-6421 vi

ACKNOWLEDGMENT

The authors thank and acknowledge the efforts of Nuclear Regulatory Commission staff members, Leo Beltracchi,
Robert Brill, John Gallagher, Joe Joyce, Jocl Kramer, and James Stewart, who reviewed this work and provided their
insights and comments.

vii : NUREG/CR-6421

EXECUTIVE SUMMARY

The approval process for commercial off-the-shelf (COTS) software to be used in reactor safety systems (Class 1E)
has been termed “commercial dedication,” although this term also implies defect reporting responsibilities (for the
dedicator) under 10 CFR 21. Since this document addresses only the investigation of the acceptability of such
software for use in systems important to safety, the term “acceptance process is used. The purpose of this work is to
review current and draft standards to create a set of *“acceptance criteria” and incorporate them into a proposed
acceptance process. The resulting acceptance criteria are assessed with regard to NRC practices and regulatory
purview to arrive at an ordered set of criteria related to safety that comprises a proposed process for accepting COTS
software for use in reactor safety applications. Prior to discussing the acceptance process, summary informatiorn is
provided regarding the nature of the problem of acceptance and the feasibility of using COTS software in reactor
safety apphcatxons The latter describes some cost-related considerations, other than purchase price, that are
associated with using COTS software in systems important to safety.

In keeping with NRC practices, wherein reactor equipment is regulated primarily in proportion to its importance to
reactor safety, it is proposed that COTS products should be reviewed with a stringency proportional to the safety
functions they are intended to provide. An initial set of four criteria, comprising the preliminary phase of the
acceptance process, establishes COTS product identification and its safety category. Based on safety category, one
of three sets of additional criteria, graded in rigor, is applied to approve (or disapprove) the product. These criteria
fall roughly into three areas: product assurance, verification of safety function and safety impact, and examination of
usage experience of the COTS product in circumstances similar to the proposed application.

Several conclusions are drawn. First, it is feasible to design an acceptance process based on a classxﬁcauon of
software with respect to its importance to safety. Second, the rank order of acceptance criteria is dictated by data
dependencies. The exercise of satisfying first-ranked criteria produces data that are necessary for the remaining
criteria. Thus, no basis for satisfying subsequent criteria exists if “upstream” criteria are not satisfied. Finally, no
single standard extant at this writing completely addresses the acceptance problem. Taken in combination, however,
a usable set of criteria for determining the acceptability of a COTS software item can be derived from IEC, IEEE,
and ISO standards. Based on the results, it appears that acceptable COTS software items can be produced by vendors
who are generally aware of the risks associated with systems important to safety and who employ accepted software
engineering practice to produce high-integrity software. _

ix NUREG/CR-6421

Section 1. Introduction

A PROPOSED ACCEPTANCE PROCESS
FOR COMMERCIAL OFF-THE-SHELF (COTS)
SOFTWARE IN REACTOR APPLICATIONS

1.0 INTRODUCTION

1.1 Scope

This report addresses the use of commercial off-the-
shelf (COTS) software in those nuclear power plant
(NPP) systems that have some relationship to safety.
The report proposes a process for determining the
acceptability of COTS software using a classification

scheme based on the importance to safety of the system

in which the COTS product will be used. Since
software testing is related to the acceptance process,
the report, Testing Existing Software for Safety-Related
Applications, has been included as Appendix B of this
report.

1.2 Purpose

The purpose of this report is to present a proposed
acceptance process, based on a review of current and
draft standards, for the use of COTS software items in
NPP systems important to safety. The process is
centered on suitable “acceptance criteria” that are
supported by inclusion in 2 majority of standards
publications or work-in-progress and that are
consistent with NRC practices and regulatory purview.

1.3 Definitions)
Key terms used in the report are defined below.
Class 1IE

The safety classification of the electric equipment and
systems that are essential to emergency reactor
shutdown, containment isolation, reactor core cooling,
and containment and reactor heat removal, or are
otherwise essential in preventing significant release of
radioactive material to the environment.

Commercial-grade item

A structure, system, or component, or part thereof that
is used in the design of a nuclear power plant and
which could affect the safety function of the plant, but
was not designed and manufactured as a basic
component. 1

1 Phis definition is sufficient for this report; see 10 CFR Pan 21 (in
the revision process as of this writing) for the complete current
definition.

Commercial-grade dedication .

An acceptance process undertaken to provide

reasonable assurance that a commercial-grade item to
be used as a basic component will perform its intended
safety function and, in this respect, will be deemed
equivalent to an item designed and manufactured under
a 10 CFR Part 50, Appendix B, quality assurance

. program.2

Critical software

Software that is part of, or could affect, the safety
function of a basic component or a commercial-grade
software item that undergoes commercial-grade
dedication. '

Important to safety
A structure, system, or component;

a whose failure could lead to a significant radiation
hazard,

b. that prevents anticipated operational occurrences
from leading to accident conditions, or

¢ that is provided to mitigate consequences of failure
of other structures, systems or components.

This encompasses both safety and safety-related
systems. '

Safety-related

Pertaining to systems important to safety but that are
not safety systems.

Sdfery systems

Those systems that are relied upon to remain functional
during and following design basis events to ensure (a)
the integrity of the reactor coolant pressure boundary,
(b) the capability to shut down the reactor and maintain
it in a safe shutdown condition, or (c) the capability to
prevent or mitigate the consequences of accidents that

2Since this repon is concemned with the specifics of gaining
reasonable assurance, and not with the aspects of 10 CFR that will
apply following the actual acceptance of a commercial-grade item,
the process of gaining assurance is called an “acceptance process”
rather than a “commercial dedication process.”

NUREG/CR-6421

Section 1. Introducﬁon

could result in potential offsite exposures comparable
to the 10 CFR Part 100 guidelines.

Statistical certainty

An assertion made within calculated confidence limits
supported by data samples and an underlying
distribution theory. ‘

Statistical validity

An assertion is statistically valid if the attributes of the
data supporting the statistical certainty of the assertion
are consistent with the inference to be made.

(The term, statistical validity, is used in several places
in this report to refer to operating experience of a
commercial-grade software item. The connotations of
this usage are:

« for each datum in the operating experience
database, the version and release numbers of the
involved software item are identified and match the
target commercial-grade software item; and,

« for each datum, the operating environment,
configuration, and usage are reported and match the
intended environment, configuration, and usage of
the target commercial-grade software item; and,

+ all received reports and incident details are recorded
in the database, regardless of initial diagnosis; and,

« an estimate? is made of the ex}pected number of
unreported, unique incidents,* with confidence
limits; and,

» the number of reports in the database, the
confidence interval, and the expected number of
unreported severe errors are consistent with the
intended use of the commercial-grade software
item.)

1.4 Background

Considerable interest exists in the nuclear power
community in the potential use of commercial off-the-
shelf software in nuclear power plant systems. For
safety-related systems, it is necessary to evaluate the
acceptability of the COTS software for use in the
system and then to formally designate the COTS

. software as a “basic component” of a system essential
to reactor safety. This is referred to as “dedication of a
commercial-grade item” by 10 CFR Part 21, although
the term “commercial dedication” was sometimes also
used to signify only the formal acceptance of the

3 An estimate can be made from the frequency distribution of reports
of unique incidents, or direct sampling of the software user data
' source. :

4\ unique incident is one that, after root-cause analysis, hasa
different root cause from all previously reported incidents.

NUREG/CR-6421

product and assumption of 10 CFR 21 defect-reporting
responsibilities. Since this report addresses only the
evaluation and acceptance of COTS software in both
safety-related systems and in other systems important
to safety, the process is referred to herein as an
“acceptance process.”

The acceptance process used to determine the
acceptability of a COTS software item is currently the
subject of much debate. This section of the report
discusses key issues related to the feasibility of using
COTS software in systems important to safety, a brief
discussion of the varying perspectives of typical

. participants, and background information regarding the

development of the proposed acceptance process. The
following sections of this report address the
classification of software to be used in NPP systems,
discuss how various standards influenced the proposed
acceptance process, and describe the proposed
acceptance process itself.

1.4.1 COTS Background and Feasibility

14.1.1 Commercial-Off-the-Shelf Software and its
Acceptability

COTS software has the potential to yield large cost
savings if it can be used in safety systems and other
systems important to safety in nuclear power plants.
The COTS software of interest typically includes
compilers, operating systems, software supplied in
Programmable Logic Controllers (PLCs), and software
in commercial industrial digital control systems. The
problem faced by the nuclear reactor industry is to
show that a particular COTS product, which may be
useful in a nuclear reactor instrumentation and control
system, has sufficient reliability for the application.
The best solution to the problem is that the software
engineering group that produced the product did its
work using the necessary processes for producing high-
quality software, and that evidence of this (including

- documentation, tests, inspections, quality

assurance/control, verification and validation, and
various other quality-related activities) is available for
inspection by the prospective buyer. Lacking this
favorable situation, some minimum standards by which
a COTS product is judged should be available. The
central issue in establishing these minimum standards
is that the COTS product must be shown to have
sufficient quality for its intended application. A
fundamental concern for regulators in approving an
acceptance process is that if the process is significantly
less rigorous than normal regulatory review of software
developed in-house, it may become a conduit for
escaping necessary scrutiny.

To date, this process has been rather informal.
Recently, a number of standards committees have been
addressing the problem of formalizing the process.
Various techniques have been proposed for dealing

with specific technical problems frequently

- encountered in applying acceptance processes;
however, considerable controversy still surrounds
many of these.

14.1.2 Feasibility Issues

The primary motivation for considering the use of
COTS software as an alternative to a new software
development is to avoid unnecessary development

costs. Although the cost savings appear obvious at first .

glance, there are important issues affecting costs that
require careful consideration. Many of these issues
relate to the fact that the potential COTS software
product must be demonstrated to be of sufficient
quality for its intended application in a system
important to safety.

One such issue is the existence, availability, and
relevance of information needed to demonstrate
quality. Discussions regarding the demonstration of
confidence in COTS software products (Gallagher,
1994) indicate that there are basically three potential
sources for pertinent information: an examination of
the development process and the associated product
documentation, testing of the COTS software product,
and an examination of the operational history
associated with the product. The workshop participants
speculate that information from these sources might be
used in varying mixtures depending on context; but
they provide no details on how this might be done
while ensuring that the appropriate quality is
demonstrated. There is a danger that such alternatives
could be used to avoid the scrutiny attached to new
software development efforts. ‘ '

Relevant standards indicate that information from all
three sources is needed and that possibilities are
limited regarding recourse to one source when
information is not available from another. The core
information is provided by product documentation,
records, and details of the development process applied
to the product. Testing of a COTS software product
can be used for several purposes, including

e augmenting the iesting effort conducted during
development

» addressing requirements specific to the proposed
application of the COTS item in a system important
to safety

« verifying of the intended functions of the product,
and

« assessing the quality of testing activities carried out
during development (see Appendix B of this report
for information on testing with an emphasis on
COTS products).

Section 1. Introduction

Operational history provides supplementary
information that can complement testing. The draft
supplement to IEC 880 states that “for safety critical
(Category A) systems, the feedback of experience
should never prevent a careful analysis of the product
itself, of its architecture, of how it has been developed
and of the validation of all the functionalities intended
to be used in the design.” IEEE-7-4.3.2-1993, in its
discussion of qualification of existing commercial
computers, states that “exceptions to the development
steps required by this standard or referenced
documents may be taken as long as there are other
compensating factors that serve to provide equivalent
results.” For an information source to provide
“equivalent results,” the subject of the compensation
must be tightly focused on a particular technical
question, and it must be shown how the compensating
information is equivalent to the missing information.
For safety-essential systems, the necessary
demonstration of quality will require extensive
information about the product and a rigorous analysis
of that information. Options for dealing with missing
information are limited and require careful
consideration and documentation. The activities
required for demonstrating quality may be quite costly.

Another consideration associated with demonstrating
confidence in a COTS software product is the potential
impact of functions contained in the COTS software
that are not required for its proposed application, such
as undocumented functions or unused resident
functions (called “unintended functions” and “‘uvnused
functions” in this report) The commitment to use
COTS software requires that the potential impact of
unintended functions and inadvertent actuation of
unused functions be assessed in the process of
determining acceptability. The activities required to
make this assessment can represent significant
additional costs.

In addition to the costs described above, the problems
associated with maintaining and tracking COTS
software status should be considered carefully,
especially defect reporting as detailed in 10 CFR Part
21. The downstream costs associated with effecting
this maintenance and tracking capability may be
comparable to those associated with software
developed directly for the NPP environment. This area
includes configuration management and the vendor’s
long-term role, obsolescence and the potential cost of
system redesign, bug tracking and reporting
commitments, and the implementation and
requalification of bug fixes.

1.4.1.3 Perspectives on Acceptability Evaluations

New software developed for the NPP environment can
be controlled from inception to address a wide variety
of assurance and safety considerations. This is not the
case for COTS software, which has already been

NUREG/CR-6421

Section 1 Introduction

developed, and whose developers may be responsive to
a number of commercial objectives unrelated to NPP
safety. In particular, the COTS product is unlikely to
have been the result of development processes
specifically attuned to safety and hazards analyses of
NPPs. :

This is economically important because COTS
software products may supply needed functions where
it is impractical to implement those functions by
developing new software. For this approach to be safe,
questions that need to answered are

1. What assurance and safety considerations should be
addressed?

2. Is the COTS item fully consistent with those
considerations?

The rigor of these questions is affected by the relative
importance to safety of the proposed COTS software
item. The first issue to address in evaluating
acceptability is importance grading (classification)
with respect 1o safety role. Given the proposed safety
classification of an identified COTS item, the next
problem is verification of its properties and quality.

If the COTS item was produced by a vendor with
systematic and well-controlled software processes,
many of the documentary products necessary to make
the product and process determinations will exist and
be verifiable, and therefore determination of properties
and quality would be fairly straightforward. If the
COTS item was produced in a less mature
development environment, the issue is complicated by
the fact that quality assurance processes may not have
been employed, or may have been employed in an
inconsistent fashion. In this case, the COTS item
performance of its functions is suspect, and assurance
investigations to address this question are hampered by
the lack of-—or poor quality of—the associated
materials that would have been generated by a mature
software process.

The problems of identification of safety role and
verification of properties and quality are complicated
by the fact that there are three perspectives on the
evaluation of acceptability:

« the producer of the COTS item, i.e., the COTS
- software vendor

» the user (customer) of the COTS item, i.e., a reactor
vendor or an owner/operator doing a retrofit

« the regulator responsible for approving the use of
the COTS item. The regulator has the legal
responsibility of certifying that the NPP in which
the COTS item will be used is safe.

NUREG/CR-6421

The éffect of these perspectives can be demonstrated
by considering various scenarios for the evaluation of a
particular COTS product.

Scenario 1: A COTS software vendor wants to
dedicate a product for specific uses.

In this case, the COTS software vendor would be
directly concerned with regulator needs and user needs
during the acceptance process, implying a cooperative
COTS software vendor that probably has relatively
mature software development processes. The vendor is
motivated by business advantage, possibly with respect
to meeting similar standards in other fields (e.g.,
environmental), and takes responsibility for generic,
but not specific, safety analyses.

Scenario 2: A COTS software user—for example, a
reactor vendor—dedicates a COTS product for use in a
reactor design.

The COTS software vendor may not be strongly
motivated, in which case a good reactor vendor
relationship with COTS software vendor would be
instrumental in the acceptance process. The reactor
vendor would be responsible for coordinating activities
with the COTS software vendor and with the regulator,
and for specific safety analyses.

Scenario 3: A COTS software user—for example, an
ownerloperator—dedicates a COTS item for use in a
retrofit.

An owner/operator will have a long-standing
relationship with the regulator, but perhaps not with
respect to software development issues. An
owner/operator is somewhat removed from the original
reactor vendor and may not have the same
understanding of the design subtleties of reactor
systems important to safety. The owner/operator would
probably use the reactor vendor’s existing
thermal/hydraulic safety analyses, but would be
responsible for determining the COTS product safety
functions. An owner/operator may also be more
removed from the COTS software vendor than the
reactor vendor.

Scenario 4: A regulator permits use of a previously
qualified COTS item for a certain class of service.

This scenario would be a generalization of an existing
qualification of the COTS item by an applicant. The
regulator would need to have high confidence in the
COTS item. There would be possible standardization
benefits, but these would depend upon the acceptability
to the regulator of safety analyses regarding class of
service, as opposed to plant-specific analyses.
Dedication for generic class of service would not
absolve the designer using the COTS item from
performing specific, use-related safety analyses.

1.4.2 Background on the Proposed Acceptance
Process

142.1 Classification

‘While it is necessary to demonstrate that a COTS item
has sufficient reliability for its intended application, it
is also important that the demonstration be
commensurate with the importance to safety of the
COTS item. That is, the acceptance process must
ensure sufficient quality but should not require
unnecessary effort. Just as reactor subsystems and
equipment are regulated primarily in proportion to their
-importance to reactor safety, COTS products should be
reviewed with a stringency proportional to the safety
function they are intended to provide. This allows
regulatory resources to be applied efficiently and does
not burden reactor vendors with unnecessary
Tequirements.

14.2.2 Basis for the Acceptance Criteria
Current Standards

Standards for software quality assurance (SQA),
software configuration management (SCM), software
verification and validation (SVV), and software criteria
for use in nuclear power plants were reviewed for
criteria appropriate to COTS products. In many cases,
no explicit provision is made for adapting existing
software to a critical application; the standards assume
that such software will be developed as new software
products. There are provisions for qualifying software
products for use in producing the final product, but in
most cases, these provisions amount to ensuring that
the standard itself was employed by the software
subcontractor. The following standards were reviewed
to determine criteria either explicitly required for
COTS products or implicitly required because the
COTS product was required to conform to the
standard:

» IEEE 730 (Now 730.1), “IEEE Standard for
Software Quality Assurance Plans”

« IEEE 983 (P730.2, Draft 4), “IEEE Guide for
Software Quality Assurance Planning”

» IEEE 828, “IEEE Standard for Software
Configuration Management Plans”

» IEEE 1042, “IEEE Guide to Software
Configuration Management” :

« IEEE 7-4.3.2, “Standard Criteria for Digital
Computers in Safety Systems of Nuclear Power
Generating Stations”

= ISO 9000-3, “Guidelines for the Application of ISO
9000-1 to the Development, Supply, and
Maintenance of Software”

Section 1. Introduction

» ANSI/ANS-104, “Guidelines for the Verification
and Validation of Scientific and Engineering
Computer Programs for the Nuclear Industry”

» ANSI/IEEE 1012, “IEEE Standard for Software
Verification and Validation Plans”

» IEC 880, “Software for Computers in the Safety
Systems of Nuclear Power Stations”

» IEC 987, “Programmed Digital Computers
Important to Safety for Nuclear Power Stations”

An overview of the pertinent aspects of each of the
listed standards is given in Section 3, and a detailed
multi-tabular list of criteria abstracted from the
standards may be found in Appendix A.

New Standards Activity

New work is being performed on acceptance criteria

“for COTS products by the IEC, driven by the potential

economic advantage of being able to use existing
software products. A draft addition to IEC 880 was
used to review the criteria extracted from existing
standards for completeness and applicability. This is .
discussed in overview in Section 3.10. IEC 1226
provides a de facto safety categorization, which is
discussed in detail in Section 2.1. The following
emerging or new standards were reviewed:

« First Supplement to IEC 880 (Draft), “Software for
Computers in the Safety Systems of Nuclear Power
Stations™

« IEC 1226, “The Classification of Instrumentation
and Control Systems Important to Safety for
Nuclear Power Plants.”

Design Factors

. Previous work on vendor assessment (Lawrence &

Preckshot, 1994, Lawrence et al., 1994) was applied to
check the reasonableness of the COTS assessment.
criteria derived as described above. It became clear that
the design factors primarily address product assurance
issues, which for COTS products is only part of the
problem. The vendor assessment work also provides
the approach and rationale for judging the COTS
assessment criteria against NRC needs.

NRC Review

A preliminary version of this report was presented to
the NRC. The comments received at that meeting have
been incorporated into this version of the report.

Expert Peer Review Meeting on High-Integrity
Software

This meeting was conducted by Mitre Corporation for
the NRC Office of Nuclear Regulatory Research, and

NUREG/CR-6421

Section 1. Introduction

substantial discussions on COTS issues ensued.
Material from the NRC was provided by an NRC
representative. Excerpts from these discussions were
analyzed and considered in completing this version of
the report.

1.4.2.3 Acceptance Process, Criteria, and Conclusions

‘While it is not possible to completely eliminate
subjectivity and the consequent variability of results,
the acceptance process presented in Section 4 has been
developed 1o a sufficient level of detail to promote
reasonable uniformity of results on each key element.
The process consists of preliminary activities that
apply regardless of safety category, followed by a set
of activities tailored to the particular safety category
established for the COTS item in its intended usage. A
set of ranked criteria is listed for three safety categories

NUREG/CR-6421

based on review of the criteria listed in Appendix A.
The acceptance process is compatible with IEEE-7-
4.3.2-1993, with detail supplied from other standards
in places where IEEE-7-4.3.2 requires “engineering
judgment.” This level of stringency is consistent with
the body of IEEE-7-4.3.2, which addresses software
development in general. The systems-oriented
approach of the IEC standards has had a significant
influence on the resulting list of acceptance criteria,
adding a risk assessment step that the other standards
lack. An interesting and possibly surprising conclusion
is that the rank order is the result of simple data
dependencies. The achievement of a particular criterion
is dependent upon satisfaction of preceding criteria, so
that from a practical viewpoint, the importance of
individual criteria cannot be decided in isolation.

- Section 2, Safety Categories

2.0 SAFETY CATEGORIES

Safety categorization fulfills its intended purpose if
sufficient categories exist to enable efficient
application of regulatory resources, but not so many
that efforts are fragmented. The appropriate number
appears to be more than two (safety and non-safety)
and less than five. The categorization problem has
three parts. The first is to define categories, for which
this paper has recourse to IEC 1226. The second is to
deduce to which category a COTS product belongs,
which is discussed below. The third part is to decide
what rigor of acceptance process is appropriate to each
category, which is considered in Section 4.

2.1 1IEC 1226 Categories

IEC 1226 proposes, by implication, four categories—
A, B, C, and unclassified—which in this context means
“has no safety impact.” Rather than repeat IEC 1226
definitions, Table 1 shows by example some familiar
reactor systems and where they would be placed in the
IEC 1226 scheme (IEC 1226 2/6/93, Annex A). IEC
1226 category A is very similar to IEEE Class 1E. An
approximate equivalence to Regulatory Guide 1.97
signal categories is also shown,

2.2 COTS Usage Categories

Unfortunately, many COTS products do not fit neatly
into IEC 1226 categories. This is because COTS
products, although there may be extant examples of
category A, B, or C usage, are also used in supporting

roles that may affect software in categories A, B, or C. 4

Table 2 below summarizes the possibilities.

Table 3 formalizes the decision process detailed above.
The operative principles are that if an error in COTS
software can occur in operation important to safety or
can embed an error in other software important to
safety, then the COTS software takes on the category
of the software in which the error can occur. If the
COTS software can only challenge software important
to safety, possibly exposing existing errors, then the
COTS software takes on the next lower safety
category. Since category C has relatively low
reliability requirements, software that produces
category C software may be of standard commercial
quality (unclassified).

2.3 Special Note on Compilers, Linkers,
and Operating Systems

Compilers, linkers, operating systems used for
development, and similar COTS software are among

those COTS products that have potentials for
embedding errors in software that is essential or
important to safety, but are not themselves executing
when the error causes a challenge. Most standards are
silent or say very little about qualifying such software,
because the dilemma is a difficult one to resolve. In
general, there is a trade-off; is it safer to use or not to
use such a product? If the answer were a simple “don’t
use it,” safety software would still be written in
machine language, an obvious absurdity. Even with the
success of modern software tools, however, trusting

" acceptance of such tools is not recommended. Tools -

should be rated for safety impact as detailed in Tables
1-3, and assurance methods used for similar tools used
for hazardous applications should be applied.

For example, the draft supplement to IEC 880 notes
that it can be quite difficult to demonstrate that a
compiler works correctly. The draft supplement states
that “Even validated compilers have been found to
contain serious errors.” This was illustrated by the
experience with Ada compilers; there was a
considerable delay before qualified Ada compilers
became generally available. An “Ada qualification
suite” of programs that an Ada compiler should
successfully compile or detect errors in now has
hundreds of thousands of programs and is still growing
as compiler writers discover newer and subtler ways to
introduce bugs in Ada compilers.

Because of the difficulties associated validating
compilers, linkers, and operating systems, the
evaluation should be based on best available
information and should be continuous while the tool is
in use. Where qualification tests exist (such as the Ada
qualification suite), only products that pass such tests
should be accepted. In addition, extensive statistically
valid operational experience is important in these cases
because the validation effort is beyond the skills of
most unspecialized software developers. Sometimes
this may mean using a product version that has a
known bug list as opposed to the latest version on the
market. There may be less risk in using an older
version and avoiding well-known bugs than in using
the latest version with a high expected level of
unreported, severe errors. These considerations also
apply, to a lesser extent, in the category B and category
C processes described in Sections 4.3 and 4.4 below.

NUREG/CR-6421

Section 2. Safety

Categories

Table 1. Safety Categories

IEC 1226 Example Systems RG 197
Category Equivalent
Category
A Reactor Protection System (RPS) A AB
Engineered Safety Features Actuation System (ESFAS) AB
Instrumentation essential for operator action ABCD
B Reactor automatic control system
Control room data processing system
Fire suppression system _
Refueling system interlocks and circuits E
C Alarms, annunciators B,CDE
Radwaste and area monitoring CE
Access control system
Emergency communications system
Table 2. COTS Usage Categories
Usage Description Equivalent
Category IEC 1226
Direct Directly used in an A, B, or C application. A,B,orC
Indirect Directly produces executable modules that are used in A, B, or C
applications (software tools such as compilers, linkers, automatic
configuration managers, or the like).
Produces A modules A or BS
Produces B modules BorC6
Produces C modules unclassified
Support CASE systems, or other support systems that indirectly assistin | unclassified
the production of A, B, or C applications, or software that runs
as an independent background surveillance system of A, B, or C
applications.
Unrelated Software that has no impact on A, B, or C applications. unclassified
Table 3. COTS Safety Category Criteria
1 If the COTS product is used directly in a system important to safety, the COTS safety category
‘ is determined by the criteria of IEC 1226.

2 If the COTS product directly produces or controls the configuration of an executable software
product that is used in a system important to safety, and no method exists to validate the output
of the COTS product, the COTS safety category is the same as that of its output, except that
category C software may be produced by COTS products of the unclassified category. COTS
software that directly produces category A or B software that is validated by other means is
category B or C, respectively.

3 If the COTS product supports production of category A, B, or C software, but does not directly
produce or control the configuration of such software modules, it falls under the safety category
“unclassified.”

4 If the COTS product has no impact on category A, B, or C software or systems, it falls under
the safety category “unclassified.”

S5The choice of A or B category depends upon whether the A module has diverse altematives or whether there is another software tool, treated as
category A, that verifies the output of the subject tool.

6 The choice of B or C category depends upon whether the B module has diverse altematives or whether there is another software tool, treated as
category B, that verifies the output of the subject tool.

NUREG/CR-6421 8

Section 3. Overview of Standards Reviewed

3.0 OVERVIEW OF STANDARDS REVIEWED

If there is a general philosophical difference between
standards, it may be the tendency to take a pro forma
approach versus the tendency to be prescriptive.
Predominantly pro forma standards, such as IEEE and
ISO software standards, require developers to produce
documents and perform certain activities, but do not
prescribe many details or pass/fail criteria, Abstracting
criteria from such standards requires judgment and
understanding of the underlying software production
and validation processes, an endeavor that may be
subject to differing opinions. Standards that tend to be
prescriptive, of which the three IEC standards are
examples, are more detailed and leave less to
professional judgment, although they do not eliminate
the potential for differing viewpoints. A detailed
standard may lose current applicability, requiring
professional judgment to apply its strictures to
evolving technology. In the following, our estimate of
the approach taken in each standard is mentioned.

3.1 IEEE 730 (Now 730.1)

IEEE 730.1 is a pro forma standard that describes the
activities and documentation required for software
quality assurance (SQA) plans. By implication, this
standard addresses only two formal categories of
software (critical and non-critical). Some or all of the
standard may be applied to non-critical software, but
the degree of application is optional. The standard acts
. as an umbrella standard in the sense that it requires
some sort of software configuration management
(SCM) and some sort of software verification and
validation (SVV). Other IEEE standards on SCM and
SVV are referenced by this standard. Table A-37 lists -
the activities and documentation required, which are
presumed to extend to safety-critical COTS products
by Table A-3, entry 9 and Table A-9, entry 1.

3.2 IEEE 983 (P730.2, Draft 5)

This standard is a guidance standard for applying IEEE
730.1. As such, it does not supersede the requirements
of that standard or impose additional requirements. It
provides clarification, as in Table A-3, entry 6, and all
entries in Table A-11.

3.3 IEEE 828

IEEE 828 presents pro forma requirements for
activities and documentation in software configuration
management plans for all criticality levels of software;
the standard makes no distinction between levels.
Table A4 lists the detailed requirements for

7Tables marked with an A- may be found in Appendix A.

configuration management plans. Entry 8 in this table
lists the crucial points with regard to configuration
management maintained by a supplier. [EEE 828
requires a description of how acquired software will be
received, tested, and placed under SCM; how changes
to the supplier’s software are to be processed, and
whether and how the supplier will participate in the
project’s change management process. IEEE 828 does
not address COTS software explicitly, or specify
criteria that software configuration management
systems of a COTS software vendor should meet.

3.4 IEEE 1042

IEEE 1042 provides guidance by example for applying
IEEE 828. As a guidance standard, this document does
not contradict or add to the requirements stipulated by
IEEE 828.

3.5 ISO 9000-3

The ISO 9000 standards apply to quality assurance
programs in general, and are not limited to software.
1SO 9000-3 interprets the general standards as applied
to software, and fulfills somewhat the same role as
IEEE 730.1; that is, it is a pro forma standard that acts,
in part, as an umbrella standard, mentioning other
aspects of software quality such as SCM and SVV. The
1SO standards are more contractually oriented than the
IEEE standards, and somewhat more generally written
as far as criteria for standard adherence are concerned.

‘Tables A-3, line 9, Table A-4, line 8, and Table A-9,

line 1 reflect the ISO view of subcontracted or existing
software products.

3.6 ANSI/ANS-10.4

This standard regards verification and validation of
scientific and engineering programs for use in the
nuclear industry, and typical programs used for
simulation or design of reactors or reactor subsystems.
It is the only standard, of all reviewed, that considers
the question of verification and validation of existing
computer programs for which there is little or no
documentation. This probably reflects the actual
situation extant with this type of software; little or no
formal software engineering method is applied during
software development, ieaving a software product of
unknown reliability. ANSI/ANS-10.4 suggested many
of the entries in Tables A-6, A-12, and A-13, and was
useful in expanding the functional requirements of
ANSHIEEE 1012.

NUREG/CR-6421

Section 3. Overview of Standards Reviewed

3.7 ANSIIEEE 1012

This is a pro forma standard that describes the
activities and documentation required for verification
and validation of critical software. An example of the
difference between the pro forma and préscriptive
approach can be seen in Table A-12, wherein
ANSI/ANS-10.4 is used to expand the minimum V&V
tasks specified by IEEE 1012 with criteria for
performance. V&YV tasks are construed to apply to
COTS products by virtue of the requirements in IEEE

730.1, as expressed in Table A-9. ANSI/IEEE 1012 is

summarized in Table A-5 and auxiliary tables that
expand detailed V&V requirements. :

3.8 IEC 880

IEC 880 is a prescriptive standard which offers
detailed criteria that software under its purview must
satisfy. The relatively poor organization of this
standard may detract from its effectiveness, but it is
consistently better than the IEEE standards in its
“systems” approach. Risk-related requirements are
emphasized, as are interfaces with and relations to
other systems and hardware, which differs significantly
from the IEEE and ISO standards. The following five-
point summation of Section 5 of IEC 880 illustrates the
risk-based approach:

« Safety relevance of software parts should be
determined;

» More limiting recommendations apply to risky
parts;

e High-safety-impact software modules should be

easily identifiable from system structure and data
layout;

e Available testing and validation procedures should
be considered when doing the design;

» If difficulties arise, a retrospective change of style
may be required.

“Self supervision” is required, meaning that the
software includes code to detect hardware errors and
errors committed by software. Self supervision is only
regarded in the literature as effective for detecting
hardware errors; considerable controversy still exists
on whether effective means exist to detect software
errors with more software.

3.9 IEC 987

IEC 987 is a systems and hardware prescriptive
standard that defers to IEC 880 on specific software
issues. The “systems” slant of IEC 880 is discussed
above. :

NUREG/CR-6421

3.10 IEC 880, First Supplement to IEC
880 (Draft) :

IEC 880 provided a strong connection between risks or
safety and software (or system) requirements, and this
connection is continued and enhanced in the draft
supplement. This document places strong emphasis on
determining the safety functions that a COTS product
will perform before deciding on the rigor of the -
acceptance process.-to be followed. This is combined
with a strict.view of experience data; for important
safety functions, COTS experience data must be
relevant and statistically valid. The draft addition had a
significant effect on the review of candidate acceptance
criteria compiled from the IEEE and ISO standards.
With the exception of entry 3, all other entries in Table
4, below, were motivated by the IEC 880 supplement. -
Likewise, items 7-9 of Table 5, and items 7 and 8 of
Tables 6 and 7 can be specifically attributed to IEC
880’s strong requirement for risk coverage. (These
tables may be found in Section 4.) The IEC 880
supplement also had particular criteria for judging
experience databases, and this is reflected in entries 10
and 11 of Table 5, and entries 9 and 10 of Tables 6

and 7.

3.11 IEEE-7-4.3.2-1993

While the proposed acceptance process presented in
this report draws heavily on IEC 880, it is also
generally consistent with IEEE-7-4.3.2-1993. This
standard addresses testing for COTS items as well as
consideration of software development methods and
operating experience. The standard has a subjective
nature, however, as evidenced by the following:

“Exceptions to the development steps required
by this standard or referenced documents may
be taken as long as there are other -
compensating factors that serve to provide
equivalent results.”

“Acceptance shall be based upon an
engineering judgment that the available
evidence provides adequate confidence that
the existing commercial computer, including
hardware, software, firmware, and interfaces,
can perform its intended functions.”

While the general intent of these passages is clear,
there is room for a varying strictness of interpretation.
In interpreting these passages with respect to the
acceptance process proposed in this report, it was
assumed that it must be explicitly and convincingly
shown how information from a compensating factor
provides equivalent results and, when engineering

. judgment is used, that it be applied to specific,

narrowly defined questions and that its basis be
convincing and documented. This standard was

reviewed in this context for possible omissions in the
candidate list of COTS acceptance criteria.

3.12 IEC 1226

IEC 1226 provides the missing link that the other
standards discussed herein lack: a consistent definition

11

Section 3. Overview of Standards Reviewed

of safety categories. This standard uses terms familiar
to those involved in nuclear power plant safety:
redundancy, diversity, defense-in-depth, and reliability.
While other choices of safety category could be made,
the categories in this standard are credible and usable.

NUREG/CR-6421

Section 4. Proposed Acceptance Process

4.0 PROPOSED ACCEPTANCE PROCESS

The proposed acceptance process is based on the
classification scheme described in Section 2 and on a
set of acceptance criteria derived from the standards
described in Section 3. It is broken into two phases: a
preliminary qualification phase, and a detailed
qualification phase. The preliminary qualification
phase applies to all COTS products, regardless of the
ultimate safety categorization. This phase is concerned
with understanding system safety requirements,
understanding the COTS product’s proposed role in a
system important to safety, unambiguously identifying
the COTS product, and determining the rigor of
subsequent qualification procedures. The detailed
qualification phase activities vary in rigor and content
depending upon the result of the preliminary phase.
Successful completion of the appropriate detailed
phase qualifies (pending formal acceptance/dedication)
the COTS item for the specific intended use that was
analyzed and documented in the preliminary phase.

The proposed COTS acceptance criteria are presented
in Table 4 in dependency order in tabular form. A short
.discussion of each criterion and the reason for
dependency on previous criteria or why subsequent
criteria are dependent follows. As with an earlier

assessment of software design factors (Lawrence &
Preckshot 1994), COTS acceptance criteria were
reviewed for potential effect of each criterion,
observability, and pertinence to NRC practices and
procedures. The product quality of greatest pertinence
to NRC concerns is the product’s potential safety
impact or safety category. For this reason, safety
category determines differences in the rigor of the
acceptance criteria. The criteria presented below are
organized into four tables, with the latter three
corresponding to acceptance process requirements
specific to each of the three safety categories. The first
table comresponds to the preliminary phase of the
process and directs the reviewer to the applicable table
of the latter three. In a number of cases, recourse is

taken to the Appendix for detailed requirements. This
does not imply that these requirements are less
important, but only that the level of detall may obscure
the instant discussion.

4.1 Commercial-Grade Dedication for
Class-of-Service

When a COTS item is accepted for a generic class of
service, a distinction must be made between the
responsibilities of the dedicator and the designer who
applies the product to a specific safety application. The
dedicator is responsible for generic safety issues, such
as defining the service class, the criteria for deciding if
a particular application falls within that service class,
defect reporting responsibilities that must be assumed
by the prospective user, and the design verification
techniques that must be used by the designer applying
the generic COTS item to a particular safety
application. The commercial dedication process
verifies that the COTS item is of sufficient quality and
has the required functions to meet class-of-service
functional requirements. Equally important, the
dedicator’s review of product software requirements
and software quality assurance provides confidence
that unintended functions are unlikely and that reliable
means exist to prevent the activation of unused
functions.

Commercial-grade dedication for a generic class-of -
service cannot absolve the application designer of the
responsibility for making a safety case for specific -
applications of the dedicated COTS item. In this
respect, COTS software is no different than a dedicated
commercial-grade hardware item, such as a relay; the
product received must still be shown to be the product
specified, and the design using the item or the method
of application must still be shown to be correct and
consistent with the-terms of the dedication under -
design control and quality assurance measures required
by 10 CFR Part 50, Appendix B.

Table 4. Preliminary COTS Acceptance Criteria

1 Risk and hazards analyses shall be used to identify system-level safety functions required.

2 The safety functions (if any) that the COTS product will perform shall be identified.

3 The COTS product shall be under configuration and change control. See Table A-4 for detailed
SCM criteria.

4 The safety category of the COTS product shall be determined. Proceed to Table 5, 6, or 7
depending upon category A, B, or C, respectively.

NUREG/CR-6421

Section 4. Proposed Acceptance Process

4.2 Preliminary Phase of the Proposed
Acceptance Process

The preliminary criteria should be applied to all COTS
products, recognizing that some of these criteria
(criterion 1, for instance) will likely be reviewed for
other reasons. The ranking of these criteria (developed
below) is determined by data dependencies; that is,
satisfaction of earlier-ranked criteria (lower number
rank) produces information that is required to
determine if later-ranked criteria are satisfied.

4.2.1 Acceptance Criterion 1—Risk and Hazards
Analyses

System-level risk and hazard analyses must be
complete, as they provide the basis for determining the
required system safety functions, some of which may
be performed by the COTS item under review. For
generic class-of-service dedications, the system-level
risk and hazard analyses must define the plant and
safety environment in which the generic COTS item is
expected to function. Since this analysis is the
foundation upon which a safety determination is made
about COTS item usage, an incomplete analysis or
incomplete review of existing analyses may result in an
unreviewed safety question. Typically, such system-
level analyses are done for nuclear reactors as part of
the licensing process, but the analyses may require
updating to accommodate plant modifications in
existing plants.

By implication, all of the IEEE and ISO standards
assume that the risk category is already known. The
IEC standards make the requirement for understandmg
risks explicit.

Rationale for ranking:

Risk and hazards analyses were taken as the criterion
required before any COTS product can be considered
because, if the system risks and hazards are unknown,
it is not possible to determine what risks and hazards
are incurred by introducing a COTS product.

4.2.2 Acceptance Criterion 2—Identification of
Safety Functions

Once the system risks are known, determining how the
COTS product will fit into a risk management scheme
is next. The intended use of the COTS item should be
completely described and documented, all the safety
functions of the COTS item should be fully described,
and the intended relationship of the COTS item to
other systems essential or important to safety should be
clearly stated. Any omitted usage, function, or
relationship is construed to be unintended, and may
result in an unreviewed safety question. A COTS item
is acceptable only for usage and functions that are
documented during the acceptance evaluation. A

NUREG/CR-6421

14

COTS item that is being dedicated for generic class-of -
service is acceptable only for service within the
functional and performance limits established in this
step. This-does not relieve an engineer applying a
generic class-of-service COTS item of the
responsibility for making a safety case for the
particular functions the COTS item will perform; the
generic dedication only supplies an acceptable way of
performing those functions provided terms and
conditions of the dedication are met.

IEC 880 makes this process explicit as “identifying the
safety functions” of the software product, whether it is
COTS or to-be-developed software. IEEE-7-4.3.2-1993
refers to this criterion as “identifying the safety
functions the computer must perform.”

Rationale for ranking:

This step is not possible until the system-level risks™
and hazards have been analyzed.

4.2.3 Acceptance Criterion 3—Configuration
Management

A mechanism for software configuration management
must exist, and the COTS product under review must
be clearly identified and under management control as
a configuration item. If a COTS product falls within
regulatory purview, regardless of potential safety
categorization, it should be identified as a
configuration item and be under configuration
management control, either by the COTS supplier, the
owner/operator, or the reactor system vendor. For
COTS products in nuclear reactor systems essential or
important to safety, the rigor of configuration
management should be independent of safety category.
The goal at this point in the process is to ensure that
the COTS product in question is a mature product that
has been completely and clearly identified to all parties
in the process. The configuration identification cannot
be a “moving target.” The configuration management
system will be important in later steps because of
ancillary items such as documentation and testing
materials, status reporting mechanisms, problem
reporting, change control, and release mechanisms.

Rationale for ranking:

Configuration management is ranked third because not
onty do most standards and the design factors mention
this as a crucial criterion (Lawrence & Preckshot,
1994), but because a poorly identified and uncontrolled
COTS product does not meet the intent of Criterion
VIII, “Identification and Control of Materials, Parts,
and Components,” of Appendix B, “Quality Assurance
Criteria for Nuclear Power Plants and Fuel
Reprocessing Plants,” of 10 CFR Part 50. The COTS
product that is installed must be the same COTS
product that was accepted.

4.24 Acceptance Criterion 4—Determination of
Safety Category

The safety category of the COTS item in its intended
use, as evaluated in Acceptance Criterion 2, should be
determined according to IEC 1226 using the guidance
given in Section 2. This determines the rigor of the
remaining criteria.

Rationale for ranking:

The product cannot be placed in a safety category until
the COTS product and its safety functions have been
identified.

4.3 Detailed Acceptance Criteria for
Category A

Detailed acceptance criteria for category A software is
listed below in Table 5.

Section 4. Proposed Acceptance Process
4.3.1 Acceptance Criterion AS—Product Assurance

For this category, the applicable standards require
COTS products to be developed to the same rigor that
would have been required were the product produced
as a new software development for the intended safety
application. A COTS product that was not developed
under a plan that included software requirements, a
software design, coding to internal or external
standards, testing, V&V, and quality assurance audits
would not be acceptable. An assessment of the COTS
software vendor’s development, validation and
verification, and quality assurance processes should be
made. Ideally, the COTS software vendor will make
available the internal documents that can prove this. At
a minimum, for this software safety category, COTS
vendor development, testing, V&V, and quality
assurance policies and procedures should be
documented and the documents should be available.
This is an appropriate place to apply the design factors
described in Lawrence & Preckshot 1994, as a validity
check on this assessment.

Table 5. Category A COTS Acceptance Criteria

The COTS product shall have been developed under a rigorous Software Quality Assurance
Plan as defined by IEEE 730.1, ISO 9000-3, or IEC 880. This shall include full V&V.

See Table A-3 for detailed SQA criteria. See Table A-5 for detailed V&V criteria. See Table A-
12 for minimum required V&V tasks.

A6

Documentation shall be available for review that demonstrates both Criterion AS and that good
software engineering practices were used, as detailed in Table A-7. Evidence shall be available
that the minimum required reviews of Table A-8 were conducted.

A7

It shall be demonstrated that the COTS product meets the requirements identified in Criterion 2
(Table 4).

1t shall be demonstrated that the COTS product does not violate system safety requirements or
constraints.

The interfaces between the COTS product and other systems or software shall be identified,
clearly defined, and under configuration management.

Al0

“The COTS product shall have significant (greater than 1 year) operating time,® with severe-

error-free operating experience. At least two independent operating locations shall have used a
product of identical version, release, and operating platform encompassing the same or nearly
the same usage as the proposed usage. Any adverse reports, regardless of operating location,
shall be considered. The configuration of the products in the experience data base shall closely
match that of the proposed COTS product.?

All

All errors, severe or otherwise, shall be reported to and analyzed by the COTS supplier.
Procedures and incentives shall be in place to ensure a high level of demonstrated comphance
or the COTS supplier shall demonstrate with statistical certainty ! 0 that the error reporting
system achieves this compliance. An error tracking, documentation, and resolution procedure
shall document each error from report to resolution.

Al12

Additional validation and testing shall be performed if needed to compensate for a small
amount of missing documentation or alterations in configuration.

8Measured as in-service execution time concurrently at two or more customer sites.
98ee the definition of statistical validity in Section 1.3.
105ee the definition of statistical cenainty in Section 1.3.

15 . NUREG/CR-6421

Section 4. Proposed Acceptance Process

Satisfaction of this acceptance criterion by a generic
class-of-service COTS item does not absolve the user
of such an item of the responsibility for quality
assurance measures in the application of the item. For
example, a programmable logic controller (PLC) must
be programmed in a ladder-logic or other programming
language. Users of such devices would still be
responsible for a 10 CFR Part 50, Appendix B quality
assurance program, or whatever quality assurance
programs were required by their license basis, applied
to the design work the user does to incorporate the
class-of-service COTS item in basic components.

Rationale for ranking:

Product assurance activities are ranked fifth in
importance because this is the first time that the rigor
required, the system safety requirements, and the
COTS product safety requirements are all known.

432 Acceptance Criterion A6—Product
Documentation »

The reality of COTS products is that documentation is
likely to be sparse and the COTS software dedicator
may have difficulty gaining access to proprietary
information related to software development.
Nevertheless, sufficient documentation must exist to
support the activities of following acceptance criteria,
i.e., the satisfactory performance of these activities
must not be prevented by missing documentation, such
as missing source code. At a minimum, product
documentation should include quality assurance
certification that the COTS product!! has met the
vendor’s own criteria identified in step A5—complete
product user documentation that describes in detail
how to apply and use the product, known bug lists, and
error recovery procedures. Availability of source code
is preferable; however, source code is not included in
this minimum documentation unless questions
associated with the other acceptance criteria can only
be reasonably answered with approaches that include
analyses or testing based on the source code. For
example, questions about the adequacy of testing or
V&V procedures examined in step AS, or questions
raised based on the examination of operating
experience and error reporting in steps A10 and All,
might indicate the need for additional static analyses or
structural tests. The demonstration in step A8 to
confirm that unintended functions will not impair
system safety or questions about interfaces raised in
step A9 could also indicate a need for static analyses.

The product documentation should describe all of the
attributes identified in step 2 as necessary for
performance of the safety functions assigned to the
product. No undocumented feature can be used to
perform a safety function, or is acceptable for this

Mygentified by exact version and release designation.

NUREG/CR-6421

purpose. The user documentation should be testable;
that is, product operation should be described
unambiguously so that testing could determine if the
product were defective. Additional testing to establish
confidence in the product may be necessary.
Information on specific considerations for testing
COTS software can be found in Scott and Lawrence,
1995 (included as Appendix B). A product that does
not match the performance specifications in product
documentation is unacceptable.

Rationale for ranking:

Product documentation goes hahd-in—hand with
product assurance and is a necessary item for the
evaluation of product and system safety.

4.3.3 Acceptance Criterion A7—Product Safety
Requirements

Assuming that product assurance and documentation
give confidence in knowledge of the COTS product’s
attributes, then it is appropriate to ask if these attributes
satisfy the safety functions expected of the product.

Rationale for ranking:

Product safety requirements are ranked seventh
because product attributes cannot be known with
reasonable certainty without product assurance and
sufficient detail without product documentation.

4.3.4 Acceptance Criterion A8—System Safety

Other attributes or qualities of the COTS product
should not impair system safety. COTS products,
because they must be commercially viable, often have
functions or options beyond those required to satisfy
the identified safety functions of the previous criterion.
They may also have undocumented functions, or
“bugs.” These are the unused and the unintended
function problems, respectively, and they may be more
severe with COTS products because of extra functions
or configurations these products may have.

For unintended or unused functions, the role of the
dedicator, whether for generic class-of-service usage or
use in a specific basic component, is the same.
Confidence that unintended functions are unlikely is
obtained through applying Criteria A5 and A6. It must
be possible for a designer to prevent inadvertent
activation of unused functions so that unused functions
cannot be activated by unauthorized personnel or
foreseeable operator errors. '

Additional system-level requirements fall upon the
dedicator for class-of-service. Criteria for when
defense-in-depth or diversity may be required must be
established. These criteria describe the allowable
fraction or enumerations of safety functions that may
be entrusted to the generic class-of-service COTS item,

after which defense-in-depth and diversity
considerations may require a different approach.

Rationale for ranking:

Just as product assurance was a necessary prerequisite
for determining if a COTS product satisfies its required
safety functions, it is also a prerequisite for
investigating whether other known attributes or options
could defeat system safety goals. This is also not
possible without detailed product mformauon available
in product documentation.

4.3.5 Acceptance Cnterlon A9—Interface
Requirements

Due to the requirement on category A subsystems for
single-failure robustness, the interfaces between
category A COTS products and other systems must be
known and investigated.

Rationale for ranking:

Interface requirements are ninth in sequence and
importance, all previous criteria being prerequisites.

4.3.6 Acceptance Criterion A10—Experience
Database

Category A products require the most rigorous and

- statistically valid!? experience data. These data must
be for the same version of the COTS product in the
same or nearly the same environment and usage.

Rationale for ranking:

If any of the previous criteria are violated, the COTS

“product is inappropriate for the application envisioned
and encouraging reports of good performance are
irrelevant. Consequently, product experience is ranked
tenth.

43.7 Acceptance Criterion All—Error Reportmg
Requirement

The choice of a COTS product only begins its odyssey
as part of a system important to safety. In the
Operations & Maintenance phase of the software life
cycle, complete information on errors must be made
available so that evaluations can be made and
appropriate subsequent actions taken. This information
must be maintained since the severity of past errors
may be determinable only in retrospect. While the
COTS software vendor is not responsible for error
reporting under 10 CFR Part 21, the existence of
vendor-supported defect databases is a positive factor.

125ee the definition of statistical validity.

17

Section 4. Proposed Acceptance Process

Rationale for ranking:

The error-reporting requircment follows experience
database in rank since future error reports may lead to
a retrospective re-evaluation of some reports in the
experience database.

4.3.8 Acceptance Criterion A12—Additional V&V
Requirement

If, after reviewing a COTS product with respect to the
previous criteria, some questions remain unanswered,
additional validation may be required for the
application in question.

Rationale for ranking:

The additional V&V requirement is ranked last since
all previous criteria must have been satisfied to reach
this conclusion.

4.4 Detailed Acceptance Criteria for
Category B

Detailed acceptance criteria for category B software is
listed below in Table 6.

4.4.1 Acceptance Criterion B5—Product Assurance

A subset of the rigorous category A product assurance
activities is appropriate for category B COTS products.
The COTS software vendor should have documented
policies and procedures in place that meet the
requirements stated in Table 6, item BS5. Interface
analysis of category A products or systems has already
limited the extent to which category B products can
affect category A systems.

4.4.2 Acceptance Criterion B6—Product
Documentation

Provision of appropriate documentation will facilitate
the appraisal process, but recourse to design factors is
acceptable to a greater extent than with category A
products. Note that this still requires justification.

443 Acceptance Criterion B7—Product Safety
Requirements

Category B safety requirements typically consist of an
operator assistance function and automatic control that
prevents excursions into operating regimes that require
safety functions provided by category A systems. In
the U.S., the NRC also permits category B systems to
back up category A systems in the event of rare
common-mode failures of those systems. As with
category A COTS products, product assurance and
documentation are necessary before product functions
are known with sufficient certainty to determine if the
COTS product fulfills its expected safety functions.

NUREG/CR-6421

Section 4. Proposed Acceptance Process

Table 6. Category B COTS Acceptance Criteria

A-5, entries 3 through 7 for V&V criteria.

The COTS product shall have been developed under a quality assurance plan and a systematic
software development process. See Table A-3, entries 5 through 10 for SQA criteria. See Table

documentation.

Documentation shall demonstrate Criterion BS. See Table A-7 for minimum required

B7

It shall be demonstrated that the COTS product will fulfill its safety functions as identified in
Criterion 2 (Table 4), and that its reliability is sufficiently high that it does not present a high
frequency of challenges to category A systems.

The COTS product shall be consistent with system safety requirements.

B9

traceability and change control.

The COTS product shall have operated satisfactorily in similar applications. The version and
release of reported experience may not be identical to the proposed COTS product, but a
consistent configuration management program and well-managed update program provide

BI10

option.

Error reporting, tracking, and resolution shall be consistent and correctly attributable to version
and release, and procedures and incentives are in place that ensure demonstrated compliance
during the first year after a version is released. The version and release proposed have no major
unresolved problems. A current bug list shall be available to COTS purchasers as a support

4.44 Acceptance Criterion B8—System Safety

Equipment and software of category B is allowed more
latitude so that it can achieve significantly greater
function. Consequently, the COTS product should be
consistent with system safety requirements. This means
that the product may not necessarily take a safe action

" during a system excursion, but it should not cause a
system excursion when operating as specified. Without
product assurance, this cannot be determined with
sufficient certainty.

4.4.5 Acceptance Criterion B9—Experience
Database

If the foregoing criteria are violated, the COTS product
is inappropriate for the intended application and
operational experience is irrelevant. Provided that the
previous criteria are satisfied, relaxed statistical
validity requirements, such as variations in usage,
environment, configuration, and confidence limits, are
acceptable. These relaxations should be justified based
on expected increase in risk.

4.4.6 Acceptance Criterion B10—Error Reporting
Requirement

The error reporting requirements, which are relaxed
from category A, are appropriate for good-quality,
well-supported, commercial-grade software products.
Typically, such products experience a significant
reduction in error reports after the initial period of free
software support service terminates.

NUREG/CR-6421

18

4.5 Detailed Acceptance Criteria for

Category C

Detailed acceptance criteria for category C software is
listed below in Table 7. -

4.5.1 Acceptance Criterion C5—Product Assurance

Product assurance activities are limited to determining
that good software engineering practices were followed
and that crucial V&V was performed. The term “good
software engineering practice” is used to mean that
standards for software development are used
systematically, that configuration management is
effectively employed, and that software development
practices are defined, documented, and implemented. It
must encompass the documentation and V&V referred
to by Table 7, C5. '

4.52 Acceptance Criterion C6—Product
Documentation

The required documentation is limited, and missing
documentation may be reconstructed or compensated
in part by design factor assessment. Product
documentation, while not required to be complete,
should be consistent with the intended application. The
product documentation should at least describe product
features, and it may cover several versions of the
product.

4.5.3 Acceptance Criterion C7—Product Safety
Requirements

The ability of the COTS product to perform its
(limited) safety functions should be demonstrated. In

view of the possibly limited product documentation,
testing may be required to demonstrate this criterion.
Information on specific considerations for testing
COTS software can be found in Scott and Lawrence,
-1995 (included as Appendix B).

454 Acceptance Criterion C8—System Safety

The lack of adverse effect on and coordination with
other system safety functions should be demonstrated.
Since this demonstration depends upon knowing
product attributes, product assurance to the extent that
attributes are known is a prerequisite. :

Section 4. Proposed Acceptance Process

4.5.5 Acceptance Criterion C9—Experience
Database

Experience with product operation is irrelevant unless
the previous criteria are satisfied. Relaxed reliability
constraints allow reliable operation in the proposed
application to serve as an experience base, although
other applications may have experienced difficulties.

4.5.6 Acceptance Criterion C10—Error Reporting

Requirement

Error reporting requirements, since they concern the
future, are ranked last as an acceptance criterion. An
error reporting scheme managed by the dedicator and
covering only applications known to the dedicator is
sufficient for this category.

Table 7. Category C COTS Acceptahce Criteria

have been performed.

The COTS product shall have been developed according to good software engineering
practices. Minimum documentation, such as in Table A-13, shall be available or
reconstructable. Minimum V&V tasks, as in Table A-12, entries 2, 4, 8, 9, and 19-22, shall

be available for inspection.

Minimum documentation described in Criterion C5, including V&V task documentation, shall

The COTS product may enhance safety by improving surveillance, improving operators’ grasp
of plant conditions, assisting in maintenance activities, reducing demands on category A or B
systems, monitoring or reducing the effects of radiation releases, or similar purposes. The
product’s performance of its intended effect shall be verified.

It shall be demonstrated that the COTS product cannot adversely affect the safety functions of
category A or B systems or software and that it will not seriously mislead operators.

application.

The COTS product must be shown to operate without serious malfunction in the instant

Cio

An error reporting scheme shall be planned or in
product in applications controlled by this applicant. Documentation and records retention allow

place that tracks malfunctions of this COTS

error histories of 5 years or length of service, whichever is shorter.

19

NUREG/CR-6421

Section 5. Conclusions

5.0 CONCLUSIONS

Based on guidance provided by IEC 1226, it is possible
to classify software for use in nuclear power plants.
Using this classification and guidance from current
standards, an accepiance process for COTS software
iterns can be defined to a reasonable level of detail.

This process is based on a preliminary set of criteria
applying to all classifications, coupled with a detailed
set of criteria that are relaxed as the importance to
safety of the COTS software item decreases.

Acceptance criteria for COTS products are easily
ranked by the dependence of some criteria on the
information produced by meeting other criteria. COTS
acceptance criteria fall into rank order because of the
data dependencies mentioned in earlier discussion.
This rank ordering is not necessarily the same as would
be used by a software developer to select a COTS
product; rather, it represents an order in which a
regulatory agency would expect a safety basis to be
constructed.

Review of standards from multiple sources reveals that
IEC standards provide the risk-based approach and
extra detail on which the pro forma IEEE and ISO
standards are implicitly based, but never address
directly. Apparently, diversity is a useful concept even
when applied to standards activities, as no single group
of standards was adequate to address the COTS
acceptability problem.

Based on the analyses supporting this report, it appears
that the use of COTS software in the safety systems of
nuclear power plants will be limited to well-defined
conditions and to COTS software products for which

21

the acceptability of the product can be clearly
established. Acceptability can be established through a
combination of (1) examination of the product and
records of its development indicating that a complete
and rigorous software engineering process was applied,
(2) sufficient evidence of satisfactory operational
experience and error reporting history, (3) additional
testing, and (4) vendor assessment as necessary. The
development of such COTS software items will
probably require developer knowledge that the product
will be used in systems with medium to high risks, as
well as the use of software processes that have been
designed to produce high-integrity software. Such
software developers will be generally aware of the
types of hazards associated with the systems in which
their products will be used, and those hazards will have
been considered in their designs.

If generic, class-of-service commercial-grade item
dedications are possible under the Commission’s
regulations, the dedicator is responsible for resolving
generic acceptability questions, setting criteria for
application of the dedicated item, resolving defect
reporting responsibilities, and defining acceptable
design and design verification methods for the
application of the item to specific nuclear power plant
safety problems. The designer applying such a class-
of-service item is still responsible for resolving specific
safety questions, using the item within the terms and
conditions of the dedication, and performing such work
under the requirements of 10 CFR Part 50, Append:x
B, or the applicable hcensmg basis.

NUREG/CR-6421

References

REFERENCES

Gallaghér, John, (ed.), “Discussions Related to COTS Obtained from Expert Peer Review Meeting on High Integrity
Software for MPPs Conducted by MITRE for NRC Research.” May 24-26, 1994,

Lawrence, J. Dennis, Warren L. Persons, G. Gary Preckshot, and John Gallagher, “Evaluaﬁng Software for Safety
Systems in Nuclear Power Plants.” Submitted to 9th Annual Conference on Computer Assurance, Gaithersburg, -
MD, Jume 27-30, 1994. UCRL-JC-116038, Rev. 1, Lawrence Livermore National Laboratory, 1994.

Lawrence, J. D., and G. G. Preckshot, “Design Factors for Safety Critical Software.” Lawrence Livermore National
Laboratory, NUREG/CR-6294, December 1994,

Scott, J. A., and J. D. Lawrence, “Testing Exnsnng Software for Safety-Related Apphcauons Lawrence Livermore
Nauonal Laboratory, UCRL-ID-117224, September 1995.

U.S. Nuclear Regulatory Commission, “Instrumentation for Light-Water-Cooled Nuclear Power Plants to Assess
Plant and Environs Conditions During and Following an Accident.” In Regulatory Guide l 97, Rev. 3, May
1983.

Other Apphcable Documents:

“Guidelines for the Application of ISO 9000-1 to the Development, Supply, and Maintenance of Software.”
Intemnational Organization for Standardization (ISO), ISO 9000-3, 1987.

“Guidelines for the Verification and Validation of Scientific and Engineering Computer Programs for the Nuclear
Industry.” ANSI/ANS-10.4, May 13, 1987.

" “IEEE Standard for Software Quality Assurance Plans.” IEEE 730 (Now 730.1), August 17, 1989,

“IEEE Guide for Software Quality Assurance Planning.” IEEE 983 (Draft 730.2), Draft 4, October 1992,

“IEEE Standard for Software Configuration Management Plans.” IEEE 828, June 23, 1983.

“[EEE Guide to Software Configuration Management.” TEEE 1042, September 10, 1987.

“IEEE Standard for Software Verification and Validation Plans.” ANSI/IEEE 1012, September 18, 1986.

“IEEfsséangggd Criteria for Dlgnal Computers in Safety Systems of Nuclear Power Generating Stations.” IEEE-7-
-1

“Programmed Digital Computers Important to Safety for Nuclear Power Stations.” IEC 987, First Edmon, 1989. .

“Software for Computers in the Safety Systems of Nuclear Power Stations.” [EC 880,13 First Edition, 1986.

Software for Computers in the Safety Systems of Nuclear Power Stations , First Supplement to IEC 880 (Draft), Draft
supplied by member of SC45A.

“The Classification of Instrumentation and Control Systems Important to Safety for Nuclear Power Plants.” IEC
1226, February 6, 1993,

Bcots products are called pre-existing software products (PESPs) in IEC publications.

23 ‘ NUREG/CR-6421

Appendix A

APPENDIX A—PRELIMINARY LIST OF FACTORS

A preliminary list of acceptance criteria for COTS products was identified from
« IEEE 730 (now 730.1) SQA Plans

» IEEE 983 (now 730.2 draft) SQA Plan Guidance

» IEEE 828 Software Configuration Management Plans

« IEEE 1042 SCM Plan Guidance

« IS0 9000 as applied to software.

Subsequently, the limited écope of these standards was widened by including

e ANSI/ANS-104- 1987—Gu1delmes for the verification and validation of scientific and enginecring computer
programs for the Nuclear Industry

« ANSI/IEEE 1012-1986—Software Verification & Validation Plans.

With the exception of ANSI/ANS-10.4-1987, none of these standards takes significant note of existing software.
Consequently, appropriate acceptance criteria can only be inferred from those requirements stated for software
developed under purview of the standards. A general requirement present in each standard—that software be
developed under the aegis of that particular standard—is impractical for most COTS products. It would be a happy
finding indeed to discover well-done documentation and complete records ready for review.

A set of potential COTS acceptance criteria, or at least subjects to investigate, are listed in the following tables. The
tables are organized from the general to the particular. The general table poins to particular tables of additional
criteria to be investigated if the general criterion is true.

Table A-1. Failure Consequence Criteria

1 Are consequences of failure unacceptable? See Table A-2

2 Are consequences of failure acceptable? Terminate

Table A-2. Plan Existence Criteria

1 An SQA plan and documentation exist See Table A-3
2 A configuration management plan exists ' See Table A4
3 A software V&V plan exists See Table A-5
4 Some of the above do not exist ‘ : See Table A-6

25 NUREG/CR-6421

Appendix A

Table A-3. SQA Criteria

1 Does the SQA plan cover the minimum required subjects in the’ Format and subject matter is
required format? standard-dependent, but most
standards specify similar
approaches
See IEEE 730.1
2 Does the plan describe responsibilities, authority, and relations IEEE 730.1
between SQA units and software development units? _
3 Is minimum documentation available? See Table A-7 for required
' documentation. See Table A-10
for optional documentation.
4 Were the minimum SQA reviews and audits performed? See Table A-8 for minimum
required reviews and audits
5 Are standards, practices, conventions, and metrics that were used, See Table A-11 for suggested
described? - areas of standardization
6 Were procedures for problem reporting, tracking, and resolving IEEE 730.1
described?
Problems documented & not forgotten IEEE P730.2
Problem reports validated IEEE P730.2
Feedback to developer & user IEEE P730.2
Data collected for metrics & SQA IEEE P730.2
7 Were configuration management practices followed? See Table A4
8 Were V&V tasks performed? , See Table A-5
9 Did other software suppliers contribute to the product? See Table A-9. “The supplier is
responsible for the validation of
subcontracted work.”
1SO 9000-3
10 | What records were generated, maintained, and retained? IEEE 730.1
11 | What methods or procedures were used to identify, assess, monitor, | IEEE 730.1

and control risk during development of the COTS product?

NUREG/CR-6421 26

Appendix A

Table A-4, Software Configuration Management Criteria

Does the configuration management plan cover the minimum
required subjects in the required format?

Format and subject matter is
standard-dependent, but most
standards specify similar
approaches.

See IEEE 828

Does the plan describe responsibilities, authority, and relations
between configuration management units and software development
units?

IEEE 828

At least one configuration control board (CCB) is required. Does the
plan describe the duties and responsibilities of the CCB and relations
between the CCB, SQA, and software developers? e.g.,

Authority & responsibility
Role ’
Personnel

How appointed

Relation of developers & users

IEEE 828

Does the configuration management operation provide the following
required functions? :
Configuration ID (baselines)
Configuration control
Configuration status accounting & reporting
Configuration audits & reviews

IEEE 828

Configuration management is-founded upon the establishment of
“configuration baselines” for each version of each product. Is each
product or version uniquely identified and “baselined™?

IEEE 828

Is the level of authority required for change (i.e., change control)
described? Appropriate subjects include:

Change approval routing lists

Library control

Access control

R/w protection

Member protection

Member identification

Archive maintenance

Change history

Disaster recovery

Authority of each CCB over listed configuration items

IEEE 828

Does status accounting include

Data collection

Identified reports

Problem investigation authority
Maintaining and reporting
Status of specifications

Status of changes

Status of product versions
Stats of software updates
Status of client-furnished items

IEEE 828

27

NUREG/CR-6421

Appendix A

Table A-4. Software Configuration Management Criteria (cont.)

8 Are suppliers of software products (e.g., COTS) under control? For | IEEE 828 and IEEE 1042. ISO
each supplier. . . 9000-3
Is the SCM capability known?
How is SCM performance monitored?
For each product... .
Is the version in use archived?
Is the version ID’d & baselined?
Is the product under change control?
Are product interfaces under control?
Are suppliers CM audits “visible”?
Is there valid problem tracking?
Regarding supplier records. . .
‘What records are kept?
Can reviewers obtain access to them?
How good are they?
‘What security does the supplier have? ‘
9 Are the records to be maintained identified and are there retention IEEE 828
periods specified for each type of record?
10 | What additional policies and directives govern the configuration See Table A-14 for a list of
management? typical policies and directives.
Table A-5. Software V&V Criteria
1 Does the V&V plan cover the minimum required subjects in the Format and subject matter is
required format? standard-dependent, but most
standards specify similar
approaches.
See IEEE 1012
2 Is the organizational structure of the V&V function described, IEEE 1012
including the independence (or lack thereof) of the V&V
organization from the software development organization?
3 Have the minimum required V&V tasks been accomplished? See Table A-12 for minimum
' tasks
4 Does the V&V function detect errors as early in the development IEEE 1012
process as possible?
5 Can software changes and their consequences be assessed quickly? IEEE 1012
6 Are V&V functions coordinated with the software development life | IEEE 1012
cycle? '
7 Are significant portions of V&V data missing? See Table A-6

- NUREG/CR-6421 28

Appendix A

Table A-6. Actions to Take When Data is Missing

1 Can missing data be reconstructed from other available data? Reconstruct data (see Table A-
13) and proceed to Table A-5.
ANSI/ANS-10.4

2 Can missing data be reverse-engineered from existing software Reverse-engineer data (see

products? ' Table A-13) and proceed to

Table A-5.
ANSI/ANS-104

3 Is recovered data and/or usage experience and configuration control | See Table A-13 for minimum

insufficient to justify intended usage? data. If insufficient, terminate
' with prejudice.

ANSI/ANS-10.4 and IEEE 828

4 Is sufficient test data available to support intended usage? Reconstruct tests and proceed to

_ Table A-5.
ANSJ/ANS-104
Table A-7. Minimum SQA Documentation

1 Software Quality Assurance Plan IEEE 730.1

2 Software Requirements Specification IEEE 730.1

3 Software Design Description IEEE 730.1

4 Software V&V Plan IEEE 730.1

5 | Software V&V Report’ IEEE 730.1

6 User Documentation (Manuals) IEEE 730.1

7 | Software Configuration Management Plan IEEE 730.1

' Table A-8. Minimum Required SQA Reviews and Audits

1 Software Requirements Review IEEE 730.1

2 Preliminary Design Review IEEE 730.1

3 Conceptual Design Review IEEE 730.1

4 Software V&V Plan Review IEEE 730.1

5 Functional Audits (e.g., validations) IEEE 730.1

6 Physical Audits (e.g., physical deliverables) IEEE 730.1

7 In-Process Audits (e.g., life cycle stage verification audits) IEEE 730.1

8 Managerial Reviews IEEE 730.1

29

NUREG/CR-6421

Appendix A

Table A-9. SQA, SCM, and V&YV for Other Software Suppliers

1 SQA for a purchased product shall meet the same requirements as if | IEEE 730.1
it were developed in-house. For to-be-developed COTS, the other
software supplier shall perform the requirements of IEEE 730.1. For
previously developed COTS, the “methods used to assure the
suitability of the product for (its intended) nse” shall be described.

“Software suppliers” shall select subcontractors on the basis of their §} 1SO 9000-3
ability to meet subcontract requirements, including quality
requirements.

2 SCM for a purchased product shall meet the same requirements as if | IEEE 828. See also Table A-4,
it were developed in-house. As a minimum, the other software line 8 :
supplier is required to implement the provisions of IEEE 828.

3 V&V for COTS is not addressed, except indirectly through IEEE See Table A-3, line 8, and Table
730.1 through its provision requiring IEEE 730.1 compliance of the | A-6
software supplier, or through ANSI/ANS-10.4 through its provisions
for reconstruction of missing data.

7Table A-10. Suggested Additional Documentation

1" | Software Development Plan IEEE 730.1

2 Standards & Procedures Manual IEEE 730.1

3 | Software Project Management Plan IEEE 730.1

4 Software Maintenance Manual IEEE 730.1

5 User Requirements Specification IEEE 730.1

6 External Interfaces Specification IEEE 730.1

7 Internal Interfaces Specification IEEE 730.1

8 Operations Manual IEEE 730.1

9 Installation Manual IEEE 730.1

10 | Training Manual IEEE 730.1

11 | Training Plan (for SQA personnel) IEEE 730.1

12 | Software Metrics Plan IEEE 730.1

13 | Software Security Plan IEEE 730.1

Table A-11. Suggested Areas of Standardization

1 Documeéntation Standards IEEE P730.2

2 Logical Structure Standards IEEE P730.2

3 Coding Standards 1EEE P730.2

4 | Comment Standards IEEE P730.2

5 Testing Standards IEEEP730.2

6 SQA Product & Process Metrics IEEE P730.2

NUREG/CR-6421 30

Table A-12. Minimum V&V Tasks

Appendix A

1 SVvpP IEEE 730.1 and IEEE 1012
2 Requirements (e.g., SRS) Analysis IEEE 1012
Existence ANSI/ANS-10.4
Clarity ANSI/ANS-10.4
Consistency ANSI/ANS-10.4
Completeness ANSI/ANS-10.4
All functions included '
Environment specified
Inputs & outputs specified
Standards used specified
Correctness ANSI/ANS-10.4
Feasibility ANSI/ANS-10.4
Testability ANSI/ANS-10.4
3 SRS Traceability Analysis IEEE 1012 & ANSI/ANS-104
4 | Interface Requirements Analysis IEEE 1012 & ANSI/ANS-10.4
5 Test Plan Generation IEEE 1012 & ANSI/ANS-104
6 Acceptance Test Plan Generation IEEE 1012
7 Design Analysis - IEEE 1012
Completeness ANSI/ANS-104
- Correctness ANSY/ANS-10.4
Consistency ANSI/ANS-104
Clearness ANSI/ANS-104
Feastbility ANSI/ANS-10.4
8 Design Traceability Analysis IEEE 1012 & ANSI/ANS-104
9 Interface Design Analysis 1EEE 1012
10 | Unit Test Plan Generation IEEE 1012 & ANSI/ANS-10.4
11 | Integration Test Plan Generation IEEE 1012 & ANSI/ANS-104
12 | Test Designs ‘ IEEE 1012
Code test drivers ANSI/ANS-104
13 | Source Code Analysis IEEE 1012 .
Conformance to standards ANSI/ANS-10.4
Adequate comments ANSI/ANS-104
Clear and understandable ANSI/ANS-104
Consistent with design ANSI/ANS-104
Strong typing ANSI/ANS-104
Error-checking ANSI/ANS-10.4
14 { Source Code Traceability IEEE 1012
15 | Interface Code Analysis IEEE 1012
Well-controlled software interfaces ANSI/ANS-10.4
16 | Documentation Evaluation IEEE 1012
17] Test Procedure Generation IEEE 1012 & ANSI/ANS-10.4
Unit Test
Integration Test
System Test
Acceptance Test

31

NUREG/CR-6421

Appendix A

Table A-12. Minimum V&YV Tasks (cont.)

18 | Unit Test Execution 1IEEE 1012
Unit test results ANSJ/ANS-10.4
19 | Integration Test Execution IEEE 1012
Size ANSI/ANS-104
Timing ANSI/ANS-104
Interface control ANSI/ANS-10.4
Interactions verified ANSJ/ANS-10.4
Build control and documentation ANSI/ANS-10.4
20 | System Test Execution IEEE 1012 .
Each requirement tested? ANSI/ANS-10.4
Each requirement met? ANSI/ANS-10.4
All test cases executed and checked? ANSI/ANS-10.4
21 | Acceptance Test Execution IEEE 1012
22 Ir_lstallation Configuration Audit IEEE 1012
Deliverables identified ANSI/ANS-104
Can delivered program be rebuilt? ANSI/ANS-104
Do test cases still work? ANSI/ANS-104
23 | V&V Final Report IEEE 1012
24 | Baseline Change Assessment (as required) IEEE 1012
25 | Review Supporn—participation in software and management IEEE 1012
reviews ‘
Table A-13. Minimum Documentation Needed for a Posteriori V&V
1 | Problem statement | ANSI/ANS-104
2 Requirements specification ANSI/ANS-104
3 Design specification ANSI/ANS-10.4
4 Test plan and test results ANSI/ANS-104

NUREG/CR-6421 32

Appendix A

Table A-14. Typical Policies and Directives of a Configuration Management Operation

1 Definition of software levels or classes IEEE 828
2 Naming conventions IEEE 828
3 Version ID conventions IEEE 828
4 Product ID policy IEEE 828
5 IDs of specifications, test plans, manuals & documents IEEE 828
6 Media ID and file management IEEE 828
7 Documentation release process IEEE 828
8 Software release to general library IEEE 828
9 Problem reports, change requests and orders IEEE 828
10 | Structure & operation of CCBs IEEE 828
11 |} Acceptance or release of software products IEEE 828
12 | Operating rules for the software library IEEE 828
13 | Audit policy IEEE 828
14 | Methods for CCB assessment of change impact IEEE 828
15 | Level of testing or assurance required before an item is accepted for | IEEE 828
CM—may be related to software classes
16 | Level of SQA or V&V required before an item is accepted for IEEE 828

CM—may be related to software classes

33

NUREG/CR-6421

Appendix B: Testing Existing Software
for Safety-Related Applications

Prepared by
John A. Scott
J. Dennis Lawrence

Lawrence Livermore National Laboratory
7000 East Avenue
Livermore, CA 94550

"Prepared for
U.S. Nuclear Regulatory Commission

Appendix B

ABSTRACT

The increasing use of commercial off-the-shelf (COTS) software products in digital safety-critical applications is
raising concerns about the safety, reliability, and quality of these products. One of the factors involved in addressing
these concerns is product testing. A tester’s knowledge of the software product will vary, depending on the
information available from the product vendor. In some cases, complete source listings, program structures, and
other information from the software development may be available. In other cases, only the complete
hardware/software package may exist, with the tester having no knowledge of the internal structure of the software. -

The type of testing that can be used will depend on the information available to the tester. This report describes six
different types of testing, which differ in the information used to create the tests, the results that may be obtained,
and the limitations of the test types. An Annex contains background information on types of faults encountered in
testing, and a Glossary of pertinent terms is also included.

37 S NUREG/CR-6421

Appendix B

CONTENTS
1. Introduction : : . : 45
LI, PUIPOSE .ccovccrsrsorsaresneseresasearssssassssanssassssssensnsssasesssasessasassseses 45
1.2. Scope, Assumptions and lenauons cerrressnseenesnanns .45
1.3. Report Organization 45
1.4, DEfINIHONS ...cococemeiraecnrarrnresesarosssessraressssssnssansivesssssassesssesasssssarassssassssens 46
1.5. General Comments on Testing 46
1.5.1. Testing Goals and Software Qualities : ' 46
1.5.2. Software Objects 46
1.5.3. Testers ' 49
1.5.4. The Testing Life Cycle : 49
1.6. Faults, Errors, Failurescoovcsrecssensenreesseruneens 51
1.6.1 Definitions : 51
1.6.2 Relationship of Faults, Errors, and Failures eeerensssnronses 51
1.7. Selection of Testing Strategies and Techniques 52
1.7.1. Context for Selecting Testing Strategies : 52
1.7.2. Considerations for Selecting Testing Strategies 52
2. Static Source Code Analysis : 59
2.1. Purpose of Static Source Code Analysis ‘ 59
2.2. Benefits and Limitations of Static Source Code Analysis : ; 59
2.2.1. Benefits _ 59
2.2.2. Limitations , 59
2.3. Information Required to Perform Static Source Code Analysis 60
- 2.4. Methods of Performing Static Source Code Analysis ' 60
2.4.1. Static Analysis Planning and Requirements 60
242, Analysis Design and Implementation 60
2.4.3. Execution and Evaluation of the Analyses..... 61
2.5. Discussion of Static Source Code Analysis 61
2.5.1. Inspection _ 61
2.5.2. Desk Checking : 63
2.5.3. Automated Structural Analysis 64
2.5.4. Other Methods 64
3. Sutuctural Testing . eeeresanesenereererann 67
3.1. Purpose of Structural Testing 67
3.2. Benefits and Limitations of Sructural TESUNEcccreeceuererersecsencnesessanessssssesasasesssasmsmessencsssmerssscs seeecesssassss 67
3.2.1. BENESILS ..cuuvereeeeenernsissscnsnssnsosenasesssssmsmsrmssarsanassssssanasassons 67
322 leltanons 67
3.3. Information Required to Perform Structural Testmg . 67
3.4. Methods of Performing Structural Testing 67
3.4.1. Test Planning and Test ReQUIrEMENtSc.cenereerenreenrsesnesnsnens 67
3.4.2. Test Design and Test Implementation 68
3.4.3. Test Execution and Test Evaluation 68
3.5. Discussion of Structural TEStNEcoceverrrevreesmmrecrnereresrrsasseressasens 69
3.5.1. Control Flowgraphs 69
3.5.2. Control Flow (Path) Testing 70
3.5.3. Loop Testing . 71
3.5.4. Data FIOW TeStNEcccovvveerenerrerssnssenssenanssenens A
4, Functional Testing 75
4.1. Purpose of Functional Testing » 75

-39 NUREG/CR-6421

Appendix B

4.2. Benefits and Limitations of Functional Testing 75
42.1. Benefits 75
4.2.2. Limitations . 75
4.3. Information Required to Perform Functional Testing " 75
4.4. Methods of Performing Functional Testing v 75
44.1. Test Planning and Test Requirements ... 75
4.4.2. Test Design and Test Implementation... “ 76
4.4.3. Test Execution and Test EValuation..........ceecsesesesessassecenssassensesaases 76
4.5. Discussion of Functional Testing..... 77
4.5.1. Transaction Testing ; 77
'4,5.2. Domain Testing ... : 78
4.5.3. SYNLAX TESHNE ..vvurnrerrrerrcssessesssesssssssessasssssssessssesssssssnssssssssssesessasssose ‘ 79
. 4.54. Logic-Based Testing ' 80
4.5.5. State Testing 81
5. Statistical Testing 83
5.1. Purpose of Statistical Testing , ' 83

5.2. Benefits and Limitations of Statistical Testing 83
5.2.1. Benefits 83
5.2.2. Limitations 83
5.3. Information Required to Perform Statistical Testing 83
5.4. Methods of Performing Statistical Testing 84
5.4.1. Test Planning and Test Requirements ' 84
5.4.2. Test Design and Test Implementation : 84
5.4.3. Test Execution and Test Evaluation 86
5.5. Discussion of Statistical Testing - 86
6. Stress TEStNE ...u.eeevernirarecsensoncrsisancrens : ‘ 89
6.1. Purpose of Stress Testing ' 89
6.2. Benefits and Limitations of Stress Testing 89
6.2.1. Benefits 89
6.2.2. Limitations 89
6.3. Information Required to Perform Stress Testing 89
6.4. Methods of Performing Stress Testing - 90
6.4.1. Test Planning and Test Requirements 90
6.4.2. Test Design and Test Implementation...... 90
6.4.3. Test Execution and Test Evaluation ' : 91
6.5. Discussion of Stress Testing 92
7. Regression Testing " 95
7.1. Purpose of Regression Testing 95
7.2. Benefits and Limitations of Regression Testing ... 95
7.2.1. Benefits 95
7.2.2. Limitations 95
7.3. Information Required to Perform Regression Testing 95
7.4. Methods of Performing Regression Testing - cersrenineasssersasstranrrsassasatonsssnessessesssaratnes .95
7.4.1. Test Planning and Test Requirementsc.cceeees . 95
7.4.2. Test Design and Test Implementation 95
7.4.3. Test Execution and Test Evaluation 926
7.5. Discussion of Regression Testing 96
8. References ' 97
Annex—Taxonomy of Software Bugs 99
GIOSSATY ccuverereeaeersssermosassossrssessssossuassasssnessatassarssnasassssssesessssbesnsssssbtotntossosssessessensaseassnsranss 109

NUREG/CR-6421 . 40

Table 1-1.
Table 1-2.
Table 1-3.
Table 1-4.
Table 1-5.
Table 1-6.
Table 1-7.
Table 3-1.
Table 5-1.
Table 5-2.

Figure 2-1.
Figure 2-2,
Figure 3-1.
Figure 3-2.
Figure 3-3.
Figure 3-4.
Figure 3-5.
Figure 3-6.
Figure 4-1.
Figure 4-2.
Figure 4-3.
Figure 4-4.
Figure 4-5.
Figure 4-6.
Figure 4-7.
Figure 5-1.
Figure 6-1.

TABLES

Appendix B

Safety Impact of Software Qualities from a Regulator Viewpoint...........eeeesee. 47
Testing Strategies Appropriate to Software Qualities 48
Test Strategies Appropriate for Software Objects 50
Expected Pattern of Testers and Software Objects 50
Strategies Used by Testers 50
Sample Prerequisites for and Extent of Testing 53
Typical Testing Strategies for Investigating Software Qualities 55
Data Flow Testing Symbols and Meanings Y K
Required Number of Test Cases to Achieve Stated Levels of Failure Rate and Confidence...........eerevsene 85
Expected Test Duration as a Function of Test Case Duration 85
FIGURES

Conceptual Platform for Automated Static Analysis 62
Software Development Activities, Products, and Inspections 63
Typical Test Station Components for Structural Testing 69
Example of a Program 70
Flowgraph Corresponding to the Module in Figure 3-2 71
Examples of Loops in Flowgraphsccccccveeevererienenreneneereenns 72
Test Cases in Loop Testing ' ' 72
Control Flowgraph Augmented to Show Data Flow 74
Typical Test Station Components for Functional Testing.........cccceeuenen. 77
Example of a Transaction FIOWEIAPNccvecverrrenterereemsaereacssssssssnmnsasnsssrossasssseresssssssasssssesssensosssssasssenes 78
Example of Domains 79
Examples of Two-Dimensional Domains with Examples of Test Values 80
Example of 8 SYNLaX Graphccvecceeecennririesennessssssesesssssssssssesssssssssesssssnas 80
Example of a Decision Table 81
Example of a State Transition Diagramc.ceceveerrevrcsssnassessseneens 82
Typical Test Station Components for Statistical Testing 86
Typical Test Station Components 91
41 NUREG/CR-6421

Appendix B

ACKNOWLEDGMENT

The authors thank and acknowledge Professor Richard Hamlet for reviewing this report and providing helpful
insights and comments.

43 NUREG/CR-6421

Appendix B

TESTING EXISTING SOFTWARE FOR
SAFETY-RELATED APPLICATIONS

1. INTRODUCTION

1.1. Purpose

The increasing use of commercial off-the-shelf
(COTS) software products in digital safety-critical
applications is raising concerns about the safety,
reliability, and quality of these products. One of the
factors involved in addressing these concerns is
_product testing. A tester’s knowledge of the software
product will vary, depending on the information
available from the product vendor. In some cases,
complete source listings, program structures, and other
information from the software development may be
available. In other cases, only the complete
hardware/software package may exist, with the tester
having no knowledge of the internal structure of the
software.

The type of testing that can be used will depend on the
information available to the tester. This report
describes six different types of testing, which differ in
the information used to create the tests, the results that
may be obtained, and the limitations of the test types.
An annex contains background information on types of
faults encountered in testing, and a Glossary of
pertinent terms is also included.

1.2. Scope, Assumptions and Limitations

This report specifically addresses testing of existing,
commercial off-the-shelf software for safety-related
applications and, therefore, makes no assumptions as to
the adequacy of the software process under which the
software was developed or of the capabilities of the
software developer. These and other questions must be
considered by whatever process determines the
acceptability of the COTS software product for a
particular use. Testing is only one aspect of an

. acceptance process for a COTS software product.
Other aspects include a system design that carefully
allocates responsibilities to the computer system, a
hazard analysis of the system (including computer
hardware and software), an investigation of the
capabilities of the software developer, a mature
development process, and favorable experience data.
These aspects are discussed in the main report in this
NUREG/CR, and related information is found in
Lawrence (1993), Lawrence and Preckshot (1994), and
Preckshot and Scott (1995). Results obtained from

applying testing strategies discussed in this report will,
therefore, be used in combination with data from the
other information sources used in the acceptance
process.

This report provides an overview of key testing
techniques and their relationship to COTS software.
The quoted references should be-consulted for more
detail. In particular, Beizer (1990) and Marick (1995)
provide detailed, practical information on carrying out
testing activities.

1.3. Report Organization

The body of the report consists of six sections,
numbered 2-7, which describe six different testing
strategies. Within each testing strategy, 2a number
specific testing techniques are described. The testing
strategies are:

» - Static Source Code Analysis

» Structural Testing

= Functional Testing

« - Statistical Testing

» Stress Testing

» Regression Testing.

Each of these sections is organized in a similar fashion:
« Purpose of the testing strategy

» Benefits and limitations of the testing strategy

+ Information required to perform the tests

.« Methods of performing the tests

45

+ Discussion of the test techniques belonging to the
testing strategy. :

The sections are meant to be read independently, so
some repetition of material occurs throughout sections
2-7.

An Annex has been included to provide additional
information regarding the types of faults discovered

NUREG/CR-6421

Appendix B

during testing, as well as a Glossary of software quality
terms.

1.4. Definitions

Several terms used in this report are defined here. The
Glossary provides a more complete listing of
applicable terminology.

» Commercial Off-the-Shelf (COTS) software.
COTS software is developed for general
commercial use and, as such, is usually developed
without knowledge of the unique requirements of
particular applications. The term COTS, as used
here, does not denote an acceptance process nor
does it have any connotations regarding the
availability of source code or development process
records. '

« Operational Profile. The operational profile of a
program is the statistical distribution function of
the inputs which will be encountered by the
program under actual operating conditions.

* Oracle. Any (often automated) means of judging
the correctness of a test execution. !

* Software Object. The software module, package,
program, subsystem, or system which is being
tested.

* Testing. “(1)The process of operating a system or
component under specified conditions, observing
or recording the results, and making an evaluation
of some aspect of the system or component. (2)
The process of analyzing a software item to detect
the differences between existing and required
conditions (that is, bugs) and to evaluate the
features of the software items.” (IEEE 610.12-
1990) In this report, the word “testing” is used in
both meanings.

L5. General Comments on Testing

This section contains brief comments on software
testing that apply generally to the remainder of the
report. Note that the tables of Section 1 should not be
read as absolutes, but as general guidance. In particular
cases, some connections indicated in the tables may not
be relevant, and some connections that are not
indicated in the tables may be important. Nevertheless,
in most cases, the tables provide general guidance for
testing safety-related COTS software.

1 A more restrictive definition is given by Beizer (1990) who states,
“An oracle is any program, process, or body of data that specifies the
expected outcome of a set of tests as applied to a tested object. . .
The most common oracle is an input/outcome oracle—an oracle that
specifies the expected outcome for a specified input.” This is more
difficult to create and is not necessary to this report.

NUREG/CR-6421

1.5.1. Testing Goals and Software Qualities

To be effective, testing should be directed at measuring
some quality of the software. The various testing
strategies address different sets of software qualities.
For this reason, a comprehensive testing program will
incorporate as many strategies as possible in an attempt
to assess the overall soundness of the software. Within
this context, special emphasis can be placed on those
strategies that are related to quality attributes of
particular concern. ‘

Hetzel (1984) divides software qualities into three sets:
external, internal, and future. External qualities
describe the functionality of the software; internal
qualities describe the engineering aspects of the
software; and future qualities describe the adaptability
of the software. Many possible software qualities have
been described in the software engineering literature. A
list of qualities collected by Hetzel (1984) and by
Charette (1989) has been arranged by the likely impact
of the qualities on safety in Table 1-1. Definitions of
these qualities are given in the Glossary.

The six different testing strategies are not equally
suited to all of the software qualities. Table 1-2
suggests which strategies to use for the qualities that
are of primary and secondary interest in safety-related
reactor applications. The table provides a cross
reference between software qualities and strategies
used to test for these qualities. These linkages can be
useful to both developers and evaluators of COTS
software. Regression testing attempts to ensure that
changes made to the software, either during
development or after installation, do not affect a
software object in unplanned areas. It consists of re-
execution of previous testing and, therefore, addresses
the qualities previously demonstrated with other forms
of testing.

1.5.2. Software Objects

Software objects subject to testing range from
programming language statements to complete
systems, and the type and amount of testing will
generally vary across this range. To provide some
consistency within this report, five classes of objects
are defined. In particular instances, some classes may
coalesce. For example, in the simplest case of a system
consisting of a single module, all five classes are
compressed into one. Most classes will be distinct in
safety-critical systems.

Software object terminology is defined for

conventional third-generation programming languages
such as Ada, C, C++, Pascal, and FORTRAN.
Extensions to fourth-generation languages and visual
programming environments should be straightforward. -

Appendix B

Table 1-1. Safety Impact of Software Qualities from a Regulator Viewpoint2 '

Impact on Operational Safety
Primary Impact Secondary Impact Little Impact
External (Functional) Accuracy User Friendliness
Qualities Acceptability
Availability
Completeness
Correctness
Interface Consistency
Performance
(Efficiency, Timing)
Preciseness
Reliability
- Robustness
Security
Usability _
- Internal (Engineering) Integrity Clarity Accountability
Qualities - Internal Consistency Interoperability Adaptability
Testability Simplicity Generality
Validity Understandability Inexpensiveness
Manageability
Modularity ,
Self-Descriptiveness
Structuredness
Uniformity
Future Qualities Accessibility
Augmentability
Convertibility
Extendibility
Maintainability
Modifiability
Portability
Reparability
Reusability
Serviceability

2Note that qualities associated with modifications that might be made in the operations phase have been listed in the “Litle Impact” category
because an assumption is made here that, in typical safety-related reactor applications, changes will be infrequent. To the extent that such
software might be used in an environment with regularly changing requirements, these qualities assume more importance. It should also be noted
that, in some cases, listed qualities have essentially the same meaning but may have slightly different interpretations depending on the context.
Since they all appear in the literature, no attempt has been made to group them. They are, however, categorized consistently.

47 : NUREG/CR-6421

AppendixB

Table 1-2. Testing Strategies Appropriate to Software Qualities

Software Quality Static Structural Functional Statistical Stress Testing
Analysis Testing Testing | Testing

Acceptability X [(0]

Accuracy 0] X X

Availability I X X

Clarity X

Completeness X X (0]

Correctness X X X X

Integrity 0] X X

Interface Consistency X X

Internal Consistency X X 0)

Interoperability X X

Performance (efficiency 0 X X

& timing)

Preciseness 0] X X

Reliability Il X

Robustness O X X

Security (o) X X

Simplicity X

Testability X

Understandability X

Usability » I X X

User Friendliness X

Validity X X

Regression Testing 0] X 0] X

X = Strategy should be used for the specified quality

O = Strategy may be used for the specified quality

* A module is a named collection of programming

language statements. Alternate names are
subroutine , procedure, or unit.

* A package is a collection of one or more modules -
which relate to a common topic. Packages are a

key feature of object-oriented programming

languages such as Ada and C++. For example, a

set of modules that processes dates could be
combined into a calendar package. A set of

modules that manages sensor information (read,

check status, convert data) could be combined into

a sensor device-driver package.

= A program is a set of one or more packages and

modules which can be executed on a computer.

NUREG/CR-6421

Programs are created by means of a linker or
loader and can be stored in a file or PROM 3 for
future use.

A subsystem consists of one or more modules,
packages and programs which are devoted to one
or more related functions, or which must execute
together to achieve a desired task, or which
execute concurrently on the same processor.
Examples include a set of programs which
performs various kinds of report production, and a
set of programs which reads and processes sensor

3 Programmable read-only memory.

data on one computer and sends the results to be
. displayed on another computer.

* A system is the entire set of subsystems which
manages a complete application.

Table 1-3 shows a different perspective. It matches
different test strategies to different classes of software

" objects. The checked entries show which testing
strategies are primarily recommended for each class of
object. Note that any strategy could apply to any class
of object under specific circumstances. The table
merely provides general guidance.

Objects are classified here according to structure, and
this classification is used throughout the report.
Another method of classification relates to structural
complexity. This might yield a series such as batch
processing, interactive time-sharing, transaction
processing, real-time process control, and real time
vehicle control. However, this report is limited to real
time process control systems.

A further classification dimension involves the
interaction of processes and ranges from single process
systems to multiple-process shared-memory concurrent
systems. This dimension affects primarily the amount
of testing required and the difficulty of creating and
judging the tests. In particular, stress testing is very
important as the amount of interaction increases.

1.5.3. Testers

Testing is frequently carried out by different categories
of personnel. A primary concern when safety is an
issue is independence of testing from development.4

4Indcpendent V&V is used when it is necessary to have an impartial,
objective analysis and test conducted of the software/system. The
notion is that difficult-to-discover errors which may reside in the
software due to assumptions or technical biases inadvenently
introduced by the development team would have a higher probability
of being detected by an impartial, objective V&V team who would
apply a fresh viewpoint to the software. IV&V is used for high -
criticality software, which demands the integrity of critical functions
due to life-threatening consequences of failure, unrecoverable
mission completion (e.g., space probes), safety or security
compromises, financial loss, or unacceptable social consequences.
Independence is defined by three parameters: technical, managerial,
and financial. The degree of independence of the V&V effort is
defined by the extent that each of the three independence parameters
is vested in the V&V organization. The ideal IV&V contains all
three independence parameters. Technical independence requires that
the IV&V team (organization or group) utilize personnel who are not
involved in the development of the software. An effective IV&V
team has personnel who have some knowledge about the system or
whose related experience and engineering background gives them
the ability 10 quickly leam the system. In all instances, the IV&V
team must formaulate its own understanding of the problem and how
the proposed system is solving the problem. This technical
independence (“fresh viewpoint™) is crucial to the IV&V team's
ability to detect the subtle errors that escape detection by
development testing and quality assurance reviewers. (Personal
communication on work being done on the update of IEEE 1012).

49

‘Appendix B

During development, the software engineer who
develops code may be involved in some of the testing.
Some independence can be achieved by using other
software engineers from the developing organization.
Greater independence can be achieved if the customer

_or an IV&V organization performs testing activities. In

these cases, testing could be subcontracted. For
example, the customer might hire a company to carry
out testing on its behalf or it might do the testing itself.
When COTS software is to be tested by the customer,
it is unlikely that parties from the developing
organization will be involved in the testing effort, so
independence would generally be assured. In any case,
note that it is essential that the testers be well-qualified
and knowledgeable of the application.

Table 14 shows which categories of tester are most
likely to carry out testing on the different types of
software objects. As with the previous tables,
exceptions do occur. For example, a programmer could
carry out all testing strategies.

Table 1-5 similarly shows which categories of testers
are likely to use the different testing strategies. Again,
these are recommendations, not absolutes.

1.5.4. The Testing Life Cycle

Software testing has a life cycle of its own that is
similar to the software development life cycle. Testing
life cycle phases gencrally include planning,
requirements, design, implementation, and operation
(execution). Note that V&V activities apply to testing
life cycle products (reviews of test plans & designs,
etc.) in addition to software development life cycle
products.

If testing is carried out by or on behalf of the
development organization, the testing life cycle phases
should occur concurrently with the development life
cycle phases. This is not likely to be possible with
customer testing of COTS software. However, the
testing life cycle should still exist and be carried out.

Testing life cycle activities are described in detail in
IEEE Software Engineering Standards 829 and 1074
and are not discussed here. The following list provides
a brief synopsis of the activities based on these
standards, assuming that the testing will be carried out
by (or on behalf of) the customer.

» Test planning activities
~ Prepare test plan
« Test requirements activities

- . Determine the software qualities for which
testing is required
— Determine the software objects to be tested

— Obtain needed resources: budget, time, and
assignment of personnel

NUREG/CR-6421

Appendix B

Table 1-3. Test Strategies Appropriate for Software Objects

Package Subsystem l System I

Source Code :

Analysis X

Structural X 0] &)
Functional o] X X X X
Statistical X X X
Stress 0] X X X
Regression X X X X X

X = Test strategy should be used on specified software object
O = Test strategy may be used on specified software object

Table 1-4. Expected Pattern of Testers and Software Objects

Subsystem
Software
Engineer X X 0]
Development
Organization o X X 8] 0]
Customer X X
Independent
Tester o) o X X X

X = Tester is likely to test specified software object
O = Tester may test specified software object -

Table 1-5. Strategies Used by Testers

II Software Development‘L Independent
Engineer Organization Customer - Tester

Source Code I T o
Analysis X 0] o]
Structural X X 0]
Functional | X X X X
Statistical 0) X X
Stress o) X X X
Regression X X X X

X = Test strategy should be used on specified software object
O = Test strategy may be used on specified software object

NUREG/CR-6421 50

e Test design activities

Prepare test design specifications
— Prepare test procedures

Prepare test case specifications
— Design test station

I

» Test implementation activities
~ Prepare test cases

- Prepare test data
— Create test station

» Test execution activities
— Execate test cases
— Analyze test results
~ Prepare test reports

1.6. Faults, Errors, Failures

One purpose of testing is to identify and correct
program faults, which is done by examining program
failures.

1.6.1 Definitions

A fault is a deviation of the behavior of a computer
system from the authoritative specification of its
behavior. A software fault is a mistake (also called a
bug) in the code.

An error is an incorrect state of hardware, software, or
data resulting from a fault. An error is, therefore, that
part of the computer system state that is liable to lead
to failure. Upon occurrence, a fault creates a latent
error, which becomes effective when it is activated,
leading to a failure. If never activated, the latent error
never becomes effective and no failure occurs.

A failure is the external manifestation of an error. That
is, a failure is the external effect of the error, as seen by
a user (human or physical device), or by another

program.
1.6.2 Relationship of Faults, Errors, and Failures

Assume that the software object under test contains a
fault B. Depending on the circumstances, execution of
the code containing fault B may or may not cause a
change of state which creates an error E. Again,

depending on circumstances, E may or may not cause a

failure F to occur.> Note that neither fault B nor error E
is observable; only failure F is observable.

5 Considerable time delays may occur between these events. B could
potentially cause more than one type of error, and each such error
could potentially cause more than one type of failure, depending on
the actual execution circumstances of the code.

Appendix B

Dynamic testing® consists of presenting the software
object with a sequence of inputs I and observing
failures. This amounts to searching for sequences I —
B — E — F. Other sequences are possible. For
example: :

I alone (that is, no fault is encountered),
1 B (but no error occurs),
and1 — B — E (but no failure occurs).

None of these sequences can be.observed from system
output, although two of them do contain faults.

As an example, suppose a program contains the
statement

x1l=(a+b)/(c+d)

This statement is used later on in one of two ways,
depending on the value of a flag variable which is
almost always true:

if (flag) theny = x1i-4
elsey=x11+3

There is a fault here, since the last statement contains a
typographical error - x11 (‘ex-one-one’) is used
instead of x11 (‘ex-one-el’). Most of the time, this
does not matter, since the faulty statement is rarely
executed. However, if it is executed, then variable ‘y’
will have an incorrect value, which is an error
(incorrect state). As long as ‘y” is not used, no
observable harm occurs. Once ‘y’ is used laterina
calculation, however, the program may perform an
incorrect action, or simply fail. This action (or the
program’s failure) is the failure F mentioned above.

Although the cause of the failure runs fault-error-

" failure, the diagnosis usually takes place in the other

51

order: failure-error-fault. Specifically, from failure F,
the activity of debugging attempts to infer the error
which caused the failure; this may or may not be done
correctly. The fault B must itself be inferred from the
inferred error; again, this may or may not be done
correctly. If the causal analyses of either of the
sequences, F = E or E — B, is done incorrectly, fault
B is not likely to be corrected. Worse, a correct piece

* of code may be inappropriately “fixed,” resulting in a

new fault in the software object.

An implication of this is that any estimate of the
effectiveness of a testing activity is inaccurate by an
unknown (and almost certainly unknowable) amount.
In particular, any estimate of the number of faults
remaining in the software object which is derived from

SStatic analysis, discussed in Section 2, is an attempt to discover
faults directly by examining the source code.

NUREG/CR-6421

Appendix B

testing is imprecise by an unknown amount. This
should not be surprising—similar effects can be
observed in science anytime inductive reasoning is
used. '

It is widely believed by software engineers that a
properly designed test program can reduce the
uncertainties in testing effectiveness sufficiently that
they can be acceptably ignored. The operative words
are “properly” and “believed.” The first word is itself
ill-defined, while “belief” lacks the confidence that
comes with scientific or mathematical proof. A final
point is that extending a general belief (that applies
generally to testing) to a specific software object under
test adds an additional inference of unknowable
uncertainty.

These observations apply to all dynamic testing
strategies discussed below except statistical testing.
The latter is inherently interested in failures rather than
faults, so the argument does not apply. This argument
helps explain, however, why testing can never be

perfect.

1.7, Selection of Testing Strategies and
Techniques

This section discusses the context and goals associated
with the testing of COTS software and provides
guidelines for applying the various testing strategies
discussed in the following sections.

L.7.1. Context for Selecting Testing Strategies

The testing of a COTS software item is normally done
within the context of a larger process whose goal is to
determine the acceptability or non-acceptability of the
COTS software for use in a particular application.
Consequently, this report does not address the issue of
determining acceptance criteria for the use of a COTS
software item in a particular application. It is assumed
that the acceptance process will identify specific needs
to be addressed with testing, that this report will serve
as a reference for planning and conducting the
necessary testing, and that the results will be evaluated,
with other information, within the context of the
acceptance process.

A COTS software item might be tested in order to gain
additional information about the product itself or to
examine the behavior of the product in the planned
application. In general, the more important a COTS
software item is to safety, the less one would expect to
need after-the-fact COTS software testing to augment
other information in order to demonstrate acceptability.
In other words, the COTS software item should already
be demonstrably well-qualified for its intended role. In
this case, testing activities will probably be narrowly
focused on particular qualities or attributes of the
software. For items less important to safety, it may be

NUREG/CR-6421

appropriate (depending on the specifics of the
acceptance process) to rely to a larger degree on after-
the-fact testing, and a more comprehensive testing
effort might be appropriate. Regardless of the scope of
any potential testing effort, it will be useful to obtain
information about past and current faults as well as
configuration and operating parameters, reliability and
availability, and comments about other qualities based
on the experience of users of the COTS software item.

In addition to augmenting the testing effort conducted
during software development, there might also be new
requirements specific to the intended use of the COTS
software item that should be addressed with testing.
These might be related to particular safety functions to
be performed, special performance constraints,
adaptation to new hardware platforms, particular
standards adopted for the application, or a need for
demonstrating high confidence in particular software
qualities. In these cases, the appropriate strategies must
be selected to address the areas of concern. This testing
effort could be quite extensive. For example, functional
testing might be used to verify that certain functions
are handled correctly, stress testing might be used to
examine performance in the target environment, and
statistical testing could be applied to assess reliability.

1.7.2. Considerations for Selecting Testing
Strategies

This subsection provides assistance in selecting testing
strategies and techniques to meet the needs defined by

 a COTS acceptance process. Since there may be

52

multiple techniques that will address a particular
testing question, and since it is not possible to
anticipate all types of questions that might arise in
various situations, the information provided must be
considered as guidance rather than as a prescriptive
formula. It should also be noted that this section refers
to traditional third-generation languages (e.g., Ada, C,
C++, Fortran, and Pascal) and does not necessarily
apply specialized or developing technologies such as
artificial intelligence systems.

The process of selecting testing strategies for a COTS
software item is constrained by the information
available. Table 1-6 presents a summary of the
minimum information required for the various testing
strategies. Representative inforimation is also provided
regarding the extent of testing to be applied when using
a particular testing strategy; refer to the appropriate
section for more detail. Table 1-6 provides a first-order
estimate of the prerequisites and scope of a testing
effort. Each situation is unique and the reviewer should
refer to the text and other references to make
determinations regarding the nature and extent a
specific testing effort. The terminology used in Table
1-6 is explained in later sections of this report.

Appendix B

Table 1-7 presents a set of questions about software taxonomy of fanlits presented in the Annex is also
qualities that can be addressed by selected testing . helpful in selecting testing strategies. The terminology
strategies. The table is not exhaustive. However, it used in Table 1-7 is explained in later sections of this
provides useful examples for selecting testing report.

strategies 10 meet specific testing requirements. The

Table 1-6. Sample Prerequisites for and Extent of Testing

Strategy: _ Minimum Information Suggested Extent of
Technique Goal Required Testing/Analysis
~ Static: ' ' ' _
Inspection Examine architectural design ~ Software requirements; One or more inspections. Group
)] with requirements as reference architectural design decision on re-inspection based on
inspection results.
Inspection Examine detailed design with Architectural & - One or more inspections. Group
an architectural design as detailed design decision on re-inspection based on
reference inspection results. \
Inspection Examine source code with Source code & detailed One or more inspections. Group
1(74) detailed design as reference design decision on re-inspection based on
. inspection results.

Inspection Check code for specific Source code One or more inspections. Group
(other) qualities, properties, or decision on re-inspection based on
standards adherence (can be , inspection results.

part of 12) '
Inspection Verify allocation of software System requirements & - One or more inspections. Group
(other) requirements software requirements decision on re-inspection based on
inspection results:

Inspection Check application-specific System & software One or more inspections. Group

(other) safety requirements safety requirements; decision on re-inspection based on
hazard/risk analyses inspection results.

Desk Verify key algorithms & Source code One pass per revision; continue

checking constructs . ‘ until no new faults are found.

Automated Produce general/descriptive Source code " One pass per revision

structural information; compute metrics

analysis values

Automated Fault detection Source code One pass per revision; continue

structural until no new faults are found.

analysis

Automated Standards violations Source code One pass per revision; continue

structural : until no new faults are found.

analysis : '

53 ' NUREG/CR-6421

Appendix B

Table 1-6. Sample Prerequisites for and Extent of Testing (cont.)

Strategy: Minimum Suggested Extent of
Technique Goal Information Required Testing/Analysis
Structural:
Path Verify internal control flow Source code; module Branch coverage
design specification
Loop Verify internal loop controls Source code; module Focus on loop boundaries
design specification
Data flow Verify data usage Source code; module All-'definition-usage'-pairs
‘ design specification -
Domain Verify internal Source code; module . . Focus on boundaries
(structural) controls/computations over design specification
input domains
Logic Verify internal logic Source code; module All combinations of conditions
(structural) (implementation mechanisms) design specification
Functional:
Transaction Verify implementation of Executable, software All transactions
application functions requirements
Domain Verify functional Executable, software Representative domain values
controls/computations over requirements including boundary and illegal
input domains values
Syntax Verify user interface and Executable, software All input/message constructs
message/signal constructs requirements
Logic Verify implementation of the ~ Executable, software All combinations of real-world
logic of the real-world requirements conditions
application ‘
State Verify implementation of Executable, software . All states/transitions
: states associated with the real- requirements
world application
Statistical Estimate reliability Executable, software Predetermined reliability target
requirements, :
operational profiles
Stress Examine robustness; Executable, software One pass per resource per revision
characterize degradation with requirements per operating mode; sampling of
increasing loads on resources combinations of resource loads
Stress Find breaking points; check Executable, software Continue testing a resource until
recovery mechanisms requirements failure & recovery modes are well
understood
Regression Verify that changes have not Various input needed Continue until no new failures are
impacted the software in depending on test detected
unexpected ways strategies used in the

regression test suite

NUREG/CR-6421

54

Appendix B

Table 1-7. Typical Testing Strategies for Investigating Software Qualities

Software Applicable Testing
Quality Also see: Question to be Answered Strategies
Acceptability Validity Are real-world events handled properly? Functional (T,D,L,S¢)
How does the product perform in realistic, Stress
heavy load situations?
Accuracy Preciseness Are internal calculations accurate? Structural (DF)
Are results accurate? Functional (T)
Is there confidence that important calculations Static analysis (I,DC)
are accurate? '
Availability Reliability Will the software be unavailable due to poor Statistical
‘ reliability?
Will functions be available during heavy load Stress
situations? . ' ‘
Clarity Understand- Is the implementation sufficiently clear to a - Static analysis (I,DC)
ability knowledgeable reviewer?
Completeness Are all requirements expressed in the design? Static analysis (I)
Are all design elements implemented in the Static analysis (I)
code?
Are internals complete? (no missing logic, Static analysis (ASA,D
undefined variables, etc.)
Are all aspects of real-world uansacuons Functional (T)
implemented?
Are boundary values and all combinations of Functional (D,L,Se)
conditions accounted for?
Are recovery mechanisms implemented? Stress
Correctness Does the product have statically detectable Static analysis (All)
faults?
Is the implementation/modification structurally Structural (AlD)
correct?
Is the implementation/modification functionally ~ Functional (All)
correct?
Does the product perform correctly in heavy Stress
load situations?
Have modifications had unintended effects on Regression
the behavior of the software?
Integrity Security Are access control schemes appropriate? Static analysis (I)
Are access controls and internal protections Structural (AlD)
correctly implemented?
Is end-user access management correct? Functional (T)
Are access-related boundary values, logic, Functional (D,Sx,L,Se)
states, & syntax comrectly implemented?
Legend:
ASA Automated Structural Analysis I Inspection Se State Testing
D Domain Testing L Logic Testing S Syntax Testing
DC Desk Checking Ip Loop Testing T Transaction Testing
IF Data Flow Testing P PathTesting
55 NUREG/CR-6421

Appendix B

Table 1-7. Typical Testing Strategies for Investigating Software Qualities (cont.)

Software Applicable Testing
Quality Also see: Question to be Answered Strategies
Interface Internal Have interface standards & style been followed? Static analysis (ASA,D)
Consistency Consistency 1
Is parameter & variable usage consistent across Static analysis (ASA,I)
interfaces? :
Is transaction data handled consistently among Functional (T)
modules? _
Are boundary conditions treated consistently? Functional (D)
Is message syntax consistent? Functional (Sx)
Is decision logic consistent among modules? Functional (L)
Are system states consistently treated among " Functional (Se)
modules? :
Internal Interface Have standards & style been followed? Static analysis (ASA,I)
Consistency Consistency
Is parameter & variable usage consistent? Static analysis (ASA,I)
Are conditions handled consistently with respect Structural (P, Lp,D,L)
to control flows?
Are there inconsistencies in data handling? Structural (DF)
(typing, mixed mode, I/O compatibilities, etc.)
Are real-world events and logic handled Functional (L, Se)
consistently?
Inter- Does the architecture facilitate interoperability? Static analysis (I)
operability '
Do modules used in transactions exchange & Functional (T,D,Se)
use information properly? ‘
Performance Is intra-module timing within specification? Structural (P.Lp)
Are transactions performed within required Functional (T)
times?
Are timing requirements met when boundary Functional (D)
values are input?
Is system performance adequate under heavy Stress
load conditions?
Preciseness Accuracy Will internal representations yield required Static analysis (DC)
precision?
Are internal calculations sufficiently exact? Structural (DF)
Are real-world transaction results sufficiently Functional (T)
- o exact?
Reliability Availability What is the probability of running without Statistical
failure for a given amount of time?
Legend: :
ASA Automated Structural Analysis 1 Inspection Se State Testing
D Domain Testing L Logic Testing S Syntax Testing
DC Desk Checking Ip Loop Testing T Transaction Testing
IF DataFlow Testing P PathTesting

NUREG/CR-6421

56

Appendix B

Table 1.7, Typical Testing Strategies for Investigating Software Qualities (cont.)

Software » Applicable Testing
Quality Also see: Question to be Answered Strategies:
Robustness Has appropriate recovery logic been Static analysis (I)
implemented?
Are poorly specified/invalid transactions Functional (T,Sx)
handled correctly?
Are marginal/illegal inputs handled correctly? Functional (D,Sx)
Are unexpected combinations of ’ Functional (L.Se)
conditions/states handled correctly? :
Can the system continue operating outside of Stress
normal operating parameters?
Security Integrity Are access controls properly Static analysis (I)
designed/implemented? - - :
Are access controls consistent with the operating Static analysis (I)
environment?
Are the structural aspects of access control Structural (All)
mechanisms correct? '
Security Do access management functions work: Functional (T)
(continued) correctly? ‘
Do access management functions work correctly Functional (D,Sx,L,Se)
in the presence of marginal or illegal values and
constructs?
Simplicity Are implementation solutions overly complex? Static analysis (I)
Are complexity-related metric values reasonable Static analysis (ASA,D)
for a given situation? i
Testability How can aspects of the software be tested? Static analysis (DC,I)
Understand- Clarity Is the designer/implementer intent clear? Static analysis (DC,I)
ability C
Does information characterizing the software Static analysis (ASA,I)
make sense? .
‘Usability User Can the user correctly form, conduct, & Functional (T,D,Sx)
friendliness interpret results of transactions? ' ‘
Does the user interface design support Static analysis (I)
operational procedures? '
User Usability Is the user comfortable in forming, conducting, Functional (T,Sx)
friendliness and interpreting results of transactions? ‘
Validity Acceptability Are requirements traceable? ' Static analysis (I)
Are implementation solutions appropriate? Static analysis (DC,I)
Is the real world appropriately represented? Functional (All)
Is the implementation/modification structurally Structural (All)
correct?
Is the implementation/modification functionally = Functional (All)
correct? .
Legend:
ASA Automated Structural Analysis I Inspection Se State Testing
D Domain Testing L Logic Testing & Syntax Testing
DC Desk Checking Ip LoopTesting T Transaction Testing
LF DataFlow Testing P Path Testing
57 NUREG/CR-6421

Appendix B

2. STATIC SOURCE CODE ANALYSIS

2.1, Purpose of Static Source Code |
Analysis ;

Static source code analysis is the examination of code
by means other than execution, either manual or
automated, with the intent of (1) producing general,
metric-related, or statistical information about a
software object, (2) detecting specific types of faults in
a software object, (3) detecting violations of standards,
or (4) verifying the correctness of a software object.
Static analysis pertains to certain categories of faults
and should be considered complementary to dynamic
testing in the overall testing effort. The qualines
addressed by static analysis, summarized in Table 1-2,
are discussed below.

The section is primarily focused on static source code
analysis; however, some techniques, such as
inspection, have broader applicability. Some of these
extensions are discussed below.

2.2. Benefits and Limitations of Static
Source Code Analysis

Static analysis is code examination without code
execution. This approach provides a different way of
thinking about fault detection and, therefore, static
analysis techniques are best applied as part of an
overall testing (or verification and validation) program
that also includes extensive dynamic testing. The
advent of automated, interactive software
environments and testing tools is blurring the
distinction between dynamic testing and static analysis
somewhat. In some of these tools, results are available
from static examinations carried out in support of
dynamic, structural testing. The use of interpreters as
code is being examined can automate the desk
checking technique of stepping through lines of code
and, therefore, can produce information about run-time
states (although this information may also be related to
the use of the interpreter).

2.2.1. Benefits

There are a number of features of static analysis
techniques that make them an effective complement to
dynamic techniques. The inspection or review-oriented
techniques have the advantage of combining the
different perspectives of the participants and can
produce fault information that may be overlooked by a
single examiner. Inspections have been found to be
very effective in detecting the types of faults that can
be found with static techniques. In addition, manual
static analysis techniques can easily incorporate

project-specific standards adopted for the application
of a COTS item to a particular use. Automated
structural analyzers can perform large numbers of
static checks that could not be performed manually,
and may detect structural faults that might go
undetected in dynamic testing since all possible paths
cannot be covered by test cases. Static analysis
techniques that provide general information about
software objects can produce information that will be
valuable in developing test cases for dynamic testing.

Regarding the assessment of software qualities, static
analysis techniques are effective in examining software
for possible faults related to completeness, consistency,
and validity. For example, information about the
completeness of a software item can be gained from
automated structural analyses that discover missing
logic, unreachable logic, or unused variables.
Inspections can provide information about the
traceability of requirements. Both inspections and
automated structural analyses provide a means for
evaluating the consistency of application of standards
and style guidelines, as well as for checking parameter
and variable usage from a static perspective. Desk
checking can provide information about the accuracy
and precision of algorithm implementations.

Static analyses also provide information about other
software qualities that may be important to the
intended use of a COTS software item, including
testability, usability, interoperability, clarity,
understandability, robustness, and simplicity. These

- tend to be areas where judgment is required, making

the manual techniques particularly effective. The
qualities are addressed with the manual techniques by
including the appropriate considerations in inspection
checklists or desk-checking tasks. For example, the
number of questions about intent raised during an

_ inspection is an indicator of understandability. In

59

addition, automated structural analyses can provide
metrics and structural information that is useful in
assessing these software qualities.

2.2.2, Limitations

Static analysis techniques, in general, do not provide
much information about run-time conditions. In '
addition, many of these techniques are labor-intensive
and, therefore, can be quite expensive to carry out. In
cases where there are project-specific considerations
that need examination by an automated tool, automated
analyzers must be developed, which is also a costly
endeavor.

NUREG/CR-6421

AppendixB

2.3. Information Required to Perform
Static Source Code Analysis

As a minimum, the source code must be available. For
most static analysis techniques to be effective, it is also
necessary to have information on the context (intended
usage), requirements, and design of the software object
being examined. To select effective approaches for
static analysis, it is useful to know what static analysis
capabilities were applied in the development
environment. In particular, most compilers perform
various types of automatic static checking. In many
cases, this checking is limited to those checks that
support the compiler’s primary goal of detecting
syntactic faults before translating statements to object
code. Compiler results such as syntactic correctness,
uninitialized variables, cross reference listings and
similar matters are a very useful part of static analysis,
but should be considered as the first step in static
analysis, not the totality. Information on the compiler
checks performed is useful in determining the relative
emphasis to place on the various other techmques that
might be applied.

Since one goal of static source code analysis isto
detect violations of standards, it is necessary to have
information regarding the standards applied during the
. development effort. This information may be difficult
to obtain for COTS software; however, some
- information, such as language standards or the
compiler used, should be available. Perhaps a more
important application of standards checking is the
development (by the testing or customer organization)
~ of required standards regarding what is acceptable for
the particular COTS software application. For
example, if certain language constructs are permitted
by the language standard but are known to be
troublesome in past practice, a safety-critical
application might require a local practice standard that
prohibits their use.

2.4. Methods of Performing Static Source
‘Code Ana]ysns

The static analysis of source code for a software object
must be planned, designed, created, executed
evaluated, and documented.

24.1. Static Analysis Planning and Requirements

The following actions are required to plan and generate
requirements for static analysis of software objects.-

1. Detennine the software qualities to be evaluated
with static techniques. Qualities typically
examined in static source code analysis are shown
in Table 1-2. For the static analysis of safety-
related COTS software, the primary quality of
interest is cormrectness, particularly as it is related
to the qualities of completeness, consistency, and

NUREG/CR-6421

validity. Other qualities, that may be of interest,
depending on the intended role of the COTS
software item, can be assessed with static analysis.
These include testability, usability,
interoperability, clarity, understandability, and
simplicity.

2. Determine which static analysis techniques will be
required. Code inspections and automated
structural analyzers are recommended as a
minimum.

3. Determine what resources will be required in order
to carry out the analyses. Resources include
budget, schedule, personnel, equipment, analysis
tools, and the platform for automated structural
analyses. '

4. Determine the criteria to be used to decide how
much static analysis will be required. This is a
stopping criterion—how much analysis is enough?

5. Determine the software objects to be examined.
2.4.2. Analysis Design and Implementation

The following actions are required to design and
implement static analyses.

1. Create procedures for carrying out the analyses.
For techniques such as code inspection, this
involves tailoring the technique to the particular
project environment. For other static source code
analyses, the procedures will specify analyses to
be applied.

2. Prepare for the orderly and controlled application
of the individual analyses. The following
information should be prepared for each analysis:

a Analysis identification . Each analysis must
have a unique identifier.

b. Purpose. Each analysis must have a specific
reason for existing. Examples include the
application of an automated standards auditor
to a block of code or the examination of a -
block of code to determine whether a
particular error-prone construct has been
used.

¢. Input data. The precise data, if any, required
in order to initiate the analysis must be
specified. This should include any parameter
values needed by automated analyzers (this
information may also be appropriate as part of
the procedures).

d. Initial state. In order to reproduce an analysis,
the initial state of the automated analyzer may
need to be specified.

€ Results. The expected results of the analysis
must be known and specified. This could

include the absence of a detection of the fault .

being targeted or the specific value range of a
metric.

3. Create the platform to support the automated
structural analyses. This is a mechanism for
selecting, executing, evaluating, and recording the
results of analyses carried out by automated static
analyzers on the software object.” An automated
structural analyzer might perform a pre-
programmed set of checks or might require input
to select specific checks (as with an interactive
tool). Platform components, illustrated in Figure 2-
1, include:

a Analysis case selection. A means of selecting
analysis cases (checks) to be executed is
required. This information may be keptina .
file or database, and the selection may simply
consist of “get next analysis case.”

b. Analyzer program. A means of setting the
analyzer’s initial state (if necessary),
providing input to the analyzer, and recording
the output from the analyzer is required.

¢ Results database. A means of recording the
results for future analysis and evaluation is
needed. Typical data to be captured include
the analysis identifier, date, version of
module, analysis output, and an indication of
the acceptability of the results.

24.3. Execution and Evaluation of the Analyses

The procedures must be carried out and analyzed. If a
fanit is indicated in the software object and the
development organization is performing the analysis,
the software engineer is expected to correct the fault.
The pattern of test—fix—test—fix continues until all
discrepancies have been resolved.

In the case of COTS, obtaining corrections may be
very difficult. Suppose the analysis is being performed
by (or on behalf of) the customer. If the software was
developed for the customer under contract, there
should be considerable leverage for obtaining
corrections. If the software is a consumer product (for
example, a library accompanying a compiler used for
development), experience shows that many developers
have little interest in expensive repairs that satisfy a
limited marketplace. In this case, the options of the
customer may be simply to reject the software or to
evaluate each fault detected and determine its effects

TThe process of selecting and initiating analyses and evaluating the

results might be a manual activity; in this case the platform described

is largely conceptnal, although the databases should exist and be
controlled.

Appendix B

on safety. If more than one fault exists, the cumulative
effect of all the faults on safety must also be
determined.

The nature of the faults encountered must also be
considered. The discovered faults might be related 1o
new requirements or standards arising from the
specific, intended application of the COTS product.
They might also be minor faults that might have
escaped detection during product development. In
these cases, the significance of the faults should be
evaluated and the options for obtaining corrections
might be pursued. However, if one or more serious
faults pertaining to the product itself are discovered,
confidence decreases rapidly regarding the suitability
of the product for use in a safety-related application.

2.5. Discussion of Static Source Code
Analysis

Static source code analyses, whether done totally
manually or supported by automated techniques, are
typically manpower-intensive processes. Manual
processes such as inspections require team efforts.
Many of the computer-aided methodologies require the
involvement of the development team, the
development of project-specific tools, or on-line use of
interactive tools.

It should be noted that, although these techniques
involve high manpower costs, static analysis
techniques are effective in detecting faults. One
controlled experiment (Basili and Selby, 1987) found
that code reading detected more software faults and
had a higher fault detection rate than did functional or
structural testing. Since static analysis and dynamic
testing detect different classes of faults, a
comprehensive effort should employ as many static
and dynamic techniques as are practical for the specific
project. The remainder of this section discusses various
static analysis techniques.

2.5.1. Inspection

Among the manual techniques, code inspection, peer
reviews, and walkthroughs are effective methods for
statically examining code. The techniques are
essentially similar in that teams of programmers
perform in-depth examinations of the source code;

- however, code inspections are distingunished by the use

61

of checklists and highly structured teams. One of the
important benefits common to these techniques is that
the different perspectives and backgrounds of the
participants help uncover problems that the original
software engineer overlooked. All three techniques
benefit from the participation of development team
members and probably lose some effectiveness if these

NUREG/CR-6421

Appendix B

Input

Selection

Analysis

Repertoire

- Analyzer

Output

Program

Software
Object

Results

Database

Figure 2-1. Concéptual Platform for Automated Static Analysis

members are not present, which is likely to be the case
with COTS software. However, careful attention to the
development and tailoring of checklists for a particular
COTS application, along with the high degree of
structure provided by the inspection process, should
make source code inspections a valuable static analysis
technique for COTS software. Peer reviews and
walkthroughs are not discussed further here;
information on how to perform structured
walkthroughs can be found in Yourdon (1989).

Fagan (1976) provides the definitive work on
inspections, a technique that can apply to a wide range
of products. Inspections are defined for three points,
labeled 10, 11, and I2, in the programming process.
Fagan inspections that inspect against the software
requirements are called I0 inspections. These
inspections would typically be performed as part of the
software design activities, as described in NUREG/CR-
6101 (Lawrence, 1993). I1 inspections are typically
performed as part of the software design activities and
inspect against high-level software architectural
design. I2 inspections are performed during software
implementation and inspect implemented code. Figure
2-2 shows the relationship between software activity,
product, and inspection type.

10 inspections typically examine the set of unit and
program designs, and their interactions to determine
whether the functional content is consistent with the
specified software requirements. Of particular interest
for this inspection are data flows among system
components and potential processing deadlocks. 11
inspections target design structure, logic, and data
representation based on the previously inspected high-
level design. I2 inspections focus on the translation of
the detailed design into code and compliance with
standards, and are commonly referred to as source code

NUREG/CR-6421

inspections. Depending on the information available
about a COTS software product, any of the inspections
described can be an effective technique for examining
the product. In evaluating a COTS software product for
use in a safety-related application, the inspection
technique is useful in examining the allocation of
system requirements to software and in comparing
these software requirements to the capabilities of the
COTS product.

All inspections follow a specific process containing
planning, overview, pre-inspection preparation,
inspection, rework, and follow-up phases. The follow-
up phase might consist of a complete re-inspection if
significant rework is required. Specific roles must be
defined for an inspection; a typical team might include
the designer, coder, tester, and a trained moderator.
Additional perspectives of value are those of a code
maintainer, user, standards representative, and
application expert. The actual inspections require
intense concentration and, therefore, are usually
performed on small amounts of material during short
(1- to 2-hour) inspection sessions. Published
experience (Dyer 1992) indicates that 50 to 70 percent
of faults can be removed by the inspection process
(i.e., employing 10, 11, and 12 inspections).

Most discussions of source code inspections focus on
the use of the technique during the development
process. For COTS software, a source code inspection
would be performed well after development and would
involve teams of programmers not involved in the
original development, Therefore, particular attention
should be given to the tasks of developing an effective
checklist and establishing a set of standards specific to
the particular application of the COTS software. Any
standards and checklists that were applied during
development are a good starting point. Myers (1979)

Appendix B

Software Activity Product Inspection Type
I Software ggg\::viar‘:nents
Requirements Specification
Software Design 10 inspection
Description '
Software (Architecture)
Design
Software Design 11 inspection
Description
(Detailed)
I Implementation Code I2 inspection

Figure 2-2. Software Development Activities, Products, and Inspections

gives a set of typical checklist items grouped by data
reference faults, data declaration faults, computation
faults, comparison faults, control flow faults, interface
faults, and input/output faults. This serves as a starting
point; the list should then be enhanced by specific
knowledge about the product and application in
question.

The purposes of performing after-the-development
source code inspections on COTS software are to
detect previously undetected faults, to ensure that
dangerous practices have not been used, to discover
whether undocumented features are present, and to
focus on anything special pertaining to the use of the
COTS application in a specific environment. In
planning for static analysis, strategies should be
developed for applying techniques efficiently given
project resources and constraints (subject to the
requirements of the commercial dedication process).
The entire COTS item should be inspected if possible.
If not, the focus should be directed toward key
functional areas with some additional random
inspections. A powerful practice with any testing or
evaluation technique is to attempt to classify detected
faults or observed failures (such as might have been
seen in other uses of the COTS item) and then to re-
examine the code, searching specifically for other
instances of the fault class.

Establishing standards for a source code inspection of a
COTS item is particularly important. Depending on the
criticality of the particular use of the COTS item, it

.

may be useful to start with a typical set of standards for
the computer language in question and then to augment
this set with additional standards based on what is
known about the application in which the COTS item
will be used. For example, a code unit might have been
produced according to an established language
standard. It might also be known that certain legitimate
constructs are prone to errors. For the purposes of the
COTS inspection, taking into account the intended use
of the item, a requirement preventing the use of the
construct might be added to the set of coding
standards. In this case, the particular COTS item might
be found unsuitable for the particular intended use. As
an alternative, the discovery of the usage of the
construct might trigger separate static analyses or
dynamic tests focused on that area.

2.5.2. Desk Checking

Desk checking is a proven, primarily manual, static
analysis technique. It typically involves one
programmer examining code listings for faults (code
reading), checking computations by independent
means, and stepping through lines of code. To the
extent possible, desk checking should not consist of
manually performed activities that could be automated.
For example, an automated standards checker could be
run and desk checking could be used to confirm or
justify violations. Desk checking tends to concentrate
on special problems or considerations posed by the
application and involves techniques appropriate to
those problems or considerations. This process can be

NUREG/CR-6421

Appendix B

aided with the use of interactive debuggers, interactive
analysis tools, or interactive analysis features of
software development environments. Regardless of
which tools are used to aid the process, strategy and
procedures must be developed for the systematic
evaluation of the code. In addition to the discovery of
specific faults, the results obtained in desk checking
should also be used to help tailor the standards and
checklists used in future source code inspections.

2.5.3. Automated Structural Analysis

Automated structural analysis is the use of an
automated checker to examine source code for faults
occurring in data and logic structures. An automated
structural analyzer can be focused to detect specific
faults in the code, or can produce general information
about the code, such as cross-reference maps of
identifiers, calling sequences, and various software
quality metrics. Information in the general category is
useful as reference data in the inspection and desk
checking analyses discussed above. An antomated
structural analyzer looks for faults such as those listed
below (Glass 1992):

» Undeclared or improperly declared variables (e.g.,
variable typing discrepancies)

» Reference anomalies (e.g., uninitialized or
initialized but unused variables)

* Violations of standards (language and project
standards)

« Complex or error-prone constructs
» Expression faults (e.g., division by zero)

+ Argument checking on module invocations
(number of arguments, mismatched types,
uninitialized inputs, etc.)

« Inconsistent handling of global data
» Unreachable or missing logic.

Automated structural analyzers are typically language-
specific and possibly project-specific. Discussions of
some of the techniques used by structural analyzers are
contained in Section 3.4 of this report. Price (1992)
provides information on static analysis tools. Typical
automated tools include:

» Code auditors (standards and portability)

» Control structure analyzers (calling graphs, branch
and path analysis)

* Cross-reference génerators
» Data flow analyzers (variable usage)

* Interface checkers

NUREG/CR-6421

» Syntax and semantic analyzers
« Complexity measurement analyzers.

An approach for performing automated structural
analysis on COTS software would be as follows:

« Determine which software qualities are to be
investigated.

Determine, if possible, what static analysis
capabilities were applied in the development of the
code (e.g., compiler checks).

= Determine what COTS structural analysis tools are
available for the language used (and particular
language standard if more than one exists) by the
target COTS software.

= Select and apply the appropriate language-specific
tools.

¢ Determine whether there are project-specific
considerations that should be checked using an
automated structural analyzer.

« Develop and apply the project-specific analyzer (it
may be possible to structure the use of the
- capabilities of an interactive analysis tool to get at
these issues).

2.5.4. Other Methods

Various other methods for static source code analysis
have been researched. Some are mentioned briefly here
but are not felt to be practical for the static analysis of
COTS software at this time, either because the methods
are integrated into the development process or because
extensive development work would be required to
implement the method.

Proof of correctness is a process of applying theorem-
proving concepts to a code unit to demonstrate
consistency with its specification. The code is broken
into segments, assertions are made about the inputs and
outputs for each segment, and it is demonstrated that, if
the input assertions are true, the code will cause the
output assertions to be true. Glass (1992) states that the
methodology is not yet developed enongh to be of
practical use, estimating that practical value for
significant programs is about 10 years away.
Advantages, if the method is practical, include the use
of a formal process, documentation of dependencies,
and documentation of state assumptions made during
design and coding. Proof of comrectness is a complex
process that could require more effort than the
development itself.

Symbolic evaluation is a technique that allows
variables to take on symbolic values as well as numeric

values (Howden 1981). Code is symbolically executed
through a program execution system that supports
symbolic evaluation of expressions. Passing symbolic
information through statements and operating
symbolically on the information provides insights into
what a unit is actually doing. This technique requires a
program execution system that includes symbolic
evaluation of expressions and path selection. One
application of this technique would be an attempt to
determine if a formula or algorithm was correctly
implemented.

65

Appendix B

Automated structural analyzers are usually based on
pre-defined sequences of operations. An extension to
antomated structure analyzer capabilities would be to
develop mechanisms whereby user-specifiable
sequences could be defined for subsequent analysis.
Olender (1990) discusses work to define a sequencing
constraint language for automatic static analysis and
predicts its value when embedded in a flexible,
adaptable software environment. -

NUREG/CR-6421

Appendix B

3. STRUCTURAL TESTING

3.1. Purpose of Structural Testing

Structural testing (also known as “white box” or “glass
box” testing) is conducted to evaluate the internal
structure of a software object. The primary concerns of
structural testing are control flow, data flow, and the
detailed correctness of individual calculations.
Structural testing is traditionally applied only to
modules, although extensions to subsystems and
systems are conceivable. It is generally carried out by
the software engineer who created the module, or by
some other person within the development
organization. For COTS software, personnel from the
development organization will probably not be
available; however, structural testing can be carried out
by an independent test group. The qualities addressed
by structural testing, summarized in Table 1-2, are
discussed below. _ '

3.2. Benefits and Limitations of Structural
Testing -

Both the benefits and the limitations of structural
testing are effects of the concentration on internal
module structure, Structural testing is the only method
capable of ensuring that all branches and loops in the
module have been tested. There are important classes
of faults that are unlikely to be discovered if structural
testing is omitted, so no combination of the other test
methods can replace structural testing.

3.2.1. Benefits

Beizer (1990) states that path testing can detect about
one-third of the faults in a module. Many of the faults
detected by path testing are unlikely to be detected by
other methods. Thus path testing is a necessary but not
sufficient component of structural testing. A
combination of path and loop testing can uncover 50 to
60% of the intra-modular faults. Adding data flow
testing results, on average, in finding nearly 90% of
intra-modale faults. (It'is assumed here that a thorough
testing effort is performed with respect to each
technique.) Some modules, of course, are worse than
average, and the remaining faults are likely to b
particularly subtle. :

Structural testing is focused on examining the
correctness of the internals of a module, i.e., on faults
relating to the manner in which the module was
implemented. This includes faults related to accuracy,
precision, and internal consistency. Control flow faults
based on inconsistent handling of conditions can be
found, as well as data inconsistencies related to typing,

67

file I/O, and construction of expressions. Some
information, such as algorithm timing, can be gained
regarding software performance. Finally, emphasis on
testing proper referencing and data handling as well as
on the implementation of access controls provides
information about integrity and security.

3.2.2. Limitations

Structural testing is impossible if the source code is not
available. The modules must be well understood for
test cases to be designed and for correct results of the
test cases to be predictable. Even moderately large
collections of well-designed modules benefit from the
assistance of reverse engineering tools, test generators,
and test coverage analysis tools. Generating an
adequate set of structural test cases is likely to be quite
time-consuming and expensive.

Structural testing is almost always restricted to testing
modules. Given further research, it might be possible
to extend structural testing to subsystems and systems,
which would be useful for a distributed control system
(DCS). Here, the analogy to the flow of control among
the statements of a module is the flow of control that
takes place as messages are passed among the
processes making up the DCS. When concurrent
communicating processes are executing on a network

- of different computers, subtle errors involving timing

can occur, and structural testing might be extended to
help detect these.

3.3. Information Required to Perform
Structural Testing

Structural testing requires detailed knowledge of the
purpose and internal structure of the module: module
specification (including inputs, outputs and function),
module design, and the source code.

A test station is recommended. This station would have
the ability to select pre-defined test cases, apply the
test cases to the module, and evaluate the results of the
test against pre-defined criteria.

3.4. Methods of Performing Structural
Testing

The structural test must be planned; designed, created,
executed, evaluated, and documented.

3.4.1. Test Planning and Test Requirements

The following actions are required to plan and generate
requirements for structural testing.

NUREG/CR-6421

Appendix B

1. Determine the software qualities that are being
evaluated. For the structural testing of safety-
related COTS software, the primary quality of
interest is correctness, particularly in the sense of
accuracy, precision, robustness, and internal
consistency.

Determine which structural testing techniques will
be required. Control flow (path) and data flow
testing are the minimum requirements. Additional
techniques may be required in some cases.

3. Determine what resources will be required in order
to carry out the testing. Resources include budget,
schedule, personnel, equipment, test tools, test
station, and test data.

4. Determine the criteria to be used to decide how
much testing will be required. This is a stopping
criterion—how much testing is enough? For
example, “95% of all paths in the module shall be
covered by control flow testing.”

S. Determine which modules will be tested.
3.4.2. Test Design and Test Implementation

The following actions are required to design and
implement structural testing.

1. Create procedures for executing the structural test
cases. This is typically done within the context
created by test plan and test design documents
(IEEE 829). Additional guidance for the testing
process for modules is given in IEEE 1008.

Create individual test cases. Each test case should

contain the following information:

a Test identification. Each test case must have a
unique identifier.

b. Purpose. Each test case should have a specific
reason for existing. Examples include
executing a specific path through the module,
manipulating a specific data object, or
checking for a specific type of fault. For the
latter, see headings 3 and 4 of the Bug
Taxonomy in the Annex.

¢ Input data. The precise data required in order
to initiate the test must be specified.

d. Initial state. In order to reproduce a test case,
the initial state of the module (before the test
begins) may need to be specified. This
information is not necessary if the module is
intended to execute comrectly and identically
in all initial states. For example, a square root
modaule should return the square root of the

input value no matter what has gone before.

NUREG/CR-6421

68

e Test results. The expected results of the test
must be known and specified. These can
include values of data objects external to the
module (such as actuator values and database
values) and values of output parameters
returned through the module calling interface.

£ Final state. In some cases, the final state of
the module must be specified as part of the
test case information. This can occur, for
example, if the final state after a call is used
to modify the execution of the module the
. nexttime itis called.

3. Create the test station. This is a mechanism for
selecting, executing, evaluating, and recording the
results of tests carried out on the module. Test
station components, illustrated in Figure 3-1,
include: :

a Test case selection. A means of selecting test
cases to be executed. Test case information is
typically kept in a file or database, and the
selection may simply consist of “get next test
case.”

b. Test program. A means of setting the
module’s initial state (if necessary), providing
input to the module, recording the output
from the module and (if necessary) recording
the final state of the module.

¢ Test oracle. A means of determining the
correctness of the actual output and module
state.

Results database. A means of recording the
test results for future analysis and evaluation.
Typical data are: test identifier, date, version
of module being tested, test output and state,
and an indication of correctness or failure of
the test.

3.4.3. Test Execution and Test Evaluation

The test procedures must be carried out and the results
analyzed. If discrepancies between the actual and
expected results occur, there are two possibilities:
either the test case has a fault or the module has a fault.
In the first case, the test case should be corrected and
the entire test procedure rerun.

If the module has a fault and the development
organization is performing the test, the programmer is
expected to correct the fault. The pattern of test-fix—
test—fix continues until all discrepancies have been
resolved.

T e o £ b O e

Appendix B

Source Test Case Input Output
¢ - Test
Software
Object
Test Case Test Case
Generator Database Test
i > Oracle <
Correctness
Resuilts
Database

Figure 3-1. Typical Test Station Components for Structural Testing

In the case of COTS, obtaining corrections may be

.very difficult. Suppose the test is being performed by

(or on behalf of) the customer. If the software was
developed for the customer under contract, there
should be considerable leverage for obtaining
corrections. If the software is a consumer product (for
example, a library accompanying a compiler used for
development), experience shows that many developers
have little interest in expensive repairs that satisfy a
limited marketplace. In this case, the options of the
customer may be simply to reject the software or to
evaluate each fault detected by the testing and
determine its effects on safety. If more than one fault
exists, the cumulative effect of all the faults on safety
must also be determined.

The nature of the faults encountered must also be
considered. The discovered faults might be related to
new requirements arising from the specific, intended
application of the COTS product. They might also be
minor faults that might reasonably have escaped
detection during product development. In these cases,
the significance of the faults should be evaluated and
the options for obtaining corrections might be pursued.
However, if one or more serious faults pertaining to the
product itself are discovered, confidence decreases
rapidly regarding the suitability of the product for use
in a safety-related application.

69

3.5. Discussion of Structural Testing

A brief summary of several structural testing methods
is given here. The material in this section is based
largely on Beizer 1990; see that reference for detailed
tutorials. Note also that domain testing and logic
testing (discussed in Section 4) are structural testing
techniques if applied to a software object’s
implementation instead of to its specifications.

3.5.1. Control Flowgraphs

Structural testing methods generally make use of a
control flowgraph of the module being tested. This is
an abstraction of the module in the form of a directed
graph which captures only the properties of the module
which are being tested. Control flowgraphs are defined
(informally) as follows:

e Ablock of statements which do not involve
controi transfer in or out except from one to the
next are replaced by a simple node of the control

graph:

NUREG/CR-6421

k1

Appendix B

NUREG/CR-6421

Figure 3-6. Control Flowgraph Augmented to Show Data Flow

74

Appendix B

4. FUNCTIONAL TESTING

4.1. Purpose of Functional Testing

Functional testing (also known as “black box” testing)
consists of testing the functions to be performed by a
software element as defined in requirements, design
specifications and user documentation. It is focused on
comparing actual and specified behavior, independent
of the structural characteristics of the software. The
primary concemns are functional and timing
requirements. Programs, subsystems and systems are
tested in large part with functional tests, however,
functional tests also apply to packages and modules.
Although, structural testing and static analyses are the
dominant testing strategies for at these levels, the
design specifications for packages and modules should
contain information on which to base functional tests.
This is particularly true for software elements such as
communications packages, device drivers, and
mathematical subroutines. For COTS software,
functional testing is likely to be applied to programs,
subsystems and systems, and will normally be carried
out by or on behalf of the customer. The qualmes
addressed by functional testing, summarized in Table
1-2, are discussed below.

4.2. Benefits and Limitations of Functional
Testing

Both the benefits and limitations of functional testing
are a result of the fact that the execution of functions is
examined rather than the intermnal structure of the
software object. The focus is on verifying that
requirements and user needs have been met. Functional
testing can be applied at any level but is usually
associated with programs, subsystems, and systems.

4.2.1. Benefits

Since the focus is not on internal software structure, it
is easier for functional testing to be performed by
independent parties. Test cases may originate with the
customer, user, or regulator. For COTS software, test
cases might also originate from information gathered
from the experience of other users of the item. Finally,
functional testing techniques do not require the
availability of source code, which, for COTS software,
may not be available.

Functional testing techniques can address a wide range
of software qualities. Test cases for functional testing
techniques address technical correctness by allowing
verification of the accuracy and precision of results as
well as verification of the consistency, interoperability,
and performance of the software item. Consistency and

interoperability are addressed by examining the
interactions among modules as transactions are
processed. Performance is addressed via test cases
focused on timing requirements for real-world
transactions. Regarding the correctness of a software
item in the sense of its being complete, acceptable, and
valid, test cases can focus on missing or partially
implemented transactions, improper handling of real -
world conditions and states, and incorrect
representations of user needs and the real-world
environment. Functional test cases can also be
designed to test security and integrity mechanisms,
user interfaces, and robustness in the presence of
invalid inputs.

4.2.2. Limitations

Functional testing usually does not detect
undocumented features or functions such as
development aids left in the software. Since testers
have no visibility into internals, functional subtleties
may be overlooked, particularly if structural testing has

_ not been performed.

75

4.3. Information Required to Perform
Functional Testing

Functional testing requires a software requirements
specification, user instructions, detailed knowledge of -
external interfaces (to sensors, actuators, operators, and
other software), and the software object being tested.

A test station is recommended for testing by customers.
This includes the ability to select pre-defined test
cases, apply the test cases to the software object, and
evaluate the results of the test against pre-defined
criteria. The ability to reproduce functional testing will
generally be necessary, and a test station is the most

. effective tool to accomplish this.

4.4. Methods of Performing Functional
Testing

The functional testing must be planned, designed,
created, executed, evaluated, and documented.

4.4.1. Test Planning and Test Requirements

The following actions are required to plan and generate
requirements for functional testing.

1. Determine the software qualities that are being
evaluated. For safety-related COTS software, the
primary quality of interest is correctness. In a
technical sense, this encompasses accuracy,

NUREG/CR-6421

Appendix B

precision, consistency, interoperability, and
performance. From a product perspective,
correctness includes acceptability, completeness,
and validity. Other qualities that can be addressed
are integrity, security, robustness, usability, and
user friendliness.

Determine which functional testing techniques
will be required. Transaction testing and domain
testing are minimal requirements. Additional
techniques should be employed if the goal of the
technique is applicable to the software object.

3. Determine what resources will be required in order
to carry out the testing. Resources include budget,
schedule, personnel, equipment, test tools, test
station, and test data.

4. Determine the criteria to be used to decide how

much testing will be required. This is a stopping -

criterion—how much testing is enough?
5. Determine which software objects will be tested.
4.4.2. Test Design and Test Implementation

The following actions are required to design and
implement functional testing.

1. Create procedures for executing the functional test:
cases.

Create individual test cases. Each test case should

contain the following information:

a Test identification. Each test case must have a
unique identifier.

2.

b. Purpose. Each test case should have a specific
reason for existing. Examples include
verifying that a particular timing constraint
can be met, that a particular function is
performed correctly, or checking for a
specific type of failure. For the latter, see
headings 1 and 2 of the Bug Taxonomy in the
Annex. '

¢ Input data. The precise data required in order
to initiate the test must be specified.

d. [Initial state. In order to reproduce a test case,
the initial state of the software object (before
the test begins) may need to be specified. This
information is not necessary if the object is
intended to execute correctly and identically
in all initial states. For example, a transaction
processing program should correctly handle
any transaction no matter what has gone

before.

e Test results. The expected results of the test
must be known and specified. These are the

NUREG/CR-6421

76

values of data objects external to the software
object under test (such as actuator values,
display screen values, and database values).

£ Final state. In some cases, the final state of
the object must be specified as part of the test
case information.

3. Create the test station. This is a mechanism for
selecting, executing, evaluating, and recording the
results of tests carried out on the object. Test
station components, illustrated in Figure 4-1,
include: '

a Test case selection. A means of selecting test
cases to be executed. Test case information is
typically kept in a file or database, and the
selection may simply consist of “get next test
case.”

b. Test program. A means of setting the object’s
initial state (if necessary), providing input to
the object, recording the output from the
object, and (if necessary) recording the final
state of the object.

¢ Testoracle. A means of determining the
correctness of the actual test output and object
state.

Results database. A means of recording the
test results for future analysis and evaluation.
Typical data include the test identifier, date,
version of object being tested, test output and
state, and an indication of correctness or

- failure of the test.

4.4.3. Test Execution and Test Evaluation

The test procedures must be carried out and the results
analyzed. If discrepancies between actual and expected
results occur, there are two possibilities: either the test
case has a fault or the object has a fault. In the first
case, the test case should be corrected and the entire

_test procedure rerun.

If the object has a fault and the development
organization is performing the test, the programmer is
expected to correct the fault. The pattern of test-fix—
test-fix continues until all discrepancies have been
resolved.

1In the case of COTS software, obtaining corrections

may be very difficult. Suppose the test is being
performed by (or on behalf of) the customer. If the
software was developed for the customer under
contract, there may be considerable leverage for

.obtaining corrections. If the software is a consumer

product (for example, a library accompanying a

Test Case
Selection

C

Software Object
Requirements

Appendix B

Y

Test Case
Generator

Test Case
Database

input Qutput
P Test P
Program
Software
Object
Test
> Oracle -
Correctness
Results
Database

Figure 4-1. Typical Test Station Components for Functional Testing

compiler used for development), experience shows that
many developers have little interest in expensive
repairs that satisfy a limited marketplace. In this case,
the options of the customer may be simply to reject the
software or to evaluate each fault detected by the
testing and determine its effects on safety. If more than
one fault exists, the cuamulative effect of all the faults
on safety must also be determined.

The nature of the faults encountered must also be
considered. The discovered faults might be related to
new requirements arising from the specific, intended
application of the COTS product. They might also be
minor faults that might reasonably have escaped
detection during product development. In these cases,
the significance of the faults should be evaluated and
the options for obtaining corrections might be pursued.
However, if one or more serious faults pertaining to the
product itself are discovered, confidence decreases
rapidly regarding the suitability of the product for use
in a safety-related application.

4.5. Discixssjon of Functional TeSti.ng

There are a number of techniques for developing
functional tests. A summary of several of these is given
below and is based largely on Beizer (1990); see that
reference and Howden (1987) for detailed information.

77

4.5.1. Transaction Testing

A transaction is a compiete unit of work as seen by the
operators of the computer system. An example is
changing the value of a set point. The operator
normally views this as a simple action-—entering a
value on a display screen causes the value to change,
resulting in a change to some other portion of the
screen. In fact, many processes may be invoked on
multiple computers to carry out the action, but none of
the details are of interest to the operator.

Transaction testing is similar to control flow testing
(Section 3.4.2) in that it is based on a flowgraph. It
differs from control flow testing in that the flows in
transaction testing are derived from the requirements
specification, while the flows in control flow testing
are derived from the program internal structure.
Transaction testing is carried out at the program,
subsystem, or system level instead of the module level.
Nodes on the flowgraph represent processes that act on
the transaction, while the links on the graph represent
the movement of transaction data from one process to
another. Note that a transaction flowgraph does not
necessarily match program control flow. An example is
shown in Figure 4-2.

NUREG/CR-6421

Appendix B

Entry for . I Accept Rpt N Validate
Report Executive Parameters Parameters
Run
Repon \
Executive Executive Exit
Report

Queue /
Report

Figure 4-2. Example of a Transaction Flowgraph

Transactions typically are bom (created) as a result of
some triggering action, exist for some period of time,
and then die. Each transaction can be modeled by a
transaction flowgraph, and there is a separate graph for
each transaction. Some computer systems involve
hundreds of transactions, resulting in a large supply of
graphs. Alternative flows on the graph may exist to
handle errors and peculiar conditions. Transactions
may “spawn” additional transactions, and multiple
transactions may collapse into a single one. The
resulting flow can be quite complex.

Transaction testing assumes that the processing within
each node of the flowgraph is correct, but that there
may be errors in routing transactions from one node to
another. A test must be created for every path from
transaction birth to transaction death. Particular
attention must be devoted to paths caused by errors,
anomalous data or timing, or other strange events.

4.5.2. Domain Testing

A program can frequently be viewed as a function
transforming input values to output values. Programs
generally operate on more than one input variable, and
each adds a dimension to the input space. The
collection of all input variables determines a vector,
known as the input vector. An example might be

(temperature, pressure, neutron flux, on/off switch,
valve position)

where the first three are assumed to be read from
sensors and the last two read from an operator console.
Domain testing divides the input vector values into
sets, called domains, where the program behaves the
same for all values in the set.

NUREG/CR-6421

78

An example of a specification for a control function
based on a single variable, temperature, might take the
following form (the errors are deliberately included for
illustrative purposes):

eror
turn on heater
turn off both heater and cooler

turn on cooler (this is assumed
to be a specification error, i.e.,
assume the requirements call
for shutdown at 120)

emergency shutdown (this is
assumed to be a specification
error, i.e., assume the
requirements call for shutdown
at 120)

if temp<0

if 0 < temp <50
if S0 < temp < 80
if 75 < temp < 150

if 150 < temp

In this example (illustrated in Figure 4-3), there are
five domains, with boundaries at 0, 50, 80, and 120.
The boundaries are typically points in the input space
at which a new rule applies. The calculations are
assumed to be correct for all values in each set, and
faults are sought at or near the boundaries of the
domain. Several errors are shown in the example:

= Itis not known how the program should respond
for temp = 0 and temp = 150.

« There are inconsistent requirements for 75 < temp
< 80 since the domains overlap.

» The problem statement reqliires (it is assumed
here) emergency shutdown at 120, not 150.

Appendix B

Temperature

l
I
0 50

——) Domain 1: Error

Turn on cooler

75 80

) Domain 2: Turn on heater
—————) Domain 3: Turn off heater -

120 150

& cooler

Domain 4: ¢

Emergenc':y' shutdown

Ay
7

Domain §: ¢~—————

Figure 4-3. Example of Domains

Domains can be drawn and analyzed manually for one
. or two variables. Real-time control system software
generally requires more than two sensors and operator
signals, so the application of domain testing can be
impractical unless automated tools can be found.1!

Test cases for domain testing are concentrated at or
very near the boundaries of each domain. Figure 4-4
shows hypothetical two-dimensional input spaces,
where the shaded areas represent anticipated input
values. The asterisks show a few of the possible test
input values. If test cases are based on code
implementation rather than specifications, domain
testing is considered to be a structural technique.

Howden (1981) points out that techniques for

" examining classes of input data can also be applied to
the examination of classes of output data. In cases
where classes of output data are related to classes of
input data, selecting input data to produce output at the
boundaries of the output classes can yield useful
results. In addition, it is also useful to consider invalid
output data and (o attempt to generate this output with
selected inputs. This approach is closely related to the
use of fault tree analysis.

45.3. Syntax Testing

The syntax of external inputs, such as operator or
sensor inputs, and internal inputs, such as data crossing
interfaces between subsystems, must be validated. In
addition to the well-documented input syntax that may
be described in the requirements and design

H L reviewer pointed out that he was unaware of the use of domain
testing in real-time systems.

79

specifications, it is also necessary to examine the
software object for implicit, undeclared languages.
These may be found in areas such as user and operator
command sets, decision logic relating to transaction
flows, and communications protocols. Sources for this
information include requirements and design
documentation, manuals, help screens, and developer
interviews. Items relating to hidden languages should
be included on code inspection checklists (see Section
2). For defined or hidden languages, the syntax must be
defined with a tool such as BNF and a set of syntax
graphs must be created on which to base test cases for
various syntactic constructions. Figure 4-5 shows a
trivial example of a syntax graph. A sentence would be
formed based on the syntax graph by following a path
indicated by the arrows, making legitimate
substitutions when rectangles are encountered, and
inserting literally the contents of the circles. Thus,
PAUSE; and PAUSE({5}; would be legitimate
constructions.

Testing consists of supplying a combination of valid
and invalid constructions as inputs. Types of faults
discovered with syntax testing relate to cases where
valid constructions are not accepted, invalid
constructions are accepted, or where the handling
mechanisms for valid or invalid inputs break down.
Beizer (1990) notes that the invalid constructions lead
to the biggest payoffs in this type of testing. Fairly .
simple syntax rules can lead to very large numbers of
possible test cases, so automated means must be used
to accomplish the testing.

NUREG/CR-6421

Appendix B

Figure 4-4. Examples of Two-Dimensional Domains with Examples of Test Values

Identifier

Expression }

Figure 4-5. Example of a Syntax Graph

4.5.4. Logic-Based Testing

Some applications or implementations must deal with
situations in which the values of a number of
conditions must be evaluated and appropriate actions
taken depending on the particular mix of condition
values. If these situations are derived from system

requirements, they are functional issues; if they are the -
result of the design approach, they are structural issues.

Functional logic-based testing consists of testing the
software system’s logic for handling these mixes of
conditions. In addition to the correctness of the logic,
software quality factors of completeness and internal
consistency are also addressed.

Decision tables can be an effective means for
designing test cases to examine software logic. This
logic might be explicitly documented using techniques
such as decision tables or decision trees, or might be
implicit in the software requirements or design
specifications. In the latter case, the sources for

- obtaining information are the same as for syntax
testing. The cause~effect graphing technique can be
applied to transform this information into decision

NUREG/CR-6421

80

table format; an example is provided in Pressman
(1987).

An example of a limited entry (conditions and actions
are binary valued) decision table is shown in Figure 4 -
6. A detailed discussion of decision tables can be found
in Hurley (1983). A rule consists of the actions to be
followed when the specified conditions hold. Note that
the rule corresponding to conditions (Y,Y,Y) is
missing, possibly corresponding to an impossible
physical situation. The dash in rule 4 means that the
value of condition 3 is immaterial for this rule (i.e.,
rule 4 represents two cases, N,Y,Y and N,Y,N).

Testing based on this decision table should begin with
a verifying the completeness and consistency of the
table (see Hurley, 1983). Then test cases should be
developed to ensure that the software performs the
correct actions for the specified rules. It should be
verified, by attempting to design a test case, that a
(Y.Y.,Y) situation is indeed impossible, and both
options for rule 4 should be tested to ensure that the
same action is taken.

Appendix B

RULES

-t

Condition 1
Condition 2
Condition 3

Z < <
<z<|m™

Z2Z2<]| @
<z| s
zzz|©

Action 1
‘Action 2
Action 3 X
Action 4

b

X| <Z2Zf 9

X X X

Figure 4-6. Example of a Decision Table

The use of a decision table model for designing tests is
appropriate when the following requirements hold
(Beizer 1990):

» The specification consists of, or is amenable to, a
decision table .

= The order of condition evaluation does not affect
rule interpretation or resulting actions.

* The order of rule evaluation does not affect '
resulting actions.

« Once a rule is satisfied, no other rule need be
considered.

+ If muliple actions can result from a given rule, the
order in which the actions are executed does not
matter.

4.5.5, State Testing

Testing based on state-transition models is effective in
examining a number of areas including communication
protocols, failure and recovery sequences, and
concurrent processing. Figure 4-7 illustrates a state
transition diagram with three states indicated by boxes
and three transitions indicated by arrows. The trigger
for the state change (input or event) is shown in the top
part of the transition label and the action or output
associated with the transition is shown in the bottom
part of the label. (Note that state-transition models can
be depicted with other notation, such as state tables.)
For each input to a state, there must be exactly one
transition specified; if the state doesn’t change, a
transition is shown to and from the same state.

81

Faults can be associated with an incorrect structure for
a state-transition model or with a structurally correct
model that does not accurately represent the modeled
phenomena. In the former category, faults can be
related to conditions such as states that cannot be
reached or exited or the failure to specify exactly one
transition for each input. These types of faults can be
detected from a structural analysis of the model. In the
latter category, faults can be related to conditions such
as states missing from the model, errors in the
specification of triggering events, or incorrect
transitions. Detection of these errors involves the
analysis of, or testing against, specifications. Missing
states can arise from incorrect developer assumptions
about possibie system states or real world events.
Errors in modeling triggering events or associated
outputs can easily arise from ambiguities contained in
system or software requirements. For embedded COTS
software, states of the software itself or states related to
the interface of the software to the larger system may
need to be modeled as a basis for analysis and testing.

To perform state testing, it is first necessary to develop
correct state-transition diagrams for the phenomena
being investigated. An analysis should be made to
verify that the state-transition model is consistent with
the design and that the model to be used is structurally
correct. Design errors might be indicated by this
analysis. Following this analysis, a set of test cases
should be developed that, as a minimum, covers all
nodes and links of the diagrams. Test cases should
specify input sequences, transitions and next states, and
output sequences.

NUREG/CR-6421

Appendix B

Temp >150
Alert

Temp > 200
Shutdown

System OK |——®

System Hot p———®1 System Off

t

Temp <150
Clear Alert

Figure 4-7. Example of a State Transition Diagram

State testing is recommended in the following
sitnations (see Beizer 1990):

» Where an output is based on the occurrence of
sequences of events

» Where protocols are involved
+ Where device drivers are used

+ Where transactions can stay in the system
indefinitely

" NUREG/CR-6421

82

Where system resource utilization is of interest

Where functions have been implemented with
state-transition tables

Where system behavior is dependent upon stored
state.

Appendix B

5. STATISTICAL TESTING

5.1. Purpose of Statistical Testing

Statistical testing is conducted to measure the
reliability of a software object or to predict its
probability of failure, rather than to discover software
faults. It consists of randomly choosing a sample of
input values for the software object and then
determining the correctness of the outputs generated
from those inputs. Obtaining a statistically valid
reliability measure using this testing strategy requires
that the following assumptions hold:

1. The test runs are independent.

2. For each input, the chance of failure is constant.
That is, the probability of failure is independent of
the order in which samples are presented to the
software object, and of the number of samples that
precede the specific input.

3. The number of test runs is large.
4. All failures during testing are detected.

5. The distribution of the inputs under real operating
conditions is known. '

The qualities addressed by statistical testing are
availability and reliability.

It is possible to use statistical testing for the goal of
finding failures (random testing). That is, one runs

randomly selected tests in the hopes of finding failures.

- This is likely to be less efficient than the other, more
directed, forms of testing, Of course, if failures do
happen during statistical testing, the faults should be
found and corrected. See Hamlet (1994) fora
discussion of random testing.

5.2. Benefits and Limitations of Statistical
Testing

5.2.1. Benefits

Statistical testing does not rely on any knowledge of
the internal composition of the software object, so it
can be carried out whether or not such knowledge
exists. It is the only way to provide assurance that a
specified reliability level has been achieved. Statistical
testing (as discussed here) is less prone to human bias
errors than other forms of testing. It is a practical
method ir many cases when moderate-to-high
reliability (in the range of 104 to 10°5 failures per
demand) is required. :

Statistical testing addresses the reliability quality by
estimating probabilities based on large numbers of
tests. Reliability information also provides information
regarding potential availability, although it does not
address external factors, such as system loads or
administrative procedures, that may affect accessibility
when a particular capability is needed.

5.2.2. Limitations

A number of practical issues with statistical testing
limit its usefulness in some instances. The first set of
issues relates to the test planning and test station (see
below). The most difficult of these issues are
frequently the construction and verification of the test
oracle. Determining the operational profile may be
nearly as difficult.

The second set of issues involves the length of time
necessary for testing. Testing to the level of reliability
required for a typical safety-critical process control
system should be feasible, but testing to much higher
levels of reliability is not. (See the discussion of
expected test duration in section 5.4.2.)

The third set of issues concems the relationship
between safety and reliability. Statistical testing
provides a reliability number, not a safety number.
Since inputs with safety implications should be a very
small percentage of all possible inputs, it is not likely
that random testing will include many safety-critical
input cases. In such cases, it may be possible to carry
out two series of tests: one based on all possible input
cases, and one based only on safety-critical input cases.
This would result in two numbers-—an overall
reliability figure and a safety-related reliability figure.
The latter could be reasonably termed a safety
reliability number. This approach does, however,
require that the set of safety-critical input events be
completely understood so that the safety-critical input
space can be completely and accurately characterized.
This may be difficult to accomplish.

5.3. Information Required to Perform
Statistical Testing
Statistical testing requires no knowledge of the internal

composition or structure of the software object being
tested. It does require a good understanding of the

. statistical distribution of inputs which can be expected

&3

to appear during actual operating conditions (the
operational profile). A test platform is required, which
includes the ability to generate random tests using the
operational profile, the ability to carry out each test on
the software object, and the ability to evaluate the

NUREG/CR-6421

Appendix B

results for correctness. Since many thousands of tests
are required in order to obtain a valid reliability
number, the test platform must be automated.

5.4. Methods of Performing Statistical
Testing

The statistical test must be planned, designed,
implemented, executed, evaluated, and documented.
The following steps (or their equivalent) must be
carried out.

5.4.1. Test Planning and Test Requirements

The following actions are required to plan and generate
requirements for statistical testing. Statistical testing
focuses on the reliability quality of software. For
safety-related COTS software, the goal of statistical
testing is to provide a measure of the item’s reliability
given its anticipated operational profile (i.e., given the
specific role that the COTS item will play in the safety -
related system). The software qualities of interest for
statistical testing are reliability and availability. .

1. Determine the level of reliability to be achieved.
This is generally given in terms of the maximum
acceptable failure rate—for exarnple that the
failure rate cannot exceed 10-5 per demand.

2. Determine if failures will be tolerated. A statistical
test will be carried out for some period of time,
recording all failures. At some point, the number
of failures may be so large that the test will be
stopped and the software object rejected. If the test
is to be statistically valid, this point must be
determined during test planning. For reactor
protection systems, the objective should be to
carry out the test without failure. In this case, any
failure will cause the test to stop, the fault to be
corrected, and the test to be completely rerun.
‘When a statistical test is re-run, it is crucial that
the random numbers selected be independent of
sequences previously used.

3. Determine the degree of statistical confidence
which will be required in the test results. This will
be given as a percentage—for example, .99.

4. Determine what resources will be required in order
to carry out the testing. Resources include budget,
schedule, personnel, equipment, test tools, test
station, and test data.

NUREG/CR-6421

5. Determine which software objects will be tested.
54.2. Test Design and Test Implementation

The following actions are required to design and
implement statistical testing.

. 1. Calculate the number of test cases which must be

carried out without failure to achieve the specified
reliability with the specified confidence level.

The number of test cases, n, is given by the following
formula, where f is the failure rate and ¢ is the
confidence level (Poore, Milis, and Mutchler 1993):

_ [log(1—c)]
log(1-f) |

Table 5-1 shows approximate values of 7 for various
values of ¢ and f. In this table, ‘M’ stands for
‘million.” This table shows that increasing the required
level of confidence in the test results can be obtained
with relatively little extra effort. However increasing
the required level of reliability (decreasing the failure
rate) that must be demonstrated requires considerably

more test cases to be executed and consequently
increases test time.

Given a required number of test cases and an
assumption about the average number of test cases that
can be carried out per unit time, estimates can be made
of the total time that will be required for test execution.
Table 5-2 shows the approximate amount of execution
time required to achieve specified failure rates at the
.99 confidence level under two assumptions of the rate
of testing: one test per second and one test per minute.
In the first case, testing is impractical for failure rates

~ under 107 in the latter, under 10-3. Note that this table

assumes that tests are carried out 24 hours per day,
seven days per week, and that no failures are
encountered during the test. Determining the expected
amount of calendar (elapsed) time for the test will be
longer if the assumptions are not valid. The times
given in the table are examples; if test cases require
more (or less) time, then the table can be adjusted. For
example, if a test case requires five minutes to execute,
then nearly six years will be required for a failure rate
of 105

Appendix B

Table 5-1. Required Number of Test Cases to Achieve
Stated Levels of Failure Rate and Confidence

f " c=9 c=99 c=.999

ot [2 a4 66
10-2 230 - 460 690
1103 2,300 4,600 6,900
104 23,000 46,000 69,000
105 230,000 460,000 - 690,000
10-6 2,300,000 4,600,000 6,900,000
107 23M 46M 65M
108 230M 460M 690M
109 2,300M 4,600M 6,900M
10-10 23,000M 46000M 69,000M
10-11 {f '230,000M 460,000M 690,000M

Table 5-2. Expected Test Duration as a Function of Test Case Duration

" Failure rate " Number of test cases 1 test per second 1 test per minute

C 1ot [4 44 seconds 45 minutes
102 459 7.5 minutes 7.6 hours
103 4600 1.25 hours 3 days
104 46,000 13 hours 1 month
105 460,000 5.5 days 11 months
106 4,600,000 1.75 months 9 years
107 46M 1.5 years 90 years
108 460M 15 years 900 years
10 4,600M 150 years 9,000 years
1010 46,000M 1,500 years 90,000 years
1011 . 460,000M 15,000 years 900,000 years

2. Obtain the oj)erational profile.

An operational profile is a statistical distribution
function which gives, for every point p in the input
space, the probability that p will be selected at any
arbitrary point in time. More formally, suppose the
inputs presented to the software object during actual
operation are v 1, v, ..., vp. Then the operational
profile gives, for each point p, the probability that vk =
p for each k, 1 <k < n(Musa 1992)12.

12 Some additional statistical assumptions discussed in the reference
are not listed here,

~

85

For example, suppose that a software object has only
three input values: low, medium, and high. An analysis
of the expected frequency of these three values shows
that ‘low’ will occur 70% of the time; ‘medium,’ 20%;
and ‘high,’ 10%. This is an operational profile for this
example.

3. Determine the test oracle.

This is a function which, given an input to the software
object under test and the results of running the test, will
determine whether the actual test result obtained is
correct. The test oracle must be able to make this
determination with very high confidence.

NUREG/CR-6421

Appendix B

4. Create the test station.

A test station is a mechanism for creating, executing,
evaluating, and recording tests performed on the
software object and the results of the tests. It must be
able to run with minimal supervision for very long
periods of time. Typical test station components are
shown in Figure 5-1.

A brief description of each component of a test station
follows:

a Input Generator. A means of generating input test
cases in such a way that the probability
distribution function of the test cases is equivalent
to the probability distribution function determmed
by the operational profile.

b. Test Program. A means by which the software
object can be executed using the generated test
cases as input to produce test results as output. As
a general rule, the object must be placed in the
same initial state before each test is carried out.

¢. Test Oracle. A means of determining the
correctness of the output produced by the software
object under test.

Input Input
Generator

d. Test Database. A means of recording the test
input, test output, and correctness for future
analysis and evaluation,

5.4.3. Test Execution and Test Evaluation

The following actions are required to execute and
evaluate statistical testing.

1. Execute the tests. Carry out the test procedure until
the predetermined number of test cases have been
executed without failure, The number of test cases
which will be required can be detcrmmed from
Table 5-1.

2. Assess the tests. Evaluate the results to be sure that
the test was successfully executed, and provide
assurance of this fact. This may require a formal
certification.

5.5. Discussion of Statistical Testing

Statistical testing is the primary way to calculate a
failure rate for a software object. When the conditions
discussed above can be met, statistical testing can be
very effective. It can be used for nearly any type of
software object.

OQutput
Test P

Program

Software
Object

Test
Oracle

Correctness

Results

Database

Figure 5-1. Typical Test Station Components for Statistical Testing

NUREG/CR-6421

For example, suppose it is necessary to provide a
reliability number for a square root routine. It would be
reasonable to assume that the operational profile
function is the uniform distribution function, so that all
random numbers are equally likely to be used.
Generating a sequence of random numbers for this
distribution is easy, so the input generator is simply a
random-number generator. The test program merely
calls the square root routinie. The oracle is simple —
check for a positive number, square the answer and
compare to the input number using previously
established error bounds. It should be possible to carry
out one test every millisecond or so, depending on the
speed of the computer being used. If the goal is a
failure rate of 108 with .99 confidence, Table 5-1
shows that about 460,000,000 test cases will be
required—this will take about 5.3 days.

Statistical testing will be much more difficult for a
software system such as a reactor protection system.
Here, the input points may consist of a series of values
from simulated sensors which occur over a period of
several minutes—and the timing may be critical. This
would mean that carrying out a sequence of tests will
require a considerable amount of time. Assuming one

. test per minute (on average), attaining a failure rate of
104 at .99 confidence will require about a month of
testing. This is estimated as follows:

1. Table S-1 states that approximately 46,000 test
cases are required to achieve a failure rate of 104
at .99 confidence level.

2. The assumption of one test case executing per
minute (on average) means that sixty test cases can
be executed in an hour. Assuming that the tests are
automated and run continuously 24 hours a day,
seven days a week, it follows that 10,080 test
cases can be executed in a calendar week.

87

Appendix B

3. Hence, it will require (46,000)/(10,080) or
approximately 4.5 calendar weeks to execute the
required test cases to establish this statistical
failure rate at the specified confidence level.

Similarly, it can be shown that attaining a failure rate
of 10-5 will require nearly a year of testing.

An accurate operational profile may be difficult to
obtain. One possible approach is to partition the input
space into subsets of inputs that occur in different
modes of operation, and test each of these individually,
assurning a uniform distribution function. For example,
one mode of operation could be “all operating
parameters well within bounds;” another could be
“some operating parameter is near a limit,” and so on.
If these operational modes can, in turn, be specified
accurately, statistical testing can be carried out for each
mode. (See Whittaker 1994 for an alternative
approach.) .

There are some advantages to-this approach. It is
presumably more important to know the reliability of
the software under off-normal and emergency
conditions than under normal operating conditions.
One might be willing to test for 104 failure rate under
normal conditions, but require 105 under near-
emergency and emergency conditions. If the latter
input space is sufficiently small, increased confidence
in the software could be obtained at reasonable cost.

However, constructing the test oracle and guaranteeing
its correctness becomes a serious problem. It is not
possible to carry out large numbers of tests and
evaluate the results using human labor because of the
time constraints and human error rates for this type of
task. .

NUREG/CR-6421

Appendix B

6. STRESS TESTING

6.1. Purpose of Stress Testing

Stress testing is a process of subjecting a system to
abnormal loads on resources in order to discover
whether the system can function outside anticipated
normal ranges, to determine the usage limits beyond
which the system will fail as a result of the overloaded
resource, and to gain information that will help to
characterize the behavior of a system when it is
operating near its usage limits. The process of
discovering “breaking points™ also provides the
opportunity to examine recovery mechanisms and
procedures.

If a system can function adequately with loads outside
the anticipated real-life application domain levels, the
assumption is that it will perform properly with normal
loads (Perry 1988). Background testing (testing in the
presence of loads within normal ranges) should be
performed to help validate this assumption. A
background test verifies that the system will perform
adequately within the normal mix of loads and
resources and provides the basis with which to
compare stress test results.

Stress testing is particularly important for COTS
software items since those items may not have been
developed with the particular safety-related application
in mind. This type of testing provides an opportunity to
examine the COTS software performance with respect
to the intended application.

The qualities addressed by stress testing, summarized
in Table 1-2, are discussed below.

6.2. Benefits and Limitations of Stress
Testing

6.2.1. Benefits

Stress testing forces a system to operate in unusual
circumstances not typically created in other forms of
testing and, therefore, is complementary to other
elements of the overall testing effort. It is particularly
important for safety-related software sinceitis a
testing strategy that creates high-stress, off-normal
scenarios in which the software is likely to fail. For
reactor protection systems, these scenarios might be
related to sensor input streams of interrupt-type or
buffer loading signals or to output streams generated in
emergency situations. Stress testing uncovers
information about software faults and provides an
understanding of limits on system resources. The latter
is useful in validating the intended use of the COTS

89

item, in establishing system monitoring routines, and in
tuning the system for installed operations.

Stress testing provides information about robustness
and performance by creating scenarios in which normal
operating ranges are exceeded and examining how
performance degrades. Stress testing at the boundaries
of these ranges also allows one to confirm that
performance requirements have been met. The actual
failures encountered in stress testing may lead to the
discovery of software faults and provide opportunities
to examine the completeness of the recovery
mechanisms incorporated into the software., .

6.2.2. Limitations

Stress testing must be performed in an actual or
simulated installed environment and requires complete
information about operating and user procedures.
Stress testing can be expensive because of manpower
costs or because of the need to develop automated
elements of the test station. In addition, specific
internal states can be difficult to reproduce, and root -
causes of failures can be difficult to find.

6.3. Information Required to Perform
Stress Testing

Stress testing must be performed in an actual or
simulated production (installed) environment.
Therefore, complete information about this
environment must be available, including an
understanding of operating and user procedures. Since
stress testing must provide abnormal loads, there must
be a definition of the types of loads to be placed on the
system as well as an understanding of what the normal
operating ranges will be for each load. Typical load
types of interest are as follows (the first four being of
particular interest for reactor protection systems);

+ High volumes and arrival rates of transactions

= Saturation of communications and processor
capacities

« Siwations stressing internal table sizes

« Situations stressing internal sequencing or
scheduling operations

« Heavy use of disk storage space and swapping
capability

» Operating with a very large database size

* Many simultaneous users.

NUREG/CR-6421

Appendix B

Finally, if available, design information is valuable in
order to understand how to design specific stress tests
that will focus on internals. .

6.4. Methods of Performing Stress Testing

The stress tests must be planned, designed, created,
coordinated, executed, evaluated, and documented.

6.4.1, Test Planning and Test Réquirements

The following actions are required to plan and generate
requirements for stress testing.

1. Determine the software qualities to be addressed
with stress testing. The primary quality of interest
for safety-related COTS software is robustness in
the intended role; however, availability,
completeness, correctness, and performance are
also addressed.’

2. Determine the load situations under which the
software system is to be tested. For safety-related
COTS software, these will be determined based on
knowledge of the role that the COTS product will
play in the system and vendor-supplied
information regarding product functions and
performance. Information derived from the usage
experience of other users of the COTS software
item or from fault tree analyses of the system is
also valuable in this process.

3. Determine whether the stress testing environment
will be an actual or simulated production
environment.

4. Determine the resources required to carry out the
testing. Resources include budget, schedule,
personnel, equipment, test tools, test station, and
test data.

5. Determine the criteria to be used to decide how
much testing will be required. This is a stopping
criterion—how much testing is enough? For
example, “stress testing of a particular software
resource might continue until adequate .
information has been gathered regarding all three
goals of stress testing.”

6.4.2. Test Deéign and Test Implementation

The following actions are required to design and
implement stress testing.

1. Establish the testing environment for the stress
tests.

In most cases, a simulated production environment will
be required. Since the results of stress testing will
reflect the performance of the software in the test
environment rather than the real-life environment, the

NUREG/CR-6421

simulated production environment should be as close
as possible to the actual production environment.

2. Create procedures for executing the stress tests.

Since this testing will take place in an actual or
simulated production environment, the test procedures
should make use of system operating procedures and
usage procedures or user guides. The stress test
procedures specify how the system loads will be
generated, the roles of all participants, the sequences of
operations (scripts) each participant will perform, the
test cases to be performed, and how the test results will
be logged.

3. Create individual test cases.

Each test case should contain the following
information:

a Test identification. Each test case must have a
unique identifier.

b. Purpose. Each test case should have a specific
reason for existing. Examples include verifying
the proper operation of a system function,
verifying response times, and verifying the
handling of exception conditions during situations
of high system loads.

¢. Input data. The precise data required in order to
initiate the test case must be specified.

d. Initial state. The initial state for the test case is
essentially specified in the test procedures and
scripts; however, there may be initial state
information specific to a given test case.

e Test results. The expected results of the test must
be known and specified. Expected performance
statistics, counts of operations, etc., should be
determined from the planned load and test case
input data.

f Final state. In some cases, the final state is
- important and must be specified as part of the test
case information.

4. Create the test station.

The test station is a mechanism for specifying and
generating loads as well as selecting, executing,
evaluating, and recording the results of other tests
carried out on the software. Note that, depending on
the goal of a particular stress (or background) test,
input may consist solely of transactions in the input
load or may be augmented by test cases from other
types of testing. Test station components (patterned
after Beizer 1984) are illustrated in Figure 6-1 and
include:

Appendix B

Loading Input Load Input Output
Specifications Generation &
'\ 5 Software
! Object
Load '
Data Test Case
Selection
Load Data Load ot:i}e -
Generator Scenarios

Test Case
Database

Correctness %

—
o

Data
Logger

Results
Database

Figure 6-1. Typical Test Station Components

Load data generator. A means of accepting
specifications for the loading of resources and
generating scenarios needed for the input load
generator to produce the required load during the
stress test run. '

Test case selection. A means of selecting, if
appropriate, additional test cases to be executed.
Test case information is typically kept in a file or
database, and the selection may simply consist of
“get next test case.”

Input load generation. A means of accepting input
data for loading and generating the desired system
loads with the desired statistical characteristics.

Test Oracle. A means of determining the
correctness of the output (of the optional test
cases) produced by the software object under test.

9

e Data Logger. A means of logging pertinent

g

information about system performance during the
stress test.

Test evaluation. A means of analyzing the results
of the stress test, including specific test case
results as well as scanning software system output
for anomalies created during the stress test.

Results database. A means of recording the test
results for future analysis and evaluation.

6.4.3. Test Execution and Test Evaluation

The test procedures must be carried out and the test
results must be analyzed. The logged system outputs,
produced in response to the input load or any
additional test cases, must be examined to verify.
correct operation of the system. This is done by
comparing.inputs and outputs relating to specific test
cases or transactions to determine if information was

NUREG/CR-6421

'Appendix B

lost or improperly processed. In addition, the logged
output must be analyzed to determine if timing,
sequencing, counts, efror recovery, etc. match what
was input to the system by the load generator and test
case selector. If appropriate, database integrity
checking routines should be run. If a particular load
causes the system to fail, the logged information is
used to search for the circumstances of the failure and
to quantify the load level at which the failure occurred.
These evaluations can be quite difficult to perform
since they can require the careful examination of
voluminous data.

The results of stress testing may indicate that the
system performs acceptably within the planned load
ranges of the tested resources. In this case, the stress
testing results provide operating information about
resource limits that can then be embedded into system
monitoring routines or used for system tuning

purposes.

The performance profile and the nature of fauits

encountered must also be considered. The performance
* information must be verified against the requirements
and constraints of the system in which the COTS
software will operate. The significance of the faults
discovered should be evaluated and, if appropriate, the
options for obtaining corrections might be pursued. If
the performance of the software is not within the
requirements of the application or if one or more
serious faults are discovered, confidence decreases
rapidly regarding the suitability of the product for use
in a safety-related application.

- 6.5. Discussion of Stress Testing

Stress testing is a process of subjecting a system to
abnormal loads with the intention of breaking the
system. By investigating why the system breaks and at
what load level the system breaks, information is
gained about possible software faults, operating load
limits, system behavior near the load limits, and error
recovery behavior. Typical software faults discovered
are faults associated with sequencing, contention for
resources, scheduling priorities, error or time-out
recovery paths, and simultaneous activities. These
faults tend to be subtle and frequently indicate design
problems rather than simple coding mistakes (Beizer
1984).

For COTS software, there are a number of approaches
to identifying specific load sitations to test. The role
of COTS software in the overall system must be
characterized with respect to functions provided,
performance requirements, and interfaces to other
elements of the system—essentially a black-box

" characterization. Additional information can be added
based on any available vendor data regarding product
specification and target performance levels. If source
code is available, the source code inspection process

NUREG/CR-6421

(see Section 2) could have, as one of its goals, a focus
on identifying structural properties that should be stress
tested. Information can also be gathered from other
users of the COTS software item regarding usage
experience and load ranges. This information might
suggest suspect areas or provide additional confidence
that some areas are robust. Finally, if fault tree analysis
techniques are applied to the overall system, any root
causes possibly relating to the COTS software role
must be examined to see if load-related failures might
be possible.

With respect to the task of diagnosing software faults
based on stress test results, it should be noted that the
exact reproduction of internal states resulting from
stress test scenarios is difficult, if not impossible. This
is because the simultaneous activities of test
participants and the various internal timing and
scheduling situations are usually not exactly
repeatable. Therefore, the process of identifying
software faults based on stress test results is not as
deterministic as it is for other types of test results
analysis. However, if the goal is to examine general
behavior at various load levels, the stored scenarios can
be re-run as needed. Discovered software failures that
are reproducible without active system loads can be
further investigated with other test techniques. It is
more difficult to diagnose software failures that occur
only under high system loads or that cannot be
reproduced in subsequent stress tests. For this reason, it
is important to have full knowledge of test inputs and
to log as much information as possible during the stress
test execution for subsequent analysis. For COTS
software items, knowledge of the experience of other
users and a characterization of their normal operating
loads is useful ancillary information for analysis of test
results.

Creating mechanisms for generating the required loads,
logging test data, and analyzing results is a difficult
task. For small systems with minimal real-time
requirements or in cases in which only general
information such as user response time is desired, it is
possible to do the data generation manually and to
create the system load via interactive user inputs
augmented by other system functions such as running
reports and performing intense data searches. Data
logging would be done manually or automatically
using existing logging features, and test results analysis
would be manual. Even though there might not be a
need for developing automated load generators in these
cases, there will still be a significant effort to use and
coordinate manpower and system resources for stress
testing.

For most situations, it is necessary to develop
automated means for generating the input loads,
logging data, and analyzing results. See Beizer 1984
for a detailed discussion of load generation techniques.

The load generation process comprises two parts,
which can be combined or separated depending on the
demands of the stress testing operations. First, the
information characterizing a particular load is used to
generate typical test data according to statistical
distributions of desired input parameters. Second, an
automated means for using this data to generate loads

93

Appendix B

in real time during the test must be created. Logging
facilities might already exist in the system platform; if
not, they have to be created. Finally, the analysis of
results will require specialized routines to organize and
summarize the data, scan the results for possible
anomalies, and compare system performance statistics
with those anticipated from the input load statistics.

NUREG/CR-6421

Appendix B

7. REGRESSION TESTING

7.1. Purpose of Regression Testing

Regression testing consists of re-running a standard set
of test cases following the implementation of a set of
one or more changes to previously tested software. Its
purpose is to provide confidence that modifications
have not had unintended effects on the behavior of the
software, It is assumed that the appropriate testing
techniques (see the other sections of this report) have
been applied to test whether the modified software
elements perform as specified in the change
documentation. In addition to regression testing itself,
it is necessary to verify that all system documentation,
such as requirements, design, and operating
procedures, have been updated to reflect the software
modifications. Regression testing addresses the quality
of software correctness and, indirectly, the qualities
associated with the test strategies that are being re-
applied.

7.2. Benefits and Limitations of Regression
Testing

7.2.1. Benefits

In addition to the direct testing of software
modifications, regression testing is required to provide
assurance that, except for the modified portion, the
software performs in the same way that it did prior to
the changes. Since the regression testing process
repeats previous testing, no additional “start-up” costs
are associated with establishing test mechanisms. In
addition, since the regression testing effort is largely
the same for each software change, there is benefit in
combining changes into one release. For COTS
software, this is equivalent to determining when to
upgrade to a new release.

The primary software quality of interest in regression
testing is correctness since the goal is to verify that
new faults have not been inadvertently introduced into
the software. Since regression testing consists of re-
running test cases from appropriate test techniques, the
qualities associated with those techniques are also re-
examined during regression testing.

7.2.2. Limitations

There are significant maintenance costs for
configuration management of the test cases, test data,
and test procedures as well as for keeping the testing
environment(s) current. Regression testing will involve
re-running large numbers of test cases in a variety of
types of testing and will, therefore, be expensive to
perform.

95

7.3. Information Required to Perform
Regression Testing

Since regression testing is a re-use of existing test
cases, 13 the information required to perform this
testing depends upon the specific types of test cases to
be re-run. This information is described in the sections
of this report dealing with the test types of interest. It is
essential that configuration control be maintained on
all test documentation and related test materials to
permit regression testing to be performed effectively
and efficiently.

7.4. Methods of Performing Regression
Testing

The regression tests must be planned, designed,
coordinated, executed, evaluated, and documented.

74.1. Test Planning and Test Requirements

The following actions are required to plan and generate
requirements for regression testing.

1. Establish and maintain the standard set of tests
(test cases, data, and procedures) to be repeated as
regression tests. For COTS software used in a
safety-related context, it is recommended that the
full set of functional and stress testing initially
conducted be repeated.

2. Determine what resources will be required in order
to carry out the testing. Resources include budget,
schedule, personnel, equipment, test tools, test
station(s), and test data. The test tools, test
station(s), and test data should already be in place
from previous testing activity, and should be
directly usable provided that configuration
management procedures have been continuously
applied to these items.

3. Determine the criteria to be used to decide how
much testing will be required. This is a stopping
criterion—how much testing is enough? For
example, “the regression testing process will
continue until the entire standard set of test cases
runs without incident.”

7.4.2. Test Design and Test Implementation

The following actions are required to design and
implement regression testing.

Basa system evolves, the suite of test cases used for regression
testing must also evolve.

NUREG/CR-6421

Appendix B

1. Ensure that the testing environments used in
previous testing have been maintained and are
ready for regression testing.

Ensure that the modified software elements have
been tested according to the same testing plans
used on the original software.

3. Review the standard set of regression test cases,
data, and procedures to discover whether any have
been invalidated as a result of the desired
modifications. Update the test cases and
procedures as appropriate.

7.43. Test Execution and Test Evaluation

The test procedures must be carried out and the test
results analyzed. Since the modified software elements
have already been tested to verify correct operation, the
regression test results should indicate that the areas of
the COTS software thought to have been unaffected by
the modifications are indeed unaffected by the
changes. The results should exactly match the results
of previous, successful tests.

7.5. Discussion of Regression Testing

The primary focus of regression testing is to provide
assurance that implemented changes do not, in some
subtle way, ripple through the system and cause
unintended effects. In addition to software function and
performance, there must be a verification that
conventions, standards, access rules, etc., were adhered
to in the change implementation. One source of
problems occurring in software maintenance is that

NUREG/CR-6421

96

undocumented assumptions made by the development
team are not carried over into the maintenance phase
(Hetzel 1984). For these reasons, it is recommended
that the full complement of functional and stress
testing activities originally performed be repeated to
test the modified safety-related software system. (It is
assumed that appropriate tests and analyses will
already have been run on the modified code.)
Depending on the role of the modified software
element and the criticality of its function (and of the
overall software system), it may be possible to justify a
reduced set of test cases for regression testing based on
a change impact assessment and knowledge of
potential fault consequences derived from a software
risk assessment. This requires a careful assessment of
the modified software element and its interfaces

_(logical and data) to other parts of the system, as well

as a complete understanding of the likelihood and
magnitudes of potential loss.

The methods used for regression testing are the same
methods used for the various types of testing carried
out previously. Test plans, test cases, and test
procedures, as well as test stations and automated test
support mechanisms, already exist, and it is assumed
that they have been maintained under configuration
control for future use in regression testing. Whenever
modifications are made to the software object, it is
necessary to review the standard set of test cases (as
well as test data and test procedures) to ensure that
none have been invalidated by the modifications and to
update the set based on the specifications for the newly
modified object.

- Appendix B

8. REFERENCES

Basili, Victor R. and Richard W. Selby, “Comparing the Effectiveness of Software Testing Strategies,” JEEE
Transactions on Software Engineering Vol. 12, No. 12 (December 1987), 1278-1296.

Beizer, Boris, Software System Testing and Quality Assurance , Van Nostrand Reinhold (1984).

Beizer, Boris, Software Testing Techniques, Van Nostrand Reinhold (1990). '

Charette, Robert N., Software Engineering Risk Analysis and Management, McGraw-Hill (1989).

Dyer, Michael, The Cleanroom Approach to Quality Software Development, John Wiley & Sons (1992),

Fagan, M. E., “Design and Code Inspections to Reduce Errors in Program Development,” IBM Systems Journal,
Vol. 15, No. 3, 1976, 182-211. ,

Glass, Robert L., Building Quality Software, Prentice-Hall (1992).

Hamilet, Richard, “Random Testing,” in Encyclopedia of Saftware Engineering, John Wiley & Sons, 1994.

Hetzel, William, The Complete Guide to Software Testing, QED Information Sciences, Inc. (1984).

Howden, William E., “A Survey of Static Analysis Methods,” in Tutorial: Software Testing & Validation
Techniques , Institute of Electrical and Electronics Engineers, 1981.

Howden, William E., “A Survey of Dynamic Analysis Methods,” in Tutorial: Software Testing & Validation
Techniques, Institute of Electrical and Electronics Engineers, 1981.

Howden, William E., Functional Program Testing and Analysis, McGraw-Hill (1987).

Hurley, Richard B., Decision Tables in Software Engineering, Van Nostrand Reinhold, (1983).

IEEE 610.12. JEEE Standard Glossary of Software Engineering Terminology, Institute of Electrical and Electronics
Engineers, 1991.

IEEE 829. IEEE Standard for Software Test Documentation, Institute of Electrical and Electromcs Engineers, 1983.

IEEE 1008. IEEE Standard for Software Unit Testing, Institute of Electrical and Electronics Engineers, 1986.

IEEE 1074. IEEE Standard for Developing Software Life Cycle Processes , Institute of Electrical and Electronics
Engineers, 1992.

Lawrence, J. Dennis, Software Reliability and Safety in Nuclear Reactor Protection Systems, NUREG/CR-6101,
Lawrence Livermore National Laboratory, Livermore, CA (1993).

Lawrence, J. Dennis and Preckshot, G. G., Design Factors for Safety-Critical Software, NUREG/CR-6294,
Lawrence Livermore National Laboratory, Livermore, CA (1994).

Marick, Brian, The Craft of Software Testing; Prentice-Hall (1995).

Miller, Edward and William E. Howden, Tutorial: Software Testing and Validation Techmques, Second Edition,
IEEE Computer Society Press (1981).

McCall, Jim A. et al., “Factors in Software Quality,” Concept and Definitions of Software Quality, General Electric
Company, 1977.

Musa, John D., “The Operational Profile in Software Reliability Engineering: An Overview,” Third Int’l Symp. on
Soft. Rel. Eng (October 1992), 140-154.

Olender, Kurt M. and Leon J. Osterweil, “Cecil: A Sequencing Constraint Language for Automatic Static Analysis
Generation,” IEEE Transactions on Software Engineering, Vol. 16, No. 3, March 1990, 268-280.

Perry, William E., A Structured Approach to Systems Testing, QED Information Sciences (1988).

Pressman, Roger S., Software Engineering, A Practitioner’ s Approach, McGraw-Hill, (1987).

Price, Source Code Static Analysis Tools Report, Software Technology Support Center, 1992.

Poore, J. H., Harlan D. Mills, and David Mutchler, ‘Planning and Certifying Software System Reliability,” JEEE
Software 10, 1 (January 1993), 88-99.

Preckshot, G. G. and Scott, J. A., Vendor Assessment and Software Plans, UCRL-ID-122243, Lawrence leennore
National Laboratory, vaermore CA (1995).

Whistaker, James A., and Michael G. Thomason, “A Markov chain model for statistical software testing,” IEEE
Transactions on Software Engineering, Vol. 20, No. 10 (October 1994), 812-824.,

Yourdon, Edward, Structured Walkthroughs, Prentice-Hall (1989).

97 ' NUREG/CR-6421

Appendix B

ANNEX: TAXONOMY OF SOFTWARE BUGS

This Annex * provides a taxonomy for program faults (bugs). Faults are categorized by a four-digit number, perhaps
with sub-numbers using the point system: e.g., “1234.5.6.” The “x™ that appears is a place holder for possible future
filling in of numbers as the taxonomy is expanded. For example,

3xxx—structural bugs in the implemented software

32xx—processing bugs
322x—expression evaluation
3222—arithmetic expressions
3222, l—wrong operator

Ixxx: FUNCTIONAL BUGS REQUIREMENTS AND FEATURES: Bugs having to do with reqmrements as
specified or as implemented.

11xx: REQUIREMENTS INCORRECT: the requirement or a part of it is incorrect.
111x: Incorrect: requirement is wrong.
112x: Undesirable: requirement is correct as stated but it is not desirable.
113x: Not needed: requirement is not needed.

12xx: LOGIC: the requirement is illogical or unreasonable.

lﬂx:flllogical: illogical, usually because of a self-contradiction which can be exposed by a logical analysis

of cases.
- 122x: Unreasonable: logical and consistent but unreasonable with respect to the environment and/or

budgetary and time constraints.

123x: Unachievable: requirement fundamentally 1mpossnb1e or cannot be achieved under existing
constraints.

124x: Inconsistent, incompatible: requirement is mconsmtent with other requxremems or with the
environment.
1242: Internal: the inconsistency is evident within the specnﬁed component.
1244: External: the inconsistency is with external (io the component) components or the environment.

~ 1248: Configuration sensitivity: the incompatibility is with one or more configurations (hardware, .
software, operating system) in which the component is expected to work.

13xx: COMPLETENESS: the requirement as specified is either ambiguous, incomplete, or overly specified.

131x: Incomplete: the specification is incomplete; cases, features, variations or attributes are not
specified and therefore not implemented.

132x: Missing, unspecified: the entire requirement is missing. -

133x: Duplicated, overlapped: specified requirement totally or partiaily overlaps another requirement
either already implemented or specified elsewhere.

134x: Overly generalized: requirement as specified is correct and consistent but is overly generalized
(e.g., too powerful) for the application.

137x: Not downward compatible: requirement as specified will mean that objects created or
manipulated by prior versions can either not be processed by this version or will be incorrectly
processed.

138x: Insufficiently extendible: requirement as specified cannot be expanded in ways that are likely
to be needed-—important hooks are left out of specification.

* This Annex is based on “Bug Taxonomy and Statistics,” Appendix, Sofiware Testing Techniques, second edition, by Boris Beizer. Copyright ©
1990 by Boris Beizer. Reprinted with permission of Van Nostrand Reinhold, New York.

99 NUREG/CR-6421

Appendix B

14xx: VERIFIABILITY: specification bugs having to do with verifying that the requirement was correctly or
incorrectly implemented.
141x: Unverifiable: the requirement, if implemented, cannot be verified by any means or within
available time and budget. For example, it is possible to design a test, but the outcome of the test
cannot be verified as correct or incorrect.
142x: Untestable: it is not possible to design and/or execute tests that will verify the requirement.
Untestable is stronger than unverifiable.

15xx: PRESENTATION: bugs in the presentation or documentation of requirements. The requirements are
presumed to be correct, but the form in which they are presented is not. This can be important for test
design automation systems, which demand specific formats.
152x: Presentation, documentation: general presentation, documentation, format, media, etc.

153x: Standards: presentation violates standards for requirements.

16xx: REQUIREMENT CHANGES: requirements, whether or not correct, have been changed between the
time programming started and testing ended.
162x Features: requirement changes concerned with features.
1621: Feature added: a new feature has been added.
1632: Feature deleted: previously required feature deleted.
1633: Feature changed: significant changes to feature, other than changes in cases.
163x: Cases: cases within a feature have been changed. Feature itself is not significantly modified except
for cases.
1631: Cases added.
1632: Cases deleted.
1633: Cases changed: processing or treatment of specific case(s) changed.
164x: Domain changes: input data domain modified: e.g., boundary changes, closure, treatment.
165x: User messages and diagnostics: changes in text, content, or condmons under which user prompts,
warning, error messages, etc. are produced.
166x: Internal interfaces: direct interfaces (e.g., via data structures) have been changed.
167x: External interfaces: external interfaces, such as device drivers, protocols, etc. have been changed.
168x: Performance and timing: changes to performance requirements (e.g., throughput) and/or timings.

2xxx: FUNCTIONALITY AS IMPLEMENTED: requirement known or assumed to be correct, implementable,
and testable, but implement is wrong.

21xx: CORRECTNESS: having to do with the correctness of the implementation.
211x: Feature misunderstood, wrong: feature as implemented is not correct—not as spec1ﬁed
218x: Feature interactions: feature is correctly implemented by itself, but has incorrect interactions with
other features, or specified or implied interaction is incorrectly handled.

22xx: COMPLETENESS, FEATURES: having to do with the completeness with which features are
implemented.
221x: Missing feature: an entire feature is missing.
222x: Unspecified feature: a feature not specified has been implemented.
223x: Duplicated, overlapped feature: feature as implemented supplicates or overlaps features
implemented by other parts of the software.

23xx: COMPLETENESS, CASES: having to do with the completeness of cases within features.
231x: Missing case.
232x: Extra case: cases that should not have been handled are handled. ‘
' 233x: Duplicated, overlapped case: duplicated handling of cases or partial overlap with other cases.
234x: Extraneous output data: data not required are output

24xx: DOMAINS: processing case or feature depends on a combination of input values. A domain bug exists if
the wrong processing is executed for the selected input-value combination.

NUREG/CR-6421 100

Appendix B

241x: Domain misunderstood, wrong: misunderstanding of the size, shape, boundaries, or other
characteristics of the specified input domain for the feature or case. Most bugs related to handling
extreme cases are domain bugs.
242x: Boundary locations: the values or expressions that define a domain boundary are wrong eg.,
“X>=6" instead of “X>=3."
243x: Boundary closures: end points and boundaries of the domain are incorrectly associated with an
adjacent domain: e.g., “X>=0" instead of “X>0".
244x: Boundary intersections: domain boundaries are defined by a relation between domain control
variables. That relation, as implemented, is incorrect: e.g., “IF X>0 AND Y>0...” instead of “IF X>0
OR Y>0...".
25xx: USER MESSAGES AND DIAGNOSTICS: user prompt or printout or the form of communication is
incorrect. Processing is assumed to be correct: e.g., false warning, failure to wamn, wrong message, spelling,
formats.
26xx: EXCEPTION CONDITIONS MISHANDLED: exception conditions such as illogical, resource
problems, failure modes, which require special handling, are not correctly handled or the wrong exception -
handling mechanisms are used.

Ixxx: STUCTURAL BUGS: bugs related to the component’s structure: i.e., the code.

31xx: CONTROL FLOW AND SEQUENCING: bugs specifically related to the control flow of the program
or the order and extent to which things are done, as distinct from what is done.
311x: General structure: general bugs related to component structure.

3112: Unachievable path: a functionally meaningful processing path in the code for which there is no
combination of input values that will force the path to be executed. Do not confuse with
unreachable code. The code in question might be reached by some other path.

3114: Unreachable code: code for which there is no combination of input values that will cause that
code to be executed.

3116: Dead-end code: code segments that once entered cannot be exited, even though it was intended
that an exit be possible.

312x: Control logic and predicates: the path taken through a program is directed by control flow
predicates (e.g., Boolean expressions). This category addresses the implementation of such predicates.

3122: Duphcated logic: control logic that should appear only once is inadvertently duplicated in
whole or in part.

3124: Don’t care: improper handling of cases for which what is to be done does not matter either
because the case is impossible or because it really does not matter: e.g., incorrectly assuming that
the case is a don’t-care case, failure to do case validation, not invoking the correct exception
handler, improper logic simplification to take advantage of such cases.

3126: Illogicals: improper identification of, or processing of, illogical or impossible conditions. An
illogical is stronger than a don’t care. Illogicals usually mean that something bad has happened
and that recovery is needed. Examples of bugs include: illogical not really so, failure to recognize
illogical, invoking wrong handler, improper simplification of control logic to take advantage of the
case.

3128: Other control-flow predicate bugs: control-flow problems that can be directly attributed to the
incorrect formulation of a control flow predicate: e.g., “IF A>B THEN ...” instead of “IF A<B

313x: Case selection bug: simple bugs in case selections, such as improperly formulated case selection
expression. GOTO list, or bug in assigned GOTO.
314x: Loops and iteration: bugs having to do with the control of loops

3141: Initial value: iteration value wrong: e.g., “FOR 13 TO 17 ...” instead of “FOR 1=8 TO 17.”

3142: Terminal value or condition: value, variable, or expression used to control loop termination is
incorrect: e.g., “FOR1=1TO 7 ...” instead of “FOR I=1TO 8.”

3143: Increment value: value, variable, or expression used to control loop increment value is
incomrect: e.g., “FOR I=1TO 7 STEP 2 ...” instead of “FOR I =1TO 7 STEP 5 ...".

101 ' " NUREG/CR-6421

Appendix B

3144: Iteration variable processing: where end points and/or increments are controlled by values
calculated within the loop’s scope, a bug in such calculations.

3148: Exception exit condition: where specified values or conditions or relations between variables
force an abnormal exit to the loop, either incorrect processing of such conditions or incorrect exit
mechanism invoked.

315x: Control initialization and/or state: bugs having to do with how the program’s control flow is
initialized and changes of state that affect the control flow: e.g., switches.

3152: Control initialization: initializing to the wrong state or failure to initialize.

3154: Control state: for state-determined control flows, incorrect transition to a new state from the
current state: e.g., input condition X requires a transition to state B, given that the program is in
state A; instead, the transition is to state C. Most incorrect GOTOs are included in this category.

316x: Incorrect exception handling: any incorrect invocation of a control-flow exception handler not
previously categorized.

32xx: PROCESSING: bug related to processing under the assumption that the control flow is correct.
321x: Algorithmic, fundamental: inappropriate or incorrect algorithm selected, but implemented
correctly e.g., using an incorrect approximation, using a shortcut string search algorithm that assumes
string characteristics that may not apply.
322x: Express:on evaluation: bugs having to do with the way arithmetic, Boo]ean, string, and other
expressions are evaluated.

3222: Arithmetic: bugs related to evaluated of arithmetic expression.

3222.1: Operator: wrong arithmetic operator or function used.

3222.2: Parentheses: syntactically correct bug in placement of parentheses or other
arithmetic delimiters.

3222.3: Sign: bug in use of sign. ‘

3224: Logical or Boolean, not control: bug in the manipulation or evaluation of Boolean expression
that are not (directly) part of control-flow predicates: e.g., using wrong mask, AND instead of OR,
incorrect simplification of Boolean function.

3226: String manipulation: bug in string manipulation,

3226.1: Beheading: the beginning of a string is cut off when it should not have been, or
not cut off when it should have been.
3226.2: Curtailing: as for beheading but for string end. _
3226.3: Concatenation order: strings are concatenated in wrong order or concatenated
when they should not be.
3326.3.1: Append instead of precede.
3226.3.2: Precede instead of append.
3226.4: Inserting: having to do with the insertion of one strmg into another.
3226.5: Converting case: case conversion (upper to lower, say) is incorrect.
3226.6: Code conversion: string is converted to another code incorrectly or not
converted when it should be.
3226.7: Packing, unpacking: strings are incorrectly packed or unpacked.
3228: Symbolic, algebraic: bugs in symbolic processing of algebraic expressions.
323x: Initialization: bugs in initialization of variables, expressions, functions, etc. used in processing,
excluding initialization bugs associated with declarations and data statements and loop initialization.
324x: Cleanup: incorrect handling of cleanup of temporary data areas, registers, states, etc. associated with
processing.
325x: Precision, accuracy: insufficient or excessive precision, insufficient accuracy, and other bugs
related to number representation system used.
326x: Execution time: excessive (usually) execution time for processing component.

4xxx: DATA: bugs in the definition, structure, or use of data.

NUREG/CR-6421 102

Appendix B

41xx: DATA DEFINITION, STRUCTURE, DECLARATION: bugs in this definition, structure, and
initialization of data: e.g., in DATA statements. This category applies whether the object is declared
statically in source code or created dynamically.
411x: Type: the data object type, as declared, is incorrect: e.g., integer instead of floating, short instead of
long, pointer instead of integer, array instead of scalar, incorrect user-defined type.
412x: Dimension: for arrays and other objects that have a dimension (e.g., arrays, records, files) by which
component objects can be indexed, a bug in the dimension, in the minimum or maximum dimensions,
or in redimensioning statements.
413x: Initial, default values: bugs in the assigned initial values of the object (e.g., in DATA statements),
selection of incorrect default values, or failure to supply a default value if needed. :
414x: Duplication and aliases: bugs related to the incorrect duplication or failure to create a duplicated
object. ~
4142: Duplicated: duplicated definition of an object where allowed by the syntax.
4144: Aliases: object is known by one or more aliases but specified alias is incorrect: object not
aliased when it should have been. 4
415x: Scope: the scope, partition, or components to which the object applies is incorrectly specified.
4152: Local should be global: a locally defined object (e.g., within the scope of a specific component)
should have been specified more globally (e.g., in COMMON)
4154l:ocGall(l)bal should be local: the scope of an object is too global: it should have been declared more
Yy
4156: GlobaVlocal inconsistency or conflict: a syntactically acceptable conflict between a local
_ and/or global declaration of an object (e.g., incorrect COMMON).
416x: Static/dynamic resources: related to the declaration of static and dynamically allocated resources.
4162: Should be static resource: resource is defined as a dynamically allocated object but should
have been static (e.g., permanent).
4164: Should be dynamic resource: resource is defined as static but should have been declared as
dynamic.
4166: Insufficient resources, space: number of specified resources is insufficient or there is
insufficient space (e.g., main memory, cache, registers, disc) to hold the declared resources.
4168: Data overlay bug: data objects are to be overlaid but there is a bug in the specification of the
overlay areas.

42xx: DATA ACCESS AND HANDLING: having to do with access and manipulation of data objects that are
presumed to be correctly defined.
421x: Type: bugs having to do with the object type. :
4212: Wrong type: object type is incorrect for required processmg e.g., multiplying two strings.
4314: Type transformation: object undergoes incorrect type transformation: e.g., integer to floating,
pointer to integer, specified type transformation is not allowed, required type transformation not
done. Note: type transformation bugs can exist in any language, whether or not it is strongly typed,
whether or not there are user-defined types.
4216: Scaling, units: scaling or units (semantic) associated with objects is incorrect, incorrectly
transformed or not transformed: e.g., FOOT-POUNDS to STONE-FURLONGS.
422x: Dimension: for dynamically variable dimensions of a dimensioned object, a bug in the dimension:
€.g., dynamic redimension of arrays, exceeding maximum file length, removing one or more than the
minimum number of records.
423x: Value: having to do with the value of data objects or parts thereof.
4232: Initialization: initialization or default value of object is incomrect. Not to be confused with
initialization and default bugs in declarations. This is a dynamic initialization bug.
4234: Constant value: incorrect constant value for an object: e.g., a constant in an expression.
424x: Duplication and aliases: bugs in dynamic (run time) duplication and aliasing of objects.
4242: Object already exists: Attempt to create an object that already exists.
4244: No such object: attempted reference to an object that does not exist.

103 NUREG/CR-6421

Appendix B

426x: Resources: having to do with dynamically allocated resources and resource pools, in whatever
memory media they exist: main, cache, disc, bulk RAM. Included are queue blocks, control blocks, -
buffer blocks, heaps, files.

4262: No such resource: reference resource does not exist.

4264: Wrong resource type: wrong resource type reference.

428x: Access: having to do with access of objects as distinct from the manipulation of objects. In this
context, accesses include read, write, modify, and (in some instances) create and destroy.

4281: Wrong object accessed: incorrect object accessed: e.g., “X:=ABC33” instead of “X:=ABD33".

4282: Access rights violation: access rights are controlled by attributes associated with the caller and
the object. For example, some callers can only read the object, others can read and modify.
Violations of object access rights are included in this category whether or not a formal access
rights mechanism exits: that is, access rights could be specified by programming conventions

_ rather than by software.

4283: Data-flow anomaly: data-flow anomalies involve the sequence of accesses to an object: e.g.,
reading or initializing an object before it has been created, or creating and than not using.

4284: Interlock bug: where objects are in simultaneous use by more than one caller, interlocks and
synchronization mechanisms may be used to ensure that all data are current and changed by only
one caller at a time. These are not bugs in the interlock or synchronization mechanism but in the
use of that mechanism.

4285: Saving or protecting bug: application requires that the object be saved or otherw1se protected
in different program states or, alternatively, not protected. These bugs are related to the incorrect
usage of such protection mechanisms or procedures.

4286: Restoration bug: application requires that a previously saved object be restored prior to
processing: e.g., POP the stack, restore registers after interrupt. This category includes bugs in the
incorrect restoration of data objects and not bugs in the implementation of the restoration of data
objects and not bugs in the implementation of the restoration mechanism. ‘

4287: Access mode, direct/indirect: object is accessed by wrong means: e.g., direct access of an
object for which indirect access is required: call by value instead of name, or vice versa: indexed
instead of sequential, or vice versa. |

4288: Object boundary or structure: access to object is partly correct, but the object structure and its
boundaries are handled incorrectly: e.g., fetching 8 characters of a smng instead of 7, mishandling
word boundaries, getting too much or too little of an object.

Sxxx: IMPLEMENTATION: bugs having to do with the implementation of the software. Some of these, such as
standards and documentation, may not affect the actual workings of the software. They are included in the bug
taxonomy because of their impact on maintenance.

SIxx: CODING AND TYPOGRAPHICAL: bugs that can be clearly attributed to simple coding, as well as
typographical bugs. Classification of a bug into this category is subjective. If a programmer believed that
the correct variable, say, was “ABCD” instead of “ABCE?”, than it would be classified as a 4281 bug
(wrong object accessed). Conversely, if E was changed to D because of a typewriting bug, then it belongs
here.
511x: Coding wild card, typographical: all bugs that can be reasonably attributed to typing and other

typographical bugs.
512x: Instruction, construct misunderstood: all bugs that can be reasonably attributed to a
misunderstanding of an instruction’s operation or HOL statement’s action.

52xx: STANDARDS VIOLATION: bugs having to do with violating or misunderstanding the applicable
programming standards and conventions. The software is assumed to work properly.
521x: Structure violations: violations concerning control-flow structure, organization of the software, etc.
5212: Control flow: violations of control-flow structure conventions: e.g., excessive IF-THEN-ELSE
nesting, not using CASE statements where required, not following dictated processing order,
jumping into or out of loops, jumping into or out of decisions.
5214: Complexity: violation of maximum (usually) or minimum (rare) complexity guidelines as
measured by some specified complexity metric: e.g., too many lines of code in module, cyclomatic
complexity greater than-200, excessive Halstead length, too many tokens.

NUREG/CR-6421 104

Appendix B

5215: Call nesting depth: violations of component (e.g., subroutine, subprogram, function) maximum
nesting depth, or insufficient depth where dictated.
5216: Modularity and partition: Modularity and partition rules not followed: e.g., mlmmum and
maximum size, object scope, functionally dictated partitions.
5217: Call nesting depth: violations of component (e.g., subroutine, subprogram, function) maximum
" nesting depth, or insufficient depth where dictated.
522x: Data definition, declarations: the form and/or location of data object declaration is not according to
standards. .
523x: Data access: violations of conventions governing how data objects of different kinds are to be
accessed, wrong kind of object used: e.g., not using field-access macros, direct access instead of
indirect, absolute reference instead of symbolic, access via register, etc.

524x: Calling and invoking: bugs in the manner in which other processing components are called,
invoked, or communicated with: e.g., a direct subroutine call that should be indirect, vxolancn of call

and return sequence conventions.

526x: Mnemonics, label conventions: violations of the rules by which names are assigned to objects: e.g.,
program labels, subroutine and program names, data object names, file names.

527x: Format: violations of conventions governing the overall format and appearance of the source code:
indentation rules, pagination, headers, ID block, special markers.

528x: Comments: violations of conventions govemning the use, placement, density, and format of
comments. The content of comments is covered by 53xx, documentation.

53xx: DOCUMENTATION: bugs in the documentation associated with the code or the content of comments
contained in the code.
531x: Incorrect: documentation statement is wrong.
532x: Inconsistent: documentation statement is inconsistent with itself or with other statements.
533x: Incomprehensible: documentation cannot be understood by a qualified reader.
534x: Incomplete: documentation is correct but important facts are missing.
535x: Missing: major parts of documentation are missing.

6xxx: INTEGRATION: bugs having to do with the integration of, and interfaces between, components. The
components themselves are assumed to be correct.

61xx: INTERNAL INTERFACES: bugs related to the interfaces between communicating components with
the program under test. The components are assumed 1o have passed their component level tests. In this
context, direct or indirect transfer of data or control information via a memory object such as tables,
dynamically allocated resources, or files, constitute an internal interface.
611x: Component invocation: bugs having to do with how software components are invoked. In this
sense, a “component” can be a subroutine, function, macro, program, program segment, or any other
sensible processing component. Note the use of “invoke” rather than “call” because there may be no
actual call as such: e.g., a task order placed on a processing queue is an invocation in our sense, though
(typically) not a call,
6111: No such component: invoked component does not exist.
6112: Wrong component: incorrect component invoked.
612x: Interface parameter, invocation: having to do with the parameter of the invocation, their number,
order, type, location, values, etc.
6121: Wrong parameter: parameter of the invocation are incorrectly specified.
6122: Parameter type: incorrect invocation parameter type used.
6124: Parameter structure: structural details of parameter type used.
6125: Parameter value: value (numerical, Boolean, string) of the parameter is wrong.
6126: Parameter sequence: parameters of the invocation sequence in the wrong order, too many
parameters, too few parameters.
613x: Component invocation return: having to do with the interpretation of parameters provided by the
! invoked component on return to the invoking component or on release of control to some other
component. In this context, a record, a subroutine return sequence, or a file can qualify for this

105 NUREG/CR-6421

Appendix B

category of bug. Note that the bugs included here are not bugs in the component that created the return
data but in the receiving component’s subsequent manipulation and-interpretation of that data.
6131: Parameter identity: wrong return parameter accessed.
6132: Parameter type: wrong return parameter type used: that is, the component using the return data
interprets a retum parameter incorrectly as to type.

6134: Parameter structure: return parameter structure misinterpreted.
6136: Return sequence: sequence assumed for return parameter is incorrect.

614x: Initialization, state: invoked component not initialized or initialized to the wrong state or with
incormrect data.

615x: Invocation in wrong place: the place or state in the invoking component at which the invoked
component was invoked is wrong.

616x: Duplicate or spurious invocation: component should not have been 1nvoked or has been invoked
more often than necessary.

62xx: EXTERNAL INTERFACES AND TIMING: having to do with external interfaces, such as I/O devices
and/or drivers, or other software not operating under the same control structure. Data passage by files or
messages qualify for this bug category.
621x: Interrupts: bugs related to incorrect interrupt handling or setting up for interrupts: e.g., wrong
handler invoked, failure to block or unblock interrupts.
622x: Devices and drivers: incorrect interface with devices or device drivers or incorrect interpretation of
return status data. :
6222: Device, driver, initialization or state: incorrect initialization of device or driver, failure to
initialize, setting device to the wrong state.
6224: Device, driver, command bug: bug in the command issued to a device or driver.
. 6226: Device, driver, return/status misinterpretation: return status data from device or driver
misinterpreted or ignored. ‘
623x: I/O timing or throughput: bugs having to do with timing and data rates for external devices such
as: not meeting specified timing requirements (too long or too short), forcing too much throughput, not
accepting incoming data rates. .

Txxx: SYSTEM AND SOFTWARE ARCHITECTURE: bugs that are not attributable to a component or to the
interface between components but affect the entire software system or stem from architectural errors in the

system.

7Ixx: OS bug: bugs related to the use of operating system facilities. Not to be confused with bugs in the
operating system itself,
711x: Invocation, command: erroneous command given to operating system or OS facility incorrectly
invoked.
712x: Return data, status misinterpretation: data returned from operating system or status information
ignored or misinterpreted.
714x: Space: required memory (cache, disc, RAM) resource not available or requested in the wrong way.

72xx: Software architecture: architecture problems not elsewhere defined.

721x: Interlocks and semaphores: bugs in the use of interlock mechanisms and interprocess
communication facilities. Not to be confused with bugs in these mechanisms themselves: e.g., failure
to lock, failure to unlock, failure to set or reset semaphore, duplicate locking.

722x: Priority: bugs related to task priority: e.g., priority too low or too high, priority selected not allowed,
priority conflicts.

723x: Transaction-flow control: where the path taken by a transaction through the system is controlled by
an implicit or explicit transaction flow-control mechanism, these are bugs related to the definition of
such flows. Note that all components and their interfaces could be correct but this kind of bug could
still exist.

724x: Resource management and control: bugs related to the management of dynamically allocated
shared resource objects: e.g., not retuming a buffer block after use, not getting an object, failure to
clean up an object after use, getting wrong kind of object, returning object to wrong pool.

NUREG/CR-6421 | 106

Appendix B

725x: Recursive calls: bugs in the use of recursive invocation of software components or incorrect
recursive invocation.

726x: Reentrance: bugs related to reentrance of program components: €.g., a reentrant component that
should not be, a reentrant call that should be nonreentrant.

73xx: RECOVERY ACCOUNTABILITY: bugs related to the recovery of objects after the failure and to the
accountability for objects despite failures.

74xx: PERFORMANCE: bugs related to the throughput-delay behavior of software under the assumption that
all other aspects are correct.
741x: Throughput inadequate. :
742x: Response time, delay: response time to incoming events too long at specified load or too short
~ (rare), delay between outgoing events too long or too short.
743x: Insufficient users: maximum specified number of simultaneous users or task cannot be
accommodated at specified transaction delays.
748x: Performance parasites: any bug whose primary or only symptom is a performance degradation:
e.g., the harmless but needless repetition of operations, fetching and returning more dynamic resources
than needed.
75xx: INCORRECT DIAGNOSTIC, EXCEPTION diagnostic or error message incorrect or misleading.
Exception handler invoked is wrong.
76xx: PARTITIONS AND OVERLAYS: memory or virtual memory is incorrectly partitioned, overlay to
wrong area, overlay or partition conflicts.
77xx: SYSGEN OR ENVIRONMENT: wrong operating system version, incorrect system generation, or other
host environment problem.

8xxx: TEST DEFINTION OR EXCUTION BUGS: bugs in the definition, design, execution of tests or the data
used in tests. These are as important as “real” bugs.
8Ixx: DESIGN BUGS: bugs in the design of tests.
811x: Requirements misunderstood: test and component are mismatched because test designer did not
understand requirements.
812x: Incorrect outcome predicted: predicted outcome of test does not match required or actual outcome.
813x: Incorrect path predicted: outcome is correct but was achieved by the wrong predicted path. The
test is only coincidentally correct.
814x: Test initialization: specified initial conditions for test are wrong.
815x: Test data structure or value: data objects used in tests or their values are wrong.
816x: Sequencing bug: the sequence in which tests are to be executed, relative to other tests or to test
initialization, is wrong.
817x: Configuration: the hardware and/or software configuration and/or environment specified for the test
iswrong.
818x: Verification method criteria: the method by which the outcome will be verified is incorrect or
impossible.
82xx: EXECUTION BUGS: bugs in the execution of tests as contrasted with bugs in their design.
821x: Initialization: tested component not initialized to the right state or values.
822x: Keystroke or command: simple keystroke or button hit error.
823x: Database: database used to support the test was wrong.
824x: Configuration: configuration and/or environment specified for the test was not used during the run.
828x: Verification act: the act of verifying the outcome was incorrectly executed.

83xx: TEST DOCUMENTATION: documentation of test case or verification criteria is incorrect or
misleading.
84xx: TEST CASE COMPLETENESS: cases required to achieve specified coverage criteria are missing.

107 NUREG/CR-6421

Appendix B

GLOSSARY

Definitions for many of the technical terms used in the Teport are given below. An abbreviated indication of the
reference from which the definition was taken is provxded in square brackets.

610 IEEE 610-12 -~
882C MIL-STD-882C

1028 IEEE 1028

1058 IEEE 1058

1074 IEEE 1074

RADC RADC 1977

Acceptability—A measure of how closely the computer program meets the true needs of the user [RADC].
Accessibility—the extent that software facilitates the selective use of its components [RADC].

Augmentability—the extent that software easily accommodates expansions in data storage requirements or
component computational functions [RADC].

Accountability—the extent that code usage can be measured [RADC).

Accuracy—(1) A qualitative assessment of correctness, or freedom from error [610]. (2) A quantitative measure of
the magnitude of error [610]. (3) A measure of the quality of freedom from error, degree of exactness possessed
by an approximation or measurement [RADC].

Activity—(1) A group of related tasks [IEEE 1074]. (2) A major unit of work to be completed in achieving the
objectives of a software project. An activity has precise starting and ending dates, incorporates a set of tasks to
be completed, consumes resources and results in work products [1058].

Adaptability—The ease with which a system or component can be modified for use in applications or environments
other than those for which it was specifically designed [610].

Availability——(1) The degree to which a system or component is operational and accessible when required for use

[610]. (2) The fraction of total time during which the system can support critical functions [RADC]. (3) The
probability that a system is operating satisfactorily at'any point in time, when used under stated conditions

Clarity—(1) The ease with which the program (and its documentation) can be understood by humans [RADC]. (2)
The extent to which a document contains enough information for a reader to determine its objectives,
assumptions, constraints, inputs, outputs, components, and status [RADC].

- Completeness—(1) The attributes of software that provide full implementation of the functions required ['RADC]
(2) The extent to which software fulfills overall mission satisfaction [RADC]. (3) The extent that all of the
software’s parts are present and each of its parts are fully developed {(RADC).

Consistency—The degree of uniformity, standardization, and freedom from contradiction among the documents or
parts of a system or component [610]

- Convertibility-—The degree of success anncxpated in readying people, machines, and procedures to support the
system [RADC].

Cost—Includes not only development cost, but also the costs of maintenance, training, documentation, etc., on the
entire life cycle of the program [RADC].

- Correctness—(1) The degree to which a system or component is free from faults in its specification, design and
implementation [610]. (2) The degree to which software, documentation, or other items meet specified
requirements [610). (3) The degree to which software, documentation or other items meet user needs and

. expectations, whether specified or not [610].

Extendlbxhty-—The ease with which a system or component can be modified to increase its storage or funchonal

capacity [610].

109 . NUREG/CR-6421

Appendix B

Generality—a measure of the scope of the functions that a program performs [RADC].

Inexpensiveness—see Cost.

Integrity—(1) The degree to which a system or component prevents unauthorized access to, or modification of,
computer programs or data [610]. (2) A measure of the degree of protection the computer program offers
against unauthorized access and loss due to controllable events [RADC]. (3) The ability of software to prevent
purposeful or accidental damage to the data or software [RADC].

Interface—(1) A shared boundary across which information is passed {610]. (2) A hardware or software component
that connects two or more components for the purpose of passing information from one to the other [610).

Interoperability—how quickly and easily one software system can be coupled to another [RADC).

Maimamablluy—(l) The ease with which a software system or component can be modified to correct faults,
improve performance or other attributes, or adapt to a changed environment [610]. (2) The probability thata
failed system will be restored to operable conditions within a specified time [RADC]. ,

Manageability—the degree to which a system lends itself to efficient administration of its components [RADC].

Modifiability—(1) A measure of the cost of changing or extending a program [RADC]. (2) The extent to which a
program facilitates the incorporation of changes, once the nature of the desired change has been determined
{(RADC]. .

Modularity—(1) The degree to which a system or computer program is composed of discrete components such that a
change to one component has minimal impact on other components [610]. (2) The ability to combine arbitrary
program modules into larger modules without knowledge of the construction of the modules [RADC]. 3) A
formal way of dividing a program into a number of sub-units each having a well defined function and
relationship to the rest of the program [RADC].

Non-complexity—see Simplicity.

Performance—(1) The degree to which a system or component accomplishes its designated functions within given

constraints, such as speed, accuracy, or memory usage [610]. (2) The effectiveness with which resources of the
host system are utilized toward meeting the objective of the software system [RADC].

Portability—The ease with which a system or component can be transferred from one hardware or software
environment to another [610].

Precision—(1) The degree of exactness or discrimination with which a quantity is stated [610]. (2) The degree to
which calculated results reflect theoretical values [RADC].

Reliability——(1) The ability of a system or component to perform its required functions under stated conditions for a
specified period of time [610]. (2) The probability that a software system will operate without failure for at least
a given period of time when used under stated conditions [RADC]. (3) The probability that a software fault does
not occur during a specified time interval (or specified number of software operational cycles) which causes
deviation from required output by more than specified tolerances, in a specific environment [RADC].

Reparability—The probability that a failed system will be restored to operable condition within a specified active
repair time when maintenance is done under specified conditions [RADC].

Requirement—(1) A condition or capability needed by a user to solve a problem or achieve an objective [610]. (2) A
condition or capability that must be met or possessed by a system or system component to satisfy a contract,
standard, specification or other formally imposed documents [610].

Reusability—The degree to which a software module or other work product can be used in more than one computer
program or software system [610].

Review—aAn evaluation of software elements or project status to ascertain discrepancies from planned results and to
recommend improvement [1028]. .

Robustness—(1) The degree to which a system or component can function correctly in the presence of invalid inputs
or stressful environmental conditions [(610]. (2) The quality of a program that determines its ability to continue
to perform despite some violation of the assumptions in its specification [RADC].

Safety~—Freedom from those conditions that can cause death, injury, occupational illness or damage to or loss of
equipment or property, or damage to the environment [882C].

Security—(1) A measure of the probability that one system user can accidentally or intentionally reference or

destroy data that is the property of another user or interfere with the operation of the system [RADC]. (2) The
extent to which access to software, data and facilities can be controlled [RADC].

NUREG/CR-6421 110

Appendix B

Self-Descriptiveness—The degree to which a system or component contains enough information to explain its
objectives and properties [610].

Serviceability—The degree of ease or difficulty with which a system can be repaired [RADC].

Simplicity—The degree to which a system or component has a design and implementation that is straightforward
and easy to understand [610].

Software products—(1) The complete set of computer programs, procedures and possibly associated documentation
and data designated for delivery to a user [610). (2) Any of the individual items in (1) [610].

Structuredness—(1) The ability to combine arbitrary program modules into larger modules without knowledge of
the construction of the modules [RADC]. (2) The extent to which a system possesses a definite pattern of
organization of its independent parts [RADC]. (3) A formal way of dividing a program into a number of sub-
units each having a well defined function and relationship to the rest of the program [RADC).

Task—The smallest unit of work subject to management accountability. A task is a well-defined work assignment
for one or more project members. [1074]

Testability—(1) The degree to which a requirement is stated in terms that permit establishment of test criteria and
performance of tests to determine whether those criteria have been met [610]. (2) The degree to which a system
or component facilitates the establishment of test criteria and the performance of tests to determine whether
those criteria have been met [610].

Understandability—(1) The extent to which the purpose of the product is clear to the evaluator [RADC]. (2) The
ease with which an implementation can be understood [RADC].

Uniformity—a module should be usable uniformly [RADC).

Usability—(1) The ease with which a user can leamn to operate, prepare inputs for, and interpret outputs of a system
or component [610]. (2) The ease of operation from the human viewpoint, covering both human engineering and
ease of transition from current operation [RADC].

User Friendliness—the degree of ease of use of a computer system, device, program, or document. See User
Friendly in {610]. ,

Validation—The process of evaluating a system or component during or at the end of the development process to
determine whether it satisfies specified requirements [610].

Validity—The degree to which software implements the user’s specifications [RADC].

Verification—The process of evaluating a system or component to determine whether the products of a given
development phase satisfy the conditions imposed at the start of that phase [610].

Verification and Validation—The process of determining whether the requirements for a system or component are
complete and correct, the products of each development phase fulfill the requirements or conditions imposed by
the previous phase, and the final system or component complies with specified requirements [610]. .

111 NUREG/CR-6421

U.S. NUCLEAR REGULATORY COMMISSION J 1. REPORT NUMBER
ggg) FORM 335 (Assigned by NRC, Add Vol., Sufp ,

. d Addendum Num| if an
Nc 1102 BIBLIOGRAPHIC DATA SHEET e A R

{See instructions on the reverse)

NUREG/CR-6421
UCRL-ID-122526

2, TITLE AND SUBTITLE
A Proposed Acceptance Process for Commercial Off-the-Shelf

(COTS) Software in Reactor Applications _ 3. DATE REPORT PUBLISHED
’ MONTH YEAR
March =~ = 1996
4. FIN OR GRANT NUMBER
L1857 -
5. AUTHOR(S) ‘ _ : 6. TYPE OF REPORT

G. G. Preckshot, J. A, Scott

7. PERIOD COV_ERED {Inclusive Dates)

8. PERFORMING ORGANIZATION NAME AND ADDRESS (/f NRC, ide Division, Office or Region, U.S. Nuclear R tory C ission, and mailing add) if ", Provid:
name and mailing address.}) f

Léwrence Livermore National Labdratory
P.0. Box 808, L-632
Livermore, CA 94551

9. SPONSORING ORGANIZATION — NAME AND ADDRESS (/f NRC, type “Same as above™: if provide NRC Divisian, Office or Region, U.S. Nuclear Regulatory Ci
and mailing eddrsss.). . - .

Division of Reactor Contro]s -and. Human: Factors
Office of Nuclear Reactor. Regu]atTon

U.-S. Huclear Regulatory Commission
Washington, D. C. 20555-0001

10. SUPPLEMENTARY NOTES . .
J. Gallagher, NRC Project Manager

11. ABSTRACT (200 words or tess)

This paper proposes a process for acceptance of commercial off-the-shelf- (COTS) software
products for use in reactor systems important to safety. An initial set of four criteria establishes
COTS software product identification and its safety category. Based on safety category, three
sets of additional criteria, graded in rigor, are applied to approve (or disapprove) the product.
These criteria fall roughly into three areas: product assurance, verification of safety function and
safety impact, and examination of usage experience of the COTS product in circumstances
similar to the proposed application. A report addressing the testing of existing software is
included as an appendix.

e ——————————————— ;
12. KEY WORDS/DESCR!PTORS (List words or phrases that will assist researchers in locating the report.) 13. AVAILABILITY STATEMENT
. Unlimited
Commercial Software :

e m——————————ad
14, SECURITY CLASSIFICATION

Reactor Systems -
Software Safety 'ﬁSZKassified

COTS Acceptance

{This Report)
Uncla551f1ed

15. NUMBER OF PAGES

16. PRICE

NRC FORM 335 {2-89)

on recycled |
paper \ Y

Federal Recycling Program

UNITED STATES . SPECIAL FOURTH-CLASS MAIL
NUCLEAR REGULATORY COMMISSION POSTAGE AND FEES PAID

USNRC
WASHINGTON, DC 20555-0001 A PERMIT NO. G-67

OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE, $300

