SOURCE PRODUCTION AND EQUIPMENT CO., INC. 113 Teal Street St. Rose. Louisiana 70087

CONSOLIDATED APPLICATION for NRC CERTIFICATE OF COMPLIANCE USA/9263/B(U)

Model SPEC-150 Type B(U) Radioactive Material Package April 22, 1999

9904300139 990422 PDR ADOCK 07109263 B PDR

۰ę۲

TABLE OF CONTENTS

1.	GENI	ERAL INFORMATION	1
	1.1	Introduction	 1
	1.2	IAEA Safety Series No. 0 Model SDEC 150 Deckoging	1
	1.5	1 3 1 Gross weight: Maximum 53 nounds	1
		1.3.2 Description	1
		1.3.3 Operational Features	5
		1.3.4 Contents of Packaging	6
2.	STRU	JCTURAL EVALUATION	6
	2.1	Structural Design	7
		2.1.1 Discussion	7
	2.2	2.1.2 Design Criteria	/
	2.2	Weights and Centers of Gravity Machanical Droportion of Matoriala	· O
	2.3	2 3 1 Materials List	8
	24	General Standards for All Packages	9
	2.1	2 4 1 Minimum Dimension	9
		2.4.2 Tamper Seal	9
		2.4.3 Positive Closure	9
		2.4.4 Chemical and Galvanic Reactions	9
		2.4.5 Package Operational Containment	9
		2.4.6 Normal Conditions of Transport	10
		2.4.7 Surface Temperature	10
		2.4.8 Venting	10
		2.4.9 Lifting Devices	10
		2.4.10 Tiedown Devices	10
		2.4.11 External Radiation Standards	10
	25	Standards for Type B Packaging	11
	2.5	2.5.1 Normal Condition of Transport Test Criteria	11
		2.5.2 Hypothetical Accident Conditions Test Criteria	11
		2.5.3 Activity Release Limitations	11
	26	Description of Test Packages	11
	2.0	2.6.1 Prototype No. 2 & 4	12
		2.6.2 Design Changes to Production Packages	12
		2.6.3 Other Prototypes	12
	2.7	Drop Target Description	12
	2.8	Normal Conditions of Transport	13
	2.0	2.8.1 Heat	13
		2.8.2 Cold	13
		2.8.3 Reduced External Pressure	13
		2.8.4 Increased External Pressure	13
		2.8.5 Vibration	14
		2.8.6 Water Spray	14
		2.8.7 Free Drop	14
		2.8.8 Corner Drop	14
		2.8.9 Penetration	14
		2.8.10 Compression	15
		2.8.11 Test Summary	15
		-	

i

Source Production & Equipment Co., Inc. St. Rose, Louisiana USA

Application April 22, 1999

	2.9	Hypothetical Accident Conditions	15
		2.9.1 Free Drops	15
		A. Prototype No. 2	15
		1. Selection of Points of Impact	15
		2. 1st 9 Meter Drop Test	16
		3 2nd 9 Meter Drop Test	16
		4 3rd 9 Meter Drop Test	17
		4. Stu 9 Meter Drop Test	17
		5. 411 9 Micker Drop Test	19
		0. Summary of Dram Testa	10
		7. Summary of Drop Tests	10
		B. Prototype No. 4	18
		1. Selection of Points of Impact	19
		2. Ist 9 Meter Drop Test	20
		3. 2nd 9 Meter Drop Test	21
		4. 3rd 9 Meter Drop Test	22
		5. 4th 9 Meter Drop Test	23
		6. Summary of Damages	23
		C. Accidental Drop Test Summary	24
		2.9.2 Puncture	24
		A. Prototype No. 2	25
		B. Prototype No. 4	25
		C. Puncture Test Summary	25
		2.9.3 Thermal	26
		2.9.4 Water Immersion	26
		2.9.5 Summary of Structural Damage	26
	2 10	Special Form	27
	2.10	2 10 1 Description	27
		2 10.2 Free Dron	27
		2 10 3 Percussion	27
		2 10.4 Bending	27
		2.10.5 Heating	28
		2.10.5 Heating	28
		2.10.0 Summary	20
3	THE	RMALEVALUATION	28
5.	3 1	Discussion	28
	3 2	Summary of Thermal Properties of Materials	28
	3.2	Technical Specification of Components	29
	3.5	Thermal Evaluation for Normal Conditions of Transport	29
	2.4 2.5	Unatherized Accident Thermal Evaluation	30
	5.5	Hypothetical Accident Merinal Evaluation	50
4	CON	TAINMENT	30
т.	4 1	Containment Boundary	30
	7.1	4.1.1 Containment Vessel	30
		4.1.2 Containment Penetrations	30
		4.1.2 Containment Penetrations	30
		4.1.4 Closure	30
	10	Pequirements for Normal Conditions of Transport	31
	4.2	1.2.1 Deleges of Dedigastive Material	21
		4.2.1 Release of Radioactive Waterial	21
		4.2.2 Pressurization of Containment Vessei	21
		4.2.5 Coolant Contamination	31 21
		4.2.4 Coolant Loss	31

Source Production & Equipment Co., Inc. St. Rose, Louisiana USA

	4.3	Containment Requirement for the Hypothetical Accident Conditions4.3.1 Fission Gas Products4.3.2 Releases of Contents	31 31 31
5.	SHIE	LDING EVALUATION	31
	5.1	Package Shielding	32
	5.2	Normal Conditions of Transport	34
	5.3	Hypothetical Accident Conditions	35
	5.4	Source Specification	36
	5.5	Model Specification	36
	5.6	Shielding Evaluation	37
6.	CRIT	ICALITY EVALUATION	38
7.	OPER	ATING PROCEDURES	39
	7.1	Procedures for Preparing and Loading the Package	39
		7.1.1 General Package Inspection	39
		7.1.2 Packaging	39
		7.1.3 Outer Package Surface Contamination	39
		7.1.4 Transportation Requirements	40
		7.1.5 Type B Quantity Consignee Notification	40
	7.2	Procedures for Receipt and Unloading the Package	40
		7.2.1 Unloading	40
	7.3	Preparation of an Empty Package for Transport	40
			40
8.	ACCH	EPTANCE TESTS AND MAINTENANCE PROGRAM	42
	8.1	Acceptance Tests (Prior to First Use)	42
		8.1.1 Visual Inspection 8.1.2 Structural and Program Testa	45
		8.1.2 Structural and Pressure resis	43
		8.1.5 Leak resis 8.1.4 Component Tests	44
		8.1.5 Tests for Shielding Integrity	44
		8.1.6 Thermal Acceptance Tests	44
	82	Maintenance Program	44
	0.2	8.2.1 Structural and Pressure Tests	44
		8.2.2 Leak Tests	45
		8.2.3 Subsystems Maintenance	45
		8.2.4 Valves, Rupture Discs, and Gaskets on Containment Vessel	45
		8.2.5 Shielding	45
		8.2.6 Thermal	45
		8.2.7 Miscellaneous	46
9.	APPE	ENDICES	46
	9.1	Drawings	46
	9.2	Photographs	46
	9.3	Documents	49
	9.4	Sketches of Drop Test Impact Orientations	
	9.5	Sketches of Highest Surface Radiation Survey Data	
	9.6	1997 Puncture Tests	

.

1. GENERAL INFORMATION

1.1 Introduction

The Source Production & Equipment Company, Inc. model SPEC-150 is an industrial radiography exposure device approved for use by the Louisiana Radiation Protection Division, and it is authorized to contain a maximum source activity of 150 Ci of Iridium-192 as a sealed source. The 150 curie maximum activity is based on the measured output procedures given in ANSI N432-1980. It is used as a package to transport the sealed Iridium-192 source by licensed industrial radiographers as private carriers to perform nondestructive testing, and it is transported by common carriers and for export and import.

1.2 IAEA Safety Series No. 6

It is requested that the Certificate of Compliance reflect that it is based on IAEA Safety Series No. 6, 1985 Edition (As Amended 1990).

- 1.3 Model SPEC-150 Packaging
 - 1.3.1 Gross weight: Maximum 53 pounds. Minimum 52 pounds.
 - 1.3.2 Description
 - The device consists of a depleted uranium shield inside a welded A. titanium housing measuring approximately 14.1 cm (5-9/16 inches) high, 13.6 cm (5-3/8 inches) wide, and 36.8 cm (14-1/2 inches) long. See Drawing 15B002 Rev (1), Sectional View, TMJ Structural Joints and 15B002A Rev (0), Full Sectional View. The depleted uranium shield includes a curved S-Tube that the source travels through when used as a radiography device. See Drawing 15B008 Rev (1), Depleted Uranium Shield 15B008-3 Rev (0), S-Tube. Depleted uranium is cast around a titanium or zircalloy S-Tube to provide a minimum of 1.8 inches of radiation shielding from the center of the shield which contains a sealed source Iridium-192 capsule. The DU shield is coated with Rustoleum brand commercial primer paint by the manufacturer of the casting. The source assembly is secured in the S-tube during transportation. Multiple securing and locking mechanisms are installed at the lock end of the device and a safety plug is installed in the outlet nipple at the other end. The device weighs a maximum of 24.1 kg (53 pounds). The DU shield weighs a minimum of 36-1/4 pounds and a maximum of 37-1/4 pounds.
 - B.

The S-Tube and depleted uranium shield is designed to prevent direct streaming of radiation through the S-Tube even with the lock cap and safety plug removed. Radiation levels are not uniform among depleted uranium castings. Occasionally shielding pads of tungsten not exceeding one pound are used to further reduce low level radiation where marginal radiation levels have been found to exist at the surface or at 50 mm from the surface of the package in order to meet the radiation level requirements of ANSI N432-1980 Section 8.1 for a Class P portable radiography exposure device that are referenced in 10 CFR 34.20(a) and equivalent agreement state regulations. The optional

shielding pad is not use to qualify a device as a Type B package. The shielding pad is a solid, round, tungsten disk with a maximum 3/4 thickness, and one pound weight. It is attached directly to the coated surface of the depleted uranium shield with an epoxy potting compound. It is further secured in place by a polyurethane foam material with a density of two - three pounds per cubic foot that fills the interior cavity of the package and completely surrounds the DU shield. The pad is used at any accessible location on the surface of the DU shield. However, it cannot be used at any location that would require the modification of any component of the package to install. Historically, the most common location for the pad is on the hot top of the DU shield (left side of the package).

- C. Iridium-192 is neither fissionable nor a neutron emitter, therefore no materials are used as neutron absorbers or moderators.
- The depleted uranium shield is secured in the model SPEC-150 D. package by two titanium cups which are filled with Devcon F epoxy potting compound. The cups are welded to the outlet end plate and the inner bulkhead plate. See Drawing 15B304 Rev (0), Inner Bulkhead Assembly and 15B408 Rev (0), Outlet End Plate Support Cup. Lateral movement of the shield toward the outlet end is limited by the outlet end plate. Lateral movement toward the lock end is limited by the metal shim (spacer) on the inner bulkhead plate. The inner bulkhead is in direct contact with the ASM/Lock Module which is bolted to the lock end plate. Therefore, movement of the shield toward the lock end in an accident is resisted by the combined structural support provided by the inner bulkhead and the lock end plates. The strong construction of the ASM/Lock Module prevents crushing in an accident. See Drawing 15B625 Rev (0). The titanium cups limit movement of the shield in the other directions. An automatic securing mechanism (ASM)/lock module secures and also locks the source assembly ("pigtail") with the sealed source capsule inside the S-tube of the model SPEC-150 radiography exposure device to meet the requirements of 10 CFR 34.22(a) and equivalent agreement state regulations.
- E. An outlet nipple, which is a commercially available male quick disconnect mechanical coupling, is screwed into the outlet panel which is affixed to the outlet end plate on the model SPEC-150. See Drawing 15B406-1 Rev (0), Outlet Panel Assembly. The outlet nipple provides a means of connecting a source tube when the model SPEC-150 is used as a radiography exposure device and serves no structural purpose. During shipment a source safety plug, a female quick disconnect coupling with a stainless steel cable and a stainless steel cap, is installed in the outlet nipple as a redundant mechanism to prevent the forward movement of the source assembly through the S-Tube toward the outlet end. See Drawing 15B805A Rev (0), Safety Plug.

- F. An aluminum handle attached with stainless steel rods are provided as a convenience to carry the model SPEC-150 in the field when it is being used as an industrial radiography device. The SPEC-150 exposure device also has four convenient mounting holes located at the bottom of each housing protective flange at the corners of the device which provide a sturdy means to attach security harnesses, pipeline trolleys, suspension lifts and permanent installation mounts. The carrying handle and mounting holes are not structural parts of the package and serve no function during transport of the package, although the carrying handle and the four holes have been tested and easily withstands more than ten times the weight of the package. The model SPEC-150 may also be lifted and secured from movement during transport without structural provisions for any lifting or tie down devices.
- G. A titanium lock cap at one end protrudes approximately 7/8 inches beyond the flange of model SPEC-150. See Drawing 15B910A Rev (0), Lock Cap. It protects the source assembly connector from damage, which would only affect its operation as an industrial radiography exposure device, and it is not a structural part of the model SPEC-150 shipping package. On the other end the outlet nipple and source safety plug do not protrude beyond the flange of the model SPEC-150, and is not subject to damage during normal transport.
- H. The model SPEC-150 is not hermetically sealed and is opened to ambient pressure, therefore a pressure relief system is not applicable.
- I. The primary containment vessel to prevent the release of radioactive material is the sealed source capsule, which meets the requirements of special form radioactive material in 10 CFR 71.75 pursuant to IAEA Certificate of Competent Authority Number USA/0095/S. Approximate dimensions of the stainless steel capsule is one inch long by 1/4 inches diameter. Source assemblies ("pigtails") consist of the sealed source capsule swaged onto a flexible cable to which is swaged a locking ball and a drive cable connector. See Drawing 15B206 Rev. (0).
- J. Containment of the source assembly in the model SPEC-150 package is achieved by (1) the source assembly lock, which is located in the automatic securing mechanism/lock module assembly, prevents movement in both directions and is the primary mechanism to contain the source assembly in the model SPEC-150; (2) the diameter of the locking ball which can not pass through the smaller diameter orifice of the automatic securing mechanism module, (containment in this direction is maintained even when all locks are unlocked and the release plunger is depressed); (3) the automatic securing mechanism which engages the locking ball and provides a redundant mechanism to

prevent forward movement through the S-Tube; (4) the lock cap which provides a redundant safety feature preventing the source assembly from coming out the lock end of the model SPEC-150; and (5) the safety plug which redundantly prevents the source assembly from passing through the outlet end. See Drawing 15B625 Rev (0), ASM/Lock Module Housing.

The source assembly lock is a solid, stainless steel, irregular shaped part with a curved slot that fits over the source assembly between the connector and locking ball. See Drawing 15B511 Rev (0), Source Lock Operation. It prohibits movement of the source assembly in both directions. The source assembly lock is opened and closed by rotating the operating lever counterclockwise on the control assembly. The control assembly is a 25 foot long (minimum) mechanical piece of equipment that must be attached to the SPEC-150 to operate the source assembly lock (to perform radiography). The controls must be removed from the device to prepare the package for transport (to install the lock cap). The source assembly lock must be locked in order for the controls to be removed from the device. It is not possible to inadvertently leave the source assembly unlocked when preparing the package for transport.

The source assembly lock is held in the closed position by two spring loaded plungers located inside the lock module. It is also held in the closed position by the device lock. The device lock is a solid, stainless steel, fan-blade shaped part that is operated by the device key. See Drawing 15B508 Rev (0) and 15B508A Rev (0), Device Lock Operation.

The key must be inserted into the lock end plate with sufficient force to depress a large stainless spring, then rotated clockwise to unlock the source assembly lock. This action does not open the source assembly lock. The device lock must be locked in order for the key to be removed from the device, and the key must be removed in order to remove the controls. Like the source assembly lock, it is not possible to inadvertently leave the device unlocked when preparing the package for transport.

Failure of the locking system in an accident is virtually impossible unless the entire structure of the package is destroyed. For failure to occur the lock system must be subjected to (1) a compressive force applied to the spring-loaded device lock toward the outlet end simultaneously combined with, (2) a clockwise rotational force applied to the device lock, sequentially followed by (3) a counterclockwise rotational force applied to the spring-loaded source assembly lock, combined with (4) a temporary perpendicular, compressive force to depress the source release plunger, and then (5) a compressive force applied to the source assembly toward the outlet end with sufficient force to unlatch the spring-loaded release plunger. This compressive force cannot be applied to the source assembly at the same time that the compressive force (in the same direction) is applied to the device lock; otherwise, the source assembly connector will be forced against the slot in the source assembly lock and resist rotation. Since all of the above parts are inside the structure (with the exception of the release plunger) the forces must be generated by the momentum of the individual parts caused by the impact and spinning of the package in an accident. These forces must also be exerted without damaging the lock module. Inward crushing of the lock module housing would prohibit any reasonably foreseeable rotational forces from opening either lock. We have been unable to develop a hypothetical accident that is remotely capable of producing the combination and sequence of forces and events required to cause a failure of the lock system other than total destruction. As demonstrated by tests described in this application, total destruction requires forces that greatly exceed the performance requirements for a Type-B package.

- K. Structural closures of openings are not employed to contain the radioactive material within the package.
- L. There are no valves, sampling ports, coolants or mechanisms for heat transfer or dissipation.
- 1.3.3 Operational Features
 - A. The model SPEC-150 is a simple package and there are no operational considerations which are required for its use as a transport package.
 - B. Iridium 192 wafers are contained in a sealed source capsule which can not be operationally opened.
 - C. The source assembly is contained in the model SPEC-150 by (1) the source assembly lock, which is located in the automatic securing mechanism/lock module assembly, prevents movement in both directions and is the primary mechanism to contain the source assembly in the model SPEC-150; (2) the source assembly automatic securing mechanism (ASM) engaging the locking ball and preventing forward movement through the S-Tube; (3) the diameter of the locking ball which prevents movement of the source assembly out the lock end; (4) the redundant lock cap preventing loss of the pigtail out the lock end; and (5) the redundant source safety plug preventing loss of the pigtail through the outlet nipple end.

- D. There are no valves, connections, piping, seals or similar containment mechanisms.
- 1.3.4 Contents of Packaging
 - A. The model SPEC-150 has been approved by the Louisiana Radiation Protection Division (agreement state radiation control agency) as a radiography exposure device with a maximum activity of 150 Ci of Iridium-192 as a sealed source.
 - B. The sealed source capsule meets the requirements of special form radioactive material pursuant to 10 CFR 71.75 as demonstrated by IAEA Certificate of Competent Authority Number USA/0095/S.
 - C. Iridium-192 solid metallic wafers are encapsulated in a stainless steel cylindrical capsule measuring approximately 3/4 inches by 1/4 inches diameter which is swaged onto a flexible cable approximately 7-7/8 inches long forming a source assembly.
 - D. The density of solid metallic iridium is approximately 22.5 grams per cubic centimeter. The weight of the Iridium-192 contents is negligible.
 - E. Iridium 192 is not fissile material, therefore moderator ratios and criticality configurations are not applicable.
 - F. The heat of decay for a maximum 150 Ci Iridium-192 is infinitesimal and the void space in the sealed source capsule is negligible, therefore pressure buildup is not a factor.

2. STRUCTURAL EVALUATION

A structural evaluation of the model SPEC-150 was performed in conjunction with the application as an industrial radiography device in accordance with 10 CFR 34.20 and American Notional Standards Institute N432-1980. All of the information from the radiography device application that is relevant to a Type-B package is included in this application. Additional test and structural evaluation information has been added to this application. The NRC Office of Nuclear Materials Safety and Safeguards reviewed the model SPEC-150 industrial radiography device application and the Louisiana Radiation Protection Division reviewed and approved it.

All thermal metal joining (TMJ) of structural joints are performed in accordance with SPEC Titanium GTAW TMJ Procedure P51-1, QAM 9.6 of the quality assurance program, U. S. Nuclear Regulatory Commission Certificate of Compliance No. 0102.

2.1 Structural Design

2.1.1 Discussion

There was no attempt nor necessity in the design of the model SPEC-150 to conduct theoretical engineering structural evaluations based on mechanical properties of materials. It is a small light weight package whose simple design was based on extensive years of previous experience with similar packages and methods of construction. The structural design was evaluated by actual physical tests in accordance with 10 CFR Part 71.

- A. The principal structural components of the model SPEC-150 are (1) the depleted uranium shield which provides the necessary radiation shielding and protects the sealed source capsule; (2) the titanium inner bulkhead and outer end plate support cups which positions and affixes the depleted uranium shield; and (3) the titanium shell which firmly encases the depleted uranium shield and forms the outer package.
- B. The stainless steel capsule provides the primary containment vessel preventing the release of radioactive material and meets the requirements of 10 CFR 71.75 for special form radioactive material.
- C. The source assembly, containing the sealed source capsule, is retained in the depleted uranium shield by (1) multiple locking and securing mechanisms, which require the sequential use of a key, application of external mating mechanisms, and two independent mechanical procedures to unlock the source assembly lock in the primary retention mechanism; (2) a locking ball on the source assembly which can not pass through the lock end of the model SPEC-150; (3) a lock cap providing secondary protection and redundant retention of the source assembly; and (4) a redundant safety plug preventing movement of the source assembly through the outlet nipple end of the model SPEC-150.

2.1.2 Design Criteria

- A. The design of the model SPEC-150 was based on 10 CFR Parts 34 and 71; IAEA Safety Series No. 6, Regulation for the Safe Transport of Radioactive Material, 1985 Edition (As Amended 1990); and American National Standards Institute N432-1980.
- B. Primary consideration was given to protecting the depleted uranium shield by limiting its movement under typical working conditions, normal transportation and hypothetical accident conditions. Lateral movement of the depleted uranium shield toward the ends of the device is limited by the inner bulkhead plate and outlet end plate. The titanium cups limits movement of the depleted uranium shield in other

directions. The cups are filled with an epoxy potting compound to protect against ingress of moisture. By preventing movement of the depleted uranium shield within the housing the radiation levels after the hypothetical accident tests are within the established criteria. The principal area of concern is the nine meter drop test. The lock end of the shield is additionally secured against upward movement by direct contact with the top of the device housing. The outlet end of the shield is additionally secured against downward movement in an accident by direct contact with the bottom of the device housing.

- C. Because the sealed source capsule qualifies as special form radioactive material, it is known that the sealed source capsule is not damaged by the thirty foot drop test nor the 1475° F thermal test. Located in the center of the depleted uranium shield within the model SPEC-150 case the sealed source capsule is adequately protected from any shear or crushing forces that could damage the capsule.
- 2.2 Weights and Centers of Gravity

The model SPEC-150 weighs a maximum of 53 pounds and a minimum of 52 pounds. The center of gravity is approximately the geometric center of the rectangular parallelpiped defined by the outlet end plate, the lock end plate and the outer dimensions of the case.

- 2.3 Mechanical Properties of Materials
 - 2.3.1 Materials List

Structural materials used in the model SPEC-150 are principally titanium, stainless steel, depleted uranium. Epoxy potting compound, aluminum, bronze, rubber and foam are used in non-critical structural components.

- 2.3.2 All commercial grade materials are used in the construction of the model SPEC-150 and their mechanical properties are commonly established.
- 2.3.3 Titanium sheet and plate, ASTM B265-90 commercial grade 2, is used for the package shell, end plates, inner bulkhead, and the ASM/lock module. Titanium tubing, ASTM B337 commercial grade 2, is used for the lock cap and support cups. Inside the automatic securing mechanism Series 300 and 440C stainless steel is used.

Bronze is used for some bushings. The radiation shield is a depleted uranium casting with a titanium or zircalloy tube through the shield. The minimum weight of the depleted uranium shield is 36 pounds and the maximum weight is 37 pounds. Optional tungsten shielding pads are used as needed. Aluminum is used for the carrying handle, but it is not a structural part of the package.

Information plates are stainless steel to withstand the thermal test.

2.4 General Standards for All Packages

The model SPEC-150 meets the general standards for all packages in accordance with the provisions of 10 CFR Sections 71.43, 71.45 and 71.47.

2.4.1 Minimum Dimension

The smallest overall dimension of the package is nominally 5-3/8 inches plus or minus 1/8 inch, and therefore never smaller than 4 inches.

2.4.2 Tamper Seal

The sealed radioactive source may only be released from the package by unlocking the camera with a key pursuant to the requirements of 10 CFR 34.22. The camera can be unlocked only after sequential application of a mating mechanism and by two mutually independent operational mechanical procedures. Camera keys are not normally shipped in the same container as a model SPEC-150, but when a camera key is shipped in the same container with a model SPEC-150 it will be in a sealed envelope. When a model SPEC-150 is shipped in an overpack the overpack will employ a wire sealed or tape that is destroyed upon removal for a security seal.

2.4.3 Positive Closure

The primary containment system preventing the release of radioactive materials is the special form sealed source capsule which can only be opened destructively. In addition the sealed source assembly is retained in the depleted uranium shield by a key multiple securing mechanism, a redundant safety plug and a redundant lock cap. The camera can be unlocked only after sequential application of a mating mechanism and by two mutually independent operational mechanical procedures.

2.4.4 Chemical and Galvanic Reactions

The materials of construction are stable common metals which are known not to present chemical, galvanic or other reactions between the various metals. All the materials are inert to reaction with water, except for slow corrosion. A titanium-uranium or tungsten-uranium eutectic has not be shown to exist even at elevated temperatures (i.e. the titanium S-tube has been subjected to 1475 F). The depleted uranium shield is protected from corrosion by foam and epoxy moisture barriers.

2.4.5 Package Operational Containment

No valves or other devices are present which would allow radioactive contents to escape from the primary containment of the sealed source capsule. The source assembly is retained in the shield primarily by a key operated source assembly lock, additional securing mechanisms, a redundant safety plug, a restricting orifice through which the source assembly can not back out of the lock end, and a lock cap provide redundant positioning of the source assembly in the depleted uranium shield.

2.4.6 Normal Conditions of Transport

As described below in Section 2.8, Normal Conditions of Transport, the model SPEC-150 was subjected to the specified tests which demonstrated there would be no loss or dispersal of radioactive contents, no significant increase in external radiation levels, and no reduction in the effectiveness of the packaging. In fact the test specified for normal conditions of transport did not cause any significant effect on the inner model SPEC-150 package.

2.4.7 Surface Temperature

The maximum activity of 150 Ci in the model SPEC-150 has negligible heat of decay and the surface temperature of the package will be that of the ambient temperature.

2.4.8 Venting

Venting considerations are not applicable. Any pressure increase resulting from the decay of the maximum 150 Ci Iridium-192 in the sealed source capsule will be negligible and will be adequately contained by the sealed source capsule.

2.4.9 Lifting Devices

A carrying handle is provided for use as a radiographic exposure device, and is not considered a structural part of the Type B package. A model SPEC-150 was suspended from a single point at the end of the carrying handle and loaded with approximately 500 pounds dead weight (53 pound package weight times a safety factor of at least ten) for a minimum of ten minutes. The handle supported the weight without any deformation or damage in compliance with 10 CFR 71.45(a).

2.4.10 Tiedown Devices

Although the model SPEC-150 has eight tiedown holes located at the corners of the package their primary purpose is securing the camera during its use as an exposure device in the field and not for securing it during transport. The mounting holes are 3/8 inch diameter and are located approximately $\frac{1}{2}$ inch from the end of each side panel and approximately 3/4 inch above the bottom and $\frac{1}{2}$ inch below the top of the package. The mounting holes can withstand forces greatly in excess of ten times the mass of the package.

2.4.11 External Radiation Standards

External radiation levels for the model SPEC-150 package are shown are shown to the meet the requirements for a radiography exposure device pursuant to 10 CFR 34.20, which incorporates the requirements specified in American National Standard N432-1980, "Radiological Safety for the Design and

Source Production & Equipment Co., Inc. St. Rose, Louisiana USA Application April 22, 1999 Construction of Apparatus for Gamma Radiography." The model SPEC-150 containing no more than 150 Ci Iridium-192 also does not exceed the U.S. Department of Transportation requirements specified in 49 CFR 173.441(a) of 200 mrem/hr at the surface of the package and 10 mrem/hr at one meter from the surface of the package. Instructions are provided in Section 7 Operating Procedures for preparing the package for shipment to meet the requirements for transport.

2.5 Standards for Type B Packaging

The model SPEC-150 meets the additional requirements for Type-B packages in accordance with the provisions of 10 CFR 71.51.

2.5.1 Normal Condition of Transport Test Criteria

The results of tests described below in Section 2.8 for normal conditions of transport adequately demonstrate that there would be no loss or dispersal of radioactive contents, no increase in external radiation levels, and no reduction in the effectiveness of the model SPEC-150 packaging.

2.5.2 Hypothetical Accident Conditions Test Criteria

The results of tests described below in Section 2.9 for hypothetical accident conditions adequately demonstrate that there would be no possibility of 20 Ci Iridium-192 escaping from the package in one week nor would there be any radiation levels exceeding one rem per hour at one meter from the external surface of the package. In fact the source capsule containing the radioactive material remained intact and was not released from the package.

2.5.3 Activity Release Limitations

Containment by filter or mechanical cooling systems are not applicable, since there was no release of radioactive material. The source capsule remained intact after the tests for normal condition of transport and the hypothetical accident conditions.

2.6 Description of Test Packages

Model SPEC-150 prototype test packages, which were constructed in standard production fashion pursuant to applicable quality assurance procedures specified in NRC Certificate of Compliance No. 0102, were used for normal conditions of transport tests and hypothetical accident condition tests. For each of the hypothetical accident conditions tests a loaded prototype Iridium-192 source assembly, which was constructed in standard production fashion pursuant to applicable quality assurance programs, was contained within the test package to effectively measure the change in radiation levels after the tests.

2.6.1 Prototype No. 2 & 4

SPEC-150 prototypes No. 2 and 4 were used as test packages. The design of Prototype No. 2 is different from Prototype No. 4, and both meet Type-B requirements. As a result of the damage to No. 2 caused by the 30-foot drop tests the design of the SPEC-150 was revised. The revisions were incorporated into Prototype No. 4 and tested. The structural changes consist of the following items. (1) The design of the welded joint that attaches the control attachment boss, Drawing 15B200 Rev (0), to the lock end plate, Drawing 15B104 Rev (0), was revised to increase the size and strength of the joint. (2) The design of the welded joints that attach the outlet end plate, Drawing 15B106 Rev (0), and the outlet end plate support cup, Drawing 15B401 Rev (0), to the bottom plate was revised to increase the size and strength of the joints. With the exception of the above design changes, both test packages represent the basic design, and No. 4 is completely represents the final design.

2.6.2 Design Changes of Production Packages

The only structural design change from Prototype No. 4 that will be incorporated into the final design of production packages is a reduction in height of the outlet end plate support cup by 5/16 inch to 2-13/32 inches, Drawing 150401 Rev (0). This will not reduce the strength of the cup nor the outlet end plate. With the exception of the optional use of a tungsten shielding pad described in Section 1.3.2(B), there are no other design features, details, sizes, dimensions, weights, weld materials, methods of fabrication of the test specimens that are different from production packages. The weight of Prototype No. 2 is 52 pounds. The weight of Prototype No. 4 is 52 pounds without the extra weight installed and is 53 pounds with the tungsten rod extra weight installed in the carrying handle (used for the 30-foot drop and puncture tests). The tungsten rod weighs 13 ounces.

2.6.3 Other Prototypes

Four prototype SPEC-150s have been fabricated. Prototypes No. 2 and 4 were used to perform tests to evaluate the package pursuant to 10 CFR Part 71 as a Type-B package. Prototype No. 1 was used to perform the portions of the ANSI N432-1980 tests pursuant to 10 CFR Part 34 as a radiography device. Prototype No. 3 has not been used for tests. Both #1 and #3 will continue to be used for additional tests that are not required pursuant to 10 CFR Parts 34 and 71 or other regulatory requirement.

2.7 Drop Target Description

The drop target greatly exceeds the requirements outlined in IAEA Safety Series No. 37 "Advisory Material for the IAEA Regulations for the Safe Transport of Radioactive Material (1985 Edition as amended 1990), which recommends a steel plate as the upper surface of a concrete block. It specifies that the combined mass of the steel and concrete should be at least 10 times that of the specimen to be dropped; that the block should be set on firm soil; that the steel plate should be at least 4.0 cm thick and floated onto the concrete while it is still wet; and that the plate should have protruding steel structures on it lower surface to ensure tight contact with the concrete.

The drop target at SPEC greatly exceeds the requirements specified in IAEA Safety Series No. 37 "Advisory Material for the IAEA Regulations for the Safe Transport of Radioactive Material," (1985 Edition as amended 1990). The drop target consists of a solid carbon steel plate which measures 2'6" x 2'11" x 1-3/4" thick weighing 520 pounds. The thickness of the steel plate meets the minimum 4.0 cm IAEA requirement. The steel plate was wet floated onto the top surface of a flat horizontal concrete block which measures 4'6" x 4'6" thick weighing 13,668 pounds. The total weight of the drop target is 14,188 pounds which greatly exceeds ten times the mass of a 100 pound package. The concrete block is metal reinforced and is sunk to a depth of 4'2" into firm soil. A 40 foot tall structure was erected over the drop target and used to raise and release the test package from a minimum height of 30 feet (9.2 meters) above the top surface of the target. No damage nor separation of the steel plate from the concrete block occurred as a result of all tests.

- 2.8 Normal Conditions of Transport
 - 2.8.1 Heat

The test at an ambient temperature of 70° C (158° F) in still air and isolation, was not performed because the materials and methods of construction would not be adversely affect the package in such a manner that there would be a loss or dispersal of the radioactive contents and a loss of shielding integrity would result in more than a 20% increase in the radiation level at any external surface of the package.

2.8.2 Cold

The test at an ambient temperature of -40° C (-40° F) in still air and isolation, was not performed because the materials and methods of construction would not be adversely affect the package in such a manner that there would be a loss or dispersal of the radioactive contents and a loss of shielding integrity would result in more than a 20% increase in the radiation level at any external surface of the package.

2.8.3 Reduced External Pressure

This test was not performed because the model SPEC-150 is open to the atmosphere and there are no materials in the package which would be affected by a pressure reduction to 3.5 psi absolute. The special form sealed source capsule will withstand reduced pressures much greater than the 3.5 psi absolute. A pressure reduction to 3.5 psi absolute would have no affect on the effectiveness of the model SPEC-150 package.

2.8.4 Increased External Pressure

The test was not performed because the model SPEC-150 is opened to the atmosphere and there are no materials in the package which would be affected by an increase of external pressure to 20 psi absolute. The special form sealed source capsule will withstand increased pressures much greater than the 20 psi absolute. An increase of external pressure to 20 psi absolute would have no affect on the effectiveness of the model SPEC-150 package.

2.8.5 Vibration

The effects of vibration on the package and materials of constructions incident to normal transportation is negligible. More than 1000 similar SPEC radiography exposures devices have been transported over a period of 20 years via all common modes of private and common transportation on water, highway and air without displaying damage or other noticeable effects. Vibration incident to normal transportation will not reduced the effectiveness of the packaging.

2.8.6 Water Spray

There are no materials of construction in the model SPEC-150 which would be affected by a water spray, and the production models do not easily permit water within the case. A water spray test was not conducted on the all metal package.

2.8.7 Free Drop

A model SPEC-150 prototype package, Prototype No. 4, was dropped from a distance of 4 feet onto an essentially unyielding surface. (See target specifications above in Section 2.7, Drop Target Description.) Five cumulative drop tests were performed to obviate any question about selection of the most vulnerable point of impact. The points of impact were flat on the bottom plate, bottom right corner on the outlet end, bottom left corner on the lock end, top left corner on the outlet end and flat on the lock cap. There was no effect on the operation or the shielding capability of the package. The four foot free drop did not result in loss of radioactive contents from the package, increased radiation levels nor reduce the effectiveness of the package.

2.8.8 Corner Drop

This test is not applicable since the package is not constructed of wood or fiberboard.

2.8.9 Penetration

A model SPEC-150 prototype was subjected to the impact of a 1-1/4 inches diameter steel cylinder weighing 13 lbs falling a distance of 40 inches. The point of impact was directly on the safety plug which is located at the outlet end of the device. See photograph 510A. The safety plug is the weakest structural point on the device that would also cause the most significant increase in radiation level if it were to break off. IAEA Safety Series No. 6 Regulations for the Safety Transport of Radioactive Material 1985 Edition (As Amended 1990) states in Paragraph 537(b) that the normal condition of transport test should not result in more than a 20% increase in surface radiation levels. The impact caused the outlet end panel to bend downward slightly. The safety plug and outlet nipple remained intact. See photographs 510B and 510C. There was no increase of radiation levels. The penetration test did not result in loss of radioactive contents from the package, increase radiation levels nor reduce the effectiveness of the model SPEC-150 package.

2.8.10 Compression

A model SPEC-150 prototype package was subjected to a compressive load of 266 lbs for a period of 24 hours. The test package was placed on a flat, horizontal surface. Cement blocks were loaded onto the top surface providing a total compressive force of 266 lbs. There were no observable effects of the compression test. The compression test did not result in loss of radioactive contents from the package, increased radiation levels, nor reduce the effectiveness of the model SPEC-150 package.

2.8.11 Test Summary

In compliance with 10 CFR Part 71.71, based upon the above tests and evaluations, it is determined that under normal conditions of transport:

- A. There would be no loss or dispersal of radioactive contents.
- B. There would be no significant increase in external radiation levels.
- C. There would be no significant reduction in the effectiveness of the packaging.

2.9 Hypothetical Accident Conditions

2.9.1 Free Drops

A model SPEC-150 prototype package, Prototype No. 2, was subjected to four successive free drops and a second model SPEC-150 prototype package, Prototype No. 4, was subjected to four successive free drops from a distance of 9 meters (30 feet) onto the previously described drop target. Although not required under the test criteria, the multiple successive drops were made and the damage was cumulative to more than adequately demonstrate the durability of the package and to obviate any questions concerning selection of the most venerable points of impact and drop orientation.

- A. Prototype No. 2
 - 1. Selection of Points of Impact

Sketches of the drop test impact orientations are located in Appendix 9. It is impossible to determine the most vulnerable point of impact by engineering evaluation alone. This fact was confirmed by the Engineering Department at Louisiana State University. Their opinion is that an engineering evaluation can easily identify the most likely points. However, there is no nationally recognized method to conclusively determine the most vulnerable point, particularly considering the resulting radiation levels. Therefore, the points of impact for Prototype No. 2 were based on an analysis of the design of the SPEC-150 and extensive past experience with testing numerous similar devices. The selection of numerous points of impact is intended to demonstrate the exceptional structural integrity of the device and to obviate any concerns regarding the proper selection of points of impact and device orientation at the moment of impact. Finally, the points of impact and orientation for Prototype No. 2 was selected to provide damage information needed to make a final selection of point of impact on Prototype No. 4. The points of impact for Prototype No. 2 were selected to cause the maximum damage to the device and the maximum potential for shield movement within the device. The points selected were the right side, upper corner at the lock end, and two points on the outlet end of the exposure device.

2. 1st 9 Meter Drop Test

The point of impact for this test was the right side of the SPEC-150 test device. The intent was to inflict the maximum amount of force to shift the depleted uranium shield to the right side of the device and cause the source assembly to partially withdraw. The device was suspended from the left side to orient the center of gravity directly over the point of impact. See Photographs 53A, 53B and 53G. Upon impact the lock cap and the control attachment boss separated from the device. See Photograph 53C. The source connector was exposed, but not damaged. See photographs 53D and 53E. The radiation level at the lock end of the model SPEC-150 increased slightly, but not significantly, due to the secondary scattered radiation resulting from the loss of the lock cap. There was no other increase in radiation levels in any direction from the SPEC-150 package and there was no loss of radioactive content. All exterior TMJ joints remained intact and the source remained fully secured within the SPEC-150. See photograph 53D. The device remained in the locked position. Damage to the housing consisted of superficial scratches and denting to the right side of the device. See Photographs 53F and 53H. The imprint of the device on the drop target depicts the right side point of impact. See photograph 53I.

3. 2nd 9 Meter Drop Test

The point of impact for this test was located at the top right corner at the lock end of the SPEC-150 test package. The intent was to cause the maximum amount of damage to separate the ASM/Lock Module from the device thus removing the source assembly from the shield. The device was suspended from a single wire attached to the diagonally opposite corner at the outlet end of the package to position the center of gravity directly over the point of impact. See photographs 54A and 54B. The top right corner of the housing distorted inward and upward approximately one inch. One of the six ASM lid screws (on the right side closest to the lock end) sheared off. See photograph 54C and 54D. The source connector remained

Source Production & Equipment Co., Inc. St. Rose, Louisiana USA

undamaged and in the locked position. See photograph 54E. A visual inspection of the device lock shaft verified that the device remained in the locked position. See photographs 54C and 54F. The TMJ welded seam that joins the top of the lock end plate to the housing split approximately three inches. See photograph 54F. No measurable displacement of the shield resulted. There was no increase in radiation level at any direction.

4. 3rd 9 Meter Drop Test

The point of impact of the third drop test was intended to be the right bottom corner at the outlet end. See photographs 55A and 55B. During the drop the device rotated sightly due to windy conditions. This caused the point of impact to be the right side edge (flange) at the outlet end which included the bottom right See photograph 55D. The flange dented inward corner. approximately $\frac{1}{2}$ inch along the entire length of the right side. See photographs 55D and 55E. The depleted uranium shield shifted toward the outlet end of the device approximately 3/8 inch. The four screws holding the outlet end panel to the outlet end plate remained intact. See photograph 55F. The outlet end plate buckled outward and the end of the safety plug was dented causing the safety plug to be jammed in place. The device housing was bent upward slightly at the top right corner at the outlet end. See photographs 55D and 55G. The TMJ welded joint that joins the outlet end plate to the bottom plate was split along the entire length. See photograph 55F. The source remained in the locked position. The radiation level at the top center surface of the device after the 3rd drop increased from 0.24 mSv (24 millirem) per hour to 0.8 mSv (80 millirem) per hour.

5. 4th 9 Meter Drop Test

The point of impact for the forth drop test was the bottom left corner at the outlet end of the device. See photographs 56A and 56B. The lower left and upper right outlet end panel screws sheared off. See photographs 56C and 56D. The previously damaged TMJ weld seam that joins the outlet end plate to the bottom plate opened more, the end plate buckled outward more, and the depleted uranium shield shifted further toward the outlet end causing bottom of the outlet end plate to distort outward approximately an additional 7/8 inch. See photographs 56C, 56D and 56E. The bottom left corner at the outlet end dented inward approximately ¹/₂ inch. See photographs 56C and 56D. The TMJ welded joints that join the outlet end plate to the device housing split upward three inches on both left and right sides. See photographs 56C, 56D and 56E. The ASM/lock module shifted toward the outlet end of the device. The source remained locked and undamaged. See photographs 56F and 56G. The radiation level at the lock end of the device increased

Source Production & Equipment Co., Inc. St. Rose, Louisiana USA

as a result of the dislocation of the depleted uranium shield away from the ASM/lock module. The source capsule was no longer in the fully shielded position within the S-tube. The radiation level at one meter from the lock end was 5.57 mSv (557 millirem) per hour extrapolated to 150 curies. After four successive drop tests the SPEC-150 prototype No. 2 test device continued to meet the shielding requirements specified in ANSI N432-1980.

6. Summary of Damage - Prototype No. 2

The significant structural damage consisted of (1) the splitting of the welded seam at the top of the lock end plate in the 2nd drop, (2) the splitting of the welded seam at the bottom of the outlet end plate and the shifting of the depleted uranium shield in the 3rd drop, and (3) the splitting of the welded seams along both sides of the outlet end plate and the additional outward distortion of the outlet end plate and shifting of the depleted uranium shield in the 4th drop. Additional significant damage consisted of the separation of the control attachment boss and lock cap in the first drop. The source assembly lock remained intact. With the exception of the loss of the lock cap, all other redundant source assembly securing mechanisms also remained intact.

7. Summary of Drop Tests - Prototype No. 2

The cumulative damage resulted in an increase in radiation level at the lock end of the SPEC-150 to 5.57 mSv (557 millirem) per hour at one meter extrapolated to 150 curies of Ir-192 which remains far below the maximum allowable limit of 10 mSv (1000 millirem) per hour at one meter from the surface. There was no loss of radioactive content.

Following all accidental drop tests the radiation levels were less than 1000 millirem per hour at one meter in all directions. The tests were video recorded and are available for review upon request.

The voluntary procedure to subject the test device to cumulative damage from four successive 9 meter drop tests more than adequately demonstrates that the SPEC-150 design greatly exceeds established standards for a Type B package.

B. Prototype No. 4

The following information describes the accidental drop tests using SPEC-150 Prototype No. 4. Prototype No. 2 successfully passed the accidental drop tests. Nevertheless, minor design revisions were made to Prototype No. 4 based on the damage evaluation of prototype No. 2. The control attachment boss was redesigned to prevent the lock cap

from breaking off. Also, the TMJ welded joint design was revised to strengthen the outlet end plate and reduce the amount of structural damage caused by the momentum of the depleted uranium shield. It should be noted that the design revision objectives were successfully accomplished.

A tungsten weight was installed to the inside of the carrying handle to Prototype No. 4 to increase the weight of the test package. See Photographs 511A and 511B. This was done to represent a worst case test device. The design of the SPEC-150 allows for the use of a small tungsten shielding pad on an as-needed basis to correct minor imperfections inherent in the depleted uranium casting process. Shielding pads are limited to a maximum weight of one pound and a maximum thickness of 3/4~inch, and therefore are not a factor in meeting the hypothetical accident condition criteria. For example; assume that a shielding pad of maximum thickness is used to reduce the radiation level at one meter from the surface of the SPEC-150 device to meet the ANSI N432-1980 limit of 2 mR/hr. If the pad was lost due to an accident the maximum resulting radiation level at one meter would be approximately 64 mR/hr which is far below the allowable limit of 1000 mR/hr required to pass the test.

The practice of adding weight to a device to create a worst case test was accepted by the NRC in the SPEC application for Type B approval of the SPEC C-1 source changer, Certificate of Compliance Number 9036. The addition of the weight does not add to the structural integrity of the device. Model G-60 source S/N AH2503 was installed in Prototype No. 4. On the date of the tests, August 25, 1994, the activity of the source was 23 curies (output).

1. Selection of Points of Impact

Sketches of the drop test impact orientations are located in Appendix 9. The selection of the most damaging point of impact on Prototype No. 4 for the 9 meter drop test was established by an evaluation of the damage to Prototype No. 2. The evaluation confirmed that the most damaging point of impact is the bottom corner at the outlet end of the device.

The upper right corner at the lock end caused the most exterior damage to the device housing on Prototype No. 2, but it did not damage the structural integrity nor reduce the shielding ability of the device. The right side point of impact caused virtually no damage to Prototype No. 2. The outlet end of SPEC-150 Prototype No. 2 is the point of impact that produced the greatest dislocation of the depleted uranium shield and hence the greatest increase in radiation level.

It is difficult to evaluate the damage caused by the two drops on the outlet end of Prototype No. 2 and determine conclusively if the greatest damage was caused by the drop on the bottom corner (4th drop) or the drop on the right edge (3rd drop). The outlet end housing flange at the corner acted as an impact limiter to a small degree. The housing absorbed some of the force of impact as the corner crushed inward. However, the corner point of impact produced the greater damage to the housing and weld joints in the immediate area compared to the drop on the right edge.

The objective was to select the point of impact that would most likely cause the depleted uranium shield to shift away from the lock mechanism (which holds the source assembly). Based on these observations we have concluded that the most damaging point of impact on the SPEC-150 is the bottom right corner at the outlet end of the device. This is the location that will produce the greatest chance for the depleted uranium shield to shift toward the outlet end and result in the highest radiation level.

In response to a request from the NRC dated February 24, 1995 to evaluate the package for a 30-foot drop test directly onto the lock, SPEC-150 Prototype No. 4 test package was subjected to two additional drop tests on February 25, 1995 directly onto the lock (and a puncture test onto the lock after the first additional 30-foot test).

- 2.
- 1st 9 Meter Drop Test Prototype No. 4

The point of impact for this drop was the right bottom corner at the outlet end. See photographs 513A, 513B and 513C. To verify the drop height see photograph 513D.

The right bottom corner at the outlet end bent inward and upward 1 inch. See photographs 513E, 513F and 513G. The right side plate split 2 inches along the welded seam at the bottom plate. It should be noted that the weld joint did not separate, but the adjacent metal was torn. This damage was limited to the protective flange. There was no damage to any critical structural weld joints of the package. There were superficial scratches along the left side on the exposure device. See photograph 513H. The bottom left corner at the lock end was distorted slightly, apparently from secondary impact. See photograph 513I. The source and device remained in the locked position. The radiation levels were less than 0.5 millirem per hour at 1 meter in all directions. This extrapolates to 3.3 millirem per hour at 150 curies.

3. 2nd 9 Meter Drop Test - Prototype No. 4

Based on a discussion with NRC and Louisiana Department of Radiation Protection personnel witnessing the tests performed on Prototype No. 4 a decision was made to conduct an additional 9 meter drop test after the puncture test. The point of impact was directly on the top of the exposure device based on the observation that this was the only surface of either prototype that had not been selected as a point of impact. The carrying handle was taped to the top left side of the exposure device to limit the device deflection as much as possible upon impact. See photographs 515A, 515B, 515I and 515J. See photograph 515C for drop height verification.

The top of the release plunger was the initial point of impact. See photograph 515D. There was a 1/4" deep imprint of the handle in the top of the device housing closest towards the outlet end. Also, the impact caused an imprint of the knurled carrying handle grip into the top of the device housing. See photographs 515E, 515F and 515M. The ASM Lid Plate was bent upward 1/4" between the release plunger and carrying handle. See photographs 515F and 515L. The ASM Lid Plate was dented inward at the location where the plunger was impacted. See photograph 515G. The lock end plate was bent outward 1/8" at the Control Attachment Boss. See photographs 515G, 515H and 515K. At the conclusion of the 2nd 9 meter drop test the device was surveyed by a member of the Louisiana Division of Radiation Protection staff. See photograph 515N. A complete radiation survey was performed by SPEC personnel. The radiation levels at the surface of the device, extrapolated to 150 curies, after the 2nd 9 meter accidental drop test were:

Тор	163 mR/hr
Left Side	163 mR/hr
Outlet End	114 mR/hr
Lock End	212 mR/hr

Radiation level readings at one meter were less than 3.3 mrem/hr from all six surfaces.

4. 3rd 9 Meter Drop Test - Prototype No. 4

See photographs G-01 through G-04 taken before the test. The circles with a dot in the center indicate the locations of the highest surface radiation levels. These are the same locations that existed at the conclusion of the 2nd 30-foot drop test and puncture test in August 1994. The test package contains the same source used for the August 1994 tests, source S/N AH2503, which had an activity of approximately 4.1 curies on the date of this test, February 27, 1995. Photographs G-05 through G-08 show the device before the test with the lock cap both installed and removed. Photograph G-05 shows the damage to the lock cap that was caused by one of five four-foot drop tests performed on Prototype No.4 on December 17, 1994. A close inspection of Photograph G-06 shows the source assembly lock fully engaged over the source assembly cable at the conclusion of all previous tests.

The test package was suspended from two points at the outlet end with the center of gravity positioned directly over the lock cap. See Photographs G-09 through G-11. Photograph G-12 shows the package positioned 30 feet above the target. Photographs H-01 through H-04 show the damage from the 1st 30-foot drop test on the lock cap. With the possible exception of the source assembly release plunger (which was the point of impact of the previous 30-foot drop test in August 1994) the lock cap is the point of impact most likely to damage the lock. The lock is located inside the lock module which is located behind the lock end plate of the package. There is no direct access to impact the lock itself. The lock cap is located slightly off of the geometrical center of the lock end of the package and was the initial point of impact. The test dented the end of the lock cap in approximately 1/4 inch. See Photograph H-02. The impact damaged the lock cap threads and prevented it from being able to be removed from the package. The end of the bottom plate was the secondary point of impact. Photograph H-03 shows the marks of the lock cap and bottom edge on the target outlined in red colored boarders. Besides superficial scratches there was no measurable additional damage to the bottom edge. See Photograph H-04.

There was no increase nor change in radiation level at any surface location. The activity of the Ir-192 source was too low to provide relevant radiation levels at one meter.

5. 4th 9 Meter Drop Test - Prototype No. 4

After conducting a puncture test onto the lock cap, Prototype No. 4 was suspended from two points at the outlet end with the center of gravity positioned directly over the lock cap again. See Photographs J-01 through J-03. Note that the target was painted yellow to help analyze the impact pattern on the target. Photograph J-04 shows the package positioned 30 feet above the target. Photographs K-01 through K-04 show the damage from the 2nd 30-foot drop test on the lock cap (4th 30-foot drop test with Prototype No. 4). The test dented the end of the right side of the lock cap in approximately 3/8 inch. See Photograph K-04. The upper right corner and right edge was the secondary point of impact. Photograph K-01 shows the marks of the lock cap and right edge on the yellow target. The corner dented inward approximately 1/2 inch. See Photograph K-02 and K-03. There was no separation of the TMJ welded joints that connect the end plate to the housing shell and bottom plate.

An attempt was made to remove the lock cap with the use of vice grips. The lock cap threads were too damaged and the effort to unscrew the lock cap resulted in scraping off the knurled surface as shown in Photograph K-04. The lock cap was disassembled and removed from the package. Photographs K-05 through H-08 show the cumulative damage after two 30foot drop tests and the puncture test onto the lock after the lock cap was removed. The lock end plate was dented inward slightly at the left side of the lock cap. The source assembly was completely undamaged and remained fully secured and locked in the shielded position. A close inspection of Photograph K-05 shows that the source assembly lock remained fully engaged over the shank that connects the source assembly connector and locking ball. There was absolutely no increase nor change in radiation level at any surface location of the test package. The activity of the Ir-192 source was too low to provide relevant radiation levels at one meter.

6. Summary of Damage - Prototype No. 4

The damage includes the buckling and tearing of the protective flange at the bottom right corner after the first 9 meter drop. Other damage includes the imprint of the handle in the top of the exposure device; the knurled imprint of the handle grip into the top of the device housing; the slight buckling of the ASM lid plate; and the center of the lock end plate bending outward approximately 3/32 inch after the 2nd 9 meter drop test. The flange at the lock end of the device and the lock cap were dented in from the 3rd and 4th 30-foot drop tests. The puncture tests and the penetration test caused no significant damage to the device.

C. Accidental Drop Tests Summary

The radiation levels in all directions were less than 1% of the allowable limit of 1000 millirem per hour at one meter when extrapolated to 150 Ci Iridium-192. It should be noted that not a single critical structural TMJ weld joint separated or fractured. All components remained intact and attached to the device. After all tests a physical and visual inspection confirmed that the source remained in the secured, locked and fully shielded position, and the device remained locked with the safety plug and lock cap intact. The lock system was damaged only to the extent that the device lock could not be opened. The system remained fully intact and maintained complete security of the source assembly in the proper shielded position. The source assembly lock was undamaged and fully engaged over the source assembly which prohibited it from moving forward or backward. The device lock was undamaged and fully engaged with the source assembly lock to prevent it from being opened. The face plate of the lock housing was apparently dented inward which jammed the lock and prevented it from being opened with a key. The automatic securing mechanism (ASM) was undamaged and maintained a redundant means to prohibit forward movement of the locking ball toward the outlet end. The ASM housing was undamaged and maintained a redundant means to prohibit the locking ball from passing through the smaller diameter opening toward the lock end of the device. The lock cap and safety plug remained intact, installed and fully functional as redundant safety features to prevent loss of the source in either direction. There was no failure of any portion of the structural TMJ welded joints connecting the titanium plates except at the flanges. All housing plates (top, bottom, sides and both ends) remained fully intact and did not buckle. The depleted uranium shield and the source assembly remained completely intact.

The accidental drop tests test results of the model SPEC-150 Prototype No. 4 more than adequately demonstrates that the design exceeds established standards for a Type-B package and that it is extremely durable, safe and structurally sound.

2.9.2 Puncture

Two model SPEC-150 prototype packages were dropped from a distance of 1 meter (40 inches) onto the center of a six inch diameter by eight inch high

Source Production & Equipment Co., Inc. St. Rose, Louisiana USA

Application April 22, 1999

Page 24

carbon steel cylindrical bar. The bar was located in the center of the drop test target specified in Section 2.7, Drop Target Description. The sealed source which was installed within the package for the series of drop tests was used also for the series of puncture tests.

A. Prototype No. 2

The point of impact was the center of the right side. This point was selected because the previous 9⁻meter drops caused the depleted uranium shield to shift toward the outlet end of the device. This point of impact would cause the greatest force to displace the depleted uranium shield further. See photographs 57A and 57B. The impact did not produce any damage, only minor superficial marks were caused. See photograph 57C. Radiation levels did not change.

B. Prototype No. 4

The same model SPEC-150 Prototype No. 4 was used for the test after the first 9 meter drop test. The impact point was selected so as to cause the maximum damage to the device and the maximum potential for shielding movement within the device. The point of impact for this drop was on the center of the right side. See photographs 514A, 514B, 514C and 514F. The impact had impressed the target onto the right side of the device. See photographs 514D and 514E. There was no indication of the depleted uranium shield shifting within the housing. The source assembly and device remained in the locked position. There was no increase in radiation levels.

In response to a request from the NRC dated February 24, 1995 a SPEC-150 test package was subjected to a one meter puncture test directly onto the lock. Prototype #4 was subjected to the puncture test after the first of two 30-foot drop tests directly onto the lock that was performed on February 25, 1995. The test package contained the same source used for the 30-foot drop test. The test package was suspended 40 inches above the target with the center of gravity positioned directly over the lock cap. See Photograph I-01 and I-02. The puncture test caused a slight additional superficial scratches at the point of impact on the end of the lock cap. See Photographs I-03 and I-04. There was absolutely no increase nor change in radiation level at any surface location.

C. Puncture Test Summary

The three separate puncture tests did not produced any significant damage. The maximum radiation level at one meter measured after the

Source Production & Equipment Co., Inc. St. Rose, Louisiana USA Application April 22, 1999 cumulative drop tests and extrapolated to 150 curies did not exceed the maximum 1000 mrem/hr at one meter criteria for the hypothetical accident tests. The model SPEC-150 meets the criteria established for the hypothetical accident puncture test.

Additional Puncture Test information is documented in Appendix 9.6, "1997 Puncture Tests".

2.9.3 Thermal

Based on the thermal properties of the structural materials and previous thermal tests and experience with packages constructed of the same or similar materials, including materials which have more adverse thermal properties it is concluded that a temperature of 1475° F for thirty minutes would have no structural effect on the package. The primary containment of the radioactive material is the special form capsule which has been demonstrated by tests to retain its contents at 1475° F for ten minutes and due to the thermal properties of iridium and the capsule direct exposure to 1475° F for thirty-minutes would have no effect.

Assuming that the foam and the potting compound are completely volatilized the resulting gases will escape the package since it is not hermetically sealed. Loss of the foam and potting compound will not reduce the shield effectiveness of the package, nor lead to structural changes which would cause the loss of any radioactive material from the package.

The depleted uranium shield is contained within a titanium shell. Titanium has a lower thermal coefficient of linear expansion than stainless steel which has been previously employed on most other industrial radiography exposure device packages, therefore thermal expansion of the titanium shell will be less than the stainless steel shells which did not adversely affect the depleted uranium shield. Thus, the shielding and structural integrity of the package will be retained.

Exposure of the package to a temperature of 1475° F for a period of thirty minutes will not result in any release of radioactive material nor reduce the shielding effectiveness of the package.

2.9.4 Water Immersion

The water immersion test was not performed since no fissionable materials are involved in the package, and since there are no materials of construction which would be damaged by water and water pressure equivalent to a 50 foot depth for a period of eight hours.

2.9.5 Summary of Structural Damage

The only structural damage to Prototype No. 4 after the accident condition tests

Source Production & Equipment Co., Inc. St. Rose, Louisiana USA Application April 22, 1999 was limited to deformation and tearing of the flanges at both ends of the package and slight denting to the surface of the housing. The lock system was damaged only to the extent that the device lock could not be opened. In summary; the structural integrity, shield, and all features designed to maintain the radioactive source in the shielded position under hypothetical accident conditions remained intact and performed fully as intended.

2.10 Special Form

Iridium-192 wafers are encapsulated in a capsule which meets the requirements of special form radioactive material pursuant to 49 CFR 173.403(z), 10 CFR 71.77 and Paras 142, 502-504 IAEA Safety Series No. 6 "Regulations for the Safety Transport of Radioactive Material" (1985 Edition as amended 1990). The individual iridium wafers could qualify as special form radioactive material, if it were not for the minimum dimension requirement; but the capsule represents the primary containment vessel. The capsule meets the requirements of special form radioactive material as demonstrated by IAEA Certificate of Competent Authority No. USA/0095/S. See Appendices Section 9.3, Documents.

2.10.1 Description

The sealed source capsule in the model SPEC-150 package is approximately 3/4 inches long by 1/4 inches diameter. The sealed source capsule meets the minimum dimension requirement of 5 mm for special for special form radioactive material. Source assemblies ("pigtails") consist of the sealed source capsule swaged onto a flexible cable to which is swaged a locking ball and a connector.

2.10.2 Free Drop

Since the capsule is very light and ruggedly constructed it is apparent that effects of its impact onto a flat, horizontal, essentially surface would be negligible.

2.10.3 Percussion

The design and yield strength will permit the capsule to withstand impacts much greater than that which would be incurred from the specified three pound steel billet falling from a height of one meter onto the capsule while it rests on a lead sheet, maximum 25 mm thick, which is supported on a flat, smooth, essentially unyielding surface.

2.10.4 Bending

This test is not applicable since the sealed source capsule is less than 10 cm long.

2.10.5 Heating

The capsule and the iridium wafers will withstand sustain temperatures greater than 1475° F for ten minutes without adverse effects.

2.10.6 Summary

As a result of previously performed evaluations resulting in the issuance of IAEA Certificate of Competent Authority No. USA/0095/S and on the basis of the above summary assessment the primary containment vessel in the model SPEC-150 package, the sealed source capsule, meets or exceeds the requirements for special form radioactive material as specified in 10 CFR 71.77.

3. THERMAL EVALUATION

Due to the materials of construction of the model SPEC-150 which are known to have stable thermal properties and which will not be affected by the prescribed 1475[°] F heat test it was not necessary to incorporate any special thermal engineering features in the package for it to comply with the normal conditions of transport and the hypothetical accident conditions.

3.1 Discussion

The heat of decay from the maximum activity 150 Ci Iridium-192 source is negligible. There are no fluids in the model SPEC-150 package, it is not hermetically sealed, it is vented to the atmosphere, and there can be no pressure build up in the package. The effects of the free drop and percussion tests do not affect the thermal characteristics of the package since the individual materials of construction are not affected by a temperature of 1475° F. Aluminum, buna rubber, foam and epoxy potting compound are the only materials which will be affected by the 1475° F test temperature, but they are not critical to the safety of the packaging. Bronze had the next lowest melting point which is not lower than 1300° F. The bronze bushing melting would only prevent unlocking the device. The hypothetical accident temperature of 1475° F could only affect the temper of the springs in the automatic securing mechanism, but it would remain in the locked position. A temperature of -40° F would have no effect on the critical materials of construction since there are no moving operational parts of the package.

3.2 Summary of Thermal Properties of Materials

References: ASM International, Guide to Materials Engineering Data and Information, 1986. Private Communication - Nuclear Metals, Incorporated.

Private Communication - Nuclear Metals, Incorp.

The materials of construction are as follows:

Structural Materials	Melting Temperature
Depleted Uranium	2070 [°] F
Stainless Steel; 304, 316, 440C	2550 [°] F
Titanium Grade 2	3000 [°] F
Tungsten (alloy)	3000 [°] F
Zircalloy 2	3270 [°] F

Non-Structural Materials Assumed to melt or volatilized below 1475° F:

Aluminum Bronze, Imperial Epoxy Polyurethane Foam Rubber 70 Buna Enamel Paint

From the above table it is readily apparent that a $1,475^{\circ}$ F temperature would have no effect on the device.

There have been reports indicating a possibility of a iron-uranium eutectic formation at 1,340° F. Such eutectic formation has been associated with metallurgically clean surfaces and vacuum heat treatment. The depleted uranium casting in the model SPEC-150 is coated with enamel paint at the factory. Titanium, tungsten, foam and an epoxy potting compound would come in contact with the enamel paint on the shield exterior, but would not come in direct contact with the deplete uranium if the enamel. A titanium-uranium or tungsten-uranium eutectic has not be shown to exist. Depleted uranium castings have employed titanium S-tubes for years without any indication of a titanium-uranium eutectic

3.3 Technical Specification of Components

This section is not applicable. The only operating component in the model SPEC-150 package is the source assembly lock which is a one piece component made of stainless steel which is not affected by a 1475° F temperature. The model SPEC-150 is locked when the package is prepared for transport. There are no operating components during transport.

3.4 Thermal Evaluation for Normal Conditions of Transport

The radiation level shielding and containment of the source assembly within the model SPEC-150 is totally dependent on materials which are not adversely affected by temperatures in the range of -40° C (-40° C) to 70° C (158° F). Therefore, the model SPEC-150 package will not release it contents, will not present increased radiation

Page 29

levels, and will not incur any reduction in the effectiveness of the package.

3.5 Hypothetical Accident Thermal Evaluation

The radiation level shielding and containment of the source assembly within the model SPEC-150 is totally dependent on materials which are not adversely affected by a temperature of 1475° F. Therefore, it can be concluded that such a temperature will have no effect on the shielding effectiveness and the containment of the source assembly in the package. Thermal tests have been previously performed on similarly constructed radiography exposure devices and have demonstrated that the maximum accident thermal condition does not affect the radiation shield nor the containment of the source assembly.

The model SPEC-150 source assembly will not release its radioactive contents as a result of the hypothetical accident thermal condition due to the fact that the primary containment is a special form sealed source capsule which has demonstrated to withstand such temperatures and which is manufactured from materials that are not affected by a temperature of 1475° F.

4. CONTAINMENT

- 4.1 Containment Boundary
 - 4.1.1 Containment Vessel

The sealed source capsule containing metallic Iridium-192 wafers described in Section 2.10 represents the primary containment boundary and vessel. This capsule meets the requirements of 10 CFR 71.75 and 49 CFR 173.469 for special form radioactive material.

4.1.2 Containment Penetrations

Due to the size of the sealed source capsule and the location of the capsule within the model SPEC-150 there will be no penetrations of the primary containment vessel.

4.1.3 Seals and Welds

The sealed source capsule is fused in a thermal metal joining procedure to meet the requirements of special form radioactive material and there are no mechanical or chemical seals pertaining to the primary containment capsule.

4.1.4 Closure

The special form, sealed source capsule may only be opened destructively and there are no mechanical closure provisions.

Source Production & Equipment Co., Inc. St. Rose, Louisiana USA

- 4.2 Requirements for Normal Conditions of Transport
 - 4.2.1 Release of Radioactive Material

Based on the results of the evaluations for normal conditions of transport performed in Section 2.8 above, there was no release of radioactive material from the primary containment vessel.

4.2.2 Pressurization of Containment Vessel

The is negligible gas contained within the minute void of the sealed source capsule, therefore any pressurization due to temperature or reduced pressure at flight altitudes would not effect the integrity of the sealed source capsule.

4.2.3 Coolant Contamination

No coolants are used in the package.

4.2.4 Coolant Loss

No coolants are used in the package.

- 4.3 Containment Requirement for the Hypothetical Accident Conditions
 - 4.3.1 Fission Gas Products

No fissionable radioactive material is used in the model SPEC-150 package.

4.3.2 Releases of Contents

Based on the results of the Type B performance tests described in Section 2.9 the special form, sealed source capsule was not affected in any manner. Therefore, there can be no release of radioactive material from the primary containment vessel due to the conditions specified in the hypothetical accident conditions.

5. SHIELDING EVALUATION

A shielding evaluation of the model SPEC-150 was performed in conjunction with the application as an industrial radiography device in accordance with 10 CFR 34.20 and American National Standards Institute N432-1980. The same test, test packages and test result data are included in this application. The ANSI criteria after the normal conditions test is more stringent than the 10 CFR Part 71 criteria. The radiation level can not exceed 200 millirem per hour at the surface or 50 millirem per hour at 50 millimeters. The radiation level at one meter from the surface can not exceed 2 millirem per hour. The acceptance criteria after the 9 meter

drop and puncture test is the same as the 10 CFR Part 71 criteria, which requires that the radiation level can not exceed 1000 millirem per hour at one meter. The NRC Office of Nuclear Materials Safety and Safeguards reviewed the model SPEC-150 industrial radiography device application and the Louisiana Division of Radiation Protection reviewed and approved it.

Adequate shielding design for the model SPEC-150 is established by actual measurements of radiation profiles from randomly selected prototypes, and by actual measurements of resulting radiation levels after the numerous tests performed for normal conditions of transport and hypothetical accident conditions on two test packages. Theoretical calculations have not been used.

For surface radiation levels a correction factor was applied to adjust for the distance from the Center of the detector to the surface of the package. The correction factor was based on NRC Draft Regulatory Guide and Value/Impact Statement, dated December 1979, titled "Measurements of Radiation Levels on Surfaces of Packages of Radioactive Materials." Table 1 of Appendix A was used to calculate the correction factor. This was used instead of the significantly lower correction factor that would be calculated by the use of Table 2. The assumption in Table 2 that the inverse linear expression should be used instead of the inverse square law is not accurate for the package and detector size used. The correction factor was calculated based on the smallest linear dimension of the package and was applied to the radiation readings taken at all surface locations, including both ends of the package (distance to source) increased. Therefore, the corrected surface readings presented in this application are based on the highest correction factor and represent the most conservative interpretation of the regulatory guide.

The shortest linear dimension is of the SPEC-150 is 5-3/8 inches and the longest linear dimension is 14-1/2 inches. The GM tube detector is an LND model 714 which has an effective diameter of 0.190 inch and an actual exterior diameter of 0.250 inch. The GM tube detector is installed in a probe that positions the surface of the package 5/16 inch from the surface of the detector. A margin of safety was added to the calculated correction factor to adjust for inherent instrument inaccuracies. A final correction factor of 1.2 was adopted and was applied to surface radiation readings measured during the shielding evaluation tests. The unadjusted surface radiation readings and their locations are presented on sketches in Appendix 9.

5.1 Package Shielding

A depleted uranium casting weighing approximately thirty-seven pounds is used for the principal shielding material. A titanium or zircalloy S-Tube permits the source assembly to pass through the depleted uranium shield for use as an industrial radiography exposure device. When the model SPEC-150 is used as a transport package, the sealed source capsule is positioned in the center of the depleted uranium shield primarily by the lock mechanism which positions the source assembly in the device. The source assembly lock must be locked in order to prepare the package for shipment. The lock cannot be locked unless the source assembly is positioned such
that the source capsule in the in fully shielded position in accordance with 10 CFR 34.20(a) and American National Standards Institute N 432-1980 Section 5.1.2.4 which states "It shall not be possible to operate the lock unless the source assembly is in the fully shielded position." The automatic securing mechanism, device lock, lock cap and safety plug provide redundant safety systems for securing the source assembly in the shield in the proper position. The curvature of the S-Tube and the elongated shape of the depleted uranium shield prevent primary radiation and provides secondary shielding.

Measurements were taken on the surface of Prototype No. 4 before the normal conditions of transport and hypothetical accident condition tests. Radiation readings were taken at points on an approximate one-inch by one-inch grid located on each of the six sides of the package. This provided 75 points on the top, 90 points each on the bottom and two sides, and 40 points each on the end plates for a total of 425 measurement points. A correction factor was applied for the diameter of the detector probe. Measurements were taken with a 137 Ci Iridium-192 source and the results extrapolated to 150 Ci Iridium-192.

Surface	150 Ci Iridi	um-192		
Package Surface	Number of Points	Maximum mrem/hr	Minimum mrem/hr	Average mrem/hr
Тор	75	110	13	53
Bottom	90	116	8	56
Left Side	90	144	21	64
Right Side	90	92	18	50
Lock End	40	79	18	34
Outlet End	40	47	13	25
Combined	425	144	8	51

The highest unadjusted and unextrapolated surface radiation readings and their locations on Prototype No. 4 are shown on the radiation profile sketch of the survey dated 8/26/94. The survey was made before both 30-foot drops and a puncture test conducted on 8/26/94. See Appendix 9.

Measurements were taken of the maximum radiation level at one meter from each of the six surfaces of Prototype No. 4 using a 137 Ci Iridium-192 source and the results were extrapolated to 150 Ci Iridium-192.

One Meter	from	Surface
-----------	------	---------

Package	Maximum
Surface	mrem/hr
Тор	1.1
Bottom	1.1
Left Side	0.9
Right Side	1.1
Lock End	1.6
Outlet End	0.9
Combined	1.6

Measurements were also taken of the maximum radiation level at 5 cm from the surface of Prototype No. 4 to demonstrate compliance of the model SPEC-150 as an industrial radiography exposure device pursuant to 10 CFR 34.20(a) which references American National Standard N432-1980.

5.2 Normal Conditions of Transport

Radiation surveys were performed after each of the normal conditions of transport tests which were performed; free drop, penetration and compression. Radiation levels were measured at a sufficient number of locations to determine if there were any significant changes compared to the radiation levels prior to the tests. No changes in radiation levels were measured after each of the penetration and compression tests. The five 4 foot free drop tests were performed on Prototype No. 4 after the combined hypothetical accident condition tests. The maximum surface radiation levels on each of the six surfaces were measured after each drop. The results were extrapolated to 150 Ci Iridium are tabulated below:

Surface	Maximum	mrem/hr	150 Ci Iridium-192			
	Before	1st	2nd	3rd	4th	5th
Тор	144	135	144	131	140	126
Bottom	108	113	108	117	117	122
Right Side	153	149	158	153	153	117
Left Side	126	131	122	122	113	131
Outlet End	72	72	63	63	72	68
Lock End	99	95	108	104	104	113

The maximum change in surface radiation levels above was 14% which is less than the 20% increase in surface radiation criteria specified in IAEA Safety Series No. 6 Regulations for the Safe Transport of Radioactive Material 1985 Edition (As Amended 1990). The highest unadjusted and unextrapolated surface radiation readings and their locations are shown on the radiation profile sketch of the survey dated 12/17/94. See Appendix 9. The activity of the Ir-192 source was eight curies. The highest radiation level was located at the right side of the package and measured 7.9 mR/hr at the surface. Readings at one meter were not made because the surface readings alone verify that the package meets the radiation level requirements at one meter and because the readings at one meter would be too low to be statistically relevant.

Source Production & Equipment Co., Inc. St. Rose, Louisiana USA

5.3 Hypothetical Accident Conditions

Although not required, four successive 30 foot drop tests were conducted on Prototype No. 2 to obviate any question about selection of the most vulnerable point of impact followed by a puncture test. The damage was cumulative. Radiation levels were measured after the fourth 9 meter drop test and again after the one meter puncture test. Since the design of the SPEC-150 was revised after the tests were conducted on Prototype No. 2 this data is not required. The data on Prototype No. 2 is included in this application to supplement the data provided for Prototype No. 4 and to further demonstrate that the shield design meets the package shielding requirements. The maximum radiation levels at one meter from each of the six surfaces were extrapolated to 150 Ci Iridium-192 are tabulated below:

Radiation Levels (mrem/hr) One Meter from Surface Prototype No. 2 - 150 Ci Iridium-192

Package	Fourth	Puncture
Surface	30 ft Drop	
Тор	25	11
Bottom	11	4.3
Right Side	43	10
Left Side	36	5.7
Lock End	557	571
Outlet End	1.4	1.4

Prototype No. 4 was subjected to a 9 meter drop test, followed by a one meter puncture test, and followed by a second 30 foot drop test on August 26, 1994. After the conclusion of these cumulative tests the maximum radiation levels measured at one meter from each of the six surfaces of the camera were extrapolated to 150 Ci Iridium-192 and the results are tabulated below:

Radiation Levels (mrem/hr) One Meter from Surface Prototype No. 4 - 150°Ci Iridium-192

Two 30 foot Drop Test and 1 meter Puncture Test

Bottom	<3.3
Тор	<3.3
Left Side	<3.3
Right Side	<3.3
Lock End	<3.3
Outlet End	<3.3

The highest unadjusted and unextrapolated surface radiation readings and their locations on Prototype No. 4 are shown on the radiation profile sketch of the survey dated 8/30/94. See Appendix 9. The activity of the Ir-192 source was 22 curies. The highest radiation level was located at the right side of the package and measured 28 mR/hr at the surface. Adjusted and extrapolated to 150 curies the reading is 229 mR/hr which is far below the allowable limit of 1,000 mR/hr at one meter.

Prototype No. 4 was subjected to a five four-foot drop tests December 17, 1994. A survey was made after all five tests. The highest unadjusted and unextrapolated surface radiation readings and their locations are shown on the radiation profile sketch of the survey dated 12/17/94. See Appendix 9. The activity of the Ir-192 source was eight curies. The highest radiation level was located at the right side of the package and measured 7 mR/hr at the surface. Adjusted and extrapolated to 150 curies the reading is 158 mR/hr which is far below the allowable limit of 1,000 mR/hr at one meter. The readings are assumed to be less accurate than the previous readings made on August 30, 1994 because the activity of the Ir-192 source is only eight curies.

Prototype No.0 4 was subjected to a third 30-foot drop test, followed by a one meter puncture test, and a fourth 30 foot drop test on February 25, 1995. The highest unadjusted and unextrapolated surface radiation readings and their locations on Prototype No. 4 are shown on the radiation profile sketch of the survey dated 2/25/95. A survey was made after all three tests. See Appendix 9. The activity of the Ir-192 source was four curies. The highest radiation level was located at the top of the package and measured 4.2 mR/hr at the surface. Adjusted and extrapolated to 150 curies the reading is 171 mR/hr which is far below the allowable limit of 1,000 mR/hr at one meter. The readings are assumed to be less accurate than the previous readings made on August 30, 1994 and December 17, 1994 because the activity of the Ir-192 source is only four curies. Readings at one meter were not made because the surface readings alone verify that the package meets the radiation level requirements at one meter and because the readings at one meter would be too low to be statistically relevant.

5.4 Source Specification

The source assembly used in the normal condition of transport and hypothetical accident conditions radiation level measurements was a model SPEC G-60 with an original activity of 137 Ci. The source was corrected for decay to each day that the tests were performed and the presented results extrapolated to an activity of 150 Ci.

5.5 Model Specification

Physical radiation measurements were performed on prototype packages and radiation surveys were performed on the prototype test packages after the tests for normal conditions of transport and hypothetical accident conditions. Theoretical calculations or scale models were not used.

5.6 Shielding Evaluation

The results and evaluations conservatively showed that there was no significant increase in radiation levels for the normal condition of transport tests. The maximum radiation level of 557 mrem/hr at one meter from the surface of Prototype No. 2 package after conclusion of four drop tests, and one puncture test demonstrates the model SPEC-150 meets the one rem per hour at one meter criteria for the hypothetical accident conditions. The shielding evaluation of Prototype No. 2 is significant to the extent that the package meets the shielding criteria for a Type-B package. The design of the depleted uranium shield used in Prototype No. 2 is the same design that was tested in Prototype No. 4 and will be used for production packages. The maximum radiation levels after the conclusion of the four 30-foot drop tests and two puncture tests on the redesigned Prototype No. 4 conclusively demonstrates that the model SPEC-150 meets the shielding requirements for a Type B package. This application reflects the design used for Prototype No. 4.

6. CRITICALITY EVALUATION

This section is not applicable since the model SPEC-150 does not contain and is not designed to transport fissile material.

7. OPERATING PROCEDURES

7.1 Procedures for Preparing and Loading the Package

Training of personnel who prepare, offer and transport hazardous material shipments, including the model SPEC-150, for transport is required pursuant to 49 CFR 172.700, and Section 10 of the Louisiana Radiation Regulations.

The source assembly is loaded into the model SPEC-150 at the SPEC facilities under the provisions of Louisiana Radioactive Material License LA-2966-L01 in accordance with the procedures and radiation protection standards established under that license.

7.1.1 General Package Inspection

Visually inspect the model SPEC-150 to determine if it is in unimpaired condition for shipment. The model SPEC-150 should be inspected to determine that it is not damaged, that the lock operates properly, that the source assembly (pigtail) is securely locked in the package, and that the safety plug and lock cap are securely positioned. Verify that the package identification plate is present and legible, which identifies the package as a model SPEC-150 and displays the Certificate of Compliance identification number.

7.1.2 Packaging

Verify that the source assembly is properly secured and locked in the model SPEC-150. The source safety plug and the lock cap must be firmly attached.

Measure the maximum surface radiation level and the maximum radiation level at one meter from the surface of the package. The maximum surface radiation level must not exceed 200 mrem/hr. The maximum radiation level at one meter from the surface of the package must not exceed 10 mrem/hr.

If the lock key is to be shipped in the same container with the camera, then seal the lock key in an envelope which will be destroyed when opened.

7.1.3 Outer Package Surface Contamination

Packages may not be shipped on a non-exclusive use basis with outer surface contamination levels exceeding the values below, and it is the shipper's responsibility to ensure that the following conditions are met.

Regulations require that the non-fixed (removable) contamination on the external surfaces of the outer package being shipped on a non-exclusive use

basis not exceed 10-5 uCi/cm2 (0.00001 uCi/cm²) averaged over 300 cm2 of any part of the surface, as required in 10 CFR Part 71.87(I)(1). This may be determined by measuring the activity on wipes taken from representative locations and the above criteria is assumed to be met if the activity on any sample averaged over the surface area wiped does not exceed 10-5 uCi/cm2 (0.4 Bq/cm2 or 22 dpm/cm2). If the contamination on the surface of the outer package exceeds the above amount it will not be shipped.

7.1.4 Transportation Requirements

The model SPEC-150 package will be properly marked, labeled and described on a shipping paper in accordance with U.S. Department of Transportation regulations. Placards will be offered to carriers transporting a Radioactive Yellow III labeled package. Shipping papers will be retained for one year in accordance with U.S. Department of Transportation regulations.

7.1.5 Type B Quantity Consignee Notification

Prior to each shipment of a model SPEC-150 containing more than 20 Ci Iridium-192 the shipper shall notify the consignee of the dates of shipment and expected arrival.

- 7.2 Procedures for Receipt and Unloading the Package
 - 7.2.1 Unloading

The consignee must establish written procedures for receiving the model SPEC-150 package in accordance with applicable NRC and agreement state regulations. Such procedures should provide for inspection, monitoring, notification and records. The model SPEC-150 package becomes an industrial radiography exposure after receipt by the licensed industrial radiographer user. The source assembly is temporarily removed and then returned to the exposure device frequently throughout its use in accordance with the licensed user's procedures and in accordance with applicable NRC or agreement state regulations.

- 7.2.2 Receiving the model SPEC-150
 - A. Delivery, Pick Up and Acceptance from Carrier

Regulations require that the consignee must make arrangements to receive the model SPEC-150 when it is offered for delivery by the carrier; or must make arrangements to receive notification from the

Source Production & Equipment Co., Inc. St. Rose, Louisiana USA

carrier at the time of arrival for pick up at the carriers facility.

The consignee must expeditiously pick up the model SPEC-150 upon receipt of notification from the carrier.

B. Receipt Survey and Inspection

Before the delivered package is opened and as soon as practicable after receiving the model SPEC-150, but no later than three hours after it is received at the consignee's facility during normal working hours or within three hours beginning the next work day if received after normal working hours the package must be monitored and inspected.

The outside package, as received, should be inspected for any indication of damage to the model SPEC-150, and the maximum external radiation levels at the surface of the outside package and at one meter from the surface of the outside package must be measured and recorded. Dents and abrasions to the overpack normally encountered in handling, loading and unloading are not generally considered evidence of damage to the model SPEC-150.

Since the sealed source in the model SPEC-150 is classified as special form radioactive material it is not required to monitor the external surfaces of the outside package for removable contamination.

C. Notification

If the measured maximum radiation levels at the surface of the outside package and at one meter from the surface of the outside package exceed either of the following limits:

Location	Maximum mrem/hr
Surface of Outside Package One Meter from Surface	200 10
of Outside Package	

Then the consignee must immediately notify the final delivering carrier, and either the agreement state radiation control agency, if applicable, or the NRC regional office having jurisdiction over the location where the package was received. It is also recommended that the shipper be notified. Care should be exercised in performing the survey that the radiation levels are measured at the proper distances, that the survey meter is calibrated and operating properly, and that the stated accuracy of the survey meter be considered. D. Records

Records of the receiving survey should be maintain for a period of three years which include at least: date and time package received or picked up; date and time monitored; identification of package by serial number; identification of source by serial number, isotope and activity (includes date of measurement); identification of individual performing survey; identification of survey meter by serial number; maximum radiation levels at surface of outside package and at one meter from surface of outside package; and corrective action and notification to carrier and regulatory agency, if applicable.

7.3 Preparation of an Empty Package for Transport

Test to verify that the SPEC-150 does not contain a radioactive source (authorized source, unauthorized source, modified source, or a source capsule that has been removed from the source assembly) by the following method. This test should be performed by authorized and monitored personnel who have been trained in radiation safety and equipped with a properly operating survey instrument.

First; remove the safety plug and survey the open outlet nipple. The depleted uranium shield is radioactive and will emit radiation even when no sealed source is installed in the package, but the highest radiation level should not exceed approximately 2 mR/hr. Second; remove the lock cap and visually inspect the device to verify that no source assembly connector is protruding. Third; attach the control assembly to the device and crank the drive cable forward two complete revolutions while monitoring the survey instrument for radiation hazards. An exposed source must be treated as an emergency. Fourth; crank the drive cable back, disconnect and remove the control assembly from the device, and install the safety plug and lock cap. As an option, before cranking the drive cable and retracted into the device. If a dummy connector is used it will pull out of the device with the drive cable when the controls are removed. If a dummy source assembly is used it will remain in the device and must be disconnected from the control drive cable to remove the controls. Inspect the connector of the dummy source assembly to verify that it has no serial number.

The empty packaging contains 37 pounds of depleted uranium and may be shipped as either labeled radioactive material package or as an excepted package, article manufactured from depleted uranium as required by applicable U.S. Department of Transportation regulations.

8. ACCEPTANCE TESTS AND MAINTENANCE PROGRAM

8.1 Acceptance Tests (Prior to First Use)

The acceptance tests prior to first use is a combination of the in progress and final

Page 42

Source Production & Equipment Co., Inc. St. Rose, Louisiana USA

package construction inspection tests pursuant to the quality assurance program under NRC Certificate of Compliance No. 0102 and inspection prior to shipment to a customer. In most instances when the package is shipped to a customer it contains a radioactive source assembly.

8.1.1 Visual Inspection

Each packaging is visually inspected as part of the quality assurance final package inspection after construction, which includes quality of workmanship, adherence to production specifications and drawings, presence of attached identification plates and warnings, and presence of components, such as source safety plug and lock cap. The final inspection must ensure that the package conforms to the drawings specified in the Certificate of Compliance.

Each source assembly is visually inspected after fabrication.

Prior to shipment the package is again visually inspected to assure that the source assembly is properly contained in the packaging, and the shipment is properly marked and labeled for shipment.

8.1.2 Structural and Pressure Tests

Although structural acceptance tests on the model SPEC-150 are not indicated because of the rugged design and durable materials of construction any structural failure would be apparent, a liquid penetrant test is performed during fabrication on critical structural joints. All exterior TMJ thermal metal joining structural joints are liquid penetrant tested. The method of inspection of the production packages will consist of a combination of in-process and final inspection of all structural TMJ weld joints that connect the titanium plates. Dye penetrant inspection is performed on the joints that comprise the basic structure of the package which consists of the housing cover (shell), bottom plate and both end plates. Dye penetrant inspection and inspector qualification is performed in accordance with ASTM E-165. The accept/reject criteria meets ASME Section VIII, Division 1, "Rules for Construction of Pressure Vessels" Appendix 8, Paragraph 8.3 "Evaluation of Indications" and 8.4 "Acceptance Standards." Visual inspection is performed on the TMJ joints that connect the inner bulkhead plate to the bottom plate, the inner bulkhead support cup to the inner bulkhead, and the outlet end plate support cup to the outlet end plate and bottom plate. Visual inspection and inspector qualification is performed in accordance with ASME Section V, "Nondestructive Examination" Article 9, "Visual Examination." The accept-reject criteria meets ASME Section VIII, Division 1, "Rules for Construction of Pressure Vessels" UW-36 "Fillet Welds."

Pressure tests are not indicated because there is no possibility of a pressure build up which would affect the structure of the containment or the integrity of

Source Production & Equipment Co., Inc. St. Rose, Louisiana USA

the package.

8.1.3 Leak Tests

Leak tests are performed in accordance with approved procedures pursuant to the Source Production & Equipment Company, Inc. Louisiana Radioactive Material License LA-2966-L01 on the source assembly after fabrication of the source capsule, and a source assembly will be rejected if there is removable contamination in excess of 0.002 microcuries. Prior to shipment the outer surfaces of the package are monitored for removable contamination and a package will not be shipped if it exhibits more than 220 dpm/cm^{-/} removable contamination averaged over 300 square centimeters.

8.1.4 Component Tests

As part of the final manufacturing inspection the operation of the source assembly lock, device lock and automatic securing mechanism are tested for proper operation. The lock cap and source safety plug are tested for proper closure.

Prior to shipment with a source assembly the package is inspected to assure that the source assembly, lock cap and source safety plug are properly secured.

8.1.5 Tests for Shielding Integrity

A radiation profile is performed on the camera as part of the final inspection. The model SPEC-150 will not exceed 200 mrem/hr at the surface of the camera and 2 mrem/hr at one meter from the surface of the camera when the activity is extrapolated to 150 Ci of Iridium-192 in compliance with 10 CFR 34.20(a) which references American National Standards Institute N432-1980. Prior to shipment of the camera with a source assembly the package is surveyed to assure compliance with transportation requirements.

8.1.6 Thermal Acceptance Tests

Thermal acceptance tests for the model SPEC-150 are not indicated since heat of decay for the maximum permissible activity Iridium-192 source (150 Ci) is negligible.

8.2 Maintenance Program

8.2.1 Structural and Pressure Tests

Periodic structural acceptance tests on the model SPEC-150 are not indicated because of the rugged design and durable materials of construction any

Source Production & Equipment Co., Inc. St. Rose, Louisiana USA

structural failure would be apparent. Periodic pressure tests are not indicated because there is no possibility of a pressure build up which would affect the structure of the containment or the integrity of the package.

Quarterly inspection of the package by licensed radiography users as required by 10 CFR 34.28(b) is sufficient. The quarterly inspection requirements that are relevant to assure that the SPEC-150 operates properly as a Type-B package consist of a visual inspection and operational tests of the lock cap, device lock, source assembly lock, safety plug and outlet nipple. There are no quarterly maintenance requirements such as disassembly, cleaning, replacement of components, or lubrication. The inspection and maintenance procedures are described in the SPEC-150 Users Manual and are required to be included in the licensed radiography users' Operating Procedures in accordance with 10 CFR Part 34.32(j).

8.2.2 Leak Tests

Leak test for removable contamination are required to be performed at least every six months on the sealed source pursuant to 10 CFR 34.27 or equivalent agreement state regulations. A leak test should also be performed whenever there is indication of damage to the sealed source capsule. If the tests indicate 0.005 microcurie or more of removable contamination the sealed source must be removed from use, action taken to prevent the spread of contamination, and a report filed with the applicable radiation control agency within five days. It is also recommended that Source Production & Equipment Company, Inc. be notified.

8.2.3 Subsystems Maintenance

The model SPEC-150 has no subsystems.

8.2.4 Valves, Rupture Discs, and Gaskets on Containment Vessel

Not applicable since the primary containment vessel is a small sealed source capsule.

8.2.5 Shielding

The daily and quarterly inspection program performed by the licensee pursuant to 10 CFR 34.28 or equivalent agreement state regulations, and the daily surveys of the device performed pursuant to 10 CFR 34.49(b) or equivalent agreement state regulations are sufficient to establish the continuing integrity of the shield.

8.2.6 Thermal

Periodic thermal tests on the model SPEC-150 is not indicated since heat of

Source Production & Equipment Co., Inc. St. Rose, Louisiana USA

decay for the maximum permissible activity Iridium-192 source (150 Ci) is negligible. There are no components which be thermally degraded by typical use and transport.

8.2.7 Miscellaneous

The daily and quarterly inspection and maintenance program required of all licensed users of the model SPEC-150 is more than sufficient to assure the continuing integrity of the package.

9. Appendices

9.1 Drawings

DRAWING

TITLE

15B000	$\operatorname{Rev}(5)$	Isometric View
15B002A 15B008	Rev (4) Rev (3)	Depleted Uranium Shield
15B001-3	Rev (1)	Materials List

9.2 Photographs

РНОТО	DESCRIPTION - Prototype No. 2
53A	First 9 meter drop - Set up
53B	First 9 meter drop - Set up
53G	First 9 meter drop - Set up
53C	First 9 meter drop - Lock cap separation
53D	First 9 meter drop - Source connector undamaged
53E	First 9 meter drop - Source connector undamaged
53F	First 9 meter drop - Superficial damage
53H	First 9 meter drop - Superficial damage
53I	First 9 meter drop - Imprint on target
54A	Second 9 meter drop - Drop orientation
54B	Second 9 meter drop - Drop orientation
54C	Second 9 meter drop - ASM lid screw shear
54D	Second 9 meter drop - ASM lid screw shear
54E	Second 9 meter drop - Source connector
54F	Second 9 meter drop - Remained locked
55A	Third 9 meter drop - Orientation
55B	Third 9 meter drop - Orientation

Source Production & Equipment Co., Inc. St. Rose, Louisiana USA

55D	Third 9 meter drop - Side Flange Dented
55E	Third 9 meter drop - Side Flange Dented
55F	Third 9 meter drop - Outlet panel
55G	Third 9 meter drop - Top of housing
56A	Fourth 9 meter drop - Orientation
56B	Fourth 9 meter drop - Orientation
56C	Fourth 9 meter drop - Outlet panel screws shear
56D	Fourth 9 meter drop - Outlet panel screws shear
56E	Fourth 9 meter drop - Outlet panel distortion
56F	Fourth 9 meter drop - Source remained locked
56G	Fourth 9 meter drop - Source remained locked
57A	Puncture test- Set up
57B	Puncture test- Set up
57C	Puncture test- No damage
	C
РНОТО	DESCRIPTION - Prototype No. 4
510A	Penetration - Set up
510B	Penetration - Safety plug and outlet nipple intact
510C	Penetration - Safety plug and outlet nipple intact
511A	Additional weight added to handle
511B	Additional weight added to handle
513A	First 9 meter drop - Orientation
513B	First 9 meter drop - Orientation
513C	First 9 meter drop - Orientation
513D	First 9 meter drop - Height of drop
513E	First 9 meter drop - Corner damage
513F	First 9 meter drop - Corner damage
513G	First 9 meter drop - Corner damage
513H	First 9 meter drop - Superficial damage to side
513I	First 9 meter drop - Opposite corner damage
514A	Puncture test - Set up
514B	Puncture test - Set up
514C	Puncture test - Set up
514F	Puncture test - Set up
514D	Puncture test - Impression of target pin
514E	Puncture test - Impression of target pin
515A	Second 9 meter drop - Set up
515B	Second 9 meter drop - Set up
515I	Second 9 meter drop - Set up
515J	Second 9 meter drop - Set up
515C	Second 9 meter drop - Drop height
515D	Second 9 meter drop - Plunger point of impact
515E	Second 9 meter drop - Impression of handle
515F	Second 9 meter drop - Impression of handle
515M	Second 9 meter drop - Impression of handle

Source Production & Equipment Co., Inc. St. Rose, Louisiana USA

516L	Second 9 meter drop - ASM lid plate bent upward
515G	Second 9 meter drop - ASM lid plate dented inward
515H	Second 9 meter drop - Lock plate bent outward
515K	Second 9 meter drop - Lock plate bent outward
515N	Second 9 meter drop - Survey by LRPD staff member
51511	Second 9 meter drop - Survey by End D start member
РНОТО	DESCRIPTION - Prototype No. 4
F01	First 4 foot drop - Set up and orientation
F02	First 4 foot drop - Landed on bottom and rolled
F03	First 4 foot drop - Survey
F04	First 4 foot drop - Survey
F05	Second 4 foot drop - Set up and orientation
F06	Second 4 foot drop - Landed on side flange
F07	Second 4 foot drop - Survey
F08	Second 4 foot drop - Survey
F09	Third 4 foot drop - Set up and orientation
F10	Third 4 foot drop - Landed on lock end corner
F11	Third 4 foot drop - Survey
F12	Third 4 foot drop - Survey
F13	Fourth 4 foot drop - Set up and orientation
F14	Fourth 4 foot drop - Landed on outlet end corner
F15	Fourth 4 foot drop - Survey
F16	Fourth 4 foot drop - Survey
F1 7	Fifth 4 foot drop - Set up and orientation
F18	Fifth 4 foot drop - Landed flat on lock cap
F19	Fifth 4 foot drop - Survey
F20	Fifth 4 foot drop - Survey
РНОТО	DESCRIPTION - Prototype No. 4
G01	Before 3rd 30-foot drop - Right side, highest surface radiation spot
G02	Before 3rd 30-foot drop - Top, highest surface radiation spot
G03	Before 3rd 30-foot drop - Left side, highest surface radiation spot
G04	Before 3rd 30-foot drop - Outlet end, highest surface radiation spot
G05	Before 3rd 30-foot drop - Lock end, highest surface radiation spot
G06	Before 3rd 30-foot drop - Lock end, source assembly connector
G07	Before 3rd 30-foot drop - Lock end, source assembly connector
G08	Before 3rd 30-foot drop - Lock end, source assembly connector
G09	Before 3rd 30-foot drop - Orientation, lock cap
G10	Before 3rd 30-foot drop - Orientation, lock cap
G11	Before 3rd 30-foot drop - Orientation, lock cap
G12	Before 3rd 30-foot drop - Suspended over target
H01	After 3rd 30-foot drop - Lock end
H02	After 3rd 30-foot drop - Lock cap
H03	After 3rd 30-foot drop - Lock end and target imprint

Source Production & Equipment Co., Inc. St. Rose, Louisiana USA

H04	After 3rd 30-foot drop - Lock end, bottom plate
I01	Before 2nd Puncture Test - Set up
I02	Before 2nd Puncture Test - Orientation, lock cap
I03	After 2nd Puncture Test - Lock cap
I04	After 2nd Puncture Test - Lock cap
J02	Before 4th 30-foot drop - Orientation, lock cap
J03	Before 4th 30-foot drop - Orientation, lock cap
J04	Before 4th 30-foot drop - Orientation, lock cap
J01	Before 4th 30-foot drop - Orientation, lock cap
K01	After 4th 30-foot drop - Right side and target imprint
K02	After 4th 30-foot drop - Lock cap and right flange
K03	After 4th 30-foot drop - Lock cap and right flange
K04	After 4th 30-foot drop - Lock cap
K05	After 4th 30-foot drop - Source assembly lock engaged
K06	After 4th 30-foot drop - Source assembly connector
K07	After 4th 30-foot drop - Lock end
K08	After 4th 30-foot drop - Lock end

9.3 Documents:

IAEA Certificate of Competent Authority USA/0095/S, Revision 6

- 9.4 Sketches of Drop Test Impact Orientations
- 9.5 Sketches of Highest Surface Radiation Survey Data
- 9.6 1997 Puncture Tests

APPENDIX 9.1 DRAWINGS

FIGURE WITHHELD UNDER 10 CFR 2.390

UNLESS OF CHAST PROPER DECEMBER WE IN HOUSE TOLENWICES AND				SOURCE PR	ODUCTION & E	QUIPMEN	I CO., I	NÇ.
AS NOTED		OMUS	DATE			/003/		
	DRAWN	SRB	12-18-94	SPEC-150	TYPE B(U) P	ACKAGE		
DIVINING BUNCE TON OG	04040	KĈ	12-18-94	ISOMETRIC	VIEW			
INCATUOIT NOME	63400	ROO	12-18-94		000			erv 5
тирн	1				000			L
NONE	QA Q.455	H/A		SCALE: 1/1	00063305	SHEET	1 of 2	

FIGURE WITHHELD UNDER 10 CFR 2.390

UNLESS OTHERWISE SPECIFIC ONDESCHE ANE IN NEXES TOLERWICES ANE				SOURCE	PRO	DUCTION & E	QUIPMEN	IT CO.,	INÇ.	
±1/16	APPROVILS		DATE	110 10	110 10AE 31, 31 ROSE, DA 70087					
-	CPRANENA	SR8	3-1-95	SPEC-	150	EXPOSURE D	EVICE			
DO HOT SCALE DAVISION	0404D	ĸc	3-1-95	FULL SECTIONAL VIEW						
NONE	55400	RDD	3-1-95	ST 500	³ δ D(1024	····		RV	
(MARSH	1		1		JDL	JUZA			4	
NONE	ON CLASS	N		SCALE: 1	/1	00062704	SHEET	1 OF	1	

FIGURE WITHHELD UNDER 10 CFR 2.390

UNLES OF OWNE PERFED OWNERS WE IN NO-45 TREAMERS ARE				SOURCE PRODUCTION & EQUIPMENT CO., INC					
I MACTIONS	MARINALE		740	113 104 31, 31 NOSE, 04 70087					
21/0	-	SRB	12-18-94	SPEC-150 TYPE B(U) PACKAGE					
DO NOT SCALE DAMAGE	04030	KC	12-18-94	DEPLETED URANIUM SHIELU					
NUME	63.62	800	12-18-84						
P103H									
HOHE	04 0,495	QA		SCALE: 1/1 00062603 SHEET 1 OF 1					

	1		J.		CONTROLLED COPY
					PEVISIONS
This docu	ment and the subject matter based are the survey	. .			
& Equipm	ent Co Inc and shall not be reproduced or copied	or			
e of monuf Production	acturing or sole of apporatus except by written a & Equipment Co Inc.				(1) mean and 20 201 - 03. 10-13-30 S. B
					5/20/89 100
	QUTIET END PLATE	TITANILIM	CRADE 2	8265	
2	OUTLET END DOUBLER PLATE	TITANIUM	GRADE 2	8265	$\frac{3.200 \text{ mDE x } 3.273 \text{ BIGH x } 1/8 \text{ FRICKNESS}}{3/4" \text{ wide } 2-5/8" \text{ Light } 3/16" \text{ ThickNESS}}$
3	INNER BULKHEAD PLATE	TITANIUM	GRADE 2	8265	5 200" WIDE + 5 275" HICH + 1 /0" THICKNESS
4	HOUSING LOCK END PLATE	TITANIUM	GRADE 2	8265	5 200" WIDE x 5 275" HICH x 1/8" THICKNESS
5	BOTTOM PLATE	TITANIUM	GRADE 2	8265	5 200" WIDE x 14-1/2" LONG x 3/15" THICKNESS
6	HOUSING COVER	TITANIUM	GRADE 2	8265	U-SHAPED 5-15/32" HICH + 5-3/8" WIDE + 14-1/2" LONG + 3/32" THICKNESS
7	OUTLET END PLATE SUPPORT CUP	TITANIUM	GRADE 2	B265	U-SHAPED 2-17/32" HIGH x 2-1/16" WIDE x 1-1/2" LONG x 3/32 THICKNE
8	INNER BULKHEAD SUPPORT CUP	TITANIUM	GRADE 2	8337	2" NOMINAL SCHEDULE 10 x 1-1/2" LONG WELDED OR SEAMLESS PIPE
9	CONTROL ATTACHMENT BOSS	TITANIUM	GRADE 2	8348	5/8" DIANFTER (BASE DIANETER)
10	OUTLET END FLANGE ATTACHMENT BOSS	TITANIUM	GRADE 2	B348	5/8" DIAWETER (BASE DIAWETER)
11	OUTLET PANEL ASSEMBLY				S/O DAMELER (DASE DIAMELER)
110	BOLTS	STAINLESS STEEL	18~8		4 FACH 1/4-20 UNC-24 x 1/2" LONG
	OUTLET PANEL	TITANIUM	GRADE 2	8265	4-3/4" WIDE x 2-5/8" HIGH x 1/8" THICKNESS
	BOSS	TITANIUM	GRADE 2	8348	1-1/8" DIAMETER x 15/32" LONG
	OUTLET NIPPLE	STAINLESS STEEL	316		SNAP-TUE SPHN-6M
12	SAFETY PLUG ASSEMBLY				OVERALL LENGTH 6-9/16"
	QUICK DISCONNECT	STAINLESS STEEL	316		SNAP-TITE SPHN-6F
	BALL AND SHANK	STAINLESS STEEL	303SE OR 304		5/16" DIAMETER x 1/2" LONG
	CABLE	STAINLESS STEEL			7 x 7 AIRCRAFT CABLE, 1/8" DIAMETER x 5-1/16" LONG
	STEM	STAINLESS STEEL	316 OR 316L		5/16" DIAMETER x 2-1/8" LONG
13	LOCK CAP ASSEMBLY				
		TITANIUM	GRADE 2	B265	TEAR-DROP SHAPED, 3-5/8" HIGH x 1/8" THICKNESS
	LUCK CAP	TITANIUM	GRADE 2	B265	1.400" DIAMETER x 1-1/4" LONG WITH .790" DIAMETER x .725" DEEP COUNTERE
- I	SPRING	STAINLESS STEEL	300 SERIES CRES		.720 DIAMETER x .875 LONG x .072 DIAMETER WIRE
	SHIM	TUNGSTEN	HD 18		.780 DIAMETER x .125 THICKNESS
14	LOCK MODULE HOUSING	HIANIUM	GRADE 2	B265	3-1/4" WIDE x 4-31/32" HIGH x 1/2" THICKNESS
140	BULIS	STAINLESS STEEL	18-8		4 EACH, 1/4-20 UNC-2A x 9/16" LONG
140	AUTOMATIC SECURING MEDIUMIENT (1811)	STAINLESS STEEL	18-8		6 EACH, 12-24 x 1/2" LONG
15	NONE NCIATURE	IIIANIUM/ S S	GRADE 2/300 SERIES	B265	2-3/8" HIGH x 2-11/64" LONG x 1-1/4" THICKNESS
NO.	OR DESCRIPTION	SPECIFICATION	GRADE	ASTM	DWENSIONS
L			PA	rts list	

 \rightarrow

UNLESS OTHERWISE SPECIFIED DWENBOILS WE IN HIGHES TOLENWICES ME		_		SOURCE PR	DDUCTION & E	QUIPMENT	CO., II	NĊ.	
AL DAEDGOOMS ARE HOWEVE	MARCALE DAMEN SRB		DATE	SPEC-150 TYPE B(U) PACKAGE					
			4-13-95						
DO NOT SCALE DAMANG	04040	ĸC	4-14-95	PARIS LISI					
NONE	55400	RDD	4-14-95						
THERE .				C IDB	001-3			יו	
NONE	-	N/A		SCALE: 1/1	00063101	SHEET 1	OF 1		

.

T

9 Meter Drop Tests (4 each) Prototype #2

サイ

Puncture Test Prototype #2

Penetration Test Prototype #4

First 9 Meter Drop Test Prototype #4

First Puncture Test Prototype #4

Second 9 Meter Drop Test Prototype #4

.

4 Foot Drop Tests (5 each) Prototype #4

-*

Third 9 Meter Drop Test Prototype #4

Second Puncture Test Prototype #4

Fourth 9 Meter Drop Test Prototype #4

.

APPENDIX 9.3 DOCUMENTS

400 Seventh Street, S.W. Washington, D.C., 20590

Research and Special Programs Administration

IAEA CERTIFICATE OF COMPETENT AUTHORITY SPECIAL FORM RADIOACTIVE MATERIALS CERTIFICATE NUMBER USA/0095/S, REVISION 6

This certifies that the sources described have been demonstrated to meet the regulatory requirements for special form radioactive material as prescribed in the regulations of the International Atomic Energy Agency and the United States of America² for the transport of radioactive materials.

- <u>Source Identification</u> Source Production and Equipment Co. Series B, G, R and T Model Sources.
- 2. Source Description The sources are encapsulations constructed of Type 316 stainless steel with welded closures and measure 5.84 mm (0.23") in diameter and 20.32 mm (0.8") long. Construction must be in accordance with Source Production and Equipment Co. Drawing No. 101 dated 8/14/85.
- 3. <u>Radioactive Contents</u> These sources consist of not more than 4.1 TBq (110 Ci) of Cobalt 60 or 8.9 TBq (240 Ci) of Iridium 192 as metal pellets.
- 4. <u>Expiration Date</u> This certificate expires November 30, 1995. This certificate supersedes, in its entirety, all previously issued revisions of USA/0095/S.

This certificate is issued in accordance with paragraph 803 of the IAFA Regulations and Section 173.476 of Title 49 of the Code of Federal Regulations, in response to the October 17, 1990 and December 5, 1990 petitions by Source Production and Equipment Company, St. Rose, LA, and in consideration of other information on file in this Office.

Certified by: Kristen S Smith

DEC = 5

(DATE)

Michael E. Wangler Chief, Radioactive Materials Branch Office of Hazardous Materials Technology

Revision 6 - Issued to amend the Source Identification and to extend the expiration date.

l "Safety Series No. 6, Regulations for the Safe Transport of Radioactive Materials, 1973 Revised Edition, as amended," published by the International Atomic Energy Agency (IAEA), Vienna, Austria.

2 Title 49. Code of Federal Regulations Darte 100 - 100 United States of

APPENDIX 9.4 SKETCHES OF DROP TEST IMPACT ORIENTATIONS PROTOTYPE #2 1ST 9 METER DROP POINT OF IMPACT; DIRECTLY ON RIGHT SIDE

٠

PROTOTYPE #2 2ND 9 METER DROP POINT OF IMPACT; TOP/RIGHT CORNER AT THE LOCK END

•

PROTOTYPE #2 3RD 9 METER DROP POINT OF IMPACT; RIGHT SIDE EDGE AT THE OUTLET END

> (NOTE: THE INTENDED POINT OF IMPACT WAS THE RIGHT/BOTTOM CORNER AT THE OUTLET END. DUE TO WIND CONDITIONS THE DEVICE SLIGHTLY ROTATED DURING THE DROP AND CAUSED THE IMPACT POINT TO BE THE RIGHT SIDE EDGE AT THE OUTLET END.)

PROTOTYPE #2 4TH 9 METER DROP POINT OF IMPACT; BOTTOM/LEFT CORNER AT THE OUTLET END

PROTOTYPE #4 1ST 9 METER DROP POINT OF IMPACT; RIGHT/BOTTOM CORNER AT OUTLET END
PROTOTYPE #4 2ND 9 METER DROP POINT OF IMPACT; DIRECTLY ON TOP

ŕ

PROTOTYPE #4 3RD AND 4TH 9 METER DROPS POINT OF IMPACT; DIRECTLY ON LOCK END (LOCK CAP, SOURCE LOCK AND DEVICE LOCK)

APPENDIX 9.5 SKETCHES OF HIGHEST SURFACE RADIATION SURVEY DATA (

(

TOP SIDE

TOP SIDE

READINGS ARE NOT EXTRAPOLATED OR ADJUSTED.

READINGS ARE RECORDED IN mR/hr.

FILE: SRP295B

APPENDIX 9.6 1997 PUNCTURE TESTS

SOURCE PRODUCTION AND EQUIPMENT COMPANY, INC. 113 Teal Street, St. Rose, Louisiana 70087

Test Report to Validate Previous 10 CFR Part 71 Puncture Tests

Model SPEC-150 Type B(U) Package Docket Number 71-9263

150SUPP6.(0)

SOURCE PRODUCTION AND EQUIPMENT COMPANY, INC. Test Report to Validate Previous 10 CFR Part 71 Puncture Tests Model SPEC-150 Type B(U) Package Docket Number 71-9263

	Tab	e of Contents Page
1.	GEN	IERAL INFORMATION
	1.1	Introduction and Background
	1.2	Test Report Format
	1.3	Radioactive Contents of Test Packages
	1.4	Survey Method.
	1.5	Drop Target Description
	1.6	Puncture Pin Description
	1.7	Selection of Test Package Orientation
2.	STR	UCTURAL EVALUATION
	2.1	Structural Design - SPEC-150
		2.1.1 Description of Test Packaging.
	2.2	Hypothetical Accident Condition - 9 Meter Free Drop Test.
		2.2.1 Discussion.
		2.2.2 Selection of Orientation.
		2.2.3 Drop Test Description
		2.2.4 Damage Assessment
		2.2.5 Accidental Drop Test Summary
	2.3.	Hypothetical Accident Condition - Puncture Test.
		2.3.1 Selection of Orientation.
		2.3.2 Puncture Test Description
		2.3.3 Damage Assessment.
		2.3.4 Unplanned Additional Tests.
		2.3.5 Puncture Test Damage Summary
	2.4	Summary of Structural Damage and Evaluation.
3.	SHIE	LDING EVALUATION
	3.1	Package Shielding Discussion.
	3.2	Shielding Evaluation.
	3.3	Shielding Evaluation Summary.
4.	APPE	NDICES
	4.1	Drop Target and Puncture Pin Drawings.
	4.2	Test Procedure.
	4.3	Survey Procedure 7.04.
	4.4	Sketches of Orientations - Free Drop and Puncture.
	4.5	SPEC-150 Package Drawings.
	4.6	Photographs.
	. –	

4.7 Sketches of SPEC-150 Survey Locations.

150SUPP6.(0)

SOURCE PRODUCTION AND EQUIPMENT COMPANY, INC. Test Report to Validate Previous 10 CFR Part 71 Puncture Tests Model SPEC-150 Type B(U) Package Docket Number 71-9263

1.1 Introduction and Background.

On June 12, 1997 the NRC informed SPEC that one of the hypothetical accident condition tests, the puncture tests, that was performed to qualify the SPEC-150 as a Type B(U) package might not be valid. This concern was based on the puncture pin mounting information SPEC voluntarily provided to the NRC the previous week. An NRC 10 CFR Part 71 inspection was conducted the week of June 16th, 1997. The inspection confirmed that the six (6) inch diameter steel pin used for the one (1) meter puncture test was not rigidly mounted to the test target pad. The previous puncture tests used a pin that was mounted on the test target pad but the pin had not been mounted rigidly to prohibit toppling and vertical movement (i.e., bolted or welded). A review of a video tape of one of the numerous puncture tests conducted proved that the pin did not topple but that it did move laterally a few inches during the test. The NRC issued a Confirmatory Action Letter dated June 24, 1997 which describes SPEC's commitment to retest the SPEC-150 to verify the validity of the previous puncture tests.

The drop test and puncture tests were conducted on June 26, 1997 in accordance with SPEC Test Plan, Rev (1) dated June 24, 1997 which were witnessed by Mr. Cass R. Chappell and Mr. Andrew Gaunt from the NRC, and Mr. Sami Aouad and Ms. Ann Troxler from the Louisiana Division of Radiation Protection. The puncture test must be conducted in sequence following the 9 meter free drop test. Two additional puncture tests were conducted for the SPEC-150 that were not included in the Test Plan. Those tests are described in the test report. The tests were conducted using the same orientations that were chosen for the previous puncture tests as an extra means to verify the validity of the previous tests. The damage from the additional puncture tests was extremely slight, insignificant in terms of structural and shielding, and virtually identical to the damage from the previous tests. The tests successfully verified the validity of all the previously performed puncture tests.

1.2 Test Report Format.

This report provides the test information that is specified in the Test Plan, Rev (1) dated June 24, 1997 which includes data from tests of other packages (SPEC 2-T and SPEC C-1). That data is not relevant for purposes of this report. The report includes additional information that was not called for in the Test Plan. An edited copy of the Test Plan, which includes some of the test data, is located in the Appendix 4. 2. The Test Plan document with original signatures is maintained as a QA record.

1.3 Radioactive Contents of Test Package.

A production source was installed in the test package to perform the accident condition tests. This is the most direct and reliable means to evaluate the displacement of the source relative to the shield and to evaluate the integrity of the shield after the tests. Experience has shown that for packages similar to radiography devices and source changers it is usually impossible to remove and replace a dummy source assembly with a live source after the hypothetical accident condition tests due to the structural damage, particularly for radiography cameras. In many cases the package must be partially dismantled. We believe it is not possible to reliably position the live source in exactly the same location as the dummy source used for the test. The adequacy of the shielding design for the package was verified by actual measurements of radiation profiles of the test sample before and after the tests, and the readings are extrapolated to the maximum authorized activity for the package.

1.4 Survey Method.

The surveys of the test packagings were performed in accordance with SPEC Survey Procedure 7.04, Rev (3) (See Appendix 4. 3). No distance correction factor from the package surface to the detector was applied to surface radiation levels because the surface readings are not required to determine if a packaging meets the shielding requirements following the hypothetical accident condition free drop and puncture tests. Background radiation was

not factored out of survey readings because it does not have significant impact on the actual readings at 1 meter for the purposes of this test, which is to verify that no radiation level exceeds 1 R/hr at 1 meter when extrapolated to the maximum authorized activity of the packaging. The background radiation levels at the location in the facility where the surveys were conducted ranged from approximately 0.2 mR/hr to 0.4 mR/hr depending on the quantity of packages being prepared for transport in the adjacent shipping area of the shop.

The purpose for recording surface radiation readings before and after the tests is twofold. First, it provides additional data that either supports or refutes the structural evaluation of a package. Secondly, it is used to locate the spot on each side where the radiation level is highest from which to take the reading at 1 meter. It should be noted that even for a package with flat surfaces at 1 meter away the detector might not be located perpendicular to the highest surface reading. The highest reading at 1 meter will be located on a direct line formed by the source capsule and the highest reading spot on the surface. Unless the highest surface reading is located adjacent to the center of the DU shield, the beam of highest radiation will not be perpendicular to the package at 1 meter. Using a survey method that requires perpendicular positioning of the detector from the highest surface reading will not produce the highest actual readings at 1 meter. SPEC's survey method assures that the highest readings at 1 meter are taken.

1.5 Drop Target Description.

The drop target at SPEC greatly exceeds the requirements specified in IAEA Safety Series No. 37 "Advisory Material for the IAEA Regulations for the Safe Transport of Radioactive Material," 1985 Edition as amended 1990. The drop target consists of a solid carbon steel plate which measures 35-1/4 inches x 30-1/4 inches x 1-3/4 inches thick weighing 528 pounds (See Drawing Nos. 50890-1, Rev (1) in Appendix 4. 1). The thickness of the steel plate meets the minimum 4.0 cm IAEA requirement. The steel plate was wet floated onto a 1 inch thick layer of high strength grout to keep the plate level and prevent air pockets from forming while curing. Both conditions are more common when floating directly onto wet cement. The grout is a commercial product with a minimum compressive strength of 7,250 psi which is approximately twice the compressive strength of concrete. The grout firmly attaches the steel plate to the top surface of a flat horizontal concrete block which measures 46 inches x 46 inches x 56 inches thick weighing approximately 9900 pounds. The total weight of the drop target is approximately 10,500 pounds which greatly exceeds ten times the mass of a 100 pound package. The concrete block is sunk to a depth of 52 inches into firm soil. (A detailed inspection of the drop target prior to the tests identified variations from the target description provided in previous applications.) A sturdy 40 foot tall structure was erected over the drop target and used to raise and release the test package from a minimum height of 30 feet (9.2 meters) above the top surface of the target. No damage nor separation of the steel plate, grout and the concrete block has occurred from any previous tests.

1.6 Puncture Pin Description.

The puncture pin is a 6 inch diameter x approximately 8-1/4 inch long solid mild steel rod. It is rigidly mounted to the center of the drop target pad (See Drawing No. 990001, Rev (0) in Appendix 4. 1). This is essentially the same design that was used for the previous puncture tests. However, for the previous tests the pin was not mounted in a manner to assure that it would not topple over or move laterally. The pin used for these tests is welded to a steel holder which was bolted to the steel drop target pad. The pin is inspected after each puncture test to verify that it did not topple over nor move laterally.

The length of the puncture pin was selected to be a minimum of 8 inches, in accordance with 10 CFR 71.73(c)(2), and a maximum of 8.3 inches. This is based on an analysis of each package design and previous test experience to determine which pin length will cause maximum damage to the package. The deformation resulting from previous 30 foot free drop and puncture tests has been relatively minor; far less than eight inches. The package contain no deep recesses or pockets that could be accessed better by a bar longer than 8 inches. These package will not be housed in a drum or overpack during testing. It is clear that there is no length greater than 8 inches that will cause more damage to the package than the required 8 inch pin length. Based on these factors the length of the puncture test bar will be 8 inches max.

The orientation of a package must be selected to strike the package surface in a position for which maximum damage is expected. The term "maximum damage" is not defined in 10 CFR 71.73, but 10 CFR 71.51 (a) (2) specifies that as a result of testing, the radiation dose rate will not exceed one Rem/hr at 1 meter from the external surface of the package. For purposes of orientation analysis, maximum damage will be considered as the condition that provides maximum movement, or chance of movement, of the sealed radioactive source away from the fully shielded position within the depleted uranium (DU) shield. This is the condition most likely to result in increased radiation levels outside of the package. The history of testing-packages has provided extensive comparative information regarding the orientations that have caused the most damage in previous tests. It should be noted that there has never been an instance in which an accident condition test has fractured, deformed or otherwise reduced the shielding capability of the DU shield, even at temperatures near minus (-) 100 degrees Fahrenheit. Therefore, orientations to promote shield and source separation is considered far more likely to cause the maximum damage. The orientation selection and supporting rational was recorded prior to the start of the tests and are included in this report. After the 9 meter free drop test the orientations in Appendix 4. 4.

2. STRUCTURAL EVALUATION

2.1 Structural Design

2.1.1 Description of Test Packaging.

The test package is a Model SPEC-150, s/n 500, which is a production package that was constructed in standard production fashion pursuant to applicable quality assurance procedures specified in NRC Certificate of Compliance No. 0102. Design, fabrication and inspection records were verified to confirm that the test packaging meets the approved drawings. This was done to address one of the findings from the 10 CFR Part 71 inspection conducted the week of June 16th, 1997. For each of the tests an actual production model G-60 Iridium-192 source assembly, which was constructed in standard production fashion pursuant to applicable quality assurance programs, was contained within the test package. The test packaging specimen meets the design specified in Certificate of Compliance No. 9263 (See Package Drawings, Appendix 4. 5). It represents the current production model design which includes all of the design revisions that are referenced in Certificate of Compliance No. 9263, Rev (1) that were not included in the design of previously tested prototypes. Specifically, SPEC-150, s/n 500 includes the additional four (4) holes in the top corners of the package and the revised lock cap. See Drawings 15B000, Rev (4), 15B001-3, Rev (0), 15B002A, Rev (3), and 15B008, Rev (2).

2.2 Hypothetical Accident Condition - 9 Meter Free Drop Test.

2.2.1 Discussion.

The test package was chilled in dry ice to a temperature below minus (-) 80 degree Fahrenheit (See Photograph A1). This was done to address any potential concerns regarding the range of ambient temperatures from minus (-) 20 to plus (+) 100 degrees Fahrenheit to be considered for the tests. Chilling was not performed for any of the previous free drop tests for the SPEC-150.

2.2.2 Selection of Orientation.

The point of impact for SPEC-150, s/n 500, was based on an analysis of the design and extensive past experience testing numerous prototype SPEC-150 and SPEC 2-T packages. The orientation and point of impact was selected to cause the maximum damage to the package based on the maximum potential for shield movement. Essentially, the SPEC-150 is a depleted Uranium shield weighing approximately 35 lb. enclosed in a rectangular GTAW welded Titanium enclosure. The shield is retained in the enclosure by tabs or "ears" cast integrally with the shield. One of these tabs is attached to the outlet end plate. The other end tab is attached to the intermediate bulkhead within the enclosure toward the lock end. The mechanism securing the radioactive source assembly in the center of the depleted Uranium shield is attached to the lock end of the enclosure. An impact causing the shield to shift toward the outlet end of the camera, while preserving the integrity of the securing mechanism, would result in the source capsule being displaced from the fully shielded position within the depleted Uranium shield. As defined above, this would result in maximum damage.

Dropping the package with the impact flat on the outlet end of the package would be expected to maximize the chances of significant relative displacement of the shield, except that the safety plug extends almost to the end of the package. This would limit the deformation of the end plate to approximately 0.125", resulting in less than maximum damage. Therefore, this orientation was not selected.

Dropping the package with the impact point at the outlet end bottom edge or at one of the outlet end bottom corners allows for a larger potential displacement of the shield, especially if the center of gravity of the package is located approximately over the impact point to reduce package rotation at impact. Additionally, this orientation allows the reaction from the shield to bear directly on the end plate near the weld joint. Prototype packages have been dropped repeatedly and demonstrate greatest physical damage when dropped on one of the outlet end corners. Since the package housing is symmetrical in this axis, either corner may be chosen. Based on these factors the package was oriented so as to impact with the center of gravity over the outlet end bottom right corner, as viewed from the lock end of the package (See Photograph A2)(See Orientation Sketch, Appendix 4. 4).

2.2.3 Drop Test Description

A model SPEC-150 production package, S/N 500, was subjected to a free drop from a distance of 9 meters (30 feet) measured from the bottom of the package to the top of the previously described drop target. The point of impact was the bottom right corner at the outlet end of the package as planned (See Photograph

A3). The package retained the planned orientation throughout the free fall and initial impact.

2.2.4 Damage Assessment.

Outlet End:	The protective flange located at the end of the bottom panel buckled upward 7/8 inch
	(See Photograph A4). The flange located at the end of the right side panel buckled
	inward 3/4 inch. The safety plug is installed in the outlet nipple which is attached to the
	outlet end panel. The top edge of outlet panel is bowed outward 3/32 inches at the
	center and is approximately 2-1/2 inches long (See Photograph A5). The safety plug is
	jammed in the outlet nipple and cannot be manually removed (See Photograph A6). Due
	to the deformation of the protective flanges the safety plug now protrudes beyond plane
	of protective flanges 1/8 inch (See Photograph A7).
Left Side:	The left side buckling extends 1-7/8 inches toward the outlet panel.
Right Side:	The right side buckling extends back 1-1/4 inches in toward outlet panel. No other damage except at the flange at the outlet end.
Top:	No damage, including the release plunger and carrying handle (See Photograph A 9)
Bottom:	No damage except flange on outlet end. The bottom plate dented upward along entire width along the outlet flange end.
Lock End:	The upper right corner dented inward 1/4 inch, no other damage. The lock cap is intact and operates properly.

2.2.5 Accidental Drop Test Summary

The most significant damage is that the DU shield shifted toward the outlet end approximately 3/32 inch as expected. Not a single TMJ weld joint separated or fractured, not even at the point of impact. All housing plates (top, bottom, sides and both ends) remained fully intact. All components remained intact and attached to the package. The source remained in the locked position and was not displaced. The source assembly lock, the device lock, and the automatic securing mechanism (ASM) were completely undamaged. The lock cap and safety plug remained intact, installed and fully functional as redundant safety features to prevent loss of the source in both directions. In fact, an operational check of the lock and securing systems proved that the device remained fully functional and could be operated as a radiography device.

2.3. Hypothetical Accident Condition - Puncture Test.

2.3.1 Selection of Orientation.

Relative to the size of the package being tested, the puncture test pin is very large. It is unlikely that the puncture test pin will penetrate the package. Past puncture tests have not penetrated the exterior of the package at all or caused significant damage to this or other SPEC packages. Based on these factors an initial anticipated puncture test orientation was selected so preparations could be made in advance of the actual puncture test.

The most likely scenario for maximum damage and elevating radiation levels as a result of this test would involve breaking the outlet nipple off of the outlet end plate. This component is relatively fragile when compared with the rest of the package and could possibly be broken off by an impact against the edge of the pin. There is no guidance to require or prohibit selecting the edge of the pin rather than the center. If the outlet nipple breaks off the safety plug could come out, causing elevated radiation levels at the outlet end. Based on these factors the package will be prepared to be oriented so as to impact the safety plug with the edge of the puncture test pin with the center of gravity essentially over the safety plug. The orientation will be re-evaluated during the damage assessment after the free drop test.

The above puncture test orientation was reconsidered as part of the 30-foot free drop damage assessment. The damage to the SPEC-150 resulting from the 30-foot free drop test is described in detail above. The basic theory of inducing the largest increase in radiation levels remains unchanged. Breaking off the outlet nipple remains the intended goal. In order to accomplish this, the puncture test orientation for this package remained unchanged from the original location. The package was oriented to impact the safety plug against the edge of the puncture test pin with the center of gravity essentially over the safety plug. (See Photograph A10)

2.3.2 Puncture Test Description.

The package was dropped from a height of 40 inches measured from the point of impact to the top of the puncture pin (See Photograph A11). The interior temperature of the package, measured at the center of the S-tube of the DU shield, was -30 degrees Farenheight when the test package was removed from the chiller immediately before the test (See Photograph A9). The point of impact was the safety plug at the outlet end of the device as planned (See Photographs A12 & A13).

2.3.3 Damage Assessment.

The bottom edge of hex section at the outer end of the of the safety plug (quick disconnect) fitting dented inward approximately 1/16 inch (See Photograph A14). The outlet nipple remained attached to the device. The quick disconnect fitting "collar" on the safety plug was jammed open. The safety plug was jammed on the outlet nipple.

2.3.4 Unplanned Additional Tests.

Two unplanned additional puncture tests were conducted to further validate the puncture tests that were previous conducted for the SPEC-150. The orientations of the previous puncture tests were selected to be duplicated for the two unplanned additional tests. The same test packaging, SPEC-150 s/n 500, was used for the tests.

Puncture Test #2 - Puncture Test Description & Damage Assessment.

The point of impact was the right side of the package (See Photographs A15 & A17). The package was dropped from a height of 40 inches measured from the bottom of the package to the top of the puncture pin (See Photograph A16). The impact caused a faint impression of the circumference of the puncture pin on the side of the package. The nameplate received superficial scratches. The package right side housing was dented inward approximately 1/16 inch deep (See Photograph A18). The dent is approximately 1-3/4 inch long. The damage was very slight and virtually identical to the damage caused by the previous puncture test with the same orientation.

Puncture Test #3 - Puncture Test Description & Damage Assessment.

The package was dropped from a height of 40 inches measured from the bottom of the package to the top of the puncture pin (See Photograph A20). The point of impact was the end of the lock cap at the lock end of the package (See Photograph A19, A21 & A22). Damage was limited to superficial marks on the surface of the lock cap (See Photographs A23 & A24). The lock cap remained attached to the package and fully functional. The upper right and left flanges were dented inward slightly caused by secondary impact when the package struck the drop target pad. The damage was very slight and virtually identical to the damage caused by the previous puncture test on the lock cap.

2.3.5 Puncture Test Damage Summary

The three separate puncture tests did not produced any significant physical damage.

2.4 Summary of Structural Damage and Evaluation.

The only structural damage caused by the accident condition tests was minor deformation of the protective flange at the outlet end and the slight outward bowing of the outlet end panel. The structural system, DU shield, and all features designed to maintain the radioactive source in the shielded position under hypothetical accident conditions remained intact and performed fully as designed. No design revisions are needed. The SPEC-150 remained safe and structurally sound after the drop test and puncture tests which demonstrates that the design meets the accident condition structural requirements for a Type-B package by a large margin.

SHIELDING EVALUATION

3.

3.1 Package Shielding Discussion.

The shield that was fabricated into the test package is the same shield design that is referenced in Certificate of Compliance No. 9263.

3.2 Shielding Evaluation.

Although a pretest survey is not required for the accident condition tests, a pretest survey was made at the surface and 1 meter from the SPEC-150. The pre-test and post-test surface reference readings in Table 2 were made to supplement the structural evaluation. The survey data is presented below. See Sketches of survey locations in Appendix 4. 7.

	SPEC-150 S/N 500 - Highest Radiation Readings in mR/hr - (Model G-60 source, 26 Curies - Ir-192 on 6/25/97)										
Point	Location	Pre-Test Surface Reading 6/25/97	Post-Test Surface Readings 6/26/97	Pre-Test 1 Meter Readings 6/25/97	Post-Test 1 Meter Readings 6/26/97	Post-Test 1 Meter Readings Extrapolated to 150 Curies (background included) EF = 5.822					
A .	Right Side	14	14	0.7	0.9	5.2					
В	Left Side	20	20	0.7	1.0	5.8					
С	Тор	16	14	0.5	1.0	5.8					
D	Bottom	12	11	0.6	0.9	5.2					
Е	Lock End	12	11	0.7	1.0	5.8					
F	Outlet End	10	10	0.4	0.9	5.2					

TABLE 1Shielding EvaluationSPEC-150

ABLE 2 Shielding Evaluation SPEC-150

	SPEC-150 S/N 500 - Surface Reference Radiation Readings in mR/hr - (Model G-60 source, 25.76 Curies - Ir-192 on 6/26/97)							
Point	Location	Pre-Test Surface Reading 6/25/97	Post-Test Surface Readings 6/26/97					
G	Left Side @ Outlet End	3	3.8					
н	Left Side @ Lock End	5	4.4					
Ι	Bottom @ Outlet End	2	2.8					
J	Bottom @ Lock End	2	1.8					
К	Right Side @ Lock End	4	4.6					
L	Right Side @ Outlet End	3	3.4					
М	Top @ Lock End	3	2.4					
N	Top @ Outlet End	4	4.2					

3.3 Shielding Evaluation Summary.

The survey data for the SPEC-150 conservatively shows that the packaging meets the accident condition limit by a large margin. The highest extrapolated reading at 1 meter is less than 1% of the allowable limit of 1 R/hr at 1 meter. The surface reference readings in Table 2 supports the conclusions derived from the structural evaluation of the packaging. The design of the SPEC-150 meets the shielding requirements of a Type B(U) packaging.

4. APPENDICES

Appendix 4.1	Drop	Target and Puncture Pin Drawings
	Target:	Drawing 50890-1 Rev (1)
	Pin:	Drawing 990001, Rev (0)

Appendix 4.2 Test Procedure Test Plan, Rev (1), June 24, 1997

Appendix 4.3 Survey procedure 7.04, Rev (3)

Appendix 4.4Sketches of Orientations - Free Drop and Puncture
SPEC-150, Free Drop
SPEC-150, 1st Puncture
SPEC-150, 2nd Puncture (unplanned)
SPEC-150, 3rd Puncture (unplanned)

Appendix 4.5 SPEC-150 Package Drawings 15B000, Rev (4) 15B001-3, Rev (0) 15B002A, Rev (3) 15B008, Rev (2)

Appendix 4.6 Photographs (See List)

Appendix 4.7 Sketches of SPEC-150 Survey Locations.

Appendix 4.1 Drop Target and Puncture Pin Drawings

FIGURE WITHHELD UNDER 10 CFR 2.390

UNLESS ON-COMPLEYEE PREVICE DAID-BIOHE AND IN MCHCS TOLDIVINCES AND .XX±.250 .XXX±.010	APPROVILE	547	SOURCE PRODUCTION & EQUIPMENT CO INC 113 TEAL ST. ST. ROSE, LA 70087
BO HOT SCALE CANNERS	onum JAF Onesas PhJ	6/18/97	DROP IEST TARGET
NA Meter	MANORO PW	du/77	<u>Č 50890–1</u>
2	OA CLARE NA		SCALE: 1"-1" 00000242 SHEET 1 of 2

FIGURE WITHHELD UNDER 10 CFR 2.390

FIGURE WITHHELD UNDER 10 CFR 2.390

	UNERS OF COME STORES	APPROVILS Strong JAF CARDED PW	butt 8/18/97 (.:25:57	SOURCE PRO	DUCTION & E st rose, la test target	QUIPMENT 70087	CO I	NC	^
	NA Pietin	where PW	6-25-97	Č 990	001			ŏ	
4		OF CLASS HA	_	SCALE: 1/2	00000244	SHEET	1 of 1		1

Appendix 4.2 Test Procedure

Source Production and Equipment Co., Inc.

10 CFR 71.73 Hypothetical Accident Conditions Tests Test Data Revision (0)

St Dutu Revision (

June 29, 1997

1.0 Test Purpose:

To verify past Hypothetical Accident Conditions Puncture Tests on the Models SPEC-150, SPEC-2T and C-1 Type B (U) Shipping Packages.

2.0 Scope: Type B (U) Packages to be Tested:

- 2.1 Model SPEC-150, C.O.C. #USA/9263/B(U)
- 2.2. SPEC Model 2-T, C.O.C. #USA/9056/B(U)
- 2.3. SPEC Model C-1 and Overpack, C.O.C. #USA/9036/B(U)

2.1.1 Test Sequence:

All three of the 30' drop tests will be performed first, followed by the three Puncture Tests. The order is as follows:

30 ft Drop Test:

2.1.1.1 SPEC-150

2.1.1.2 SPEC 2-T

2.1.1.3 SPEC C-1

Puncture Test:

2.1.1.4 SPEC 2-T2.1.4.5 SPEC C-12.1.4.6 SPEC-150

3.0 References:

3.1 10 CFR 71.73; Hypothetical Accident Conditions; Section (c) Tests. Tests for Hypothetical Accident Conditions must be conducted as follows:

(1) Free Drop

(2) Puncture

- 3.2 10 CFR 71.51; Additional requirements for Type B packages; Section (a)(2)
- 3.3 IAEA Safety Series No.6, Mechanical Test, Sections (a) and (b)

4.0 **Precautions/Limitations:**

- 4.1 Ensure that emergency procedures, equipment and response are in place.
- 4.2 Less than 20 curie sources will be used for the tests.

June 29, 1997 Revision (0)

1

- Note: It was necessary to increase the curie activity due to availability of sources to 30 curies maximum single source strength.
- 4.3 Safety glasses must be worn by all personnel in the test area.
- 4.4 All personnel must be monitored.

5.0 Test and Recording Equipment Required:

- 5.1 Drop test tower with test targets
- 5.2 Release mechanism
- 5.3 Tape measures (50' and 6' minimum)
- 5.4 Sufficient extension cords for required electrical usage
- 5.5 Stopwatch
- 5.6 Freezer with dry ice
- 5.7 Thermometers (ambient and freezer)
- 5.8 Lifting wires
- 5.9 Video cameras
- 5.10 Photo cameras

6.0 Testing Procedures:

6.1 SPEC-150 9 Meter Pre-test

- 6.1.1 Install the source into the device.
- 6.1.2 Record Device and Sealed Source Data: Take photos.

SPEC-150 Serial Number: <u>500</u>

Weight: <u>52 lbs.</u>

- Source Serial Number: DA2410 Model Number: G-60 Activity/Date: 26 curies 6/25/97
- 6.1.3 Record radiation levels at the surface of the device and at 1 meter from the device surface in accordance with procedure 7.04 Rev (3).

Radiation levels at the surface of the device:

Top: <u>16 mR/hr</u> Bottom: <u>12 mR/hr</u> Left Side: <u>20 mR/hr</u> Right Side: <u>14 mR/hr</u> Outlet End: <u>10 mR/hr</u> Lock End: <u>12 mR/hr</u>

Radiation levels at 1 meter from the surface of the device:

Top:.5 mR/hrBottom:.6 mR/hrLeft Side:.7 mR/hrRight Side:.7 mR/hrOutlet End:.4 mR/hrLock End:.7 mR/hr

Note: Readings are highest radiation levels at each side for both the surface and 1 meter.

6.1.4 Determine orientation of sample and provide written justification. <u>(See Justification of Package</u> <u>Orientation for 30-foot Drop and Puncture Tests)</u>. Attach the drop wire to the device. Verify the orientation at ground level <u>(bottom/right corner at outlet end)</u>.

6.1.5 Chill the device:

Put dry ice on bottom (floor) of the freezer.

Place device on top of ice.

Install thermometer inside the device.

June 29, 1997 Revision (0)

Place ice around (in contact w	with) the device.
Close the freezer and record	d time.
Date/Time placed in freezer:	: <u>6/25/97 9:30 pm (Note: at 9:25 pm, the device temperature</u>

was 76.4 F)

Verified by:

Mike Frizell

6.1.6 Verify emergency procedure preparations.

6.2 SPEC-150 9 Meter Drop Test

6.2.1 Record ambient temperature and conditions:

 Temperature: 77 F
 Conditions: Partly cloudy; No wind

 Verified by:
 The Frizell

 Date/Time:
 6/26/97

 The first in the Frizell
 Date/Time:

Note: The test was initially set up at 9:06 am. At 9:20 am it began to rain and the test was postponed. The temperature and conditions of the initial set up was: 88 F Partly cloudy; No wind.

- 6.2.2 Post surveillance personnel.
- 6.2.3 Start the video.
- 6.2.4 Remove the frozen SPEC-150 from the freezer. Take photos.
 - - it began to rain. Test was postponed and the device was returned to the freezer. The initial temperature of the device (before postponement of the test) was -103 F.
- 6.2.5 Record time elapsed from the removal of the device from the freezer to the time of impact.
- 6.2.6 Attach the device (drop wire) to the release mechanism.
- 6.2.7 Verify the orientation at ground level <u>(bottom/right corner at outlet end)</u>. Take photos. Orientation verified by: <u>Mu Furler</u> Mike Frizell Date: <u>6/26/97</u>
- 6.2.8 Lift the device to 30 feet (minimum).
- 6.2.10 Drop the device.
- 6.2.11 Record time elapsed from Step 6.2.5 (above) Time elapsed: <u>5 minutes 18 seconds</u>
- Verified by: Pete Weber
- 6.2.13 Perform preliminary Part 71 survey.

6.2.12 Perform the safety survey.

6.3 SPEC-150 9 Meter Post Test

6.3.1 Record the damage.

There was no damage to the drop test target.	Verified by:	Mu tinged	Mike Frizell
See Post Test Damage Assessment Report, Form QA	<u>A 11.4, Rev (0) fo</u>	or damage assessn	nent of the SPEC-150
device.			

6.3.2	Weigl	the device after the drop test.				
		Weight: <u>52 lbs.</u> Verif	ied by: Cha	Friel	Mike Frizell	Date: 6/26/97
6.3.3	Assess	the damage to re-evaluate the original	ntation for the Pur	ncture Test.		
	Dama	ge Assessed by:	ela		Pete Weber	Date: 6/26/97
	Deterr	nine the orientation for the Punctur	e Test with rationa	al based on dama	ge of the 30' drop te	st.
	Orient	ation: (See Justification of Packag	e Orientation for 3	0-foot Drop and	<u>Puncture Tests</u>)	
	Concu	rrence by: <u>ICKichau</u>	Set		Donny Dicharry	Date: <u>6/26/97</u>
6.3.4	Attach	the drop wire to the device so that	when the device is	s suspended (han	ging) the orientation	for the Puncture
	Test w	ill be on the safety plug at the outle	et end of the device	2.		
6.3.5	Verify	the orientation at ground level.				
6.3.6	Install	thermometer inside the device and	return the device t	o the freezer.		
		Time/Date placed in freezer:11	:00 am 6/26/97	Verified by:	Ote Tra ell	Mike Frizell
	Note:	The device was placed back in th	e freezer (after the	30' drop) begin	its re-chilling. It wa	as removed from
-		the freezer at 11:50 for damage a	ssessment and retu	urned at 12:23 pn	n. It was then remov	ved again at 1:00
		pm for "rigging" the orientation l	narness and returne	ed again at 1:15 p	<u>om.</u>	
SPEC-2	2T 9 Me	er Pre-test				
6.4.1	Install t	he source into the device.				

6.4.2 Record Device and Sealed Source Data:

SPEC-2T Serial Number: <u>1152</u> Weight: <u>53.5 lbs</u>. Take photos.

Source Serial Number: <u>DF2501</u> Model Number <u>G-3</u> Activity/Date: <u>17 curies 6/25/97</u>

6.4.3 Record radiation levels at the surface of the device and at 1 meter in accordance with procedure <u>7.04 Rev (3)</u>. Radiation levels at the surface of the device:

Top:12 mR/hrBottom:22 mR/hrLeft Side:26 mR/hrRight Side:18 mR/hrOutlet End:10 mR/hrLock End:12 mR/hr

Radiation levels at 1 meter from the surface of the device:

Top: <u>.5 mR/hr</u> Bottom: <u>.7 mR/hr</u> Left Side: <u>.6 mR/hr</u> Right Side: <u>.4 mR/hr</u> Outlet End: <u>.8 mR/hr</u> Lock End: <u>.6 mR/hr</u>

Mike Frizell

Date/Time: 6/26/97 10:25 am

- Note: Readings are highest radiation levels at each side for both the surface and 1 meter.
- 6.4.4 Determine orientation of sample and provide written justification. <u>(See Justification of Package Orientation for</u> <u>30-foot Drop and Puncture Tests)</u>. Attach the drop wire to the device. Verify the orientation at ground level (bottom/right corner at the outlet end).

6.5 SPEC-2T 9 Meter Drop Test

6.4

6.5.1 Record ambient temperature and conditions:

Verified by:

Temperature: 78 F Conditions: Cloudy and clearing.

In French

6.5.2 Post surveillance personnel.

June 29, 1997 Revision (0)

·	6.5.	3 Ensure that the video is running.
	6.5.4	4 Attach the device (drop wire) to the release mechanism.
	6.5.:	5 Verify the orientation at ground level (bottom/right corner at the outlet end). Take photos.
		Orientation verified by: Jun Fright Mike Frizell Date: 6/26/97
	6.5.6	5 Lift the device to 30 feet (minimum).
\bigcirc	6.5.7	Verify the height from the top of the target (steel plate surface) to the lowest point on the device. Take photos.
		Height verified by: 30' 3" Mu Frigelf Mike Frizell Date: 6/26/97
	6.5.8	B Drop the device.
	6.5.9	Perform the safety survey.
	6.5.1	0 Perform preliminary Part 71 survey.
6.6	SPEC	C-2T 9 Meter Post Test
	6.6.1	Record the damage.
		There was no damage to the drop test target. Verified by: The true of Mike Frizell
		See Post Test Damage Assessment Report, Form QA 11.4, Rev (0) for damage assessment of the SPEC-2T
		device.
	6.6.2	Weigh the device after the drop test.
		Weight: 53.5 lbs. Verified by: Mike Frizell Date:6/26/97
	6.6.3	Assess the damage to determine orientation for the puncture test.
		Damage Assessed by: Pete Weber Date: 6/26/97
		Determine the orientation for the Puncture Test with rational based on damage of the 30' drop test.
\smile		Orientation: (See Justification of Package Orientation for 30-foot Drop and Puncture Tests).
		Concurrence by: <u>Michaun</u> Donny Dicharry Date: <u>6/26/97</u>
	6.6.4	Go to SPEC-2T Puncture Pre-test to begin preparations.
6.7	SPEC	C-1 9 Meter Pre-Test
	6.7.1	Install the sources into the device.
	6.7.2	Record Device and Sealed Sources Data: Take photos.
		SPEC-C-1 Serial Number: <u>283</u> Weight: <u>C-1 69 lbs.</u> Total with drum: <u>89 lbs.</u>
		Source Serial Number: <u>CL1002</u> Model Number: <u>T-5</u> Activity/Date: <u>19 curies 6/25/97</u>
		Source Serial Number: <u>DA0202</u> Model Number: <u>G-40T</u> Activity/Date: <u>22 curies 6/25/97</u>
	6.7.3	Put the device into the drum.
	6.7.4	Install the lid, ring and bolt.
	6.7.5	Weigh the total package (C-1 and drum) and take photos.
	6.7.6	Total Package Weight: 89 lbs. Verified by: Tommer Tommy Ruiz Date: 6/26/97
		Note: Scale s/n 2688; Calibrated on 3/26/97; Next due on 9/26/97.
	6.7.7	Record radiation levels at the surface of the package (C-1 and drum) and at 1 meter in accordance with procedure
X 2		<u>7.04 Rev (3).</u>
)		Radiation levels at drum surface:

5

·

		Top <u>7 mR/hr</u>	Bottom <u>4 mR/hr</u>	Side:	Quadrant A <u>10</u>	<u>mR/hr</u> Qua	drant B <u>7.2 mR/hr</u>
					Quadrant C <u>6 n</u>	<u>nR/hr</u> Quad	rant D <u>7.8 mR/hr</u>
		Radiation levels at 1 met	er from the surface of th	e drum:			
		Top <u>.4 mR/hr</u>	Bottom <u>2 mR/hr</u>	Side:	Quadrant A .6	<u>mR/hr</u> Quad	rant B <u>.4 mR/hr</u>
<u> </u>					Quadrant C <u>.6 1</u>	<u>nR/hr</u> Quad	lrant D <u>.6 mR/hr</u>
0		Note: Readings :	are highest radiation leve	els at each s	side for both the su	rface and 1 me	ter.
	6.7.8	Determine orientation of	sample and provide write	ten justifica	ation <u>(See Justi</u>	fication of Pacl	age Orientation for
		30-foot Drop and Punctur	e Tests). Attach the dro	p wire to t	he device. Verify	the orientation	at ground level (flat
		on top of drum).					
6.8	SPEC	C-1 9 Meter Drop Test					
	6.8.1	Record ambient temperatu	re and conditions:				
		Temperature: 80	<u>) F</u> Conditions: P	artly cloud	v and clearing No	a wind	
		Verified by:	Chu Fund		Mike Frizell	Date/Time:	6/26/07 10:42 am
	6.8.2	Post surveillance personne	1 Jugar			Duter Time	<u>0/20/97 10.42 am</u>
	6.8.3	Ensure that the video is ru	nning.				
	6.8.4	Attach the package (drop v	vire) to the release mech	anism.			
	6.8.5	Verify the orientation at gr	ound level (flat on top o	fdrum). T	ake photos.		
		Orientation verified by:	Cha France	/	F	Mike Frizell	Date: 6/26/97
	6.8.6	Lift the package to 30 feet	(minimum).				Date. <u>0720797</u>
	6.8.7	Verify the height from the	top of the target (steel pl	ate surface) to the lowest point	nt on the device	- Take photos
\smile		Height verified by: <u>30' 7"</u>	Ally Fright	/	,	Mike Frizell	Date: 6/26/97
	6.8.8	Drop the package.					Dute. <u>0720777</u>
	6.8.9	Perform the safety survey.					
	6.8.10	Perform the preliminary Pa	rt 71 survey.				
6.9	SPEC (C-1 9 Meter Post Test					
	6.9.1	Record the damage.					
		There was no damage to the	drop test target.	Verified b	v. Chat		Miles Erigall
		See Post Test Damage Asse	ssment Report, Form OA	A 11.4. Rev	v(0) for damage as	sessment of th	e package (C 1
		and drum).			<u>, of tor dumage u</u>	sossment of m	e package (C-I
	6.9.2	Weigh the package after the	drop test.				
		Weight: <u>88.5 lbs.</u>	Verified by:	In Fr	i.	Mike Erizell	Date: 6/26/07
	6.9.3	Assess the damage to re-eval	uate the orientation for t	the punctur	e test.		Date. <u>0/20/91</u>
		Damage Assessed by:	Quela			Pete Weber	Date: 6/26/97
		Determine the orientation for	the Puncture Test with	rational ba	sed on damage of t	$\frac{1}{2}$ one frequencies the 30' drop te	st.
		Orientation: <u>(See Justifie</u>	cation of Package Orient	ation for 3	0-foot Drop and Pr	uncture Tests).	(Impact on
		plunger kno	<u>bs).</u>		•		
		Concurrence by:	1 Cellichan	/	Don	ny Dicharry	Date: 6/26/97
					, <u>, , , , , , , , , , , , , , , , , , </u>		

June 29, 1997 Revision (0)

-

6.9.4 Go to SPEC C-1 Puncture Pre-test to begin preparations. 6.10 SPEC-2T Puncture Pre-test 6.10.1 Attach the drop wire to the package and confirm the orientation at ground level. Verified by: Not needed. This is only the pre-test step. Verification of orientation is required at the drop test step. Date: 6/26/97 6.10.2 Install Puncture Test pin to the steel test pad. 6.10.3 Verify that the pin is rigidly mounted to prevent lateral movement or tipping of the pin caused by the device dropping on the pin. Verified by: yell Mike Frizell Date: 6/26/97 11:35 am 6.11 SPEC-2T Puncture Test 6.11.1 Record ambient temperature and conditions: Temperature: 86 F Conditions: Cloudy Verified by: Mike Frizell Date/Time: 2:00 pm (est.) 6/26/97 6.11.2 Ensure that the video is running. 6.11.3 Attach the device (drop wire) to the release mechanism. 6.11.4 Verify the orientation at pin level (impact on safety plug). Take photos. Orientation verified by: Mike Frizell Date: 6/26/97 6.11.5 Lift the device to 1 meter (minimum). 6.11.6 Verify height from the top surface of the pin to the lowest point on the device. Take photos. Height verified by: 40.5" Mike Frizell Date: 6/26/97 6.11.7 Drop the device. 6.11.8 Perform the safety survey. 6.11.9 Perform preliminary Part 71 survey. 6.11.10 Perform the wipe test. Wipe CPM: 47 Background uci.__<.0002 uci. Wipe test performed by: Steve Punch Date: 6/26/97 6.12 SPEC 2-T Puncture Post Test 6.12.1 Record the damage. See Post Test Damage Assessment Report, Form OA 11.4, Rev (0) for damage assessment of the device. Verified by: Mike Frizell 6.12.2 Weigh the device after the Puncture Test. Weight (Puncture Test #1 53 lbs. A Verified by: Mike Frizel Date: 6/26/97 6.12.3 Test performed by: / unnul Prece & Ann ano sen 6.12.4 Test Assessment: Describe damage, weight, dose rate and all other pertinent descriptions and information. See Post Test Damage Assessment Report, Form OA 11.4, Rev (0) for damage assessment of Comments: the device.

June 29, 1997 Revision (0)

7

6.12.5	Assessment by:	Timeto N Carrie too	Kenny Carrington	Date: 6/26/97
6.12.6	Test Approval:	out of D		
	President	1allichan,	Date:	6/26/97
	QA Manager	Chu Friendl	Date:	6/26/97
		- Jun		<u> </u>

6.13 SPEC C-1 Puncture Pre-test

6.13.1 Attach the drop wire to the device (C-1 without drum) and confirm the orientation at ground level.(Note: The C-1 container must remain placed inside the overpack (drum) for the Puncture Test).

This was revised after the 30' drop damage assessment. The C-1 was Puncture Tested as a stand alone package without the overpack drum. The point of impact determined was on the impact on plunger knobs.

Note: The information in 6.14U is relative to the Unplanned Test of the SPEC C-1 where setup procedures for the test were established. 6.14U was not included in the initial test procedure. The "U" designates "Unplanned"

6.14U <u>UNPLANNED TEST</u> SPEC C-1 Puncture Test

Description: C-1 serial number 88; Stand alone; No drum overpack Weight: 67 lbs. (plus added 5 3/4 lb. lead weight; Total 72 3/4 lbs. Point of Impact: On the Plunger Knobs

6.14u.1 Record ambient temperature and conditions:

Temperature: <u>n/a</u> Conditions: <u>n/a</u>

Verified by: <u>n/a</u> Mike Frizell Date/Time: <u>n/a</u>

6.14u.2 Inspect pin and drop target. Verify that the drop target and pin have not moved as a result of the previous test. (Note: There was no previous Puncture Test in which to verify that the target and pin did not move as a result of a previous test. The pin was inspected prior to the Puncture Test of C-1 #88. This purpose of this test (puncture of #88) was to determine the setup and procedure for the test (since this point of impact had never been selected or performed in previous tests). This pre-determination was prompted by the damage assessment of the 30' drop test. The pin was then re-inspected prior to the following Puncture Test for C-1 serial number 283.

Verified by: <u>n/a</u>	Mike Frizell	Date:	n/a
6.14u.3 Ensure that the video is running.			
n/a. Unplanned test.			
6.14u.4 Attach the package (drop wire) to the release mechanism.			
6.14u.5 Verify the orientation at pin level (impact on plunger knobs).	Take photos.		
Orientation verified by:	Mik	e Frizell	Date: 6/26/97

	6.14u.6 Lift the package to 1 meter (minimum).	
	6.14u.7 Verify height from the top surface of the pin to the lowest point on the package. Take photos.	
	Height verified by: 40.250" Mu Trugelf Mike Frizel	Date: <u>6/26/97</u>
	Note: Measurement was taken from the lowest part of the package, not from the plunger knob	<u>s.</u>
<u>`</u>	6.14u.8 Drop the package.	
\smile	6.14u.9 Perform the safety survey.	
	N/A. Dummy sources were installed in the C-1 #88	
	6.14u.10 Perform the preliminary part 71 survey.	
	N/A. Dummy sources were installed in the C-1 #88	
	6.14u.11 Perform the wipe test.	
	Wipe CPM: n/a Background: p/a	
	Leak test performed by:	Data: n/a
	KC KC	Date: <u>n/a</u>
6.14	SPEC-C-1 Puncture Test (Planned Test C-1 #283)	VNCH The Sugar
	6.14.1 Record ambient temperature and conditions:	ing Signied
	Temperature: 86 F Conditions: Cloudy: Winds at approximately 5 and	8/13 91
	Verified by:	
	6.14.2 Inspect pin and drop target. Was further the day in the initial material drop target.	5 pm (est.) 6/26/97
	Verified by:	e previous test.
	6.14.3 Ensure that the video is marked	<u>5/26/97 1:35 pm</u>
	6.14.4 Attach the performation (data mine) (and the interval of the interval o	
	6.14.4 Attach the package (drop wire) to the release mechanism.	
\smile	0.14.5 Verify the orientation at pin level (impact on plunger knobs). Take photos.	
	Orientation verified by: <u>Char Trugget</u> Mike Frizell	Date: <u>6/26/97</u>
	6.14.5 Lift the package to I meter (minimum).	
	6.14.7 Verify height from the top surface of the pin to the lowest point on the package. Take photos.	
	Height verified by: 40.250" [Mu Tureff Mike Frizel]	Date: 6/26/97
	Note: Measurement was taken from the lowest part of the package, not from the plunger knobs.	
	6.14.8 Drop the package.	
	6.14.9 Perform the safety survey.	
	6.14.10 Perform the preliminary part 71 survey.	
	6.14.11 Perform the wipe test.	
	Wipe CPM: <u>48</u> Background: <u>52 GPM</u> uci. <u><.0002 uci</u>	
	Leak test performed by: Steve Punch	Date: 6/26/97
6.15	SPEC C-1 Puncture Post Test	
	6.15.1 Record the damage.	
	See Post Test Damage Assessment Report, Form QA 11.4, Rev (0) for damage assessment of the	device (C-1,
	stand alone: No drum).	
\smile	Verified by:	Mike Frizell
	June 29, 1997 Revision (0) 9	

	6.15.2	Weigh the device after the Puncture Test.	
		Weight: 68.5 lbs (C-1 container only: No drum). Verified by: Mike Frizell Date: 6/26/97	7
	6.15.3	Test performed by Runito Danie Dicen, Cooph Huy	2
	6.15.4	Test Assessment: Describe damage, weight, dose rate and all other pertinent descriptions and information.	
		Comments: See Post Test Damage Assessment Report, Form OA 11.4, Rev (0) for damage assessment of	
/		the device (C-1, stand alone; No drum)	
	6.15.5	Assessment by: Kenny Carrington Date: 6/26/97	7
	6.15.6	Test Approval:	•
		President Date: 6/26/97	,
		QA Manager Chu Fridd Date: 6/26/97	
		Duto. <u>Or 20171</u>	
6.16	SPEC-1	50 Puncture Pre-test	
	6.16.1	None. All Pre-test arrangements were performed at the 9 meter post test to allow the device to be re-installed	
		into the freezer.	
6.17	SPEC 1	50 Puncture Test Number One (Planned Test)	
	6.17.1	Record ambient temperature and conditions:	
		Temperature: <u>82 F</u> Conditions: <u>Cloudy: No wind.</u>	
		Verified by: Mike Frizell Date/Time: 2:30 pm (est.) 6/26/97	
	6.17.2	Inspect pin and drop target. A werify that the drop target and pin have not moved as a result of the previous test	
		Verified by:	
2	6.17.3	Ensure that video is running.	
	6.17.4	Remove the device from the freezer.	
		Record device temperature: -32.8 F Record date/time: 6/26/97 2:12 pm	
		Verified by: Chu Friell Date: 6/26/97	
	6.17.5 F	Record time elapsed from the removal of the device from the freezer to the time of impact.	
	6.17.6 A	Attach the device (drop wire) to the release mechanism.	
	6.17.7 V	Verify the orientation at pin level (impact on safety plug). Take photos.	
	С	Drientation verified by: <u>Charthright</u> Mike Frizell Date: 6/26/97	
	6.17.8 L	ift the device to 1 meter (minimum).	
	6.18.9 V	erify height from the top surface of the pip to the lowest point on the device. Take photos.	
	**		

Height verified by: 40.250°	u Thirda	Mike Frizell	Date	6/26/97
6.17.10 Drop the device.			D 410	0/20/97

- 6.17.11 Record elapsed time from step 6.17.5 (above) Verified by: _____ Time elapsed: <u>11 minutes 11 seconds</u> Pete Weber 6.17.12 Perform the safety survey.
- 6.17.13 Perform the preliminary Part 71 survey.
- 6.17.14 Perform the wipe test.

Wipe CPM: 52	- 41-	Background: 52	<u>7CPM</u> u	ıci. <u><.0002 v</u>	<u>ici.</u>	
Leak test perform	ed by:	no french		Steve Punch	Date:	6/26/97
		•				
UNPLANNED TEST SPEC 15	0 Puncture Tes	st Number Two				
6.17.15 Inspect pin and drop target	Verify that the	e drop target and pi	n have not moved a	as a result of th	e previous	test.
Verified by:	Trengell			_Mike Frizell	Date:	<u>6/26/97</u>
6.17.16 Ensure that video is runnin	g. Ø					
6.17.17 Attach the device (drop win	e) to the release	mechanism.				
6.17.18 Verify the orientation at pir	level <u>(right side</u>	e). Take photos.				
Orientation verified by:	In Fre	solf	····	Mike Frizell	Date: <u>6</u>	<u>/26/97</u>
6.17.19 Lift the device to 1 meter (1	ninimum). 🗸	/				
6.17.20 Verify height from the top s	urface of the pin	n to the lowest poin	t on the device. T	ake photos.		
Height verified by: <u>40.250</u>	" Chu F	mall		Mike Frizell	Date: 6	<u>5/26/97</u>
6.17.21 Drop the device.						
6.17.22 Perform the safety survey.						
6.17.23 Weigh the device after the d	rop.					
Weight: <u>52 lbs</u> .	Verified	by: Chart		Mike Frizell	Date: 6	5/26/97
6.17.24 Perform the wipe test.			300		· · · · <u>- · · · · ·</u>	
Wipe CPM: <u>64</u>		Background: <u>52 QP</u>	M uci	. <.0002.uci		
Leak test performed	by:	1 Punch		Steve Punch	Date: 6/	126/97
		1			2 uito <u>. 07</u>	<u></u>
UNPLANNED TEST SPEC 150	Puncture Test	Number Three				
6.17.25 Inspect pin and drop target.	Verify that the c	drop target and pin	have not moved as	a result of the	nrevious te	et
Verified by:	- and		net met de us	Mike Erizell	Date: 6/	36.
6.17.26 Ensure that video is running.	- Jun-	· · · · · · · · · · · · · · · · · · ·	1	VIRC PHIZEII	Dale: <u>0/</u>	20/91
6.17.27 Attach the device (dron wire)	to the release n	nechanism				
6.17.28 Verify the orientation at pin 1	evel (directly on	lock cap) Take p	hotor			
Orientation verified by:	Mar F.	<u></u>	notos.	(iles 17-i-s 11		
6.17.29 Lift the device to 1 meter (mi	nimum)	<i>u</i>	W	IKE Frizeli	Date <u>: 6/2</u>	<u>6/97</u>
6.17.30 Verify height from the top su	face of the pip i	to the lowest point	on the device. Tel	••••••••		
Height verified by: 40.250"		io ine lowest point (on the device. Tak	e photos.		
6 17 31 Drop the device		rage	IV	like Frizell	Date: $6/2$	<u>26/97</u>
6 17 32 Perform the safety survey		U				
6 17 32 Weigh the device often the see	and Drugstown T					
Durature #2 Weight and S2 the		est drop.	• /			
Functure #2 weight: 52 los	verified by	" Ohn Fry	e//N	like Frizell	Date: <u>6/2</u>	<u>!6/97</u>
0.17.54 Perform the wipe test.	A -					
Wipe CPM: <u>52</u>	A Ba	ackground: <u>52 CPM</u>	uci	<u><.0002 uci.</u>		
Leak test performed t	y:srer	A unk	St	eve Punch	Date: <u>6/2</u>	<u>6/97</u>
6.18	SPEC	-150 Puncture Post Test				
------	--------	---				
	6.18.1	Record the damage.				
		See Post Test Damage Assessment Report, Form OA 11.4, Rev (0) for damage assessment of the device.				
		Verified by: Mike Frizell				
	6.18.2	Weigh the device after the third Functure Test drop.				
/		Puncture #3 Weight: 52 lbs. Verified by: Open Friend Mike Frizell Date: 6/26/97				
		Scale serial number: 2697				
	6.18.3	Test performed by Junito Dame Preane Joseph Htury				
	6.18.4	Test Assessment: Describe damage, weight, dose rate and all other pertinent descriptions and information.				
		Comments: See Post Test Damage Assessment Report, Form QA 11.4, Rev (0) for damage assessment of				
		the device.				
	6.18.5	Assessment by: Kenny Carrington Date: 6/27/97				
	6.18.6	Test Approval:				
	-	President Ullichary Date: 6/27/97				
		QA Manager Date: 627/97				

6.19 Package Test Certification

•

6.19.1 This is to certify that the preparations and tests for both the 30' Drop Test and the Puncture Test were performed in accordance with this procedure.

SPEC-150:	President <u>Allichaus</u> Date <u>6/27/97</u> QA Manager <u>Que nuger</u> Date <u>6/27/97</u>
SPEC-2T:	President $\underline{Ollichause}$ Date $\underline{6/27/97}$ QA Manager \underline{Ohu} Fragel Date $\underline{6/27/97}$
SPEC C-1:	President <u>Illichan</u> Date <u>6/27/97</u> QA Manager <u>Inight</u> Date <u>6/27/97</u>

6.20 Prepare Test Report

H:\PROJECTS\RETEST\PUNCDATA.WPD

Appendix 4.3 Survey Procedure 7.04

PROCEDURE

7.04 TESTING SURVEY PROCEDURE

Prepared By: Joe Fryer

APPROVAL Kenny Carrington, Test Coordinator

/Pete Weber, General Manager

un

Steve Punch, Asst. Radiation Safety Officer

mell 6 25/9

Mike Frizel, Quality Assurance Manager

Revision: <u>(3) 06/25/97</u>

Source Production & Equipment Company, Inc. 113 Teal Street, St. Rose, LA 70087

Title:	No: 7.50 TESTING SURVEY PROCEDURE		Page R-1
Rev No.	Revision	Revised By/Date	Checked By/Date
0	Initial Procedure	JF 06/23/97	KC 06/25/97
-			
-	· ·		

QUALITY ASSURANCE PROGRAM PROCEDURE, INSTRUCTION AND SPECIAL PROCESS DOCUMENT CHANGE EVALUATION RECORD

Document Name: TES	TING SURVEY PR	OCEDULE
QA Document <u>704</u>	<pre>/ Prepared B</pre>	Y: J. FRYER
Description of Chan	ge Requested: <u>/#/7.A</u>	L RELEASE
Reason for Change R	equested: <u>CREATED</u>	FOR PHERADE TESTING
· ·		
Review Conducted By	K. CARRINGTON /	4. FRIZELL
		Date: <u>62597</u>
Does this change cor	flict with the QA Pr	rogram?
YesNo	QA Manager	Date
Document Review Reco	mmendation: [4] App	prove [] Reject [] Amend
Comments:		· · ·
Change Authorization	Signature:	Date:
Document Revision Nu	mber: Docu	ment Effective Date:
Docuemnt Approval Sid	gnature:	Date:
Distribution: Form	A 6 1 Deviced	
	2 0.1 Revised:	Date:
Dept:	_ Initials:	Date:
Dept:	_ Initials:	Date:
Dept:	_ Initials:	Date:
NOTE: Initial to	verify receipt, indo	ctrination and understanding
of the revi	sed document. As app	licable, the document must
remain avai	lable for use at the	appropiate work station(s).
Distribution Complet	e:	Date:
Form: 0A 5 2 (Page 1)	of 1) Doutining 1	
Xr ore (ruge I (LI REVISION NO.	(3) Revision Date: 4/27/94

 \smile

PROCEDURE 7.04 TESTING SURVEY PROCEDURE Revision (3)

1.0 Purpose:

To define the radiation survey of packages and safety procedures for use during testing of Type B packages for Normal Conditions of Transport (10CFR71.71) and Hypothetical Accident Conditions (10CFR71.73) tests.

2.0 Scope

This procedure applies to all potentially destructive tests performed during the testing of existing Type B packages or prototype packages for Type B status. These tests may include:

- 2.1 10CFR71.71(c)(7) Free Drop (1.2 m)
- 2.2 10CFR71.71(c)(8) Corner Drop (wood or fiberboard packages)
- 2.3 10CFR71.71(c)(9) Compression
- 2.4 10CFR71.71(c)(10) Penetration
- 2.5 10CFR71.73(c)(1) Free drop (30 m)
- 2.6 10CFR71.73(c)(2) Puncture

3.0 References

- 3.1 SPEC Procedure 6.09 Radiation Emergency Procedure
- 3.2 SPEC Procedure 6.10 Survey Meter Calibration
- 3.3 10 CFR Part 71 sections .51, .71, .73
- 4.0 Definitions/Acronyms
 - 4.1 CFR Code of Federal Regulations
 - 4.2 RSO Radiation Safety Officer

5.0 Requirements

- 5.1 Equipment
 - 5.1.1 Calibrated and properly operating survey meter (with remote probe)
 - 5.1.2 One meter stick, QA controlled
 - 5.1.5 Permanent marker
 - 5.1.6 Safety Glasses

Procedure 7.04 June 25, 1997

5.2 Documentation

- 5.2.1 QA 12.1.1 Survey Instrument Calibration Certificate
- 5.2.2 Test Package Radiation Survey Report (Attachment #1)
- 5.2.3 Procedure 6.09; Radiation Emergency Response

6.0 Safety

- 6.1 Potential Hazards
 - 6.1.1 High Radiation

Since these tests are potentially destructive and designed to verify package integrity,

- 6.1.1.1 The area shall be considered as a high radiation area after each test until otherwise demonstrated.
- 6.1.1.2 All non-essential personnel shall be removed from the area prior to executing each test.
- 6.1.1.3 All essential personnel must be monitored with a dosimeter and a TLD or film badge.
- 6.1.1.4 Procedure #6.09, Radiation Emergency Procedure, with all requirements (i.e. handling equipment, survey meters, response, etc) must be in effect.
- 6.1.1.5 The RSO or his assistant or designate will be responsible for implementation of the procedure, if necessary. All individuals with responsibility in the emergency response will be familiar with the procedure commensurate with their involvement in the action.
- 6.1.2 Flying Debris
 - 6.1.2.1 All personnel must stand clear during impacts because of the potential of flying debris.
 - 6.1.2.2 Safety glasses must be worn by all personnel in the test area during the drop tests.

7.0 Procedure

- 7.1 Pretest:
 - 7.1.1 Record the following data on the Test Package Survey Report in the appropriate sections:

Date

Test Performed

Procedure 7.04 June 25, 1997

Package Description Package Model & Serial Number(s) Radionuclide Source Model & Serial Number Source Activity Survey Meter Mfg, Model & Serial Number(s)

- Time test was executed (for calculation purposes if needed)
 7.1.2 Locate the highest radiation level at the surface for each side of the test package using the sealed source assembly that will be installed for the test. Make a written note if the probe was flush against the surface of the device or if it was necessary to position the probe (detector) away from the surface due to the configuration of the detector holder.
- 7.1.3 Mark each surface of the package at the EXACT location of the highest reading. Trace the outline of the probe on the package in order to relocate its exact location after the test is performed.
- 7.1.4 For cylindrical packages, mark each quadrant at the location of the highest reading. Trace the outline of the probe on the package in order to relocate its exact location after the test is performed
- 7.1.5 Assign each reference mark a unique alphabetical designation.
- 7.1.6 Record the highest radiation level found for each reference mark in the "Initial" column for Surface Survey on the Test Package Radiation Survey Report Form (Attachment# 1). The levels recorded will be the actual (uncorrected) radiation readings.
- 7.1.7 Once the highest radiation level is located (and recorded) at the surface of the package, determine the highest radiation level at one meter extending outward from THAT SURFACE POINT by projecting the radiation "beam" from the point on the surface to the sealed source inside the package. (The one meter stick will facilitate easier survey method).
- 7.1.8 Record the one meter readings in the "Initial" column for One Meter Survey on the Test Package Radiation Survey Report Form (Attachment# 1). The levels recorded will be the actual (uncorrected) radiation readings.
- 7.1.9 For recessed areas of the packages (i.e. SPEC-2T and SPEC-150 outlet and lock ends), record surface and one meter readings using the end of the flanges as the surface. Mark the end plate (inside the flange) as the reference point.
- 7.1.10 In addition to the highest radiation level measured at the surface of the package, select two random points, uniformly spaced, and measure the radiation level at these randomly selected points. Mark and record their locations and levels as described in section 7.1.3, 7.1.5 7.1.6. (Note: it is not intended to locate any particular range of levels, only what the level is. This will be used after the drop test to determine if any changes in shield or source location has occurred).
- 7.1.11 Photograph each surface of the marked up package.

Procedure 7.04 June 25, 1997

7.2 Post test:

- 7.2.1 Designate one individual of the test team to be responsible for performing the safety survey after each drop test. The individual shall be trained in the operation of survey meters and survey procedures. After each destructive test is performed, only the survey meter operator may approach the test package until the safety survey of the test site is completed.
- 7.2.2 Immediately (or within seconds) after the test package impacts the target, the survey meter operator is to begin a safety survey of the test site. No other personnel are to advance toward the test package until the area safety survey is complete. After a preliminary determination of the site radiation level, the survey meter operator may request assistance (if necessary) in rotating the package from its resting position in order to survey the surface in contact with the ground. The assistant shall leave the immediate area after the package has been rotated. The survey meter operator will then resurvey the test site. If the radiation levels in the test site area are below 100 mR/hr up to a distance of 1 meter from the package the area is determined to be "all clear".
- 7.2.4 If the radiation level exceeds 100 mR/hr within 32' of the package, a radiation emergency response shall be implemented and controlled by the RSO. All tests will be discontinued until all radiation levels are deemed safe by the RSO. (Note: an unshielded 20 curie source at 32' provides a dose rate of 100 mR/hr).
- 7.2.5 When the "all clear" signal is given the package may be moved for damage assessments, photographs, etc. and final survey profiles.
- 7.2.6 The survey meter operator will resurvey the package at each of the reference marks identified in steps 7.1.3 and 7.1.4 and record in the "Final" column on the Surface Survey section on the Test Package Radiation Survey Report Form (Attachment# 1). The survey meter must be held on each point in the same orientation as the initial survey. Enter the actual (uncorrected) radiation levels found for each reference mark on the survey report for the surface locations.
- 7.2.7 Record the highest radiation levels of each side of the package at one meter and record in the "Final" column on the One Meter Survey section on the Test Package Radiation Survey Report Form (Attachment# 1). Readings are the actual (uncorrected) radiation levels.

8.0 Documentation

8.1 Test Package Radiation Survey Report (Attachment #1)

H:\PROJECTS\RETEST\TEST-1.WPD

4

SOURCE PRODUCTION & EQUIPMENT

TEST PACKAGE SURVEY REPORT

TEST PERFORMED:			DATE
PACKAGE:		MODEL#	SERIAL #
SOURCE:	ACTIVITY:	MODEL#	
SURVEY METER(1):		MODEL#	
SURVEY METER(2):			
METER(1) CALIBRATION(O/A)			_ SERIAL #
SURVEY METER OPERATOR		METER(2) CALIBRATION(Q/A);	
		TRAINING VERIF	IED(Q/A):
	(FT RADIUS FROM TA	RGET) VERIFICATION OF ABO	DVE(Q/A):
TIME OF EXECUTION:	TIME AREA SURVEY	COMPLETE:	

NOTE: READINGS ARE ACTUAL (UNCORRECTED) RADIATION LEVELS.

SURFACE SURVEY					1 METER	SURVEY	
LOCATION	LOCATION INITIAL(MR/HR) FINAL(MR/HR) CHANGE			LOCATION			<u></u>
A				A			CHANGE
В	•.						
С				D			
D	1			<u> </u>			
				D			
<u> </u>				E			
F				F			
G				G			
Н				<u> </u>			
,				<u>n</u>			
, <u>, , , , , , , , , , , , , , , , , , </u>							
J				L			
к				к			
L				L			
M				м			

TITE DECTORETECTO

Sketches of Orientations - Free Drop and Puncture

SPEC-150, Free Drop

SPEC-150, 1st Puncture

SPEC-150, 2nd Puncture (unplanned)

SPEC-150, 3rd Puncture (unplanned)

SPEC-150 Serial Number 500 30' Drop Test 6/26/97 Point of Impact: Right/Bottom Corner at Outlet End

SPEC 150 Serial Number 500 Puncture Test 6/26/97 Point of Impact: Safety Plug

SPEC 150 Serial Number 500 Puncture Test 6/26/97 Point of Impact: Right Side

SPEC 150 Serial Number 500 Puncture Test 6/26/97 Point of Impact: Directly on Lock Cap

.....

SPEC-150 Package Drawings

SPEC-150: 15B000, Rev (4) 15B001-3, Rev (0) 15B002A, Rev (3) 15B008, Rev (2)

DUCTION & EQUI	IPMENT CO., INC
ST., ST.ROSE,	LA. 70087
50 TYPE B(U)	PACKAGE
ISOMETRIC VIEW	W
$\frac{1}{4''} = 1''$	MATERIAL N / A
DATE 10 10 04	DRAWING NO.
APPV'D BY R.D.DICHARRY	15B000 REV.(4)
	DUCTION & EQU ST., ST.ROSE, 50 TYPE B(U) SOMETRIC VIEV SCALE 1/4'' = 1'' DATE 12-18-94 APPV'D BY R.D.DICHARRY

DESCRIPTION	MATERIAL	GRADE	ASTM#	DIMENSIONS
1. OUTLET END PLATE	TITANIUM	GRADE 2	B265	5.200" WIDE X 5.275" HIGH X 1/8" THICKNESS
2. OUTLET END DOUBLER PLATE	TITANIUM	GRADE 2	B255	3/4" X 2-5/8" HIGH X 3/16" THICKNESS
3 INNER BULKHEAD PLATE	TITANILY	GRADE 2	5265	5,200" WIDE X 5,275" HIGH X 1/8" THICKNESS
4. HOUSING LOCK END PLATE	TITANIUM	GRADE 2	9265	5.200' WIDE K 5.275" HIGH X 1/8" THICKNESS
5. BOTTOM PLATE	TITANIUM	GRADE 2	3265	5.200" WIDE X 14-1/2" LONG X 3/16" THICKNESS
6. HOUSING COVER	TITANIUM	GRADE 2	8265	U-SHAPED. 5~15/32" HIGH X 5-3/8" WIDE X 14-1/2" LONG X 3/32" THICKNESS
7. OUTLET END PLATE SUPPORT CUP	TITANIUM	GRADE 2	3265	U-SHAPED. 2-17/32" HIGH X 2-1/16" WIDE X 1-1/2" LONG X 1/8" THICKNESS
8. INNER BULKHEAD SUPPORT CUP	TITANIUM	GRADE 2	8337	2" NOMINAL SCHEDULE 10 X 1-1/2" LONG WELDED OR SEAMLESS PIPE
9. CONTROL ATTACHMENT BOSS	TITANIUM	GRADE 2	8348	5/8" DIAMETER (STRUCTURE DIAMETER)
10. OUTLET END FLANGE ATTACHMENT BOSS	TITANIUM	GRADE 2	B348	5/8" DIAMETER (STRUCTURE DIAMETER)
11. OUTLET PANEL ASSEMBLY				
11a. BOLTS	STAINLESS STEEL	18-8		4 EACH, 1/4-20UNC-2A X 1/2" LONG
OUTLET PANEL	TITANIUM	GRADE 2	8265	4-3/4" WIDE X 2-5/8" HIGH X 1/8" THICKNESS
BOSS	TITANIUM	GRADE 2	B348	1-1/8" DIAMETER X 15/32" LONG
OUTLET NIPPLE	STAINLESS STEEL	316		SNAP-TITE SPHN-6M
12. SAFETY PLUG ASSEMBLY				OVERALL LENGTH 6-9/16"
QUICK DISCONNECT	STAINLESS STEEL	316		SNAP-TITE SPHN-6F
BALL AND SHANK	STAINLESS STEEL	303SE OR 304		5/16" DIAMETER X 1/2" LONG
CABLE	STAINLESS STEEL	304		7 X 7 AIRCRAFT CABLE, 1/8" DIAMETER X 5-1/16" LONG
STEM	STAINLESS STEEL	316 OR 316L		5/16" DIAMETER X 2-1/8" LONG
13. LOCK CAP ASSEMBLY			1	,
LOCK CAP PLATE	TITANIUM	GRADE 2	B265	TEAR-DROP SHAPED, 3-5/8" HIGH X 1/8" THICKNESS
COLLAR	TITANIUM	GRADE 2	B348	1-1/2" O.D. X 1-17/64" I.D. X 49/64" LONG
SLEEVE	TITANIUM	GRADE 2	8348	1-17/64" 0.D. x 59/64" 1.D. x 5/8" LONG
NUT	TITANIUM	GRADE 2	B348	1-1/8" 0.D. X 3/4" LONG W/1-8UNC-28 THREAD (FEMALE)
BOLT	TITANIUM	GRADE 2	B348	29/32" DIAMETER X 1-43/64" LONG W/1-BUNC-2A THREAD (MALE)
14. LOCK MODULE HOUSING	TITANIUM	GRADE 2	B265	3-1/4" WIDE X 4-31/32" HIGH X 1/2" THICKNESS
14a. BOLTS	STAINLESS STEEL	18-8		4 EACH, 1/2-20UNF-2A X 9/16" LONG
14b. SCREWS	STAINLESS STEEL	1818	l	6 EACH, 12-24 X 1/2" LONG
15. AUTOMATIC SECURING MECHANISM (ASM)	TITANIUM	GRADE 2	8265	2-3/8" HICH Y 2-11/64" LONG Y 1. 1/4" THICKNEES

TOLERANCES	REVISIONS			SOURCE PROD	DUCTION & EQUI	PMENT CO.,INC	
(EXCEPT AS NOTED)	#	DATE	DWG	APP'D	113 TEAL	ST., ST.ROSE,	LA. 70087
DECIMAL				01	SPEC-1	50 TYPE B(U)	PACKAGE
+/- N/A					ł	MATERIALS LIS	Γ
FRACTIONA			···· ÷ · · · · · · · · · · · · · · · ·		DRAWN BY S BYRD	SCALE 1 TO 1	
+/- N/A	H				CHK'D BY	DATE	DRAWING NO.
ANGULAR	4			ļ	Q.A. CLASS.	APP270 BY /	15B001-3
+/- N/A	5			l	N/A	Kencharg	REV.(0)

SOURCE PRODUCTION & EQUIPMENT CO., INC						
113 TEAL	ST., ST.ROSE, L	A. 70087				
SPEC 150 EXPOSURE DEVICE						
- FUL	L SECTIONAL N	/IEW				
DRAWN 97	SCALE	NATERIAL				
S.BYRDI	$1/2^{2} = 1$	ti/A				
CHK D BY	DATE	DRAWING NO.				
A. 4. 15	3-1-95	15B002A				
Q.A. CLASS.	APPV D BY					
N N	R.D.DICHARRY	REV.(3)				

Appendix 4.6 SPEC-150 Tests Photos

Photo	Description
A1	Before 30-foot drop, Chill
A2	Before 30-foot drop, Orientation
A3	Before 30-foot drop, Height
A4	After 30-foot drop, Damage
A5	After 30-foot drop, Damage
A6	After 30-foot drop, Damage
A7	After 30-foot drop, Damage
A8	After 30-foot drop, Damage
A9	Before 1st Puncture Test -Temperature
A10	Before 1st Puncture Test - Orientation, Safety Plug
A11	Before 1st Puncture Test - Height Check
A12	1st Puncture Test - Instant of Impact
A13	After Puncture Test - Damage, Puncture Pin
A14	After Puncture Test - Safety Plug
A15	Before 2nd Puncture Test - Orientation, Right Side
A16	Before 2nd Puncture Test - Height Check
A17	2nd Puncture Test - Instant of Impact
A18	After 2nd Puncture Test - Damage, Right Side
A19	Before 3rd Puncture Test - Orientation, Lock Cap
A20	Before 3rd Puncture Test - Height Check
A21	3rd Puncture Test - Instant of Impact
A22	After 3rd Puncture Test - Damage, Puncture Pin
A23	After 3rd Puncture Test - Damage, Lock Cap & Flange
A24	After 3rd Puncture Test - Damage, Lock Cap & Flange

Appendix 4.7 Sketches of SPEC-150 Survey Locations