GENERAL ATOMICS

November 20, 2006 696-4039

VIA EXPRESS DELIVERY SERVICE

Mr. Merritt N. Baker (In Duplicate) Fuel Cycle Licensing Branch/Section 1 U.S. Nuclear Regulatory Commission Mail Stop T-8A33 Two White Flint North 11557 Rockville Pike Rockville, MD 20852-2738

Subject: Docket No. 70-734; SNM-696: Request to Release the Non-Reactor Portion of GA's TRIGA[®] (Building 21) Reactor Site to Unrestricted Use and Delete From License.

Dear Mr. Baker:

General Atomics (GA) is continuing its efforts directed at decontaminating, as appropriate, and obtaining the release to unrestricted use of selected facilities and land areas at General Atomics. GA has recently completed the Final Radiological Survey of the Non-Reactor Portion of its TRIGA[®] (Building 21) Reactor Site which is associated with GA's Special Nuclear Materials License SNM-696.

Building 21 houses GA's TRIGA[®] Reactors Facility, various decommissioned rooms that had previously served as laboratories, a vault-like storage room, and other office and storage areas.

The rooms and laboratories not associated with the reactor portion of the building (i.e., non-reactor or non-NRR) have recently been decontaminated and are the subject of this request. These rooms and laboratories are referred to herein as the "Non-Reactor portion of Building 21" or the "Non-NRR portion of Building 21". (The roof over this portion of Building 21 was released May 18, 2006 (license amendment #85). Additionally, this request includes the outside areas around Building 21 which are not associated with the previous operation of two TRIGA[®] non-power reactors under the jurisdiction of GA's non-power reactor licenses R-38 and R-67.

The non-reactor portion of Building 21 is shown in Figure 3 of the enclosed report. The non-reactor portion of Building 21 has a floor space area of approximately 3,617 ft² (~336 m²). The open land area associated with the non-reactor portion of the site is approximately 18,280 ft² (~ 1700 m²) and is enclosed within a chain link fence. The total area to be released to unrestricted use is approximately 21,897 ft² (2,036 m²).

The portion of Building 21 (including the roof) and the outside areas associated with the previous use and possession of GA's two TRIGA[®] reactors (i.e., the Reactor or

NRR portion of the TRIGA[®] Reactors Site) will be decommissioned in accordance with GA's NRC-approved TRIGA[®] Decommissioning Plan at a later date.

This report documents the results of GA's comprehensive radiological measurements and surveys completed on the SNM-696 (aka Non-NRR) portion of the TRIGA[®] (Building 21) Site. In summary: (1) exposure rate measurements on the roof are at or near normal background levels, (2) radionuclide concentrations in the soil showed only trace concentrations of Cs-137 with lesser concentrations of Co-60 is some soil samples; levels which are all well below the NRC-approved soil release criteria, and (3) radiation levels on the facility surfaces were well below the NRC-approved release criteria.

The results of these surveys demonstrate that the Non-Reactor Portion of GA's TRIGA[®] (Building 21) Site meets the NRC-approved criteria for release to unrestricted use specified in GA's NRC-approved Site Decommissioning Plan. Accordingly, GA hereby requests NRC to release this site, as described in the enclosed report, to unrestricted us and delete it from GA's license number SNM-696.

If you should have any questions regarding this request, or the enclosure, please don't hesitate to contact Ms. Laura Q. Gonzales at (858) 455-2758 or laura.gonzales@gat.com, or me at (858) 455-2823.

Very truly yours,

Keith E. Asmusser

Keith E. Asmussen, Ph.D., Director Licensing, Safety and Nuclear Compliance

Enclosure: "Final Radiological Survey Report for the Non-Reactor Portion of the TRIGA[®] (Building 21) Reactor Site"

cc: Dr. D. Blair Spitzberg, Chief, NMSS Branch 3, Region IV Mr. Robert Evans, Fuel Cycle Inspector, NRC Region IV

GENERAL ATOMICS' FINAL RADIOLOGICAL SURVEY REPORT FOR THE NON-REACTOR PORTION OF THE TRIGA[®] (BUILDING 21) REACTOR SITE

Prepared By: William LaBonte, Richard Stowell and Laura Gonzales Illustrated By: William LaBonte and Richard Stowell Final Survey Technicians: Richard Stowell and Scott Cowan Confirmatory Technicians: Joseph Sullivan and Scott Cowan

November 2006

Table of Contents

ļ

¢

INTRODUCTION
SITE DESCRIPTION 1
HISTORY OF USE
DECONTAMINATION EFFORTS
CLASSIFICATION
CRITERIA FOR RELEASE TO UNRESTRICTED USE
As Low As Reasonably Achievable (ALARA) 4
Facilities and Equipment (and Asphalt or Concrete Surfaces)
Release Criteria for Soils 5
Exposure Rate Guideline 5
INSTRUMENTATION & BACKGROUND MEASUREMENTS
Background Measurements for Instruments/Detectors
Minimum Detectable Activity (MDA) 6
Exposure Rate Background 6
FINAL SURVEYS PERFORMED
Objectives and Responsibilities
Survey Plans
SURVEY SUMMARY
COMPARISONS OF SITE DECOMMISSIONING PLAN REQUIREMENTS WITH FINAL
SURVEYS PERFORMED IN THE NON ₂ REACTOR PORTION OF BUILDING 21 8
SURVEYS PERFORMED IN THE NON-REACTOR PORTION OF BUILDING 218RESULTS OF THE FINAL SURVEYS9
SURVEYS PERFORMED IN THE NON-REACTOR PORTION OF BUILDING 21 8 RESULTS OF THE FINAL SURVEYS 9 INTERIOR OF BUILDING 9
SURVEYS PERFORMED IN THE NON_REACTOR PORTION OF BUILDING 218RESULTS OF THE FINAL SURVEYS9INTERIOR OF BUILDING9Alpha Scans9
SURVEYS PERFORMED IN THE NON-REACTOR PORTION OF BUILDING 21 8 RESULTS OF THE FINAL SURVEYS 9 INTERIOR OF BUILDING 9 Alpha Scans 9 Beta Scans 9
SURVEYS PERFORMED IN THE NON-REACTOR PORTION OF BUILDING 218RESULTS OF THE FINAL SURVEYS9INTERIOR OF BUILDING9Alpha Scans9Beta Scans9Fixed Alpha Measurements10
SURVEYS PERFORMED IN THE NON-REACTOR PORTION OF BUILDING 218RESULTS OF THE FINAL SURVEYS9INTERIOR OF BUILDING9Alpha Scans9Beta Scans9Fixed Alpha Measurements10Fixed Beta Measurements10
SURVEYS PERFORMED IN THE NON-REACTOR PORTION OF BUILDING 218RESULTS OF THE FINAL SURVEYS9INTERIOR OF BUILDING9Alpha Scans9Beta Scans9Fixed Alpha Measurements10Fixed Beta Measurements10Removable Contamination Surveys10
SURVEYS PERFORMED IN THE NON-REACTOR PORTION OF BUILDING 218RESULTS OF THE FINAL SURVEYS9INTERIOR OF BUILDING9Alpha Scans9Beta Scans9Fixed Alpha Measurements10Fixed Beta Measurements10Removable Contamination Surveys10Exposure Rate Scans10
SURVEYS PERFORMED IN THE NON-REACTOR PORTION OF BUILDING 218RESULTS OF THE FINAL SURVEYS9INTERIOR OF BUILDING9Alpha Scans9Beta Scans9Fixed Alpha Measurements10Fixed Beta Measurements10Removable Contamination Surveys10Exposure Rate Scans10Fixed Exposure Rate Measurements10
SURVEYS PERFORMED IN THE NON-REACTOR PORTION OF BUILDING 218RESULTS OF THE FINAL SURVEYS9INTERIOR OF BUILDING9Alpha Scans9Beta Scans9Fixed Alpha Measurements10Fixed Beta Measurements10Removable Contamination Surveys10Exposure Rate Scans10Fixed Exposure Rate Measurements10Buried Pipes10
SURVEYS PERFORMED IN THE NON-REACTOR PORTION OF BUILDING 218RESULTS OF THE FINAL SURVEYS9INTERIOR OF BUILDING9Alpha Scans9Beta Scans9Fixed Alpha Measurements10Fixed Beta Measurements10Removable Contamination Surveys10Exposure Rate Scans10Fixed Exposure Rate Measurements10
SURVEYS PERFORMED IN THE NON-REACTOR PORTION OF BUILDING 218RESULTS OF THE FINAL SURVEYS9INTERIOR OF BUILDING9Alpha Scans9Beta Scans9Fixed Alpha Measurements10Fixed Beta Measurements10Removable Contamination Surveys10Exposure Rate Scans10Fixed Exposure Rate Measurements10Buried Pipes10
SURVEYS PERFORMED IN THE NON_REACTOR PORTION OF BUILDING 218RESULTS OF THE FINAL SURVEYS9INTERIOR OF BUILDING9Alpha Scans9Beta Scans9Fixed Alpha Measurements10Fixed Beta Measurements10Removable Contamination Surveys10Exposure Rate Scans10Fixed Exposure Rate Measurements10Buried Pipes10Evacuation Trench Soil Samples12OPEN LAND AREA12
SURVEYS PERFORMED IN THE NON-REACTOR PORTION OF BUILDING 218RESULTS OF THE FINAL SURVEYS9INTERIOR OF BUILDING9Alpha Scans9Beta Scans9Fixed Alpha Measurements10Fixed Beta Measurements10Removable Contamination Surveys10Exposure Rate Scans10Fixed Exposure Rate Measurements10Buried Pipes10Evacuation Trench Soil Samples12Concrete, Cement and Fill Sand Samples12
SURVEYS PERFORMED IN THE NON_REACTOR PORTION OF BUILDING 218RESULTS OF THE FINAL SURVEYS9INTERIOR OF BUILDING9Alpha Scans9Beta Scans9Fixed Alpha Measurements10Fixed Beta Measurements10Removable Contamination Surveys10Exposure Rate Scans10Fixed Exposure Rate Measurements10Buried Pipes10Evacuation Trench Soil Samples12OPEN LAND AREA12

Fixed Beta Measurements	13
Removable Contamination Surveys	13
Exposure Rate Scans	13
Fixed Exposure Rate Measurements	13
Soil Samples	13
CONFIRMATORY SURVEY	14
CONCLUSION	14

List of Tables

Table 1:	USNRC's Acceptable Surface Contamination Levels
Table 2:	State of California's Acceptable Surface Contamination Levels
Table 3:	List of Instruments
Table 4:	Soil Background
Table 5:	Gamma Spectroscopy Results of Soil Samples taken from Room 113, 114 & 115 Pipe
	Excavation Trench and Trench Outside Room 111 (External to Building 21) T-10
Table 6:	Gamma Spectroscopy Results of TRIGA [®] Non-NRR SOIL Samples
Table 7:	Wipe Results for Non-NRR Portion of TRIGA [®] Facility (Building 21) Final Survey
	Taken Inside Building 21 T-19
Table 8:	Building 21, Non-Reactor Paved Land Area Wipe Sample Analysis Results
Table 9:	Gamma Spectroscopy Results of Concrete Samples, Cement Block Samples and
	Pipe Trench Fill Sand Samples

List of Figures (unpaged)

- Figure 1A: GA's Main and Sorrento Valley Site.
- Figure 1B: GA's Main Site.
- Figure 1C: GA's Main Site showing the TRIGA® Reactor Site.
- Figure 2: Building 21, TRIGA[®] Complex, Land Area.
- Figure 3: Building 21(TRIGA[®]) Non-Reactor Dimensions.
- Figure 4: Building 21 Room 109/110 Alpha and Beta Scan Measurement Locations and Results.
- Figure 5: Building 21 Room 109/110 Fixed Exposure Rate and Exposure Rate Scan Measurement Locations and Results.
- Figure 6: Building 21 Room 109/110 Fixed Alpha and Beta Measurement Locations and Results and Wipe Survey Locations.
- Figure 7: Building 21 Room 109/110 Service Tenches Alpha and Beta Scan Measurement Locations and Results.
- Figure 8: Building 21 Room 109/110 Service Trenches Fixed Exposure Rate and Exposure Rate Scan Measurement Locations and Results.
- Figure 9: Building 21 Room 109/110 Service Trenches Fixed Alpha and Beta Measurement Locations and Results and Wipe Survey Locations.
- Figure 10: Building 21 Room 109/110 Sample Locations.

Figure 11:	Building 21 Room 111 Alpha and Beta Scan Measurement Locations and Results.
Figure 12:	Building 21 Room 111 Fixed Exposure Rate and Exposure Rate Scan Measurement
	Locations and Results.
Figure 13:	Building 21 Room 111 Fixed Alpha and Beta Measurement Locations and Results, Wipe Survey Locations and Hoist Survey.
Figure 14:	Building 21 Room 111 Service Tenches Alpha and Beta Scan Measurement Locations and Results.
Figure 15:	Building 21 Room 111 Service Trenches Fixed Exposure Rate and Exposure Rate Scan Measurement Locations and Results.
Figure 16:	Building 21 Room 111 Service Trenches Fixed Alpha and Beta Measurement Locations and Results and Wipe Survey Locations.
Figure 17:	Building 21 Room 111 Sample Locations.
Figure 18:	Building 21 Room 111 Pipe Survey.
Figure 19:	Building 21 Room 111 TRIGA [®] Mk III Pit Alpha and Beta Scan Measurement Locations and Results.
Figure 20:	Building 21 Room 111 TRIGA [®] Mk III Pit Fixed Exposure Rate and Exposure Rate Scan Measurement Locations and Results.
Figure 21:	Building 21 Room 111 TRIGA [®] Mk III Pit Fixed Alpha and Beta Measurement Locations and Results and Wipe Survey Locations.
Figure 22:	Building 21 Room 111 TRIGA [®] Mk III Pit Sample Locations.
Figure 23:	Building 21 Room 111 TRIGA [®] Mk III Cooling Pipes and Beam Tube Survey.
Figure 24:	Building 21 Room 112 Alpha and Beta Scan Measurement Locations and Results.
Figure 25:	Building 21 Room 112 Fixed Exposure Rate and Exposure Rate Scan Measurement Locations and Results.
Figure 26:	Building 21 Room 112 Fixed Alpha and Beta Measurement Locations and Results and Wipe Survey Locations.
Figure 27:	Building 21 Room 113 Alpha Scan Measurement Locations and Results.
Figure 28:	Building 21 Room 113 Beta Scan Measurement Locations and Results
Figure 29:	Building 21 Room 113 Fixed Exposure Rate and Exposure Rate Scan Measurement Locations and Results.
Figure 30:	Building 21 Room 113 Fixed Alpha and Beta Measurement Locations and Results and Wipe Survey Locations.
Figure 31:	Building 21 Room 113 Sample Locations.
Figure 32:	Building 21 Room 113 Drain Pipe Survey.
Figure 33:	Building 21 Room 114/115 Alpha and Beta Scan Measurement Locations and Results.
Figure 34:	Building 21 Room 114/115 Fixed Exposure Rate and Exposure Rate Scan Measurement Locations and Results.
Figure 35:	Building 21 Room 114/115 Fixed Alpha and Beta Measurement Locations and Results and Wipe Survey Locations.
Figure 36:	Building 21 Room 114/115 Sample Locations.
•	

ľ

iv

Figure 37:	Building 21 Room 114/115 Pipe Surveys.
Figure 38:	Building 21 West Pad Alpha and Beta Scan Measurement Locations and Results.
Figure 39:	Building 21 West Pad Fixed Exposure Rate and Exposure Rate Scan Measurement Locations and Results.
Figure 40:	Building 21 West Pad Fixed Alpha and Beta Measurement Locations and Results and
	Wipe Survey Locations.
Figure 40A:	Building 21 West Pad Fixed Beta Measurement Locations and Results for Elevated Scan
	and Fixed Measurement Areas.
Figure 41:	Building 21 West Pad Service Trench Alpha and Beta Scan Measurement Locations and
	Results.
Figure 42:	Building 21 West Pad Service Trench Fixed Exposure Rate and Exposure Rate Scan
	Measurement Locations and Results.
Figure 43:	Building 21 West Pad Service Pad Fixed Alpha and Beta Measurement Locations and
	Results and Wipe Survey Locations.
Figure 44:	Building 21 West Pad Sample Locations.
Figure 45:	Building 21 West Pad Pipe Survey.
Figure 46:	TRIGA® Non-NRR Land Area Fixed Alpha and Beta Measurement Locations and Results
Figure 47:	TRIGA [®] Non-NRR Land Area Wipe Sample Locations.
Figure 48:	TRIGA® Non-NRR Land Area Alpha Scan Measurement Locations and Results.
Figure 49:	TRIGA [®] Non-NRR Land Area Beta Scan Measurement Locations and Results.
Figure 50:	TRIGA® Non-NRR Land Area Exposure Rate Scan Locations and Results.
Figure 51:	TRIGA [®] Non-NRR Land Area Fixed Exposure Rate Measurement Locations and Results.
Figure 52:	TRIGA [®] Non-NRR Land Area Soil Sample Locations and Exposure rates at Sample
	Locations.

I

Ĩ,

Appendices

Appendix A:	Final Survey Plans for The Non-Reactor portion of the Building 21 TRIGA [®]	
	Complex	A-1
Appendix B:	The Non-Reactor portion of the Building 21 TRIGA® Complex, Confirmatory	
	Survey	B-1

Introduction

General Atomics (GA) is continuing its efforts directed at decontaminating, as appropriate, and obtaining the release to unrestricted use of selected facilities and land areas at General Atomics. GA has recently completed the Final Radiological Survey of the Non-Reactor Portion of the TRIGA® (Building 21) Reactor Site, located on GA's Main Site. This includes the outside land associated with the non-reactor portion of the site. These non-reactor areas are under the jurisdiction of GA's SNM-696 license issued by the Nuclear Regulatory Commission's (NRC's) Office of Nuclear Materials Safety and Safeguards (NMSS).

The remaining portion of Building 21 and outside land areas within the TRIGA[®] Reactor Site are licensed by the NRC's Office of Nuclear Reactor Regulation (NRR) and will be decommissioned in accordance with GA's approved TRIGA[®] Decommissioning Plan at a later date.

This report documents the results of GA's radiological measurements completed for the non-reactor (a.k.a non-NRR) portion of Building 21 and associated land areas. The results of these surveys demonstrate that the non-reactor portion of Building 21 and the associated open land areas meet the NRC- approved criteria for release to unrestricted use specified in GA's NRC-approved Site Decommissioning Plan.

GA is requesting the Nuclear Regulatory Commission (NRC) to release the non-reactor portions of the TRIGA[®] (Building 21) Reactor Site to unrestricted use.

Site Description

The TRIGA[®] Reactor Site, is located on GA's Main Site (see Figures 1A, 1B and 1C). The non-reactor portions (a.k.a. Non-NRR portion) of this Site is identified in Figure 2.

The non-reactor portion of Building 2 includes the rooms formerly identified as Rooms 109/110, 111, 112, 113, 114/115 (see Figure 3). During decommissioning activities, the room dividers between rooms 109 and 110, and between rooms 114 and 115 were removed, surveyed and appropriately disposed of. Open pipe trenches exist in rooms 109/110, 111, 113 and 114/115 created during the removal of drain piping. The non-reactor portion within Building 21 has a floor space area of approximately 3,617 ft² (~336 m²).

Room 111 contains the former Mark-III reactor pit. There are buried cooling system pipes which are connected to and accessible from the inside of this pit and a pipe used for activation experiments that is partially buried beneath the floor of room 111 and 113 that is accessible from both this pit and room 113.

١

The pipe trench located in the southern portion of room 109/110 is part of the reactor portion of the building and not included in this report. Additionally, the "mezzanine", which is located in, and can be accessed from room 109/110, is also part of the reactor portion of the building and is not included in this report.

The open land area associated with the non-reactor portion of the site is approximately 18,280 ft² (~ 1700 m²) and is enclosed within a chain link fence. A large portion of the southern and eastern sides of this land area is paved with either concrete or asphalt. The paved portion is approximately 9,680 ft² (~ 900 m²).

There is a sewer line that traverses the land, roughly diagonally from the northwesterly to the southeasterly direction. Sewer vault S-20, which is associated with this sewer system, is located north of the building. This sewer line and vault were previously released to unrestricted use as part of GA's "Sewer Project" (SNM-696 license amendment #82 dated August 26, 2004).

There is a storm drain system located at the southern end of this land area and numerous below grade level water, gas, and electrical controls/junction boxes/valves.

Following decommissioning of the former nuclear waste processing facility located in the Sorrento Valley Site, a counting trailer containing gamma spectroscopy equipment for analysis of packaged low level waste was re-located to the southeastern portion of this land area. Additionally, a truck scale was installed on the southern portion of this land area to weigh trucks loaded with low level waste shipping containers.

There is a large excavation pit adjacent to the west side of the building that is partially within the non-reactor portion of this land area. This excavation pit was formed during the removal of the make-up water tank for the TRIGA[®] Mark I reactor.

The total area to be released to unrestricted use is 21,897 ft² (2,036 m²); which includes 3,617 ft² inside the facility and 18,280 ft² of outside land area.

History of Use

The land area provided access to the TRIGA[®] reactor facility, was a staging area for equipment and materials used/removed from the TRIGA[®] reactor facility, and was a temporary storage area for packaged radioactive material awaiting shipment off site. At one time, a small machine shop was also located on this land area; it serviced TRIGA[®] reactor facility activities. This machine shop, which was constructed from corrugated metal on a concrete slab, was dismantled and disposed of in 2001. In 2003, a truck scale was added to the south-central portion of this land area and a trailer, containing gamma spectroscopy equipment for waste container analysis, was

placed in the southeast portion of this land area. This equipment was used to facilitate shipping activities associated with site D&D work between 2003 and 2005.

Room 109 was the former Fuel Development Research Lab 1 (FDRL-1) and room 110 was FDRL-2 where fission product release studies were performed.

Room 111 was the former TRIGA[®] Mark III reactor room. The TRIGA[®] Mark III was a 2000 kW(t) research reactor which achieved initial criticality in 1966. The reactor operated primarily in support of thermionics experiments. The Mark III reactor was shutdown, the fuel removed, decontamination activities performed, and the license terminated in 1975. Following license termination, the facility was converted to laboratory and test facilities for HTGR (High Temperature Gas-Cooled Reactor) fuel. Final decommissioning activities for what had been the Mark III reactor facility were initiated in 1998. The metal reactor tank liner was removed, surveyed and appropriately disposed of, sub-flooring piping was excavated and removed, and post D&D surveys were conducted. Areas with elevated activity levels detected during this survey were remediated/decontaminated.

Room 112 was the former TTSX (TRIGA[®] Thermal Stability X-Ray) Laboratory and Room 113 was the former TTSL (TRIGA[®] Thermal Stability Laboratory). High temperature postirradiation annealing of coated fuel particles and various other activities including radiography and density measurements took place in these laboratories. More recently, Room 112 was used to store radioactive material.

Room 114 formerly housed a decontamination room used to support the fuel development laboratories and Room 115 was a restroom.

Decontamination Efforts

Several years ago and prior to the performance of this final survey, extensive decontamination of the floor and walls in the non-reactor portions of Building 21 was performed, especially in rooms 114/115, 112 and 113. As a result, very few locations of elevated radioactivity were detected during this final survey.

Elevated activity was detected in small localized areas in rooms 112 and 113. These "spots" were decontaminated to levels not discernable from normal background levels.

During the previous decommissioning efforts, all drain lines and buried piping (with the exception of the Mark-III cooling system and access piping) were excavated, surveyed, and disposed of appropriately based on survey results. Some remediation of the excavation trench soil was necessary due to elevated radioactivity levels of Cs-137.

Also during previous decontamination activities inside the Mark-III reactor pit, the stainless steel liner was removed and cut into manageable sections. All of the metal was surveyed and levels were not distinguishable from normal background levels with the exception of a small section of metal which had a tar coating on it. The tar was removed and disposed of as low level radioactive waste. The rest of the metal was staged and disposed of as non-radioactive after the NRC performed confirmatory surveys which yielded results in agreement with GA's.

Only one location, a small area outside and adjacent to the west side of Building 21, was remediated during the final survey documented by this report. The soil (contaminated with Cs-137) was removed and disposed of as radioactive waste.

Classification

Due to the extensive use and handling of radioactive material in this facility and associated land area, the entire non-reactor portion of the site was classified as a **Suspect Affected Area** for radiological survey purposes. The predominant contaminant, based on gamma spectroscopy analysis of concrete wall samples and soil samples, was determined to be Cs-137. Trace concentrations of Co-60 were also detected.

Criteria for Release to Unrestricted Use

As Low As Reasonably Achievable (ALARA)

During decommissioning efforts, GA always attempts to decontaminate to levels as close to "background" as possible and as far below the approved Release Criteria as reasonably achievable.

Facilities and Equipment (and Asphalt or Concrete Surfaces)

The U.S. NRC's and State DHS/RHB's criteria for release of facilities and equipment to unrestricted use is provided in Tables 1 and 2, respectively. The predominant contaminant, based on process knowledge and gamma isotopic analyses of concrete and soil samples, was identified as Cs-137. The applicable guidelines for beta/gamma emitters (including Cs-137) are summarized as follows:

5,000 dpm/100 cm², averaged over a 1 m² area 15,000 dpm/100 cm², maximum in a 100 cm² area if the average over 1 m² is met 1,000 dpm/100 cm², removable activity

Release Criteria for Soils

The predominant radionuclides at the GA Site and the NRC- approved release criteria in pCi/g (above natural background concentrations) for these radionuclides are provided as follows:

Enriched Uranium (U-234 + U-235)	30 pCi/g
Thorium (Th-228 + Th-232)	10 pCi/g
Depleted Uranium	35 pCi/g
Cs-137	15 pCi/g
Co-60	8 pCi/g

If more than one radionuclide exists, the sum of the fractions of the concentrations is calculated as follows:

$$\sum_{i=1}^{n} \frac{C_i}{L_i} = <1$$

Where: C_i = The average concentration levels of radionuclide *I* in the sample (above background).

 L_i = The release criteria for radionuclide *I*, and

The sum of the fractions must be less than or equal to one (1).

Exposure Rate Guideline

Exposure rates measured at 1 m above the surface are not to exceed 10 μ R/hr above natural background levels.

Instrumentation and Background Measurements

A list of instruments used during the radiological surveys is shown in Table 3. The table includes: (1) a description of the instrument, model number and its serial number, (2) a description of the detector (if applicable) and its serial number, (3) instrument ranges, (4) calibration due dates, (5) typical background readings and (6) calibration efficiencies (if applicable). The instruments are calibrated semiannually and after repair, except for exposure rate meters which were calibrated quarterly.

Background Measurements for Instruments/Detectors

Building 13 on GA's main site was used for conducting background measurements with instruments used for the final survey because: (1) There is no history involving the use or storage

of radioactive materials in Building 13, and (2) The various surfaces and construction materials found inside the Building 21 could also be found within and outside of Building 13. Background information, where appropriate, is included in Table 3.

Minimum Detectable Activity (MDA)

Minimum detectable activities (MDA's) for instruments used for fixed measurements, for each type of surface (see Table 3), were calculated using equation (5-2) from the NUREG/CR-5849 as shown below:

Equation (5-2)

$$MDA = \frac{2.71 + 4.65\sqrt{B_R \times t}}{t \times E \times \frac{A}{100}} (dpm/100 cm^2)$$

Where:

 B_R =background rate (cpm) t = count time (min) E = efficiency A = area of the detector (cm²)

The MDA for scans using the 434 cm² gas flow proportional detector (floor monitor) was calculated using equation 5-3 from the draft NUREG/CR-5849 (modified in accordance with the discussion on page 5.8 of the draft NUREG/CR-5849), as follows:

Equation (5-3):

$$MDA = \frac{X \times B_R}{E \times \frac{A}{100}} (dpm/100 cm^2)$$

Where:

- X = the multiple/portion of the background rate that can be discernable as an increase in instrument response by the surveyor (dependent on the type of instrument used).
- B_R = background rate in (cpm)

E = efficiency

A = area of the detector (cm^2)

Exposure Rate Background

Typical exposure rate background for GA's site using a Ludlum Model 19 micro R meter is 12-18 μ R/hr measured at 1 m from the surface of soil. This range of exposure rates can be measured south of Building 15 (an office building on the eastern portion of the GA site). Measurements taken offsite in ten (10) different locations (nine (9) offsite and one (1) onsite at a non-impacted area near Building 15) over a period of 15 months also averaged ~ 15 μ R/hr (measured at 1 m from the surface). The range of 12-18 μ R/hr is typical at the GA site for the

external dose rates measured at 1 meter from the surface. Background exposure rates in nonimpacted areas, measured with the specific instruments used for this final survey, are identified in Table 3.

Final Surveys Performed

Objectives and Responsibilities

The objectives of the final survey plans were: (1) To demonstrate that the average surface contamination levels for each survey unit were below the approved release criteria, (2) To show that the maximum residual activity did not exceed three times the approved release criteria for average surface contamination value in an area up to 100 cm^2 , (3) To demonstrate soil sample results at the surface were well below GA's approved release criteria for unrestricted use, and, (4) That the exposure rate measurements taken in these areas, measured at 1 meter above the surface, were < 10 μ R/hr above background.

Survey Plans

A Final Survey Plan (provided in Appendix A) was developed based on the previous history of use, results of periodic surveys performed in the non-reactor portion of the TRIGA[®] Site, the radionuclides of concern, the potential for contamination, the various types of surfaces encountered and the classification of the various areas.

The final surveys and soil sampling was conducted by qualified Health Physics Technicians having a minimum of three years health physics experience. Each survey taken was documented on a daily basis to a worksheet/drawing showing the approximate locations surveyed/sampled. Documentation includes the results of the measurements (including units), technician's signature, date, instrument(s) used (including model and serial number of both ratemeter and detector), calibration due date, % efficiency, and background readings.

Survey Summary

Comparisons of the Site Decommissioning Plan requirements with the Final Surveys performed in relation to the percentage of surface area scanned, number of measurements (i.e., number of fixed radiation measurements), and exposure rate measurements (μ R/hr) are provided as follows:

Comparisons of Site Decommissioning Plan Requirements with Final Surveys Performed in the Non-Reactor Portion of the TRIGA® Facility							
Survey Area ⁽¹⁾	Gridding Required ?	# of Direct Measurements Fixed α, β, or Wipes	Surface Scans α, β,	# of Exposure Rate. Fixed Measurements. (µR/hr)	Exposure RateScan Measurements (µR/hr)	Soil Sampling	
		I	nterior of Bu	ıilding			
D-Plan ⁽²⁾ Suspect Affected Area (required)	Yes, if feasible	Total = 171 Minimum of 1 per 4 m ² or 1 every 2m	100% accessible floors & walls below 2m	Total = 171 Minimum of 1 per 4 m ² or 1 every 2m	100% accessible floors and walls below 2m.	Not Applicable	
Final Surveys Suspect Affected Area (performed)	Yes, Where possible	Total = 566 168 α, 220 β 178 wipes	100% of accessible floor & walls < 2m; 10% of walls > 2m	392 measurements 339 plus 53 taken at each soil sample location	100% of accessible floor & walls <2m; 10% of walls >2m	29 soil samples ⁽³⁾	
	, , , , , , , , , , , , , , , , , , ,		Open Land	Area		••···	
D-Plan ⁽²⁾ Suspect Affected Area (required)	Yes, if feasible	Minimum of 225 based on 900 m ² paved surfaces.	100% of accessible paved surfaces	Total = 425 1 per 4 m ² or 1 every 2m. Minimum of 425 based on 1,700 m ²	100% of accessible surfaces	Sample on a 5 meter triangular grid.	
Final Surveys Suspect Affected Area (performed) →	Yes, 10m x 10m grids	Total = 245 $\alpha = 75$ $\beta = 99$ 71 wipes	100% of paved surfaces survey for α and β radiation.	Total = 525 469 taken at 1 m from the surface, and 1 at each of 56 soil sample locations	100% of accessible surfaces scanned within 1" of the surface.	86 soil samples ⁽⁴⁾	

⁽¹⁾ The total surface (Survey Required) area to be released. Inside the building, it is 7,148 ft² (~683 m²); floor space plus walls up 2 m.

⁽²⁾ D-Plan = GA's NRC- Approved Site Decommissioning Plan.

(3) A total of 29 total soil samples were collected; 27 soil samples taken in trenches and 2 soil samples adjacent to trench outside room 111. Additionally, 18 concrete samples, 2 cement samples and 4 sand samples were also collected.

⁽⁴⁾ A total of 86 soil samples were collected; 42 surface (0-6") soil samples taken, 14 surface (0-6") soil samples were taken beneath the asphalt paving, and 30 core samples were taken at 6 different locations at depths of 6-12", 12-18", 18-24", 24-30" and 30-36".

Seneral Atomics

Final Radiological Survey Report for the Non-Reactor Portion of the TRIGA[®] (Building 21) Reactor Site

Results of the Final Surveys

Interior of Building

Alpha Scans:

100% of the floor, 100% of the wall surfaces below 2 meters and 10% of the wall surfaces above 2 meters were scanned using a 434 cm² gas flow proportional detector held within $-\frac{1}{2}$ " of the surface. All scan results were not discernable from normal background levels except for one small spot inside the concrete service trench in room 109/110 (Figure 7). An alpha fixed measurement taken at this location was 40 cpm, which is only slightly distinguishable from normal background readings and < the MDA of 212 dpm/100 cm². Additionally, a concrete sample, Con-8, was collected at this location. See Figure 10 for location and Table 9 for results. The results for all radionuclides including Cs-137, Co-60, uranium and thorium were not distinguishable from normal background levels.

The locations and results of the alpha scans are provided in Figures 4, 7, 11, 14, 19, 24, 27, 33, 38, and 41.

Beta Scans:

100% of the floor, 100% of the wall surfaces below 2 meters and 10% of the wall surfaces above 2 meters were scanned for beta (β) activity using a 434 cm² gas flow proportional detector held within ~1/2" of the surface. Several isolated, elevated spots were found on the east and south walls of room 113. As a result, the entire east and south wall surfaces were scanned 100% for beta activity.

Scan readings ranged from 900 cpm to 3,500 cpm. The highest measurement (3,500 cpm) was located on an asphalt paved surface adjacent to concrete pads just outside of room 111. Elevated readings were also noted on the adjacent concrete pads (highest reading was 3400 cpm). See Figures 4, 7, 11, 14, 19, 24, 28, 33, 38, and 41 for locations and results.

Since the scan results on these two concrete pads and on the adjacent asphalt were higher than normal background readings, seventeen (17) 2 minute fixed measurements were taken on the asphalt and the two concrete pads (see Figure 40A). The highest reading was 2,012 counts per 2 minutes, which is equivalent to 1548 dpm/100 cm², which is well below the average release limit of 5,000 dpm/100 cm² for beta/gamma emitters (including Cs-137).

A concrete sample (Con-17) was also collected at the highest measurement location and analyzed by gamma spectroscopy. The results showed trace levels of Cs-137 present (0.13 \pm 0.07 pCi/g). See Figure 44 for the location of the concrete sample collected and Table 9 for the gamma spectroscopy result.

9

Fixed Alpha Measurements:

A total of 168 alpha (α) measurements were taken with the detector probe held within ~¹/₂" for ~1 minute. All measurements were at the natural background level for the surfaces measured and instruments used. See Figures 6, 9, 13, 16, 21, 26, 30, 35, 40, and 43 for survey locations and results.

Fixed Beta Measurements:

A total of 220 beta (β) measurements were taken with the detector probe held within $\frac{1}{2}$ " for 2 minutes. The highest measurement was 2,058 counts/2 minutes, which is 1,768 dpm/100 cm². This highest measurement was located on the east wall in room 113. Concrete samples taken from this wall were analyzed by gamma spectroscopy. Trace concentrations of Cs-137 were detected in some of the samples.

See Figures 6, 9, 13, 16, 21, 26, 30, 35, 40, 40A, and 43 for survey locations and results and Table 9 for gamma spectroscopy results.

Removable Contamination Surveys:

A total of 178 wipe samples (100 cm^2) were taken and analyzed for alpha (α) and beta (β) activity. All results were at, or near natural background activity levels. See Figures 6, 9, 13, 21, 23, 26, 30, 32, 35, 37, 40, 43, and 45 for locations and Table 7 for results.

Exposure Rate Scans:

100% of the floor surfaces and 100% of the lower walls (below 2 meters) and 10% of the upper wall surfaces (above 2 meters) were scanned with a 2" x 2" NaI (Tl) held within 1" of the surface. All results were not discernible from natural background activity levels. See Figures 5, 8, 12, 15, 20, 25, 29, 34, 39, and 42 for survey locations and results.

Fixed Exposure Rate Measurements:

A total of 334 fixed exposure rate measurements were taken (one measurement every 2 meters) inside the non-reactor portions of the building. In addition, 53 fixed measurements were taken (one at each soil sample location). All of the measurements were taken with a 2" x 2" NaI (Tl) held at ~1 meter from the surface. All readings were not discernable from normal background levels. See Figures 5, 8, 10, 12, 15, 17, 20, 22, 25, 29, 31, 34, 36, 39, 42, and 44 for survey locations and results.

Buried Pipes

There is a beam tube and a cooling loop connected to the Mark III reactor pit. The beam tube provided access from room 113 to the active core region of the reactor for scientific experiments. This beam tube remained in place following the removal of the reactor vessel because it is encapsulated within the building structure. The cooling loop is a 12" diameter aluminum pipe buried approximately 12' below the floor surface of rooms 111, 113, 114 and 115 (see Figure 23

for an illustration of the approximate location). It re-circulated water from/to the reactor vessel to provide additional cooling. There is a vent line that is connected to this cooling loop and a small sample line that provided water sampling capabilities of the cavity surrounding the cooling loop to detect loop piping leakage that terminate in room 114/115. A video camera was inserted into both of the small lines that terminated in room 114/115 to verify their purpose and to verify they were free from obstructions. Both lines were free from obstructions from their origin to the termination in room 114/115. In addition, there is a storm drain that was installed under the access ramp to room 111. All of these buried lines were surveyed by feeding a large area wipe (masslinn wipes) through the lines and analyzing the wipes with portable instruments for alpha and beta activity. The results were not distinguishable from natural background activity. Additionally, a ¹/₂" NaI probe was fed through the entire length of each line. All results were at natural background levels. See Figures 23, 37, and 45 for locations and results.

Excavation Trench Soil Samples

A total of twenty-seven (27) surface (0-6") soil samples were taken in excavation trenches in rooms 113 and 114/115; eighteen (18) soil samples were taken in room 113 (see Figure 31) and 9 soil samples were taken in rooms 114/115 (see Figure 36). The samples were analyzed by gamma spectroscopy; the results are provided in Table 5. Trace concentrations of Cs-137 were detected in a few of the soil samples; the highest measurement being 0.94 ± 0.15 pCi/g (well below the approved soil release criteria, i.e., 15 pCi/g).

A surface soil/debris sample (sample B1-40) was collected from within the trench that extended from room 111 to outside the building (next to the west pad). The sample was analyzed by gamma spectroscopy and measured 11.01 ± 1.12 pCi/g Cs-137 (see Table 5). The trench was cleaned out and all soil/debris was removed and disposed of as radioactive waste.

Two other samples were taken next to the trench and directly outside room 111 (B21-41 and B-21-42). The approximate locations are shown in Figure 44. The gamma spectroscopy results were not discernable from normal background soil radionuclide concentrations. The results are provided in Table 5.

The twenty-nine (29) gamma spectroscopy results of the soil samples collected during the final survey within the non-reactor portion of Building 21 (and immediately outside of room 111 around the trench) are summarized below:

Summary of Results for Soil Samples From the Non-Reactor Portion of Building 21								
	Radionuclide Concentrations (pCi/g)							
	¹³⁷ Cs	⁶⁰ Co	²²⁸ Th (²¹² Pb)	²³² Th (²²⁸ Ac)	238U	²³⁵ U		
High	0.94 ± 0.15	0.07 ± 0.06	1.33 ± 0.24	1.81 ± 0.44	ND	0.20 ± 0.12		
Low	ND	ND	0.37 ± 0.09	0.70 ± 0.29	ND	0.05 ± 0.06		
Average (N= 29)	0.18	<mda (0.16)</mda 	0.88	1.25	<mda (1.58)</mda 	<mda (0.14)</mda 		
Nominal See Table 4 for typical background range and background locations. Background						5.		

Concrete, Cement and Fill Sand Samples

Another 24 samples of concrete (18), cement (2) and fill sand (4) were taken during this final survey.

The approximate locations where these samples were collected are shown in Figures 10, 17, 22 and 31.

The concrete and cement samples were taken in areas that appeared to have higher than normal background readings in the Building 21 rooms and the Mark III reactor cavity pit. The samples were analyzed by gamma spectroscopy. The results identified Cs-137 and Co-60 in trace concentrations as the contaminants; Cs-137 in slightly higher concentrations than Co-60 (see Table 9). The highest concentration of Cs-137 was 4.48 ± 0.5 pCi/g in a concrete sample and the highest concentration of Co-60 was 1.19 ± 0.18 pCi/g in the same concrete sample (see Table 9). Using the sum of fractions criteria, (4.48/15 + 1.19/8), and <u>not</u> subtracting background concentrations, the result is 0.45 times the limit (45% of the limit).

The sand samples were taken of sand that was used to backfill some of the pipe trenches that were open to the outside of the building to determine if the sand had become contaminated since the installation. The approximate locations of the sand samples collected are shown in Figures 10 and 17. The highest concentration measured was 1.18 ± 0.16 Cs-137 and 0.28 ± 0.10 Co-60 (see Table 9). This indicates that sand was slightly contaminated, but well below the release criteria.

Open Land Area

Alpha Scans:

100% of the paved surfaces were scanned with the detector held within $\frac{1}{2}$ " of the surface. All results were at natural background levels. See Figure 48 for locations and results.

Beta Scans:

100% of the paved surfaces were scanned for β activity. The results ranged for 1,100 to 1,400 cpm on metal surfaces, 2,000 to 2,600 cpm on concrete surfaces and 2,300 to 3,400 cpm on asphalt surfaces. See Figure 49 for locations and results.

Fixed Alpha Measurements:

A total of seventy-five (75) alpha (α) measurements were taken with the detector probe held within $\frac{1}{2}$ " for ~1 minute. All measurements were at the natural background level for the surfaces measured (0-20 cpm). See Figure 46 for survey locations and results.

Fixed Beta Measurements:

A total of ninety-nine (99) beta (β) measurements were taken with the detector probe held within $\frac{1}{2}$ " for ~2 minutes. The measurements ranged from a low of 580 counts per 2 minutes on metal, to a high of 1,912 counts per 2 minutes on asphalt, which corresponds to 787 dpm/100 cm². See Figure 46 for survey locations and results.

Removable Contamination Surveys:

A total of seventy-one (71), 100 cm² wipe samples were taken on paved surfaces and analyzed for α and β activity. All results were not discernible from natural background activity levels. See Figure 47 for locations and Table 8 for results.

Exposure Rate Scans:

100% of the surfaces were scanned with a 2" x 2" NaI (Tl) held within 1" of the surface. All results were not discernible from natural background activity levels. See Figure 50 for survey locations and results.

Fixed Exposure Rate Measurements:

A total of 469 measurements were taken, at 1 meter from the surface, using a 2" X 2" NaI(Tl) detector. All measurements were not discernible from natural background radiation levels. In addition, fixed exposure rate measurements were taken at 1 meter from the surface, using the same meter, at each soil sampling location. These measurements were also not discernible from natural background. See Figures 51 and 52 for survey locations and results.

Soil Samples:

A total of 86 soil samples were collected in the outside areas of the non-reactor area of the TRIGA[®] Site as follows:

- Forty-two (42) surface (0-6") soil samples were taken.
- Fourteen (14) soil (0-6") samples were collected from underneath the asphalt paving and
- Thirty (30) surface (0-6") and sub-surface (6"-12", 12"-18", 18"-24", 24"-30", and 30"-36") were taken at six locations.

The approximate locations of the soil samples are provided in Figure 52. The samples were analyzed by gamma spectroscopy and the results provided in Table 6. A summary of the results is provided below:

Summary of Soil Sample Results from the Non-Reactor Areas Outside Building 21								
	Radionuclide Concentrations (pCi/g)							
	¹³⁷ Cs	⁶⁰ Co	²²⁸ Th (²¹² Pb)	²³² Th (²²⁸ Ac)	²³⁸ U	235U		
High	0.94 ± 0.15	0.07 ± 0.06	2.07 ± 0.46	2.55 ± 0.55	1.78 ± 1.72	0.29 ± 0.13		
Low	ND	ND	0.53 ± 0.13	0.90 ± 0.26	ND	ND		
Average (N=86)	0.17	<mda (0.16)</mda 	1.17	1.64	1.49	<mda (0.14)</mda 		
Nominal Background								

All of the results were very low and well below the corresponding NRC- approved soil release criteria.

Confirmatory Survey

An internal confirmatory survey was performed by GA. This survey was conducted in accordance with a survey plan (provided in Appendix B). The results of this survey supports the results of the Final Survey; i.e., all residual activity is far below the NRC- approved release criteria as defined in GA's NRC- approved Site Decommissioning Plan.

See Appendix B for the confirmatory survey plan, a summary of the survey results, and the survey drawings showing the locations and results of all surveys performed.

Conclusion

Final contamination and radiation surveys, as well as the results of analyses of soil samples, as documented in this report, demonstrate that the Non-Reactor Portion of the TRIGA[®] (Building 21) Site, meets the NRC- approved criteria for release to unrestricted use.

Conclusion

Final contamination and radiation surveys, as well as the results of analyses of soil samples, as documented in this report, demonstrate that the Non-Reactor Portion of the TRIGA[®] (Building 21) Site, meets the NRC- approved criteria for release to unrestricted use.

Table 1: USNRC'S ACCEPTABLE SURFACE CONTAMINATION LEVELS 1							
Nüclides	Average ^{ь, c} (dpm/100cm ²)	Maximum ^{b,d,f} (dpm/100 cm ²)	Removable ^{bel} (dpm/100cm ²)				
U-nat, ²³⁵ U, ²³⁸ U, & associated decay products	5,000 α	15,000 α	1,000 α				
Transuranics, ²²⁶ Ra, ²²⁸ Ra, ²³⁰ Th, ²²⁸ Th, ²³¹ Pa, ²²⁷ Ac, ¹²⁵ I, ¹²⁹ I	100	300	20				
Th-nat, ²³² Th, ⁹⁰ Sr, ²²³ Ra, ²²⁴ Ra, ²³² U, ¹²⁶ I, ¹³³ I, ¹³¹ I	1,000	3,000	200				
Beta/gamma emitters (nuclides with decay modes other than alpha emission or spontaneous fission) except ⁹⁰ Sr and other noted above.	5,000	15,000	1,000				

a Where surface contamination by both alpha- and beta/gamma-emitting nuclides exists, the limits established for alpha- and beta/gamma-emitting nuclides should apply independently.

b As used in this table dpm (disintegrations per minute) means the rate of emission by radioactive material as determined by correcting the counts per minute observed by an appropriate detector for background, efficiency, an geometric factors associated with the instrumentation.

c Measurements of average contaminant should not be averaged over more than 1 square meter. For objects of less surface area, the average should be derived for each such object.

d The maximum contamination level applies to an area of not more than 100 cm^2 .

e The amount of removable radioactive material per 100 cm² of surface area should be determined by wiping that area with dry filter or soft absorbent paper, applying moderate pressure, and assessing the amount of radioactive material on the wipe with an appropriate instrument of known efficiency. When removable contamination on objects of less surface area is determined, then pertinent levels should be reduced proportionally and the entire surface should be wiped.

f The average and maximum radiation levels associated with surface contamination resulting from beta-gamma emitters should not exceed 0.2 mRad/hr at 1 cm² and 1.0 mRad/hr at 1 cm², respectively, measured through not more than 7 milligrams per square centimeter of total absorber.

Table 2: STATE OF CA ACCEPTABLE SURFACE CONTAMINATION LEVELS 1							
Nuclides	Average ^{b,c,f} (dpm/100cm ²)	Maximum ^{b,d,f} (dpm/100cm ²)	Removable ^{b,e,f} (dpm/100cm ²)				
U-nat, ²³⁵ U, ²³⁸ U, & associated decay products	5,000	15,000	1,000				
Transuranics, ²²⁶ Ra, ²²⁸ Ra, ²³⁰ Th, ²²⁸ Th, ²³¹ Pa, ²²⁷ Ac, ¹²⁵ I, ¹²⁹ I	100	300	20				
Th-nat, ²³² Th, ⁹⁰ Sr, ²²³ Ra, ²²⁴ Ra, ²³² U, ¹²⁶ I, ¹³³ I, ¹³¹ I	1,000	3,000	200				
Beta/gamma emitters (nuclides with decay modes other than alpha emission or spontaneous fission) except ⁹⁰ Sr and other noted above	5,000	15,000	1,000				

a Where surface contamination by both alpha- and beta/gamma-emitting nuclides exists, the limits established for alpha- and beta/gamma-emitting nuclides should apply independently.

b As used in this table dpm (disintegrations per minute) means the rate of emission by radioactive material as determined by correcting the counts per minute observed by an appropriate detector for background, efficiency, an geometric factors associated with the instrumentation.

c Measurements of average contaminant should not be averaged over more than 1 square meter. For objects of less surface area, the average should be derived for each such object.

d The maximum contamination level applies to an area of not more than 100 cm^2 .

1

- e The amount of removable radioactive material per 100 cm² of surface area should be determined by wiping that area with dry filter or soft absorbent paper, applying moderate pressure, and assessing the amount of radioactive material on the wipe with an appropriate instrument of known efficiency. When removable contamination on objects of less surface area is determined, then pertinent levels should be reduced proportionally and the entire surface should be wiped.
- f The average and maximum radiation levels associated with surface contamination resulting from betagamma emitters should not exceed 0.2 mrad/hr at 1 cm² and 1.0 mrad/hr at 1 cm², respectively, measured through not more than 7 milligrams per square centimeter of total absorber.

Guidelines For Decontamination of Facilities and Equipment Prior to Release for Unrestricted Use or Termination of Licenses For byproduct, Source, or Special Nuclear Material, also known as "Decon-1" incorporated into GA's State of CA Radioactive Materials License.

Table 3: List	of Instruments u	sed for the Non-N	RR Portion o	f the TRIG	A [®] Facility (Building 21)	Final Survey
	Detector	Range (cpm)	Calibration Due Date	Efficiency	Background	Description
			Instrumen	ts used insid	le Building 21	
Ludlum Model 2221 S/N 84459	Ludlum Model 43-37 434 cm ² gas flow proportional Alpha detector S/N 086215	Four Linear Ranges 0-500,000 & one Log 50-500,000	10-28-06 05-15-06	22.14%	$\frac{\text{concrete}}{\text{Scan MDA}} = 109 \text{ dpm}/100 \text{ cm}^2$ $\frac{\text{cement block}}{10.30 \text{ cpm}}$ $\frac{\text{Scan MDA}}{10.40 \text{ cpm}} = 62 \text{ dpm}/100 \text{ cm}^2$ $\frac{\text{metal}}{10.40 \text{ cpm}} = 0.40 \text{ cpm}$ $\frac{\text{glass}}{10.40 \text{ cpm}} - 0.30 \text{ cpm}$ $\frac{\text{Scan MDA}}{10.40 \text{ cpm}} = 47 \text{ dpm}/100 \text{ cm}^2$ $\frac{\text{stucco}}{10.40 \text{ cpm}} = 62 \text{ dpm}/100 \text{ cm}^2$	Active Probe Area = 434 cm^2 . The detector and rate meter are combined and mounted on a roll around cart. The instrument features a static-flow system, quick disconnects, a portable gas bottle and a means to adjust the height of the detector from the floor for optimum performance.
Ludlum Model 2221 S/N 154202	Ludium Model 43-37 434 cm ² gas flow proportional Beta detector S/N 149017	Four Linear Ranges 0-500,000 & one Log 50-500,000	11-23-06 09-22-06 05-15-06	30.39%	<u>concrete</u> - 1300-2000 cpm Scan MDA= 375 dpm/100 cm ² <u>cement block</u> -1600-1900 cpm Scan MDA= 398 dpm/100 cm ² <u>metal</u> -700-1300 cpm Scan MDA= 227 dpm/100 cm ² <u>glass</u> - 1200-1500 cpm Scan MDA= 307 dpm/100 cm ² <u>stucco</u> - 1400-1800 cpm Scan MDA = 364 dpm/100 cm ²	Active Probe Area = 434 cm^2 . The detector and rate meter are combined and mounted on a roll around cart. The instrument features a static-flow system, quick disconnects, a portable gas bottle and a means to adjust the height of the detector from the floor for optimum performance.
Ludlum Modei 2221 S/N 86302	Ludlum Model 43-68 100 cm ² gas flow proportional Beta detector S/N 142547	Four Linear Ranges 0-500,000 & one Log 50-500,000	10-28-06 05-15-06	34.36%	$\frac{\text{concrete} - 948 \pm 256 \text{ cp2m}}{\text{MDA} = 212 \text{ dpm}/100 \text{ cm}^2}$ $\frac{\text{cement block} - 843 \pm 120 \text{ cp2m}}{\text{MDA} = 200 \text{ dpm}/100 \text{ cm}^2}$ $\frac{\text{metal}}{\text{MDA} = 166 \text{ dpm}/100 \text{ cm}^2}$ $\frac{\text{glass}}{\text{glass}} - 630 \pm 123 \text{ cp2m}}{\text{MDA} = 174 \text{ dpm}/100 \text{ cm}^2}$ $\frac{\text{stucco}}{\text{stucco}} - 777 \pm 85 \text{ cp2m}}{\text{MDA} = 193 \text{ dpm}/100 \text{ cm}^2}$ $\frac{\text{asphalt}}{\text{asphalt}} - 1376 \pm 74 \text{ cp2m}}{\text{MDA} = 255 \text{ dpm}/100 \text{ cm}^2}$	Active Probe Area = 100 cm^2 . The detector and rate meter are combined on a roll around cart. The instrument features a static-flow system, quick disconnects and a portable gas bottle.

1

i: 1

T-3

-Ć

Instrument	Detector	Ránge (cpm)	Calibration Due Date	Efficiency	Background	Description
Ludium Model 3 S/N 153551	Ludlum Model 44-10 NaI (TI) Scintillator Gamma detector S/N 155109	Five Ranges O-500 μR/hr	09-05-06 07-14-06 05-03-06 02-27-06	N/A	uR/hr soil 12-18 @ contact 12-17 @ Imeter concrete 15-21 @ contact 15-21 @ Imeter cement block 14-19 @ contact 14-18 @ Imeter metal 9-13 @ contact 10-13 @ Imeter glass 12-15 @ contact 13-15 @ Imeter stucco 10-15 @ contact 11-15 @ Imeter	2 inch x 2 inch NaI (TI) scintillator. Used for measuring external dose rates at the surface and at 1 meter.
Ludlum Model 3 S/N 151348	Ludlum Model 44-10 NaI (TI) Scintillator Gamma detector S/N 163169	Five Ranges 0-500 μR/hr	10-04-06 06-30-06 04-14-06	N/A	<u>soil</u> 12-21μR/hr @ contact 12-19 μR/hr @ 1 meter <u>concrete</u> 17-23 μR/hr @ 1 meter 17-22 μR/hr @ 1 meter asphalt 20-23 μR/hr contact 18-21 μR/hr @1 meter	external dose rates at the surface and at 1 meter
Ludlum Model 3 S/N131601	Ludlum Model 44-62 Nal (TI) Scintillator Gamma detector S/N 158626	Five Ranges 0-500 μR/hr	09-06-06	N/A	Aluminum Pipe - 6-17 μR/hr Steel Pipe - 5-13 μR/hr PVC Pipe - 7-17 μR/hr	1/2 inch x 1 inch NaI (TI) scintillator. Used for measuring internal dose rates of pipes.
Ludlum	Ludlum Model 44-9 15 cm2	Four Ranges	10-28-06		Concrete-60-80 cpm	The instrument is used for beta/gamma surveying. The

Instrument	t of Instruments us Detector	Range (cpm)	Calibration Due	Efficiency	Background	Description
Model 3 S/N 138880	Beta/Gamma detector S/N 117851	0-100,000 cpm	05-21-06	26.14%	Cement Block- 50-80 cpm Metal- 40-70 cpm	detector has an active probe area of 15 cm ² .
Ludhum Model 12 S/N 138738	Ludlum Model 43-65 Alpha Scintillator ZnS(Ag) Alpha detector S/N 145696	Four Ranges 0-500,000	08-16-06	22.14%	0-20 cpm (all) MDA = 212 dpm/100 cm ²	Active Probe Area = 50 cm^2 . Used for Alpha surveying and fixed measurements.
Ludlum Model 12 S/N 91055	Ludlum Model 43-65 Alpha Scintillator ZnS(Ag) Alpha detector S/N 092190	Four Ranges 0-500,000	03-21-06	22.14%	0-20 cpm (all) MDA = 212 dpm/100 cm ²	Active Probe Area = 50 cm^2 . Used for Alpha surveying and fixed measurements.
Canberra Low Level α/β Counter Model 2404	Gas Flow Proportional Detector	N/A	As needed	~26-30%	Varies with Sample	Canberra Model 2404 Low Level α/β gas proportional counting system used to count wipes for removable contamination. Results are usually reported as dpm/100 cm
Canberra Gamma Spectroscopy System	High Purity Germanium Detector	N/A	As needed	Varies with Sample	Varies with Sample	Gamma Spectroscopy MCA system using a high purity Germanium detector
		Instr	uments used	on TRIGA I	Non-NRR Land Area	
Ludium Model 222 1 S/N 84459	Ludlum Model 43-37 434 cm ² gas flow proportional Alpha detector S/N 086215	Four Linear Ranges 0-500,000 & one Log 50-500,000	07-12-05	22.14%	$\frac{\text{concrete}}{\text{Scan MDA}} = 109 \text{ dpm}/100 \text{ cm}^2$ $a \frac{\text{sphalt}}{\text{sphalt}} - 0.80 \text{ cpm}$ $Scan MDA = 125 \text{ dpm}/100 \text{ cm}^2$ $\frac{\text{metal}}{\text{metal}} - 0.40 \text{ cpm}$ $Scan MDA = 62 \text{ dpm}/100 \text{ cm}^2$	Active Probe Area = 434 cm^2 . The detector and rate meter are combined and mounted on a roll around cart. The instrument features a static-flow system, quick disconnects, portable gas bottle and a means to adjust the height of the detector from the floor for optimum performance.
Ludium Model 2221	Ludlum Model 43-37 434 cm ² gas flow proportional	Four Linear Ranges 0-500,000 & one Log	12-27-05	30.39%	<u>concrete</u> -1300-2000 cpm Scan MDA = 375 dpm/100 cm ² <u>asphalt</u> -2000-2800 cpm	Active Probe Area = 434 cm^2 . The detector and rate meter are combined and mounted on a roll around cart. The instrument features a static-flow system, quick disconnects,

Table 3: List	of Instruments us	sed for the Non-N	RR Portion o	the TRIG	A [®] Facility (Building 21)	Final Survey
Instrument	Detector	Range (cpm)	Calibration Due Date	Efficiency	Background	Description
S/N 154202	Beta detector S/N 149017	50-500,000			Scan MDA = 546 dpm/100 cm ² <u>metal</u> - 700-1300 cpm Scan MDA = 227 dpm/100 cm ²	portable gas bottle and a means to adjust the height of the detector from the floor for optimum performance.
Ludlüm Model 2221 S/N 86302	Ludlum Model 43-68 100 cm ² gas flow proportional Beta detector S/N 142547	Four Linear Ranges 0-500,000 & one Log 50-500,000	07-12-05 12-27-05	34.36%	<u>concrete</u> - 1042 ± 90 cp2m MDA = 222 dpm/100 cm ² <u>asphalt</u> - 1371 ± 55cp2m MDA = 254 dpm/100 cm ²	Active Probe Area = 100 cm^2 . The detector and rate meter are combined on a roll around cart. The instrument features a static-flow system, quick disconnects and a portable gas bottle.
Ludlum Model 12 S/N 138738	Ludlum Model 43-65 Alpha Scintillator ZnS(Ag) Alpha detector S/N 073360	Four Ranges 0-500,000	12-02-05	21.02%	0-20 cpm (all) MDA ≠ 160 dpm/100 cm² (all)	Active Probe Area = 50 cm ² . Used for Alpha surveying and fixed measurements.
Ludlum Model 3 S/N 151348	Ludlum Model 44-10 Nal (Tl) Scintillator Gamma detector S/N 163169	Five Ranges 0-500 µR/hr	08-02-05 10-19-05 10-04-06	NA	<u>soil</u> - 13-19 μR/hr @ contact 13-17 μR/hr @ 1 meter <u>concrete</u> 17-22 μR/hr @ 1 meter <u>asphalt</u> - 19-20 μR/hr @1 meter	2 inch x 2 inch NaI (TI) scintillator. Used for measuring external dose rates at the surface and at 1 meter.
Canberra Low Level α/β Counter Model 2404	Gas Flow Proportional Detector	N/A	As needed	~26-30%	Varies with Sample	Canberra Model 2404 Low Level α/β gas proportional counting system used to count wipes for removable contamination. Results are usually reported as dpm/100 cm ² .
Canberra Gamma Spectroscopy System	High Purity Germanium Detector	N/A	As needed	Varies with Sample	Varies with Sample	Gamma Spectroscopy MCA system using a high purity Germanium detector

Table	Table 4: General Atomics Gamma Spectroscopy Results of Background Surface Soil Samples September 24, 2002									
Energy Peaks	¹³⁷ Cs 661.6 keV	⁶⁰ Co 1173 keV	²²⁸ Th 238 keV (²¹² Pb)	²²⁸ Ra (²³² Th) 911 keV (²²⁸ Ac)	^(Total) Th ²²⁸ Th + ²³² Th	²³⁸ U 63.3 (92.7) keV (²³⁴ Th)	²³⁵ U 144 (186) keV			
Sample ID)	Radionuclide Conc	entrations (pCi/g) - Res	ults ± 2o - 30 Minute C	Counts				
	Samples collected June, 2000 Re- analyzed November, 2001									
X-1	ND^1	ND	0.49 ± 0.15	1.25 ± 0.34	1.74 ± 0.48	ND	ND			
X-2	ND	ND	0.91 ± 0.23	0.91 ± 0.23	1.81 ± 0.46	1.17 ± 1.13	(0.09 ± 0.05)			
X-3	ND	ND	1.40 ± 0.27	1.79 ± 0.37	3.19 ± 0.63	1.51 ± 1.20	(0.09 ± 0.09)			
X-4	0.08 ± 0.07	ND	1.71 ± 0.31	2.08 ± 0.47	3.78 ± 0.78	ND	(0.18 ± 0.13)			
X-5	ND	ND	1.52 ± 0.29	2.83 ± 0.70	4.35 ± 0.99	ND	(0.20 ± 0.15)			
X-6	ND	ND	1.14 ± 0.32	1.12 ± 0.26	2.25 ± 0.58	ND	(0.09 ± 0.05)			
X-7	0.11 ± 0.07	ND	1.68 ± 0.24	2.18 ± 0.47	3.86 ± 0.71	ND	(0.22 ± 0.10)			
X-8	ND	ND	2.32 ± 0.38	2.14 ± 0.54	4.45 ± 0.92	ND	(0.26 ± 0.14)			
X-9	ND	ND	0.61 ± 0.15	1.59 ± 0.42	2.20 ± 0.57	ND	ND			
X-10	0.09 ± 0.06	ND	1.59 ± 0.26	1.39 ± 0.36	2.98 ± 0.61	0.75 ± 1.22	(0.13 ± 0.07)			
		<u> </u>	Samples collected a	and analyzed Septembe	er, 2002					
X-11	0.23 ± 0.07	ND	1.37 ± 0.29	1.71 ± 0.37	3.07 ± 0.66	1.13 ± 1.30	(0.25 ± 0.11)			
X-12	0.31 ± 0.08	ND	0.50 ± 0.08	0.65 ± 0.18	1.14 ± 0.26	ND	(0.11 ± 0.07)			
X-13	ND	ND	0.95 ± 0.20	1.13 ± 0.23	2.08 ± 0.43	1.29 ± 0.99	(0.14 ± 0.05)			

 1 ND = Energy peak not identified

Table 4 (cont	inued): Gen	eral Atomic	cs Gamma Sp	ectroscopy Resi	ults of Backgrou		oil Samples ember 24, 2002
Energy Peaks	¹³⁷ Cs 661.6 keV	⁶⁰ Co 1173 keV	²²⁸ Th 238 keV (²¹² Pb)	²²⁸ Ra (²³² Th) 911 keV (²²⁸ Ac)	^(Total) Th ²²⁸ Th + ²³² Th	²³⁸ U 63.3 (92.7) keV (²⁹⁴ Th)	235U 144 (186) keV
Sample ID.		addar Alar Alar Alar	Radionuclide Conce	entrations (pCi/g) - Res	ults $\pm 2\sigma$ - 30 Minute C	ounts	Ale and a second se
X-14	ND	ND	1.42 ± 0.19	1.59 ± 0.29	3.01 ± 0.48	0.67 ± 0.71	(0.11 ± 0.05)
X-15	ND	ND	0.37 ± 0.09	0.56 ± 0.16	0.92 ± 0.25	0.50 ± 0.66	(0.04 ± 0.04)
X-16	0.06 ± 0.03	ND	0.97 ± 0.22	1.15 ± 0.23	2.12 ± 0.45	ND	(0.10 ± 0.05)
X-17	ND	ND	0.80 ± 0.12	0.96 ± 0.40	1.76 ± 0.52	ND	ND
X-18	0.25 ± 0.07	ND	0.77 ± 0.21	0.94 ± 0.24	1.71 ± 0.45	0.92 ± 0.94	(0.13 ± 0.08)
X-19	ND	ND	0.72 ± 0.12	0.68 ± 0.23	1.40 ± 0.35	ND	(0.11 ± 0.07)
X-20	ND	ND	1.42 ± 0.17	1.40 ± 0.27	2.82 ± 0.45	ND	(0.20 ± 0.09)
X-21	ND	ND	1.51 ± 0.32	1.48 ± 0.30	2.99 ± 0.62	2.47 ± 1.71	0.26 ± 0.23
X-22	0.07 ± 0.05	ND	0.85 ± 0.12	0.98 ± 0.29	1.83 ± 0.41	ND	(0.10 ± 0.08)
X-23	ND	ND	1.17 ± 0.15	1.33 ± 0.28	2.50 ± 0.42	ND	(0.10 ± 0.05)
X-24	ND	ND	2.03 ± 0.26	1.70 ± 0.33	3.73 ± 0.59	1.75 ± 1.37	(0.17 ± 0.06)
X-25	ND	ND	1.44 ± 0.29	1.36 ± 0.28	2.80 ± 0.57	1.52 ± 1.26	(0.19 ± 0.08)
X-26	ND	ND	1.81 ± 0.24	1.41 ± 0.31	3.22 ± 0.54	0.68 ± 0.96	(0.13 ± 0.06)
X-27	ND	ND	1.65 ± 0.20	2.00 ± 0.34	3.65 ± 0.54	ND	(0.15 ± 0.07)
X-28	ND	ND	1.40 ± 0.20	1.47 ± 0.33	2.87 ± 0.54	1.35 ± 1.03	(0.28 ± 0.07)
X-29	0.01 ± 0.07	ND	0.81 ± 0.17	1.61 ± 0.34	2.42 ± 0.51	ND	(0.09 ± 0.06)
X-30	ND	ND	1.90 ± 0.22	1.88 ± 0.33	3.79 ± 0.55	2.67 ± 1.79	(0.35 ± 0.11)

Table 4 (continued): General Atomics Gamma Spectroscopy Results of Background Surface Soil Samples September 24, 2002

Sample Locations:

- X1 Sorrento Valley Road near sample location ST65 on the hillside ~1 mile from Building 37.
- X2 Sorrento Valley Road near Carmel Mountain Road junction on steep cliff.
- X3 Sorrento Valley Road in Los Penasquitos Preserve ~2 miles from Building 37.
- X4 Sorrento Valley Court at the end of the road in the field.
- X5 Roselle Street, East of sample location ST64 ~ ½ mile from Building 37 (collected on the hillside)
- X6 Roselle Street, East of sample location ST64 ~1 ½ mile from Building 37 (collected on hillside).
- X7 Lusk Boulevard, from the hillside $\sim 1 \frac{1}{2}$ miles from Building 37 (collected on the hillside).
- X8 Vista Sorrento Parkway, ~ ½ mile from Building 37 (collected on the hillside).
- X9 Callahan Road, ~ ¹/₂ mile from Building 37 (collected on the hillside).
- X10 Eastgate Mall road, ~3 miles from Building 37 (collected in a field).
- X11 Creek Road (North County).
- X12 Canyon de Oro (North County).
- X13 Palomar (North E County).
- X14 Deer Springs Rd. (North County).
- X15 Rice Canyon Rd. (North County).
- X16 Las Pulgas Rd. (North County).
- X17 Boderfield Park (South W County).
- X18 Otay Mesa (South E County).
- X19 Sunset Cliff (South W County).
- X20 Marion Bear Park (South County).
- X21 Mission Valley (South County).
- X22 Santee (South E County)
- X23 Ramona (East County).
- X24 Via Abitura (San Diego).
- X25 Black Mtn. Park (San Diego).
- X26 Park Village (San Diego).
- X27 Harris Plant Rd. (San Diego).
- X28 Daley Center Dr. (San Diego).
- X29 Harbison Canyon (East County).
- X30 Apple St. (East San Diego).

Table 5: Gi	Table 5: Gamma Spectroscopy Results of Soil Samples taken from Room 113, 114 and 115 Pipe Excavation Trench and Trench Outside Room 111 (External to Building 21)									
Energy Peaks →	¹³⁷ Cs -661.6 keV	⁶⁰ Co 1173 keV	²²⁸ Th 238 keV (²¹² Pb)	²²⁸ Ra (²³² Th) 911 keV (²²⁸ Ac)	^(Total) Th ²²⁸ Th + ²³² Th	²³⁸ U 63.3 (92.7) keV (²³⁴ Th)	²³⁵ U (144) 186 keV			
Sample ID Radionuclide Concentrations ($\rho Ci/g$) - Results $\pm 2\sigma$ - 30 Minute Counts (except as noted) - Backgrounds Not Subtracted										
B21-1	ND	ND	0.77 ± 0.17	1.40 ± 0.34	2.17 ± 0.51	ND	0.07 ± 0.06			
B21-2	ND	ND	0.93 ± 0.19	1.19 ± 0.28	2.12 ± 0.47	ND	ND			
B21-3	0.18 ± 0.09	ND	1.32 ± 0.24	1.61 ± 0.42	2.93 ± 0.66	ND	ND			
B21-4	ND	ND	0.85 ± 0.24	1.41 ± 0.31	2.26 ± 0.55	ND	ND			
B21-5	ND	ND	0.88 ± 0.22	1.35 ± 0.45	2.23 ± 0.67	ND	0.07 ± 0.08			
B21-6	ND	ND	0.76 ± 0.19	1.17 ± 0.39	1.93 ± 0.58	ND	0.06 ± 0.07			
B21-7	0.04 ± 0.05	ND	0.79 ± 0.18	1.40 ± 0.33	2.19 ± 0.51	ND	0.11 ± 0.09			
B21-8	ND	ND	1.33 ± 0.24	1.32 ± 0.35	2.65 ± 0.59	ND	ND			
B21-9	0.04 ± 0.06	ND	1.26 ± 0.24	1.50 ± 0.37	2.76 ± 0.61	ND	ND			
B21-10	ND	ND	1.08 ± 0.21	1.46 ± 0.35	2.54 ± 0.56	ND	ND			
B21-11	ND	0.07 ± 0.06	0.68 ± 0.16	1.31 ± 0.37	1.99 ± 0.53	ND	0.08 ± 0.09			
B21-12	ND	ND	0.84 ± 0.14	1.32 ± 0.31	2.16 ± 0.45	ND	0.07 ± 0.09			
B21-13	0.04 ± 0.05	ND	0.60 ± 0.14	1.31 ± 0.36	1.91 ± 0.50	ND	0.15 ± 0.09			
B21-14	ND	ND	0.60 ± 0.13	1.16 ± 0.33	1.76 ± 0.46	ND	0.05 ± 0.06			
B21-15	ND	ND	0.51 ± 0.13	0.91 ± 0.26	1.42 ± 0.39	ND	0.13 ± 0.10			
B21-16	ND	ND	1.03 ± 0.19	1.48 ± 0.35	2.51 ± 0.54	ND	0.15 ± 0.08			

5.

Table 5: Gamma Spectroscopy Results of Soil Samples taken from Room 113, 114 and 115 Pipe Excavation Trench and Trench Outside Room 111 (External to Building 21)										
Energy Peaks →	¹³⁷ Cs 661.6 keV	⁶⁰ Co 1173 keV	²²⁸ Th 238 keV (²¹² Pb)	²²⁸ Ra (²³² Th) 911 keV (²²⁸ Ac)	(Total) Th ²²⁸ Th + ²³² Th	²³⁸ U 63.3 (92.7) keV (²³⁴ Th)	²³⁵ U (144) 186 keV			
Sample ID	Radion	uclide Concentra	ttions (pCi/g) - Res	ults ± 2 <i>o</i> - 30 Minute	Counts (except as no	ted) - Backgrounds [<u>Not</u> Subtracted			
B21-17	ND	ND	0.52 ± 0.12	1.01 ± 0.29	1.53 ± 0.41	ND	0.09 ± 0.07			
B21-18	ND	ND	0.37 ± 0.09	0.83 ± 0.29	1.20 ± 0.38	ND	ND			
B21-19	ND	ND	0.68 ± 0.14	0.97 ± 0.31	1.65 ± 0.45	ND	0.09 ± 0.05			
B21-20	0.07 ± 0.06	ND	1.05 ± 0.16	1.32 ± 0.38	2.37 ± 0.54	ND	0.20 ± 0.12			
B21-21	ND	ND	0.64 ± 0.11	0.70 ± 0.29	1.34 ± 0.40	ND	ND			
B21-22	0.33 ± 0.11	ND	1.24 ± 0.31	1.59 ± 0.36	2.83 ± 0.67	ND	0.15 ± 0.07			
B21-23	0.03 ± 0.05	ND	0.73 ± 0.15	1.49 ± 0.42	2.22 ± 0.57	ND	0.06 ± 0.07			
B21-24	0.08 ± 0.08	ND	1.19 ± 0.18	1.81 ± 0.44	3.00 ± 0.62	ND	0.13 ± 0.09			
B21-25	0.26 ± 0.10	ND	1.06 ± 0.27	1.51 ± 0.37	2.57 ± 0.64	ND	0.15 ± 0.07			
B21-26	0.25 ± 0.09	ND	0.95 ± 0.19	1.07 ± 0.35	2.02 ± 0.54	ND	ND			
B21-27	0.94 ± 0.15	ND	0.78 ± 0.13	1.05 ± 0.31	1.83 ± 0.44	ND	ND			
B-21-40	11.01±1.12	0.83 ± 0.16	0.59 ± 0.15	0.77 ± 0.28	1.36 ± 0.43	ND	0.25 ± 0.07			
B-21-41	0.77 ± 0.12	ND	1.03 ± 0.19	0.81 ± 0.24	1.84 ± 0.43	ND	0.08 ± 0.07			
B-21-42	0.07 ± 0.06	ND	1.19 ± 0.19	0.90 ± 0.27	2.09 ± 0.46	ND	0.11 ± 0.06			

Notes: 1. ND means not detected.

2. Average Minimum Detectable Activities (MDAs):

U-238 = 1.58 pCi/g (63 keV peak)

U-235 = 0.14 pCi/g (186 keV peak)

Co-60 = 0.16 pCi/g (1173 keV peak) Th-228 = 0.21 pCi/g (238 keV peak)

Cs-137 = 0.13 pCi/g (662 keV peak) Th-2.

Th-232 = 0.43 pCi/g (911 keV peak)

3. Shaded data (soil sample B21-40) is for soil/debris removed and disposed of as low level radioactive waste.

	Table 6: Gamma Spectroscopy Results of TRIGA® Non-NRR Soil Samples										
Energy Peaks →	¹³⁷ Cs 661.6 keV	⁶⁰ Co 1173 keV	²²⁸ Th 238 keV (²¹² Pb)	²²⁸ Ra (²³² Th) 911 keV (²²⁸ Ac)	^(Total) Th ²²⁸ Th + ²³² Th	²³⁸ U 63.3 (92.7) keV (²³⁴ Th)	²³⁵ U (144) 186 keV				
Sample ID	Radionuc	lide Concentrat	ions (ρCi/g) - Resu	lts $\pm 2\sigma$ - 30 Minute Co	ounts (except as noted)	- Backgrounds <u>N</u>	ot Subtracted				
Non-NRR-1	ND	ND	0.95 ± 0.19	1.72 ± 0.42	2.67 ± 0.64	ND	0.10 ± 0.07				
Non-NRR-2	0.18 ± 0.07	ND	1.11 ± 0.17	1.82 ± 0.41	2.93 ± 0.58	ND	ND				
Non-NRR-3	0.54 ± 0.12	ND	1.00 ± 0.19	1.40 ± 0.40	2.40 ± 0.19	ND	ND				
Non-NRR-4	0.19 ± 0.08	ND	1.26 ± 0.25	1.48 ± 0.41	2.74 ± 0.66	ND	ND				
Non-NRR-5	0.06 ± 0.07	ND	0.76 ± 0.16	1.48 ± 0.39	2.24 ± 0.55	ND	ND				
Non-NRR-6	0.49 ± 0.12	ND	1.05 ± 0.21	1.17 ± 0.39	2.22 ± 0.60	ND	0.08 ± 0.06				
Non-NRR-7	0.04 ± 0.05	ND	0.79 ± 0.18	1.40 ± 0.33	2.19 ± 0.51	ND	0.11 ± 0.09				
Non-NRR-8	ND	ND	1.33 ± 0.24	1.32 ± 0.35	2.65 ± 0.59	ND	ND				
Non-NRR-9	0.04 ± 0.06	ND	1.26 ± 0.24	1.50 ± 0.37	2.76 ± 0.61	ND	ND				
Non-NRR-10	ND	ND	1.08 ± 0.21	1.46 ± 0.35	2.54 ± 0.56	ND	ND				
Non-NRR-11	ND	0.07 ± 0.06	0.68 ± 0.16	1.31 ± 0.37	1.99 ± 0.53	ND	0.08 ± 0.09				
Non-NRR-12	ND	ND	0.84 ± 0.14	1.32 ± 0.31	2.16 ± 0.45	ND	0.07 ± 0.09				
Non-NRR-13	0.10 ± 0.07	ND	1.34 ± 0.26	1.75 ± 0.44	3.09 ± 0.70	ND	0.12 ± 0.10				
Non-NRR-14	ND	ND	1.50 ± 0.36	2.29 ± 0.52	3.79 ± 0.88	ND	ND				
Non-NRR-15	ND	ND	1.61 ± 0.31	1.84 ± 0.46	3.45 ± 0.77	ND	ND				
Non-NRR-16	ND	ND	1.66 ± 0.24	2.14 ± 0.48	3.80 ± 0.72	1.42 ± 1.32	0.22 ± 0.10				
Non-NRR-17	ND	ND	1.61 ± 0.38	2.19 ± 0.49	3.80 ± 0.87	ND	0.07 ± 0.14				

T-12

	Table 6: Gamma Spectroscopy Results of TRIGA® Non-NRR Soil Samples										
Energy Peaks →	¹³⁷ Cs 661.6 keV	⁶⁰ Со 1173 keV	²²⁸ Th 238 keV (²¹² Pb)	²²⁸ Ra (²³² Th) 911 keV (²²⁸ Ac)	^(Total) Th ²²⁸ Th + ²³² Th	²³⁸ U 63.3 (92.7) keV (²³⁴ Th)	²³⁵ U (144) 186 keV				
Sample ID	Radionuc	lide Concentrat	ions (pCi/g) - Resu	lts ±2σ - 30 Minute Ce	ounts (except as noted) - Backgrounds <u>N</u>	ot Subtracted				
Non-NRR-18	0.51 ± 0.13	ND	1.00 ± 0.18	1.66 ± 0.39	2.66 ± 0.57	1.00 ± 1.12	0.09 ± 0.09				
Non-NRR-19	0.27 ± 0.12	ND	1.58 ± 0.24	1.87 ± 0.55	3.45 ± 0.79	ND	ND				
Non-NRR-20	0.76 ± 0.15	ND	1.58 ± 0.28	1.87 ± 0.41	3.45 ± 0.69	ND	0.14 ± 0.09				
Non-NRR-21	0.26 ± 0.09	ND	0.88 ± 0.18	1.73 ± 0.46	2.61 ± 0.64	ND	0.11 ± 0.08				
Non-NRR-22	0.33 ± 0.11	ND	1.23 ± 0.31	1.59 ± 0.36	2.82 ± 0.67	ND	0.15 ± 0.07				
Non-NRR-23	0.03 ± 0.05	ND	0.73 ± 0.15	1.49 ± 0.42	2.22 ± 0.57	ND	0.06 ± 0.07				
Non-NRR-24	0.08 ± 0.08	ND	1.19 ± 0.18	1.81 ± 0.44	3.00 ± 0.62	ND	0.13 ± 0.09				
Non-NRR-25	0.26 ± 0.10	ND	1.06 ± 0.27	1.51 ± 0.37	2.57 ± 0.64	ND	0.15 ± 0.07				
Non-NRR-26	0.25 ± 0.09	ND	0.95 ± 0.19	1.07 ± 0.35	2.02 ± 0.54	ND	ND				
Non-NRR-27	0.94 ± 0.15	ND	0.78 ± 0.13	1.05 ± 0.31	1.83 ± 0.44	ND	ND				
Non-NRR-28	ND	ND	1.04 ± 0.22	1.38 ± 0.33	2.42 ± 0.55	ND	ND				
Non-NRR-29	ND	ND	0.82 ± 0.13	1.07 ± 0.38	1.89 ± 0.51	ND	0.07 ± 0.06				
Non-NRR-30	ND	ND	0.53 ± 0.13	1.25 ± 0.35	1.78 ± 0.48	ND	0.11 ± 0.08				
Non-NRR-31	ND	ND	0.58 ± 0.13	0.99 ± 0.31	1.57 ± 0.44	ND	ND				
Non-NRR-32	ND	ND	0.71 ± 0.22	0.92 ± 0.27	1.63 ± 0.49	ND	0.05 ± 0.06				
Non-NRR-33	0.09 ± 0.07	ND	1.14 ± 0.18	1.28 ± 0.34	2.42 ± 0.52	ND	0.09 ± 0.08				
Non-NRR-34	ND	ND	1.22 ± 0.26	1.63 ± 0.42	2.85 ± 0.68	0.45 ± 1.12	0.08 ± 0.07				

	Table 6: Gamma Spectroscopy Results of TRIGA® Non-NRR Soil Samples										
Energy Peaks →	¹³⁷ Cs 661.6 keV	⁶⁰ Co 1173 keV	²²⁸ Th 238 keV (²¹² Pb)	²²⁸ Ra (²³² Th) 911 keV (²²⁸ Ac)	^(Total) Th 228Th + 222Th	²³⁸ U 63.3 (92.7) keV (²³⁴ Th)	²³⁵ U (144) 186 keV				
Sample ID ↓	Radionuc	lide Concentral	tions (ρCi/g) - Resu	ılts ± 2σ - 30 Minute Co	ounts (except as noted)	- Backgrounds <u>N</u>	ot Subtracted				
Non-NRR-35	ND	ND	1.02 ± 0.27	1.53 ± 0.40	2.55 ± 0.67	0.64 ± 0.83	0.08 ± 0.07				
Non-NRR-36	ND	ND	0.88 ± 0.24	1.19 ± 0.33	2.07 ± 0.57	ND	0.08 ± 0.07				
Non-NRR-37	0.03 ± 0.05	ND	0.90 ± 0.24	1.30 ± 0.35	2.20 ± 0.59	ND	ND				
Non-NRR-38	ND	ND	1.18 ± 0.18	1.69 ± 0.36	2.87 ± 0.54	ND	0.09 ± 0.06				
Non-NRR-39	ND	ND	0.42 ± 0.13	0.90 ± 0.26	1.32 ± 0.39	ND	ND				
Non-NRR-40	ND	ND	1.02 ± 0.25	1.19 ± 0.36	2.21 ± 0.61	ND	0.08 ± 0.07				
Non-NRR-41	ND	ND	0.92 ± 0.27	1.27 ± 0.36	2.19 ± 0.63	ND	0.09 ± 0.06				
Non-NRR-42	ND	ND	1.42 ± 0.22	1.60 ± 0.44	3.02 ± 0.66	ND	ND				
Non-NRR-43	ND	ND	1.74 ± 0.30	2.06 ± 0.47	3.80 ± 0.77	ND	0.21 ± 0.12				
Non-NRR-44	0.13 ± 0.07	ND	0.84 ± 0.14	1.29 ± 0.37	2.13 ± 0.51	ND	0.08 ± 0.06				
Non-NRR-45	ND	ND	0.62 ± 0.16	1.26 ± 0.30	1.88 ± 0.46	ND	ND				
Non-NRR-46	ND	ND	0.80 ± 0.14	1.37 ± 0.35	2.17 ± 0.49	ND	ND				
Non-NRR-47	ND	ND	0.97 ± 0.18	1.48 ± 0.41	2.45 ± 0.59	ND	0.16 ± 0.09				
Non-NRR-48 0-6"	0.53 ± 0.12	ND	1.01 ± 0.22	2.00 ± 0.42	3.01 ± 0.64	ND	ND				
Non-NRR-48 6"-12"	0.14 ± 0.08	ND	1.72 ± 0.25	2.34 ± 0.47	4.06 ± 0.72	ND	0.09 ± 0.09				

	Tab	le 6: Gamm	a Spectroscopy	Results of TRIGA	^a Non-NRR Soil S	Samples	
Energy Peaks →	¹³⁷ Cs 661.6 keV	⁶⁰ Co 1173 keV	²²⁸ Th 238 keV (²¹² Pb)	²²⁸ Ra (²³² Th) 911 keV (²²⁸ Ac)	^(Total) Th ²²⁸ Th + ²³² Th	²³⁸ U 63.3 (92.7) keV (²³⁴ Th)	²³⁵ U (144) 186 keV
Sample ID ↓	Radionuc	lide Concentral	tions (pCi/g) - Resi	ilts ± 2σ - 30 Minute C	ounts (except as noted) - Backgrounds <u>N</u>	<u>ot</u> Subtracted
Non-NRR-48 12"-18"	0.08 ± 0.09	ND	1.26 ± 0.19	2.33 ± 0.52	3.59 ± 0.71	ND	0.10 ± 0.08
Non-NRR-48 18"-24"	0.19 ± 0.08	ND	1.12 ± 0.24	1.96 ± 0.48	3.08 ± 0.72	0.95 ± 1.25	0.11 ± 0.09
Non-NRR-48 24"-30"	ND	ND	1.36 ± 0.32	1.91 ± 0.45	3.27 ± 0.77	ND	0.17 ± 0.12
Non-NRR-48 30"-36"	0.21 ± 0.07	ND	0.98 ± 0.23	1.58 ± 0.51	2.56 ± 0.74	ND	ND
Non-NRR-49 0-6"	0.11 ± 0.07	ND	1.68 ± 0.30	1.83 ± 0.48	3.51 ± 0.78	ND	0.14 ± 0.11
Non-NRR-49 6"-12"	ND	ND	1.31 ± 0.24	2.12 ± 0.49	3.43 ± 0.73	ND	0.13 ± 0.10
Non-NRR-49 12"-18"	0.14 ± 0.09	ND	1.52 ± 0.27	2.05 ± 0.47	3.57 ± 0.74	ND	0.15 ± 0.10
Non-NRR-49 18"-24"	ND	ND	1.10 ± 0.30	1.51 ± 0.42	2.61 ± 0.72	ND	ND
Non-NRR-49 24"-30"	ND	ND	0.89 ± 0.27	1.16 ± 0.35	2.05 ± 0.62	ND	0.05 ± 0.09
Non-NRR-49 30"-36"	ND	ND	1.07 ± 0.31	1.51 ± 0.41	2.58 ± 0.72	ND	0.06 ± 0.07
Non-NRR-50 0-6"	ND	ND	0.84 ± 0.14	1.13 ± 0.34	1.97 ± 0.48	ND	0.13 ± 0.08

χ.

	Tab	le 6: Gamm	ia Spectroscopy	Results of TRIGA	A [®] Non-NRR Soil .	Samples	
Energy Peaks →	¹³⁷ Cs 661.6 keV	⁶⁰ Co 1173 keV	²²⁸ Th 238 keV (²¹² Pb)	²²⁸ Ra (¹³² Th) 911 keV (²²⁸ Ac)	^(Total) Th ²²⁸ Th + ²³² Th	²³⁸ U 63.3 (92.7) keV (²³⁴ Th)	²³⁵ U (144) 186 keV .
Sample ID	Radionuc	lide Concentra	tions (ρCi/g) - Resi	ults ± 2σ - 30 Minute C	ounts (except as noted) - Backgrounds <u>N</u>	ot Subtracted
Non-NRR-50 6"-12"	ND	ND	0.81 ± 0.26	1.22 ± 0.38	2.03 ± 0.64	ND	0.08 ± 0.06
Non-NRR-50 12"-18"	ND	ND	0.58 ± 0.13	1.14 ± 0.34	1.72 ± 0.47	ND	0.06 ± 0.10
Non-NRR-50 18"-24"	ND	ND	0.70 ± 0.15	1.01 ± 0.34	1.71 ± 0.49	0.59 ± 0.90	0.12 ± 0.07
Non-NRR-50 24"-30"	ND	ND	1.18 ± 0.24	1.01 ± 0.31	2.19 ± 0.55	ND	0.10 ± 0.10
Non-NRR-50 30"-36"	ND	ND	0.66 ± 0.14	1.05 ± 0.33	1.71 ± 0.47	ND	0.09 ± 0.09
Non-NRR-51 0-6"	0.11 ± 0.05	ND	0.99 ± 0.16	1.35 ± 0.36	2.34 ± 0.52	ND	0.11 ± 0.06
Non-NRR-51 6"-12"	0.11 ± 0.08	ND	1.19 ± 0.30	1.49 ± 0.40	2.68 ± 0.70	1.19 ± 1.34	0.10 ± 0.08
Non-NRR-51 12'-18"	ND	ND	1.23 ± 0.18	1.60 ± 0.38	2.83 ± 0.56	ND	0.11 ± 0.09
Non-NRR-51 18"-24"	ND	ND	1.67 ± 0.31	2.02 ± 0.47	3.69 ± 0.78	1.24 ± 1.32	0.10 ± 0.09
Non-NRR-51 24"-30"	0.08 ± 0.09	ND	1.11 ± 0.17	1.64 ± 0.38	2.75 ± 0.55	1.10 ± 1.04	0.10 ± 0.08
Non-NRR-51 30"-36"	0.10 ± 0.08	ND	1.18 ± 0.29	1.48 ± 0.38	2.66 ± 0.67	ND	0.13 ± 0.08

		le 6: Gamm	a Spectroscopy	Results of TRIGA	[®] Non-NRR Soil S	Samples	
Energy Peaks →	¹³⁷ Cs 661.6 keV	⁶⁰ Co 1173 keV	²²⁸ Th 238 keV (²¹² Pb)	²²⁸ Ra (²³² Th) 911 keV (²²⁸ Ac)	^(Total) Th ²²⁸ Th + ²³² Th	²³⁸ Ú 63.3 (92.7) keV (²³⁴ Th)	²³⁵ U (144) 186 keV
Sample ID	Radionuc	lide Concentral	tions (pCi/g) - Rest	ults ± 2σ - 30 Minute Co	ounts (except as noted) - Backgrounds <u>N</u>	ot Subtracted
Non-NRR-52 0-6"	0.25 ± 0.10	ND	1.38 ± 0.21	1.94 ± 0.47	3.32 ± 0.68	ND	0.13 ± 0.13
Non-NRR-52 6"-12"	0.13 ± 0.08	ND	1.47 ± 0.22	2.09 ± 0.44	3.56 ± 0.66	ND	0.17 ± 0.10
Non-NRR-52 12"-18"	0.15 ± 0.08	ND	1.17 ± 0.23	1.67 ± 0.42	2.84 ± 0.65	ND	0.20 ± 0.12
Non-NRR-52 18"-24"	0.07 ± 0.06	ND	0.98 ± 0.16	1.35 ± 0.37	2.33 ± 0.53	ND	0.06 ± 0.10
Non-NRR-52 24"-30"	0.18 ± 0.09	ND	1.52 ± 0.37	2.10 ± 0.50	3.62 ± 0.87	ND	0.11 ± 0.08
Non-NRR-52 30"-36"	0.22 ± 0.09	ND	1.46 ± 0.22	1.99 ± 0.43	3.45 ± 0.65	1.05 ± 1.34	0.13 ± 0.09
Non-NRR-53 0-6"	0.16 ± 0.09	ND	1.91 ± 0.43	2.47 ± 0.53	4.38 ± 0.96	1.18 ± 1.41	0.24 ± 0.13
Non-NRR-53 6"-12"	ND	ND	1.90 ± 0.28	2.55 ± 0.55	4.45 ± 0.83	ND	0.20 ± 0.09
Non-NRR-53 12"-18"	ND	ND	1.89 ± 0.37	2.42 ± 0.54	4.31 ± 0.91	1.78 ± 1.72	0.17 ± 0.08
Non-NRR-53 18"-24"	ND	ND	1.79 ± 0.26	2.54 ± 0.53	4.33 ± 0.79	1.18 ± 1.45	0.15 ± 0.10
Non-NRR-53 24"-30"	ND	ND	2.07 ± 0.46	2.40 ± 0.54	4.47 ± 1.00	0.99 ± 1.52	0.17 ± 0.08

	Table 6: Gamma Spectroscopy Results of TRIGA® Non-NRR Soil Samples									
Energy Peaks →	¹³⁷ Cs 661.6 keV	⁶⁰ Co 1173 keV	²²⁸ Th 238 keV (²¹² Pb)	²²⁸ Ra (²³² Th) 911 keV (²²⁸ Ac)	^(Total) .Th ²²⁸ Th + ²³² Th	²³⁸ U 63.3 (92.7) keV (²³⁴ Th)	²³⁵ U (144) 186 keV			
Sample ID ↓	Radionuc	lide Concentra	tions (pCi/g) - Resi	ilts ± 2σ - 30 Minute Co	ounts (except as noted) - Backgrounds <u>N</u>	ot Subtracted			
Non-NRR-53 30"-36"	ND	ND	1.79 ± 0.30	2.28 ± 0.48	4.07 ± 0.78	1.44 ± 1.65	0.29 ± 0.13			
Non-NRR-54	0.11 ± 0.08	ND	1.40 ± 0.31	2.24 ± 0.45	3.64 ± 0.76	ND	0.17 ± 0.11			
Non-NRR-55	ND	ND	1.45 ± 0.29	2.36 ± 0.49	3.81 ± 0.78	ND	0.09 ± 0.11			
Non-NRR-56	0.07 ± 0.07	ND	1.83 ± 0.46	2.52 ± 0.52	4.35 ± 0.98	1.66 ± 1.41	0.18 ± 0.12			

Notes: 1. ND means not detected.

2. Average Minimum Detectable Activities (MDAs):

U-238 = 1.58 pCi/g (63 keV peak)U-235 = 0.14 pCi/g (186 keV peak)

 $C_{s-137} = 0.13 \text{ pCi/g} (662 \text{ keV peak})$

Co-60 = 0.16 pCi/g (1173 keV peak) Th-228 = 0.21 pCi/g (238 keV peak) Th-232 = 0.43 pCi/g (911 keV peak)

Table 7: Removable Contamination (Wipe) Results for the Non-NRR Portion of the TRIGA® Facility (Building 21)

		Room 1	09/110	
Wipe#	Alpha	Beta	Location	Figure #
1	<20	<20	Overhead	6
2	<20	20	Overhead	6
3	<20	<20	Overhead	6
4	<20	<20	Overhead	6
5	<20	<20	Overhead	6
6	<20	<20	Overhead	· 6
7	<20	<20	Overhead	6
8	<20	<20	Overhead	6
9	<20	<20	Overhead	6
10	<20	26	Overhead	6
11	<20	<20	Overhead	6
12	<20	<20	Overhead	6
13	<20	<20	Overhead	6
14	<20	35	Overhead	6
15	<20	<20	Overhead	6
16	<20	<20	Overhead	6
17	<20	<20	Trench	9
18	<20	<20	Trench	9
19	<20	<20	Trench	9
20	<20	<20	Trench	9
21	<20	<20	Trench	9
22	<20	<20	South Wall	6
23	<20	<20	South Wall	6
24	<20	<20	Floor	6
25	<20	<20	Floor	6
26	<20	23	East Wall	6
27	<20	<20	Floor	6
28	<20	<20	Floor	6
29	<20	<20	Floor	6
30	<20	<20	Floor	6
31	<20	<20	Floor	6

Room 109/110 (continued)								
Wipe#	Alpha	Beta	Location	Figure #				
32	<20	29	Floor	6				
33	<20	<20	Floor	6				
34	<20	<20	East Wall	6				
35	<20	<20	North Wall	6				
36	<20	<20	North Wall	6				
37	<20	<20	North Wall	6				
38	<20	<20	West Wall	6				
39	<20	<20	West Wall	6				

	Room 111						
Wipe #	Alpha	Beta	Location	Figure #			
1	<20	<20	North Wall	13			
2	<20	<20	North Wall	13			
3	<20	<20	North Wall	13			
4	<20	<20	North Wall	13			
5	<20	<20	Floor	13			
6	<20	<20	Floor	13			
7	<20	<20	Floor	13			
8	<20	<20	Floor	13			
9	<20	<20	Floor	13			
10	<20	<20	Floor	13			
11	<20	<20	Floor	13			
12	<20	<20	Floor	13			
13	<20	<20	Floor	13			
14	<20	23	Floor	13			
15	<20	<20	Floor	13			
16	<20	<20	Floor	13			
17	<20	<20	Floor	13			
18	<20	<20	Floor	13			
19	<20	<20	Floor	13			

Table 7: Removable Contamination (Wipe) Results for the Non-NRR Portion of the TRIGA® Facility (Building 21)

	Room 111 (continued)								
Wipe #	Alpha	Beta	Location	Figure #					
20	· <20	<20	West Wall	13					
21	<20	<20	West Wall	13					
22	<20	<20	West Wall	13					
23	<20	<20	South Wall	13					
24	<20	<20	South Wall	13					
25	<20	20	South Wall	13					
26	<20	<20	South Wall	13					
27	<20	<20	East Wall	13					
28	<20	<20	East Wall	13					
29	<20	20	East Wall	13					
30	<20	<20	Overhead	13					
31	<20	20	Overhead	13					
32	<20	65	Overhead	13					
33	<20	46	Overhead	. 13					
34	<20	26	Overhead	13					
35	<20	<20	Overhead	13					
36	<20	<20	Overhead	13					
37	<20	<20	Overhead	13					
38	<20	23	Overhead	13					
39	<20	<20	Overhead	13					
40	<20	20	Overhead	13					
41	<20	<20	Overhead	13					
42	<20	<20	Hoist	13					
43	<20	<20	Hoist	13					
44	<20	<20	Trench	16					
45	<20	<20	Trench	16					
46	<20	<20	Trench	16					
47	<20	<20	Trench	16					
48	<20	<20	Trench	16					
49	<20	<20	Trench	16					
50	<20	<20	Trench	16					

Room 111 (continued)								
Wipe #	Alpha	Beta	Location	Figure #				
51	<20	<20	Trench	16				
52	<20	<20	Trench	16				
53	<20	<20	Trench	16				

	Room 111 TRIGA [®] Mk III Pit							
Wipe #	Alpha	Beta	Location	Figure #				
1	<20	<20	Wall	21				
2	<20	<20	Wall	21				
3	<20	<20	Wall	21				
4	<20	<20	Wall	21				
5	<20	<20	Wall	21				
6	<20	<20	Wall	21				
7	<20	<20	Floor	21				
8	<20	<20	Wall	21				
9	<20	<20	Wall	21				
10	<20	<20	Wall	21				
11	<20	20	Wall	21				
12	<20	<20	Pipe	21				
13	<20	<20	Pipe	21				
14	<20	<20	Pipe	21				
15	<20	<20	Pipe	21				
16	<20	<20	Pipe	21				

Room 112							
Wipe #	Alpha	Betă	Location	Figure #			
1	<20	29	South Wall	26			
2	<20	<20	Floor	26			
3	<20	<20	West Wall	26			
4	<20	<20	West Wall	26			
5	<20	<20	Floor	26			
6	<20	<20	Floor	26			

T-20

Table 7: Removable Contamination (Wipe) Results for the Non-NRR Portion of the TRIGA® Facility (Building 21)

Room 112 (continued)							
Wipe#	Alpha	Beta	Location	Figure #			
7	<20	<20	Floor	26			
8	<20	<20	North Wall	26			
9	<20	<20	East Wall	26			
10	<20	38	West Wall	26			
11	<20	38	Overhead	26			
12	<20	136	Overhead	26			
13	<20	<20	Overhead	26			

		Roon		
Wipe #	Alpha	Beta	Location	Figure #
1	<20	<20	North Wall	30
2	<20	<20	North Wall	30
3	<20	<20	North Wall	30
4	<20	<20	East Wall	30
5	<20	<20	East Wall	30
6	<20	<20	East Wall	30
7	<20	<20	South Wall	30
8	<20	<20	South Wall	30
9	<20	<20	West Wall	30
10	<20	<20	Floor	30
11	<20	<20	Floor	30
12	<20	<20	Floor	30
13	<20	<20	Floor	30
14	<20	<20	Floor	30
15	<20	<20	Floor	30
16	<20	<20	Floor	30
17	<20	<20	Floor	30
18	<20	<20	Floor	30
19	<20	<20	Floor	30
20	<20	<20	Floor	30
21	<20	<20	Floor	30
22	<20	<20	Floor	30

Room 113 (continued)					
Wipe #	Alpha	Beta	Location	Figure #	
23	<20	<20	East Wall	30	
24	<20	47	Overhead	30	
25	<20	<20	South Wall	30	
26	<20	38	South Wall	30	
27	<20	65	Overhead	30	
28	<20	32	Overhead	30	
29	<20	<20	South Wall	30	
30	<20	<20	Overhead	30	
31	<20	<20	Overhead	30	
32	<20	68	Overhead	30	
33	<20	<20	East Wall	30	

	Room 114/115						
Wipe #	Alpha	Beta	Location	Figure #			
1	<20	<20	Floor	35			
2	<20	<20	Floor	35			
3	<20	<20	Floor	35			
4	<20	<20	Floor	35			
5	<20	<20	Floor	35			
6	<20	<20	North Wall	35			
7	<20	<20	East Wall	35			
8	<20	<20	East Wall	35			
9	<20	<20	South Wall	35			
10	<20	<20	South Wall	35			
11	<20	<20	West Wall	35 ·			
12	<20	<20	West Wall	35			
13	<20	<20	North Wall	35			
14	<20	<20	Overhead	35			
15	<20	<20	Overhead	35			
16	<20	<20	Overhead	35			
17	<20	<20	Overhead	35			

Table 7: Removable Contamination (Wipe) Results for the Non-NRR Portion of the TRIGA® Facility (Building 21)

Pad West of Roll-up Door Room 111						
Wipe #	Alpha	Beta	Location	Figure #		
1	<20	<20	Pad	40		
2 ·	<20	<20	Pad	40		
3	20	38	Trench	43		
4	<20	<20	Pipe	43		
5	<20	<20	Pipe	43		
6	<20	<20	Pipe	43		
7	<20	<20	Pipe	43		

Table 8	: Building 21, No	on-Reactor Paveo	Land Area	Wipe Sample An	alysis Results
Sample Number	α. in dpm/100/cm ²	β in dpm/100 cm²	Sample Number	a in dpm/100 cm²	β in dpm/100 cm ²
1	<20	<20	37	<20	<20
2	<20	<20	38	<20	<20
3	<20	<20	39	<20	<20
4	<20	<20	40	<20	<20
5	<20	<20	41	<20	<20
6	<20	<20	42	<20	<20
7	<20	<20	43	<20	<20
8	<20	<20	44	<20	<20
9	<20	<20	45	<20	<20
10	<20	35 ± 21	46	<20	<20
11	<20	<20	47	<20	<20
12	<20	<20	48	<20	<20
13	<20	<20	49	<20	<20
14	<20	<20	50	<20	<20
15	<20	<20	51	<20	<20
16	<20	<20	52	<20	<20
17	<20	<20	53	<20	<20
18	<20	<20	54	<20	<20
19	<20	<20	55	<20	<20
20	<20	<20	56	<20	<20
21	<20	<20	57	<20	<20
22	<20	<20	58	<20	<20
23	<20	<20	59	<20	<20
24	<20	<20	60	<20	<20
25	<20	<20	61	<20	<20
26	<20	<20	62	<20	<20
27	<20	<20	63	<20	<20

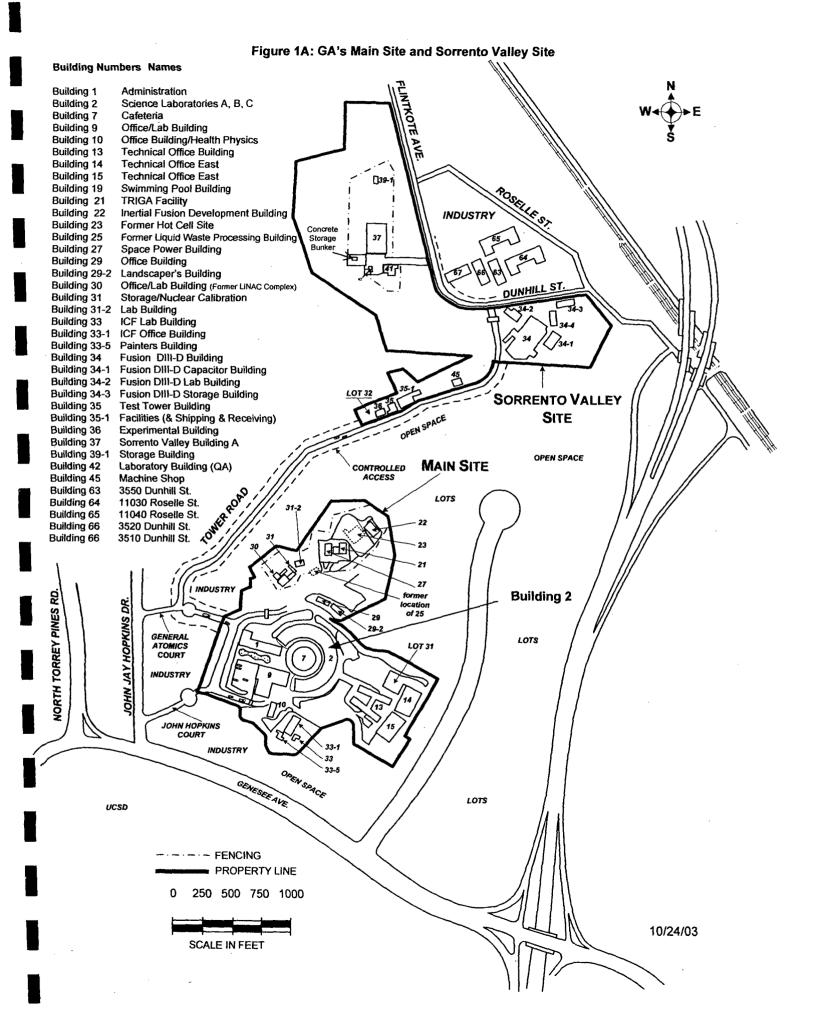
í

Table 8	: Building 21, No	on-Reactor Pavec	Land Area	Wipe Sample An	alysis Results
Sample Number	α in dpm/100 cm ²	β in dpm/100 cm ²	Sample Number	α in dpm/100 cm ²	$egin{array}{c} \beta \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
28	<20	<20	64	<20	<20
29	<20	<20	65	<20	<20
30	<20	<20	66	<20	<20
31	<20	<20	67	<20	<20
32	<20	<20	68	<20	<20
33	<20	<20	69	<20	<20
34	<20	<20	70	<20	<20
35	<20	<20	71	<20	<20
36	<20	<20)

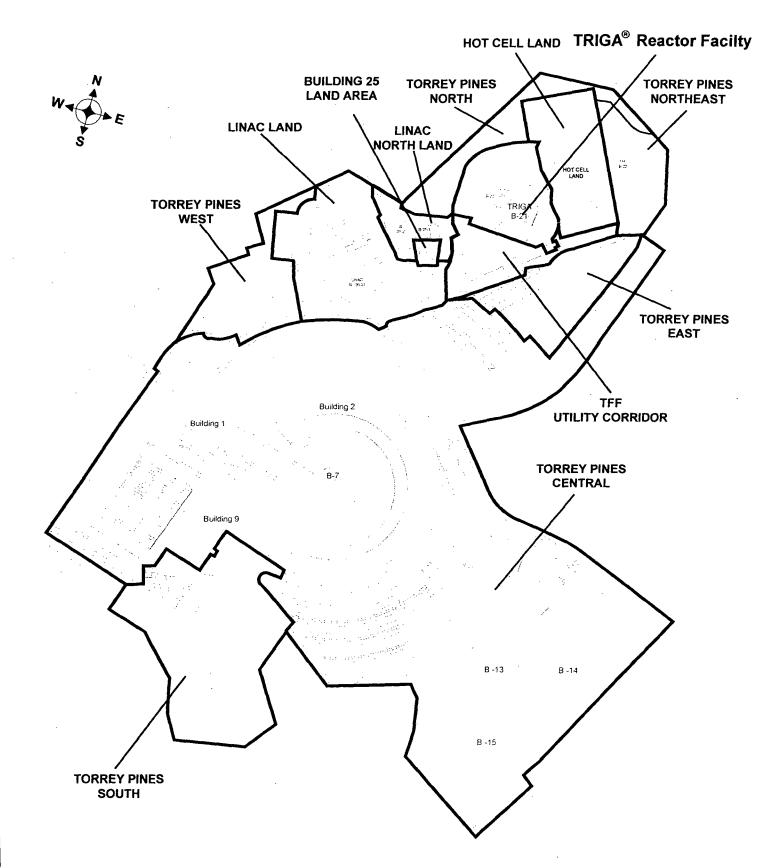
ТАВ	EE 9: Gamm	State of the second state of the	the second state of the se	Concrete Samp Fill Sand Sampl	and the second	lock Samples an	d
Energy Peaks	¹³⁷ Cs 661.6 keV	⁶⁰ Co 1173 keV	²²⁸ Th 238 keV (²¹² Pb)	²²⁸ Ra (²³² Th) 911 keV (²²⁸ Ac)	(Total) Th 228Th + 232Th	²³⁸ U 63.3 (92.7) keV (²³⁴ Th)	²³⁵ U (144) 186 keV
Sample ID ↓	Radionuclide	Concentrations (oCi/g) - Results:=	= 2σ - 30 Minute Co	ounts (except as n	oted) - Background	s <u>Not</u> Subtracte
	A TAL PARTY AND A CARACTER AND A CA		Concre	ete Samples	an a		
B21 Non-NRR Con-1	0.15 ± 0.07	ND	1.17 ± 0.28	1.30 ± 0.29	2.47 ± 0.57	ND	0.14 ± 0.06
B21 Non-NRR Con-2	ND	ND	1.33 ± 0.35	1.62 ± 0.35	2.95 ± 0.70	0.22 ± 1.13	0.15 ± 0.08
B21 Non-NRR Con-3	0.55 ± 0.11	ND	1.20 ± 0.36	1.67 ± 0.36	2.87 ± 0.72	0.89 ± 1.05	0.14 ± 0.09
B21 Non-NRR Con-4	ND	ND	1.03 ± 0.29	1.28 ± 0.34	2.31 ± 0.63	1.00 ± 1.49	0.17 ± 0.11
B21 Non-NRR Con-5	0.37 ± 0.09	ND	1.43 ± 0.33	1.53 ± 0.34	2.96 ± 0.67	1.15 ± 1.12	0.10 ± 0.07
B21 Non-NRR Con-6	0.02 ± 0.05	ND	1.32 ± 0.21	1.53 ± 0.36	2.85 ± 0.57	3.19 ± 2.36	0.19 ± 0.10
B21 Non-NRR Con-7	ND	ND	1.28 ± 0.31	1.63 ± 0.39	2.91 ± 0.70	ND	0.14 ± 0.08
B21 Non-NRR Con-8	ND	ND	1.51 ± 0.35	1.61 ± 0.39	3.12 ± 0.74	ND	0.18 ± 0.08
B21 Non-NRR Con-9	4.48 ± 0.50	1.19 ± 0.18	1.23 ± 0.19	1.52 ± 0.39	2.75 ± 0.58	0.69 ± 1.24	0.19 ± 0.08
B21 Non-NRR Con-10	ND	ND	1.38 ± 0.21	1.92 ± 0.39	3.30 ± 0.60	ND	0.14 ± 0.10
**B21 Non-NRR Con-11	ND	0.23 ± 0.11	1.52 ± 0.22	1.83 ± 0.45	3.35 ± 0.67	ND	0.13 ± 0.07

TAL	TABLE 9: Gamma Spectroscopy Results of Concrete Samples, Cement Block Samples and Pipe Trench Fill Sand Samples						
Energy Peaks	¹³⁷ Cs 661.6 keV	⁶⁰ Со 1173-keV	²²⁸ Th 238 keV (^{/212} .Pb)	²²⁸ Ra (²³² Th) 911 keV (²²⁸ Ac)	(Total) Th 228Th + 232Th	²³⁸ U 63.3 (92.7) keV (²³⁴ Th)	235U (144)186 keV
Sample ID	Radionuclide	Concentrations (oCi⁄g) - Results :	±2o = 30 Minute Co	unts (except as n	oted) - Background	s <u>Not</u> Subtracted:
B21 Non-NRR Con-12	ND	ND	1.44 ± 0.31	1.70 ± 0.39	3.14 ± 0.70	ND	0.10 ± 0.08
B21 Non-NRR Con-13	ND	ND	1.57 ± 0.36	1.86 ± 0.39	3.43 ± 0.75	1.23 ± 1.51	0.18 ± 0.11
B21 Non-NRR Con-14	ND	ND	1.49 ± 0.23	1.87 ± 0.40	3.36 ± 0.63	1.28 ± 1.16	0.16 ± 0.10
B21 Non-NRR Con-15	ND	ND	1.61 ± 0.25	1.93 ± 0.41	3.54 ± 0.66	1.46 ± 1.32	0.18 ± 0.12
B21 Non-NRR Con-16	ND	ND	1.60 ± 0.39	2.04 ± 0.46	3.64 ± 0.85	2.53 ± 1.92	0.30 ± 0.13
B21 Non-NRR Con-17	0.13 ± 0.07	ND	1.41 ± 0.21	1.78 ± 0.41	3.19 ± 0.62	1.34 ± 1.17	0.25 ± 0.09
B21 Non-NRR Con-18	ND	ND	1.42 ± 0.22	1.68 ± 0.36	3.10 ± 0.58	ND	0.15 ± 0.11
	Cement Block Samples						
B21 Non-NRR CB-1	0.58 ± 0.13	ND	0.36 ± 0.13	0.76 ± 0.27	1.12 ± 0.40	ND	ND
B21 Non-NRR CB-2	0.46 ± 0.09	ND	0.94 ± 0.26	1.42 ± 0.39	2.36 ± 0.65	ND	ND
	Fill Sand Samples						
B21 Non-NRR Sand-1	0.72 ± 0.12	ND	0.61 ± 0.14	0.90 ± 0.25	1.51 ± 0.39	ND	ND

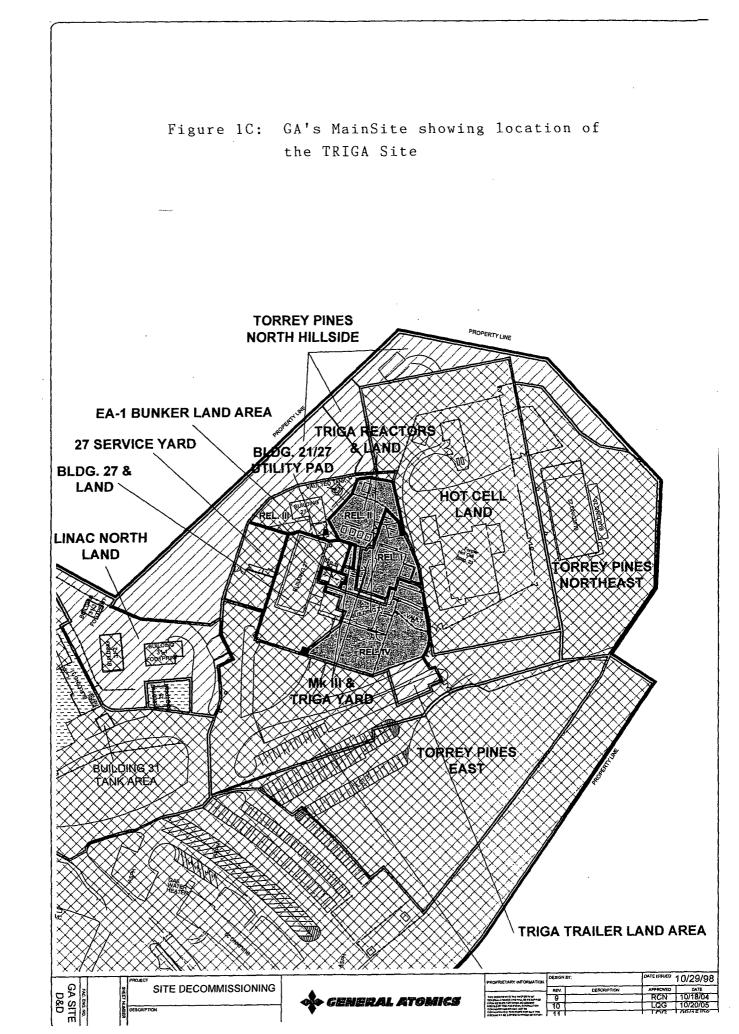
TAI	3LE 9: Gamm	日本語を見るためのないのである。	THE REAL PROPERTY OF THE PROPERTY OF THE REAL PROPE	Concrete Samp Fill Sand Sampl		lock Samples an	d
Energy Peaks	¹³⁷ Cs 661.6 keV	⁶⁰ Со 1173 keV	²²⁸ Th 238 keV (²¹² Pb)	²²⁸ Ra (²³² Th) 911 keV (²²⁸ Ac)	^(Total) Th ²²⁸ Th + ²³² Th	²³⁸ U 63.3 (92.7) keV (²³⁴ Th)	²³⁵ U (144) 186 keV
Sample ID	Sample ID Radionuclide Concentrations (ρCVg) - Results ± 2σ - 30 Minute Counts (except as noted) - Backgrounds <u>Not</u> Subtracted						s <u>Not</u> Subtracted
			Fill Sand	(Continued)			
B21 Non-NRR Sand-2	1.18 ± 0.16	0.28 ± 0.10	0.43 ± 0.11	0.81 ± 0.23	1.24 ± 0.34	ND	0.04 ± 0.04
B21 Non-NRR Sand-3	0.58 ± 0.10	ND	0.59 ± 0.11	0.85 ± 0.25	1.44 ± 0.36	ND	0.05 ± 0.07
B21 Non-NRR Sand-4	0.27 ± 0.09	ND	0.55 ± 0.15	0.99 ± 0.28	1.54 ± 0.43	ND	0.06 ± 0.06


**<u>Notes</u>: 1. ND means not detected.

2. Average Minimum Detectable Activities (MDAs) for Soil:


U-238 = 1.58 pCi/g (63 keV peak)U-235 = 0.14 pCi/g (186 keV peak)Cs-137= 0.13 pCi/g (662 keV peak)

Co-60 = 0.16 pCi/g (1173 keV peak) Th-228 = 0.21 pCi/g (238 keV peak) Th-232 = 0.43 pCi/g (911 keV peak)

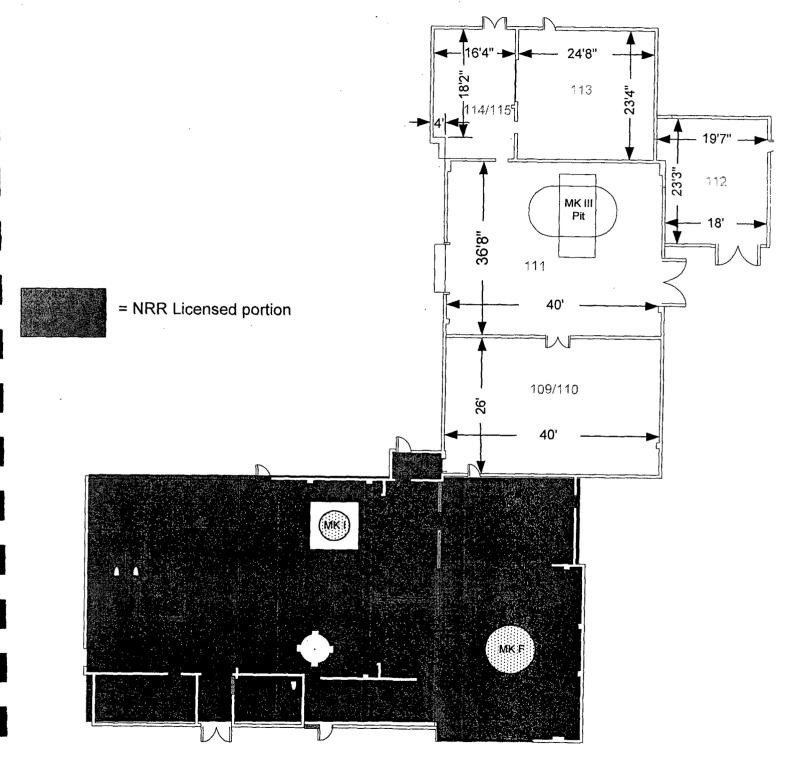

Cs-137= 0.13 pCi/g (662 keV peak) Th-232 = 0.4 3. Sample marked with a ** also contained Eu-152 at 0.42 ± 0.32 pCi/g.



.

= NRR Land (~9620 ft²)

T


= Building structure

Note: Drawing Not to scale

I

August 30, 2006 WTL

FIGURE 3: Building 21 (TRIGA) Non- Reactor Dimensions

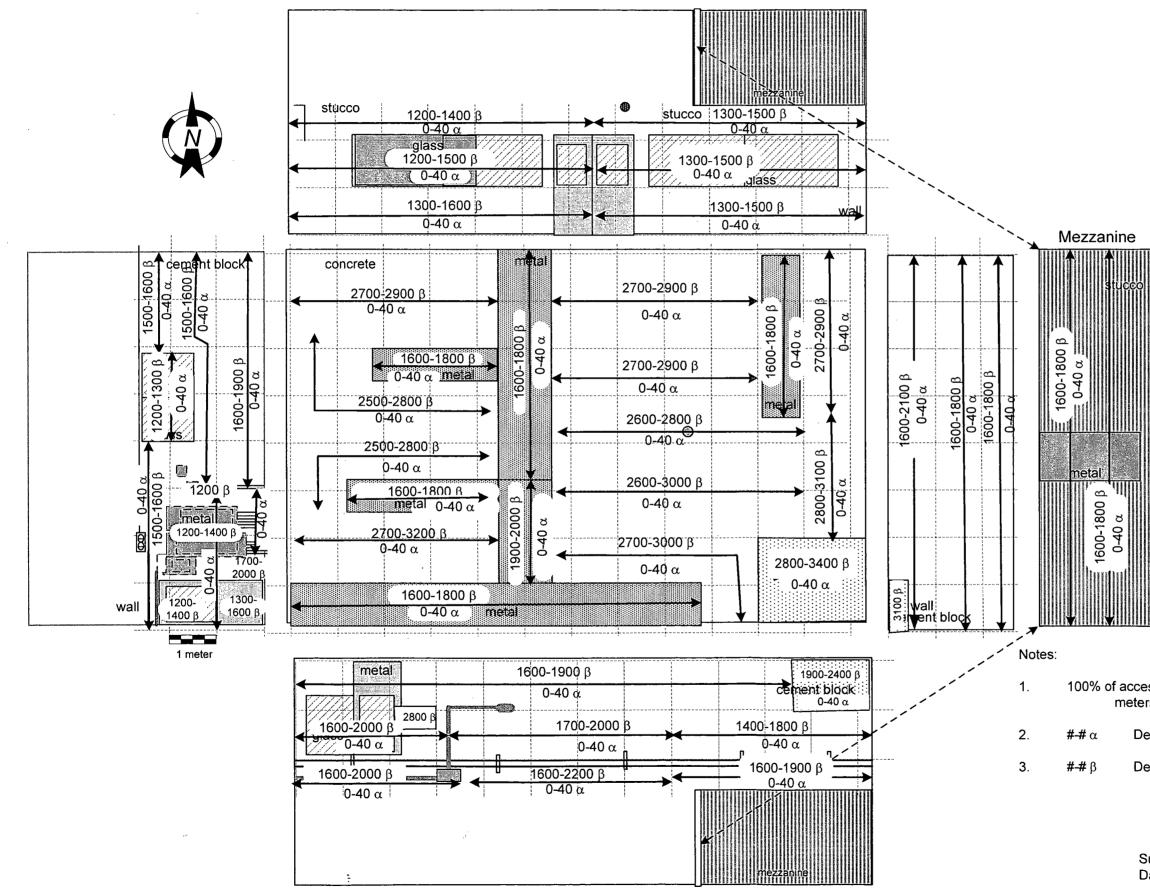


Figure 4: Building 21 Room 109/110 Alpha and Beta Scan Measurement Locations and Results

	Instruments	
Model	Ludlum 2221	Ludlum 2221
Serial Number	84459	154202
Cal Due Date	10-28-06	09-22-06
	10-20-00	11-23-06
Efficiency	22.14%	30.39%
Probe	434 cm ² α	434 cm ² β
Probe Serial #	086215	149017
Background	cpm	cpm 🚬
concrete	10-60	1300-2000
cement block	10-30	1600-1900
metal	0-40	700-1300
glass	0-30	1200-1500
stucco	0-40	1400-1800

100% of accessible surfaces 2 meters and below and 10% above 2 meters scanned for alpha and beta activity.

Denotes alpha scan results in counts per minute.

Denotes beta scan results in counts per minute.

Surveys conducted by: S. Cowan, R. Stowell Dates: 05-03-06 to 06-14-06

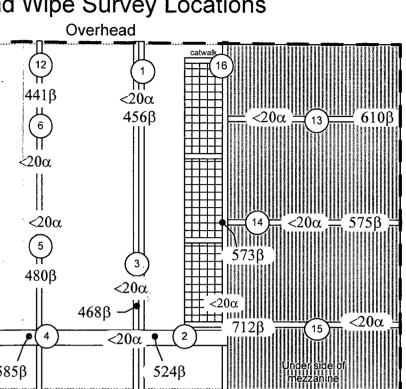

stucco stucco 13-16 13-16 glass 13-16 (13-16) ▶ 🗧 14-15 ĭ **(** 16 <u>17</u> 15 2/AT 16 ["]16 16glass 13-19 15-19 15-18 Mezzanine centient block concrete 19-23 17-20 15 17 17 <u>16</u> <u>19</u> <u>19</u> <u>19</u> 20-22 18-23 20-22 14-17 15-18 17-22 ´10-12 10-13 15-18 16-17 **←** 18-23 **→** 16-22 10-13 ä 19-21 0.5103440312383555555 15 <u>18</u> <u>18</u> <u>17</u> 17 <u>17</u> 17 16 18-23 17-21 5 glass▼ 18 (11-13)-18-23 <u>18</u> 20-24 metal 19 12-22 16-20 intetal 14-22 20 12 20-23 20-23 17-22 15-18 10-1 <u>19</u> <u>20</u> <u>18</u> 10-13 <u>19</u> <u>18</u> 20-23 <u>18</u> 20-23 18 18 concrete 18 20 15-17 floo wall 20-25 15etai wall cement block 1 meter metal wall capped w/ concrete V ← 15-20 🚽 15-20 & filled with sand cement block Notes: <u>17</u> <u>20</u> € 20-25 → glass ≓″ <u>19</u> <u>19</u> <u>18</u> 18 sand exposed 15-20 <u>##</u> Denotes fixed exposure rate measurement, in μ R/hr, taken @ ~1 meter 1. from the surface. #-# Denotes exposure rate surface scan range in µR/hr 2. 15-20 3. 100% of accessible surfaces two meters and below and 10% above 2 meters scanned. Surveys conducted by: J. Sullivan, S. Cowan & R. Stowell Dates: 05-03-06 to 05-22-06

Figure 5: Building 21 Room 109/110 Fixed Exposure Rate and Exposure Rate Scan Measurement Locations and Results

	Instru Model	iment Ludium 3	
	Serial Number	151348	
	Cal Due Date	06-30-06	
	Probe	2" X 2" Nal γ	
2	Probe Serial #	163169	
	Background	contact	@ 1 meter
	concrete	17-23 μR/hr	17-22 μR/hr
	cement block	15-18 μR/hr	14-17 μR/hr
	metal	13-19 μR/hr	15-18 μR/hr
	glass	13-15 μR/hr	13-16 μR/hr
	stucco	10-16 μR/hr	10-16 μR/hr

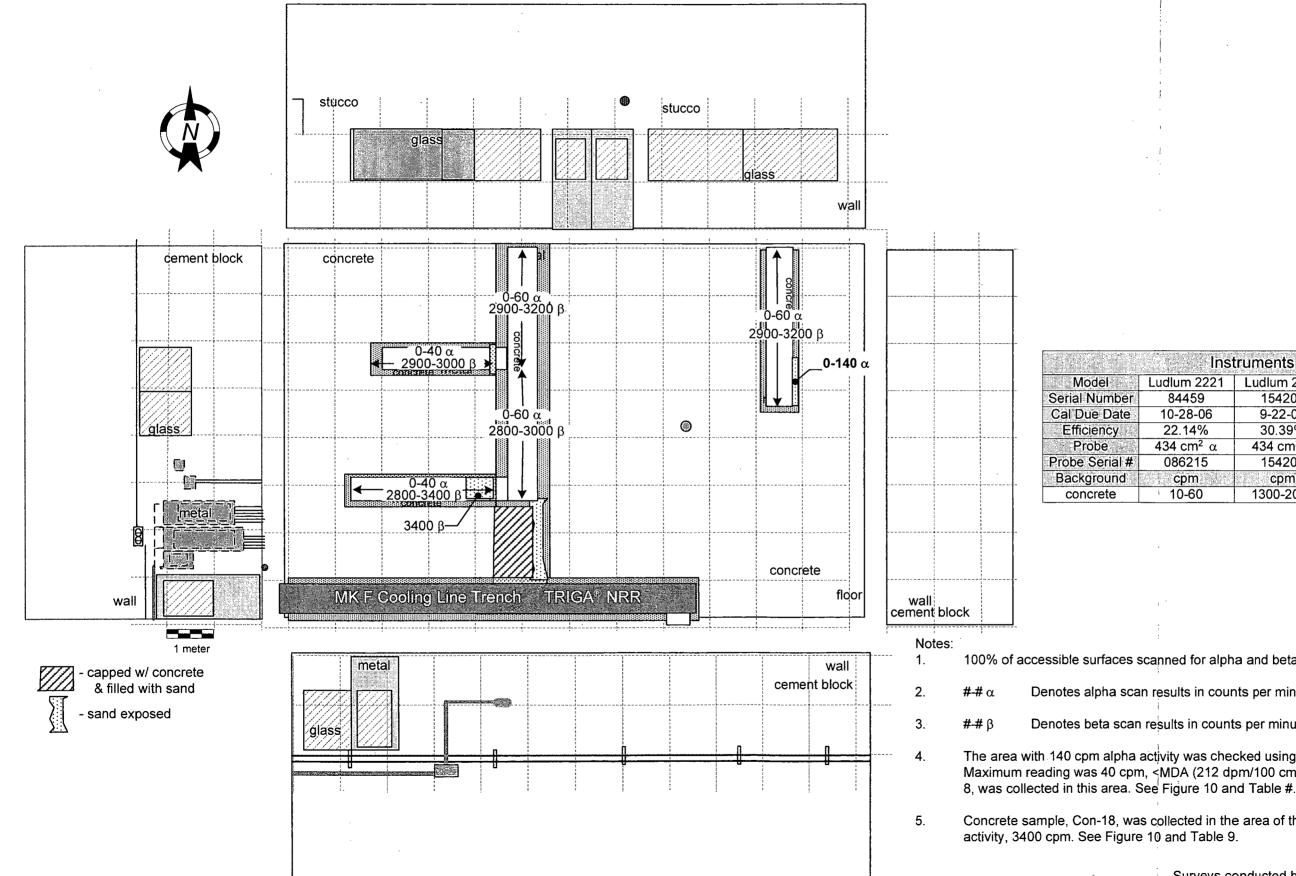

(12) 1 \mathbf{H} (11)441B <20α <20α 11 456B 6 451B stucco stueco $<20\alpha$ glass <20α 756β 36 <20α lace //A 35 5 <20α 37 503β 664β <20α 480ß 580B $<20\alpha$ (8) metal cement block concrete 468β 34 837β 7126 $<20\alpha \overline{7}$ **p**(4 $<20\alpha$ 2 10 (32) $<20\alpha$ 862β <20α <20α 1477β (33) 1397β 585β 506β 524β (38) metal 29 (30) 1453β <20a (31) 1457β <20a Mode <20a 853β ۲ Serial glass Cal Due $<20\alpha$ Efficier Prob - **1** -(28) metal <20 α 1454β Probe <20α (27) (26) 1532β Backgro metal (39) concre cement meta 742β concrete glass stucc 2050β <20α m (24) 810β <20α <20α (25) wall <20a 863β 1631β cement block Notes: 1 meter wall metal <20α (22) Denotes fixed alpha measurement in counts per minute, cpm. All fixed alpha 809β 1. $\#\#\alpha$ cement bl <20 α measurements were at background, < 20 cpm. 1690β $< 20\alpha$ 23 2. ####β Denotes fixed beta measurement in counts per two minutes, cp2m. Maximum glass fixed beta measurement was 2050 cp2m, 1756 dpm/100 cm2. (##) 3. Denotes wipe location. Wipe results are provided in Table 7. Surveys conducted by: S. Cowan & R. Stowell Dates: 04-12-06 to 05-10-06

Figure 6: Building 21 Room 109/110 Fixed Alpha and Beta Measurement Locations and Results and Wipe Survey Locations

Instruments	
Ludlum 2221	Ludlum 12
86302	138738
10-28-06	08-16-06
34.36%	22.14%
100 cm ² β	$50 \text{ cm}^2 \alpha$
142547	145696
cp2m	cpm
948 ± 256	<20
843 ± 120	<20
576 ± 105	<20
630 ± 123	<20
777 ± 85	<20
	$\begin{array}{r} \mbox{Ludlum 2221} \\ 86302 \\ 10-28-06 \\ 34.36\% \\ 100 \ cm^2 \ \beta \\ 142547 \\ cp2m \\ 948 \pm 256 \\ 843 \pm 120 \\ 576 \pm 105 \\ 630 \pm 123 \\ \end{array}$

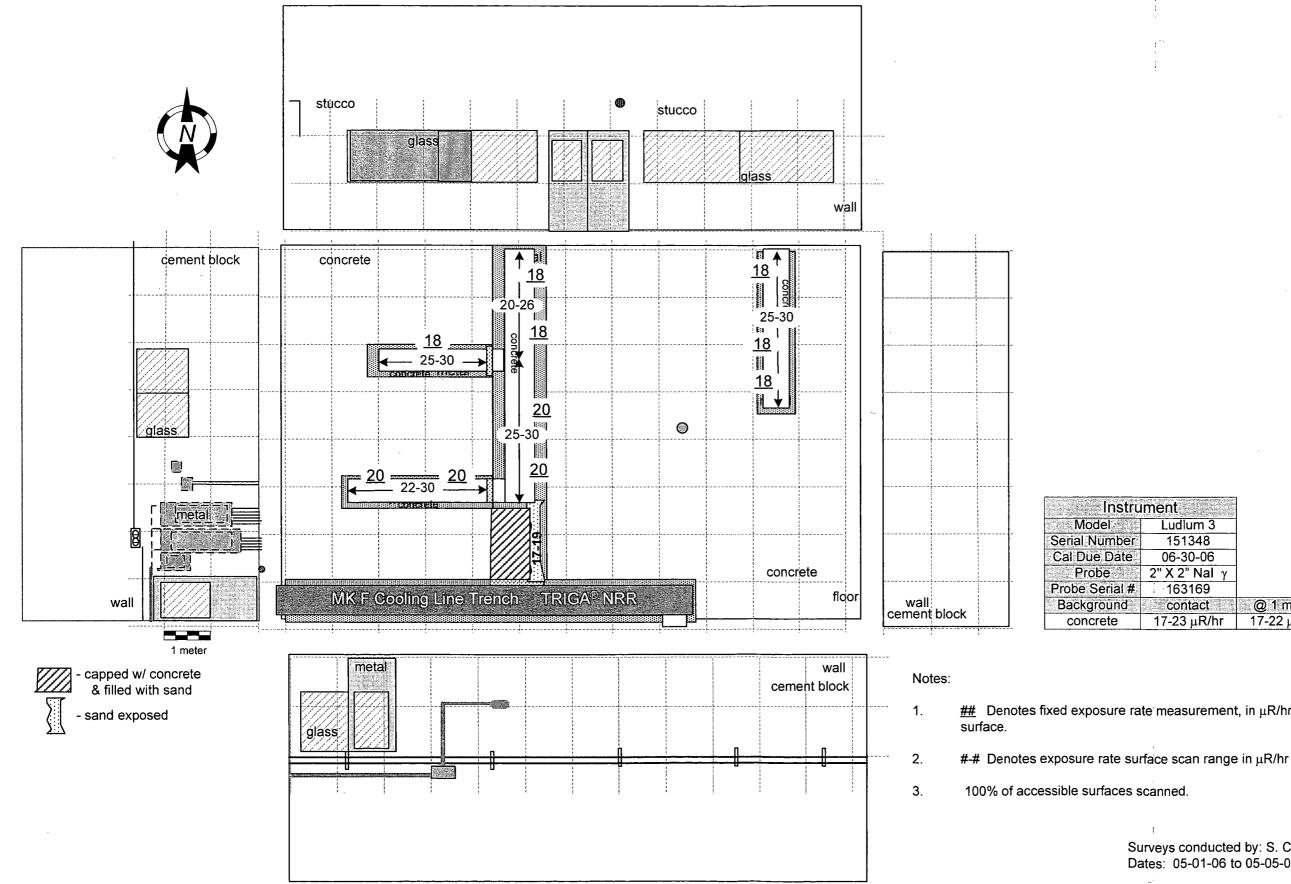
Figure 7: Building 21 Room 109/110 Service Trenches Alpha and Beta Scan Measurement Locations and Results

Inst	ruments	
Ludlum 2221	Ludlum 2221	Ludlum 12
84459	154202	138738
10-28-06	9-22-06	08-16-06
22.14%	30.39%	22.14%
$434 \text{ cm}^2 \alpha$	434 cm ² β	$50 \text{ cm}^2 \alpha$
086215	154202	145696
cpm	cpm	cpm
10-60	1300-2000	<20 cpm

100% of accessible surfaces scanned for alpha and beta activity.

Denotes alpha scan results in counts per minute.

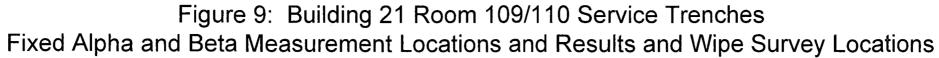
Denotes beta scan results in counts per minute.

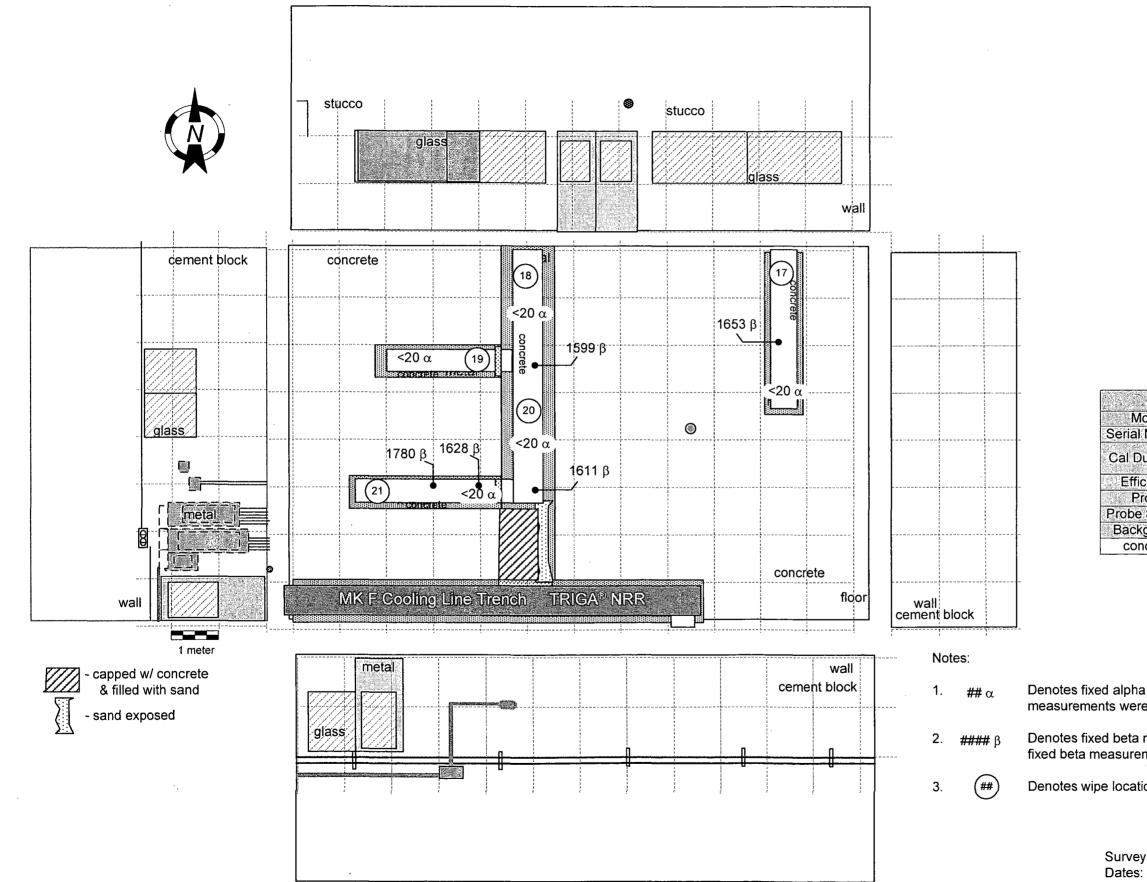

The area with 140 cpm alpha activity was checked using the 50 cm² probe. Maximum reading was 40 cpm, <MDA (212 dpm/100 cm²). Concrete sample, Con-

Concrete sample, Con-18, was collected in the area of the highest remaining beta

Surveys conducted by: S. Cowan & R. Stowell Dates: 04-25-06 to 06-13-06

Fig. 7


Figure 8: Building 21 Room 109/110 Service Trenches Fixed Exposure Rate and Exposure Rate Scan Measurement Locations and Results

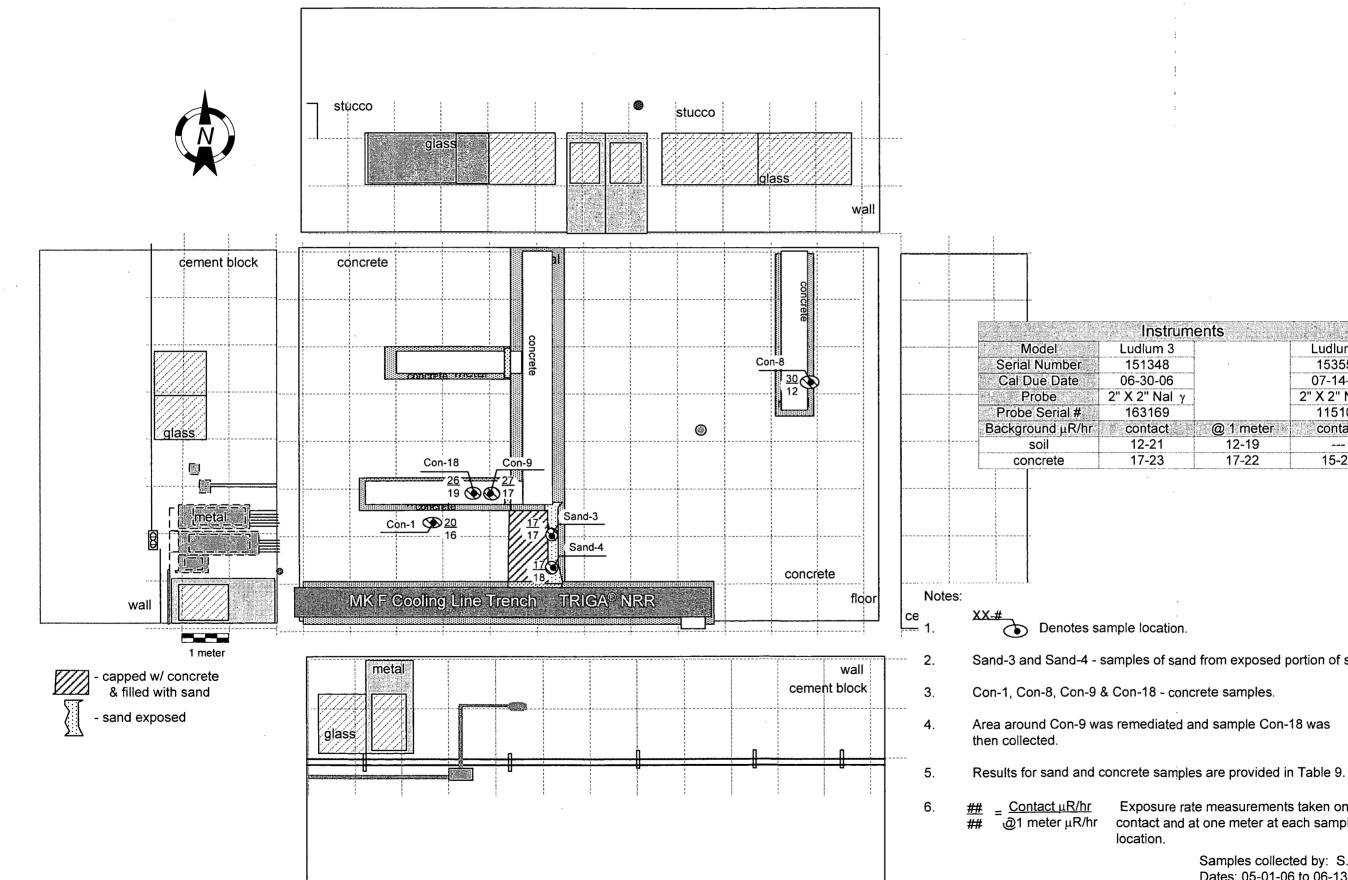


A 10.21 of 16.74	2" X 2" Nal γ 163169	
114111 v.	contact	@ 1 meter
	17-23 μR/hr	17-22 μR/hr

<u>##</u> Denotes fixed exposure rate measurement, in μ R/hr, taken @ ~1 meter from the

Surveys conducted by: S. Cowan & R. Stowell Dates: 05-01-06 to 05-05-06

Instruments				
odel	Ludlum 12	Ludlum 2221		
Number	138738	86302		
ue Date	08-16-06	05-15-06		
	00-10-00	10-28-06		
ciency	22.14 %	34.36%		
obe	$50 \text{ cm}^2 \alpha$	100 cm ² β		
Serial #	145696	142547		
ground	cpm	cp2m		
crete	<20	948 ± 256		

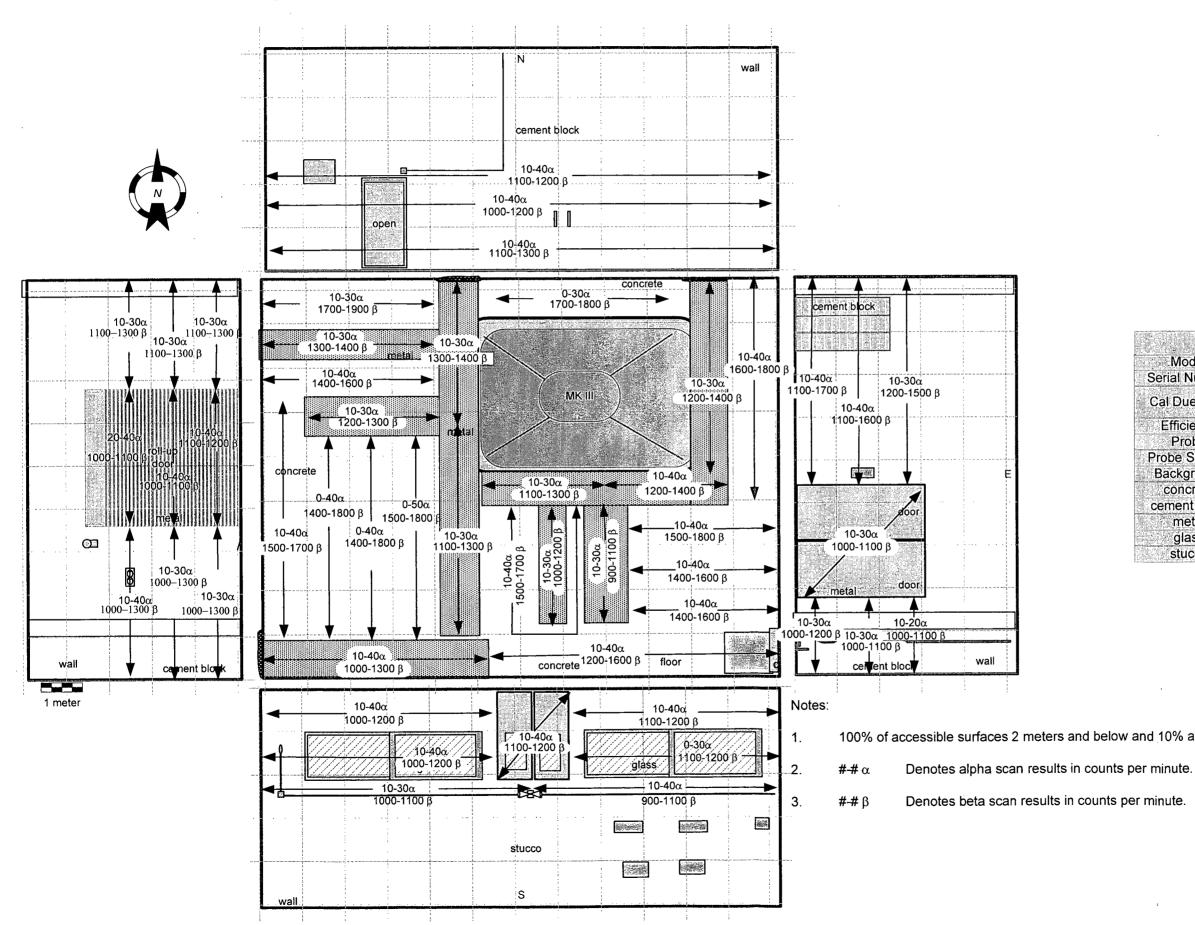

Denotes fixed alpha measurement in counts per minute, cpm. All fixed alpha measurements were at background, < 20 cpm.

Denotes fixed beta measurement in counts per two minutes, cp2m. Maximum fixed beta measurement was 1780 cp2m, 1211 dpm/100 cm2.

Denotes wipe location. Wipe results are provided in Table 7.

Surveys conducted by: S. Cowan & R. Stowell Dates: 4-25-06, 05-01-06 & 06-13-03

Figure 10: Building 21 Room 109/110 Sample Locations



nstrum	ents		
m 3	a a fa	Ludlum 3	
348	-	153551	
)-06		07-14-06	
Nal y		2" X 2" Nal γ	
69		115109	
act	@ 1 meter	contact	@ 1 meter
21	12-19		
23	17-22	15-21	15-21

Sand-3 and Sand-4 - samples of sand from exposed portion of sand-filled trench.

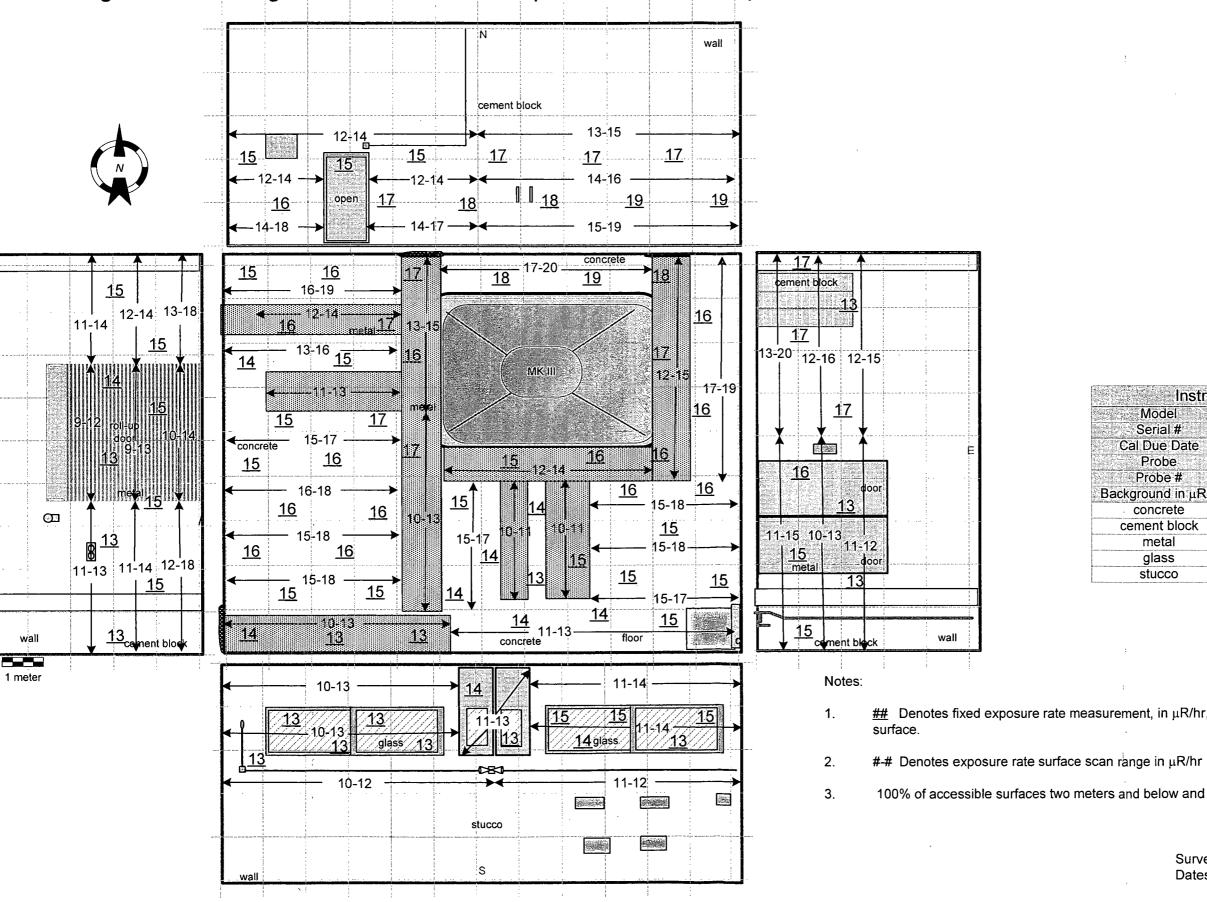
Exposure rate measurements taken on contact and at one meter at each sample

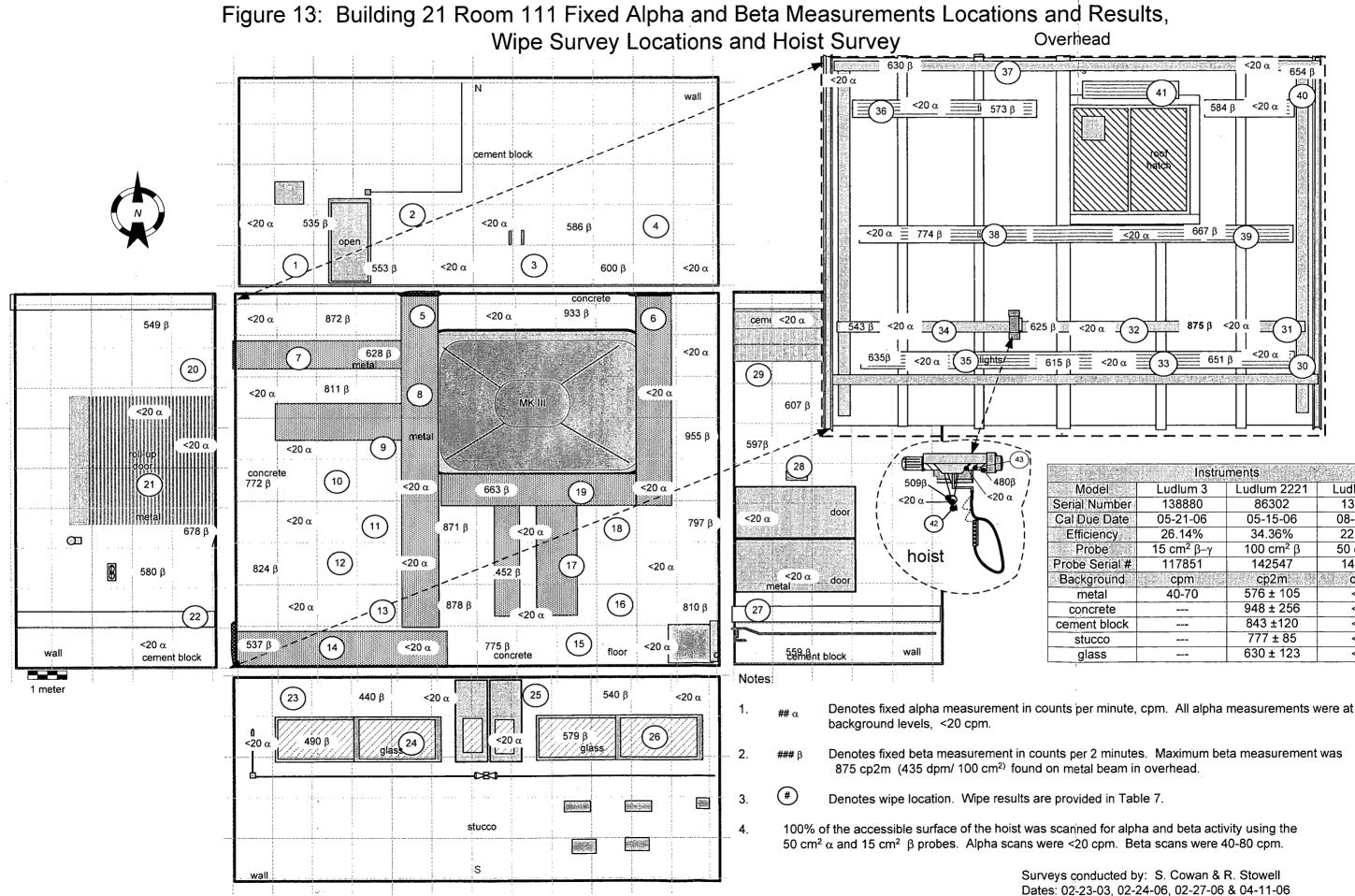
> Samples collected by: S. Cowan & R. Stowell Dates: 05-01-06 to 06-13-06

Figure 11: Building 21 Room 111 Alpha and Beta Scan Measurement Locations and Results

	Instruments	
Model	Ludlum 2221	Ludlum 2221
Serial Number	84459	154202
Cal Due Date	10-28-06	09-22-06
	10-20-00	11-23-06
Efficiency	22.14%	30.39%
Probe	434 cm ² α	434 cm ² β
Probe Serial #	086215	149017
Background	срт	cpm 👌
concrete	10-60	1300-2000
cement block	10-30	1600-1900
metal	0-40	700-1300
glass	0-30	1200-1500
stucco	0-40	1400-1800

100% of accessible surfaces 2 meters and below and 10% above 2 meters scanned for alpha and beta activity.




Figure 12: Building 21 Room 111 Fixed Exposure Rate and Exposure Rate Scan Measurement Locations and Results

Instrum	ent	
Model	Ludlum 3	
Serial #	153551	
Cal Due Date	05-03-06	
Probe	2" X 2" Nal γ	
Probe #	155109	
Background in µR/hr	contact	@ 1 meter
		All the second sec
concrete	15-21	15-21
		with the second se
concrete	15-21	15-21
concrete cement block	15-21 14-19	15-21 14-18

<u>##</u> Denotes fixed exposure rate measurement, in μ R/hr, taken @ ~1 meter from the

100% of accessible surfaces two meters and below and 10% above 2 meters scanned.

Surveys conducted by: R. Stowell Dates: 02-17-06, 02-22-06 & 02-27-06

Instruments			
Model	Ludlum 3	Ludlum 2221	Ludlum 12
Serial Number	138880	86302	138738
Cal Due Date	05-21-06	05-15-06	08-16-06
Efficiency	26.14%	34.36%	22.14%
Probe	15 cm² β-γ	100 cm² β	50 cm ² α
Probe Serial #	117851	142547	145696
Background	cpm	cp2m	cpm
metal	40-70	576 ± 105	<20
concrete		948 ± 256	<20
cement block		843 ±120	<20
stucco		777 ± 85	<20
glass		630 ± 123	<20

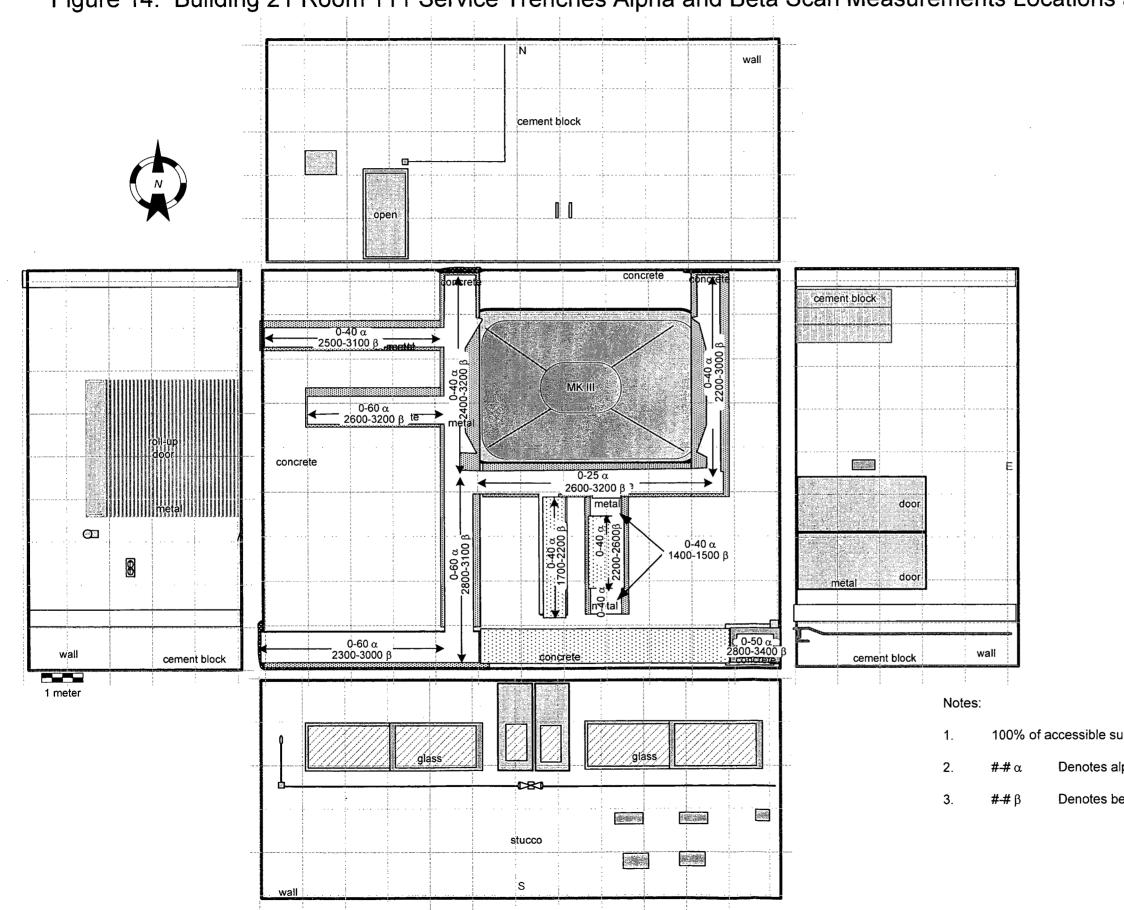


Figure 14: Building 21 Room 111 Service Trenches Alpha and Beta Scan Measurements Locations and Results

Instruments			
Model	Ludlum 2221	Ludlum 2221	
Serial Number	84459	154202	
Cal Due Date	05-15-06	05-15-06	
	10-28-06	09-22-06	
Efficiency	22.14%	30.39%	
Probe	434 cm ² α	434 cm² β	
Probe Serial #	086215	149017	
Background	cpm 🦾	cpm 👘	
concrete	10-60	1300-2000	
metal	0-40	700-1300	

100% of accessible surfaces scanned for alpha and beta activity.

Denotes alpha scan results in counts per minute.

Denotes beta scan results in counts per minute.

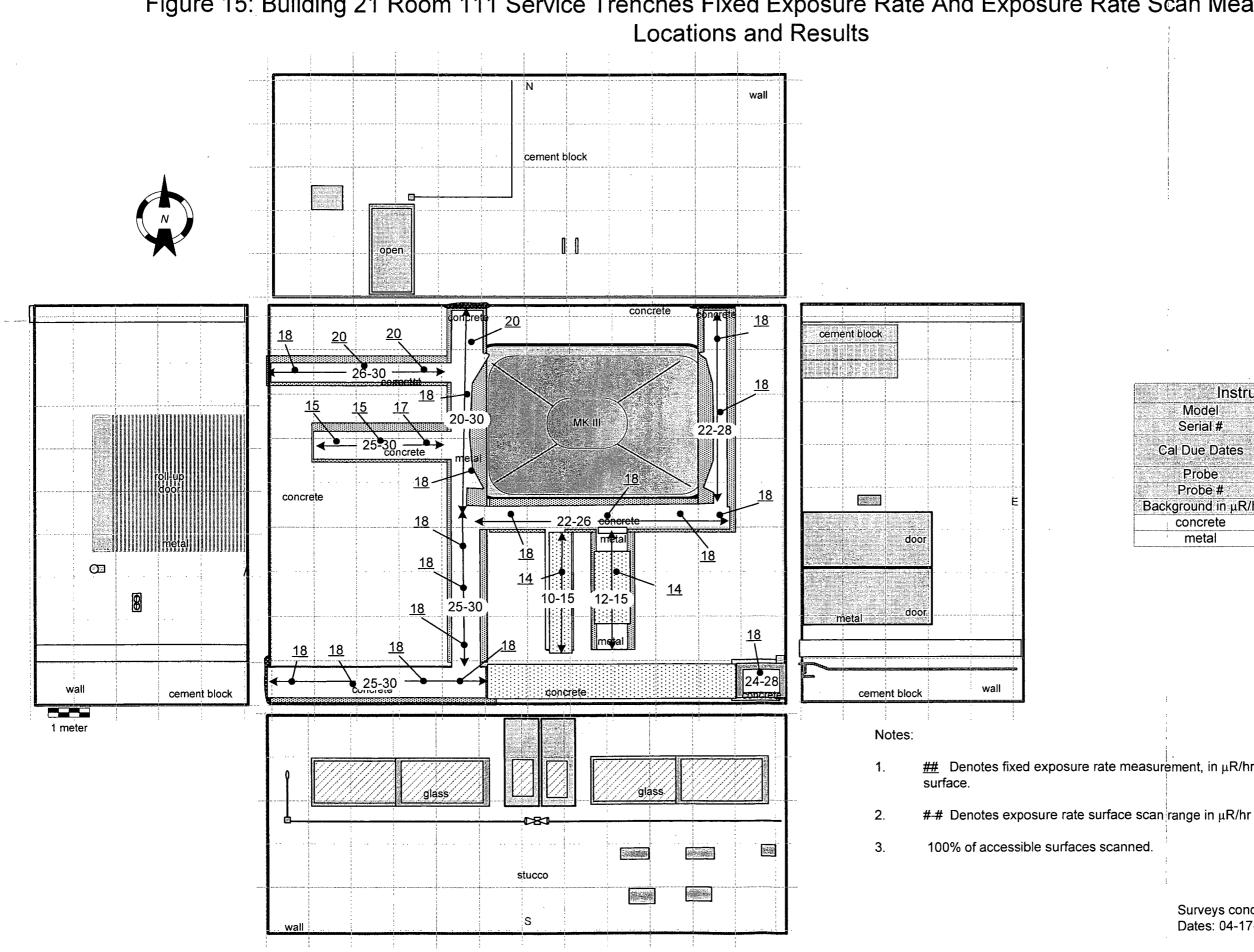
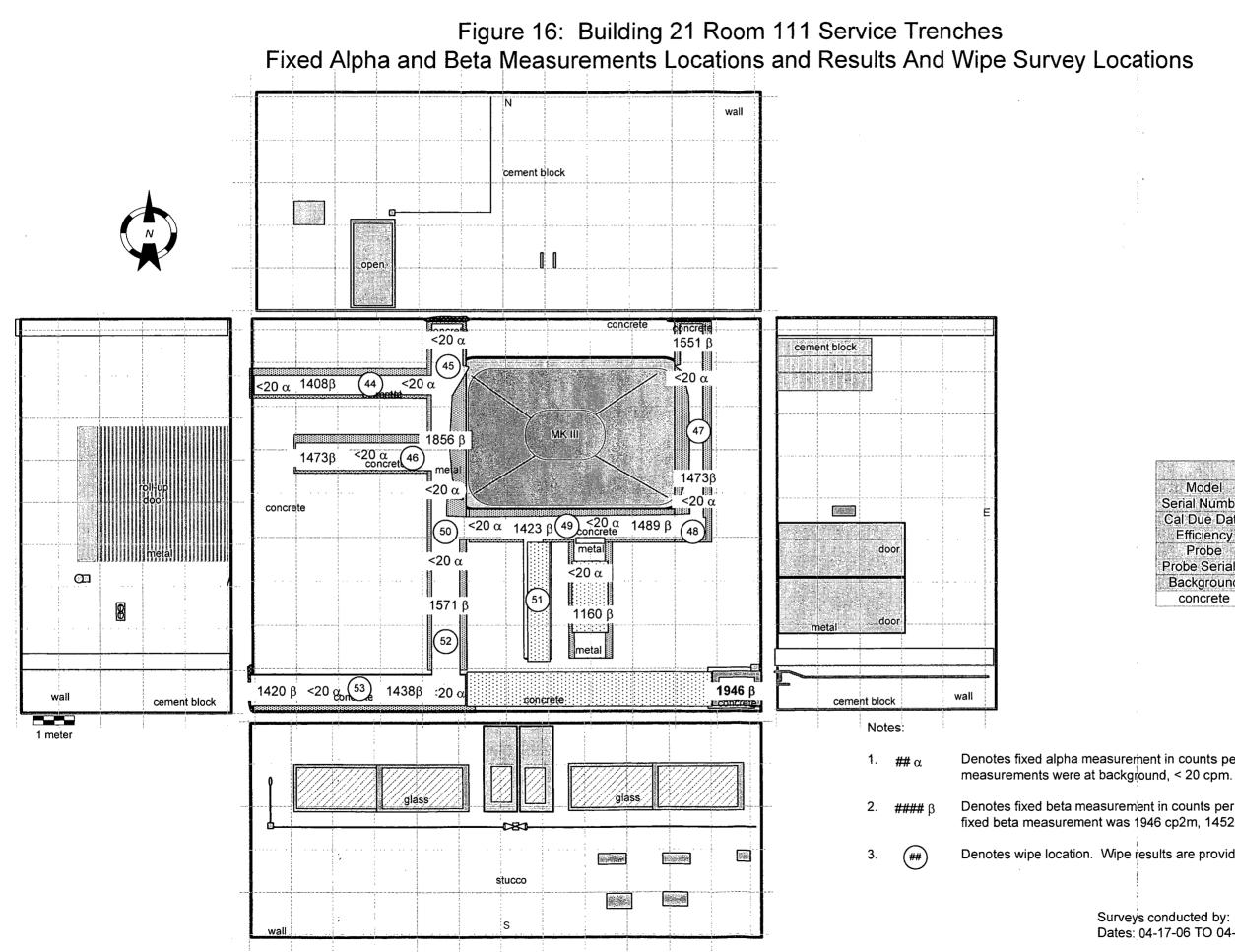



Figure 15: Building 21 Room 111 Service Trenches Fixed Exposure Rate And Exposure Rate Scan Measurement

Instrum	ent	
Model	Ludlum 3	
Serial #	151348	
Cal Due Dates	06-30-06	
Cal Due Dales	10-04-06	
Probe	2" X 2" Nal γ	
Probe #	163169	
Background in µR/hr	contact	@ 1 meter
concrete	17-23	17-22
[*] metal	13-19	15-18

<u>##</u> Denotes fixed exposure rate measurement, in μ R/hr, taken @ ~1 meter from the

Surveys conducted by: S. Cowan & R. Stowell Dates: 04-17-06 to 04-19-06 & 08-01-06

Instruments			
Model	Ludlum 2221	Ludlum 12	
Serial Number	86302	138738	
Cal Due Date	05-15-06	08-16-06	
Efficiency	34.36%	22.14%	
Probe	100 cm² β	$50 \text{ cm}^2 \alpha$	
Probe Serial #	142547	145696	
Background	cp2m	cpm	
concrete	948 ± 256	<20	

Denotes fixed alpha measurement in counts per minute, cpm. All fixed alpha

Denotes fixed beta measurement in counts per two minutes, cp2m. Maximum fixed beta measurement was 1946 cp2m, 1452 dpm/100 cm².

Denotes wipe location. Wipe results are provided in Table 7.

Surveys conducted by: S. Cowan & R. Stowell Dates: 04-17-06 TO 04-19-06

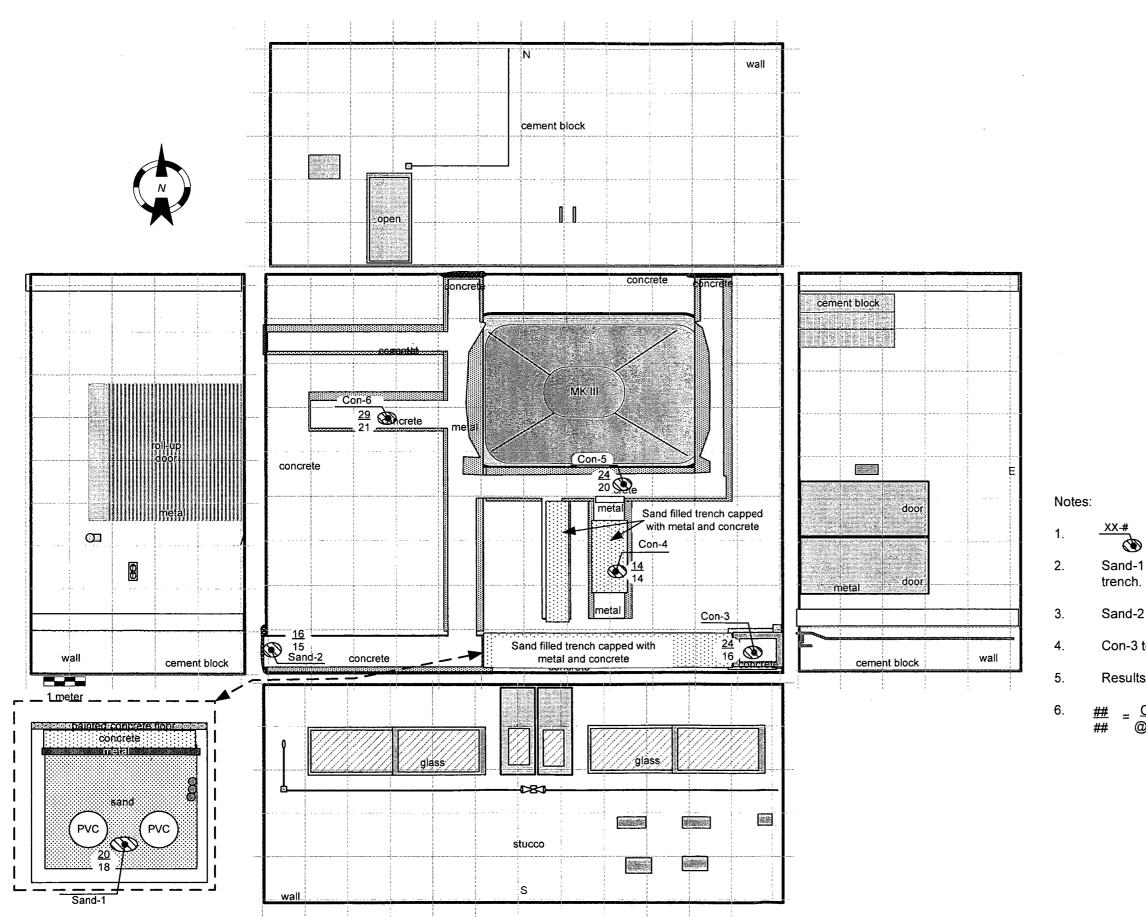


Figure 17: Building 21 Room 111 Sample Locations

Instrum	ient	
Model	Ludlum 3	
Serial Number	151348	
Cal Due Date	06-30-06	
Probe	2" X 2" Nal γ	
Probe Serial #	163169	
Background µR/hr	contact	@ 1 meter
concrete	17-23	17-22

Denotes sample location.

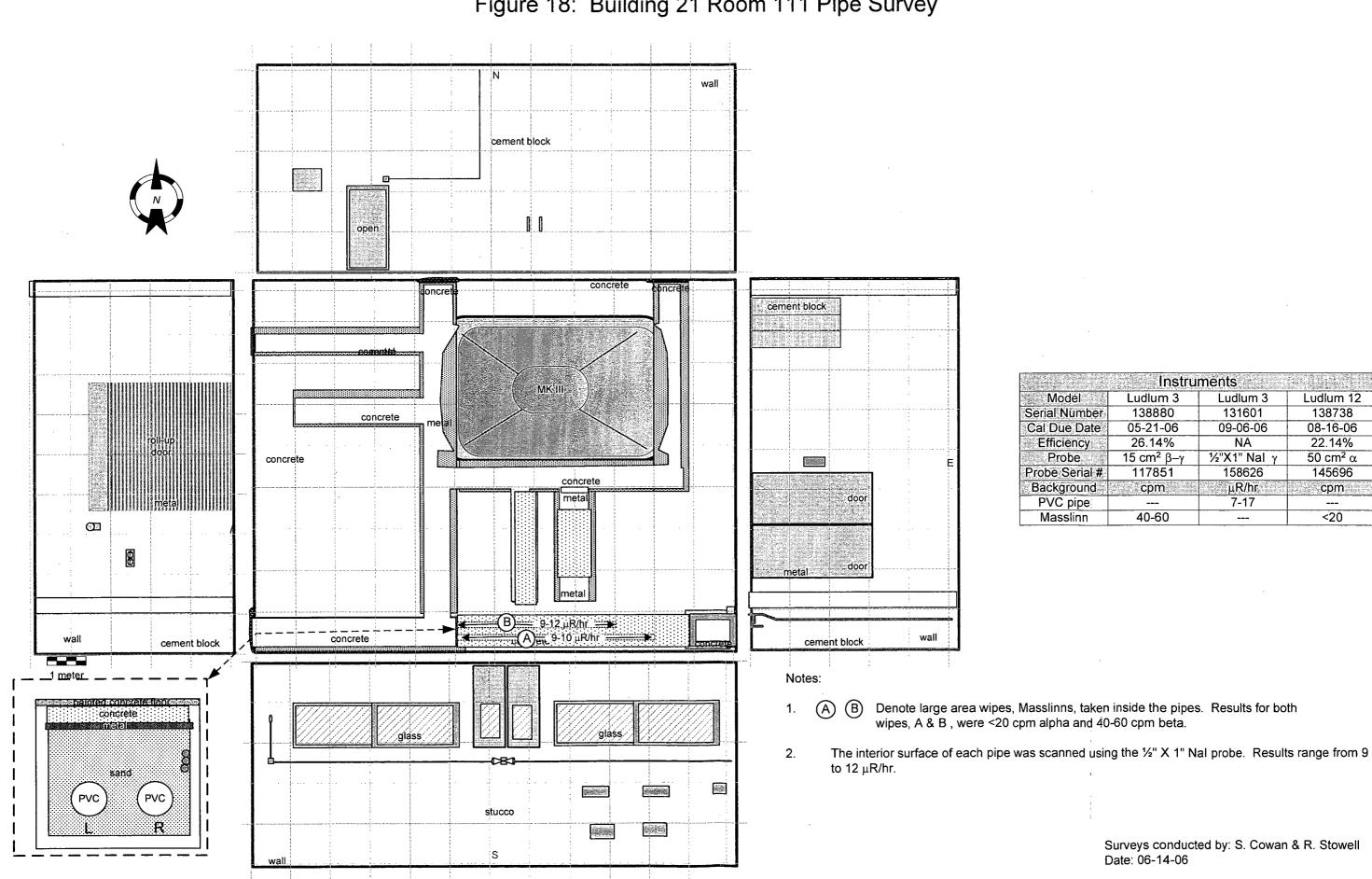
Sand-1 - sample of sand from under pvc piping in sand-filled

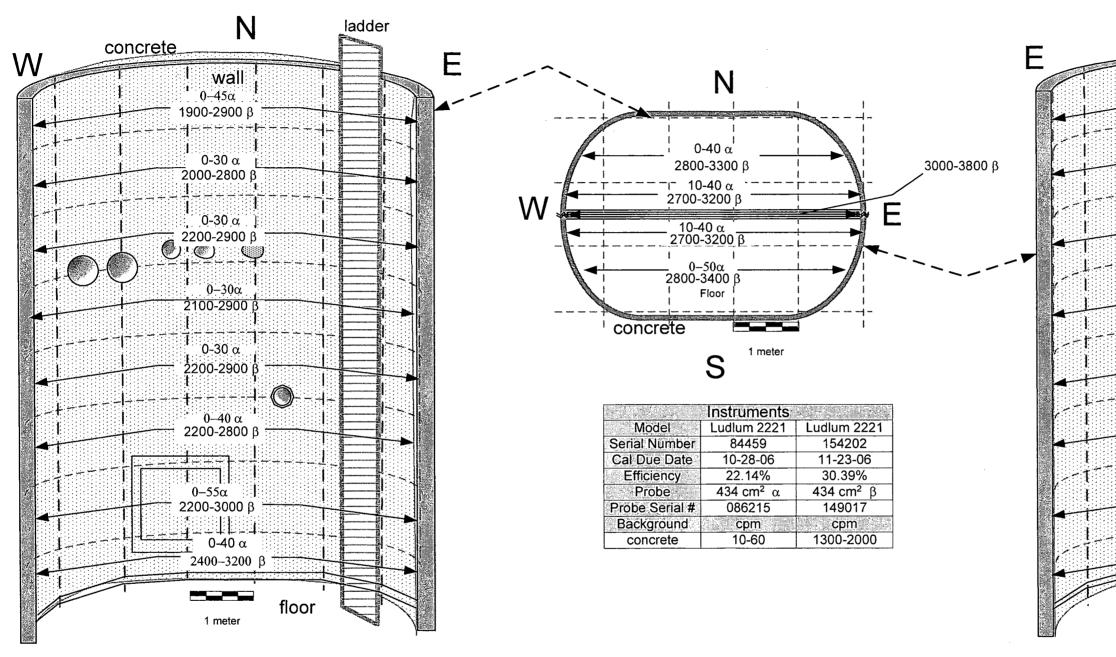
Sand-2 - sample of sand removed from trench prior to survey.

Con-3 to Con-6 - concrete samples.

Results for sand and concrete samples are provided in Table 9.

 $= \frac{Contact \ \mu R/hr}{@1 meter \ \mu R/hr}$ Exposure rate measurements taken on contact and at one meter at each sample location.




Figure 18: Building 21 Room 111 Pipe Survey

Instruments				
ėl	Ludlum 3	Ludlum 3	Ludlum 12	
ımber	138880	131601	138738	
Date	05-21-06	09-06-06	08-16-06	
ncy	26.14%	NA	22.14%	
e	15 cm² β–γ	1⁄2"X1" Nal γ	$50 \text{ cm}^2 \alpha$	
erial#	117851	158626	145696	
ound	cpm	μ R/hr	cpm	
ipe:		7-17		
inn	40-60		<20	

Surveys conducted by: S. Cowan & R. Stowell Date: 06-14-06

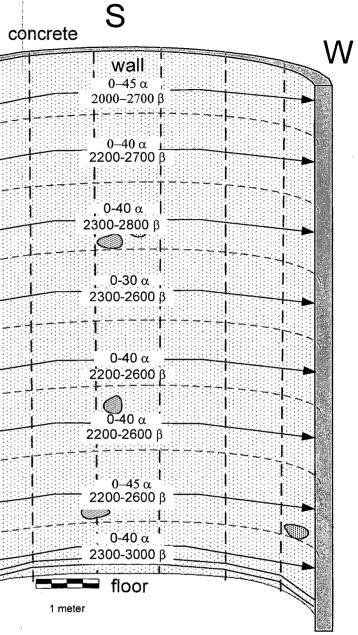
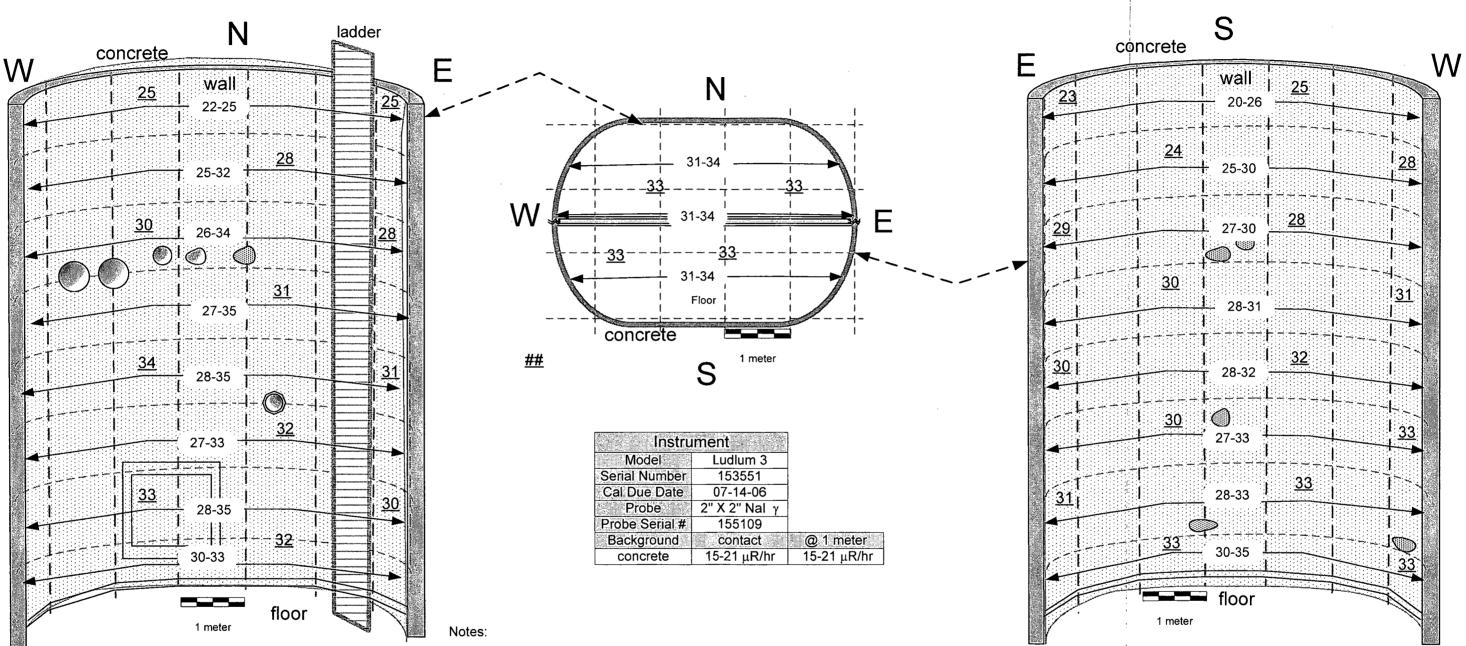
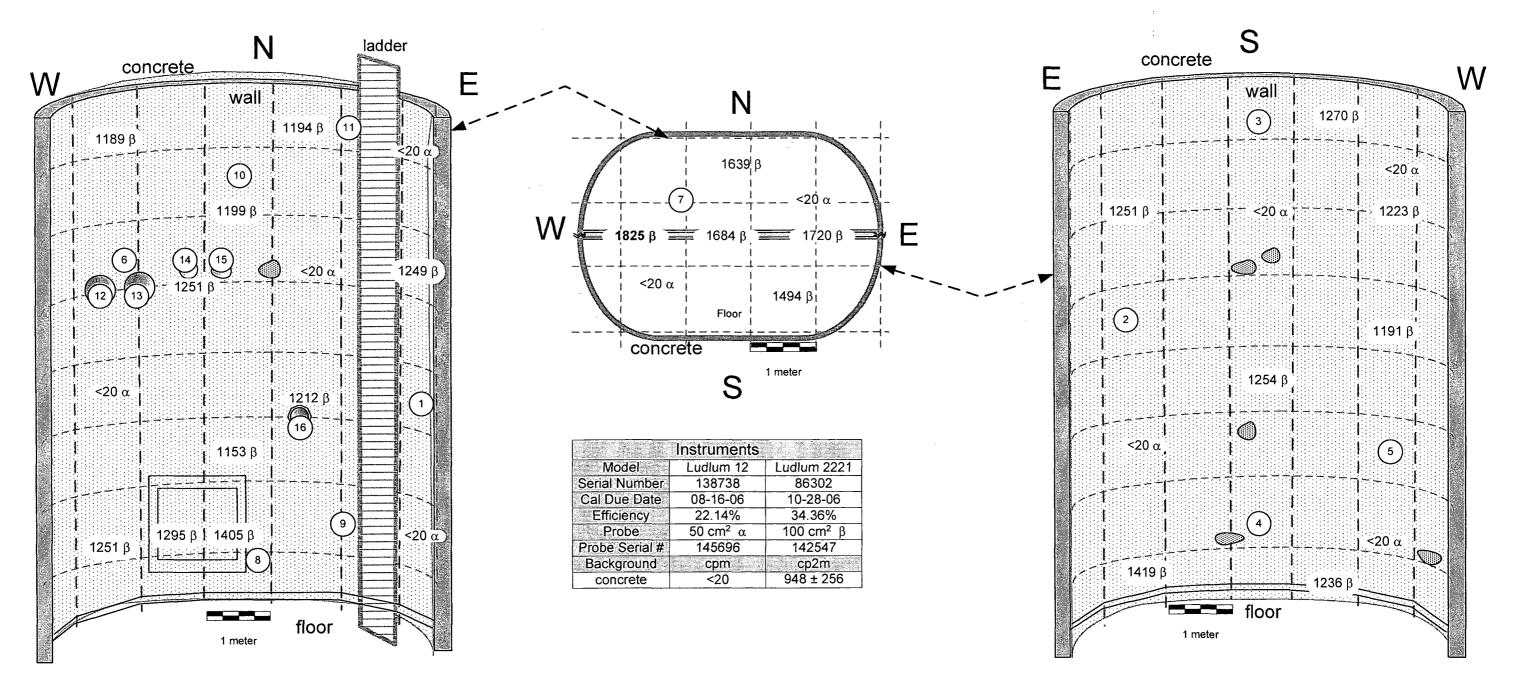

Fig. 18

Figure 19: Building 21 Room 111 TRIGA[®] MK III Pit Alpha and Beta Scan Measurement Locations and Results


Notes:

- 1. 100% of accessible scanned for alpha and beta activity.
- 2. #-# α Denotes alpha scan results in counts per minute.
- 3. #-# β Denotes beta scan results in counts per minute.

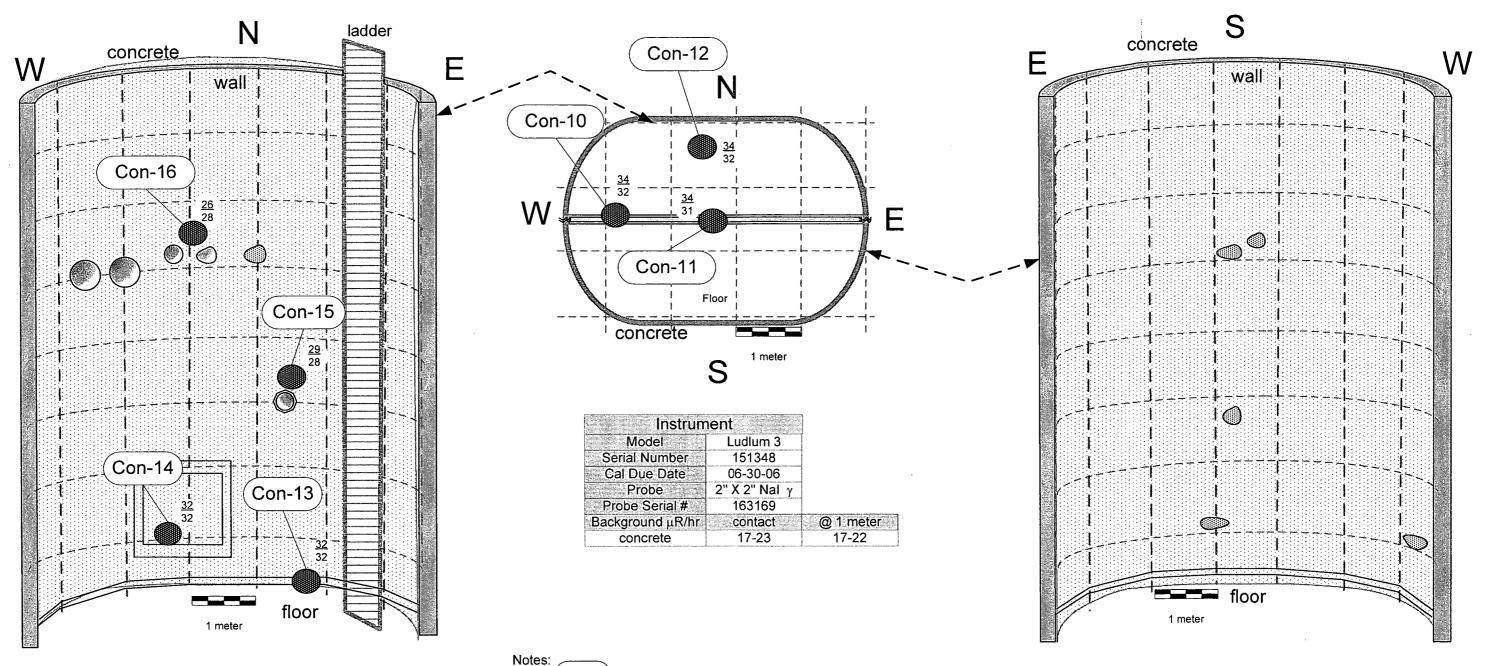
Surveys conducted by: S. Cowan & R. Stowell Dates: 05-30-06 to 06-02-06


Figure 20: Building 21 Room 111 TRIGA[®] MK III Pit Fixed Exposure Rate and Exposure Rate Scan Measurement Locations and Results

- <u>##</u> Denotes fixed exposure rate measurement, in μ R/hr, taken @ ~1 meter from the 1. surface.
- #-# Denotes exposure rate surface scan range in µR/hr 2.
- 3. 100% of accessible surfaces scanned.

Surveys conducted by: R. Stowell & S. Cowan Dates: 05-24-06 to 05-30-06

Figure 21: Building 21 Room 111 TRIGA[®] MK III Pit Fixed Alpha and Beta Measurement Locations and Results and Wipe Survey Locations

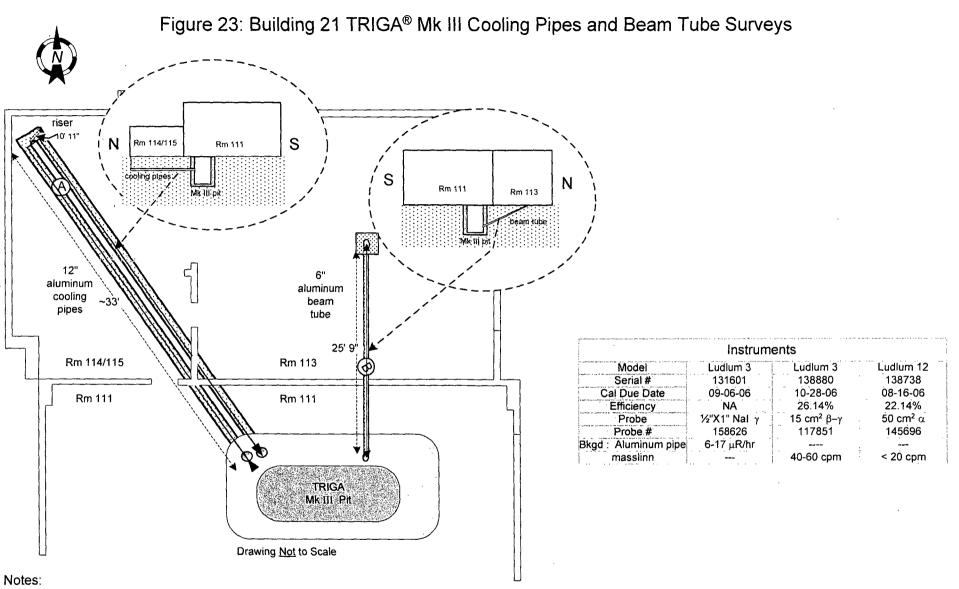

Notes:

3.

- 1. ## α Denotes fixed alpha measurement in counts per minute, cpm. All fixed alpha measurements were at background, < 20 cpm.
- #### β Denotes fixed beta measurement in counts per two minutes, cp2m. Maximum fixed beta measurement was 1825 cp2m, 1276 dpm/100 cm².
 - (##) Denotes wipe location. Wipe results are provided in Table 7.

Surveys conducted by: S. Cowan & R. Stowell Dates: 06-01-06, 06-02-06 & 06-05-06

Figure 22: Building 21 Room 111 TRIGA® MK III Pit Sample Locations

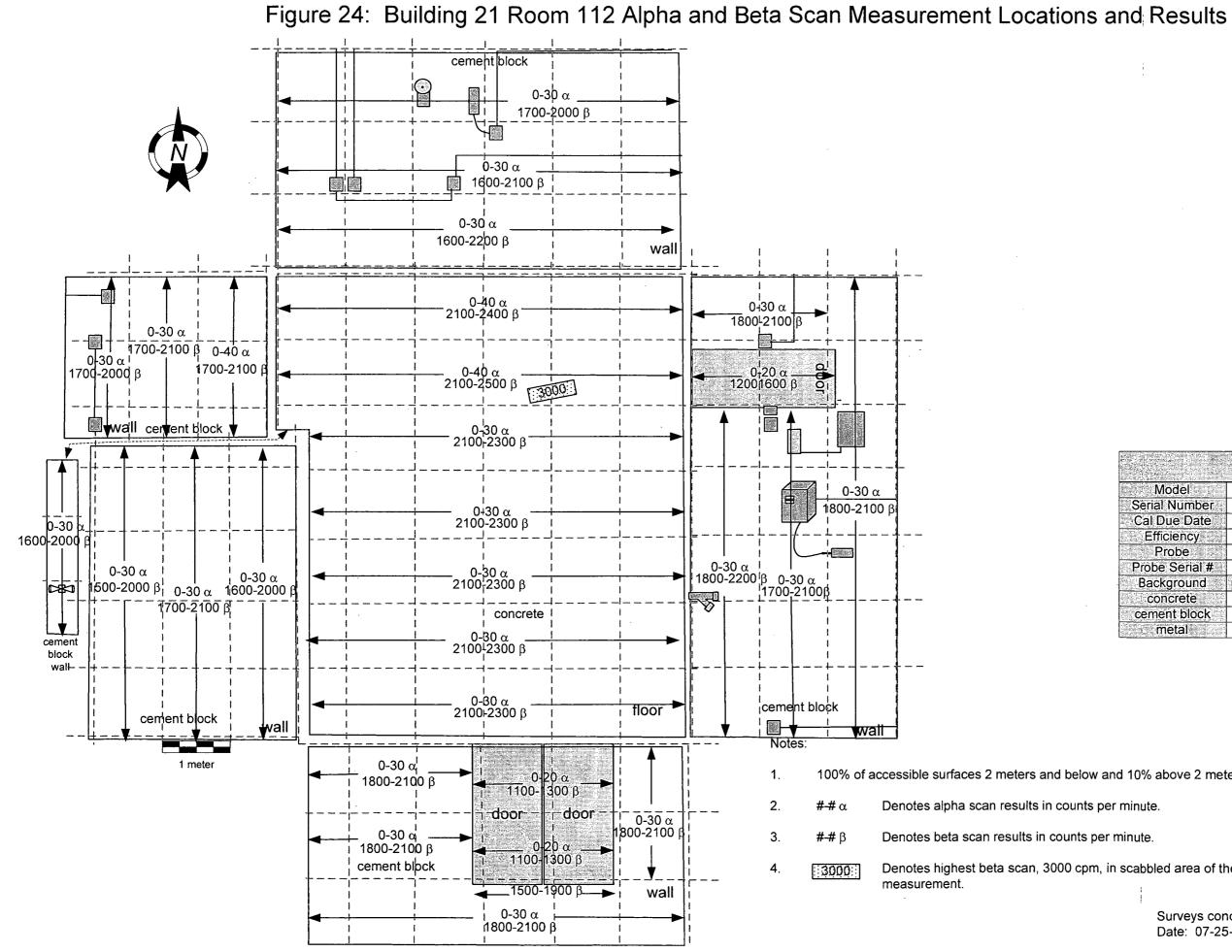

Con-# 1.

3.

Denotes location of concrete sample.

- 2. Concrete sample results are provided in Table 9.
 - $\frac{\#\#}{\#\#} = \frac{\text{Contact } \mu R/hr}{@1 \text{ meter } \mu R/hr}$
 - Exposure rate measurements taken on @1 meter μ R/hr contact and at one meter at each sample location.

Samples collected by; S. Cowan & R. Stowell Dates: 06-07-06 & 06-08-06

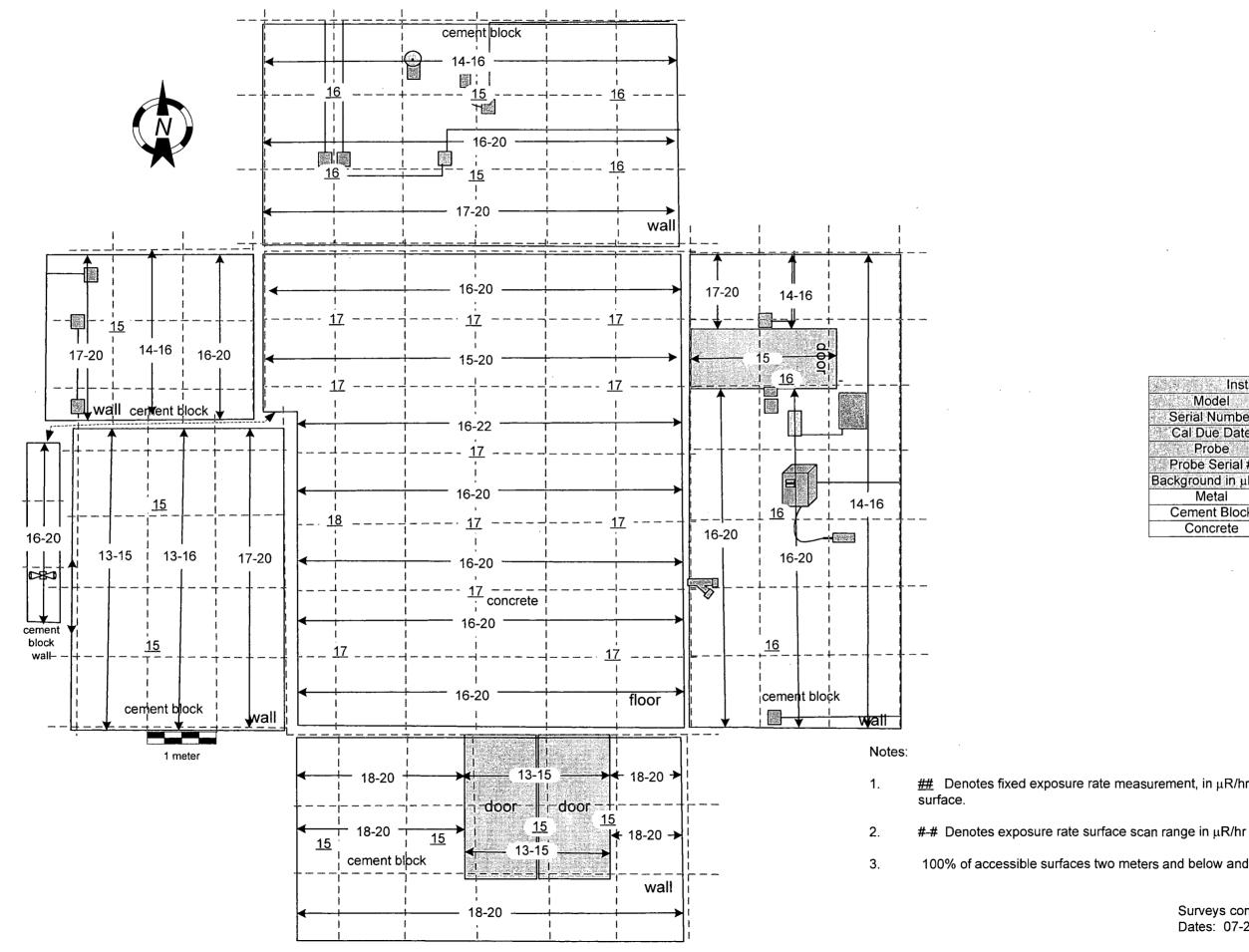


(A) & (B) 1.

Denote large area wipes, Masslinns, taken inside the pipes. Results for both wipes, A & B, were <20 cpm alpha and 40-60 cpm beta.

2. The interiors of the cooling pipes and beam tube were scanned using the 1/2" Nal probe. Results range from 15 to 21 μ R/hr inside the cooling pipes and 11-16 μ R/hr inside the beam tube.

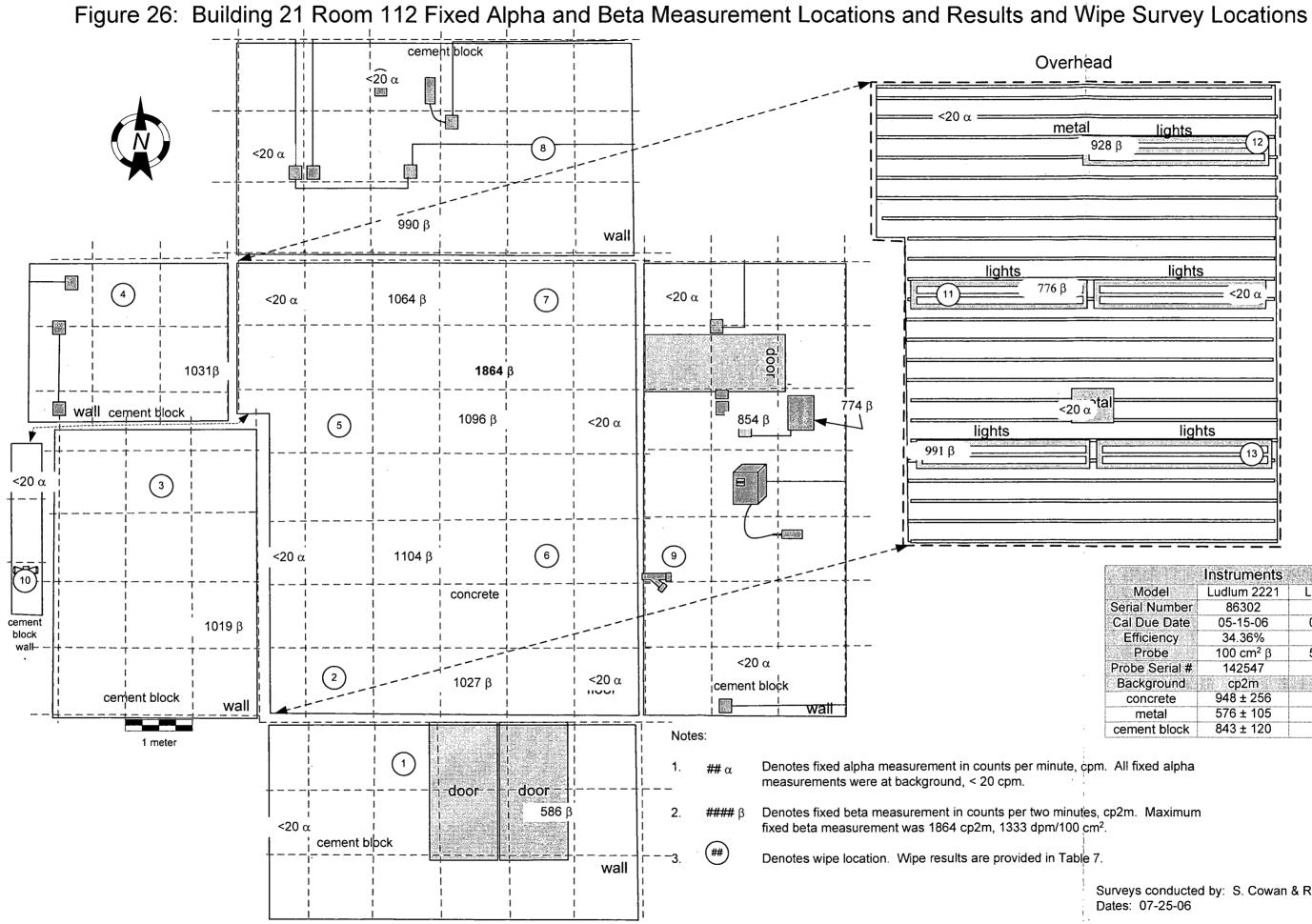
Surveys conducted by: S. Cowan & R Stowell Date: 06-06-06


	Instruments	
Model	Ludlum 2221	Ludlum 2221
Serial Number	84459	154202
Cal Due Date	10-28-06	11-23-06
Efficiency	22.14%	30.39%
Probe	434 cm ² α	434 cm ² β
Probe Serial #	086215	149017
Background	cpm	cpm
concrete	10-60	1300-2000
cement block	10-30	1600-1900
metal	0-40	700-1300

100% of accessible surfaces 2 meters and below and 10% above 2 meters scanned for alpha and beta activity.

Denotes highest beta scan, 3000 cpm, in scabbled area of the floor. See Figure 26 for fixed beta

```
Surveys conducted by: S. Cowan & R. Stowell
Date: 07-25-06
```

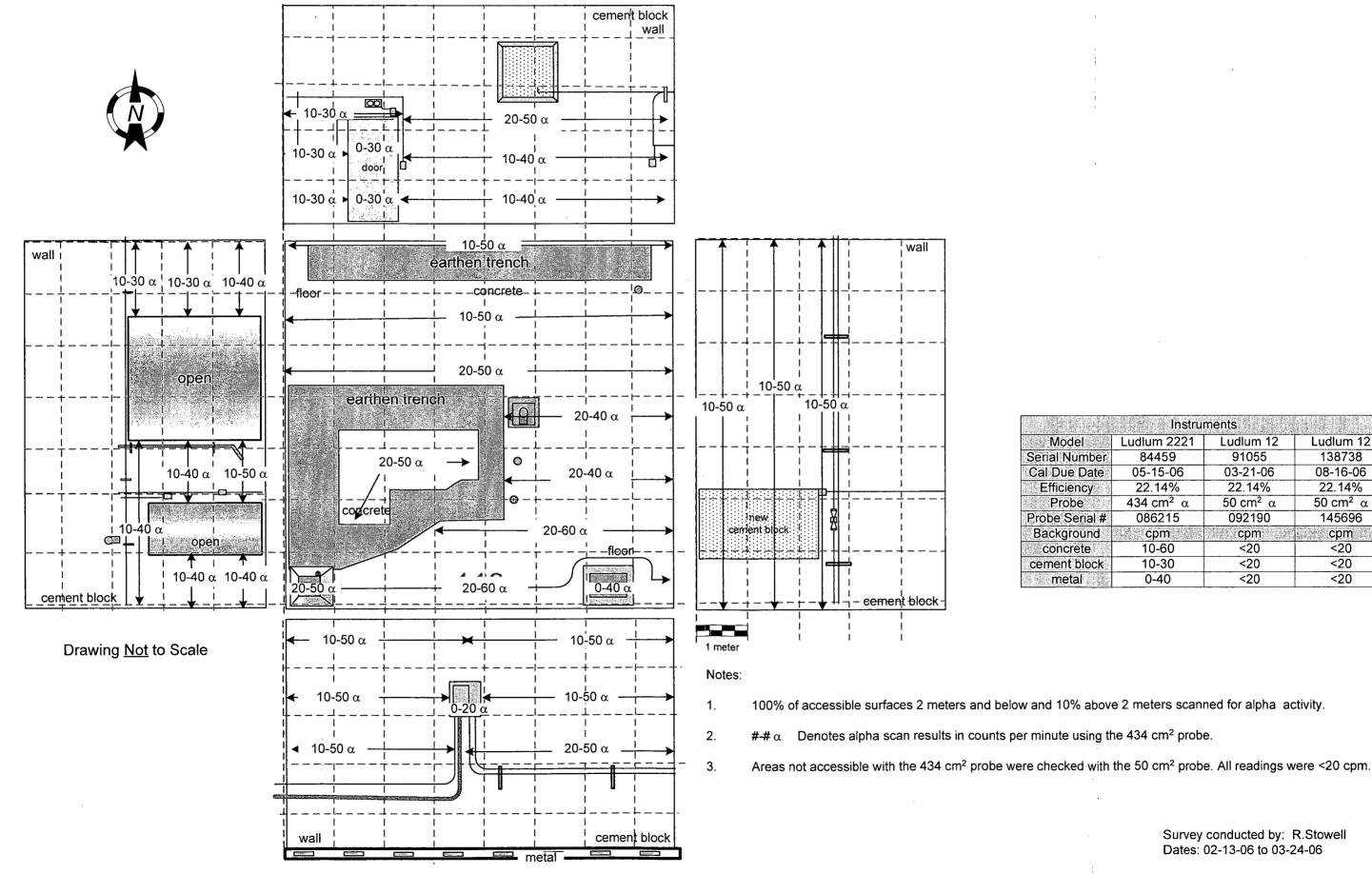



😔 🚽 🚽 Instrume		
Model	Ludlum 3	
Serial Number	153551	
Cal Due Date	09-05-06	
Probe	2" X 2" Nal γ	
Probe Serial #	155109	
Background in µR/hr	contact	@ 1 meter
Metai	9-13	10-13
Cement Block	14-19	14-18
Concrete	15-21	15-21

<u>#</u> Denotes fixed exposure rate measurement, in μ R/hr, taken @ ~1 meter from the

100% of accessible surfaces two meters and below and 10% above 2 meters scanned.

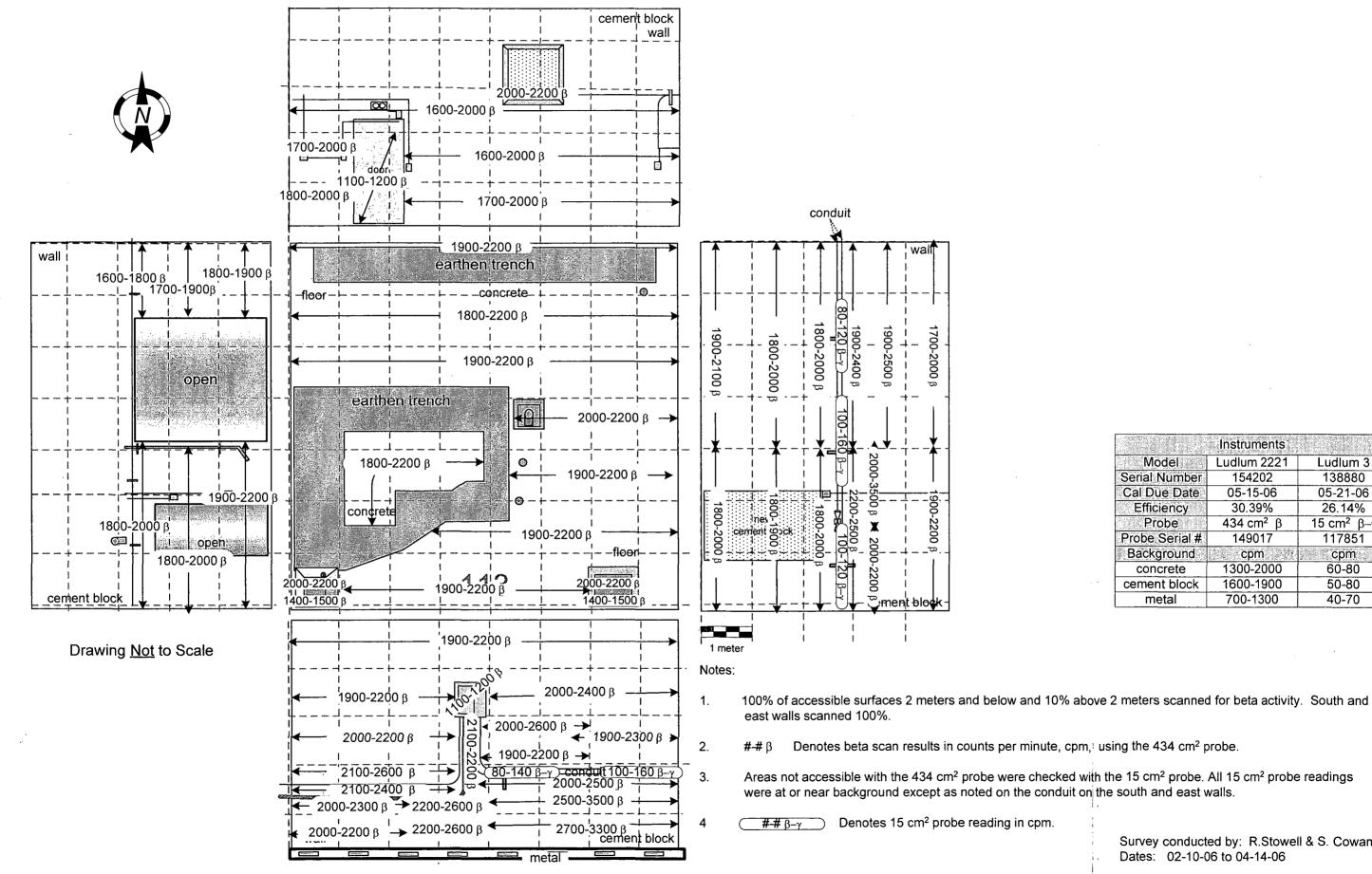
Surveys conducted by: S. Cowan Dates: 07-24-06 & 07-25-06


Overhead

<u></u>	<u></u>
etal	lights
928 β	
928 B	<u>и на селото селото СД</u> І
-	
	lights
	Remembers werkenet formen gerrener gemeinen vonstatt at meng
	<20 α
Sk. 1973.	ING CONCEPTION IN THE OWNER OF THE OWNER
	I
10-0-4-4-CETTERS	
20 α ⁻ tal	
20α	
	lights
	(13)
b	

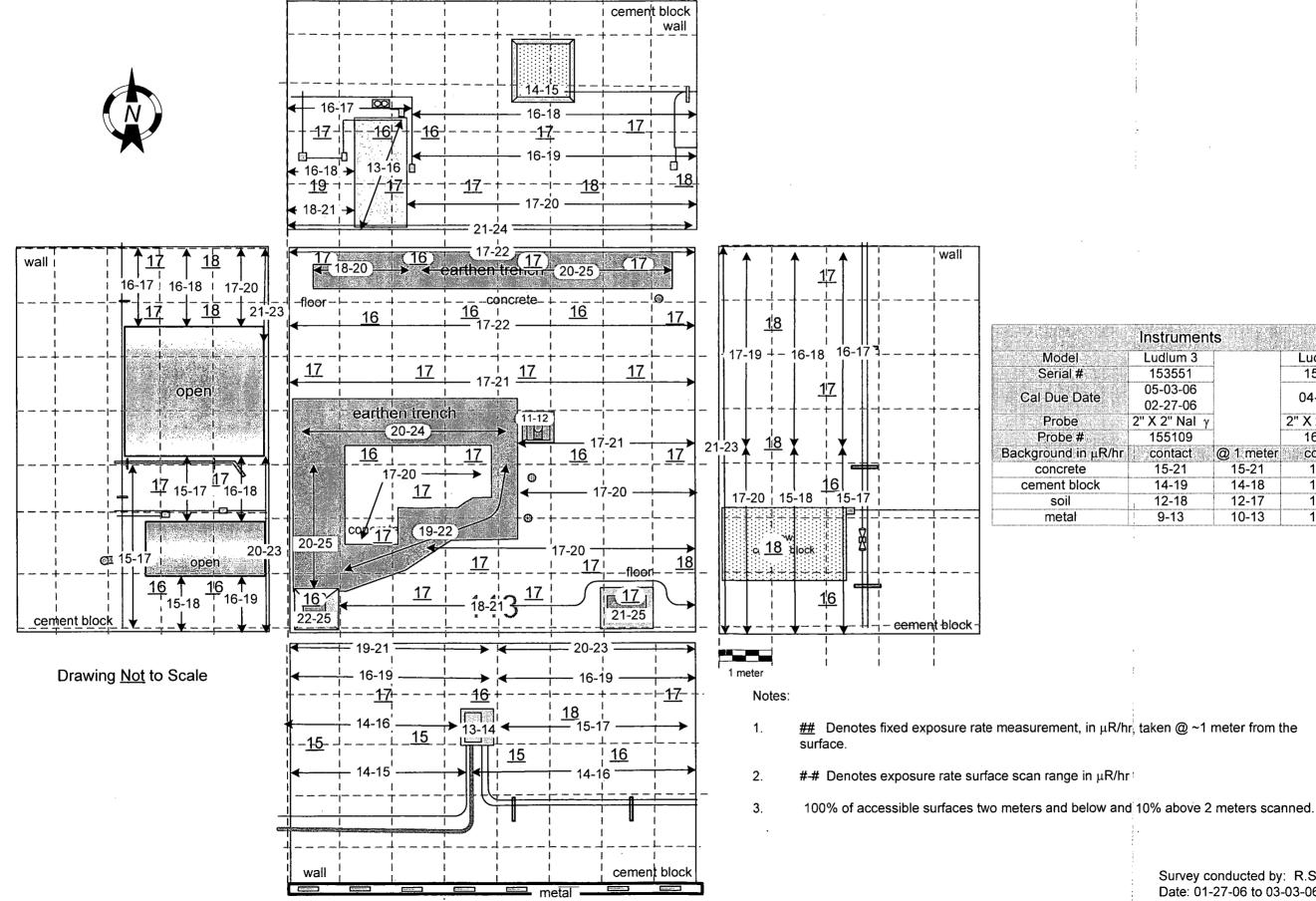
	Instruments	
Model	Ludlum 2221	Ludium 12
Serial Number	86302	138738
Cal Due Date	05-15-06	08-16-06
Efficiency	34.36%	22.14%
Probe	100 cm² β	$50 \text{ cm}^2 \alpha$
Probe Serial #	142547	145696
Background	cp2m	cpm
concrete	948 ± 256	<20
metal	576 ± 105	<20
cement block	843 ± 120	<20

```
Surveys conducted by: S. Cowan & R Stowell
Dates: 07-25-06
```


Figure 27: Building 21 Room 113 Alpha Scan Measurement Locations and Results

	Instru	ments	
	Ludlum 2221	Ludlum 12	Ludlum 12
mber	84459	91055	138738
Date	05-15-06	03-21-06	08-16-06
ıcy	22.14%	22.14%	22.14%
e	$434 \text{ cm}^2 \alpha$	$50 \text{ cm}^2 \alpha$	50 cm ² α
erial #	086215	092190	145696
ound	cpm 🖉	cpm	cpm
ete	10-60	<20	<20
block	10-30	<20	<20
l	0-40	<20	<20

Survey conducted by: R.Stowell Dates: 02-13-06 to 03-24-06



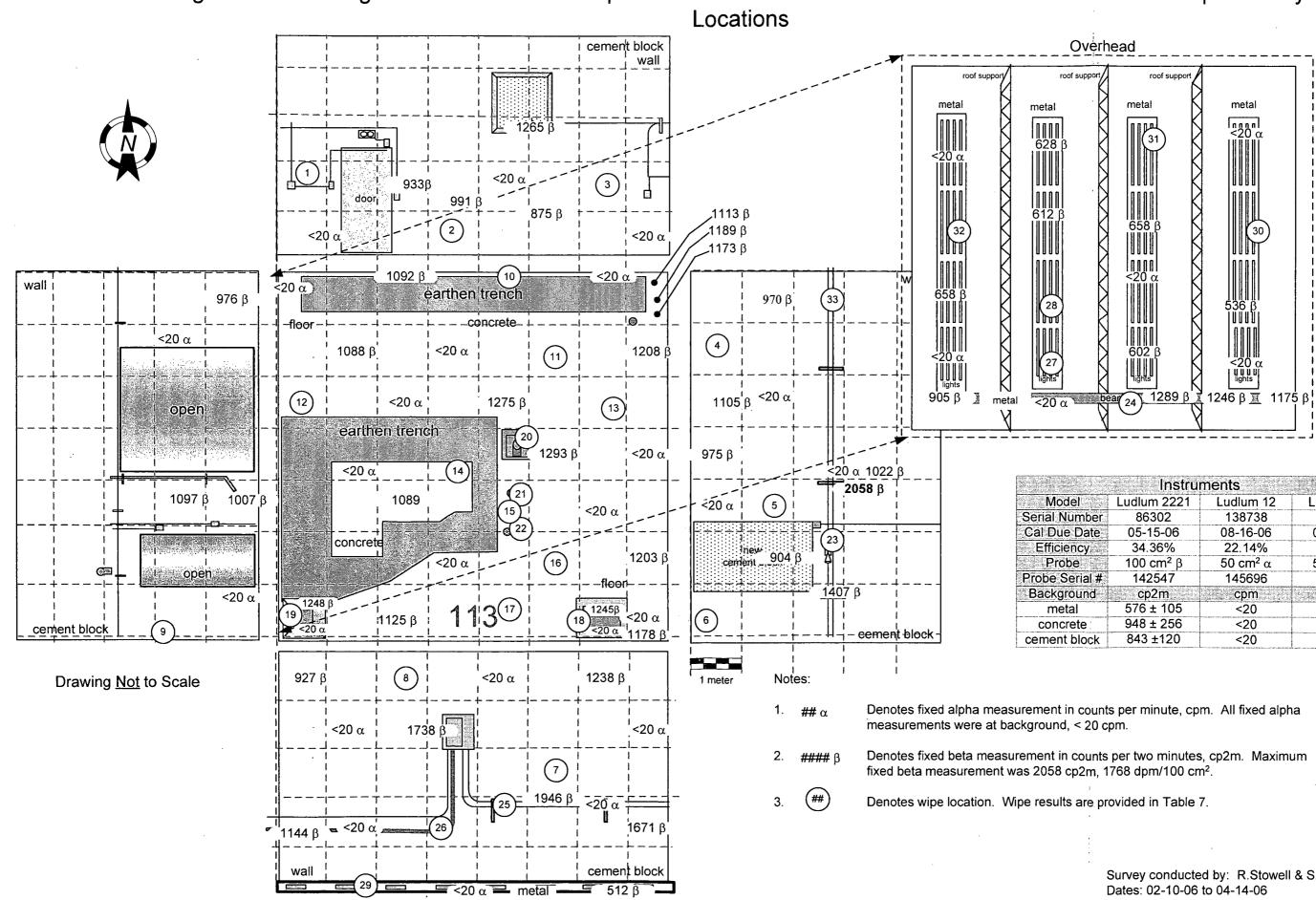
	Instruments =	
Model	Ludlum 2221	Ludlum 3
Serial Number	154202	138880
Cal Due Date	05-15-06	05-21-06
Efficiency	30.39%	26.14%
Probe	434 cm ² β	15 cm² βγ
Probe Serial #	149017	117851
Background	cpm 🖓	cpm
concrete	1300-2000	60-80
cement block	1600-1900	50-80
metal	700-1300	40-70

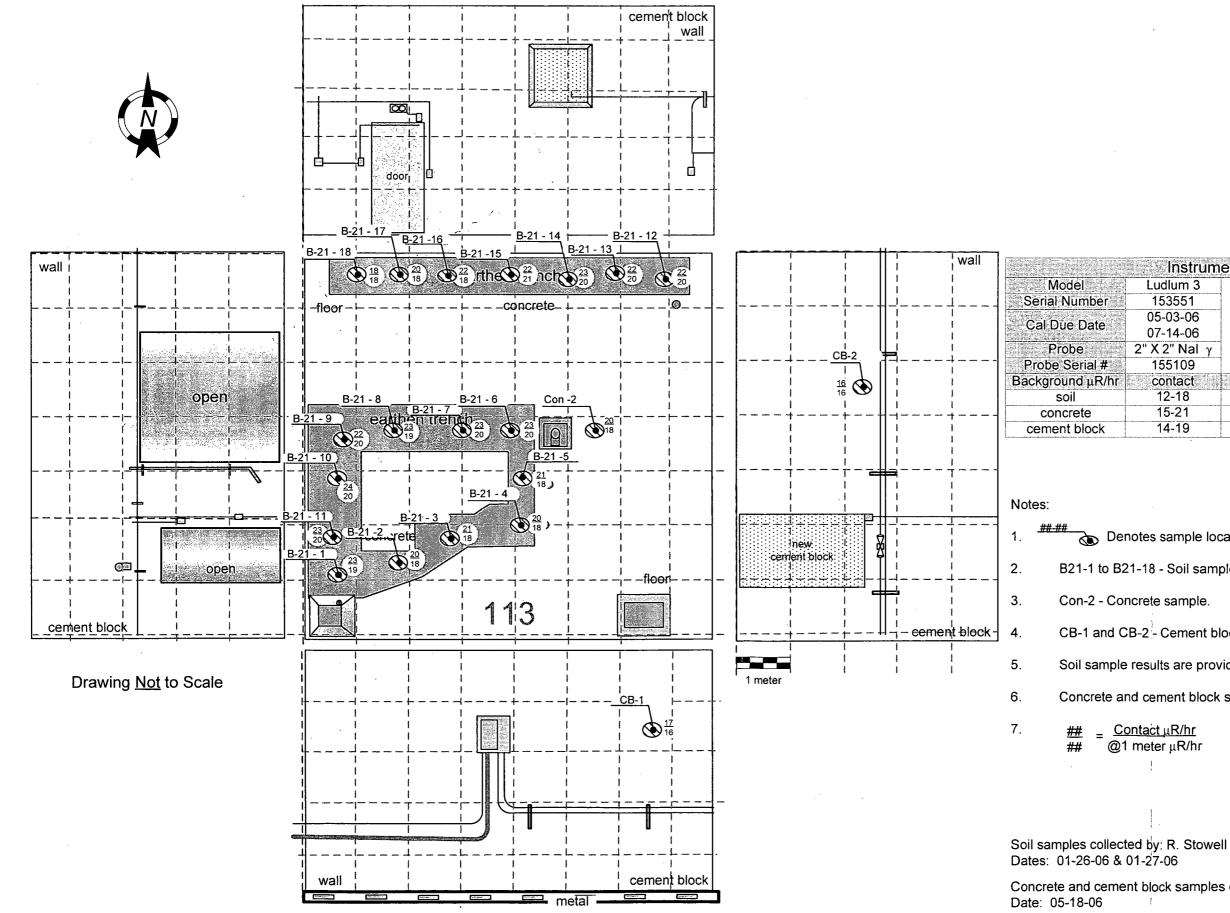
Survey conducted by: R.Stowell & S. Cowan Dates: 02-10-06 to 04-14-06

Figure 29: Building 21 Room 113 Fixed Exposure Rate and Exposure Rate Scan Measurement Locations and Results

	Instrument	S		
	Ludlum 3		Ludlum 3	
	153551		151348	
	05-03-06 02-27-06		04-14-06	
	2" X 2" Nal γ		2" X 2" Nal γ	
	155109		163169	
hr	contact	@ 1 meter	contact	@ 1 meter
	15-21	15-21	17-23	17-22
	14-19	14-18	15-18	14-17
	12-18	12-17	12-21	12-19
	9-13	10-13	13-19	15-18

Survey conducted by: R.Stowell Date: 01-27-06 to 03-03-06




Figure 30: Building 21 Room 113 Fixed Alpha and Beta Measurement Locations and Results and Wipe Survey

Instruments			
el	Ludlum 2221	Ludlum 12	Ludlum 12
umber	86302	138738	91055
Date	05-15-06	08-16-06	03-21-06
ncy	34.36%	22.14%	22.14%
)e	100 cm² β	$50 \text{ cm}^2 \alpha$	$50 \text{ cm}^2 \alpha$
erial #	142547	145696	092190
ound	cp2m	cpm	cpm
al	576 ± 105	<20	<20
ete	948 ± 256	<20	<20
block	843 ±120	<20	<20

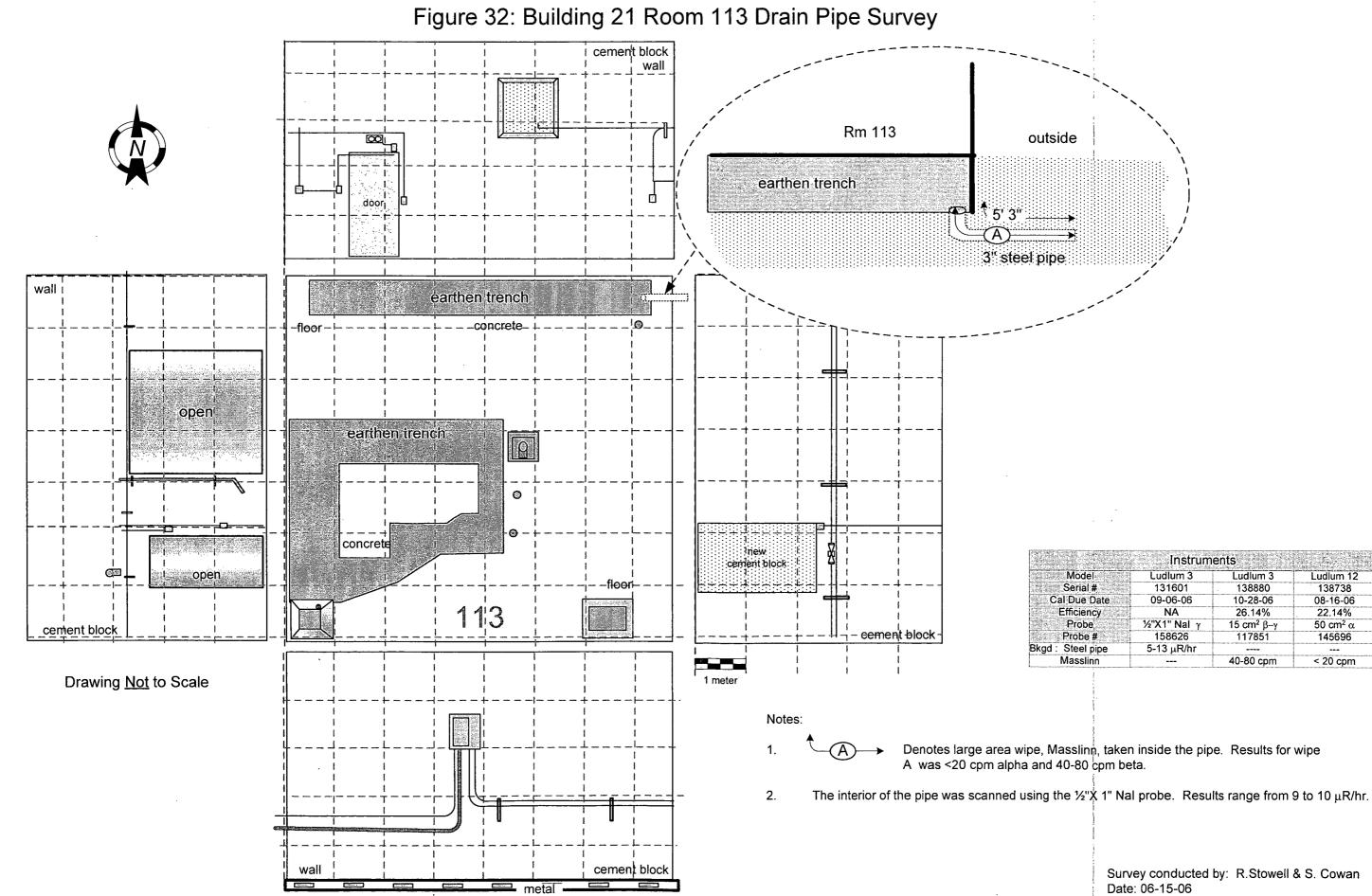
Survey conducted by: R.Stowell & S. Cowan

Fig. 30

lnstrum	ents		
Ludlum 3		Ludlum 3	
153551		151348	
05-03-06		04-14-06	
07-14-06			
2" X 2" Nal γ		2" X 2" Nal γ	
155109		163169	
contact	@ 1 meter	contact	@ 1 meter
12-18	12-17	12-21	12-19
15-21	15-21		
14-19	14-18		

Denotes sample location.

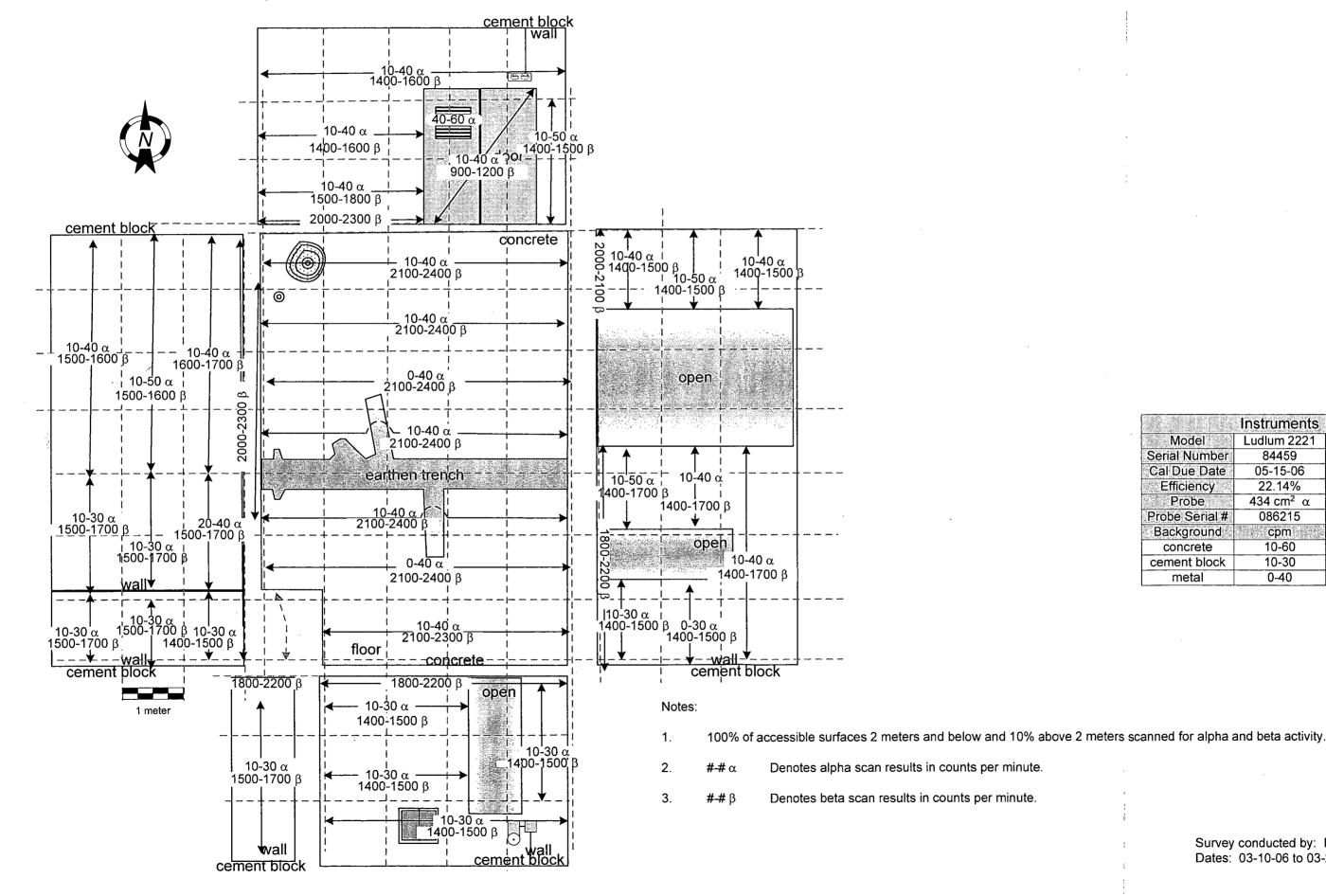
B21-1 to B21-18 - Soil samples collected from trenches.


CB-1 and CB-2 - Cement block samples

Soil sample results are provided in Table 5.

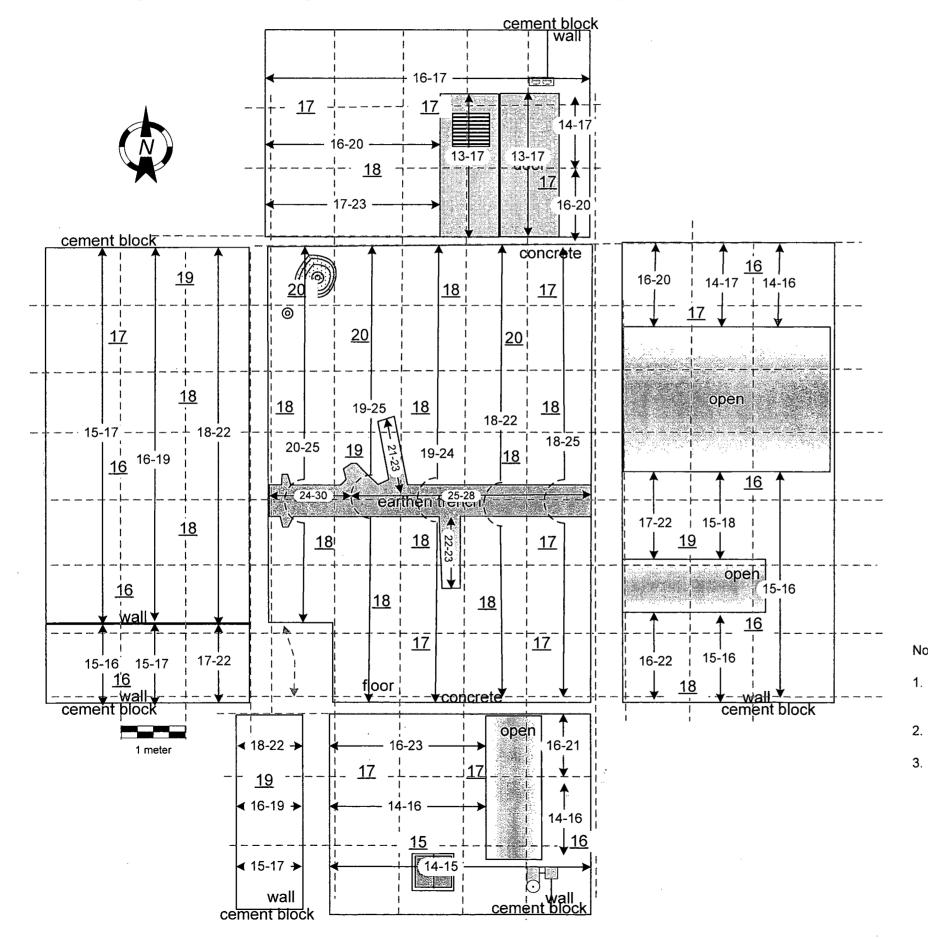
Concrete and cement block sample results are provided in Table 9.

ontact µR/hr	Exposure rate measurements taken
meter µR/hr	on contact and at one meter at each
	sample location.


Concrete and cement block samples collected by: S. Cowan & R. Stowell

	Instrum	ents	
Model	Ludlum 3	Ludlum 3	Ludlum 12
Serial #	131601	138880	138738
Due Date	09-06-06	10-28-06	08-16-06
ficiency	NA	26.14%	22.14%
Probe	1⁄2"X1" Nal γ	15 cm ² βγ	$50 \text{ cm}^2 \alpha$
robe #	158626	117851	145696
Steel pipe	5-13 μR/hr		
asslinn		40-80 cpm	< 20 cpm

Survey conducted by: R.Stowell & S. Cowan


Figure 33: Building 21 Room 114/115 Alpha and Beta Scan Measurement Locations and Results

Instruments			
Model	Ludlum 2221	Ludlum 2221	
Serial Number	84459	154202	
Cal Due Date	05-15-06	09-22-06	
Efficiency	22.14%	30.39%	
Probe	$434 \text{ cm}^2 \alpha$	434 cm ² β	
Probe Serial #	086215	149017	
Background	cpm	cpm	
concrete	10-60	1300-2000	
cement block	10-30	1600-1900	
metal	0-40	700-1300	

Survey conducted by: R. Stowell Dates: 03-10-06 to 03-23-06

Figure 34: Building 21 Room 114/115 Fixed Exposure Rate and Exposure Rate Scan Measurement Locations and Results

······································	
his distantian	Model
Continue de	Serial #
Contraction of the local division of the loc	Cal Due Date
	Probe
	Probe #
	Background in µR/I
	concrete
	cement block
ľ	soil
	metal

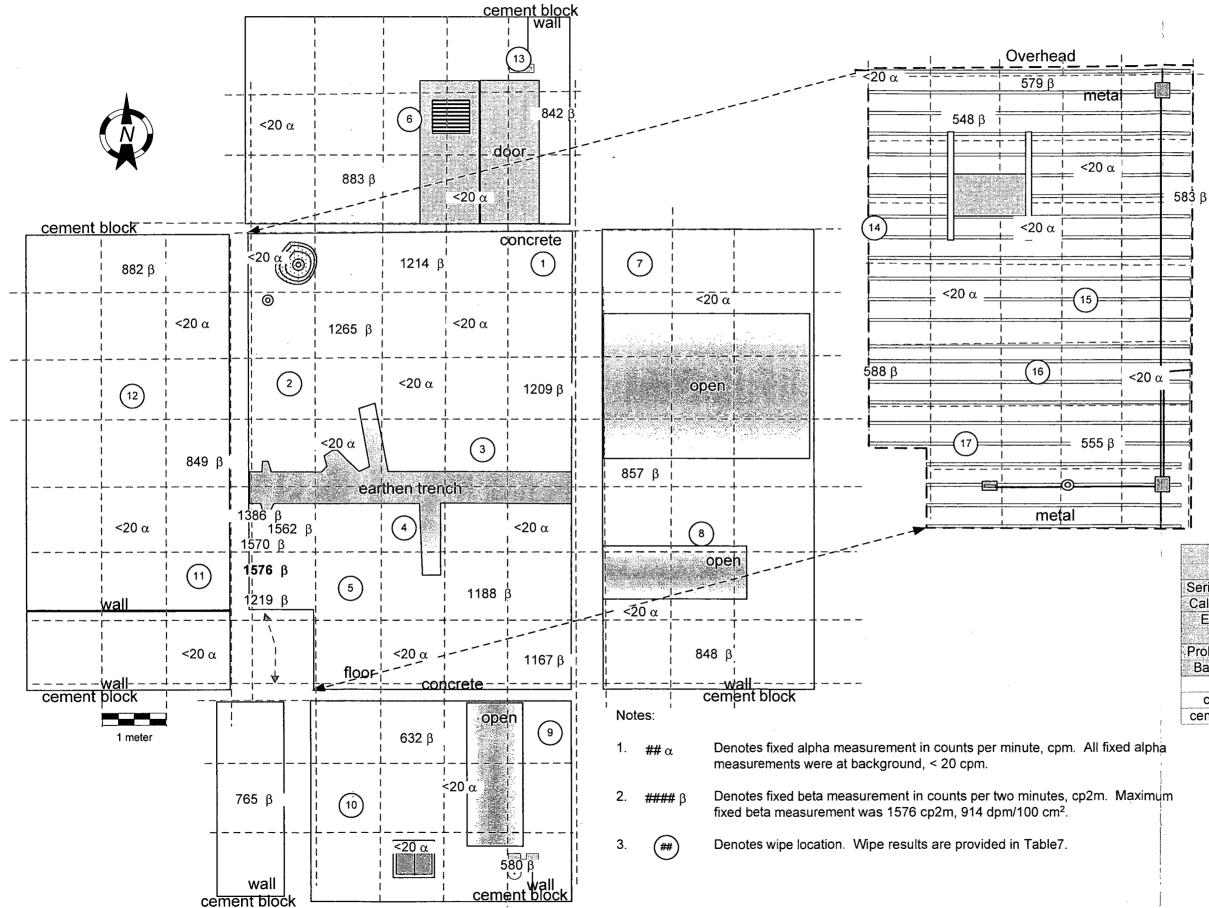
- Notes:
 - surface.
 - #-# Denotes exposure rate surface scan range in µR/hr

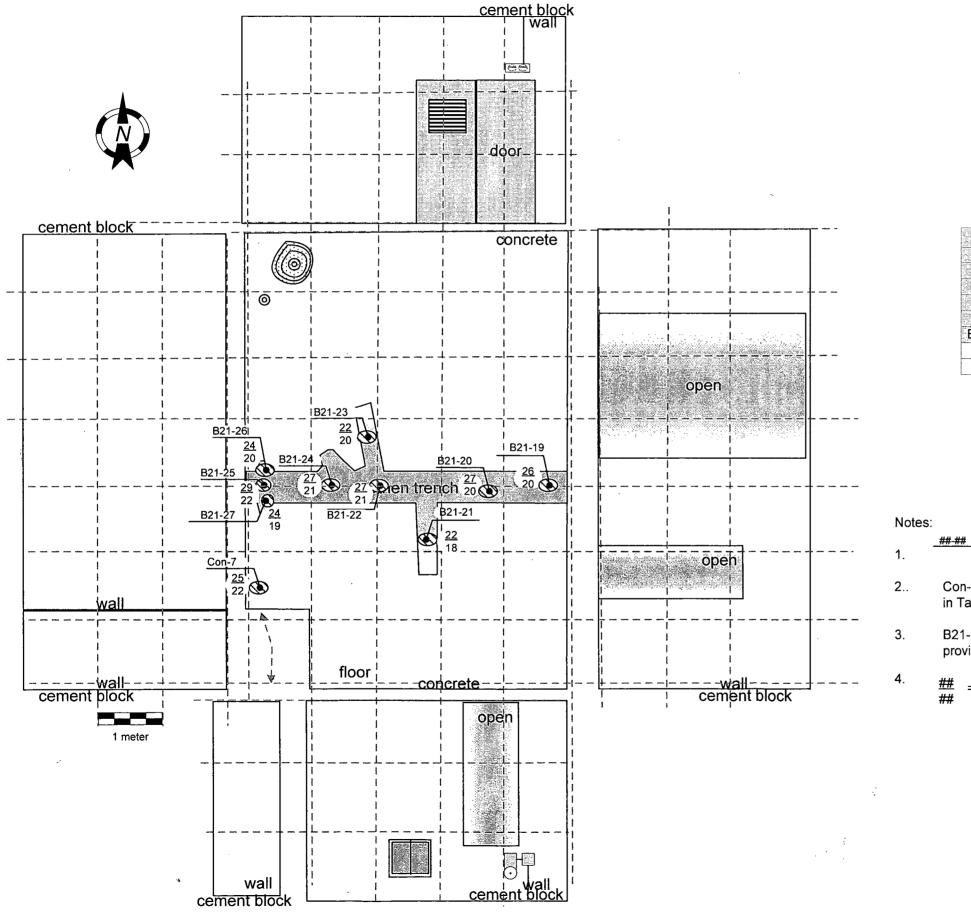
	Instrument	S	
×	Ludlum 3	e Princest in The III and Second and Bills	Ludlum 3
47	153551		151348
	05-03-06		04-14-06
	2" X 2" Nal γ		2" X 2" Nal γ
	155109		163169
r	contact	@ 1 meter	contact
	15-21	15-21	
	14-19	14-18	
	12-18	12-17	12-21
	9-13	10-13	·

Denotes fixed exposure rate measurement, in µR/hr, taken @ ~1 meter from the

100% of accessible surfaces two meters and below and 10% above 2 meters scanned.

Surveys conducted by: R. Stowell Dates: 01-30-06 & 03-08-06



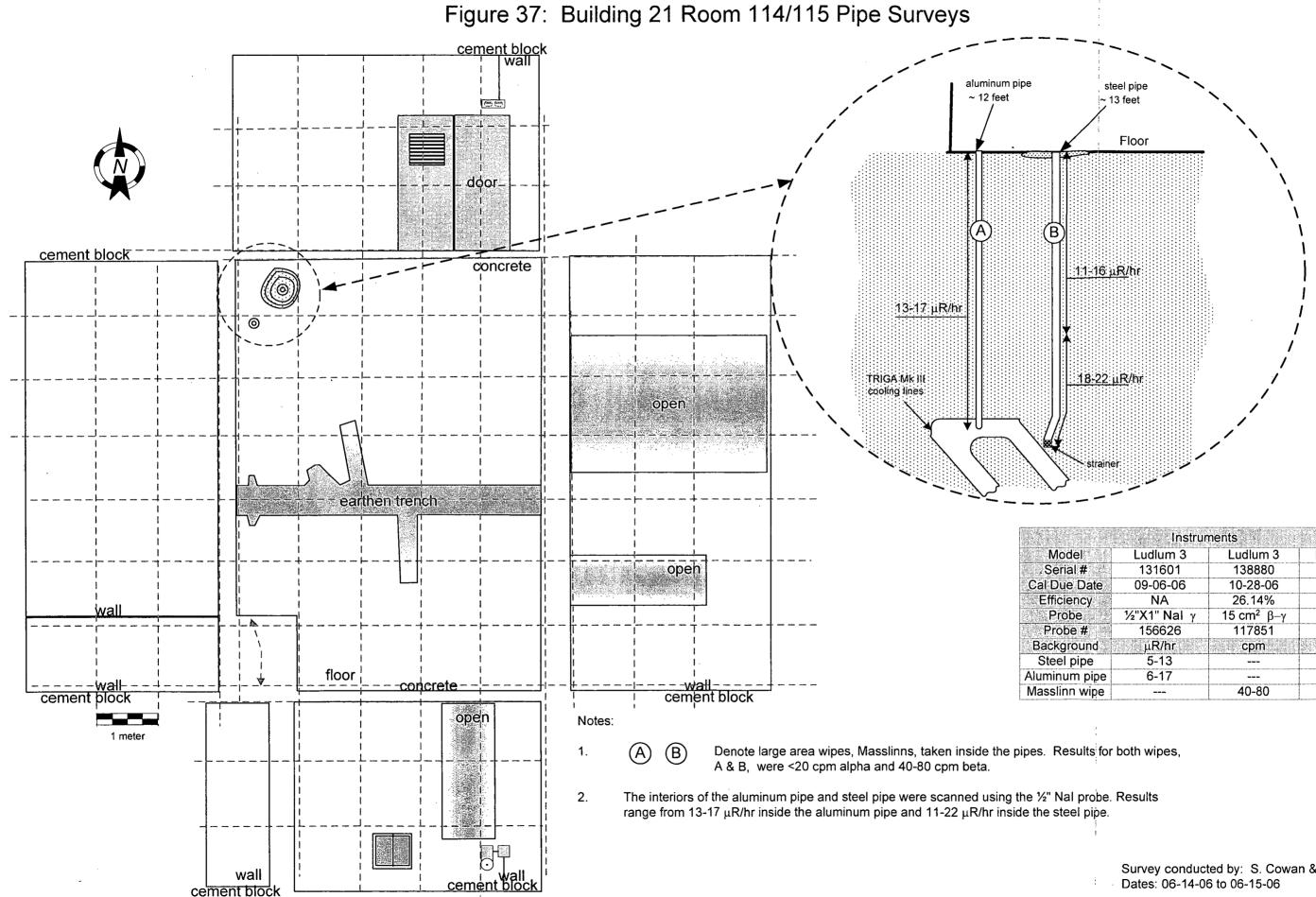

Figure 35: Building 21 Room 114/115 Fixed Alpha and Beta Measurement Locations and Results and Wipe Survey Locations

	Instruments	
Model	Ludlum 2221	Ludlum 12
Serial Number	86302	138738
Cal Due Date	05-15-06	08-16-06
Efficiency	34.36%	22.14%
Probe	100 cm² β	$50 \text{ cm}^2 \alpha$
Probe Serial #	142547	145696
Background	cp2m 🦢	cpm
metal	576 ± 105	<20
concrete	948 ± 256	<20
cement block	843 ±120	<20

Surveys conducted by: R. Stowell Dates: 03-10-06 & 03-23-06

Fig. 35

Figure 36: Building 21 Room 114/115 Sample Locations


Model Ludlun Serial Number 1535 Cal Due Date 07-14 Probe 2" X 2" I Probe Serial # 1551 Background µR/hr conta soil ---15-2 concrete

- Denotes sample location. Con-7 - concrete sample. Results for this sample are provided in Table 9. B21-19 to 27 - soil samples. Results for these samples are provided in Table 5.
 - <u>Contact µR/hr</u> @1 meter µR/hr location.

nstrum	ents		
m 3		Ludlum 3	
551		151348	
-06		04-14-06	
Nal γ		2" X 2" Nal γ	
09		163169	
act	@ 1 meter	contact	@ 1 meter
•		12-21	12-19
21	15-21		

Exposure rate measurements taken on contact and at one meter at each sample

Soil samples collected by: R. Stowell Date: 01-30-06 Concrete sample collected by: S. Cowan & R. Stowell Date: 05-19-06

	Instrur	nents	
	Ludlum 3	Ludlum 3	Ludlum 12
#	131601	138880	138738
Date	09-06-06	10-28-06	08-16-06
ıcy 🔡	NA	26.14%	22.14%
e	1⁄2"X1" Nal γ	15 cm² β–γ	$50 \text{ cm}^2 \alpha$
#	156626	117851	145696
und	μR/hr	cpm	cpm
ipe	5-13		
ı pipe	6-17		
wipe		40-80	<20

Survey conducted by: S. Cowan & R. Stowell

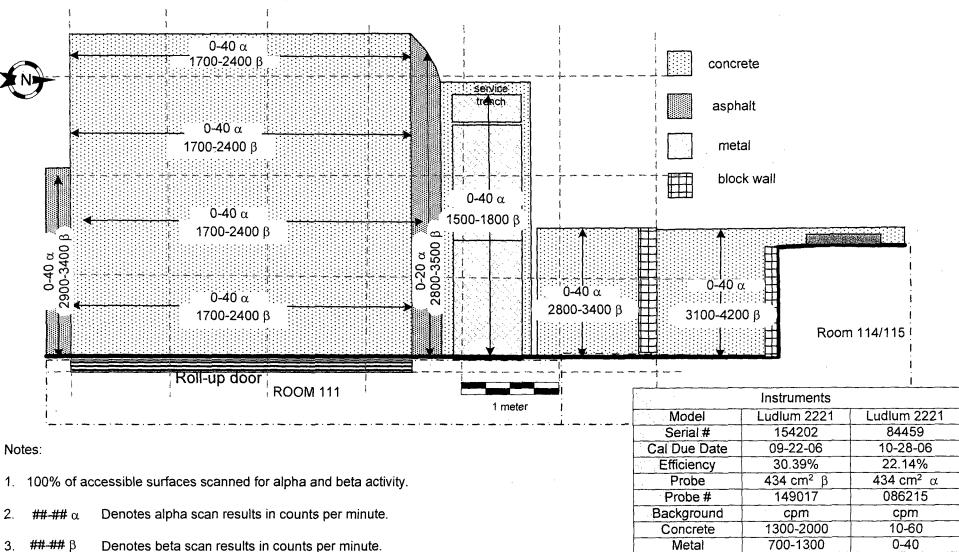


Figure 38: Building 21 West Pad Alpha and Beta Scan Measurement Locations and Results

Surveys conducted by: S. Cowan Dates: 06-13-06 & 06-15-06

17-23

Concrete

17-22

Fig. 38

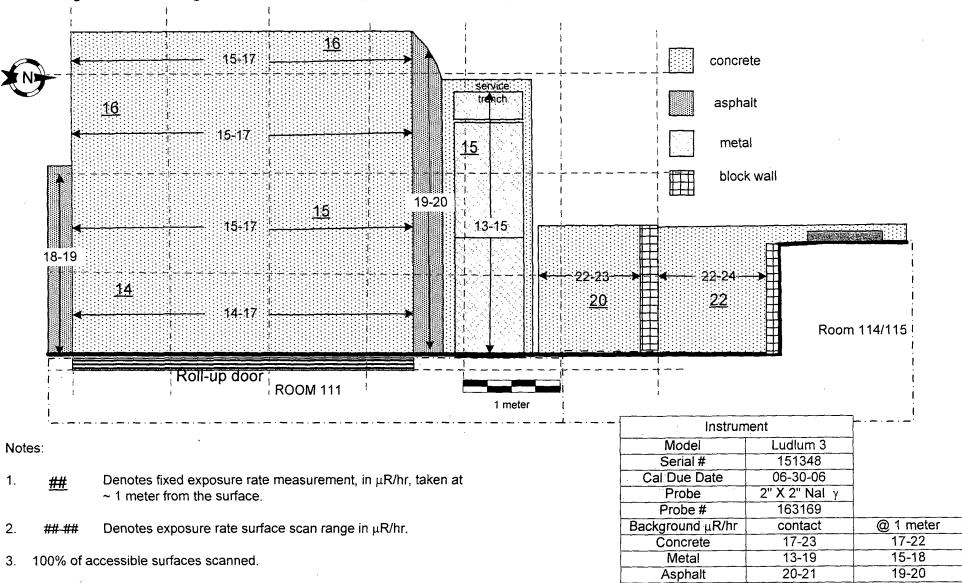


Figure 39: Building 21 West Pad Fixed Exposure Rate and Exposure Rate Scan Measurement Locations and Results

Survey conducted by: R. Stowell Date: 06-13-06

Fig. 39

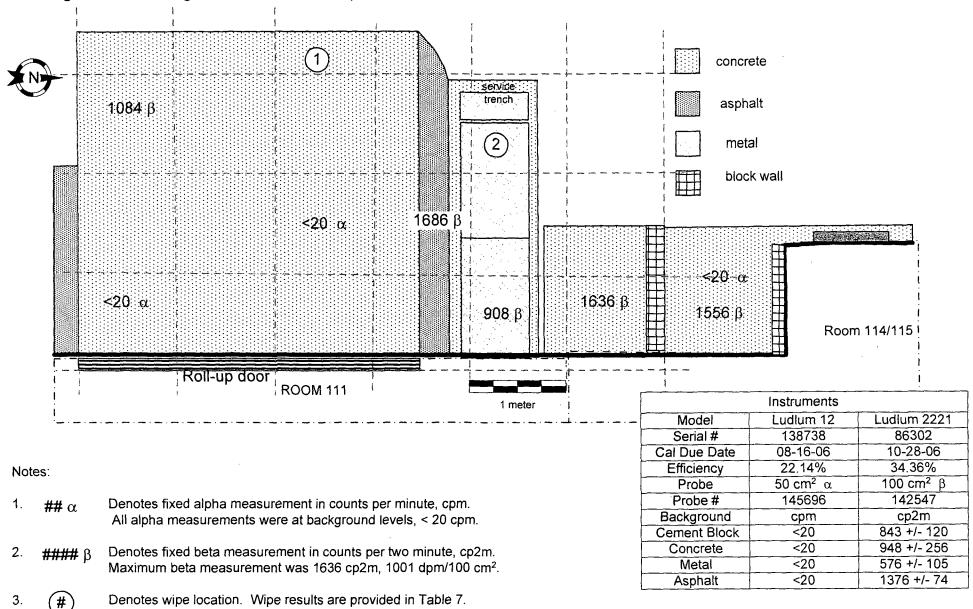
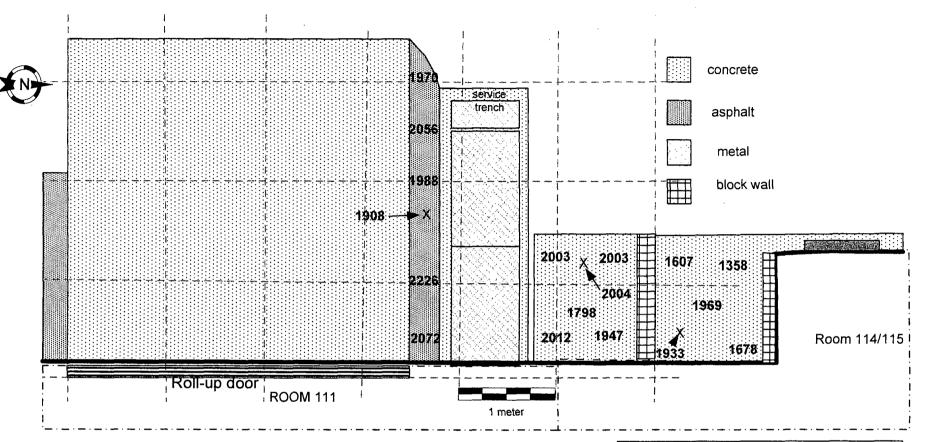



Figure 40: Building 21 West Pad Fixed Alpha and Beta Measurement Locations and Results and Wipe Survey Locations.

Survey conducted by: S. Cowan & R. Stowell Dates: 06-13-06 to 06-14-06

Figure 40A: Building 21 West Pad, Fixed Beta Measurement Locations and Results for Elevated Scan Measurement Areas

All measurements are 2 minute Fixed Beta measurement in counts/2m (cp2m). The Worst case, Highest measurement, 2012 cp2m on Concrete equals 1548 dpm/100cm². "X" marks the spot of the highest scan measurement.

Instruments			
Model	Ludium 2221		
Serial #	86302		
Cal Due Date	05/07/07		
Efficiency	34.36%		
Probe	100 cm ² β		
Probe #	142547		
Background in CP2M	Cement Block= 843 +/- 120 Concrete= 948 +/- 256 Metal= 576 +/- 105 Asphalt= 1376 +/- 74		
Survey conducted by Date: 11/07/06	r: S. Cowan		

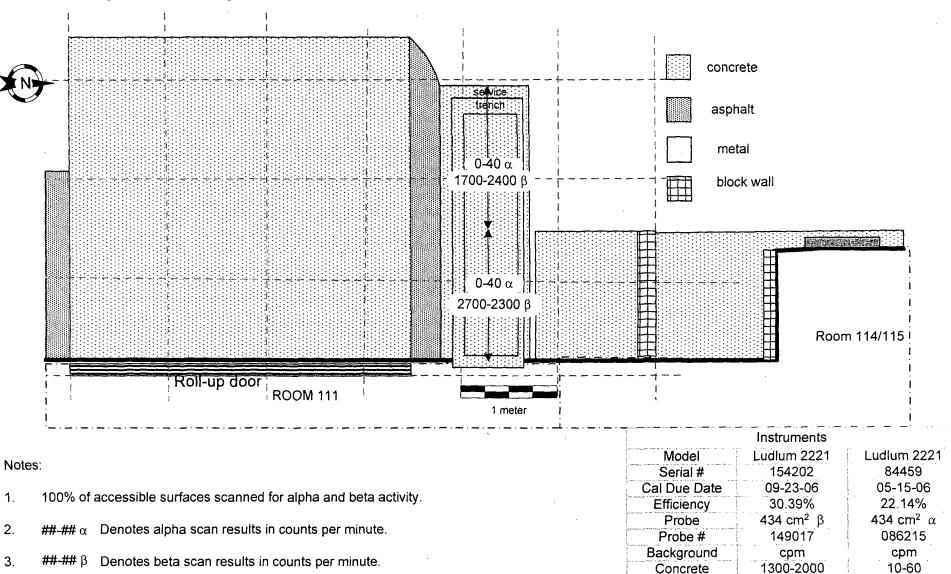
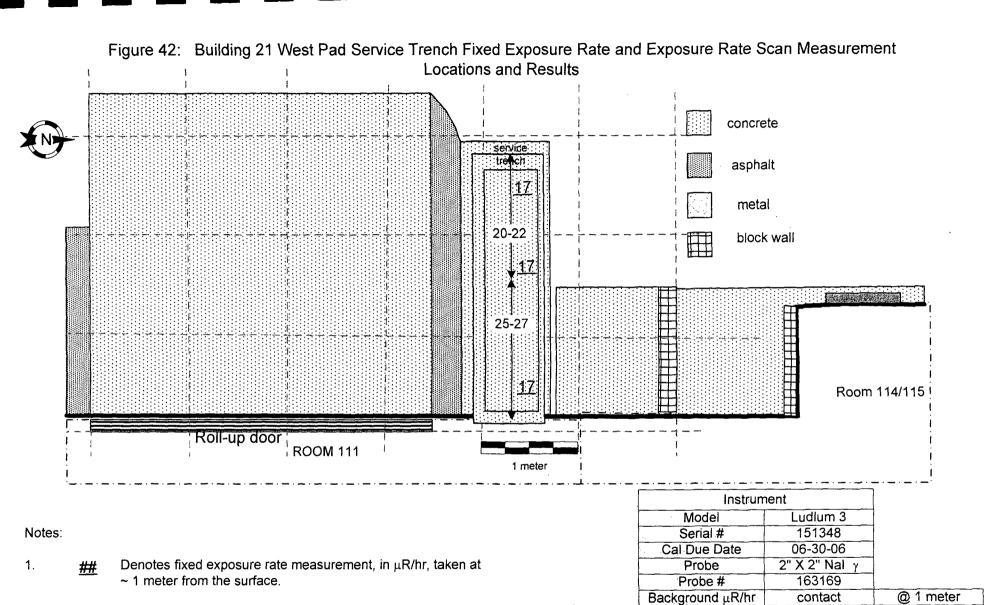
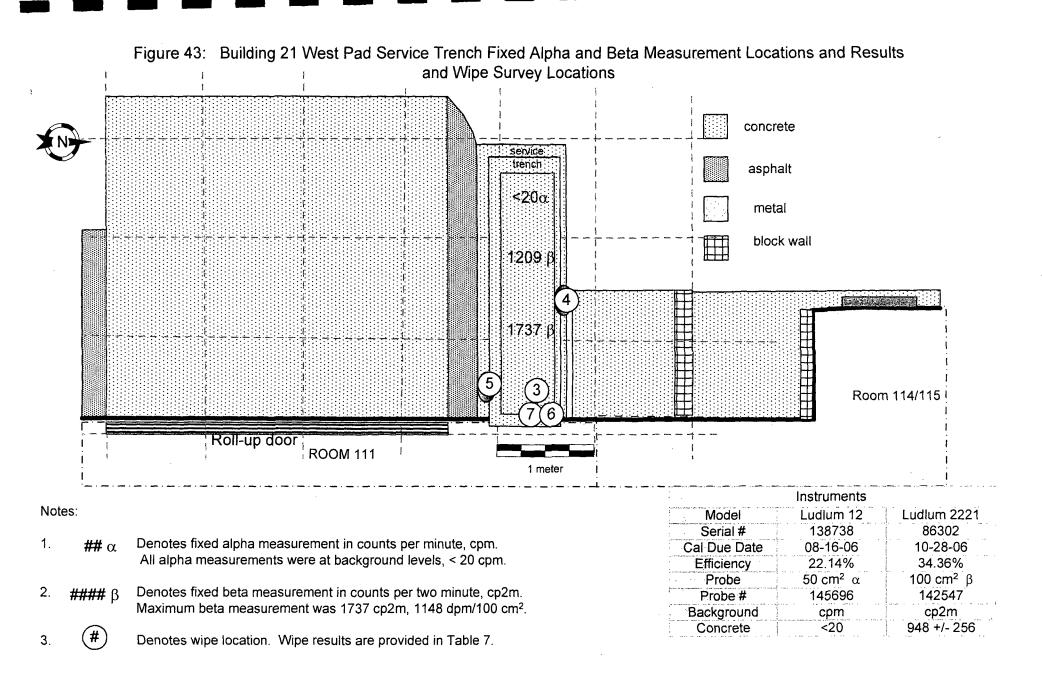



Figure 41: Building 21 West Pad Service Trench Alpha and Beta Scan Measurement Locations and Results

Surveys conducted by: S. Cowan Date: 06-14-06

- 2. ##-## Denotes exposure rate surface scan range in μ R/hr.
- 3. 100% of accessible surfaces scanned.


Survey conducted by: S. Cowan Date: 06-14-06

17-22

17-23

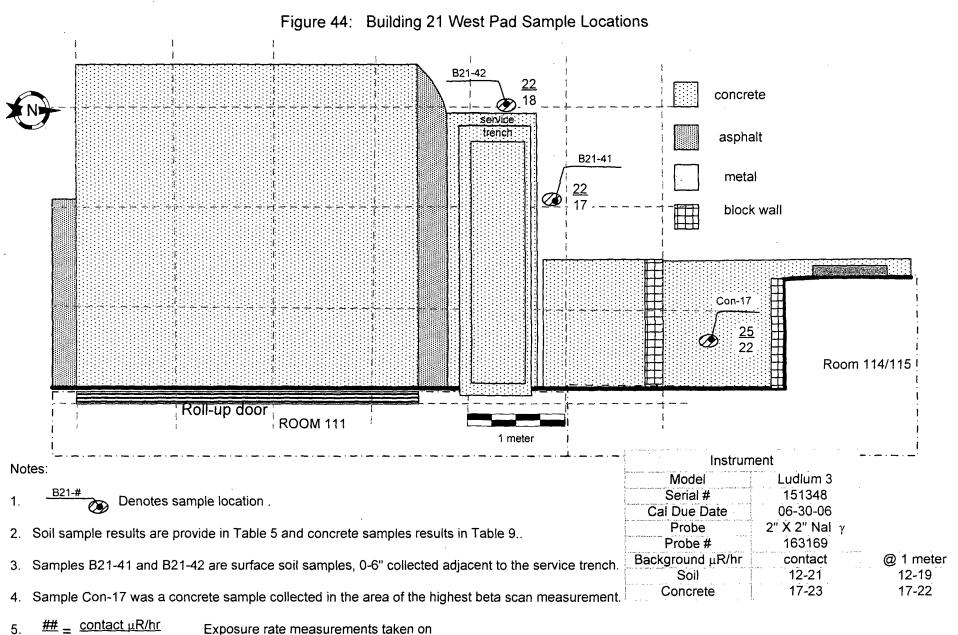
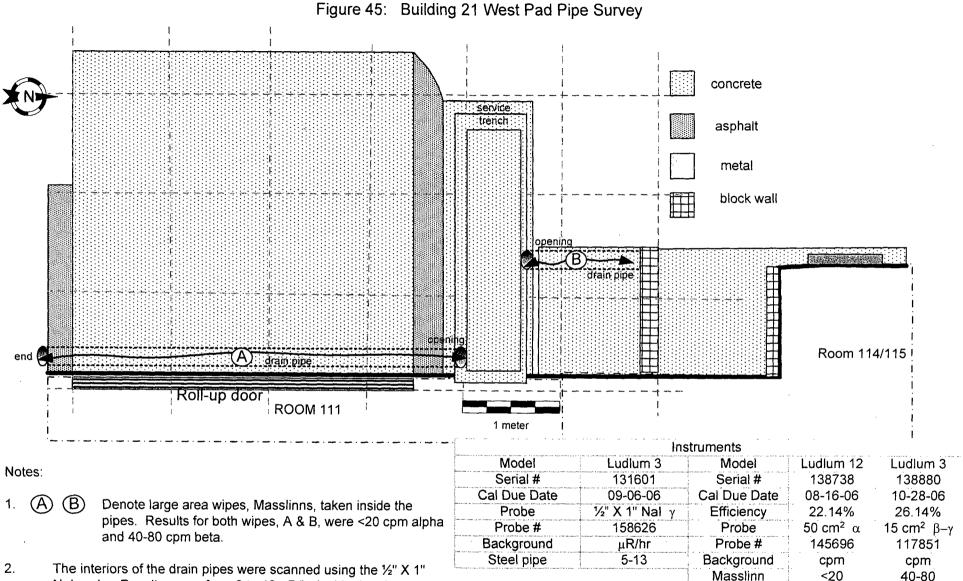

Concrete

Fig. 42

Survey conducted by: S. Cowan & R. Stowell Date: 06-14-06

Fiq. 43


Exposure rate measurements taken on @1 meter µR/hr

contact and at one meter at each sample location

Samples collected by: R. Stowell Date: 06-09-06 & 06-26-06

Fig. 44

##

Nal probe. Results range from 9 to 12 μ R/hr inside the pipes.

Survey conducted by: S. Cowan & R. Stowell Date: 06-14-06

Fig. 45

= Building structure

##-## = Fixed Alpha Measurement in Counts/ min.

= Fixed Beta Measurement in Counts/2 min.

Ludlum 2221	Ludlum Model 12
86302	138738
7/12/05,12/27/05	12/02/05
34.36%	21.02%
β	α
142547	073360
100 cm ² Beta	50 cm ² Alpha Scint.
042 <u>+</u> 90 c/2min (Con) 371 <u>+</u> 55 c/2min (Asph.	0-20 cpm all surfaces
222 (conc.) 254 (asphalt)	160
	7/12/05,12/27/05 34.36% β 142547 100 cm ² Beta 042± 90 c/2min (Con) 371± 55 c/2min (Asph. 222 (conc.)

= Building structure

(#) = Wipe sample location, See Table ## for Alpha and Beta analysis results

Figure 48: TRIGA Non-NRR Land Area Alpha Scan Locations and Results

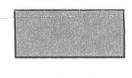
=	NRR	Land	(~9620	ft ²)
---	-----	------	--------	-------------------

= E	Build	ing	stru	ictur	е
-----	-------	-----	------	-------	---

##-## = 100% Alpha Scans within 1" of paved Surfaces in Counts/min.

All Results are less than the MDA for the surface surveyed

Location	Building 21 Non-Reactor
Instruments	Ludlum 2221
Serial Number	84459
Calibration Due	07/12/05
Efficiency	22.14%
α β γ	α
Probe Number	086215
Probe	434 cm ² Gas Flow Proportional
Typical Background in cpm Concrete = 10-60 cpm Asphalt = 0-80 cpm Metal = 0-40 cpm	
Scan MDA in dpm/100 cm ²	Concrete = 109, metal = 62 asphalt = 125
Surveyors : <u>S. C</u>	owan Date: 06/07/05 - 06/11/05


= Building structure

##-##	= 100% Beta Scans within 1" of paved Surfaces in Counts/min.
-------	--

All Results are less than the MDA for the surface surveyed

Building 21 Non-Reactor
Ludlum 2221
154202
12/27/05
30.39%
β
149017
434 cm ² Gas Flow Proportional
Concrete = 1300-2000 cpm Asphalt = 2000-2800 cpm Metal = 700-1300 cpm
Concrete = 375, metal = 227 asphalt = 546

= Building structure

##-## = 100% Exposure Rate Scans within 1" of Surface in μ R/hr

Location	Building 21 Non-Reactor
Instruments	Ludlum Model 3
Serial Number	151348
Calibration Due	08/02/05, 10/19/05, 10/04/06
Efficiency	NA
α β γ	γ
Probe Number	163169
Probe	2 x 2 Nal(Tl)
Typical Background in μR/hr	13-19, @ contact, Soil
Surveyors : <u>S. Cowan</u>	Date: 06/01/05 -10/15/05, &09/01/06

All measurements taken approximately every 2 meters at 1 meter from the surface. All Results in μ R/hr.

= Building stru	ICTU	ire
-----------------	------	-----

Location	Building 21 Non-Reactor	
Instruments	Ludlum Model 3	
Serial Number	151348	
Calibration Due	08/02/05,10/19/05,01/11/06, 10/04/06	
Efficiency	NA	
α β γ	γ	
Probe Number	163169	
Probe	2 x 2 Nal(Tl)	
Typical Background in μR/hr	13-17, @ 1m, Soil 19-20 @ 1m, Asphalt 17-22 @ 1m, Concrete	
Surveyors : <u>S. Cowan</u> Date <u>: 07/28/05 - 11/12/05, & 9/01/06</u>		

(#

##

- = Building structure
- (≇) = Surface (0-6") Soil Sample locations
- = Surface and Sub-Surface Soil Sample locations
 - = Surface Soil Sample Locations Beneath Asphalt Paving
 - = Exposure rate result at 1 m from sample location in μ R/hr

Location	Building 21 Non-Reactor
Instruments	Ludlum Model 3
Serial Number	151348
Calibration Due	08/02/05, 10/19/05, 10/04/06
Efficiency	NA
α β γ	γ
Probe Number	163169
Probe	2 x 2 Nal(Tl)
Typical Background in μR/hr	13-17, @ 1m, Soil
Surveyors : <u>S. Cowan</u> Date <u>: 10/04/05 - 10/05/05 & 09/01/0</u>	