Appendix to Attachment to PLA-6130

ARTS/MELLLA RBM Calculation

GE Number: 0000-0039-3825 Susq A-M-T506-RBM-Calc-2005 Revision Number: 0 DRF Folder: 0000-0044-6732 Rev. 1 DRF Number: 0000-0039-3825 October 2005

Instrument Limits Calculation PPL Susquehanna, LLC Susquehanna Steam Electric Station Units 1 & 2

Rod Block Monitor (NUMAC ARTS-MELLLA)

Preparer:		October 10, 2005
	Andrew Poulos	/Date
Verifier:	· · · ·	October 10, 2005
	Robert Copp	/Date
Approved:		October 10, 2005
	Bradley Erbes	/Date
	•	

IMPORTANT NOTICE REGARDING CONTENTS OF THIS REPORT

Please Read Carefully

The only undertakings of the General Electric company (GE) respecting information in this document are contained in the contract between PPL Susquehanna, LLC (PPL) and GE, ARTS/MELLLA for Susquehanna SES units 1 and 2 contract 280220-C, accepted July 22, 2004, as amended to the date of transmittal of this document, and nothing contained in this document shall be construed as changing the contract. The use of this information by anyone other than PPL, or for any purpose other than that for which it is intended is not authorized; and with respect to any unauthorized use, GE makes no representation or warranty, express or implied, and assumes no liability as to the completeness, accuracy or usefulness of the information contained in this document, or that its use may not infringe privately owned rights.

Contents:

This document is a supplement analysis data sheet to Reference 1. Included in this document in sequential order are:

- the setpoint functions for the system,
- the setpoint function analyses inputs and the source reference of the inputs,
- the devices in the setpoint function instrument loop,
- the component analysis inputs and input sources,
- the calculated results,
- input comments and result recommendations,
- references.

System: Rod Block Monitor (RBM)

The following setpoint functions are included in this document:

- Low Power Trip Setpoint (LTSP)
- Intermediate Power Trip Setpoint (ITSP)
- High Power Trip Setpoint (HTSP)
- Low Power Setpoint (LPSP)
- Intermediate Power Setpoint (IPSP)
- High Power Setpoint (HPSP)

1. Function: RBM Rod Withdrawal Blocks

Setpoint Characteristics:		C	efinition		Reference(s)
Event Protection:	Limiting event for the setpoint: The RBM is designed to prevent fuel damage during a Rod Withdrawal Error (RWE) event during high power operation.			Ref. 2, Ref. 3.1 Intro. System Purpose, Ref. 3.2 Intro. System Purpose, Ref. 4 Bases Section B 3.3.2.1	
Function After Earthquake		Required	\boxtimes	Not Required	Ref. 4 Bases Section 3.3.2.1, Comment 9
 Setpoint Direction: Low Power Trip Setpoint (LTSP) Rod Block Intermediate Power Trip Setpoint (ITSP) High Power Trip Setpoint (HTSP) Low Power Setpoint (LPSP) Intermediate Power Setpoint (IPSP) High Power Setpoint (HPSP) 		Increasing Increasing Increasing Increasing Increasing Increasing		Decreasing Decreasing Decreasing Decreasing Decreasing Decreasing	Ref. 4 Bases Section 3.3.2.1
Single or Multiple Channel		Single		Multiple	Ref. 4 Bases Section 3.3.2.1, Ref. 6.2 Section 4.1.6
LER Calculation Basis if Multiple ChannelStandard (Conservative) LER CalculationØ, orConfiguration Specific LER CalculationI			Ref. 1, Ref. 2		
Trip Logic for Configuration Specific LER Calculation	n/a				

Plant Data:	Value	Sigma if not 2	Reference(s)
LPRM Detector (APRM PEA) (% power)			
APEA _{Accuracy}	± 1%; bias 0.49%		Ref. 7.2 Section 2.1.1
APEA _{PowerSupplyEffect}	negligible		Ref. 2, Comment 6
DPEA Trip Setpoints 	negligible		Ref. 7.2 Sec. 2.1.2
Power Setpoints	± 0.2% / 7 days); bias 0.33% / 7 days		Ref. 7.2 Section 2.1.1

Plant Data:	Value	Sigma if not 2	Reference(s)
LPRM Detector (APRM PMA) (% power)			
Tracking - Trip Setpoints	+ 1%	3	Ref. 7.2 Sec. 1.1.2
Tracking - Power Setpoints	± 1.11%		Ref. 7.4 Sec. 1 b), Ref. 7.2 Sec. 1.1.1
Noise - Trip Setpoints	± 2%		Ref. 7.4 Sec. 2; Ref. 7.2 Sec. 1.1.1
Noise - Power Setpoints	n/a		Ref. 7.4 Sec. 1 b)

1. Function: RBM Rod Withdrawal Blocks (cont'd)

Components (or Devices) in Setpoint Function Instrument Loop:

LPRM Detector

ŝ

- NUMAC Chassis:
 - Instrument Loop Power Electronics (LPRM, APRM, RBM, Trip Circuit)

1.1 RBM Low Power Trip Setpoint (LTSP) Rod Block

Current Function Limits:	Value/Equation		Reference(s)	
1	Present Susq1 & Susq2 Calculation (% RTP)	ARTS-MELLLA Condition (% RBM Ave. Flux)		Ref. 6.2 Sec. 4.8.2.4
Analytical Limit	n/a	118% for TLO/SLO	Ref. 3.1, Ref. 3.2	Ref. 5.3
Tech Spec Allowable Value	n/a		Ref. 3.1, Ref. 3.2	
Nominal Trip Setpoint	n/a		Ref. 3.1, Ref. 3.2	
Operational Limit	n/a	n/a	Ref. 3.1, Ref. Ref. 1, Ref. 2, 3.2 Comment 3	

1.2 RBM Intermediate Power Trip Setpoint (ITSP) Rod Block

Current Function Limits:	Value/E	quation	Refere	ence(s)
	Present Susq1 & Susq2 Calculation (% RTP)	ARTS-MELLLA Condition (% RBM Ave. Flux)		Ref. 6.2 Sec. 4.8.2.4
Analytical Limit	n/a	113% for TLO/SLO	Ref. 3.1, Ref. 3.2	Ref. 5.3
Tech Spec Allowable Value	n/a		Ref. 3.1, Ref. 3.2	
Nominal Trip Setpoint	n/a		Ref. 3.1, Ref. 3.2	
Operational Limit	n/a	n/a	Ref. 3.1, Ref. 3.2	Ref. 1, Ref. 2, Comment 3

1.3 RBM High Power Trip Setpoint (HTSP) Rod Block and Clamp

Current Function Limits:	Value/Equation		Refere	nce(s)
	Present Susq1 & Susq2 Calculation	ARTS-MELLLA Condition		Ref. 6.2 Sec. 4.8.2.4
	(% RTP)	(% RBM Ave. Flux)		
Analytical Limit TLO	0.58W _d + 58%	108% for TLO/SLO	Ref. 3.1, Ref.	Ref. 5.3
	Clamp: n/a	Clamp: n/a	3.2	
SLO	0.58W _d + 53%			
Tech Spec Allowable Value TLO	0.66W _d + 55%		Ref. 3.1, Ref. 3.2, Ref. 4 Section 3.3.2.1	
SLO	0.58W _d + 50%	dinasi Angeleri Angel		
Nominal Trip Setpoint TLO	0.58W _d + 52%		Ref. 3.1,	Ref. 3.2
SLO	0.58W _d + 47%			
Operational Limit	n/a	n/a	Ref. 3.1, Ref. 3.2	Ref. 1, Ref. 2, Comment 3

file: 05Sus Rbm Numac AMcalc OutDoc_R0.doc

1.4 RBM Low Power Setpoint (LPSP)

Current Function Limits:	Value/Equation		Reference(s)	
	Present Susq1 & Susq2 Calculation (% RTP)	ARTS-MELLLA Condition (% RTP)	· .	
Analytical Limit	≥ 30%	30% for TLO/SLO	Ref. 4 Section 3.3.2.1	Ref. 7.1, Ref. 5.3
Tech Spec Allowable Value	n/a		Ref. 3.1, Ref. 3.2	
Nominal Trip Setpoint	n/a		Ref. 3.1, Ref. 3.2	
Operational Limit	n/a	n/a	Ref. 3.1, Ref. 3.2	Ref. 1, Ref. 2, Comment 3

1.5 RBM Intermediate Power Setpoint (IPSP)

Current Function Limits:	Value/Equation		Refere	nce(s)
	Present Susq1 & Susq2 Calculation (% RTP)	ARTS-MELLLA Condition (% RTP)		
Analytical Limit	n/a	65% for TLO/SLO	Ref. 3.1, Ref. 3.2	Ref. 5.3
Tech Spec Allowable Value	n/a		Ref. 3.1,	Ref. 3.2
Nominal Trip Setpoint	n/a		Ref. 3.1, Ref. 3.2	
Operational Limit	n/a	n/a	Ref. 3.1, Ref. 3.2	Ref. 1, Ref. 2, Comment 3

1.6 RBM High Power Setpoint (HPSP)

Current Function Value/Equation Limits:		Value/Equation		ence(s)
	Present Susq1 & Susq2 Calculation (% RTP)	ARTS-MELLLA Condition (% RTP)		
Analytical Limit	n/a	85% for TLO/SLO	Ref. 3.1, Ref. 3.2	Ref. 5.3
Tech Spec Allowable Value	n/a		Ref. 3.1, Ref. 3.2	
Nominal Trip Setpoint	n/a		Ref. 3.1, Ref. 3.2	
Operational Limit	n/a	n/a	Ref. 3.1, Ref. 3.2	Ref. 1, Ref. 2, Comment 3

2. Components:

2.1 Power Electronics (LPRM, APRM, RBM, Trip Circuit)

Component Information:	Value/Equation	Reference(s)
Plant Instrument ID No.	Not provided	Comment 2
Instrument vendor	GE / Reuter-Stokes	Ref. 5.3
Model ID No. (including Range Code)	LPRMs: NA300	Ref. 5.3
Plant Location(s)	Control Structure - Lower Relay Room	Ref. 5.1, Ref. 5.2, Ref. 5.3
Process Element	Neutron detector	Ref. 6.2 Sections 1.5 & 3.2, Ref. 7.3

Inputs:

Vendor Specifications	Value / Equation	Sigma if not 2	Reference(s)
Top of Scale	FS = 125%		Ref. 6.2 Sections 4.3.2 & 4.7.2
Bottom of Scale	0%		Ref. 6.2 Sections 4.3.2 & 4.7.2
Upper Range Limit	n/a		Ref. 6.2 Sections 4.3.2 & 4.7.2
Accuracy LPRM Detector 	See APRM PEA (Section 1)		A _{LPRM Detector} = APRM PEA per Ref. 1 & Ref. 2
LPRM Electronics	\pm 0.943% (% local power)		Ref. 7.3 Section 5.1.1.1.1
Temperature Effect	included in accuracy		Ref. 7.3 Section 5.1.1.1.1
Seismic Effect	negligible		Ref. 6.7 Section 4.1.1, Comment 4
Radiation Effect	negligible		Ref. 7.3 Section 5.1.1.1.1
Humidity Effect	included in accuracy		Ref. 7.3 Section 5.1.1.1.1
Power Supply Effect (Detector)	See APRM PEA		
RFI/EMI Effect	negligible		Comment 4
Insulation Resistance Effect	negligible		Comment 4
Over-pressure Effect	n/a		Comment 5
Static Pressure Effect	n/a		Comment 5

2.1 Power Electronics (LPRM, APRM, RBM, Trip Circuit) (cont'd)

Plant Data:	Value	Sigma if not 2	Reference(s)	
Calib Temperature Range	60 to 80 degF		Ref. 5.3	
Normal Temperature Range	60 to 80 degF		Ref. 5.3	
Trip Temperature range	60 to 80 degF		Ref. 5.3	
Plant seismic value	1.95g		Ref. 5.3	
Plant Radiation value	1.8 x 10 ² RAD TID		Ref. 5.3	
Plant Humidity value	10 to 60% RH		Ref. 5.3	
Power Supply Variation value	Not provided	State Constitution	Comment 4	
RFI/EMI value	Not provided		Comment 2	
Over-pressure value	n/a		Comment 5	
Static Pressure value	n/a		Comment 5	

Drift:	Value		Sigma if not 2	Reference(s)
Current Calib. Interval	7 days	□Includes extra 25%		Ref. 4 Table 3.3.1.1-1
Desired Calib. Interval	7 days	□Includes extra 25%		Ref. 4 Table 3.3.1.1-1
Drift Source	⊠Vendor Trip Setpts	Calculated Power Setpts		Ref. 1, Ref. 2
Drift Value (Trip Setpoints)	± 0.3% FS / 4 hours (% RBM power)			Ref. 6.2 Section 4.7.2.9, Comment 8
Drift Value (Power Setpoints) (% power)	± 0.5% FS / 700 hours	± 0.5% SP / 8.75 days		Ref. 6.4 Section 4.3.3.3

•

2.1 Power Electronics (LPRM, APRM, RBM, Trip Circuit) (cont'd)

Calibration:	Value / equation	Sigma if not 3	Reference(s)	
·	Included in APRM calibration		Ref. 5.3	
As Left Tolerance	Trip setpoints: 0		Ref. 7.3 Sections 5.1.1.1.1 & 5.2.2.1,	
	Power setpoints: AGAF		Comment 7	
As Found Tolerance	Trip setpoints: = ALT		Ref. 5.3, Comment 7	
	Power setpoints: = ALT			
Input Calibration Tool:	n/a		Comment 7	
Accuracy				
Resolution / Readability				
Minor Division				
Upper Range				
Temperature Effect				
Input Calibration Standard:	n/a		Comment 7	
Accuracy				
Resolution / Readability				
Minor Division				
Upper Range				
Temperature Effect				
Output Calibration Tool:	n/a	an in the se	Comment 7	
Accuracy				
Resolution / Readability				
Minor Division				
Upper Range		1.1		
Temperature Effect				
· · · · · · · · · · · · · · · · · · ·		all second s	and the second states	
Output Calibration Standard:	n/a		Comment 7	
Accuracy				
Resolution / Readability	· ·			
Minor Division				
Upper Range	· ·		· · · · ·	
Temperature Effect				

Application Specific Input:	Value	Sigma if not 2	Reference(s)
Minimum no. of LPRMs per RBM Channel (Trip Setpoints)	4 of 8		Ref. 6.6 Sections 4.3.3.3 & 4.3.4.5
Minimum no. of LPRMs per APRM Channel (Power Setpoints)	20 of 43		Ref. 6.1 Section 4.1.5
APRM Gain Adjustment Factor (Power Setpoints)	± 2% RTP	3	Ref. 4.1 Table 3.3.1.1-1, Ref. 5.3

file: 05Sus Rbm Numac AMcalc OutDoc_R0.doc

3. Summary Results:

Calculated Values

Setpoint Function	Analytic Limit (from Section 1) (% ARTS- MELLLA RTP)	Allowable Value (% ARTS-MELLLA RTP) ^τ	Nominal Trip Setpoint (% ARTS- MELLLA RTP) ^τ	Meets LER Avoid- ance Criteria	Meets Spurious Trip Avoid- ance Criteria
Low Power Setpoint (LPSP)	30%	28.0%	26.0%	Y	n/a
Intermediate Power Setpoint (IPSP)	65%	63.0%	61.0%	Y	n/a
High Power Setpoint (HPSP)	85%	83.0%	81.0%	Y	n/a
Setpoint Function	Analytic Limit (from Section 1) (% ARTS-	Allowable Value (% ARTS-MELLLA RBM Average	Nominal Trip Setpoint (% ARTS-	Meets LER Avoid- ance Criteria	Meets Spurious Trip Avoid- ance Criteria
	MELLLA RBM Average Flux)	Flux) [*]	MELLLA RBM Average Flux) [*]	Criteria	Criteria
Low Power Trip Setpoint (LTSP)		Flux) ¹ 115.6%		Y	n/a
	Average Flux)		Average $Flux)^{t}$		

τ See Comment 12.

Application Specific Setpoint Adjustments

Setpoint Function				
Low Power Setpoint (LPSP) - setting adjustment	NTSP 26.0% RTP (from above)	Deadband 1.1% RTP	Actual Instrument Setting 24.9% RTP	Ref. 6.2 Section 4.7.9.1.2 and Section 4.8.2.4, Comment 10
Calculated AL to AV Margin and AL to NTSP Margins	AL to AV (Minimum Required Margin)*	<u>AL to</u> Selected AV	<u>AL to NTSP1</u> (<u>Minimum Required</u> <u>Margin)*</u>	<u>AL to Selected</u> <u>NTSP</u>
LPSP	1.939174	2.0	2.358089	4.0
IPSP	1.939174	2.0	2.358089	4.0
HPSP	1.939174	2.0	2.358089	4.0
LTSP	2.313792	<u>2.4</u>	2.339689	2.8
ITSP	2.313792	2.4	2.339689	2.8
HTSP	2.313792	2.4	2.339689	2.8

* Per Reference 1 and Reference 2.

4. Comments and Recommendations:

- 1. Unless specifically identified as "bias" errors in this document, all instrument uncertainty errors will be considered to be random in nature, even when the "±" symbol is not shown.
- 2. Some plant specific information has not been provided in the current SSES setpoint calculation(s) and is considered unnecessary because the impact of this information is included within the instrument accuracy values.
- 3. STA evaluations are not performed for rod blocks or permissives per GE setpoint methodology (Reference 1 and Reference 2), such as the RBM Rod Blocks. Therefore, the Operational Limits are not applicable.
- 4. Seismic effect, radiation effect, humidity effect, power supply effect, Radio Frequency Interference/ Electromagnetic Interference (RFI/EMI) effect, and insulation resistance effect errors are marked "negligible" or "included in accuracy" and are considered to have negligible impact on the manufacturer's accuracy terms when they are not identified separately.
- Per Reference 1 and Reference 2, overpressure effects are only applicable to pressure measurement devices (e.g., differential pressure transmitters), and static pressure effects are only applicable to differential pressure measurement devices. These effects are marked "n/a" for other devices.
- 6. The variation of the LPRM ion chamber output current with \pm 1 percent change of the ion chamber voltage in the saturated range is negligibly small. (Reference 2 Section 4.5.3)
- 7. The APRM subsystem is calibrated on-line weekly (Reference 4) using the AGAF process, where the gain of the APRMs is adjusted to read the Core Thermal Power (CTP) determined by the Process Computer (P/C), within a specified As Left Tolerance. This is equivalent to a standard calibration of the APRM electronics sub-loop (consisting of the LPRM and APRM signal conditioning electronics), where the P/C is the calibration tool and standard. It is assumed that the P/C and heat balance error is already accounted for in transient analyses. Thus, the only calibration error to consider for the APRM electronics sub-loop is the As Left Tolerance specified by the AGAF process.
- 8. The Power Electronics Drift for the RBM Trip setpoints uses the 4 hour drift error specification. The only drift error would be the drift in the several hours after control rod selection and nulling, and before the control rod is motion. This is estimated to be a few hours, so the 4 hour drift interval is used.
- The RBM Rod Blocks limit control rod withdrawal if localized neutron flux exceeds a predetermined setpoint during control rod manipulations. However, the RBM system is not essential for the safety of the plant. Hence, the RBM rod withdrawal block setpoint does not perform a protective function. (Reference 5.3)

Therefore, the Seismic Effect for the RBM does not need to be considered.

10. As described in the Technical Specifications (Reference 4 Section 3.3.2.1), the LPSP is considered as an automatic "enable" feature when above the LPSP, and the AV and NTSP are calculated accordingly. The enable feature occurs as Reactor power increases past the LPSP. The vendor documents for the RBM equipment (and the Reference 4 Bases) treat the LPSP as an automatic "bypass" feature (Reference 6.2) when below the LPSP. The bypass feature occurs as Reactor Power decreases below the LPSP. These two descriptions are not interchangeable/equivalent; there is a need in the equipment logic for an instrument setting "deadband". Therefore, the equipment instrument setting for the LPSP NTSP must include the 1.1% Rated Thermal power deadband (i.e., hysteresis of 1.0% and an accuracy of 0.1%). The deadband does not apply to the AV.

The equipment instrument setting is equal to the NTSP for the other RBM setpoint functions.

4. Comments and Recommendations (cont'd):

- 11. For the RBM Downscale Trip Setpoint (DTSP), no credit is taken for it in the RWE analyses. Choice of this setpoint is an operational issue to be decided by the plant. There is no AL for this setpoint. A value of 94 is recommended, but it can be lowered if operational problems are encountered. (Reference 7.1)
- 12. Per Reference 1 and Reference 2, the difference between the AL and AV and the difference between the AL and NTSP are independent of the number for the AL. This applies for all of the Power and Trip setpoint functions.

13. Transfer functions used in this calculation:

RBM Power Electronics:

Output is proportional to the average of the inputs, and multiplied by a gain to increase the output to match the APRM reference.

APRM Power Electronics:

Output is proportional to the average of the inputs.

5. References:

- 1. NEDC-32889P, Rev. 3, General Electric Methodology for Instrumentation Technical Specification and Setpoint Analysis, November 2002
- 2. NEDC-31336P-A, General Electric Instrument Setpoint Methodology, September 1996
- 3. Current applicable Susquehanna setpoint calculations:
 - 3.1. CALC EC-078-0509, Rev. 4, Unit 1 RBM A and B Flow Biased Setpoint Change, July 21, 1999
 - 3.2. CALC EC-078-0503, Rev. 4, Unit 2 RBM A and B Flow Biased Setpoint Change, July 22, 1999
- 4. Susquehanna Technical Specifications and Bases, as revised through Amendment 219 for Unit 1 and Amendment 190 for Unit 2.
- 5. Current applicable Susquehanna procedures/documents:
 - 5.1. Procedure SI-178-325A, Rev. 2, 24 Month Channel Calibration of Rod Block Monitor (RBM) Channel A, August 7, 2001
 - 5.2. Procedure SI-178-325B, Rev. 2, 24 Month Channel Calibration of Rod Block Monitor (RBM) Channel A, August 7, 2001
 - 5.3. PPL Susquehanna, LLC, Extended Power Uprate Project, ARTS/MELLLA: Completed Design Input Request T0506, EPUL-0188, (Rev. 2), transmittal letter dated July 28, 2005, from Michael S. Gorski (PPL) to Larry W. King (GE)
- 6. Vendor Specifications:
 - 6.1. GE 24A5221WJ, Rev. 0, PRNM Requirements Specification, Data Sheet, Susquehanna 1 & 2
 - 6.2. GE 24A5221, Rev. 11, NUMAC Power Range Neutron Monitor (PRNM), Requirements Specification, March 23, 2005
 - 6.3. (not used)
 - 6.4. GE 25A5916, Rev. 5, NUMAC Average Power Range Monitor (APRM), Performance Specification, February 28, 2005
 - 6.5. (not used)
 - 6.6. GE 25A5917, Rev. 3, NUMAC Rod Block Monitor (RBM), Performance Specification, November 14, 2003
 - 6.7. GE 23A5082, Rev. 1, NUMAC Requirements Specification, Design Spec, August 9, 1995
- 7. GE Letters / Reports:
 - 7.1. GE Project Task Report, PPL Susquehanna LLC, Susquehanna Steam Electric Station Units 1&2, ARTS/MELLLA, Task T0500, GE-NE-0000-0026-6330-R0, Rev. 0, Class III, March 2005

5. References (cont'd):

- 7.2. Bases for PMA & PEA Values for NMS setpoints, BasesNMSPMAPEA2.doc, DRF C51-00217, Y. Dayal, 3/15/99 [internal GE document; not releasable]
- 7.3. GE CD-4608 Volume XI DCD; Rev. B, Design Calculation for NUMAC Power Range Neutron Monitoring System (PRNM), DRF C51-00136 (4.42), October 9, 1998 [not releasable]
- 7.4. GE document, "Closure of CAR 6912 for RBM and APRM Setpoint Calculations, file CAR6912Closure Basis.doc, DRF A74-00011-00, 3/19/2002 [internal GE document; not releasable]