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2.12.2 Results of Cover Lifting Tests

Approved by: W. J. Madia Pospa =

f%Battelle

Columbus Laboratories

- Project Number _117-5865

internal Distribution

. Madia
Emsw- ‘er
Stel_-acht
Gallagher
Parsons

. E. Lozier

Date April 18, 1980

wmm

To R. J.; Burian
fom D. E. Lozierf’fo{

Subject Testing of Lifting Handle on
Cask BMI-1 Lid, February 27, 1980

OornUAR

The 1id-1lifting handle welded on the lid of cask BMI-1 was tested by
attaching cask BCL-3, with its 1id in place, to the BMI-1l lid with a
chain. The assembly was then lifted off the floor and suspended for

3 minutes by a crane hooked to the BMI-1l lid-lifting handle. The certi-
fied weight of cask BCL-3 with 1lid is 2595 1b., placing a total weight
on the lifting handle of >3695 1b. which is in excess of three times

the weight of the 1100 1b. 1lid.

The weld was then checked by liquid dye penetrant in accordance with
BCL QA Procedure HL-PP-60 with no defects detected.

DEL/cm

REV. A, 3-28-80



QUALITY ASSURANCE DOCLMENT

LIQUID PENETRANT INSPECTION
WORK COMPLETION RECORD
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Coluxzbus Laboratories
505 King Avenue
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D. E. Lozier f

April 2, 1980
Date
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T D AT $ 1 Likedde 4145
Dzate Date
APPROVED BY APPROVED BY
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LIQUID PENETRANT INSPECTION
WORK COMPLETION RECORD

Scope

This record documents the implementation and results of a liquid

penetrant inspection.

Reference

2.1 BCL Hot Lab QA Manual (Sections HL-X-1 and HL-I-1).
2.2 HL-PP-60 Liquid Penetrant Inspection.

Work Completion Records

3.1 VWork completion records shall be documented by the certified
inspector performing the inspection and reviewed by a Q. A.
respresentative.

3.2 Document the ianspection on Record Form WC-60.

REV. A, 3-28-80
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, RECORD FORM WC-60
LIQUID PENETRANT INSPECTIION

1.2 //]’\’"

(A

Item inspected

/=

’
/ ‘
o Gl

LA e P Ll o S

Inspection method (check'method used).
2.1 Visual Dye, i.e. spotcheck v

2.2 TFluorescent Penetrant

Initial

Inspection performed as per HL-PP-60. b

Iten approved as per acceptanée criteria in A
BL-PP-60. Z:J/

P
Defects observed: . o7 '#A~

Corrective action taken on defects:

6.1 Reinspect after corrective action and document
on another Record Form WC-60.

Insgiction conducted by:

\\\\\__ T e // —
] (\ﬂv/ {-'zJ' :;foyih7 Cate

Reviewed by: \

o= cp A Date

~— _J
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2.12.3 Description of MONSA Computer Program

MONSA (multilayer Orthotropic Nonsymmetric Shell Analysis)
is a digital computer program written in FORTRAN IV. It is
based on the multisegment numerical integration method for the
analysis of boundary value problems.

MONSAS determines the displacements, forces, and stresses
for a composite shell of revolution. A composite shell is defined
as a shell composed of a number of distinct parts which may have
the following shapes: cylindrical, spheroidal, ellipsoidal,
paraboloidal, conical and toroidal. The shell wall may be compocsed
of four different layers of orthotropic materials. The shell
layers are specified by giving their location with respect to a
reference surface.

Mechanical and temperature loadings can be applied to :t:ne
shell. For nonsymmetric loadings, the user must determine the
Fourier harmonics of the loadings and perform the appropriate
number of shell calculations. Temperatures can vary along the
shell meridian as well as through the thickness of the wall. T2
latter can be accomplished by specifying the temperature on the
inner and outer surfaces and on three internal surfaces of the
shell wall. A shell spinning about its longitudinal axis can
be analyzed. A shell subjected to harmonically varying mechanical
or temperature loadings can also be analyzed.

MONSAV will determine the natural frequencies and mode
shapes of composite shells of revolution described above. The
procedure is based on an iterative technique in which a trial
frequency is picked and a determinant is calculated. The trial
frequency becomes a.natural frequency when the determinant

vanishes.
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Analysis of Shells of Revelution

Subjected to Symmetrical and

Nonsymmetrical Loads

The boundury-talue problem of deformation of a rotutionally symmelric sieii is stated in
terms of a new system of first-order ordinary differential equations which ¢z be derived
for any consistent linear bending theory of shells. The dependent variables contuined in
this system of equations are those quantities which appear in the nat:zil donndury
conditions on g rotationally symmetric edge of u shell of revolution i numerical
method of solution which combines the advantages of both the direct tnregr:::n and the
Sinite-difference approach is developed for the analysis of rolationally sywrevziric shells.
This method eliminates the loss of accuracy encountered in the usunl 1oz:: :iion of the
direct integration approach to the unalysis of shells. For tiie purpose N

liustration,
stresses and displacements of u pressurized torus are calcnlated and deiaz’cd nimerical
resuils are presented.

Tm: sheil of revolution is an important structural
element, and the literature devoted to its analysis is extensive.
\With regard to axisymmetric deformation, various methods have
been eruployed to obtain solutions of the beuding theory of shells
of revolution by means of the H. Reissner-Meissner equations.
For example, Nughdi and DeSilva [1}? use asymptotic integra-
tion; Lohmann [2], Minz (3], Klingbeii [4], employ a direct
numerical integration approach; Galletly, et al. [5] find the solu-

t National Science Foundation Graut No. 23922, Report No. 3,
July, 1963,

* Numbers in brackets designate Relerences at end of poper.

Presented at the Summer Conference of the Applied Mechanics
Division. Boulder, Colo.. June 9-11, 1964, of THE AMERICAN SoCIETY
of MEcEANTCAL ENGINEERS.

Discussion of this paper zhould be addressed to the Editorial De-
partineat. ASME, United FEngineering Center, 345 Cast 47th Street.
New York, N. Y. 10017, and will be accepted until October 10, 1964.
Discussion received after the closing date will be returned. Manu-
script received by ASME Applied Mechanies Division, July 31, 1963.
Paper No. 64—APM-33.

tion for un ellipsoidal shell of revoiution by both the inite-differ-
ence and the Runge-Kutta method: and Penny (6], Radkowski,
et al. [7], and Sepetoski, et al: '3 utilize the finite-difference
technique. A number of additional references which deal with
the solution of the H. Reissner-Meissner equations can he found
in the papers cited.

For problems of bending in the abseace of axial symmetry, a
reduction of the governing equations of arbitrary sheiis of revolu-
tion to a system of four second-order differential equations in-
volving four unknowns has been carried out by Budisnsky and
Radkowski (9]. A method for obtaining the solution of thr
equations is given in {9) which is an extension of that employe.
in {7] and [8]. Furthermore, treatments of nonsymmetric
deformation of shells of revolution are found in pagers by Gold-
berg and Bogdanof [10], where a sysiem of frst-iirder diTerential
equations for conical shells is derived, and hy Steels {11} and
Schile [12], where solutions of certain types are considered hy
means of asymptotic integration.

Among the papers which employ numerical unalysis, two dif-

e No menelature
¢,0,¢ = coordinates of a point of ment of middle surface { )., = derivative with respect to
shell B¢ Be = angle of rotation of nor- any coordinate
s = distance measured from mal m = order of :verem of equa-
an asrbitrarv  origin Pe; P1, P = components of mechani- tions
aslong meridian in cal surface loads M = pumber nf segments
positive direction of ¢ Mg, Mg = components of moment z = independent  variahle,
to, ts, n = upit vectors tangent to of surface Innds citherp urs
coordinate curves (see T, Ts, T, = temperature increment z, = end point of segment
Fig. 1) and temperature ve- wr,o= (m. 1Y mamns. fundanmen-
Re, Ry = principal radii of curva- sultants tal variun.-s
ture of middle si:rface No, Vs, Voo = membrane stress result- Az = (m,om) metcx, oetl-
r = Jistance of a pontoon ants cients fiTerential
middle smifzee from Mo MW Mg = moment resultants eqatiang
axis of svminaet (1o. Q3 = transverse-shear  rewult- o= oam !l .- nontio-
F = Yoang's mediulos anta TSP C S SRR
y = DPuoissen’s matin N, ) = effective-she e resuitunts Voeoo- e L
h = thickness [ shell J o= 1, g +sindir ' e st s
a = coeflicient af thrral ex- U = 1/Re +veing/r Z(z = rm, 1y macox, nont
pansion I = Ity - sing/r fregence .~ soluthons
D = E/1201 = »¥* ) n = integer, designating nth (' = [m, 1* mats-\, achitrary
K = Ehj(l = »?) Fourier romponcent constants
. rg, w = components of dixplice- 3 = length factor I = unit matrix
Journal of Applied Mechanics SEPTEMSER 19754 . 407



‘erent methods of soltiza of the t.oundary-val.e proc.em Si
defcrmation of sheila must Se recognized; i.e., the Lrest integra-
tion {2-5] and the finite diference approach {3~9]. While the
direct integration approach has certain importaat advantages, it
also has s serious disadvantage; i.e., when the length of the shell
is increased, a loss of accuracy invariably results. This phenome-
noa was clearly pointed out in !S]. The loss of accuracy does not
result from accumulative errors in integration, but it is caused by
the subtraction of almost equal numbers in the process of deter-
mioation of the unknown boundary values. It follows that for
every set of geometric and material parameters of the shell there
is & critical length beyond which the solution loses all accuracy.
The advantage of the finite-difference approach over direct inte-
gration is that it can avoid such a loss of accuracy. It is con-
cluded from S} that if the solution of the system of algebraic
equations, which result from the finite-difference equations, is
obtained by means of Gaussian elimination, then no loss of ac-
curacy is experienced if the leagth of the shell is increased.

This paper is concerned with the general problem of deforma-
tion of thin, eiastic shells of revolution, symmetrically or non-
symmetrically lcaded, and with the development of a numerical
method of its sclution, which empioys the direct integration tech-
nique, but eliminates the loss of accuracy owing to the leagth of
the shell. The method developed here is applicable to any two-
point boundary-value problem which is governed within an in-
terval by a system of m first-order linear ordinary differential
equations together with m/2 boundary conditions prescribed at
each end of the interval. It is shown that the boundary-value
problem of a rotationally symmetric shell can be stated in this
form for any consistent linear bending theory of shells in terms
of those guantities which appear in the natural boundary condi-
tions on a rotationally symmetric edge.

The method of this paper offers definite advantages over the
finite-difference approach. The main advantages are: (a) It
can be applied conveniently to a large system of first-order dif-
ferential equations, and (b) it permits an automatic selection of
an optimum step size of integration at each step according to the
desired accuracy of the solution. The first point means that the
equations of the theorv of shells of revolution, characterized in
ierms of first-order diferential equations, can be integrated
directly, and further redi:ction of the equations to a smaller num-
ker of unknowns is not necessary. The second point seems to be
of great importance if a truly general method is desired which is
expected to hold for arbitrary loads, shell configurations, thick-
ness, and s0 on. With the finite-difference approach, a meaning-
ful a priori estimate of the step size is often difficult, if not im-
possible, especially when rapid changes and discontinuities in the
shell parameters are encountered. If a predictor-corrector direct
integration approach is employed with the method of this paper,
then the step size can be selected automatically at each step
which ensures a prescribed accuracy of the solution and optimum
efficiency in the calculation.

The method given in this paper can be divided into two parts:
(@) Direct integration of m + 1 initial value problems over pre-
selected segments of the total interval, and (b) the use of Gaus-
sian elimipazion for the solution of the resulting system of matrix
equations. The first part of this method is a generalization of
that which is employed over the whole interval in {2-3). Here,
nuwever, the :n:tial value problerns are defined over segments of
the total inzer-zl, the 'engths of which are within the range of the
applicabitity «i the dicest integration approach. After the initial
wilue prohiern: are integruted over these segments, continuity
ut the endpoints of the
segments, and they constitute a simuitaneous systemn of linear
matrix equaions. This system of matrix equations is then solved
directiy by ineans of Gaussian elimination. The result is that the
direct integration method is employed and at the same time there
s no luss of accuracy because the lengths of the segments are
selected in such a way that the solutions of the initial value
problems are kept s Iciently small. A convenient parameter is

sonditions on 2l varablies are written
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given [rim which tne apor raleengtis of
estimated easuy.

In the application of this riethod to the analtsis of rotationall:
symmetric shells, the boundarv-value probiem i3 formulated :
terms of first-order ordinary dilferential equativas. For tht
purpose, starting with the equations of the iinear classical henc
ing theory of shells in which the thermal effects are included, &
a system of equations is derived in the form of eight partial éii
ferential equations involving eight uaknowns in such & manne:
that the system of equations contains no denvatives of the ma
terial parameters, thickness, or principal radii »f curvature. The
sbsence of the derivatives in the coefficients «i the differentia
equations permits the calculation of the coerficients at a poin
without regard to the values of the shell pararueters at prece:ling
or following pointsa. Then, assuniing separability with respect tc
the independent variables, the desired system . eight first-orce:
ordinary differential equations is obtained whirh together witt
tbe boundary conditions on two edges of the sheil constitute :
two-point boundary-value problem. The Jesived system o
equations is applicable to rotationally symnistric shells witt
arbitrary meridional variations (including diszcont:npities) ir
Young’s modulus, Poisson's ratio, radii of curvature, thickness
and coefficient of thermal expansion. While :uch a system .
equations is derived in this paper only for nge version of the
classical theory of shells, it can be derived in th2 same way for al
other consistent linear bending theories of sheiis, including those
which account for the dynamic effects, transvere shear deiorma-
tion, nonhomogeneity, and anisotropy.

Finally, with the use of the method und the 2juations giver ir
this paper, stresses and displacements are culculated in a thin-
walled turus subjected to internal pressure. The solution shnws
that the meridional membrane stress is almost identical to thut
predicted by membrane theory, but that the bending stresse:
even for a relatively thin torus may not be negiigible.

anty rin

Theiedn.

Geomeiry and Basic Equations

The position of a point of a shell of revoluti,n is given by the
coordinates 8, ¢, { measured ulong the triplet of =nit vectorsty. t,,
n, respectively, as shown in Fig. 1. The shupe 7 tn2 shell i3 iz
termined by specifying the two principal radii »f curvatire 2,,
Rs of the middle surface as functions of ¢. Instead of Ry. it is
convenient to use the distance r from a point va the miiddle sur-
face to the z-axis; from Fig. 1 it follows that

r = Rysin ¢ 1
If the generating curve of the middle surface is given b r = -z
then

Fig. !

Element of o shell of revoiution

Transactions of the ASME



+ . X/
e ()T
dz
The f.llowing analysis requires frequent diflerentiation of = tor Re)

with respect to ¢, and it is convenient to express this Jderivative
by the Codazzi relation

dr
E = R, cos ¢ (3)

The displacement components of the middle surface of the sheil
and the rotations of the normal are defined by the expression of
the displacement vector U of the forra

U = (up + {Bolte + (ne + {Bote + un (4a)
The shell is subjected to the mechanical load vector p, which is
measured as forre per unit area of the middle surface and written
as
P = pole + pete + pn (4b)
and the moment vector m, which is measured as moment per unit
area and given by

m = —mety + Mmete (4¢)
With reference to Fig. 1, equations (4) serve the purpose for
establishing the positive directions of the components of the
displacement and mechanical load vectors.

The temperature distribution in the shell caused by some ther-
mal loads is accounted for in the usual manner by means of the
integrated temperature effect of the form

A
3

1
T, 0) = -,:f T(¢, 8, D)af (5a)

wila

A

ZA tT(é, 6, DT

12
T(¢, 0) = m (30)

The derivation of a new set of equations carried out in the next
section is based on a linear classical theory of sbells given by
Reissner {13). When referred to arbitrary shells of revolution,
the governing system of equations of {13) can be written in the
following form. Equations of equilibrium:

Not+— Noto +2c08 ¢ Nog + Qotin ¢ + rpg = 0

Ry’ (6a)

Nees + 7= Noo + (N = No)con b + = Qs+ 1P =0 (60)
* . °

Qoo = = Q.6 + Qo cos @ — Nysin ¢ — Z Ng+rp=0 (V)
R‘ RO

-"fo-.e = PL Moso +2c03@ Moo — Qg + rmg =0 (Sa)
‘e
Moo + ;;— Moo £ (My = Majenagp —rQy &y =10 (3h
.
Stress-ctrain relations:
No = Klep + veo) — (1 4 v)aKTe (9a)
No = Klea + v¢0) — (1 +»)aKT (9b)

Journal of Applied Mechanics

‘-., = [, @ — %o et
My = Ding = oxg) — 1 =2 all U
Mag = Mg =1 = v Dneg Vi

Strain-lisplacement relutions:

1 .
€9 m — (g + Us €IS O + U SINOY QRN
r

1 .
€= (o8 + ) (115)
]
1 1 ,
2¢00 = — (Ugp — UICOI Q) + — w3, (11e)
r Re
1 )
Ko = = (Bro + 3¢ ros @) 12g;
1
Ko = o~ Be.0 T12%)
»
L 1 X
2k06 = = (Bt — Becos @) + = 31 (12¢3
r Rg
1 €
Be = —— wy + 2 ¢uo 13a}
r r
1 1
g = —— we + U (13b)
’ R. ° TR, ™ )

The positive directions of the stress resultants in ize joregoing
equations are the same as the corresponding stresses :n the edg
of the shell. The definitions of the stress resultants .re found i
{13].

The order of the system of equations (6)-{13’ is 2 s~ with re-
spect to ¢, and consequently it is possible to redu .« ©— 13, %0
eight firstorder differential equations which invo.w2 e:ght un-
knowns. If the eight unknowns are those quantities ~auch enter
into the natural boundary conditions at the edge ¢ = const, thea
the boundary-value problem of a rotationally symamerrc shell can
be completely stated in terms of these unknowns. For this
reason, the eight differential equations, derived in 'Ze following
sections, and the eight unknowns are called the fundsmental set
of equations and the fundamentai variables, respecuvely.

Derivation of Fundamental Set of Equations

According to the classical theory of shells, the guaztities which
appear in the natural boundary conditions on a rowationally sym-
metric edge of a shell of revolution include the eJective shear re-
sultants .V and Q defined by

i
N o= Ny = E:'—¢ Mo

-

1 .
Q =0, + - Masa M

Thus, the fundzmental vermables b
theory of (13}, cre the four generalized s
and the four generalized furces Q, \'g, .\, and Mo.

In the derivation of the fundamental equations,
venient to employ the distance s, measured along "= ~eridizl w.
the shell, rather than the angular crordinste ©. ¥ aaver, after
the equations are derived, the prublem can ag. =~ 2 eastiy
formulated in terms of ¢ by means of the refation

@ Tare
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fiy 20 NE

As a prelimunary step, it 13 neceasary to express Ny, My, My, in
* =me of the fundamental variables. From (9a) it follows that

u\.,I—A’\'l
N

. W SIN @ + upg + Uy COS P)
- aK(l - v3)7 (15)

and from (10a) that

Ma =My + D L

r

- i
. (— 1 ey + Yn @ Ug.g + By cod ¢>
r r
- azD(l - U’)T| (16)

Elimination of us,, and w.s, from equation (12¢) leads to an expres-
sion for My, in the form

Mgy = Lot I:"Je ' 2w d )
+ Hugcos & — Ju,.o] + %M NO(17)
where
L= ) sirt’ ¢ 2
rr K

In the derivation of the four equations of the fundamental set
which involve the derivatives of the stresa resultants with respect
tou 8, the use of (14) is essential. Elimination of Qs from (6a) and
'¢~) by means of (14a) leads to

28y, ey l Nea
r ?
N sin sin
- L—Q Mas ~ pe — ___d_’m‘ (18)
r? r
Similarly, elimination of Qs frum (7) and (8n) gives
2 cos cos sin
Qum 22028, - 2o M8y,
r r r
1 1 : 1
—N, - =) —_—p = -
+ BT fo00 — D ~ M. (19)
Solving (6b) from NV,., there results
Y Ly, 2ty
o r-.Q‘ ’ -l fe.0
cos
+ ¢(4\o - Ng) - = Q - pe (20)
and it follows feom (35) that
Mowm == 3oy = 222000 = 2 £ Q= my 21
r r

Wlherever necassur:
18
’I'ne findamens U sst Fequatems consists of (18321,
My, Ma, ed dire-tiv in terma of the fndaniental
“bies Ly mewns of (15.~(17;, und four additional equatious
ring the derivatives of u, u,, us, B¢ with respect to s, which
_-btaired from (135, (Ll¢}, (11k), (12b), respectively. Finally,
\tﬁe system of eight differential equations that governs the
defurmation of a siell of revolution can be expressed in terms of
the eight fundamental varinbles and written as

, VNag und Qg were eliminated with the use of

where

tenbe rari
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:

o, = =L 10 —

1 ..
+ E.\o +al = v Ty 224

_LDsin2¢ 1 ) LDJ sin é)
« = T —— - e — —————— M,
ups. K w.e Kr .9
cos ¢ LDH sin ¢ 2LD sin & '
+ ’ (1 - Kr ) up — K": |3¢.0
2 LD siu=¢) .
——— - — .\ ("‘
+ (1 - »)K (1 Kr: e
Be., = %w'”_vsu':qsw _ ucosq&l&,a
r r
1 . ,
+ BM° 4 a(l + »)T, (224)

1l —-v 2
¢ 3 —
Q. s [D(l + 60 — 2LD cos ¢

+ (1 4+ »)Kr® sm’¢] w4+ (1 —v) cosé[ LDJ —
r 09

+ (1 + »)K sin ¢] ! '—: 4 [—:— LDH cos: ¢
- (1 +v)Ksind + D(1 + v)sm 4 EL. 9.9
LS - A
— D =) 2 (1 v+ 2L)Bune + UN, - = Mon
_LDsin‘.’ch 5_0_3_4’ _ —-l-m
Kr3 - r P y ot

— afl — p3) - (h sind Ty — — DTx ,,) (22

A..-(l—v)“"’[

1 -

DJSE; + (1 + »)K sin ¢]

[(l 4 v)K cos* ¢ — $LDJ* :6 ]

qb

+ Q1 —v) ALDJH + (1 + »)K] un+J[_D—5=99

__Q_“_,)w_ié ‘_1(1,_

r

LDJ sin ¢) .
—_— _\ )
Kr
co3 ¢
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sin ¢
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1 2LDsin ¢ N,
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r? M og |7
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Equations (22), (14), and (13) w0 (17) determine all unknown
variables except Q¢ ~hich can he found frum (S«¢) and wrilten in
the ferm

cos ¢

1 2
Qs = - Moo + Meg + Mog + no 123)

By calculating M., from (17) and making use of (16), it is possi-
ble to express 3y directly in terms of the fundamental ~variables.
This expression is lengthy and contains derivatives with respect to
¢ of the shell parameters. Since Qg does not enter into any bound-
ary vonditions on the edge s = const, it is preferable to calculate
Qs as the last unknown directly from (23). The derivative of Mg
can be easily obtained by numericai differentiation.

The procedure {or the derivation of an equivalent set of equa-
tions for other linear classical theories of isotropic shells is identi-
eal to that given before. For general anisotropic and/or non-
homcgeneous shells of revolution with rotationsally symmetric
properties, the fundamental set of equations is derived in the
same way as (22) except that (9) and (10) must be replaced by the
apprepriate stress-strain relations given, for example, by Am-
bartszmyan {14]. Otherwise, the derivation is straight{orward.
For the improved theory of shells, such as the vne given by Naghdi
{15], in which the effects of transverse-shear deforiation are
accounted for, the following ten fundamental variables are re-
quired: i, ug, us, Bes B4, Qor Vg, Vot Mg, Moo Since now Qs and
Qs 2ppear in (13), the elimination of Qs from (6a), (7), (8a), is
done by means of (13a). The required equations for the deriva-
tives of the generalized forces are obtained directly from the five
equations of equilibrium (6), (7), (8). The remaining five equa-
tions are derived by fnollowing a procedure similar to that of the
furegning.

Fundamental Equations for Separable Solutions

For shells of revolution which consist of complete latitude
rircies, the surface loads are periodic with respect to & with a
perird of 2, and they can he assumed to be of the form

' , o cos nf 4
Per Py nof 1Pon Dy m°" sin nd )
1 0
L0 .'10

I

sin ud
Cpge. ) «J[ | 2ic)

cos n0f

‘ )
L I

wLere the varisbles with subscripts n depend only on s, and each
integmal value of n in (24) van be regarded as one Fourier com-
pcuext in a genvral Fourier series expausion of arbitrary periodic
surface loads.
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[NV ) - N, ) ! {“ e 3
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. . (sin nd i}
{'“: -\! - :u’nv -\'n} { (23¢)

cos né |

The s-dependent coefficients with subscripts n on the riglt-
hand side of (23) are governed by a svstem of eqaticns which is
obtained from (22) and, after using the assumpizn thut the shell
is thin,? can he written as

1

W, = k_; Hoan = ‘36! ‘.‘DG(X)
0s n
Ugn.o ™= —Uw. - “‘_,'__'¢ Uga x T, @a
- x Non + atl + v2Tha - 26h)
Dsin?2 n ~.
Nga.e = :ﬁ:——-d-, w, = — Ugn + ws @ /7%
Kr? r r
3Dn sin ¢ 2
£ =—— B0+ — =V (2
Kr? Bon + 1 -wnK 6e)
vn? vn sin @ v cos @
30~~l = = Wa ¥ Ugn — 39-‘
r? r r
1 . .
+ D Mon + all = v Tia (265d)

1 -

Q.= —7 (1 +v)n'D
r
+ MDD cosip + (1 = v A st o,

9 [(1 + VK sind - ";'DJ] uen

r

+ (1 =)

- }
g Ul r"”" [(1 + D -’:7 sin & + (1 + »'K sin ¢1 o

cosg &

+n¥1 = »)3 + »)D w_:i’ Bon = Q. + UNen

- nD sin 2¢
Kr3

‘\r- + v_n_ -‘[on - pa = Bid Mg
r! r
1 . n? "
- afl —¥) — (I( sin @ Toa + D - T..> (2te)
r

O

2 ¢ [(1 + K eno = 27D
: - D |

r

Nows = (1 =)

a

re

1 - n?
+ — [(1 + K cesto = D;‘J;

el -

1 ~yimKvos ¢
b T g = T

.3 .l

1 Q 1 , 2 A
- = -l -y = . =
l?. N r
! I the derivation of the system of & uaticns = - .
tion is made that the <hell is sufficiently thin. syt
1, nhere R denotes the minimum prneinal oror Lk
Tiis same approximation is used o chtan rhe :
from {22).
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The double signs in (26) correspond to the top or bottom trigoac-
—etric function employed in (24) and (25).
The quantities which are not included in the fundamental
iables can be expressed by means of separation of variables by

[No Ma, Qs] = [Non, Min, Qun) {“” "0} (27a)

sin nd

, . in né
{'\ 20y -‘I'O' Q‘} - {-‘"om 4‘-[’0!. Q'n} :‘; :8} (27b)

where the s-dependent coefficients with subscripts n must satisfy

a set of equations obtained from equations (14}~ 17) and (23) in
the form

K
Non = vNoa + (1 = »?) = (w, $iD @ + Ugn cO8 ¢ £ Nugs)

- a(l — ¥y)KTw (28a)
, s
Moa = vMou (1 = ¥?) % (lr w, + Beacos @
* ané uo.) — a(l = y)DTa (28))
ilion = D - ? ‘ <= n s 2 w, £ nSuga
-l r
= H cos Guss T -:na,,) + —g; WO\ (2sc)
" .. . 2 cos @ o
Qan = == 2iv v Hisas - Moy &+ = {(25d)
- "
Nsen = N = 220, (2e)
- n .
Qen = QQ T 7 Magn (28f)
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Tle Z.:nle sgne sgan wormespand i the op or bttt
pametme fuaction empioyed in (24 . {23, aad 27

The remainder of this paper is concerned onth the solutioz »f
the system of equations (26}, subject to the boundary coanditions
on twoedgeas = const. [t should be noted that after the expan-
sion of the lbads in Fourier series, the solution tn 1 26) is obtained
for each integral value of n separately, and then the sonlutions are
superimposed to form a Fourier series expansion for the usknowa

variables.

Reduction to [nitial Yalue Problems

This section is concerned with the reduction of a two-point
boundary-value problem governed by

= A(z)y(z) + B(2)

dy(z) -
i (29a)

to a series of initial-value problems. In (29a), y(x) is an (m, 1
matrix which represents m unknown functions; = is the inde-
pendent variable; A(z) denotes the (m, m) coefficient matrix;
and B(z) is the (m, 1) matrix of the nonhomogeneous terms. The
elements of A(z) and B(z) are given piecewise coatinuous func-
tionsof z. The object is to determine y(z) in the intervala <z £
b subject to m boundary conditions stated in terms of ligear
combinations of y(a) and y(b) in the form

Fy(a) + Fiy(d) = G (295)

where F., F, are (m, m) matrices and G is an (m, 1) matrix, which
are known from the statement of the boundary conditions of the
problem. It should be clear that the governing system of equa-
tions (26) derived in the preceding section is stated in- the form of
(29a), and that the sppropriate boundary conditions for a shell of
revolution can be expressed in the form of (29b).

Let the complete solution of (29u) be written as

y(z) = Y(z)C + 2(z) (30;
where the (m, 1) matrix C represents m arbitrary constants, and
Y(z)is an (m, m) and Z(z) an (m, 1) matrix which are dedoed i3
the homogeneous and particular solutions of (29a) in the form

d—};—i—z-) = A(z)Y(z) (31a)
%ﬂ = A(z)Z(z) + B(z) (31b;
The initial conditions for determining Y(z) and Z(z) are
Y{g) = I (32a
Z(a) = 0 (32b)

where [ is the unit matrix.
Evaluation of (30) at = = a leads at once, in view of (32a, b}, to
C = yla), and then (30) at z = b can be written as

y(b) = Y(byla) + Z:5) iy

Togetber with (20b), equation (33) conatiztutes a syster: of Ut
linear algebraic equationa from which the 2m upknnwne, ¥ @
and 3(»), are determined. Once y(a) i3 zaown. e sowttion ot
auy value of = i3 obtaized from {30} oryvided that the v
¥z and Z(2) at that particular z are stered.  Thisrmpleras©.-
reduction of a two-puint boundary-value problem defined by \Jo:
tom + 1 ipitial-value problems given by (31, 32).

As stated in the introduction, the solution for sheils obtaiz=d
by means of this procedure suffers a complete loss of accuracy at
gome critical length of the interval. Tke resson for thiy phe
pomenon caa be seen clearly from (33). When the initial-vauie
problems defined by (31, 32) are solved with the use of the equa-

e
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tions {26) for shells of revolution, it is observed that the elements
of Y(z) and Z(z) increase in magnitude in such a way that if the
length is increased by any factor n, then these solutions increase
in magnitude approximately exponentiaily with n.

Counsider, for example, the axisymmetric case when the defor-
mation in the shell is caused by some prescribed edge conditions at
z = a,say,byM(a) = 1 and Ng(a) = Q(a) = 0. Itisreasonable
to expect that the corresponding solutions at z = b become smaller
and smaller when the interval (a, b) is increased in length. The
connection between y(b) and y(a) is given hy the matrix equation
(33) with the following magnitudes of the elements: y(b)-small,
Y(b)-large, y(a)unity. Clearly, the only way that the matrix
product of (33) can give small values of y(b) is that a oumber of
significant digits of the large values of Y(b) subtract out. When
the length of the interval is incressed, Y(b) increase, while
y(b) decrease, and invariably all accuracy is lost at some eritical
length because all significant digits of Y(b) in (33) are lost. This
simple example serves as an illustration for the loss of accuracy
encountered in the analysis of shells if the foregoing reduction
technique is employed.

A convenient length factor, defined by

8 = U3(1 — v/ /(RA)/

where ! is the length of the meridian of the shell and R is a mini-
mum radius of curvature, can be used for an approximate esti-
mate of the critical length of the shell If the solutions Y(z) and
Z(z) are obtained with a six-digit accuracy, then the foregoing
procedure gives good results in the range 3 < 3 — 3.

However, the loss of accuracy of the solution can be avoided and
shells of revolution with much larger values of 8 can be apalyzed

(34)

by means of the direct integration technique if the multisegment

method given in the next section is employed.

Multisegment Method of Integration

Let the shell be divided into Af-segments (denoted by S;, where
i= 1,2 ... M) of arbitrary length in each of which 8 < 3.
Denote the coordinates of the ends of the segments by z = z,,
where the left-hand edge of the shell is at z = z, and the right-
band edge is at = za,,, a8 shown in Fig. 2. In analogy to (30),
the solution in the total interval r;, € = € 1y, DOW can be nTitten

a8
yz) = Y (r)y(z,} — Z.(z) (33)

where Y,(z) and Z,(1) denote the mat-ices corresponding to Y/z)

and Zr!in earh segment $,(z, € = £ x..y) and are given by

‘I}d—éi') = 4(z;Y (=} RS
Yz) =1 236h)

d—Z—'g—:-) - 4(2)Z(z) + B(z) 36¢)
dz

Journal of Applied Mechanics

Requiriag *onupuity f i =lemeas of 5 2 21 the pozie o
1= 2.3, ..., M <+ 1, the following .)/-matrnx equations are .2-
tamed from (33):

y(zia) = Y ziayiz) = Zizi.) 3T

where: = 1,2,..., ). Equations (37 involve Y/ + linizenn
(m, 1) matrices: y(z,),t = 1,2, ..., M + 1. However i the
quantities prescribed at the edges of the shell are the fundamental
variables, then the total number of unknowns is reduced by =, he-
cause m/2 elements of y(z,) and m/2 elements of yizy., are
known. The same is true if the boundarv conditions are stazed
in terms of linear combinations of the fundamental variables:a tiie
form of (20b). In this case, y(z.) and y(zuy..) should be premuiti-
plied by nonsingular (m, m) transformation matrives Fyacd Py,
respectively, so that the elements of the products contzia the
quantities prescribed at each edge. After eliminating y.2:) and
W Zaar) from (37) by means of these products. it is cozsiuded
that (37) will retain its form if, after integrating a3d beiure sud-
stitution into (37), Yi(z:) is postmultiplied hy F;=% wnile
Yu(zn-i) and Zu(zZas) are premuitiplied by Fu.. I3 Qe
following, it will be regarded that this transformation is carried
out and that y(z,) and y(zax.1) contain among their elements those
quantities which are prescribed at z = r, and z = ., respec-
tively.

Thus for all boundary conditions in the form of (29b), the sys-
tem of M matrix equations (37) iuvolves exactly 1/ times = un-
knowns, and formally it can be solved by any method which is
applicable to a large number of equations. However, the success
of the procedure given in this paper lies in the applicaticn ~f
Gaussian elimination directly on the matrix equations (37",

First a rearrangement of elements is performed. Since those
m/2 elements of y(z.) and y(zw.) which are known througa the
boundary conditions can be any m/2 of the m-elements, it :s
necessary to rearrange the rows of y(z1) and y(zw.1) so that ke
known elements are separated from the unknown elements. It s
assumed here that the first m/2 elements of y(z;), denoted by
vi(z.), are known and that the last m,2 elements, den.tsd v
ys(z1), are unknown. On the other hand, yi(zy-;) are 22 in-
known. and y:(Zw.:) are the known elements of y(zy., . Since
the order of the variables in the columan matrix y(=) is aroitrany,
it should be emphasized that this separation of elements dees not
involve any restriction on the boundary conditinns, and that any
patural boundary condition in the form of (29b) can be prescribed
at each edge. The separation is achieved by a simple resrrange-
ment of the columns of Y,(z:) and the rows of Y (zy.:* and
Z(zu+) after integrating the initisl-value problems defined by
(36) to the ends of the segments S, and Sy, aad multiplying by
Fy~tand F ., 88 stated in the foregoing.

Once it is established which parts of y(x) and yiz-.; are
known, the continuity conditions (37) are rewritten a3 2 parti-
tioned matrix product of the form

?:S’-'*')] [.’.’:‘_(.’.‘z*)i?f:'if.‘:')] [%’:@.’:)] . "i';‘.(.‘.::f;"l
¥z Yoro 0¥ (a0 Leizo] Lz

so that each of the enuations (37} rurns into a puir 2o 7%
given by

Yoooun(s) + ViHroiude) = -7

St =

Yoza)ydn,) & Yolopde) - sonad = =200

The result is a simultaneous system of 23f linear matn¢ z3ua-

tions, in which the knowa coefficients ©"#(z,.1) 203 Z," 2. e
(m/2, ms2) and (m/2, 1) matrices, respectively, acd ‘Iz un-
knowns y,(z,) are (m/2, 1) matrices. Since yiooyyaad pnTe. 2Te
known, there are exactly 23f unknosms: y(z,, sith: = 200
M 4+ 1,and y:(z,), withs = 1,2,.., 0,
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where the dots indicate the triungularized equations (39) with
i =3,4,...,M — 1. The(m/2, m/2) matrices E,, C, are defined

by

E =Y (41a)
C, = Y E ! (41b)
and fori = 2.3...., U
E = Y3+ V¥, (41¢)
C, = (YU 4+ YO ~NE! (41d)
The (2. | ziatrices 4, B, are given by
A, = =2 = Yiyln) (42a)
B, = =2 - Yiu(z) - Yi'E, 7L, (426)
and fori = 2.3...., WM —-1
A, = =Z) - Y078 (42¢)
B, = —Z7 = YO0 ,"Biq — (Y4 Y3C~ME A, (42d)
Finally, for -he Mth segmeut
Ay = =Zyt — Vy'Culim'Burar (42e)

- y:(IJI-I) - z_\[’ - }’}\[’C.\l-l—lB.\l-l
— (Yt + Y3Cu™)E ™ 4y (42)

revity, io place of ¥ ./(r.o) and Z,(zis), the symbols Y,/
N Z ;/ have been used.
Bv meansg of (31'and’42). ti:e unknowns of (39} are ohtuained by

o) = Oy "By (43a)

yZy) = Ex~Hu(zara) + Ayl (43%)
andfori=1,2,..,0M ~1

Y(rryroim) = Cars "y Tt =im) + By=i} (43c)

yiswo) = EvoiT' pdZarein) + Awsd] (43d)

It should be nnted that (41 )—(43) must be evaluated in succession,
because each e-;cation involves the result obtained by the preced-
ing eouation.

Opce all e unknowns y(z,) sre found, the fundamental
variables are c2:2rmined from (335) at any value of z at which the
solutions Y, r znd Z.(z) are stored during the integration of the
initial-value probiems of (36). The integration of (36) can be
accomplished b+ meuns of any of the standard direct integration
methods.

Oy the bas: : the svstem of equations (26) civen in an earlier
sectiom and .- -, 2thed of solution developed in the last twn sec-
tinns. the a2 = hus presaral a computer program* which has
bewn applie] © :..nv shedt cenfigurations having luge values of 3
and surcesst L zsted apzainst known results. One example of &
prizsurized @ s k2 = 37 is presented in the next section.

. LY veae R T o] N e dte .
Vi prowio oo nn i3 iy vaniatings, including

meridivnal

atigaires ool sheil pufoneters, Tt also adimita ving leadds

»foim of presenibed values of Vg, Mo, .V, or Q atuny value of

. pe prewsan: was written and all caleulations were rarried

N by the aui>ar on the BN 709 computer at the Yale Computer

Centar. The Jirect integration of (36) is performerd by means of the

Adams predirs.coorrector method, which salects an optimuin atep
size at every step according 1o a prescribed accuracy.
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¢ on the shell. Such loads intruduce discontinuities in the solu-
tion for the corresponding stress resultants, and they can be repre-
sented at every r, by an (m, 1) discontinuity matrix which i3
simply added tn the matrix Z,(z..:) oo the right-hand side of (37).
This feature is of great value if shell joints are considered. Any
discontinuity, sither in geometry or in loads, is easily handled by
requiring that the end poiat of a segraent coincides with the loca-
tion of the discontinuity. Since integration is restarted at the
beginning of each segment, the precise effect of the discontinuity i3
obtained. The program outputs all-fundamental variables at o
number of desired points within each segment, and it also ¢nm-
putes the values of y(z:) twice; once {rom (43) and thea from
(35). If a certain number of significant figures of these values
match, then the continuity conditions are known to be satisfed t»
the same number of figures. In this way, a convenient ecror esti-
mate of the solution is obtained for every case.

Example: Pressurized Torus

In this section the stresses and displacements are determined in
a complete torus subjected to a constaat internal pressure. It ie
well known that the solution of this problem, when obtained by
means of the linear membrane theory of shells, has a discontinuity
in the displacement field. It has been shown by Jordan (16] and
by Sanders and Liepina [17] that a satisfactory solution with re-
gard to the displacement field for a sufficiently thin shell can be
obtained if the nonlinear membrane theory of shells is emploved.
Subsequently, Reissner {18] established bounds on certain
parameters which show when the nonlinear membrane and whern
the linear bending theory is applicable. It seems worthwhile =
give here the solution for a pressurized torus as predicted by the
linear bending theory.

The geometry of the torus is shown in Fig. 3. With regard tu
the quantities employed in equations (26), the two necesiary
parameters for a torus are given as

R‘-b
rm=g+4+bsing

(4410
(44d;

Because of symmetry with respect to the plane XX, Fig. J, the

a ¢ -ISO'
—h

Fig. 3 Geomeiry of torus considered in example
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Table 1 Stresses and dispiocements of @ pressurized lorus; pb/Eh = 0.002,a/b = 1.5, v = 0.3
".n/B '
W" X 100 ———{oa/E) X 10 {wobi X 108
° 0.005 0.05 0.02 0 003 0.05 0.02 0.005
30 1.601 -0 063 -0.031 -0 016 1 249 1.2S84 1203
108 1.813 -0.188 —-0.0u3 -0 019 1.261 1 315 1 323
126 1.650 -0.356 -0.123 -0 0350 1.339 1 3u3 1.427
144 1.720 ~1.9135 -0.903 -0.020 1.7S6 1 57 1 823
192 1.832 -0.895 -1.37 -0 910 2 520 2 380 2139
171 1.U06 1.002 0.168 -0.603 3.467 3.493 3 297
lSp . 1.990 3.089 2.277 1.482 3.094 4.334 4.813
184.5 2.042 3.890 3.035 1.908 4.150 4.576 3 248
159 ) 2.104 4.270 3.119 1.520 4.208 $.637 5.151
193.3 2.175 4.178 2.580 0.530 4.156 4.500 4.693
198 2.254 3.610 1.389 -0.274 3.998 4.221 4.162
216 2,042 -0.587 -0 157 -~0.079 2.652 2.527 2,481
234 3.168 —1.245 -0.201 -~0.0006 1.273 1.269 1.269
252 3.730 -0.717 -0.344 -=0.077 0 416 0.417 0.414
270 3 997 -0.52¢4 —-0.331 -0.051 0.103 0.101 0.100

Fig. 4 Meridional bending siress o) et euter fiber versus meridional
coerdinale ¢

integration of the initial-value problems is carried out from ¢ =
90° to ¢ = 270° and the boundary conditions at these endpoints
are ug = Be = Q = 0. For the purpose of comparison with the
resulte of (16} and {17], the load parameter is chosen as pb/Eh
= 0.002anda/b = 1.5.

The sumerical values of the normal displacement, meridional

membrane stress oy = Ng/A, and meridional bending stress

o = 6)M4/h% 2t § = A/2 for a pressurized terus are shown in
Table 1 and in Figs. 4 and 3. These results were taken frum the
output of the computer program prepared for an arbitrary shell of
revelution after prescribing the geonietric parameters as given by
1414). The meridional membrane stress distribution agrees very
neil with that cbtaired in [17) by means of the membrane theury
of shells and it shows only a small variation with /b, The -e-
formed shapes of the cruss section ni the torus shown in Fig. 5 ine
-hirea va'ues of h, b are in quualitative agreement with these given
in 16; and (17, Lut their guantitative ugreement caunot be o
preved because the values of 2/b used in this example are eutside
the racge where the heuding efTects arc negligible. This is coun-
drimed by the examination of the bending stresses shown in F g 4.
The maximum value of ooy occurs at @ = 189° fur /b = 0.05 and
ut @ = 154.3° far hb = 0.003, which are also the points of
maxin:um pormal displacement and curvature as scen in Fig. 5.
The comparison of the membrane and the maximum hending
stress at various values of A/b is shown in Table 2.

Inurnal nf Annlied Mechanics

Fig. 5 Normal displecement w versus & showing deformed section

Teble 2 Maximum meridional bending stress end meridional membrane
stress at ¢ = &y

h/b 0.05 0.02 0 003

S0 189° 159° 184 5°
(0¢n/E) X 103 2.053 2.082 2 042
(ecd/E) X 10? 0.427 0.312 0 197
100 (ocgs/cem) 20.8 15.0 3.6

It is of significance to pote that even for the thickness ratio
h/b = 0.005, which for many applications wouid be regarded as
small, the maximum bending stress is ubout 10 perceat T the
membrane stress at the same point.  Such efects {heniingin g
torus were previously noted by Clark 119}, and 'hey sre algd 0

agreement with the statenient made hy Goldenveizer 20 that
‘when the middle surface touches a clesed-plane ovirve, 220 h o
carne correspends to @ = 181°, then in e sl Frios e

bendiug sivesses stowd be - pected snd e et
not upplcabie.

The boundary layer shown in Fig. 415 uis™ in 2gresent with
1he conclusinns reached in T18] to the effect than wher o and o
given by
FRREAN

AN

w o= 121 - v} b
p = 1201 — v p;ENbR?
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are lurze coimp Ltel 1T onity, lZen 2 tzdary iayer i the ceign-
vorhcod of © = 132 shouid be aaticipated. For the presen:
example, 4 ranges irom 44 to 440 and p from 9 to 874. However,
‘nce p is the only ioad parameter of the problem, the solutions
»om in Figs. 4 and 5 are proportional to p, and the boundary
-er remains unaTected if p alone is varied. Of course, for very
ze values of p the deformation of the torus may exceed the
Wits of a linear theory which according to [18] restrict p to the

range p &< u' .
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2.172

BMI-1 Basket Drop Tests

In order to demonstrate compliance of the BMI-1 basket with
the 30-ft free drop criteria of 10CFR71 a full scale basket with
removable bottom was tested in a simulated cask for falls in both

the critical angle and horizontal orientations.

(a) Test Specimens - The test basket was constructed accord-

ing to the design drawings BCL-000-500, Rev. A and BCL-000-501
with the two following exceptions.

(1)

(2)

The two retractable lifting lugs were not built into
the basket since they do not provide any structural
support to the basket for the impact conditions. The
lifting lugs are designed for lifting loads only and do
not contribute to the structure of the basket in any
way. The springs are used solely to extend the lugs
when the lid has been removed. When the 1id is in
place, the lugs are pushed back into the retracted
position. In the inverted drop position, the lugs do
not react any of the impact load except for their
individual inertial loads.

For purposes of rapid availability and economy, the
boral in the cruciform was replaced with Type 6061-T6
aluminum sheet. This replacement was considered
acceptable since the two materials have essentially the
same low ductility as evidenced by their similarly low
elongation. This latter property is considered highly
important since failure of the stainless steel cladding
could expose the boral. If the boral were to fracture
as a result of the impact and be lost from the cruci-
form, an unacceptable criticality situation could
exist. As can be seen from the photographs oI the tesct
basket after the drop test (page 2.135, photographs E6
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VIEWS OF TEST BASKET CRUCIFORM
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and El1), the cruciform with the Type 6061-T6 aluminum
sheet replacing the boral, while deformed, is still in
tact as far as maintaining an acceptable criticality
situation. The stainless steel cover sheets have torn
along their top edges, but the aluminum sheets are in-
tact and unaffected by the impact. The basic integrity
of the four cells has been maintained.

The boral in the actual baskets and aluminum in the test
basket are, in effect, filler material for the sandwich. There
is no mechanical bond or attachment between the boral (or
aluminum) and the stainless steel other than the restraint of the
spot welded steel enclosure., As a result of the drop test, the
steel sheet covering the aluminum shown on pg. 2.135 tore at the
upper end of the basket, but the aluminum sheets remained intact
and continued to serve as separators for the four quadrants.

Full quality control procedures as required by Appendix E of
10CF§71 were followed for the fabrication of the basket and
removable bottom.

The cask used in the drop tests only simulated the BMI-1
cask since a full size cask model is too heavy to test at the BCL
drop test facility. Therefore, the simulated cask was approxi-
mately half the length of the BMI-1l and with 4-inch thick lead
shielding in the sides and bottom instead of 8-inch as in the
side and 7.5-inch as in the bottom of the BMI-1 cask, see sketch
on page 2.126. Also, the top of the simulated cask was made of
two 1/2-inch thick steel plates laminated together. Four eyes on
the side were used to lift and position the simulated cask at the
proper orientation. Use of the simulated cask is considered
conservative because this lighter cask will be stopped more
rapidly upon impact and will thus experience higher impact G-

loads than will the heavier BMI-1 cask.

REV. E, 12/28/83
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Steel plates with wooden ends were used to simulate the
loading of the fuel elements in the basket, see sketch on page
2.128. For the corner impact test the "elements" were placed
upright in the basket cells as shown with the plane of the steel
plate perpendicular to the grid of the removable bottom. 1In this
way the appropriate impact load from an actual full element was
produced. The wooden ends kept the plate centered and tended to
distribute the load.

in an actual cask shipment the lower basket rests on the
cask bottom, and the upper basket is supported on the four corner
braces of the lower basket which extend 1.0-inch above the lower
basket. In order to reproduce this type of four-point support,
four 1/2-inch square bars were tack-welded to the bottom of the
removable bottom at the points at which the corner braces would
make contact, see sketch on page 2.128. 1In this way the basket
grid was free to deform under the impact load of the simulated
fuel elements.

When the cask undergoes end or corner angle impact, the
impact load of the upper basket acts on the lower basket. This
condition produces severe loads in several key locations includ-
ing the corner braces, their attachment to the upper cage, the
structural angles of the basket and the cruciform. 1In order to
represent this loading, a lead filled steel can was made which
would have the same weight as a loaded upper basket. Due to
shrinkage during lead pour, the weight of the lead/steel can was
169 1b rather than the 178 1lb calculated as the weight of a fully
loaded basket. The error is cnly 5 percent and this was con-
sidered sufficiently close to permit use of the weight to repre-
sent the upper basket.
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FIGURE WITHHELD UNDER 10 CFR 2.390
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The weight of the test components was as follows:

Simulated Cask 4,600 1lb
Basket and Bottom 72 1b
12 fuel elements @ 8 1lb 96 lb
Lead/Steel Weight (upper basket) 169 1lb

Total Weight 4,937 1b

(b) Test Procedures - Three tests were performed, a critical

angle corner impact, a horizontal impact, and a puncture test.
These were performed in that sequence. For the critical angle
test, the basket was inserted into the simulated cask cavity with
the walls of the fuel element cells oriented parallel and
perpendicular to the "tilt plane" of the cask. The grid of the
basket bottom was parallel to the "tilt plane” and the "fuel
elements" were placed in the cells so the plane of the steel
plates was perpendicular to the basket grid. The lead/steel
weight to simulate an upper basket was placed on the top of the
test basket. Impact-o-graph* accelerometers with trip values of
100, 150, 200, 250, and 300 g's were attached to the cruciform
near the bottom of the basket. They were located in a cluster in
an inner cell on the underside of the "spoke" of the cruciform
which was perpendicular to the tilt angle. The Impact-o-graph
accelerometers are "go-no go" mechanical accelerometers which
indicate by release of small balls and springs when a preset G-
load is experienced. They are 3-directional, i.e., they will
trigger if the preset load level occurs along any of the three
axes or at any angle between the axes. The reported accuracy is

+15 percent.

*Trade Name.
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A similar cluster of five acceleromters was placed on the
top of the cask. They were located on the cask head adjacent to

the cover on the side diagonally opposite from the impact corner.
For the horizontal drop test and the puncture test the walls
of the basket cells were positioned parallel and perpendicular to
the impact direction. The wooden ends of the steel "fuel
elements" were not used. Rather the steel plates were laid
directly on the bottom side of each basket cell. A cluster of
five accelerometers was placed on the underside of one of the
center cells. They were attached near the bottom of the basket
on a horizontal spoke of the cruciform. A similar cluster of
accelerometers was placed on the top of the cask opposite the
impact side. The impact side of the simulated cask was 180
degrees from the impact edge for the critical angle impact,.

(c) Results of Critical Angle Impact. After impact the cask
rebounded toward an upright position and continued rotating so

that it landed on the side opposite the impact corner. The
impact footprint on the bottom corner extended 5.0 inches, radi-
cally inward from the original edge. However, the side of the
outer shell was partially "rolled under" and also formed part of
the footprint. The side was also bulged ocut producing the common
"elephants foot" appearance evident in end-on axial impacts of
lead casks. All of the accelerometers on the outside of the cask
had triggered indicating an impact load on the cask in excess of
300 G.

The cask cover was easily removed. There was no visible
damage to the top of cask. The basket was readily removed. The
accelerometers had all triggered indicating that the impact load
on the basket had exceeded 300 G. The four corner braces

supporting the lead/steel box representing an upper basket wer2
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not visibly deformed. The welds of the braces to the upper cage
were all intact. Two of the light gage cell walls suffered broken
welds at the top end and were bent, see photographs on p. 2.132.
One cell wall was also bowed slightly at the top end. The ‘
cruciform was intact and was not visibly deformed. The grid of
the removable bottom was deflected downward a maximum of 7/32-inch
on the center grid bars and lesser amount on the others.

The accelerometers indicated that an impact load in excess
of 300 G was experienced by the basket. 1In order to estimate the
possible value of the impact load, the following analysis was
performed: elsewhere in this SARP the predicted critical angle
corner impact load was calculated as

G = 2 H/x

where

H

X
The deformation x is shown on the following sketch, p. 2.133. In
that sketch, 5.0 inches is the radial dimension of the footprint.
Then

x = 5 sin 23.5

= 1.99 inch

drop height = 360 inches

maximum deformation

and
G = (2) (360)/1.99 = 361 g

Since this represents an equivalent force vector, the axial
component can be determined as

G (361) (cos 23.5)

= 331 gq.

axial ~
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(d) Results of Horizontal Impact Test. Upon impact, the

eight 3/8-inch bolts holding the light cover on fractured and the
lead/steel weight on top of the basket fell out. Examination of
the fractured surface of the bolts leads to the.conclusion that
the bolts probably sheared due to deformation of the head of the
simulated cask. This is not indicative of the expected
performance of the BMI-1l cask since the head, cover, and bolting
design on the simulated cask is significantly different and of
less rigidity than the BMI-1 cask design.

All accelerometers on the outside of the cask had triggered
indicating that an impact load in excess of 300 g had occurred.

Inspection of the top of the basket before removal revealed
that most of the welds on the light gage components forming the
cells within each quadrant were broken. The cruciform, however,
was intact although bent. This observation was confirmed after
the basket was removed. The head of the cask was oval and
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moderate force was required to slide the basket out. The basket
was slightly oval at the top end probably from the action of the
cask walls.

All accelerometers on the cruciform in the basket were trig-
gered indicating an impact load in excess of 300 g was experi-
enced. At the top end of the basket, the horizontal spokes of
the cruciform were bent down about 1/2 to 3/4 inch at the midspan
of each spoke, see photograph on p. 2.135. All welds of the
cruciform to the basket outer walls were intact. Similarly the
junctﬁre of the four cruciform spokes was intact the full axial
length of the basket. However, at the ends of the cruciform
adjacent to the juncture of the four spokes, the end clad weld
joints which sealed the simulated boral in the cruciform was
torn, see photographs on p. 2.135. The edge of the simulated
boral was visible for about l-inch of the radial direction on the
vertical spokes, and for less than 1/2inch on the two horizontal
spokes. The simulated boral was intact and no chips or cracks
were visible. Moreover, the edges of the simulated boral were
straight. The nature of the "tear" in the edge indicates that i-
was caused by a "pulling apart" of the cladding on the vertical
spokes by the horizontal spokes as they deformed. This observa-
tion is confirmed by the relatively unaffected straight and
intact condition of the simulated boral.

The basket cells were deformed, especially those below the
horizontal spokes of the cruciform. Many of the welds of the
light cell walls were broken. The walls of two of the 1/8 x
3/4 x 3/4 angles forming the basket corners were broken at the
bottom end.

The following conclusions can be made regarding the results.

(1) the neutron poison cruciform structure maintained

isolation of the four quadrants of the basket., Thus
the subcritical conditions of tha contents are

maintained.
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(2) Deformation of the fuel elements due to basket
deformation is not significant.

(3) The basket retained sufficient structural integrity to
permit post-accident handling without special
procedures.

(e) Evaluation of Other Rotational Orientations for

Horizontal Impact. As noted above, the 30-foot droptest was

performed with the walls of the basket cells oriented parallel
and perpendicular to the direction of impact (Surface A impact in
the sketch below).

A

v, 131

Y

SURFACE A
4(’

SURFAcF B
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This orientation produces the most severe loading condition for
impact in the horizontal position. This is shown by comparing
the magnitude of the loads on the basket members for this and
other orientations, for example a Surface B impact in the
preceeding sketch.

The structure of the basket cells is shown in Drawing
BCL-000-500, Rev. A. The structure of the cruciform member is
shown in Drawing 0048, Rev., A. The light gage cell walls
(Item 12 in Drawing BCL-000-500, Rev. A) provide negligible
support to the strength of the cruciform since they have large
rectangular holes in them to facilitate heat transfer between
cell cavities and they are attached to the cruciform with skip
welds. Thus their contribution is neglected. The construction
of the cruciform is such that the cladding panels, Item 6 in
Drawing 0048, Rev. A, are firmly bonded to each other at the top,
bottom, and outside edges where they are welded to common edge
cladding, Items 2 and 3. There is also a less secure attachment
between the panels at the spot welds between the panels and
internal spacers, Item S. These spot welds are light welds made
to facilitate fabrication. Their contribution to bonding the
cladding panels on opposite sides of the cruciform to each other
so they act in unison rather than separately is unknown.
However, as will be shown, this knowledge is not necessary for
comparison of the loading patterns to establish the most severe
one.

The loading on the cruciform for both the Surface A and
Surface B impact orientations is shown in the sketch on page
2.138. The model assumes that the impact loads produced by each
element are equal and ‘have a value of Wg.

A free body diagram of the four panels is shown in the
sketch on page 2.139. The panels are welded to a common edg=
clad/spacer at the ends of the cruciform arms (location of
reaction forces Rj, Rz, R3, and Rg). However, since the panels
are also welded to the basket sides, the reaction forces at the

outside edges of the panel can be assumed to be indepedent of
REV. E, 12/28/83
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each other. The impact loading on the panels from each fuel
element is Wg. The effect of the light cell dividers within each
quadrant is neglected and the elements are assumed to be in
intimate contact. The pressure force, P, between the panels
forming the horizontal arm is the area pressure between the
panels (through the boral). The reaction force R3j is the direct
reaction between the vertical arms of the adjacent panels. The
width and breadth of the fuel elements are "a". Consider an
upper quadrant in the sketch., Summing forces in the vertical
direction yields

Ry + R3 + R + P(2a) = 3 Wg . (Egq. 1)
Similarly, for the lower quadrant,
R3 + P(2a) = R4 + R2 . (Eq. 2)
Substitution of Eq. 2 into Eq. 1 yields
Ry + R4 + 2R3 = 3 Wg . (Eq. 3)

Equations 1 and 3 indicate the obvious--that for the test
orientation (Surface A impact) the sum of the reaction forces
acting on the cruciform panels total to the impact force of the
three fuel elements resting on it. This value can now be
compared with similar equations for the Surface B impact
orientation.

A free body diagram for a Surface B impact is shown in the
following sketch, Page 2.141. For the top quadrant, summing
moments about Point A yields
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Rgu(2a) + Rgy(2a) + 2 [P1(2a)a] + Ry(2a) =
0.707 (2Wg) (3a/2) + 0.707 (Wg)(a/2) + 0.707 (2Wg) (a/2) +
0.707 (Wg) (3a/2)
R6y + R6y + 2Pja + R7= 2,121 Wg .

However, Rgy = Rgy = 0.707 Rg .

Then

1.414 Rg + 2Pja + R7 = 2,121 Wg (Eq.

0.707 Rg + Rg + Py(2a) +

0.707(R1g) = 3(0.707 Wg) . (Eq.

Summing forces in the "u" direction yields

Ry + Pj(2a) = 0.707 Rg + 0.707 Ryp

i1

18]

(The impact forces, Wg, do not act on the cruciform along this

axis but bear on the side of the basket.) Summing moments about

Point A yields
Pi(2a) (a) + Ry(2a) + P2(2a)(a) =
2 (.707 Wg) (a/2) + (.707 Wg) (3a/2)

Pja + Ppa + R7 = 0.884 Wg . (

3
]

", "

‘{As above, the Wg fcrce components aleong the "u" axis do not =

on the cruciform.) Summing moments about Point B yields
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Rg (2a) + Pz(2a)(a) + Pp(2a)(a) =
2 (.707 Wg) (3a/2) + 0.707 Wg(a/2)
Rg + Pza + Pja = 1.237 Wg . (Eq. 8)

Equations 5 through 8 are not mutually independent but are pre-
sented to show the interaction of the several reaction forces and
their relationship to the impact forces, Wg. The observation
which is made from examination of the four equations is that the
sum of the reaction forces is less than the sum for a Surface A
impact, Eq. 1.

Considering the lower quadrant and summing forces in the
vertical direction yields

2(0.707)Rg + 2(0.707) (P2) (2a) = 2R1]
Rg + 2P3a = 1.414 Ry} . (Eq. 9)
This can be combined with Eg. 6 to give
Rg + 1.414 R}j] + 2Pja = 2.474 Wg (Eq. 10)

All of the above equations indicate that the sum of the
reaction forces acting on the cladding panels is less severe for
the Surface B impact orientation than for the Surface A impact
orientation which was used in the test. One feature, however, is
not considered above, that of the in-plane compression loading
for certain panels.

Referring to the sketch for the Surface B impact, Page
2.141, attention is called to the side and bottom quadrant free
body diagrams--specifically the panel arms in the plane of the

"u" axis. These arms are acted on by Ry and (0.707)Rjqg, and by
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Rg and (0.707)R1). These two pair of forces are opposed and
place the respective panels in compression. Moreover, the panel

is subjected to a pressure from P and the "v" axis vector of the
impact forces, Wg. The exact magnitude of the forces and their
effect can not be determined without extensive computer analysis
or testing. The magnitude and effect can be inferred, however,
by examination of the photographs on Page 2.135 and the free body
diagram for Surface A impact, Page 2.139. 1In the free body
diagram it is noted that the forces R3 and R4 act mutually
opposite in the plane of the panel. From the photographs it is
noted, however, that although some minor buckling of the panel
occurred it was not extreme. The nature of the bowing which the
horizontal arm of the cruciform experienced indicates that the
force R3j reached the value necessary to initiate buckling of the
lower vertical arm., However, as motion occurred, the force Rj,
rapidly increased relieving the buckling force R3. Meanwhile,
the action of the fuel element impact load was to produce sig-
nificant bowing in the panel with most of the reaction being
produced by forces R} and Rz. A similar occurrence would be
expected for impact in the Surface B impact orientation. Consi-
der the cladding panel mark "Panel A" in the free body diagram,
Page 2.141. As the impact event progresses, the force Ry would
increase and might initiate buckling of the lower diagonal arm of
the cruciform. However, the Rg forces in the upper gquadrant
would rapidly increase, force Ry would drop, and buckling as such
would halt (similar to panel response for the test orientation).
The side force on Panel A would tend to continue the bowing of
the panel due to the v-axis vector of the impact force Wg which
is slightly countered by pressure, P3. The loading pattern is
analogous but less severe to that shown for the uppef quadrant of
the free body diagram on page 2.139 for a Surface A impact (v
rector of Rg analogous to Rj, Rg analogous to R3, etc). Thus,
the panel would be expected to bow no more than the amount shown
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in the photogiaphs on p. 2.135 and no failure other than the
minor separation of the edge welds such as experienced by the
test basket would be expected.

The above evaluation did not require knowledge about the
structural integrity of the spot welds at the center spacers of
the cruciform arms. It is assumed that their influence on panel
response and performance, whether major or minor, would be the
same for either a Surface A or Surface B impact orientation.

The above evaluation also did not consider the nature of the
reaction forces, i.e., tensile, shear, etc. For the test orien-
tation, Surface A impact, the force R] is a tensile force while
Ry is a combination shear and bending. The reaction forces for
the Surface B impact are similar, i.e., tension, shear and
bending. Thus, similar performance of the weld joints between
the panels and the side of the bracket would be expected.

The above evaluation indicates that the sum of all the reac-
tion forces acting on any one panel for a Surface B impact orien-
tation is less than for a Surface A orientation, the orientation
whicas was tested. Although the values of the individual reactor
forces could not be evaluated, the analysis indicated that none
are higher for the Surface B orientation than for the Surface A
orientation. For example compare Egq. 1 and Eq. 4.

Eq. 1. (Surface A) Rj; + Rp + R3 + 2Pa = 3 Wg

Eq. 4. (Surface B) 1.414 Rg + R7 + 2P1a = 2.121 Wg
Multiplying Eq. 4 by 1.414 yields

Eq. 4a. 2Rg + 1.414 Ry + 2.828 Pja = 3 Wg

Then if it is assumed that 2Rg is analogous to R} + Rj, R3
analogous to R7 and Pa analogous to Pja, Rg is less than R; since
ther2 is greater support from the other reaction forces Ry and
P1a. Even if R7 and Pja were nil, Rg would be no greater
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than R; or R2. Consider the free body diagram, Page 2.139. 1If
R3 = 0 and P = 0, then R} > Ry; but since R; + Ry equal 2Rg, then
Rg < Ry1. Similar logic shows that other reaction forces are less
than experienced by the test basket during the fall in the
Surface A impact orientation. Thus, it is shown that the Surface
A impact orientation is the most severe. Any orientation for a
rotational angle between Surface A and Surface B impact orienta-
tion would result in reaction forces between those for the A and
B orientations.

(f£) Results of 40-inch Drop Puncture Test

The test basket was subjected to a 40-inch puncture test on
the side of the package following the 30 foot side drop test.
Results of this test can be seen in the photographs on page
2.147. As can be seen from the photographs, there were some
slight additional deformation of the light gage cell walls.
However, the cruciform boral sheets dividing the quadrants
display rather small amounts of increased deformation and remain
essentially intact. The net effect of the puncture test was to
clamp the "cask" shell more tightly around the basket making it
virtually impossible to remove the basket. However, it was still
possible to remove the fuel element without difficulty.
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(g) Texas A&M MTR Fuel--Drop Analysis. The Texas A&M fuel,
as shown as BCL Drawing No. 000-236 is covered by the poison

plates except for approximately 1/8 in. at the bottom end. The
poison plate is 24-1/2 in. long (Ref. BCL Dwg. No. 0048), the
active fuel length is 24.62 in. The design of the Texas A&M fuel
element is such that it is unlikely that there will be any
significant movement of the fuel below or above the poison plates
in the event of a 30 ft. end drop at either end.

The folléwing analysis shows that the fuel elements will not
fail under end drop conditions on either end. The worst case
situation is for the plug end drop (bottom) with the fuel element
resting in the steel bars (2/16 in. x 7/16 in.) as shown on BMI-1l
Fuel Basket Modification Drawing BCL-000-501, In
this situation eight of the twelve elements could be located such
that only 50 percent of the end of the plug is supported by the
steel bars.

v |2 Elements 1, 2, 5, 6, 9,
10, 11, and 12 can have
as little as one half of

72N |4 _ the end plug bearing
\\\‘ [ s surface in contact with
S , the steel grid.

The maximum bearing stress occurs on the edge of the 6061-T6
aluminum plug as shown below.

| Inside Diameter = 2.0 in.
1
! A Section A-A. end

g ] *.. = 2 _ 52
‘..J'(._z_.wz____T.. W Are:ll 7/42(2.094 2°)
® ! | 5‘"8 \ 0 . h l;nt i :
t ! /g ne-ha is in contact
A b Y 1a 2,5 2
| T ] .211 in.“/2 .10 in.
3
Lsz-———*J
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Section B-B :
Area = ©/4 (2.3722 - 22
2

= 1,53 in.”%.

The allowable bearing yield stress for the 6061 fitting is
22,000 psi. The weight of the Texas AsM MTR fuel element is
10.5 1b. The acceleration is a bottom end drop is 368 gs (ref.
page 2.86) 10.5 x 368 = 3,864 lb.

¢ = P, 3864 lbs
—S_TS

bry - & o in 38,640 psi °
This exceeds the allowable bearing yield stress by a factor
of 1.76 and will result in yielding of the thin edge of the 6061
end plug until sufficient area has been flattened out to support
the fuel element at the allowable yield stress. Conservatively
assuming that yielding will cease when an area three times that
given above, 3 x .10 = .30 in.2, the fuel element will have moved
approximately 1/16 of an inch. At that point the bearing yield

stress will be:

_ 4063.5 _ :
fbry —.W— 13,545 PS1

Fpry ® 22,000 psi
_ 22,000 _, .
M.S.y 13' 45 l .62 L ]

The movement of approximately 1/16 of an inch is considered
insignificant.
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Top End Drop - Texas A&M MTR Fuel

The top end drop for the Texas A¢M MTR fuel is less severe
than the bottom end drop. By constrast, the maximum impact force
is 87.5 G on the top of the cask. Conservatively assuming no
attenuation, this shock force is also applied to the fuel.

The end view of the aduminum side plates which hold the fuel
plate is shown below:

FIGURE WITHHELD UNDER 10 CFR 2.390

End area = (3.15)(.154) + (19)(.122)(.033) 2 - 1.1232 in. 2

The fuel elements bear against a smooth steel plate in the
top end drop. The weight of the fuel element is 10.5 Ib. The
impact force is 105 |b x 875 G. 918.75 |Ib. The alowable
bearing yield stress for 6061-76 is 22,,-O psi.

22,000 -i

M.S. 1 high

(Paragraph del eted)
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Document 20

Spent Fuel Elements
Cask Containment

The containment criteria specified in 10 CFR 71.51 and therein
referenced part 71 sections are met by the BMI-1 Type B package. Analysis of
this is presented in the BMi-1 SAR, Section 2. When used to ship irradiated
MURR fuel assemblies, the cask itself will be as described in the SAR. We
comment below on some specific points, in particular those involving the
MURR fuel and cask basket.

Closure Bolts

In SAR Section 2.6, p. 2.30, the total net outward force on the lid due to
100 psig internal pressure and rubber sealing gasket compression is 34,130
— pounds. ‘No credit is taken for the 1,100 pound weight of the lid (p. 1.5). Using
a bolt cross-section area of 0.563 in2, the stress in each of the 12 bolts is
5,052 psi. This is well below the tensile yield stress for 304 stainless steel
of 30,000 psi, and the ultimate stress 75,000 psi, given in SAR Table 2.23 on
p. 2.2. The bolt’ (stud) material is stated in 3.4.2 as 304 SS.

In addition to the above 5,052 psi stress, we may consider a pre-load due

to torque on the bolt nuts when the lid is initially tightened down. The pre-
load force is

F=-1-= 50 ft.1b, = 4,725 1b.
1= cds  (.15)(.8466 in./12)

where T is the torque, ¢ is a lubricated bolt-nut friction factor, and dg = .8466
inch is the bolt minor (inside threads) diameter. This equation is from
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Machine Design: Theory and Practices (Macmillan Publishing Co.) p.816. The
we-load bolt stress is then 4725 1b/0.563 in2 = 8,393. psi and the sum of the

| \_¢tresses is 5,052 + 8,393 = 13,445 psi. This is a factor 2.2 below the yield
stress and well below the ultimate stress.

Mini Coolant T

With the most unfavorable ambient temperature of T, = - 40°F = 420°R
(10 CFR 71.71(b)(2)]. a decay power of 0.5 kW = 1700 Btu/hr, a cask surface
area of 49.7 ft2, and heat transfer coefficient

h ={0.40)(Ts - Ta)'
the cask surface temperature Tg is found from

1700 = (0.173)(0.5)(49.7)[ ’1%56‘4 -(f%gr‘] + (0.40)(49.7)(Ts-420)%/3

~— This equation is explained in our Thermal Evaluation section. The

solution is T = -16°F. With a 10°F rise through the lead and steel walls, and
10° across the cavity-basket water gap and fuel, the water in the fuel annulus
would be just above O°F.

If we consider the unfavorable but less extreme ambient temperature
Tq = - 20°F, [10 CFR 71 .71(b)), the cask surface temperature is + 3°F and the
water in the fuel annulus center would be about 25°F. This could be raised
above the freezing temperature of water by following SAR Section 3.4.3 and
covering the cask with a heat-transfer reducing blanket.

in any shipment at sub-zero °F ambient temperature, we will consider
the actual decay power and our measurement of the cask surface temperature
under the blanket. If there is a risk of coolant freezing, sufficient antifreeze
‘will be added to the cask to prevent damage of any component of the package
by freezing, (reference Cenrtificate. of Compliance No. 5957).
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) ief |
The pressure relief valve will be tested on an annual basis, either by
Cintichem, Inc., the BMI-1 cask owner, or by MURR. |

N | Conditi (T
SAR Section 2. Structural Evaluation and Section 3. Thermal Evaluation,
and the MURR submissions explain that the radioactivity containment
requirements of 71.51(a)(1) for normal conditions of transport are met by the
cask integrity.
in addition, for radioactive material to escape from the fuel elements,
the plate cladding must be penetrated by forced cutting, or by temperatures
above the normal transport conditions. The stainless steel basket with its lid
holds the elements firmly in place. It is not credible that the cask lid come
off. Therefore it is not credible that any significant amount of radioactivity
_ can be released from a fuel element.

As in the paragraph above, even in accident conditions, the cask lid does
not come off. In the hypothetical fire, fuel plates do not get to failure
temperatures, as explained in our Thermal Evaluation.

Accordingly, we conclude that there would be no escape of krypton-85
exceeding 10,000 curies in one week and no eScape of radioactive material
exceeding A, in one week. The last paragraph of our Shielding Evaluation
shows that in a hypothetical accident, there would be no external radiation
dose rate exceeding one rem per hour at one meter from the external surface
of the package. The requirements of 10 CFR 71 51(a)(2) are met.
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2.12.7 Analysis of MITR Fuel Assemblies jin BMI-1 Cask
Normal Conditions of Transport

As explained in the BMI-1 Safety Analysis Report, the integrity of the BMI-1 cask
meets containment requirements of 71.51(a)(1) for normal conditions of transport.

In addition, the MITR-]I elements will be secured umspm inside the Missouri
basket so as to preclude any movement within the cask which might cause fuel damage.
The cladding integrity has been tested for all MITR-II fuel elements with no fission {:roduct
leakage indicated. The lower limit of detection for this testing is well below that of 106 Az
per hour, as prescribed in 10 CFR 71.51(a)(1).

Thirdly, normal conditions of transport will not result in any changes in external
radiation levels. Even in an absence of the spacers, the fuel elements would only shift
towards the outside of the cask a total distance of less than one inch, resulting in an
insignificant increase in external radiation levels.

Hypothetical Accident Conditi

As also explained in the BMI-1 SAR the cask integrity is maintained during
hypothetical accident conditions. Even if the fuel were damaged, there would be no escape
of Krypton-85 exceeding 10,000 curies in one week and no escape of radioactive material
exceeding A2 in one week. Therefore the requirements of 10 CFR 71.51(a)(2) are met.

The University of Missouri analyzed the Missouri basket under the hypothetical fire
accident conditions and concluded that the maximum fuel temperature would reach 724 °F,
which is well below the clad failure temperature. This analysis is exactly applicable to the
MITR-II fuel. It should be noted however, that there is a larger gap between the fuel and
basket in the MITR-II case, so that there will be an overall lower fuel temperature. Section
5.4.2.1 of the BMI-1 SAR also explains that the only shielding loss in the hypothetical fire
accident is a 3 inch drop in lead level at the corner of the cask, which resulted in a dose less
than 1 Remvhr at 1 meter. Since an MITR-II shipment contains less volume and has a
lowcli external dose rate than that analyzed in the SAR, hypothetical radiation levels will be
even less. :

Finally, 10 CFR 71.51(a)(2) requires that there be no escape of Krypton-85 greater
than 10,000 curies in one week. There 1s presently no combination of eight MITR-II spent
fuel elements that approaches an inventory of 10,000 curies of Kr-85.
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2.12.8 Stress Analysis - HFBR Baskets
E-2.1 Introduction

The function of the baskets is to provide structural support and maintain separation
between fuel assemblies during transport. During the hypothetical drop accident,
:her:?el assemblies and baskets will be subjected to an impact load due to their
nertia.

The structural analysis for the BMI-1 Package (Appendix E-1) fndicated the Package
would be subjected to the following "g" loads.

Bottom impact - the cask deforms 1.92 inches (Appendix E-1, p 2.32).
g=2x 360 /1.92 = 375

Top impact - the cask deforms 1.06 inches (Appendix E-1, p 2.35).
g=2x 360 /1.06 = 680

Side impact - the cask deforms 1.44 inches (Appendix E-1, p 2.38).
g=2x 360 /1.44 = 500

Corner impact - the cask deforms 5.63 inches (Appendix E-1, p 2.40).-
g=2x 360 /5.63 = 128

The "g" loading on the fuel/baskets will be less than the above values due to
damping in the cask body. This analysis conservatively assumes that the entire "g"
load is transmitted to the internals.

From Drawing No. BNL 93-001 (Rev. 1), it can be seen that the basket is fabricated
from 3/16 inch thick and 1/4 inch thick 304 stainless steel plates. Each basket
contains 10 rectangular fuel compartments with a length of 25-3/8 inches. The fuel
compartments are about 3 inches square. Fuel assemblies are supported at the bottom
of each compartment by 3/16 inch thick by 1 inch wide pieces welded to the uprights
which define compartments. The basket 1ifting lugs are 1 3/4 inch wide by 1/4 inch
thick pieces welded to the compartment exterior at two locales 180 degrees apart.
The opposing sides have 1/4 inch square separators.

The envelope diameter defined by the basket is 15 1/8 inches while the {interior
- diameter of the cask is nominally 15 1/2 inches diameter. The resulting diametral
clearance, 3/8 inch, minimizes basket movement from side to side. Each basket is 25
3/4 inches long and the spacer plate is 3/8 inch thick for a total length of 51 7/8
inches. The nominal {internal height of the internal cavity is 54 inches. The
clearance in the cavity is 2 1/8 inches.

Component weights relevant to the basket stress analysis are as follows:
Fuel assembly (lbs) - 9.9
Spacer plate (1bs) - 18
Basket total (1bs) - 185

A1l internals (1bs) - 586
Single basket plus fuel (1bs) - 284
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This Appendix presents the analysis to show that the basket 1is not adversely
affected when the cask is subjected to the 30 foot drop accident. Since the load
under the 30 foot drop condition is the worst case, the basket can safely react to
the designated loads for both normal and accident conditions.

The allowable yield stress for 304 stainless steel at 200 degrees F is 25,000 psi.

The ultimate stress at this same temperature is 71,000 psi. These values were used
throughout the stress analysis.

E-2.2 Bottom Drop

Downward or axial loads are carried by the 1 inch strips (3/16 inch thick) at the
bottom of the basket. For a single assembly at 9.9 1bs, the load on the strips is:

P=29.9x 375 = 3,713 1bs
E-2.2.1 Strip Plate Bending Stress

From the referenced drawing, all compartments have 6 square inches of
support strip at the compartment bottom. The uniformly distributed
load, W on the strip plate is:
WeP/6=3,713/6 = 619 1bs/in?
The maximum bending stress at a 3" x 1* strip plate are calculated from:
Sp = 0.798 x W (1)2 / (3/16)2 = 14,050 psi
The allowable bending stress is the yield stress (S,) or 25,000 psi.
The margin of safety is:
MS = (Sa/Sp) - 1
MS = (25,000/14,050) - 1
MS = +0.78
E-2.2.2 strip Plate Shear Stress
Shear stress in the plate fs:
Ss=P/ (2x3/16x(3+1+1))
Sg = 1,980 psi

Rev. I, February 28, 1985



2.206
Document 22

The allowable shear stress is 60 percent of the yield stress:

Sa = 0.6 x 25,000 = 15,000 psi
The margin of safety is:

MS = (Sp/Sg) - 1

MS = (15,000/1,980) - 1

MS = +6.57

E-2.2.3 §trip Plate To Basket Weld Stress

From the referenced drawing the strip plate is attached to the basket
with a 1/8 inch fillet weld. The load on the plate is P/2 or 1,857 1bs.

The weld area is:
A= (3+141) x0.125 = 0.625 in?
The weld stress is:
Sw = 1,857 / (0.625 x 0.707 x 0.85)
Sy = 4,944 psi
The allowable weld stress (S;) is 30 percent of the ultimate stress:
Sa = (0.3) x 71,000 psi = 21,300 psi
The margin of safety is:

MS = (Sa/Sw) - 1
MS = (21,300/4,944) - 1
MS = 43.31

E-2.3 Top Drop

During the top drop case, fuel assemblies are not contained and the spacer plate is
loaded by assemblies in the bottom basket.

E-2.3.1 Spacer Plate Bending Stress

F?rta :1ngle assembly at 9.9 1bs, the load on the 3/8 inch thick spacer
plate is: -

P=9.9 x 680 = 6,732 1bs
Rev. I, February 28, 1995
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The maximum bending stress on a 3 x 3 inch square section of spacer
plate, simply supported at all edges, is:

Sp = 0.287 x P / (3/8)2
Sp = 13,740 psi
The allowable bending stress (S,) is the yield stress or 25,000 psi.
The margin of safety is:
MS = (S3/Sp) - 1
MS = (25,000/13,740) - 1
MS = +0.82
Spacer Plate Shear Stress
Shear stress in the plate is:
S =P/ (3/8x (3 +3+3+13))
Sg = 6,732 / 3/8 x 12 = 1,496 psi
The allowable shear stress (S,) is 60 percent of the yield stress:
Sa = 0.6 x 25,000 = 15,000 psi
The margin of safety {is:
MS = (Sa/Sg) -1
MS = (15,000/1,496) - 1
MS = 49.03

Basket Frame Yield Stress

Axial loads are carried by the 1/4 inch thick frame plates (21) with a
total cross sectional area of:

A=1/4 x (2x14 + 2x10 + 13x3.25 + 2x2.25 + 2x0.25) + 1/2 x 2 x 3
A = 26.81 in?
The total axial lToad on the basket frame is:
P = (10xP, + Pp + Pg) x 680 = 302 x 680 = 205,360 1bs
Where: :
Py = Fuel assembly weight (9.9 1bs)

Pp = Basket weight (185 1bs)
Ps = Spacer plate weight (18 1bs)

Rev. I, February 28, 1995
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The maximum yield stress is:

Sm = P/A = 205,360 / 26.81 = 7,660 psi
The allowable yield stress (S;) is 25,000 pst.
The margin of safety is:

MS = (So/Sp) - 1
MS = (25,000/7,660) - 1
MS = + 2.26

E-2.4 Side Drop
During the side drop, the fuel assemblies in the two top tiers of compartments plus
the basket, will produce compressive loads on the basket bottom compartment plates.

In the same orientation, the 1ifting lug plates will be loaded in compression and
the compartment plate attached to the 1ifting lug will be in bending.

E-2.4.1 Basket Plate Stress

The seven assemblies in the upper compartments will load the three lower
compartments. The lower compartments will conservatively see a combined
;ggd]gqual to the weight of seven assemblies plus the basket weight, or
S.
P=(7xPa + Pb ) x 500 = 127,150 1bs
Where:
Py = Fuel assembly weight (9.9 1bs)
Pp = Basket weight (185 lbs)
The total cross sectional area of the plates is:
A=4x1/4 x25.37 = 25.37 in?
The yield stress on the plates is:
Sp = P/A = 127,150 / 25.37 = 5,012 psi
The allowable yield stress (S,) is 25,000 psi.
The margin of safety is:
MS = (Sa/Sp) - 1
MS = (25,000/6,692) - 1
MS = +3.99

Rev. I, February 28, 1995
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E-2.4.2 Pasket Lifting Lug Compression

E-Z.‘.3

?ll ten assemblies in the basket plus the basket will load the lifting
ug.

Pe( 10xPy + Pp ) x 500 = 142,000 1bs
Where:
Po = Basket weight (180 Tbs) )

The total cross sectional area of the plate is:

A=1/4 x 25.37 = 6.34 in?
The yield stress on the plates 15:

Sp = P/A = 142,000 / 6.34 = 22,440 psi
The allowable yield stress (S;) is 25,000 psi.
The margin of safety is:

MS = (S3/Sp) - 1

MS - (25,000/22,400) - 1

MS = +.116
Bending of Compartment Plate

A1l ten assemblies in the basket plus the basket will load the 1ifting
lug and subject the bottom compartment to bending. This location has
been reinforced with a 1/2 inch plate to stiffen the compartment at this
location.
Pc = (10xP3 + Pp ) x 500 = 142,000 1bs
Where:
Pa = Fuel assembly weight (9.9 1bs)
Pp = Basket weight (185 1bs)
Moment(M) =P xL / 8 =142,000x3 /8
M= 53,250 1b in

I =25.37 x (3/4)} / 12 = .892 in*

Rev. I, February 28, 1995
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The bending stress on the plate is:
Sb = (M/1) x 3/8 = (53,250 / 0.892) x 0.375
Sb = 22,386 psi
The allowable bending stress (S,) is 25,000 psi.
The margin of safety is:
MS = (Sa/Sp) - 1
MS = (25,000/22,386) - 1
MS = +.116

E-2.5 Corner Drop
Because the corner drop orientation results in substantially reduced "g" loads and

produces axial and lateral components less than those of the side and end drop
conditions, they are not presented.

Rev. I, February 28, 1995



3. THERMAL EVALUATION

3.1 Discussion

3.1.1 Summary of Results

For normal operation with 1.5 kW decay heat with a 130 ©
ambient temperature, the cask inner liner temperature will be
about 227 F. During the hypothetical fire accident, the inner
liner temperature will be about 560 F.

The Fermi fuel subassembly will be shipped in the BMI-l
shipping cask, which has been provided with a special basket.
During shipment, the cask cavity is filled with water. The vcid
spaces between the fuel rods in the subassembly are filled with
a settled bed of copper shot in water. The cask is to be shipped
by truck so that under normal conditions the maximum fuel and
water temperature is about 230 F.

3.1.2 Maximum and Minimum
Decay Heat

(a) BRR/MTR Fuel

The total fission product decay heat is calculated from
the data in ORNL-2127(1). Following the analysis in Reference
(1), the Number U-235 atoms in a BRR fuel element is:

3.2 x 10%%
N_
g¢
where
P = irradiation power ({wvatts)
- = fission cross section used in Tables = 580 barns
¢ = thermal neutron flux.

(1) References to Section 3. found in Section 3.6.1.
REV A 3-28-80
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The maximum U=-235 burn-up in a BRR element is 17.5 Dercent

For a fuel loading of 162 g U=-235, with a capture to fission

ratio of 1.18, the fission product production is 2

4.1 g. For

an irradiation time of 313 days, the irradiation power is P =
24.1 MwD/313 D= 7.7 x 104 watts per element (assuming 1 g U-235

1 MwD). Thus, for ¢ = 1014 n/cm? sec:

20 4
N = 3:2 x 10 ){1-7 x 10%) _ 4.25 x 1022
10

(580) (

atoms

) U-235 per element.

From the data in Reference (l), the total decay heat (beta plus
gamma) for an irradiation time of 313 days and a cooling time

-21

of 90 days (with ¢ = 1014) is q = 10 watts/atom

22

U-235, or:

0 = 10721y (4.25 x 10%%) = 42.5 watts/element

For 24 elements with the same irradiation history,
is 24 x 42.5 = 1,02 ks = 3,480 Btu/hr.

—(b) Fermi Fuel
(Paragraph deleted)

Rev. I, February 28, 1995
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(c) .TRIGA Fuel

The fission product activity was estimated to be 250
curies per element in November, 1970 (based on radiation measure-
ment made at that time). Assuming 2 MEV per event, the decay
heat of the fuel is:

10

250 curies/element x 3.7 x 10 events/sec/curie x

-13

2 MEV/event x 1.6 x 10 watts/MEV/sec

= 2.96 watts/element .

The total heat load for the cask is 112.5 watts. This is a very
conservative estimate since the fuel has cooled ~ 2 years and has
a cooling factor greater than 3.0. The BMI-1 cask is licensed

to handle up to 1.5 kw of decay heat. Thus, the thermal inventory
for this shipment is well within the limits for the cask.

(Paragraph deleted)

(d) EPRI Crack Arrest Capsules

The total decay heat generated by the capsule at discharcge
is 197 watts. The axial heat rate over the height of the capsule
is (197)(12)/21.5 = 110 watts/ft. The cask js rated for contents
whose decay‘heat is up to 1,500 watts. The cavity length is
54 inches. Thus, the axial heat rate permitted for the cask is
(1,500) (12)/54 = 333 watts/ft. Thus, the dJecay heat is within

cermissible levels.

REV G, 6-14-85
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(e)Union Carbide Process Uranium Oxide Container

The total decay heat of the process oxide may vary up to a
maximum of 20 watts per container. Thus for a shipment of twenty-
four (24) containers, each producing the maximum decay heat, the
total heat generation of the contents is 480 watts. This is below
the 1500 watt rating of the cask.

(f) Union Carbide Target U235 Special Form Capsules

The total decay heat for the U?35 target material may vary.
The number of capsules permitted per shipment shall be limited so
that the total aggregate decay heat generation will not exceed 1500
watts, the rating of the BMI-1 cask.

(g) MURR Fuel Assemblies

A thermal analysis of the case of eight MURR fuel assemblies
in the BMI-1 cask was performed. This analysis showed that the
maximum surface temperature of the cask would be 182°F, slightly in
excess of the 180°F limit permitted by 10 CFR 41.43(g). Starting
with data from experimental studies on a GE 700 cask, it was
concluded, however that the BMI-1 will experience a 170°F maximum
surface temperature. These analyses further concluded that the
fuel temperature rise and maximum internal pressure are within
acceptable limits. See Appendix 3.6.3.

(h) MITR-ITI Fuel Elehents

In the worst case of a MITR-II fuel element which remains in
the MITR core during continuous 5-day-per-week operation until 45%
burnup is reached and is then allowed only 90 days cooling, the
calculated decay heat is 127 watts. For the maximum eight MITR-II
fuel elements permitted, the maximum decay heat load is 1016 watts,
less than the 1500 watt rating of the cask. See Appendix 3.6.4.

Rev. I. February 28, 1995
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(i) HFBR Fuel Assemblies

The decay heat from all sources for a 20 HFBR assembly payload
was determined using ORIGEN2. The case considered was based on 60
days operation at 60 MW with a full core of 28 assemblies. The
ORIGEN2 output was reduced by a factor of 0.71 (20/28) to reflect
a 20 HFBR assembly payload. An average fuel assembly decay time of
470 days results in a decay heat load below the MTR fuel limit of
1.02 kw. See Appendix 3.6.5.

3.1.3 Solar Heat
From Reference (3), p 1,636, the solar heating is:

Q = 429T {GHAH cos 6y + €yAy cos Gv}

where
T = atmospheric transmittance = 0.6
€ = absorptivity = 0.5
A = area of surface
H. = refers to horizontal surface or top of cask

V = refers to vertical surface or side of cask
At noon during the summer solstice, at 40 degrees latitude:

cos 8, = 0.96
cos 6y = 0.284

The outside of the cask is 33 inches in diameter and 72.375 inches
in height. Thus:

Rev. 1. February 28, 1995



5.93 feet2

v
"

16.6 feet2 (protected area).

L]
o
o

"

AV

The solar heat is:
0 = 429(0.6) [ (0.5)(5.93) (0.96) + (0.5)(16.6)(0.284)]
= 232 + 607 = 1,339 Btu/hr. = 0.392 kw

3.2 Summary of Thermal Properties of Materials

The materials' thermophysical properties which were em-
ployed are shown in Table 3.1. Also, since it has been well
demonstrated that the lead will contract away from the outer
shell after casting (fabrication experience indicates a potential
gap of 0.060—0.100 inch), the thermal model included a variable
air gap (Node 118) which nhas an effective thermal conductivity

that increases with temperature as shown in Figure 3.1.

3.3 Technical Specifications of Components

Relief value =- 75 psig

Pressure gauge - 30 in Hg vacuum to 100 psig pressure.

3.4 Thermal Evaluation for Normal Conditions
of Transport

3.4.1 Thermal Model

()

The analysis for normal operation wver zerformed assum-
ng only radia. heat Ilow from the contents thrzugh the cask

walls to the environment.

Rev. A. 3-28-80
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TABLE 3.1 THERMOPHYSICAL PROPERTIES EMPLOYED
FOR LEAD, STEEL, AND ALUMINUM
Lead
Density = 705 pounds/feet3
Melting Temperature = 621 F
Latent Heat = 10.5 Btu/pounds
Temperature, Thermal Conductivity, Specific Heat,
F Btu/hr-ft-F Btu/1lb Emissivity
32 20.1 0.0303 1.0
212 19.6 0.0315 1.0
572 18.0 0.0338 1.0
621 8.8 0.0337 1.0
900 8.9 0.0326 1.0 )
———
Steel
Density = 488 pounds/feet3
Latent Heat = 120 Btu/lb
Melting Temperature = 1,800 F
Temperature, Thermal Conductivity, Specific Heat,
F Btu/hr-ft-F Btu/lb Emissivity
32 8.0 0.11 0.8 1. @
212 9.4 0.11 0.8, 1.0
572 10.9 0.11 0.8, 1.0
932 12.4 0.11 0.8, 1.0
1,800 15.0 0.11 0.8, 1.0
(a) For sz=el surface exposed to flame, = = 0.8.

(b) For steel surfaces viewing each other across internal air
gaps, : = 1.0.
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TABLE 3.1 THERMOPHYSICAL PROPERTIES EMPLOYED

FOR LEAD, STEEL, AND ALUMINUM
(Continued)

Aluminum, 6061-T6

Density = 169 pounds/feet3
Melting Temperature = 1,140 F
Latent Heat - 128 Btu/pounds

Temperature, Thermal Conductivity, Specific Heat,
F Btu/hr-ft-F Btu/lb Emissivity
77 89.5 0.214 0.15
600 135.0 0.214 0.15

Rev. B. 8-1-80
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3.4.2 Maximum Temperature

3.4.2.1 BRR/MTR Fuel

(a) External Heat Transfer

During normal operation, heat is dissipated from the out-
side surface of the cask by radiation and natural convection in

air. The heat transferred by radiation is:

4 T 4

_ o _ a

L

and the heat transferred by convection is:

Qc = hcAc(TO - Ta) '
where
e = surface emissivity = 0.5 for steel
’I‘o = cask surface temperature
Ta = ambient temperature = 100 F

h, = 0.19(T_ - Ta)l/3 (Mcadams 4, p 173)

>
|

Ac = heat transfer area .

Heat transfer from the outside corners and top of the
cask is partly obstructed due to the air pockets built into the

lead to provide for lead meltdown space in case of fire. The
a.r pockats also insulate the cask Irom solir nesating. Twe
estimates of the maximum heat load are made. In the first casz,

tne full solar load and total cask surface area are considered.
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In the second case, heat transfer from areas obstructed ty air
pockets is neglected, and only the solar load on the side is
included. 1In the first case, the total heat load on the outside
surface of the cask is Q = 3,480 + 1,339 = 4,819 Btu/hr; and,
the heat-transfer area including the top and bottom is A = 52.1 +
11.36 = 63.96 ft2. In the second case, the solar load is

540 Btu/hr for a total heat lcad of 4,020 Btu/hr; and the heat-
transfer area, neglecting the top and corners, is A = 46.3 +

3.4 = 49.7 £t2. 1In the first case, the heat flux is 75.4 Btu/hr
ft2, and in the second case is 80.9 Btu/hr ft2. The second case
is calculated below since it leads to conservative results

(higher surface temperatures).
The total heat, removal capacity of the cask is: Q=Q, +Q., or

T 4 4
_ o., _ (9560 _ 4/3
Q _(0'173x49'7)(0°9(Iﬁﬁ) (—65) + 0.19(49.7)(TO 560)

For:
Q = 3,480 + 540 = 4,020 Btu/hr, 4,020 = 4.29 (Tﬁﬁ) - 981

+ 9.44('1‘O - 560)4/3 r

and:
T0 = 617 R = 157 F.

Thus, the maximum cask surface temperature will be 157 F, assuming
there is no heat loss (or addition), through the tocp and corners

of the cask. The surface temgerature is below 180 7, which mests

the AEC reqguirements.



L} b
3.2 Docurment: 1

(b) Heat Transfer in Cask Wall

The temperature drop across the lead in the wall of the

cask 1is:

Q =
AT ln D2/Dl = 4.05 F,

2tkL

where

Q = 3,480 Btu/hr
k = 19

L =5 feet
D2 = 32 inches

Dl = 16 inches

The total temperature drop across the inside (thickness = 0.25
inches) and outside (thickness = 0.5 inch) steel plates is T =
0.7 F.

As the lead solidifies in the manufacturing process, a
small air gap is formed between the outside steel shell and the
lead. The thickness of this gap is estimated to be 0.0817 inch.
The heat transferred by conduction and radiation across the gap

is:
KAAT 4T3
Q = ==+ 0.173 FA ——==
108
where

Q = 3,439 Btu/hr
A = 50.2 ft?
t = 0.0817 inch
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= 0.231
180 F = 640 R .

3
]

The total temperature drop across the cask wall is AT =
23.8 F. It is expected that the lead will settle during trans-
portation and close the air gap. Thus, the temperature drop
across the wall of the cask should decrease in later shipments.

The total temperature drop across the cask wall is 27 =
4.05 + 0.7 + 23.8 = 28.6 F. The temperature at the inside
surface of the cask wall is T = 157 + 28.6 = 185.6 F.

(c) Internal Heat Transfer

During normal operation, the cavity of the cask is filled
with water, and the fuel elements are cooled by natural circula-
tion of the water. The water flows up through and around the
fuel elements to the top of the cavity and then flows down throuch
the space between the cask wall and the fuel elements. The heat
absorbed by the water as it flows up through the elements is
dissipated as the water flows down past the cooler cask wall.

The natural convection heat transfer can be calculated
from the pertinent pressure drop and heat balance equations.
These equations have been solved and placed in a form convenient
for calculation in Reference 5. According to the analysis in
Reference 5, the egquations which must be solved for the maximum

water temperature T(L) are:

T(L) = T, = — =%
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(at top of cask)

T(L) = maximum water temperature
T(o) = water temperature at bottom of cask
T, = cask cavity wall temperature

Q = decay heat
AV = flow velocity (ft3/hr)

Ai = total element flow area (up-flow region)
Di = equivalent diameter of element region

AO = flow area of down-flow region

D, = equivalent diameter of down-flow region
FA = axial peaking factor

PHL = heat-transfer area = area of cavity wall
g = gravitational constant

water properties:

specific neatc
density

viscosity

volume expansivity (F

thermal conductivity

)
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The required numerical data are:

T,, ~195 F F, = 1.40
C = 1.0 Btu/1l6 F A, = 68.5 inches?
> = 60.2 pounds/ft> D, = 2.76 inches
384u _ .28 x 1074 A. = 88.7 inches?
pgB i
D. =0.477 inches
1 1l
k%02qsc | 3
——2:9—- = 487 P, = 48.7 inches
L = 52.5 inches
Q = 3,480 Btu/hr

Using these numerical data, Equations (2), (3), (4), and .(5)

become:

vy = 57.8/AV (2
oL = 0.8 + 0.03 (AV/Y) {(3)
al = 0.295 (ho/AV) (2)
. 1 .
ho = 24.4 (Y/aL)j (5)

The solutions to these equations'are vy =4.3 F, aL = 0.896,'
AV = 13.5 ft3/hr, and hj = 41.2 Btu/hr ft2 F, From Equation (1),
T(L) = To = 7.3 F.

From Section 3.4.2.1(b), the maximum inside cask wall

temperature is Tc = 185.6 F. The maximum water temperature is
T(L) = 185.6 + 7.3 = 192.9 F.
The design pressure of this cask is 100 psig so that =<-n=

maximum permissible operating pressure is 50 psig. Thus, =Qe
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maximum operating temperature (193 F) is well below the boiling
point (298 F) at the maximum permissible operating pressure.

3.4.2.2 Fermi Fuel

(Paragraphs deleted up to Section 3.4.2.3, p. 3.18)
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3.4.2.3 PRI ack Arrest Capsules

It was shown in the September 8, 1969 Addendum that for a
130 F maximum temperature and 1500 watt thermal load, the

Rev. I, February 28, 1995
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outside wall temperature is about 190 F and the cask wall >t

is about 37 F. For a 100 F ambient with 1,500 watts decay hezat
the outside wall temperature would be 190-30 = 160 F. For the
reduced heat load of 110 watts/ft, the outside wall temperature
would be approximately (160-100) (110/333) + 100 120 F. The
At through the cask wall would be (37)(110/333) 12 F. Thus,
the cavity wall temperature would be about 120 + 12 = 132 F.

These temperatures are conservatively high since they assume
no radial heat flow in the cask wall.

The temperature of the capsule is calculated assuming
that all cooling take place by convecticn and radiation. The
capsule will be transported without a canister. However, a
wire mesh basket having a maximum wire size of 11 gage (0.125-inch)
and minimum mesh size of 1.0 inches may be used to aid in
handling the capsules. Thus, it is assumed that convection
and radiation heat transfer will take place directly between the
capsule wall and the cask inner cavity wall, Figure 3.2.

In order to facilitate the calculations, it is assumed

that the cavity wall is a plane, as wide as the capsule (14 inches),

as tall as the capsule (21.5 inches), and located approximately

(6)

4 inches away. From McAdams the convection heat transfer

correlation is given by:

C n
Nu = (Gr - Pr)
1/9
(L/x)
where
Nu = .E—x_
x = distance between planes = 1/3 ft
x = fluid thermal conductivity

L = height of planes = 1.79 ft

Gr = a X 3 At

a = fluid property constants in Grashof Number
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Pr = Prandl number which 1is functicn of fluid prcgerty.

Gr >2(10%; c = 0.071 and n = 1/3

Thus

h/k = 0.0589 (apr)l/3 ael/3

Heat transfer by convection is expressed by:

ch = hAAt

2

o
]

area of plane surface = (14) (21.5)/144 = 2.09 ft

coefficient from above correlation

o
]

Then

0.123 k (apr) /3 5e4/3

@]
]

cv

Heat transfer by radiation is expressed by:

= 4 _
Qr = FeFacA(’I’l T2 )

where Fe = emissivity factor

- 1
-E-i+-E—]:--l
1 2
El = emissivity of capsule = 0.2
E2 = emissivity of cask wall = 0.5

. -

-
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Fe = 0.167
Fa = view factor = 1.0
o = 1.73 (10-9) R4

A = 2.09 ft2

Tl = capsule temperature, R

T, = cask cavity temperature, R

Thus

_ -10 4 _ 4

Tt is assumed that the at is about 200 F and that the
mean air temperature between the capsule and the cask wall is
about 230 F. Then the air properties are:

k = 0.0188 Btu/hr £t F
a=4.78(10°) /£t F

Pr = 0.68
T, = 460 + 132 + 200 = 792 R
T, = 460 + 132 = 592 R

Substituting the values in the equations above results in the

following:

186 Btu/hr

L®
"

cv

163 Btu 'hr

o]
It

And the total heat flow is 349 Btu/hr = 102 watts. Thus, the
capsule temperature for normal transportation is about 332 F.
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3.4.2.4 Union Carbide Process Uranium Oxide Containers

During normal transport the heat is transferred from the
containers to the inner wall of the cask by free air convection and
radiation. The length of the internal volume of the containers is
approximately 10.75 inches. However, the process oxide contents will
£ill only about 10 percent of this volume. In order to determine
if the axial temperature gradient of the container would be signi-
ficant for internal heat transfer calculations, an analytical model
of a single isolated container was developed, Figure 3.2(a). The
model assumed that all the oxide was in a powder bed, l-inch deep at
the bottom of the container. It was further assumed that heat trans-
fer from the oxide bed to the container was by conduction at the
oxide-container interface and by radiation from the top of the bed to
the inner surface of the container walls. Tfansfer of heat from
the container to the environment was assumed to be by convection -
only. These assumptions were made for purpcses of converience and
are considered conservative. Any convection within the contairer
would tend to decrease the axial temperature difference and "flatten
the gradient". The effect of radiation from the outer surface would
also be to flatten the gradient. Thus neglecting internal convection
and external radiation would tend to result in a higher axial
gradient of the container.

The external boundrv temperature was estimated as the.
approximate cavity liner temperature for normal transportation.

Its acutal value is of minor significance since the objective of
these analyses was to determine the axial temperature gradient
and not absolute values. The problem was solved using the TRUMP
computer program(7). Properties for the UO2 powder bed are as
follows:

Rev. B. 8-1-80



Node 1: U02 Powder; 20 Watts decay heat
Nodes 9 to 22: 6061-T6 Aluminum

¥
335 F °22 1.0
Y
335 F . 2_{_! .75
335 F - | 20 i
el e (
336 F o 19
337 F of 18
~ B 9 shell nodes
338 F of 17 @ 1.0
- IS . Convection
339 F o| 16 '
341 F i 15
343 F ol 14 |
L.l Radiation - \
345 F ol 13 \
= H
! T ‘= 250 F
347 F o 12 boundary
! A
349 F J;//‘/l//. 11 1 1.0
AR i
™ 3
412 F—37 9 /10 1 1.0

Figure 3.2(a) Analytical Thermal Model of Union Carbide Process
Uranium Oxide Container and Steady-State Temperature
Profile
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Ue, powder: emissivity = 0.9
Conductivity
Temperature, F Value, BTU/hr-£ft-F
500 1.45
1000 1.27
1500 1.15
Interface Conductance 5
Node Interface value, BTU/hr-ft"-F
1 to 9 34
1l to 11 14

The results of the analyses shown on Figure 3.2(a) indicate
that there is only a 16 F temperature gradient along the length
of the container. Thus, if in subsequent internal heat transfer
calculations, the container is assumed to be isothermal, the
resulting error would be only about 8 F.

The BMI-1l cask currently is designed for shipment in which
two baskets. stacked one on the other, are used to transport MTR
type fuel elements. Each basket can carry twelve (12) elements. e
It is planned to use these baskets to hold the Union Carbide
orccess oxide containers. Thus a maximum of twenty-four (24)
containers can be shipped. The maximum decay heat from the oxide
in each container is 20 watts. Thus, the total decay for 24 '
containers is 480 watts.

The temperature of the cask and containers during normal
transportation was determined by analyses using the TRUMP<7)
computer program. A steady state thermal analyses of the BMI-1
cask was initially performed to obtain the cavity liner (wall)
temperature. The analytical model of the cask is shown in
Figure 3.2(b). The sketch of Figure 3.2(b) shows a longitudinal
section of the model which consisted of concentric steel and
lead nodes as shown.

The 480 watts decay heat was applied uniformly tc the
cavity walls along a2 25.50 inch axial length (egual to the leng®n
of two ccntainers without the collars). All heat flow Tnrtusn Th2

cask walls to the environment was assumed to be radial.

Rev. B. 8-1-80
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This is conservative since the cavity 1is 54 inches lcng and trne
28.5 inches of cavity length as well as the cask ends are neglected
for heat transfer from the contents through the cask walls and to
the environment.

The solar heat load, from Section 3.4.2.1(a) was taken
as 80.9 BTU/hr-ft2 and the surface emissivity was taken as 0.°
The ambient temperature was taken as 100 F, the temperature per-
mitted for the start of the hypothetical fire accident. With
this ambient temperature the cask cavity liner temperature was
calculated to be 227 F. If the ambient were 130 F, the cavity
liner temperature would be approximately 30 F greater or 257 F.

The model for determining the temperature of the containers
within the baskets is shown in Figure 3.2(c). The model considered
radiation and free air convection heat transfer between the containers
and the liner. Heat transfer by convection from the containers
to the cavity liner was expressed by

Q= hcAc(Tc-Tw)

where
hc = heat transfer coefficient
Ac = heat transfer area
Tc = container temperature
T, = cavity liner temperature.
The heat transfer coefficient, hc, was defined by:

0.25

T - Tw
—_—) (Reference 8)

H, = 0.29 c
c ( T
The equation is part of the TRUMP program. Radiation between the
container, and between the containers and the cavity wall was
accounted for using the procedure and data presented below in
Section 3.5.4.2(a), (pages 3.34 to 3.36).
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Axis of Symmetry

BMI-1 Basket Cell
Corners

i

— Axis of Symmetry Cavity Liner
l
- 7.75 R 0.25
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1 - Innermost Container
2 - Outermost Container

Ficgure 3.2(c)

Sketch of Thermal Model of Union Carbide Process
Uranium Oxide Containers in BMI-1 Basket
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The analyses indicate
exist:

Ambient:

Cavity wall:

Outer most containers:

Inner most containers:

3.4.2.5 Union Carbide Target

following terperatures

.29

that the
100F 130F
227F 257F
253F 283F
305F 335F
235

U Special Form Capsules

The maximum heat that
special form capsules shipped

the amount of decay heat within the capsules may vary.

the aggregate of up to twenty-four

may generate 1s 1500 watts.
Thus,

However,

analyses were performed to show that in the limit case, a single

capsule could be shipped in which the total decay heat of 1500

watts 1is concentrated.

The surface temperature of the cask and capsule during

normal transportation was determined by analysis using the TRUMP

computer program. The cavity liner temperature was obtained from

an analysis using the model shown in Figure 3.2(b).
assumed that the 1500 watts of heat woul"
over only 18 inches of axial length, the

e rejected by the cask
ame as the length of

the special form capsule. This assumpticn made for convenience

is very conservative and will result in higher cask temperatures

than if credit were taken for "smearing" the heat over the full

54 inches of the cask cavity plus the ends.

that for a 100 F ambient tempe

rature,

The analyses show
the 1500 watt decay heat

applied over l8-inches of the cask length would result in a cavity

liner temperature of 398 F. For a 130 F ambient temperature,

the liner temperature would be about 428 F.

The temperature of the special form capsule and the basket

was determined using the analytical model shown in Figure 3.2(d).

Rev. B.

8-1-80



(V9]
[VV]
<

Steel Liner

———— e @

- r——— ——— 0 -
L LT L L LT T

Figure 3.2(d)

Rev.

|

F\ AN AN AN S
INC . 1
H U 2 I
1
|||"\i c=X D
| - T ;
! - /
..
1]
||’| - '
i N Ae
! ~ e \\.
. )
am— /’
/
—

Analytical Thermal Modsl of
Union Carbide Target U 35
Special Form Capsule in BMI-l
Cask

B. 8-1-80



3.31

The capsule is assumed located in one of the four innermost basket —

positions. This assumption will result in the highest capsule

and basket temperatures. The capsule is centered in the basket

cell by an open structure similar to that shown in Figure 3.2 (e).

This open structure will hold the capsule in place while permitting

free radiation and convection heat transfer. The model is two

dimensional, i.e., heat flow is considered radially and tangentially

(angularly) within the cavity and basket but not axially. Thus,

the entire 1500 watts is assumed to be transferred to the cask

cavity, through the walls and to the environment within the 18-inch

axial dimension of the capsule. This is very conservative since

it neglects the axial distribution of heat within the cavity and

basket which will significantly decrease the capsule temperature.
Because of symmetry of the cask cavity, only one-half

of the cavity cross section was modeled. Natural convection heat

transfer within enclosed spaces, especially between Nodes 2 and

3 and between Nodes 4 and 5 is conduction controlled. Nodes

2 and 3, and 4 and 5 form sandwiches around the boral poiscn plates.ﬁ/

The resistance to heat flow through the boral was considered small

compared to the interface conductance between the sandwich faces

(Nodes 2 and 3 for example) and the boral plate. Therefore, the

boral was not modeled. Rather an interface conductance for two

0.010 inch thick (assumed) air gaps (between the stainless steel

plates and the boral) was used between the sandwich faces. These

values are represented by the expression

hc = k/x

where

conductivity of air
gap thickness.

x
]

Rev. B. 8-1-80



Figure 3.2(e)

11 Gauge, 300 Series T
Stainless Steel

Sketch of Typical Rack for Supporting
Union Carbide U235 Special Form Capsule
in BMI-1 Basket.

Rev. B. 8-1-80
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For radiation heat transfer between the sancdwich plates
and the cavity liner, the plates and liner were treated as carallel
planes, view factor = 1.0. For radiation between the two per-
pendicular sandwich plates, the view factors for perpendicular
planes was used (0.39).

The results indicate that the maximum capsule temperature
for normal transportation (130 F) will be 1290 F. This is well
below the 1475 F temperature which the capsule must be able to

withstand in order to be certified as a special form capsule.

Rev. B. 8-1-80
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3.4.3 Minimum Temperatures

From Section 3.4.2.1(c), the minimum water temperature
is 192.9 - 4.3 = 188.6 F for an ambient temperature (Ta) of 100 F
and a decay heat load (Q) of 3,480 Btu/hr. With no solar load,
the water temperature is 180 F. For other values of Ta and Q,
the water temperature (T) is approximately:

- - _9

The water will freeze when T = 32 F, or Ta = 32 - Q/43.5. The
water will not freeze at an ambient temperature of Ta = -20 F
if the decay heat is greater than Q = 2,260 Btu/hr = 0.662 kw.
When these conditions are satisfied, no antifreeze is needed in
the water.

In later shipments it is expected that the temperature
drop across the cask wall will decrease due to settling of the
lead ané closing of the air gap between the lead and ocuter steel
shell. In this case, the water temperature may decrease from
180 F to about 160 F under normal conditions. Thus, in later
shipments the decay heat will have to be over Q = 0.88 kw to
prevent freezing at Ta = -20 F. Provisions will be made to cover
the cask with a canvas blanket (which will decrease heat transfer

from the outer surface) when ambient temperatures and cask internal

temperatures indicate the possibility of freezing.

3.4.4 Maximum Internal Pressures

The design pressure of this cask is 100 psig so that

the maximum permissible operating pressure is 50 psig. The maxi-

mum Scerating temperature (230 F) is 68 F below the boilinz peoint
(293 ©' a2t the maximum permissible operating pressure.
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3.5 Hypothetical Accident Thermal
Evaluation

The thermal analysis presented in this section examines
the thermal response, and associated effects, of the modified
BMI-1 cask when subjected to the environmental fire condition
outlined in Appendix B of 10-CFR-71. The fire is defined as a
radiant thermal source having a temperature of 1,475 F lasting
for 30 minutes. In addition, the "standard fire" is defired to
nave an effective source emissivity of 0.9, and the thermal

absorptivity of the exposed cask surfaice is defined to be 0.8.

3.5.1 Thermal Model

The thermal transient analysis was carried out using
the THT-D heat-transfer code (a generalized heat-transfer progralm
available at Battelle). A cylindrical section, representative
of the center region of the BMI-l cask, was analyzed. Figure 3.3
illustrates the thermal model and THT-D node identification.

The primary modification to the BMI-1 cask, which is
directed at fire survival, is the addition of a 1/8-inch-thick
outer stainless steel shell (a thermal buffer shell) which en-
capsulates the existing l/2-inch steel outer shell. The planned
use of evenly spaced weld spots, 1/16-inch high, will assure an
air gap between buffer shell and original outer shell. This
air gap will impede the thermal pulse resulting from the hypo-
thetical fire. A constant 0.060-inch air gap was employed in
the transient calculations although it can be shown that a 1/8 -
3/16-inch air gap would exist due to differences in thermal

expansions during the fire period.



FIGURE WITHHELD UNDER 10 CFR 2.390

FIGURE 3.3. THERMAL MODEL EMPLOYED FOR
BMI-1 FIRE THERMAL ANALYSIS
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3.5.2 Package Conditions and Environment

The starting temperatures (at start of the 30-minute fire)
of the cask system, shown in Figure 3.4, were calculated for
conditions corresponding to a 130 F day and a cask thermal load
of 1.5 kw The correlation of analytics with experimental
data is shown in Figure 3.5, where the variation of cask outer
surface temperature 1s shown as a function of thermal load and
environmental temperature. The experimental point, measured
for the BMI-1 cask without an outer shell, shows a measured
outer shell temperature of 130 F on a 70 F day for a 1.4 kwt
thermal load. The calculated result is 133 F on a 70 F day.

The external area change due to the addition of a 1/8-inch fire
shell can be considered negligible. In addition, the experimental
data for the 1.4 kwt ther—al load can be scaled to calculate an
inner liner temperature of 227 F for the conditions of a 130 F

day with a thermal load of 1.5 kwt. Therefore, normal shipment
with the contents contained in water will not result in any
pressurization problems if the 1.5 kwt heat load is not exceeded.
The data contained in Figure 3.4 and 3.5 can be readily employed
to assess other ambient and thermal load conditions.

For conservatism, the thermal capacitance of materlal(s)
within the cask internal cavity was neglected, or =3 empty cavity

was assumed for the thermal transient calculations.

Paragraph deleted

Rev. I, February 28, 1995
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3.5.3 Package Temperatures

The calculated thermal history of selective nodes (see
Figure 3.3 for identification) is shown in Figure 3.6. The 1/8-
inch outer shell, represented by Node 124 (a shell surface node),
has little thermal capacitance and, therefore, responds very
rapidly to the fire pulse. The outer shell, 1/2 inch thick,
follows in succession, and since it also has only a nominal
thermal capacitance, results in the closure of the internal air
gap (Node 118). Commencement of lead melting is calculated to
ne at 16 minutes and the absorption of heat via latent heat
capacity causes a reversal in the temperature response (see
Figure 3.6) for a short time period. As the melt front travels
inward, the outer shells then continue their temperature rise.
The temperature reversal, and retardation, mentioned above are
also the result of the thermal capacitance of the lead shield
which has now become thermally coupled to the outer shell cdue to
the lead-shrinkage gap (Node 118) being closed.

The "melt-front" boundary is shown in Figure 3.7, as a
function of radial position and time.

3.5.4 Evaluation of Package Performance
for the Hypothetical Accident
Thermal Condition

3.5.4.1 Lead Melt

The cylindrical region of the BMI-1 cask was analyzed
in detail to assess the potential for lead melting during a
postulated hypothetical fire. The analysis assumed temperatures
at commencement of fire corresponding to normal operation on a
137 F dav with a 1.5 kwt interrnal hea*t load.
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This analysis considers heat transfer through the cylindr:
cal wall of the cask. This is the most severe thermal condition
which could exist since the cover lid, corners, and bottom of
the cask have sufficient thermal protection in the form of thick
structural plates (i.e., 1-1/4-inch lid plate), skid I-beams,
and corner lead-expansion voids. These structures provide a
significant thermal capacitance and/or resistance.

The results of the thermal transient analysis indicate
lead melt, within the outer regions of the lead shield.

The outer radius of the lead is 16.0 inches, and melting
is calculated to proceed inward to a radial depth of 1.65 inches.
Lead melting does not occur at the inner regions. Resolidifica-
tion begins at about 33 minutes within the lead interior, followed
by resolidification at the outer radius starting at 40 minutes.
The results of these transient calculations indicate a maximum
potential lead melt of 34 volume percent of the total lead if
the cask is at the starting temperatures used in the calculation.
Since expansion volume is provided for by shrinkage from the
original casting, the expansion void needs only to accomocate
the 3.8 percent increase in volume of the lead that melts. The
puilt-in expansion void (752 inches3) is more than sufficient
to accommodate the excess volume of molten lead (574 inches3),
therefore, no pressure will be exerted on the wall of the cask.
Also, no lead is lost. The adequacy of lead shielding after
resolidification is discussed in the shielding section.

The lid, bottom, and corner volumes were not analyzed
specifically since it is felt that the analysis presented above
contains sufficient conservatism to permit extrapolation to those
cask regions. For example, the 1id cover is 1-1/8 inches thick
and the corners at the loading end have 3/4 -inch steel plates,
respectively. The thermal capacitance of these plates, along
Wiz~ =he interral air gaps (1/4 incn in the cover and exgansicon

= A
==

{4

volumes in the corners) will very lLixely result in zero

s
-
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melt for those regions. The bottom of the cask also has
corner-expansion volumes, and a l-inch base plate. The base
plate is furthermore thermal radiatively shielded by the I-beams
employed in the skid. Previous calculations (i.e., NRBK-43)

on similar cask systems have shown that the I-beam structure
provides sufficient shielding from the fire to preclude, or
minimize significantly, lead melting. Therefore, the bare
cylindrical sides are the most susceptible to melting from a
hypothetical fire, and were analyzed in detail. Based on the
above analysis, the maximum canister flange temperature reached
during/after a fire test is estimated to be less than 600 F.

3.5.4.2 Maximum Contents Temperature

(a) BRR/MTR Fuel, Loss of Coolant

The fuel element baskets in this cask contain two solid
sheets of steel (neutron poison) which divide the baskets into
gquadrants containing three elements each. Since no heat is
transferred between quadrants, the solid sheets have no effect
on heat transfer. The three fuel elements in each quadrant are
held in place by means of vertical steel strips on the corners
of the elements. These strips partially obstruct radiation heat
transfer, but have no effect on conduction or convection heat
transfer. _ )

Figure 3.8 is a sketch of one quadrant of the basket.
Heat is transferred from Element 2 to Element 1 by radiation and
conduction in air. Heat is transferred from Element 1 to the
inner cask wall by radiation and convection. Analytically this

is expressed as:

Tl 4 kA
=) + — (T, = T,. £8)

= 0.173 F 150 - ‘100 £ 2 1

)

91 21

e
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As discussed later, conduction in the aluminum elements
smoothes out the axial temperature distribution so that the axial
power peaking factor does not have to be included in Q21 or Qlc'
From Section 3.1.2(a), the total decay heat per element is
145 Btu/hr. Thus, QZl = 145/2 = 72.5 Btu/hr and Qlc = 145 x 3/2

= 218 Btu/hr. The heat transfer coefficient hc is:

2, 2 3 3
h = 0.0ZI p_k gsc 3 (T, - TC)3 . (McAdams(4)
c L. = H plBl)
(£)9

FIGURE 3.8. SKETCH OF FUEL BASKET
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The numerical data needed to calculate hc are:

T = 390 F
av
L = 25 inches
t ='Do/2 = 1.38 inches
2.2 1
ok gBc {3 - 1.25
u
and
' 1
h, = 0.0643 (T, --TC)§ .

Neglecting the effect of the corner strips, the radiation

interchange factors Fl2 and F2c are:

F,, = (2/¢,, - 17! = (2/0.15 - 1)t = 0.081

21

= _1yv-1 1, -1
le = (L/epy * l/epe 1) = (1/0.15 + 1/0.5 =1)

= 0.131 .

For two steel surfaces, F = 0.333.

Now, consider the effect of the corner strips on radiation
heat transfer. Assume that the surfaces Al’ AZ' and A3 are parallel
and that heat is transferred by radiation from A, to A, to Aj;.

Then:

= gF., A

Q12 122 (T = Ty
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4 4
Qyq = 2 Fy38, (T Ty )
and
Q2 , Q23 _ 4,4
SF A, | 9F;38, 1 3
Since Q;, = Q= Q13 and A, = A, = A, ,
F..F
12523 4 4
Q. = o | =—2223 | a (T, - T,")
13 Fr, + Fps 1(Ty 3

Thus, for the portion of the area between Elements 1 and 2 where

the steel strips obstruct radiation heat transfer:

0.131 x 0.131

F,. = 33T+ 0131 - 0-98°

For the obstructed area between Element 2 and the cask wall:

_ 0.131 x 0.333

le = T+ 033 - 0-093

F

The steel corner strips obstruct one inch of the three inch
element width. Averaging the radiation factors over the element
width:

_1(0.065) + 2(0.081) _
Foy = — 0.076

i
3
9!

£ - 1(0.0935) + 2(0.131) _ 0.118
lc 3
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The assembled numerical data needed to calculate T, and Tl are:

2
. _0.75 _
Q?.l = 72 .5 Bt;u/hr t = T = 0.0625 £t
Q. = 218 Btu/hr Ay, = 3 x 25/144 = 0.52 2
= - - 2
F,y = 0.076 , A) = 2A, = 1.04 ft
= ) = 2
F, = 0.118 Ay (1+1/v2) A,=0.89 £t
T_ = 186 F = 646 R k = 0.0239 Btu/hr ft F
1
h, = 0.0643(T; = T.)3

Using these data, Equations (6) and (7) become:

- E
T, 4 Tl 4

72.5 = 0.00683 | (Iﬁﬁ) - (Iaa) + 0.199(T2 - Tl) (6)
L -

Tl 4 W 4/3 -

218 = 0.01815 ‘Iﬁﬁ) - 1,732 + 0.067(Tl - 646) (7)
L -

The solutions to these equations are T, = 461 F and T, = 615 F.

Thus, the maximum element temperature during loss of coolant is

615 F.

| In the calculations above, the axial power peaking factor

has been neglected since the aluminum in the fuel elements effective-
ly evens out the axial temperature distribution. For a triangular
power distribution with an axial peaking factor of 1.4, the

fraction (l.4-1)/4 = 0.1 of the power is generated at a power

greater than average. The temperature drop required to conduct

this 10 per cent excess heat from the center to the end of the

elerent is approximately:

0.10(dL

AT = )
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where

145 Btu/hr

25/2 = 12.5 inches

Q
L
k 135(aluminum at 600 F)
A

2.55 inches?

o (0.10)(72.5) (12.5) (12) _
8T = (1357 (2.55) 3.16 F

Thus, the axial peaking factor increases the element temperature
by 3.2 F.

It has also been assumed in the work above that the fuel
elements are isothermal. The temperature drops across the elements
themselves depend on the orientation of the fuel elements in the
basket. In the worst case, the temperature drop would be about
15 F.

In conclusion, considering all the factors discussed
above, the maximum fuel element temperature during loss-ocf-coolant
will be T2 = 615 + 3 + 15 = 633 F. This is a safe temperature
for aluminum plate-type fuel elements.

Steam produced in the cask cavity during a fire is vented
through a 1/16-inch-thick filter with a flow area of 20 inches?.
According to data obtained for pressure differentials (aP) up
to about 20 psi, the flow capacities of these filters are W/A =
26.5 AP + 50 ft3/min per ft2 cf filter area. Using this equation
to extrapolate to AP = 75 psi, the flow capacity is W = 283 ££3/

min. (The pop-off value is set at AP = 75 psi.) At 89.7 psia,
283 pounds of water forms 1,382 feet3 of steam. Thus, the cavity
can be vented in t = 1,382/283 = 4.9 minutes. Ten minutes is
ccnsidered a reasonable time to empty the cask. Thus, a 100 ger
cent safety Zfactor in the design has been allowed, which 1s mcra
than adequate to compensate for the possibility that the extra-
polated filter-flow-capacity data is not accurate at P = 75 c¢si.

—
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(b) Fermi Fuel, Loss of Coolant

(Paragraphs deleted through page 3.51)

Rev. I, February 28, 1995
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(c) EPRI Crack Arrest Capsules

It was shown in the September 8, 1969 SAR Amendment,
that for a full heat load of 1,500 watts, and starting into the
hypothetical fire accident from condition for a 130 F ambient
temperature, the maximum cask cavity wall temperature during the
incident is about 560 F. Conservatively it is assumed that the
ot from the cask wall to the capsule is the same as for the steady
state condition. Then the maximum capsule temperature during
the hypothetical accident is 560 + (332 - 132) = 760 F. This
is well below the melting temperatures for all the materials in
the capsule. The maximum temperature of 760 F is a conservative
value for the following reasons:

(1) The starting conditions are for an ambient

temperature of 130 F. However, a 100 F
ambient is allowed for determining starting
conditions.

(2) The heat capacity of the capsule is

neglected which will lower the maximum
temperature in reality,

(3) The At from the capsule to the cask cavity
wall is assumed to be a constant over the
temperature range. In reality,radiation
heat transfer will become more dominant
at the higher temperatures resulting in
lower maximum capsule temperatures.
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(d) Union Carbide Process Uranium Oxide Container

The models shown above in Figures 3.2(b) and 3.2 (c)
were used to determine the temperature of the cask and contents
during the hypothetical accident. The hypothetical accident
was defined as a radiant heat source having a temperature of
1475 F and an effective emissivity of 0.9. Initially, a thermal
transient analysis was performed for the fueled shipping cask
(absorptivity = 0.8) to determine cavity liner temperature as a
function of time. No solar heat load was included during the
30 minute fire. The resulting temperature/time profile was then
used as the boundary condition in the contents/cavity transient
thermal simulation.

The results of the analyses, shown in Figure 3.8(a), indicate
that the cavity wall of the cask reaches a peak temperature about
1 hour after the start of the hypothetical fire and then cools -
rapidly. The temperatures of the capsules continue to "coast uz",
however, peaking about 3 hours after the start of the fire. The -
maximum temperature of about 586 F is acceptable for the 6061-T6
aluminum alloy from which the containers are made. The structural

condition of the container is considered in Section 2.0.

(e) Union Carbide Target U23SSpecial Form Capsule

The models shown above in Figures 3.2(b) and 3.2(4) were
used to determine the temperature of the cask and contents during
the hypothetical fire accident. The cavity liner temperature/
time profile was obtained from thermal analysis of the entire cask
and used as the input boundary condition to determine the capsule
temperature/time profile. The conditions for the "fire" were
as used Zor analyses of the Union Carbide process oxiZe conTalners,

Section 2.5.4.2(4).

Rev. B. 8-1-80
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Figure 3.8(a) Calculated Thermal History Union Carbide Process

Uranium Oxide Canisters in the Basket of the BMI-
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The results of the analyses, shown 1in Figure 3.8(bj,
indicate that the capsule reaches a maximum temperature of 1325 F
about 1 hour after the start of the hypothetical fire. This is
well below the temperature of 1475 F which the capsule must
withstand in order to be certified as a special form capsule.

The stainless steel shells of the basket experience a maximum
temperature of 785 F. This is acceptable for stainless steel

and is well below the melting temperature of the aluminum matrix

of the boral sandwiched between the stainless steel shells. At
these temperatures aluminum has sufficient strength to resist
"slumping” due to its own weight. Moreover, the stainless boral
sandwich is fabricated with stainless pins extending through the
boral and welded to the two stainless shells. This reinforcement
will prevent "bulging" of the shells due to the elevated temperature
and thus also help keep the boral from shifting.

Rev. B. 8-1-80 °
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Figure 3.8(b) Calculated Thermal History for a Special Form Capsule with
Decay Heat of 1500 Watts in the Innermost Positicon in the
Basket of the BMI-1 Cask :
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3.6 Arppendix

3.6.1 References

(1) J. O. Blomeke and M. F. Todd, "y-235 Fission Product Production
as a Function of Flux, Irradiation Time, and Decay Time",
ORNL-2127, Part I, Vol 2 (1957).

(2) Nims, J. B., "Generalized Subassembly Decay Heat Curves",
APDA Memo P-64-11, January l4, 1964.

(3) L. S. Marks, "Marks' Handbook", McGraw=-Hill, Inc. 5th Ed.
(1951).

(4) W.
{

H. McAdams, "Heat Transmission", McGraw-Hill, 3rd E4.
195

4).

(5) R. O. Wooton and H. M. Epstein, "Heat Transfer from a Parallel
Rod Fuel Element in a Shipping Container", to be published,
Battelle Memorial Institute (1963).

(6) McAdams, W. H. p 181, Eg7-9b.

(7) Edwards, A. L., "TRUMP: A Computer Program for Transient and
Steady-State Temperature Distributiocns in Multidimensional
Systems", UCRL-14754, Rev. 3., Lawrence Livermore Laboratory,
September 1, 1972.

3.6.2 Experimental Tests of Copper Shot

(Section 3.6.2 deleted

Rev. B, 8-1-80

e




e

3.58
Document 23

3.6.3 Thexrmal Evaluation - BMI-1 Cask with Eight MURR Spent
Fuel Elements
1. Maximum Cask Surface Temperature

We foliow the BMI-1 SAR, Section 3, Thermal Evaluation. During normal
bonditions. the cask is water-filled and the ambient temperature T,

[10 CFR 71.71(c)(1)] is 100 °F, or 560°R. The decay heat load is 1.5 kW and
the solar load is ‘0.392 kW for Fermi fuel. These are exactly applicable to
MURR fuel. '

The following calculation of the cask outside surface temperature Tg due
to radiant and convective (air) heat transfer of Q = 1.892 kW = 6,456Btu/hr
is from SAR Section 3.4.2.2.

The needed equations are:

Q= Qzgiation + Qeonvection

Q -ogA[_lS_r- _La_)‘]
rad 100/ \100

Q:OHV =hA (Ts -Ta)
h=019(Tg - Ty)/3

c=0.173 Btu/hr , the Stefan-Boltzmann constant
f#t2 (°F/100)*

Rev. I, February 28, 1995 .
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e = 0.5, the emissivity; A = 49.7 ft2, the cask vertical surface area,
conservative because not including cask corner areas from which heat
transfer is obscured by air pockets. See SAR Section 3.4.2.1(a), top p. 3.10.

The heat transfer coefficient h formula is from W. H. McAdams, Heat
Transmission, McGraw-Hill, Third Edition, p. 173.

The solution for the cask surface temperature is Ty = 182°F.

By 10 CFR 71.43(g), no accessible surface of a package in an exclusive use
shipment may have a temperature exceeding 180°F. The calculated 182°F is
subject to uncertainty because of cask model simplifications and |
assumptions. We have an experimental basis for concluding that the cask
surface will not exceed 170°F.

In October 1984, we placed a 1.5 kW electrical heater inside the GE-700
cask with the lid on. After equilibrium was reached in 24 hours, the
maximum cask surface temperature was 126°F when the ambient
temperature was 74°F. Using the Q4 and Q.. formulas above, these
experimental data let us derive a different heat transfer coefficient
tformula

h =0.40 (T - Ta)'/3.

This formula should be better than McAdams' equation for h above, because
it was measured under somewhat forced convection conditions, and was
obtained with a cask very much like the BMI-1. The GE-700 cask without
overpack is quite similar to the BMI-1 cask which does not use an overpack
in transit. Using this h with the BMI-1 cask instead of the McAdams'
formula, in a calculation otherwise like that above, gives T = 158°F. For
an emissivity of 0.3, Tg is 164°F. For e = 0.7, Tg = 152°F.

Our QA procedures for spent. fuel shipping include measuring the cask
outside surface temperature for four hours after loading. The GE-700 cask
surface was always initially at about 105°F, the pool water temperature,

Rev. I, February 28, 1995
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and cooled to about 100°F in 75°F ambient. This was true for decay
powers in the range 0.35 to 1.1 kW.

We believe our measurements with the dummy electrical 1.5 kW load, and
our experience with actual fuel loads, gives confidence that the BMI-1 cask
surface temperature will not exceed 180°F. By our QA procedures, we will
not ship if the AT = Tg - Tamp exceeds 80°F. (T, = cask surface tempera-
ture.)

Maximum Fuel Temperature

We assume a worst case of a 180°F cask surface temperature, and want to
add to this the calculated temperature rises through the lead (Pb) cask
wall, across the cask cavity wall-fuel basket coolant-filled gap, and
radially across the fuel.

As described in the SAR, Section 3.4.2.2(b), a temperature rise through the
lead wall of 29°F was measured when an electrical heater of 1.4 kW was in

the cavity. Scaled to 1.5 kW decay power, this temperature rise is 31°F.

MURR spent fuel is shipped as a cylindrical annulus of height H = 2 ft., inner
radius a = 0.30 ft., and outer radius b = 0.55 ft. in a 0.25 inch 304 stainless
steel outer cylindrical wall basket with radial 304 walls (0.25 inch and
0.375 inch alternating) between the fuel elements. There is a 0.75 inch gap
between the 14 inch O.D. basket and the 15.5 in L.D. cavity.

To calculate ATg,, across the 0.75 inch of water coolant, we will use

h = 100 Btu/hr.ft.2°F. This value of the heat transfer coefficient is used on
p. 3.16 of the SAR for Fermi fuel, and there is a reference to McAdams. We
have also derived essentially this value following D. R. Pitts and L. E
Sissom, Heat Transfer, McGraw-Hill, Section 8.3.

Rev. I, February 28, 1995
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Using an average radius of (7 in. + 7.75 in.)/(2)(12) = 0.62 ft., Q = 1.5 kW =
5118 Btu/hr, and fuel height 2 ft., we get from the Qcony equation above

_ 5118 0
ATgap (100)(2 =)(.62)(2) F

To calculate the temperature rise across the fuel ATg,q, We solve the heat
conduction differential equation for a cylindrical annulus, assuming only
radial temperature variation T(r).

.1- rd_],-:Qm
rdrt dr/ Kkiyel

Q" = power -
volume a{b2-a2) Hf3

The solution for the boundary condition of zero heat flow to the inside of
the annulus, (dT/dr) = 0 atr = a, is

T(r) = T(b) +—9"—'-[b2 12 4282 Inf-]
4k b

and AT, = T(a) - T(b).
kise1 is an effective thermal conductivity through the fuel sideplates and
basket walls. These subtend only 12% of the fuel annulus outer area, but

metallic conductivities are so high that ATy, is relatively small.

k6061‘ = 110. Btu/hr. ft.°F ., k304 = 19 Btu/hr. ft..°F

(16 sideplates) (0.15 in/12) + Kaos (4 ss walls) (0.25 in + 0.375 in)/12)
2n (0.55) 2= (0.55)

= 7.5

So we get ATy, = T(a) - T(b) = 13°F.

Rev. 1, February 28, 1995
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Finally, for the highest fuel temperature T at the inside of the—annulus,
Tg=13+T(b) = 13 + 7+31+180+2 = 233°F where a 2°F rise across the
stamless steel cask and basket cylindrical walls has been added. This
result is well below the fuel cladding blister temperature which is greater
than 900°F, and is well below the clad failure temperature. See Fuel
Fabrication Specification TRTR-4 for University of Missouri fuel elements.

3. Maximum Cask Internal Pressure
AT 233°F, the vapor pressure of water is 25 psia. This will give 25 psig
inside the cask, well below the maximum permissible operating pressure
of 50 psig.-

4. Maximum Accident Conditions
Section 3.5 of the SAR presents an analysis showing that in a "standard”
1475°F fire for 30 minutes, the cask cavity wall will reach about 560°F, or
1020°R. Loss of coolant occurs, so heat transfer between the fuel basket
and the cavity wall is by convection of air and radiation. The heat transfer
coefficient is given by

h = 0.0643 (Tpasker - Tcavity)”3

This equation is given on p. 3.48 of the SAR. It may be derived using the
Grashof/Nusselt empirical correlations. See Pitts and Sissom, Heat
Transfer, McGraw-Hill, Chapter 8.

The calculation for the basket temperature is similar to that in the Normal

Transport Conditions Section 1 above. With basket cylinder area 7.7 f2,
the solution of '

5118 Btu/hr = (.173)(.5)(7. 7) [{ )] +(.0643) (7.7) (Tpas - 10202

100)4 (100

is Tp,s = 698°F.

Rev. I, February 28, 1995
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For the temperature rise across the fuel, consider a worst case that the
thermal conductivities of the sideplates and basket walls are half those
used above, SO Kkg,q = (7.5)/2. Then T(a) - T(b) = 26°F. Thus, the maximum
fuel temperature in a hypothetical fire accident is 698 + 26 = 724°F, which
is well below the clad failure temperature.

. Maximum Pressure

With loss of coolant, and treating the cavity air as an ideal gas as was
done in SAR Section 2.10.5.3, at 612°F the air pressure would be

(14.7 psia) {5-]2—*—45-Q] = 30 psia
68 +460

This corresponds to 15 psig, well below the maximum operating pressure
of 50 psig.

. Lead Melting

SAR Section 3.5 gives the results of a hypothetical fire accident on the
lead wall. The model for this calculation assumed an empty cavity (SAR
p.3.37), so the results are not dependent on the type of fuel shipped.

Lead melts from its outer radius to a depth of 1.65 inches, as discussed in
Section 3.5.4.1. The most important concepts are that expansion void is
provided, no pressure is exerted on the walls of the cask by the melted

lead, the walls remain intact, and no lead is lost. This ensures adequate
thermal shielding from the fire, and radiation shielding.

Failure of Relief Valve

In a hypothetical fire, the cask cavity inside wall temperature is 560°F, as
shown in item 4 above. If there had not been loss of coolant when this
temperature was reached, the water vapor pressure in the cavity would be -

Rev. I, February 28, 1995
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around 1,000 psi. It is not credible that the lid gasket could contain this
high pressure, especially considering high temperature deterioration of the
rubber gasket. Therefore failure of the relief valve would not prevent loss
of coolant. Coolant expulsion will not result in the release of fission
product activity. See the Structural Evaluation analysis for cask
containment of radioactivity.

Rev. I, February 28, 1995
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3.6.4 Thermal Evaluation of BMI-1 Cask with Eight MITR Fuel
Elements

The total fission product decay heat is defined by the following
relation:

£ -6.1x103 [ (T,+10) -2~ (T,+T,+10) 2]

P, (1)
where P is the element decay heat in watts,

Pq is the element steady state rate of heat production
during the reactor operating time of T; in days, given by
the ratio of reactor power to number of elements present
in the core, and,

Tp is the time of decay in days.

Given the worst case of a fuel element being continuously in
the MITR core operated 5 days per week until the element has
reached its allowed burnup limit of 45% and then allowed to decay
for a minimum of 90 days results in a calculated decay heat of 127
watts. Having eight of these elements present in the BMI-1 cask
results in a total decay heat load of 1016 watts, well below the
1.5 kW cask limit.

It should be noted that all MITR fuel elements intended for
shipment in the BMI-1 cask are operated on a schedule of about 3.75
days per week and decay for a much longer period than 90 days. Of
all the fuel elements currently awaiting shipment, the one with the
largest decay heat has been calculated to be 19 watts. Even given
a 50% error in the above equation from use at large decay times,
this decay heat load is not of concern for any scenario involving
the BMI-1 cask.

Table 3.3, MIT Spent Fuel Data, gives the decay heat and gamma
activity for the MITR fuel elements to be shipped.

Reference: Rust, Nuclear Engineering, Noralson Publishing Company,
1979, p. 244.

Rev. L. February 28, 1995
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ELEMENT
D
MIT-16
4M44
4M43
4M42
4M40
4M39
4M38
4M37
4M36
4M35
4M34
4M33
4M32
4M31
4M30
4M29
4M28
4M27

- 4M26

4M25
- 4M24
4M23
4M22
4M21
4M20
4M19
4M18
4M17
4M16
4M15

Beginning Ending

U-235 U-235
mass (g) mass (g)
506 317.80
445 253.17
445 266.00
445 249.22
445 255.62
445 254.26
445 266.28
445 256.23
445 267.35
445 268.59
445 254.85
445 250.75
445 255.30
445  255.18
445 254.74
445 255.66
445 255.07
445 253.81
445 252,65
445  245.59
445 257.26
445 256.74
445 257.72
445 265.61
445 245.86
445 257.15
445 261.30
445 268.11
445 .  255.60
445 -  255.69

Date of
Removal

2/25/85
8/16/82
10/27/80
8/20/84
11/17/176
8/16/82
2/23/81
6/14/82
7/7180
717180
6/27/83
8/20/84
12/15/86
6/27/83
2/2/187
5/20/85
2/2/87
12/15/86
7/122/85
7/15/85
11/17/86
12/15/86
4/1/85
.9/8/80
3/29/82
6/27/83
6/14/82
7/7/80
12/15/86
6/14/82

No. of days
cooled as of

10/1/91
2411
3332
3991
2598
5432
3332
3872
3395
4104
4104
3017
2598
1750
3017
1701
2325
1701
1750
2262
2269
1722
1750
2375
4040
3475
3017
3395
4104
1750
3395

MWH
produced

78810
88276
81639
90315
85337
88276
78225
86967
80961
80961
88003
88050
87459
88003
89214
86624
88956
88040
87768
92718
84819
86115
84491
81561
90098
87958
81206
80961
87011
84702

Decay
heat
(W)
11.23
8.92
6.94
11.61
5.19
8.92
6.90
8.65
6.68
6.68
9.82
11.39
16.49
9.82
17.16
12.53
17.10
16.55
13.02
13.52
16.37
16.31
12.04
6.82
8.69
9.82

8.17

6.68
16.43
8.46

Gamma POST.

Activity
(Ci)
1,291
1,026
798
1,335
597
1,026
794
994
768
768
1,129
1,309
1,896
1,129
1,973
1,441
1,966
1,903
1,497
1,554
1,882
1,875
1,384
785 .
999
1,129
940
768
1,889
973

U-236
(9)
3.082
3.036
2.808
3.106
2.935
3.036
2.690
2.991
2.784

2.784 .

3.026
3.028
3.008
3.026
3.068
2.979
3.059
3.028
3.018
3.189
2.917
2.961

. 2.906

2.805
3.098
3.025
2.793
2.784
2.992
2.913

e

/

IRRADIATION

Pu-239
(9)
5.20E-03
5.12E-03
4.74E-03
5.24E-03
4. 95E-03
5.12E-03
4.54E-03
5.05E-03
4.70E-03
4.70E-03
5.11E-03
5.11E-03
5.08E-03
5.11E-03
5.18€-03
5.03E-03

5.16E-03

5.11E-03
5.09E-03
5.38E-03
4.92E-03
5.00E-03
4.90E-03

4.73E-03 .

5.23E-03
5.10E-03
4.71E-03
4.70E-03
5.05E-03
4.92E-03

Np-237
(9)
4.02E-03
4.44E-03
3.80E-03
4.65E-03
4.15E-03
4 44E-03
3.48E-03
4 31E-03
3.73E-03
3.73E-03
4 41E-03
4.42E-03
4.36E-03

- 4.41E-03

4.53E-03
4.27E-03
4.51E-03
4.41E-03

4.39E-03 . -

4.90E-03
4.10E-03
4.22E-03
4.07E-03
3.79E-03
4.62E-03
4.41E-03

3.76E-03

3.73E-03
4 31E-03
4.09E-03
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4M14
4M13
4M12
AM11
4M09
4M08
4M06
4M0S
4M04
4M03
4M02
4MO01

4M10

MIT-08
MIT-11
MIT-32
MIT-19
MIT-12

445
445
445
445
445
445
445
445

445

445
445
445
445
506
506
506
506
506

256.32
269.19
233.39
265.46
269.62
266.39
254 .96
266.77
258.83
268.24
264.36
252.55
300.46
446.88
399.87
433.15
471.77
342.39

6/27/83
7/7/80
3/23/87
5/12/80
5/4/81
10/27/80
7/22/85
10/27/80
8/16/82
5/12/80
9/8/80
6/27/83
6/25/79
9/6/83
2/19/86
7/15/85
10/14/86
5/9/88

3017
4104
1655
4160
3803
3991
2263
3991
3458

4160

4040
3017
4482
2946
2054
2270
1813
1241

85524
80961
99198
77483
81912
81640
87506
81640
82310
77806
81561
88289
60880
22654
41614
28718
13680
68135

9.58
6.68
18.89
6.34
7.30
6.94
12.96
6.94
8.09
6.37
6.82
9.86
4.75
3.05
7.84
5.10
3.32
18.84

1,102
768
2,173
729
840
798
1,491
798
931
732
785
1,134
546
351
902
586
382
2,167

2.941
2.784
3.411
2.665
2.817
2.808
3.009
2.808
2.831
2.676
2.805
3.036
2.094
0.886
1.627
1.123
0.535
2.664

4 96E-03
4.70E-03
5.76E-03
4.50E-03
4.75E-03
4.74E-03
5.08E-03
4.74E-03
4.78E-03
4.52E-03

4.73E-03.

5.12€-03
3.53E-03
1.49E-03
2.75E-03

1.90E-03

9.03E-04
4.50E-03

4.17E-03
3.73E-03
5.60E-03
3.42E-03
3.82E-03
3.80E-03
4.36E-03
3.80E-03
3.86E-03
3.45E-03
3.79E-03
4.44E-03
2.11E-03
3.32E-04
1.12E-03
5.34E-04
1.21E-04
3.01E-03
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3.6.5 Decay Heat Analysis of HFBR Fuel

The original SAR thermal analysis, Section 3.1.2 (a),
specifies that the maximum decay heat for BRR/MTR fuel is 1.02
kw. To determine a shielding source term the decay heat from
all sources for a 20 HFBR assembly payload was determined
using ORIGEN2. The case considered was based on 60 days
operation at 60 MW with a full core of 28 assemblies. The
ORIGEN2 output (Reference 22) results were reduced by a factor
of 0.71 (20/28) to reflect a 20 HFBR fuel assembly payload on
the BMI-1 cask. Table 3.4 summarizes the results of the decay
heat analysis. As shown, an average fuel assembly decay time
of 470 days results in a decay heat load below the SAR MTR
fuel limit of 1.02 kw.

Rev. I. February 28, 1995
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Table 3.4

BMI CASK TOTAL DECAY HEAT
(INCLUDING ALL RADIATION SOURCES)

ORIGEN2 CASE RESULTS FROM: BNLWATT3
BURNUP OF BNL CORE 28 ASSY 377.4 GUPER ASSY 60 MW, 60 DAYS

COOLING 28 ASSY 20 ASSY
TIME DAYS WATTS WATTS
200 5.66E+03 4.04E+03

; 220 4.88E+03 3.49E+03
a 240 4.25E+03 3.03E+03
: 260 3.72E+03 2.66E+03
280 3.28E+03 2.35E+03

300 2.95E+03 2.11E+03

320 2.62E+03 1.87E+03

340 2.37E+03 1.69E+03

360 2.15E+03 1.54E+03

380 1.97E+03 1.41E+03

400 1.82E+03 1.30E+03

420 1.69E+03 1.20E+03

| 440 1.57E+03 1.12E+03
; 460 1.47E+03 1.05E+03
: 470 1.42E+03 | 1.01E+03]
480 1.38E+03 9.83E+02

500 1.30E+03 9.26E+02

Rev. I, February 28, 1995
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4. CONTAINMENT

4.1 Containment Boundry

4.1.1 Containment Vessel

For certain uses as defined in Reference 1, (Section 4.24.1)
cask cavity liner provides the containment. For other uses, also
defined in Reference 1, an inner containment .vessel (canister)
is also used to provide containment. These are described in
Section 1, including the drawings in the Appendix to Section 1.

4.1.2 Containment Penetration

Penetrations to the cask cavity include the vent/pressure
relief line at the top and a drain at the bottom. The specified
relief pressure is 75 psig. The drain line is leak tight.

The special containment canisters used within the cask

cavity do not have any penetrations.

4.1.3 Seals and Welds

Seals on both the cask cavity and inner canisters are
elastometric as discussed in Section 1. All welds are full

penetration welds.

4.1.4 Closure

The closure of the cask'cavity is accomplished by twelve

(s

1 ineh x 8 studs with two lock nuts per stud. The initial tightening

torque on the nuts is 50 feet/pounds. The closure of the canister

is accomplished by ten 3/8 x 16 inch bolts. The initial tiznzenint

torque on the bolts is 60 inch/pounds.
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4.2 VNormal Conditions of Transport

The performance of the cask and inner canister during
normal conditions of transport are presented in the applicable

subsections of Section 2 and 3.

4.3 Hypothetical Accident Conditions

The performance of the cask and inner canister during
the hypothetical accident conditions are presented in the applicatlis

subsections of Sections 2 and 3.
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4.4 APPENDIX

4.4.1 References

(1) U.S. Nuclear Regulatory Commission Certificate of
Compliance for Radioactive Materials Package
Number 5957, Rev. 4, June 15, 1978.
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