
-2, -4 -5 

2.151 17 

2.12 Appendix 

2.12.1 References 

(1) Metallic Materials and Elements for Aerospace Vehicle 
Structures, MIL-HDBK-5A, Change Notice 2, Sections 2.8 and 
8.1, July 24, 1967.  

(2) Wojtaszak, I. A., "Deformation of Thin Cylindrical Shells 

Subject to Internal Loading", Phil. Mac. 5.7, 18, (123), 

December, 1934, p 1099.  

(3) Roark, R. J., Formulas for Stress and Strain, McGraw-Hill 

Book Co., 4th Ed., Equation 6, (1965), p 271.  

(4) Nelms, H. A., "Structural Analysis of Shipping Casks, Vol 3, 

Effects of Jacket Physical Properties and Curvature on 

Puncture Resistance", Oak Ridge National Laboratory, ORNL
TM-1312, Vol 3, June, 1968.  

(5) Lustman, B., and Kerze, F., The Metallurgy of Zirconium, 

p 626, McGraw-Hill Book Co., New York (1955).  

(6) Tipton, C., Reactor Handbook, 2nd Ed., Vol I, Materials, 

p 727.  

(7) Tipton, C., p 867.  

(8) Roark, R. J., Equation 15, p 366.  

(9) Brown, A. F. C., and Edmonds, R., "The Dynamic Yield Strength 

of Steel at an Intermediate Rate of Loading", Proceedings of 

the Institution of Mechanical Engineers, , 1948, p 11-23.  

(10) Roark, R. J., Case 18, p 152.  

(11) Private communication from Dr. Martin N. Haas, Associate 

Director, Nuclear Science and Technology Facility, State 

University of New York at Buffalo to Mr. P,. Denney, Allied 

Chemical Company, 550 Second St., Idaho Falls, Idaho, 83401, 
File Ref. J-759.  

(12) Roark, R. J., Case 41, - 227.  

(13) Nuclear Regulatory Commission, Packaging of Rad-:activ.e 
Material for Transportation and Transportation c: Radi=azti'o1e 

Material Under Certain Conditions; Coo.:atibility with !A7A 

Regulations, Proposed Rules 10CFR 71, August, 1979.



2.532

REV. D, 11/23/82

(14) Roark, R. J., Case 25, p 352.  

(15) Roark, R. J., p 243.  

(16) Roark, R. J., Case 6, p 217.  

(17) Baumeister, T., Mark's Standard Handbook for Mechanical 
Engineers, 7th Ed., McGraw-Hill Book Co., New York, p 13-25 
(1966).  

(18) RDT F8-9T "Design Basis for Fuel and Irradiations Experi
ment Resistance to Shock and Vibration in Truck Transport; 
USERDA, Div. of Reactor Research and Development (February 
1975.  

(19) Roark, R. J., Case 33, p 112.  

(20) ASME Boiler and Pressure Vessel Code (1974).  

(21) Baker, Kovalevsky, and Rish, Structural Analysis of Shells, 
McGraw-Hill (1972).  

(22) Kirk, J. A., and Overway, N., "One-Shot Shock Absorbers", 
Machine Design, p 152 (October 20, 1977).  

(23) Roark, R. J., Case 4, p 320 

(24) Roark, R. J., Case 18, p 176.  

(25) Roark, R. J., Case 31, p 112.  

(26) Roark, R. J., Case 30, p 307.  

(27) Roark, R. J., Case 81, p 239.  

(28) The Nastran User's Manual (Level 15.0), C. W. McCormick, 
Editor, NASA SP-222 (01), May 1973.  

(29) Roark, R. J., Case 23, p 109.  

(30) Roark, R. J., Case 36, p 225.  

(31) Shigley, J. E., Mechanical Engineering Design, McGraw-Hill 
Publishing Co., 1977, p 113-119.

N___



THIS PAGE INTENTIONALLY LEFT BLANK

REV G, 6-14-85



THIS PAGE INTENTIONALLY LEFT BLANK

REV G, 6-14-85



2.155

2.12.2 Results of Cover Lifting Tests

Appro)ed by: W. J. Madia

Project Number 117-5865

.0 .Ballele 
Columbus Laboratories 

Date April 18, 1980 

To R. J... "!ami":aiE 

From D. E. Lozierty

internal Distribution

W. J. Madia 
T. R. Emsw-'- er 
D. E. SteL_. cht 
W. J. Gallagher 
A. Parsons 
D. E. Lozier

Subject Testing of Lifting Handle on 
Cask BMI-l Lid, February 27, 1980 

The lid-lifting handle welded on the lid of cask BMI-I was tested by 
attaching cask BCL-3, with its lid in place, to the BMI-l lid with a 
chain. The assembly was then lifted off the floor and suspended for 
3 minutes by a crane hooked to the BMI-l lid-lifting handle. The certi
fied weight of cask BCL-3 with lid is 2595 lb., placing a total weight 
on the lifting handle of >3695 lb. which is in excess of three times 
the weight of the 1100 lb. lid.  

The weld was then checked by liquid dye penetrant in accordance with 
BCL QA Procedure HL-PP-60 with no defects detected.  

DEL/cm

REV. A, 3-28-80
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LIQUID PENETRANT INSPECTION 
WORK COMPLETION RECORD 

BATTELLE 
Colua.tbus Laboratories 

505 King Avenue 
Columbus, Ohio 43201 

Prepared by 

D. E. Lozier 

April 2. 1980 
Date

A??ROYED BY 
--. • , . --: ---.• . .-- ; . / .- ----

S-Date 

WV. A, 
-28-80

A?PK0VED BY

Date

APRO'.'ZD BY 

t'% .t/t ct II /
APP KOVD BY 
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LIQUID PENETRAŽNT INSPECTION: 
WORK COMPLETION RECORD 

1. Scope 

This record documents the implementation and results of a liquid 

penetrant inspection.  

2. Reference 

2.1 BCL Hot Lab QA Manual (Sections HL-X-l and Hi-I-1).  

2.2 HL-PP-60 Liquid Penetrant Inspection.  

3. Work ComDletion Records 

3.1 Work completion records shall be documented by the certified 

inspector performing the inspection and reviewed by a Q. A.  

respresentative.  

3.2 Document the inspection on Record Form WC-60.

REV. A, 3-28-80



RECORD FORM! t.C-60 
LIQUID PE,-ETRANT INSPECTION

'•"~ 1 Item inspected 1 ( -- ' ..-. , -- .

2. Inspection method (check method used).  

2.1 Visual Dye, i.e. spotcheck _

2.2 Fluorescent Penetrant

Initial

3. Inspection performed as per HL-PP-60. _-_--_",_

4. Item approved as per acceptance criteria in 
HL-PP-60.  

5. Defects observed:_ ___ _ _ _ 

6. Corrective action taken on defects: 

6.1 Reinspect after corrective action and document 
on another Record Form WC-60.

Date

7.

7. Inspection conducted by: 
.*_ -,-/ - 5 • .• $;7'

E. Reviewed by:

'-i--i_

REV. A, 3-28-80

Date - I -

Dace
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2.12.3 Description of MONSA Computer Program 

MONSA (multilayer Orthotropic Nonsymmetric Shell Analysis) 

is a digital computer program written in FORTRAN IV. It is 

based on the multisegment numerical integration method for the 

analysis of boundary value problems.  

MONSAS determines the displacements, forces, and stresses 

for a composite shell of revolution. A composite shell is defined 

as a shell composed of a number of distinct parts which may have 

the following shapes: cylindrical, spheroidal, ellipsoidal, 

paraboloidal, conical and toroidal. The shell wall may be composed 

of four different layers of orthotropic materials. The shell 

layers are specified by giving their location with respect to a 

reference surface.  

Mechanical and temperature loadings can be applied to the 

shell. For nonsymmetric loadings, the user must determine the 

Fourier harmonics of the loadings and perform the appropriate 

number of shell calculations. Temperatures can vary along the 

shell meridian as well as through the thickness of the wall. Th 

latter can be accomplished by specifying the temperature on the 

inner and outer surfaces and on three internal surfaces of the 

shell wall. A shell spinning about its longitudin4l axis can 

be analyzed. A shell subjected to harmonically varying mechanical 

or temperature loadings can also be analyzed.  

MONSAV will determine the natural frequencies and mode 

shapes of composite shells of revolution described above. The 

procedure is based on an iterative technique in which a trial 

frequency is picked and a determinant is calculated. The trial 

frequency becomes a natural frequency when the determinant 

vanishes.



Analysis of Shells of Revolution 
Subjected to Symmetrical and 
Nonsymmetrical Loads 
The boundary-value problem of deformation of a rotationally symmetric •s:; i• stated in 
terms of a new system of first-order ordinary differential equations whiclh c:'; ýe deried 
for any consistent linear bending theory of shells. The dependent toariah!es ,ontained in 
this system of equations are those quantities which appear in the ,,,t:,.;! !o,oltdarv 
conditions on a rotatiouilly symmetric edge of a shell of rerolution .4 ,uncericul 
method of solhtion which combines the advantages of both the direct ii'-: :'.s, and the 

finite-difference approach is developed for the analysis of ro.'tionally sy:" ".'.ic shells.  
This method eliminates the loss of accuracy encountered in Mhe usual .z.p:.: :zr of the 
direct integration approach to the analysis of shells. For the purposce :.'.:'stratioil, 
stresses and displacements of a pressurized torus are calcut!ated and de:a.::.:" numerical 
results are presented.

THE shell of revolution is an important structural 
element, and the literature devoted to its analysis is extensive.  

With regard to axisymmetric deformation, various methods have 

been employed to obtain solutions of the beuding theory of shells 
of revolution by means of the H. ,eissner-.Meissner equations.  

For ex3mple, Naghdi and DeSilva "I]' use asymptotic integra

tion; Lohmiann (2], Milnz [3), KLingbeii [41, employ a direct 

numerical integration approach; Galletly, et al. [51 find the solu

S'National Science Foundation Graut No. 23022, Report No. 3.  
July. 1963.  

2 Numbers in brackets designate References at end of paper.  
Presented at the Summer Conference of the Applied Mechanics 

Division. Boulder. Colo.. June 9-11, 1964. of Tz A. calc.i SocIErY 
6~F .•.ECEI.''CAL EXGGI.-tERS.  

Dizicu*,ion of thiLh paper -hould be addre-ued to the Editorial De
partment. AS.ME. United rngineering Center. 345 East 47th Street.  
New York, N. Y. 10017, and will be accepted until October 10. 1984.  
DiLccus.ion received after the c*sing date will be returned. Manu
script received by ASME Applied Mechanics Division, July 31, 1983.  
Paler No. 64-AP.M-33.

tion for an ellipsoidal shell of revolution by both the finite-differ
ence and the Runge-Kutta method: and Penny (61, Radkowski, 
et al. [71, and Sepetoaki, et al: ýS; utilize the finite-difference 
technique. A number of additional references which deal with 
the solution of the H. Reissner-Meissner equations can he found 
in the papers cited.  

For problems of bending in the absence of axial symmetry, a 
reduction of the governing equations of arbitrary sheils of revolu
tion to a system of four second-order differential equations in
volving four unknowns has been carried out by Budiansky and 
Radkowski (91. A method for obtaining the solution of th' 
equations is given in [91 which is an extension of that employts 
in (71 and [81. Furthermore, treatments of noasynimetric 
deformation of shells of revolution are found in papers by Gold
berg and Bogdanof" [101, where a system of first-. rier differential 
equations for conical shells is derived, and .by Stcee 'l II and 
Schile [121, where solutions of certain types are considered by 
means of asymptotic integration.  

Among the papers which employ numerical .!nalysms, two dif-

ýNnman1tIature

0, r, " - coordinates of a point of 
shell 

s - distance measured from 
an arbitrary origin 
along meridian in 

positive direction of 0 
to, to, n - unit vectors tangent to 
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Fig. I) 
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:eren t 'hrC5't -. ,_a '!te ca -. pr,_.en. ýi 
decrmarraon of sheis "r...;st- be recogn;:ed; i.e., the dret-t integra
tion '2-5] and the finite cifference approach [5-91. Whlle the 
direct integration approach has certain important advantages, it 
also has a serious disadvantage; i.e., when the length of the shell 
is increased, a los of accuracy invariably results. This phenome
non -&s clearly pointed out in iSJ. The loss of accuracy does not 
result from accumulative errors in integration, but it is caused by 
the subtraction of almost equal numbers in the process of deter
mination of the unknown boundary values. It follows that for 
every set of geometric and material parameters of the shell there 
is a critical length beyond which the solution loses all accuracy.  
The advantage of the finite-difference approach over direct inte
gration is that it can avoid such a loN of accuracy. It is con
cluded from fS) that if the solution of the system of algebraic 
equations, which result from the finite-difference equations, is 
obtained by means of Gaussian elimination, then no loss of ac
curacy is experienced if the length of the shell is increased.  

This paper is concerned with the general problem of deforma
tion of thin, elastic shells of revolution, symmetrically or non
symmetrically loaded, and with the development of a numerical 
method of its tolution, which employs the direct integration tech
nique, but eliminates the loss of accuracy owing to the length of 
the shell. The method developed here is applicable to any two
point boundary-value problem which is governed within an in
terval by a system of m first-order Linear ordinary differential 
equations together with m/2 boundary conditions prescribed at 
each end of the interval. It is shown that the boundary-value 
problem of a rotationally symmetric shell can be stated in this 
form for any consistent linear bending theory of shells in terms 
of those quantities which appear in the natural boundary condi
tions on a rotationally symmetric edge.  

The method of this paper offers definite advantages over the 
finite-difference approach. The main advantages are: (a) It 
can be applied conveniently to a large system of first-order dif
ferential equations, and (b) it permits an automatic selection of 
an optimum step size of integration at each step according to the 
desired accuracy of the solution. The first point means that the 
equations of the theory of shells of revolution, characterized in 
teras of first-order differential equations, can be integrated 
directly, and further reduction of the equations to a smaller num
ber of unknowns is not necessary. The second point seems to be 
of great importance if a truly general method is desired which is 
expected to hold for arbitrary loads, shell configurations, thick
new, and so on. With the &aite-difference approach, a meaning
ful a prfori estimate of the step size is often difficult, if not im
possible, especially when rapid changes and discontinuities in the 
shell parameters are encountered. If a predictor-corrector direct 
integration approach is employed with the method of this paper, 
then the step size can be selected automatically at each step 
which ensures a prescribed accuracy of the solution and optimum 
efficiency in the calculation.  

The method given in this paper can be divided into two parts: 
(a) Direct integration of m + 1 initial value problems over pre
selected segments of the total interval, and (b) the use of Gaus
sian elimination for the solution of the resulting system of matrix 
equations. The first part of this method is a generalization of 
that v'hich :;: employed over the whole interval in [2-5). Here, 
huwever, the :ia:ial value problems are defined over segments of 
the total in:er-.-.l, the !engths of which are within the range of the 
.'pplicabli:- ; , the direct integration approach. After the initial 
-Alue proliem'.2 are ir:egrnted r ver t.b.ese segments, continuity 
"1nrditi(..n ,.r- vjr':ies ,re writtoen .it the endp-cn.ts of the 
z-.ment,. and tLey co.-:i:::e a tinn:itanenus system of linear 
matrix equations. This system of matrix equations is then solved 
directly by means of Gaussian elimination. The result is that the 
direct integration method is employed and at the same time there 
is no loss of accuracy because the lengths of the segments are 
zelected in such a way that the solutions of the initial value 
problems are kept sý .ciently small. A convenient parameter is

estimr.ate• ea.si'..  
In the applicatzon d, :his r,:ethod to the ar.a .:s ot rotations'A

symmetric shells, the boundary-value problem. i formulated ;: 
terms of first-order ordinary differential equatiuons. Fur t11 
purpose, starting with the equations of the linear classaical hend 
ing theory of shells in which the thermal eFects are included, '.-
a system of equations is derived in the form of eight partial di: 
ferential equations involving eight unknowns in such a mr.anen.  
that the system of equations contains no derivatives of the ma 
terial parameters, thickness, or principal ra-di .)f curvature. Th, 
absence of the derivatives in the coefficients of the differentia 
equations permits the calculation of the coefficients at a poin 
without regard to the values of the shell parameters at prece,!-nt 
or following points. Then, assuming separability with respect tc 
the independent variables, the desired system ,. eight first-rde: 
ordinary differential equations is obtained whi-h together witl 
the boundary conditions on two edges of the shell constitute 
two-point boundary-value problem. The derived system .  

equations is applicable to rotationally symnmetnc shells %%it.  
arbitrary meridional variations (including d.continjjitie-s) ir 
Young's modulus, Poisson's ratio, radii of cur,-ature, thickness 
and coefficient of thermal expansion. While .tuch a systen v.  
equations is derived in this paper only for ,ae version of th( 
classical theory of shells, it can be derived in the sanie way for al 
other consistent linear bending theories of she:'ý, including tho.e 
which account for the dynamic effects, transve.-e shear deiorma
tion, nonhomogeneity, and anisotropy.  

Finally, with the use of the method and the equations given ir 
this paper, stressam and displacements are calclated in a thn
walled torus subjected to internal pressure. The solution show• 
that the meridional membrane stress is almost identical to that 
predicted by membrane theory, but-that the bending stres.e! 
even for a relatively thin torus may not be negiipble.  

Geometry and Basic Equations 
The position of a point of a shell of revoluti.,n is given by the 

coordinites 6, 0, r measured along the triplet of "nt -vector t#. tý, 
n, respectively, as shown in Fig. 1. The shape : :he sh',ell :' 7"
termained by specifying the two principal radii -)f cu-uvat':re R., 
Re of the middle surface as functions of q. Instead of P,. it ;s 
convenient to use the distance r from a point on the niiddle sur
face to the x-axis; from Fig. 1 it follows that

r - R, sin 0 

It the generating curve of the middle surface 
then

x 

Fig. I Elemtnt of a shelli of revolvtiori

is ;-.ven b-." r - -,":I
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"" = -I. .j 1 : 

0 -, ,+\•/ 

The f.Haowing 3nalysis requires frequent diflerentiaton of -or Re) 

.with respect to 0, and it is convenient to exprests this derivative 

,by the Codazzi relation

d4 (3)

The displacement components of the middle surface of the shell 

and the rotations of the normal are defined by the expression of 

the displacement vector U of the form

U - (u* + ro*)t# + (',. + NO3)t, + Wn (4a)

The shell is subjected to the mechanical load vector p, which is 

measured as forre per unit area of the middle surface and written 

as

p - polo + p#4e + p" (4b)

and the moment vector m, which is measured as moment per unit 
area and given by

m - -74to + Moto (4c)

With reference to Fig. 1, equations (4) serve the purpose for 

establishing the positive directions of the components of the 
displacement and mechanical load vectors.  

The temperature distribution in the shell caused by some ther

mal loads is accounted for in the usual manner by means of the 
integrated temperature effect of the form 

4 

9 -f T(O, 0, f)dr (5a) 

T,•O ¢, ) _L f. 2_ rT.,8 !r(b 2 

T:(, 8)- - "- J_ fT• 9, f)di" (5b) 

The derivation of a new set of equations carried out in the next 

section is based on a linear classical theory of shells given by 
,eiasner [13]. When referred to arbitrary shells of revolution, 

the goveruing system of equations of (13] can be written in the 
following form. Equations of equilibrium: 

No.o + -X...# + 2 cos ANo + Qo sin 0 + rpo - 0 (6a) 

.V,.o.+ -N.. + N. - No) cos # + -Q# + rpo - 0 (6b) 

r 

. + Rr f., + -" cos . .t.0 - "Q* + rQng - 0 (Sd) 

Stress-strain relations: 

Ye - K(eo + peo) - (1 + O)aKTo (9a) 

NO = K(eo + yeo) - (1 + O)aKTo (9b)

Journal of Applied Mechanics

Strain- hisplaceinelit reljt:ons: 

1 
1e - - (,if.# + uo c,)s 0 +4- wsin o, 
r 

to - 0(.oo + w) 

2fo. - (u,.# - uf cos 0) + 
rP

,1*b) 

Ilc) 

.12a;1 
r

K, 1 13 .  1* 
2xo 1 (A". - i%, os ) 

I R,

1 'in bo"--- o.o "4" -- li 
r r 

i1 3* - •" _ O -Tito 
R, #-u

1.. Ia) 

13b)

The positive directions of the stress resultants in ::e ioregoing 
equations are the same as the corresponding stresses ".n the edg 
of the shell. The definitions of the stress resultants _re tound 

[131.  
The order of the system of equations (6)-(13, is -:ith re

spect to 0, and consequently it is possible to reu.-. - 13, -.  
eight first-order differential equations which invo.:e e:ght un

knowns. If the eight unknowns are those quantities -' ach enter 

into the natural boundary conditions at the edge 0 = -onst, then 
the boundary-value problem of a rotationally symmerrc shell can 
be completely stated in terms of these unknowns For this 
reason, the eight differential equations, derived in z'-e following 
sections, and the eight unknowns are called the fundamental set 
of equations and the fundamental variables, respecu'vely.  

Derivation of Fundamental Set of Equations 
According to the classical theory of shells, the q'.a::ities which 

appear in the natural boundary conditions on a rouat:-nally sym

metric edge of a shell of revolution include the effe:uve shear re
sultants N and Q defined by

•sin qb N - .V, -- --. 11,, 
r 

S-Q +-.:•

1,14

Th:s, -:ec f,:::d-.m'e::.L1. ,.:••l, =-' - ,r- ":,- .' 
tLeory of [13 , .re the sour r e::era!.e. ".-e:',; _:

and the four generalized furces Q, .v*, .X. 4nd Mf.  

In the derivation of the fundamental equ-.ti,,ns. -. ,re c,, 
venient to employ the distance s, measured along -.  

the shell, rather than the angulnr coord inate o. - ever. a fter 

the equations are derived, the problem crn al . - ea3 
formulated in terms of 0 by" means of the relat~on 
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As a prelirrunary step, it is necessary to express Nip, M1[, M1,1 in 
-us of the iundamental varzables. From (9a) it follows that 

1 -- V 

a.\ K I K i Iwsin 0 + up.e + u. cos0) 

- aK(I - ;:)7"a (15) 

and from (10a) that 

.,1. +,M . D I - 1 + sin , + 
r" r r

- aD(l - Y')T, (16) 

Elimination of us., and we. from equation (12c) leads to an expres
sion for 3.1!, in the form 

'II I' [2i.., + 2 cos 

SL--D sin--- ,V6 7 
+ H!s cos - Jil.] + - A (17) 

where 

L1 
sin + D 

r2 K 

In the derivation of the four equations of the fundamental set 
which involve the derivatives of the stress resultants with respect 
t., s, the use of (14) is essential. Elimination of Qe from (6a) and 
'C'i) by means of (14a) leads to 

Cos 2 cos 1 
r ?r 

sin~ sin 
3-- s e -- - me (IS) 

r7- r 

Similairly, elLnination of Q# from (7) and (S&) gives 

Q.. _2 cos___._ do.# _ cos.0 Q + sin - No 

"+" IY.-- -L 31. -p---m0. (19) 
R, r r 

Solving (6b) from No.,., there results 

.. . I Y.9 I J.1100.  
I"r 

+ Cos...• (' N 0•) Q o(20) 
r 

3nd it follows f:m(;b) that

,I~,,= --- 31+# i. -- <J!i--.11') + Q - m" 
r"

(2t)

\k.qerever Y.ece3 ar.-, .- alnd Q,, %%ere eliuiuin:ated with the use of 

Tlae o.~L.a. - 'F~t fIS 1.  
'M 3,,, .![ :..n ed di:re, t., :n ternis of the fdanetad 

"h14i by ::'e:,rts of .;a.-(i7., and four additional equatious 
ring the deri'a:-".es of i., i, io, ,3o with respect to s, which 

U.tained from n:!)i ,'.I lc), ( I UP), (12b), respectively. Finally, 
ffae system of eight differential equations that governs the 
d.f.,rmation of a si el! of revolution can be expressed in ter-is of 
tile eight fundamental v;:n:ibles and written as

- .a-

Uw., sC os 0 O V U&.  

+ 1 Y + L 1 - 2 

LDsin2 1 LDJ sin / 
rKrr 

+ +o._( LD 2srng \ - 2LD sin N Q'' ) 

+(I -K)K Kr2  ' 

P, , sin ( vPcos 0 
-,W - - u... - ,30 

+ M* + a(t + v)TI (22.4) 
D 

I -- LDO + v) _ 2LD cos' •• 

I 
+ ( + Y,)Kr'sinlO W + (I -P ') " [- LDJ 

I r2 L 

+(1 + )Ksin]U# - P [!LDHcsr' 

,sin " ± 
- P)-)Ksin$ +-D(1 + )!-

rI r" 

-DO1 -Y) -(10 + v+ 2L)4,6#, + Ua" \ 

LD sin 2 - Q o ..-._ 
Kr a' r r 

- a(I - P 3 (K sin 0 To - I DT&.'.)-r 22

Sr r 
i-a, r 0'. -( - P) -O LDJ + (0 + P)K" sin 0 IV 

+ 1 (1 + i)K cosa j - 4JLDJ' 6! ,1 

+ ( P -- 1)-0 IjLDJH + (I + P)K] u,.* + JLD I ° 

r r

1 a ,) 1 ( LDJ sin ¢).  
P1 r r A'r 

r 

A 1- U 'LD cos-e ra 

- (1 + -" 'I sin 0 + (I + DL)sin -

+ - (1 - , 0 + (I + : .  
r I

Cos sin V 
- D(I - v)+ (1 + ) _ LH 3o.- - N,
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Iv(l - -KT0., D - T,., 
r r 

-- ID(1- 0.-- (1 + 4- 2L)w.- - LDJ 1 rs r3 

10 +Q • 2LD sin • .  

-DI (1 + &-) cosll 0-2L•- X.0 K 

J'- 6 Krs 

- (0 -ucos..._ 3,- mo - a(1 -- &;)Dcos-''' Ti (22h) 

r r 

Equations (22), (14), and (15) to (17) determine all unknown 

variables except Qf which can be found from (St) and written in 

the form

Q0 - Me.e + f,,..o + 2 2cos-0 -,I + ?I,# 
7 r 123)

By ealculating .1fe/.. from (17) and making use of (16), it is possi
ble tr,, express Q# directly in terms of the fundamental variables.  

This expression is lengthy and eontains derivatives with respect to 

s of -the shell parameters. Since Qt does not enter into any bound

ary f,-,nditions on the edge a - coast, it is preferable to calcuLate 

Qd as dfie last unknown directly from (23). The derivative of 3!,.  

can be easily obtained by numericai differentiation.  

The procedure for the derivation of an equivalent set of equa

tions for other linear clasical theories of isotropic shells is identi

"eal to that given before. For general anisotropic and/or non

homogeneous shells of revolution with rotationally symmetric 

properties, the fundamental set of equations is derived in the 

same way as (22) except that (9) and (10) must be replaced by the 

appropriate stress-strain relations given, for example, by Am

bartr-myan [14]. Otherwise, the derivation is straightforward.  

For the improved theory of shells, such as the one given by Naghdi 

[15], in which the effects of transverse-shear deformation are 

accounted for, the following ten fundamental variables are re

quired: w, u*, ut, gt, go, Q., V#, No., -IV#l,, .1.. Since now Q, and 

Q# appear in (13), the elimination of Q# from (6a), (7), (Sa), is 

done by means of (13a). The required equations for the deriva

iives of the generalized forces are obtained directly fronm the five 

equations of equilibrium (6), (7), (S). The remaining five equa

tions are derived by following a procedure similar to that of the 

foreg,.ing.  

Fundamental Equations for Separable Solutions 
For shells of rervolution which consist of complete latitude 

"ircie-, the surface loads are periodic with respect to e with a 

pr,.•d of 27, and they can be assumed to be of the form

(,osiu n6, 
*Pe.~~~~~~U P. -Po* ""@*o~n 

),Sin Ila) 

,jf, "'.'' = (,,. ' "". kcos nof

i24a) 

,41,) 

24c)

24 -o " .n r ,."'a.Lt'u : " e ",r" 

sin nsi i" 

INo, .If*, Q] = i.v.. 310, Q';sa 

I,,, xl *,.. 5.1 sin 

cos n0.j

2.)b, 

ý25C)

The s-dependent coefficients with subscripts nt ,.n the right
hand side of (25) are governed by a system of eq,:atiuns wbich is 

obtained from (22) and, after using the assumpT;,-.n that the shell 
is thin,' can be written as

l 26a)

V e ns {4 17 

V - a(I + si.nr, 2 6,) 

W- in ,r + 
Kr1 r' r t.

2Dn sin 0 2 
"+" Kr (+ ) N 2 Gc)

_91 Pl sin 0 V cos 0 

+ I- .34, + ,-- ,TL. (26d) 
D 

' 7 [r'(( + u)n4D 

+ 270D cos' @ - l !.- 0 ..+, 0 

(1-- cog'0 (1 + V)K sin 0 DJ u0.  

+ LI rI 

()n +,)D -sin + (I +"K sin , 

cos 
co±f 

+n(I - Y)(3 + u)D C os - - ,- U", 

nD sin 2o + tn It 

Krr r 

-- sin T. + D Ti. (2t3e) 

r= 

"'1"- (co 1  + Y)K sin 0- • JD1 1.  

+ (I- [n ! K c(_s! o D;- ~

.- 2 

S- :,,- ', .- . ....  R Q. - I -• r

wLere the variables with subacripts n depend only on s, Lind each 

i2ne.--al value of n in (24) can be regarded as one Fourier corn

pcuer.t in a gene.ral Fourier series expanision of arbitrary periodic 

surface loads.

lit the icrivation oi the -:Iytel of 0i,ut::.  
uon is made that the 'hell is !,1tfzcie,tly Olin.  
1. rthere R denotes the minimnumn r-ý-r:di t 

This ,arie appruximatioll is used *o oh'al ,-.e 
from 122).
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p.. .. C'•. .  
r 

10) &{[ ,- )D nl? sin ( + (1 -4-- Y 'K in 61l W ý 

Yn cus 0 n2( 

i 
r 

: " r; 

n21--Y( + DCos• n3 Yu sino 
r$ r 2 

SCo.i2 cos Si- ,V.,. - - .  
r r 

r2 , Kr'€sr'4 

- (I 3)Cs0' 10 mo. - aG. -- 0)D io T.(2h 

r | r 

x U 01 - 'Yo. ;If*. ( 0cos + n (27a) 
.[. - n

2 1 - ii)(3 + i')D -' .- it -7 JDuo, 

±,D~~cosSi (I+osiý 

I-- F snIsQ n n ( 

- D'--f-(i+p) cos'+ 2f' .+ Q . N,.  

-- (1- i*) 1!__•M• • - a(1. - aA)D -o__ T',. (26h) 
7 7 

The double .igns in (26) correspond to the top or bottom trigono

aetric function employed in (24) and (25).  
The quantities which are not included in the fundamental 

•iables can be expressed by means of separation of variables by 

.(cos aOe 27a 
{X.,, .M,, Qo} - f N,., .11,., Q,.} ts(27.o 

{.Ve, 31,°, Qt " {",.,,, Mte,. Q'}(l~cs (27b) 

where the s-dependent coefficents with subscripts r must satisfy 

a set of equations obtained from equations (148-17) and (23) in 

the form 

N,,. - o + (I (w, sin + u,. cos 4 k nuo.) 

-- a( - Y')KT,. (28a) 

.1[,. (.+ 1 ) . + go. Co 

7 -' n- uo - a(L - PI)DT,. (28b) 
r 

SD sin 0 V 
'-- -- ± (°-So) 

H Hcos 4ut=.-- .)' + A r 

. -,, 2 cos Ho. + Sd 
r 7 

"- N. - ,.__ (2Se) 
r 

Q*,. - Q. 3,. (2Sf) 
r

A77 /) C ee..C &A0 0 bAA.

'4 ý .: . .. - ,r-7 7• ' *.. ' "- t"')D ' , D .. " n "'7:-:4 
a7,.rne!.-c 'u;ct:cn empioyed in 24 . '23., a d 27.

The remainder of :his paper is concerned with the solut:oa ) 

the system of equations (26), subject to the boundary coodition_ 

on two edges s = coast. It should be noted that after the expan

sion of the [oads in Fourier series, the solution to '26) is obtained 

for each integral value of n separately, and then the solutions are 

superimposed to form a Fourier series e.xpanslion for the unknown 

variables.  

Reduction to Initial Value Problems 
Thin section is concerned with the reduction of a two-point 

boundary-value problem governed by

"ý,vz__ - A(z)y(z) + B(z) dz (29a)

to a series of initial-value problems. In (29a), y(x) is an (i, I ) 
matrix which represents m unknown functions; x is the inde

pendent variable; A(z) denotes the (m, m) coefficient matrix; 
and B(z) is the (m, 1) matrix of the nonhomogeneous terms. The 

elements of A(z) and B(z) are given piecewise continuous func

tions of z. The object is to determine V(z) in the interval a •: z :_ 
b subject to m boundary conditions stated in terms of linear 

combinations of y(a) and y(b) in the form

F.y(a) + Fjy(b) - G (29b)

where F., F, are (m, m) matrices and G is an (m, 1) matrix, which 
are known from the statement of the boundary conditions of the 

problem. It should be clear that the governing system of equa

tions (26) derived in the preceding sction is stated in the form of 

(29a), and that the appropriate boundary conditions for ashell of 

revolution can be expressed in the form of (2gb).  
Let the complete solution of (29a) be written as

Y(x) - Y(z)C + Z(z) (30)

where the (m, 1) matrix C represents m arbitrary constants, ani 
Y(z) is an (m, m) and Z(z) n (i, 1) matr-Ic which are dezdned as 

the homogeneous and particular solutions of (29a) in the form

dY(x) - A(x)Y(z) 
dx 

dZ(z) 
d-- . A(z)Z(z) + B(x)

The initial conditions for determining Y(z) and Z(z) are 

Y(a) - I

Z(a) - 0

(31a) 

(31b,

(32ai 
(32b)

where I is the unit matrix.  
Evaluation of (30) at z - a leads at once, in view of (32a, b, to 

C - y(a), and then (30) at z - b can be written as 

Y(b) - Y(b)y(a) + Z.,b) 

Together with (20h), equation (33) consi-utes i s-.stem .  
linear algebraic equations from which the 2m unkno.-ns, ' 

and y(b), arc determined. Once y(a) is known. ue -.- .  

^anh." aiue of z is obtaized from (30) pro'.-ded t."- v i

E'.Z) and Z(x) at that par:icular x are stored. Th:i ,'rpe " 

reduction of a two-point boundary-value problem defined by s..,, 

to m + I initial-value problems given by (31, 32).  

As stated in the introduction, the solution for sheils obtiair.,J 

by means of this procedure suffers a complete loss of accuracy at 

some critical length of the interval. The res.on for this pi.ý.

nomenon can be seen clearly from (33). When the init:ial-va.ý.' 

problems defined by (31, 32) are solved with the use of the equa
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Fig. 2 Notation for division of total interval into segments 

tions (26) for shells of revolution, it is observed that the elements 

of Y(x) and Z(W) increase in magnitude in such a way that if the 

length is increased by any factor n, then these solutions increase 
in magnitude approximately exponentiaily with n.  

Consider, for example, the axisymmetric case when the defor

mation in the shell is caused by some prescribed edge conditions at 
z - a, say, byM'.(a) - I and NX(a) - Q(a) -0 . It is reasonable 

to ex-pect that the corresponding solutions at z - b become smaller 

and smaller when the interval (a, b) is increased in length. The 
connection between y(b) and y(a) is given by the matrix equation 
(33) with the following magnitudes of the elements: y(b)-small, 

Y((b)-hlrge, y(a)-unity. Clearly, the only way that the matrix 

product of (33) can give small values of 1y(b) is that a number of 

significant digits of the large values of Y(b) subtract out. When 
the length of the interval is increased, Y(b) increase, while 

y(b) decrease, and invariably all accuracy is lost at some critical 

length because all significant digits of Y(b) in (33) are lost. This 

simple example serves as an illustration for the loss of accuracy 

encountered in the analysis of shells if the foregoing reduction 
technique is employed.  

A convenient length factor, defined by 

S- 1[3(0 - y)]'/4/(Ph)'/S (34) 

where I is the length of the meridian of the shell and R is a mini

mum radius of curvature, can be used for an approximate esti

mite of the critical length of the shell If the solutions Y(z) and 
Z(x) are obtained with a six-digit accuracy, then the foregoing 

procedure gives good results in the range 0 < 3 - 5.  

However, the loss of accuracy of the solution can be avoided and 

shells of revolution with much larger values of 0 can be analyzed 

by means of the direct integration technique if the multisegment 
method given in the next section is employed.  

Multisegment Method of Integration 
Let the shell be divided into M-segments (denoted by S., where 

i - 1, 2, .... , M) of arbitrary length in each of which < : 3.  
Denote the coordinates of the ends of the segments by z - z;, 
where the left-hand edge of the shell is at x - r, and the r*ght

hand edge is at z - zm.i, as shown in Fig. 2. In analogy to (30), 
the solution in the total interval xi :z :5 z.v+, now can be written 

as 

Y(X) - Y,(z)y(x,) - Z,(z) (35) 

where Y,(z) and Z,(z) denote the mar'ces corresponding to Y(z) 

and Z•. r ;n ea. h segmn-nt S,(z, < -" z :,.,) and ire g:vcn 1w 

dz 

Y,(x,) - I (3ib) 

-Z(_.• . .(x)Z,(-) + B(.r) .3,;c) 
dx

Journal of Applied Mechanics

Requ~~~~~ri=G~~~ --tn uo . A •_e.e ' i) .: t..e P._-772 .  
2. 3 M ... + 1, the followitng . ,-ma*.r-x eq"a*:.ons are 

tained from (35):

- Y,(x,..,"�,!:,) - 37.:

X 3 X U X W+l

+... .. J) " .Y ......LI ..........

so that each of the equations t37) Turns ;nto a s ir .i ." 
given by 

}'•: _• r)+ }':-.••(, -7.".• : -Z : .  

The result is a simultaneous system of 2.1 linear ratr: 
tions, in which the known coefficients }',,_) Zi , Z, :.-e 
(m/2, mi2) and (mi/2, 1) matrices, respectively, and "-e un
knowns y,(z,) are (m/2, 1) matriceg. Since yý,:') and.. :' e 

known, there are exactly 2M unknovns: yjt:,', w1, = -h .  
M + 1, and y:(x,), with i - 1, 2,..., M[.  
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where i- 1,2,...,1. Equations 337' iuvolve I/ U- 1 .-. =:,,nI 

(m, 1) matrices: y(x,), i - 1, 2, . . ., '.I + 1. Hcwever J: hre 
quantities prescribed at the edges of the shell are the fundamental 

variables, then the total number of unknowns is reduced by i, be
cause m/2 elements of y(z,) and m/2 elements of y(.jzv, are 

known. The same is true if the boundary conditions are sta'ed 
in terms of linear combinations of the fundamental variables .n !'e 

furm of (29b). In this case, y(z 1 ) and y(zirt) should be prernuhti

plied by nonsingular (in, m) transformation matr:-es F. and FA.  
respectively, so that the elements of 'he products conti.a :rhe 
quantities prescribed at each edge. After eliminating . and 

J(Xm+,) from (37) by means of these products. At ;s con:.;:ded 

that (37) will retain its form if, after integratino ,Ind be,'.;re sub
stitution into (37), Y,(x,) is postmultiplied by Fi-1 . •-h::e 

Y.u(zma) and Z,(zMAt) are premultiplied by F. -L. 7: 
following, it will be regarded that this transformation is :arr:ed 

out and that y(zt) and y(z•t.1) contain among their elements -,hose 
quantities which are prescribed at x - x, and X - ., 7e.pec
tively.  

Thus for all boundary conditions in the form of (29b), the sys
tem of 3M matrix equations (37) iuvolves exactly .[ times nun

knowns, and formally it can be solved by any method wch is 

applicable to a large number of equations. However, the success 

of the procedure given in this paper lies in the applicaticn -i 

Gaussian elimination directly on the matrix equations (37'.  
First a rearrangement of elements is performed. Since zhose 

m/2 elements of V(z,) and y(zzv 4 ,) which are known through the 
boundary conditions can be any in/2 of the m-elements. it is 

necessary to rearrange the rows of y(zi) and yi(zn..i) so that *he 

known elements are separated from the unknown elements It :s 
assumed here that the first ?n/2 elements of y,(-,), denoted by 

YI(XL), are known and that the last i,'2 elements, den,. -e." 
,.(z), are unknown. On the other :'and, 'yi.m-;) are :- n 

known and Y:(zm.,) are the known elements of .( *.,- . nce 

the order of the variables in the coluran matrix y(z) is arrýI:ral', 
it should be emphasized that this separation of elements dces nrt 

involve any restriction on the boundary conditions, and that any 

natural boundary condition in the form of (29b) can be pricnbed 

at each edge. The separation is achieved by a simple rearrange
ment of the columns of Yi(zi) and the rows of Y t(z.x.v. and 

Z.v(z.v+,) after integrating the initial-value problems defined by 
(36) to the ends of the segments S, and Sy and multiply.r.g by 

Fi-I and Fx÷, Ma stated in the foregoing.  
Once it is established which parts of y(x,) and yKz.; are 

known, the continuity conditions (37) are rewritten as a parti

tioned matrix product of the form



F. -! 0 0 

0 0 -E 0 - 0 
o 0 E: -I 0

0 0 0 C- -t 0 
S........................................  
0 0 0 0 Ej, -I 

0 0 0 0 0 CM_

where the dots indicate the triangularized equations (39) with 
i = 3, 4 .....- 1. The (m/2, m/2) matrices E,, C, are defined 
by 

E, - Y, (41a) 

C, - 1 ,',-' (41b) 

and fur i - 2. 3. .1 

E, - V.32 + Y'C,_,i (41c) 

C, = ()*,' + Y,'C,.- 1-)E,-' (41d) 

The (in. 2. I :atrices A,, B, are given by 

.4. - -Z' - Y,'yt(X1) (42a) 

B, = - Y-,yti(xi) - Y 1'E, '.t- (42b) 

and fori = 2.3 .... 11 - 1

* on the shell. Such loads intruduce discontinuities in the soli
tion for the c,,rresponding stress resultants, and they can be repre

sented at every z, by an (m, 1) discontinuity matrLx which is 
simply added to the matrix Z,(x,,,) on the right-hand side of (37).  

This feature is of great value if shell joints are considered. Any 
discontinuity, either in geometry or in loads, is easily handled by 
requiring that the end point of a segment coincides with the loa

tion of the discontinuity. Since integration is restarted at the 

beginning of each segment, the precise effect of the discont inuity 3 
obtained. The program outputs all fundamental variables at a 
number of desired points within each segment, and it also trim
putes the values of y(zi) twice; once from (43) and then from 
(35). If a certain number of significant figures of these valuet 

match, then the continuity conditions are known to be satisfied to 
the same number of figures. In this way, a convenient error esti
mate of the solution is obtained for every case.

AI, -Zji- ',"C,- 'B,- (42c)

8, - - ',:C,_,-'B,-A - (-Y,' + ',C,-.--)E,-'.4 (42d) 

Finally, for :he M/1th segment 

AM - -Z.,,- yMC.L-B.:fL (42e) 

y :.(ZIfi.I - ZM• -

- (Y,-t + }.',CM.-.-)E.,,'-.A,1 (42f) 

revity, in p.lce of Y,'(x,-t) and Z,'(zx.,), the symbols yi 
\rcZji have been used.  

Bv nieans of 41 and'.42). the unknwns of (39' are obtained by 

,= C t-'B1 , (43a) 

,:(.v) -E'y(z.-,) + AM] (43b) 

and fori - 1, 2,..31 - 1 

. -i) C.v..-[.ihZ(zM.l~.) + B.v-i1 (43c) 

- Er_,-'[Y(zr.i-%r.) + Am.-d (43d) 

It should be nted ,hat f41)-l 43) must be evaluated in succession, 

because each e..a,"ion involves the result obtained by the preced
ing eqttation.  

Once all 'e unknorns y(z,) are found, the fundamental 
variables are de~ern-ined from (35) at any value of z at which the 

solutions )-,: .-and Zk(x) are stored during the integration of the 
initial-value p:..biems of (36). The integration of (36) can be 
accomplished] by means of any of the standard direct integration 
met hods.  

C0:i the -,:'he s.% tern -if equations (26) given in an e:trlier 

sect::,n and :-.. :,hfi s.-l'tion developed in the !ast two see

tin, the n' - h.s pr),ar,-l a comrputer program' which hi:L 
l,-en app!ie.:.- "..-: shi ,-ritigurations h.hvn ho &rge values 4 3 

and -,,:e3?.r:'.i. "÷ .r ::a -t kit,',tn rc.,uilts. One ,e\atlpI.'ý ofi 

p: i,. i ,I " . .- 1 h . = 57 !s piesented mi 'he nevx' secti, ,.  

tofam , , r:1bed values oi Nt., .1[, .V, cr Q at any value -.4 

he pr :.I. " r . ter. and all .. l,:tUiatiorin were :arrved 
s.- by the au:.or on the IBM 709 computer at the Yale Computer 

Center. The ,]i-ect integration of (.16) is performed by meais of the 
Adam-. predi,-.-,'lrccror method, whith selects an optiiuin step 
size at every step according to a precribed aczcuracy.

Example: Pressurized Torus 
In this section the stresms and displacements are determined in 

a complete torus subjected to a constant internal pressure. It is 
well known that the solution of this problem, when obtained by 

means of the linear membrane theory of shells, has a discontinuity 
in the displacement field. It has been shown by Jordan (161 and 

by Sanders and Liepins [17] that a satisfactory solution with re
gard to the displacement field for a sufficiently thin shell can be 
obtained if the nonlinear membrane theory of shells is employed.  
Subsequently, Reissner (181 established bounds on certain 
parameters which show when the nonlinear membrane and whe-.  

the linear bending theory is applicable. It seems worthwhi'e -.  
give here the solution for a pressurized tori•s as predicted by the 
linear bending theory.  

The geometry of the torus is shown in Fig. 3. With regard t, 

the quantities employed in equations (26), the two necess.ary 
parameters for a torus are given as 

R# - b (44,'

r - a + b sin 0 (44b6

Because of symmetry with respect to the plane XX, Fig. 3, the

X X

Fig. 3 GeomOWry of torus considered in exOampi
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Table I Stresses and dispiacementt of a pressurize.d 1ous; ob.,'EM = 0.002, a/b = 1.5. w = 0 3

-(f,/E) X 10-
0,02 0 003

90 

126 
144 
162 
171 
ISO 
184.5 
1$9 
193.5 
198 
210 
234 
252 
270

'Yo.,/E 
X 10' 
0.005 
1.601 
1.613 
1.650 
1.720 
1. S32 
I -I06 
1.090 
2.042 
2.104 
2.175 
2.2.54 
2. 642 
3.163 
3.730 
3 997

00. .,b) 00 '0000 05 0.012 0 0030.05 
-0 063 
-0. 188 
--0. S86 
-1.915 
-0 s95 

1.002 
3.0S9 
3. S90 
4.270 
4.178 
3.610 

-0.5S7 
-1 .245 
-0.717 
-0. $24

1 2S4 
1 315 
I .103 
I --'17 
2 .560 
3.493 
4. 334 
4.576 
4.637 
4. 50 
4. 221 
2.527 
1. 269 
0.417 
0.101

1 "'S' 1 32S 
1 4'7 
1 623 
2 139 

5 244S 

.5.1.11 
4.1132 
4. 162 
2.4sI 
1 26V 
0 414 
0 100

90*

Fig. 4 Meridisnal baridlng stress rob at outer fiber versus meridional 
coordinate 6 

integration of the initial-value problems is carried out from • 

900 to € - 2700, and the boundary conditions at these endpoints 

are , - 0# - Q - 0. For the purpose of comparison with the 

results of [16) and [171, the load parameter is chosen as pb/Eh 

- 0.002 and a/b - 1.5.  
The numerical valuta of the normal displacement, meridional 

membrane stress #,. - N#/A, and meridional bending stress 

co- 6a,34/hV at r so h/2 for a pressurized torus are shown in 

Table 1 and in Figs. 4 and 5. Theme results were taken from the 

,ATput of the computer program prepared for an arbitrary shell of 

revolution after pre.cribing the geonietric parameters as given by 

,44). The meridional membratne stress distribution agrees very 

n eil •ith that obtained in [17) by means of the membrane theuoy 

,f shells and it shows only a small variation with h/b. The ,'e

f,,rred shapes of the cruss section nf the torus shown in Fig. 5 :,,r 

• r "a!ues ,.f h, b a3e in rjuMlitalive acreemeut with "l h.'' v.n 
.n i;6 nd '17', bU!., thetir (4tiutitaiive agreesnent ,a n, t:}•,-< 

p,,-,ed lecauce "he cies of h/b uscel in this exaimp!e 2e 

The range n here the bending efTects arc negligible. This is ron
I rhied by ,he examinaticn of the ho.nding stresses shown in F', 4.  

'. The Tnaximnn value of .o0 occurs at I ISO for h/b = 0.0 a3nd 

.t .= 14.5' :nr h,b - 0.005, which are also the points of 

mitri.miý• nurm1a displacement and curvature as seen in Fig. 3.  

The c,.,mparison of the nm¢,brane and the nia.imum bending 

stres= at various values of hib is shown in Table 2.

Fig. 5 Normal displacement w versus 0 showing deformed section 

Table 2 Maxlmum merndlonal bending stress and meridional membrane 
stress ao 0 - 0 

h/b 0.05 0.02 0 005 
do 1S96 IS9° IS4 .5 

(u,1,/E) X 10' 2.053 2.0S2 2 042 
(a-6/E) X 103 0.427 0.312 0 197 

100 (ufI/Q.s) 20 S 13.0 3 ' 

It is of significance to note that even for the thickness ratio 
h/b - 0.005, which for many applications would be regarded as 
small, the maximum bending stress is Jbout 1 :.r f Le 

membrane stress at the sarre point. Such e!Tec-! .i :. :n .  
torus were previously noted by Clark . ariti hley :e Uis .) :n 

agreement with the statonent made y _,. 'r 2," 
when the middle surface tu,-.es a1 .,-pLe ,:rvr, *. .. ' f 

,crr1.9 -,orreFp,..nd ,,s = s-], lieu :n 1.e 

Llt Iacbie.  

The boundatrv laver Sho%%i•:' n Fig. 4 is :,.n n . :" ' 

,he IUntulu!:in;s realhed in " to ,. 01 ei'l t :hai .•.h-- -. ino! 

given by 

M = :12;l -1 :)]" ,2 

p - 12(1 -- v2 (piE•(b,hi3

, Intirnml nf Annli•.d Mprthanin.S

-0.031 
-0 093 
-0. 123 
-0 90S 
- 1.37S 

0.16S 
2.277 
3. 035 
3.119 
2. 5S0 
I. 5S9 

-0 957 
-0. 291 
-0.344 
-0.331

-0 016 
-0 019 
-0 E0.  
-0.020 
-0 'Jl0 
-0 0605 

1.482 
1. 968 
1.520 
0.530 

-0 274 
-0.079 
-0.066 
-0.077 
-0.0SI

1 249 
1. 261 
1 359 
I 7S6 
2 S20 
3. 467 
3.994 
4.130 
4.20S 
4.156 
3 99S 
2. 652 
1.273 
0,416 
0. 103

"4.
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-e..' n en.a-. ,: -"a r. ,lav er in n.:.e e._n

borhood of 0 - S.'= shn•uid be %aticippated. For the present 

example, u ranges ,om 44 to 440 and P from 9 to 874. However, 

rce p is the only ioad parameter of the problem, the solutions 

.,%-n in Figs. 4 and 5 are proportional to p, and the boundary 

er remains un,-ected if p alone is varied. Of course, for very 

-e values of p vhe deformation of the torus may exceed the 

""--rlts of a linear theory which according to [18] restrict p to the 

range p << A2 ".  
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PPROSR AM P RS V SL CIN PUT, 0 U T PJT 9T A P r514P U T T 4PE 6 =0UT TT 

POAMT." CAL:U,.4rE T-4 STR-SSErS :N TIE HE-AO AND THE WAý-S 07 A :Yý-::C:: 
PRE-ssuRE vE;ssEL., wiTH A FLAT H4EAO. E-jJATIO.NS FROlo CASE-- 3. IN TAB,-- X::: 

0--'F RARK,- YH-ED; 'PAC-- 3070-- USES- "LS) :ASES C NC 15 FROM' Tý3ý.= X:.' 
; NO :ASES I AND 12 FROM TABL=E X PAGE !16* 

PROGRAM ASSUMES T4-7 3AME MATERIAL FORZ 30TH THE HEAD0 AND CYLIN3E-R WALLS.  

INPUT READ) ON ONE %CARD ON AN 8 F I E POR4LT.  

P INTE-RNAL DRESS]RE, PS: 
D:A INSIOE 0144ETER OF CYLINDER, 14COHES 

T- E4AD T 'k- 4-S * NCIIES 

T2 :YL.INJER'P W.'L* THICKN:ESS, INCHES
xr %ox DISTAN:E FROM H4:-4 AT PiH!:l STRESSES ARE TO BE EXAM:NE], .c 

-x 1.14ICREMENT OF OISTANCE-S FROM HEID ENC'FOR STESEA:A '.INC
E LASTIC M0OU6.AS, PSI (IF 3LAN< ASSUMES 29.CE6:*) 

Po: 'OzSS3wNS RATIO (IF BLANK LSSJMiES %.13) 

RE-L MOL4M,LAMD0A 
-- C D(ET T , JN) zEE *T T 3 / (12 :2 0 UN 2) 

LAmOA (UNPR~oTT)=SORT (SST(3o C jýJl**2)/(R.TT) * 2 )) 

IF (EOF( 5)) 20 3: 

S T~ (ELEw.J E:10 

-:FCPI.Eu. 3) '301 =L. 3 
wRITE7 (59601) PqOIA,T.',T29,E,P3: 

N=;F/ XINC041 

Si= CO (--, T I, POI) 

LAll.#:AMO A( PO I,PRP TZ) 
ZA:P*R*3*LAM*'2602/('4aOL(i.*5POI&)) 

I :LA ME~('iZLM3R'i4D) 3-UaCPO 

'O~m"0z Z-Z;A 
3C:P R/T2 

3;:-Cy-:NDR:CAL ME:MBRANE- HiO0Q STZE33 TABLE X::: 

3~:N;IA:'L M:ER0-ICN.'L EM-rMOtN STRESSD~T~Ev:
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FTN 4.3+498-;.ý! ZIRSVS- 74/74 03T=1 TRA:-7

-- ;,,S-l2,SH3zHE4) STRESSES -QS is 12 T-'-3ý-E x t. N 3 7-0 3, T45-7

;-,T=TO'fAL 4EA0 STRESS.  

(6 96wC2) M 'o' 9 V 3 
S-q'-93429SH3,SHT 

3-0 4. :=IVN 

XL;M=X4'*-AM 
Svý2=-2.3*VO*CLAI*R*---XP(-XLAM)*'6"*OSCXLM))/TZ 
SC3=2.:*LAM**2*R4'MO*:'XP(-XLAM)*('OS(tL-AM)-S"N(XLAM))/TZ 
S^-M4=6.:*VO*---XP(-XLA;)"SA-N(XLAMI;(L&I*T2--2') 

t"*HOl'EXP(-XL,ýM) 4 (^WOS(XLAM) +SIN ()(LAM)) /T2**2 
SC4=Sc4;4,*pOl 

Sc5=Slli5*Po: 

Sý'4ý'CVX=SC;.+S'W,2+3:3+S:4+S%-05 
SCTC:V:!SCI+S.^,2+3ýý'3-S'w4-3ý5 
Sl-.ýýT^.x=S.,'mi*SCM4+S:m5 

--- SCMT0V=SCM;.-SCM4-SM5 

S.-2,S:3=w'YLIN'0R:C-',L 'IEMBRkNE HOOP 3rR-rSSES EQS 14 AND 15 T,ýBLE X:: 

S:4jS-.,5=CYLjlN0RICAL SENDING HOOP STRESSES EQS 14 4ND !5 TABLE X::: 

YL:143JRICAL MERIDIONAL 13-E-40ING STRESSES E-QS 1.4 ANC ;.5 T,ýB 

S:'I:VX=TOTAL HOOP STR-rSS ON THE C04WEX SURFACE 

S : Tld' C, V = T 0 T A L' HOOP STRESS- ON THE COX:AVE SURFACE 
SZMTCX=TOTAL MERIDION04L STRESS ON TIE -VONVEX SURF40Z 

SZflTCV=T0TAL HER101ONAL STRESS ON TIE CON:AVE SURr4CE 

WR:':_r (596C4T X#S'VltS'w2,SC39SO49SC59SCTCVX*Sý.'OM4A. 9 SCM4 9 S -ý M5 , 30,ýT X 

k'5,6-.'5) S 00 w' V 9 S Ci T CV 

4: K=X+X-iN: 

G '0 TO 13 
SZ FO;Ztl,'T (8F10.2) 
fo Fo:ým:T (114193ýX972HSTRESSE-3 IN HEAD 4NO %ýOYLA'NDERIC4L W4LLS Oz rL 

HZ A Dro PR: SSJRX !4T 6.. Vr-SSý-L//32X*SHPR7-SSUR7-,gXF9,694H PS-*!-Xt 

2 ;,5HINSIOE 3IAM-:'TEl,4XF8.3,3H IN/32K,14HHEAD T41CKNESS95X.F7. 3.  

31 3Li :K-,.l,-'XV",6HCYLlN0-rR WALL TK94X9F7,393H lN/32X915HELASTI: MCGU'-U 

:#St2x9:-"1E9@394H 23I,4Pv-'GX,!4HPO:SSONS RAT'bO95xF8.3//) 

6ý2 FORK,ýT (32X910HE-40 MOME'NTqLoXjlPElý*3t6H lN-L6910Xv9Hr-N0 SHEAR,6X9 

i Eri6.3,614 LB/14//Il 

6."3 --ý4kHAT (6iX,;.3m-4---A) STRESS--- S/6 -'X, X, d.7HFRCt, UN: 

Fi::m LOA093XqF-4:*G,4H PS`/5ý,X*:,6HFROi EOýE MOMENT,4XFjý.w,4H PS&T/ 

2 5-.;Xq'.74FROM RA31AL S4---ARt3XsFlCCq4l PS:/5Gxt5HTOTALi5xtrio.,', 

3 ýS:///59Xv2;-fýYL:N3P:Cl'L 
4;Xj3-!-iO3;' ST;:-'SS:-'3932xo'-gHm--RID:ONAL STRESSES /2x SHOIST NC- X 

5 d 3 R,ý,N X 9 5 -4 M r M 3 R A N E X q 3 H M E M3 Rl N 4 X 7 H 3 END 1 N 5 x 7 -4= -N N 

6 ax 5 -70TA- X, ý2H-7210M JN:70P- , 2x 9 94: -ROM Ex z-:;5z x 

7 5 - L 12 Y, 3 H; R 10M -;',Q 92 x 9 12" -- R OM J N', . F UOR 2 x , 9 H=R 0!.: E C r- , 3 x 

7 x ? Fr:R 0- E, 3 x 9 9 w z R C" * X 6 C:; NV EX, 5 X. 5 -4 P E'S S j RE XI 

7 H-Pý2" T, 6 X, b H C N -j r- X 2 7 SH P R E S Z J R r- 5 y 

2 7 v LE 
6. kil,,ý 7 ;.X F 8 .3, X, -IC ( F 

66,
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2.12.5 BMI-l Basket Drop Tests 

In order to demonstrate compliance of the BMI-l basket with 

the 30-ft free drop criteria of 10CFR71 a full scale basket with 

removable bottom was tested in a simulated cask for falls in both 

the critical angle and horizontal orientations.  

(a) Test Specimens - The test basket was constructed accord

ing to the design drawings BCL-000-500, Rev. A and BCL-000-501 

with the two following exceptions.  

(1) The two retractable lifting lugs were not built into 

the basket since they do not provide any structural 

support to the basket for the impact conditions. The 
lifting lugs are designed for lifting loads only and do 

not contribute to the structure of the basket in any 

way. The springs are used solely to extend the lugs 

when the lid has been removed. When the lid is in 

place, the lugs are pushed back into the retracted 

position. In the inverted drop position, the lugs do 

not react any of the impact load except for their 

individual inertial loads.  

(2) For purposes of rapid availability and economy, the 

boral in the cruciform was replaced with Type 6061-T6 

aluminum sheet. This replacement was considered 

acceptable since the two materials have essentially the 

same low ductility as evidenced by their similarly low 

elongation. This latter property is considered highly 

important since failure of the stainless steel cladding 

could expose the boral. If the boral were to fracture 

as a result of the impact and be lost from the cruci

form, an unacceptable criticality situation could 

exist. As can be seen from the photographs of the test 

basket after the drop test (page 2.135, photographs E6
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VIEWS OF TEST BASKET CRUCIFORM

Spot welds

LA 
Stainless steel strips 

1/16" x 1/8" 

Plan View

stainless 1/16" x 1/8" x 6.31" 

1/16" aluminum

stainless steel skins

Section A-A cut away view
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and Ell), the cruciform with the Type 6061-T6 aluminum 
sheet replacing the boral, while deformed, is still in 

tact as far as maintaining an acceptable criticality 
situation. The stainless steel cover sheets have torn 

along their top edges, but the aluminum sheets are in
tact and unaffected by the impact. The basic integrity 

of the four cells has been maintained.  
The boral in the actual baskets and aluminum in the test 

basket are, in effect, filler material for the sandwich. There 
is no mechanical bond or attachment between the boral (or 

aluminum) and the stainless steel other than the restraint of the 
spot welded steel enclosure. As a result of the drop test, the 

steel sheet covering the aluminum shown on pg. 2.135 tore at the 
upper end of the basket, but the aluminum sheets remained intact 

and continued to serve as separators for the four quadrants.  
Full quality control procedures as required by Appendix E of 

10CFR71 were followed for the fabrication of the basket and 
"<• removable bottom.  

The cask used in the drop tests only simulated the BMI-I 
cask since a full size cask model is too heavy to test at the BCL 

drop test facility. Therefore, the simulated cask was approxi
mately half the length of the BMI-1 and with 4-inch thick lead 

shielding in the sides and bottom instead of 8-inch as in the 
side and 7.5-inch as in the bottom of the BMI-l cask, see sketch 

on page 2.126. Also, the top of the simulated cask was made of 

two 1/2-inch thick steel plates laminated together. Four eyes on 
the side were used to lift and position the simulated cask at the 
proper orientation. Use of the simulated cask is considered 

conservative because this lighter cask will be stopped more 
rapidly upon impact and will thus experience higher impazt G

loads than will the heavier BMI-l cask.

REV. E, 12/28/83
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Steel plates with wooden ends were used to simulate the 

loading of the fuel elements in the basket, see sketch on page 

2.128. For the corner impact test the "elements" were placed 

upright in the basket cells as shown with the plane of the steel 

plate perpendicular to the grid of the removable bottom. In this 

way the appropriate impact load from an actual full element was 

produced. The wooden ends kept the plate centered and tended to 

distribute the load.  

In an actual cask shipment the lower basket rests on the 

cask bottom, and the upper basket is supported on the four corner 

braces of the lower basket which extend 1.0-inch above the lower 

basket. In order to reproduce this type of four-point support, 

four 1/2-inch square bars were tack-welded to the bottom of the 

removable bottom at the points at which the corner braces would 

make contact, see sketch on page 2.128. In this way the basket 

grid was free to deform under the impact load of the simulated 

fuel elements.  

When the cask undergoes end or corner angle impact, the 

impact load of the upper basket acts on the lower basket. This 

condition produces severe loads in several key locations includ

ing the corner braces, their attachment to the upper cage, the 

structural angles of the basket and the cruciform. In order to 

represent this loading, a lead filled steel can was made which 

would have the same weight as a loaded upper basket. Due to 

shrinkage during lead pour, the weight of the lead/steel can was 

169 lb rather than the 178 lb calculated as the weight of a fully 

loaded basket. The error is only 5 percent and this was con

sidered sufficiently close to permit use of the weight to repre

sent the upper basket;

REV. D, 11/23/82
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The weight of the test components was as follows: 

Simulated Cask 4,600 lb 

Basket and Bottom 72 lb 

12 fuel elements @ 8 lb 96 lb 

Lead/Steel Weight (upper basket) 169 lb 

Total Weight 4,937 lb 

(b) Test Procedures - Three tests were performed, a critical 

angle corner impact, a horizontal impact, and a puncture test.  

These were performed in that sequence. For the critical angle 

test, the basket was inserted into the simulated cask cavity with 

the walls of the fuel element cells oriented parallel and 

perpendicular to the "tilt plane" of the cask. The grid of the 

basket bottom was parallel to the "tilt plane" and the "fuel 

elements" were placed in the cells so the plane of the steel 

plates was perpendicular to the basket grid. The lead/steel 

"weight to simulate an upper basket was placed on the top of the 

test basket. Impact-o-graph* accelerometers with trip values of 

100, 150, 200, 250, and 300 g's were attached to the cruciform 

near the bottom of the basket. They were located in a cluster in 

an inner cell on the underside of the "spoke" of the cruciform 

which was perpendicular to the tilt angle. The Impact-o-graph 

accelerometers are "go-no go" mechanical accelerometers which 

indicate by release of small balls and springs when a preset G

load is experienced. They are 3-directional, i.e., they will 
trigger if the preset load level occurs along any of the three 

axes or at any angle between the axes. The reported accuracy is 

±15 percent.

REV. E, 12/28/83
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A similar cluster of five acceleromters was placed on the 

top of the cask. They were located on the cask head adjacent to 

the cover on the side diagonally opposite from the impact corner.  

For the horizontal drop test and the puncture test the walls 

of the basket cells were positioned parallel and perpendicular to 

the impact direction. The wooden ends of the steel "fuel 

elements" were not used. Rather the steel plates were laid 

directly on the bottom side of each basket cell. A cluster of 

five accelerometers was placed on the underside of one of the 

center cells. They were attached near the bottom of the basket 

on a horizontal spoke of the cruciform. A similar cluster of 

accelerometers was placed on the top of the cask opposite the 

impact side. The impact side of the simulated cask was 180 

degrees from the impact edge for the critical angle impact.  

(c) Results of Critical Angle Impact. After impact the cask 

rebounded toward an upright position and continued rotating so 

that it landed on the side opposite the impact corner. The 

impact footprint on the bottom corner extended 5.0 inches, radi

cally inward from the original edge. However, the side of the 

outer shell was partially "rolled under" and also formed part of 

the footprint. The side was also bulged out producing the common 
"elephants foot" appearance evident in end-on axial impacts of 

lead casks. All of the accelerometers on the outside of the cask 

had triggered indicating an impact load on the cask in excess of 

300 G.  

The cask cover was easily removed. There was no visible 

damage to the top of cask. The basket was readily removed. The 

accelerometers had all triggered indicating that the impact load 

on the basket had exceeded 300 G. The four corner braces 

supporting the lead/steel box representing an upper basket were

REV. D, 11/23/82
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"- not visibly deformed. The welds of the braces to the upper cage 

were all intact. Two of the light gage cell walls suffered broken 

welds at the top end and were bent, see photographs on p. 2.132.  

One cell wall was also bowed slightly at the top end. The 

cruciform was intact and was not visibly deformed. The grid of 

the removable bottom was deflected downward a maximum of 7/32-inch 

on the center grid bars and lesser amount on the others.  

The accelerometers indicated that an impact load in excess 

of 300 G was experienced by the basket. In order to estimate the 

possible value of the impact load, the following analysis was 

performed: elsewhere in this SARP the predicted critical angle 

corner impact load was calculated as 

G = 2 H/x 

where 

H = drop height = 360 inches 

x = maximum deformation 

The deformation x is shown on the following sketch, p. 2.133. In 

that sketch, 5.0 inches is the radial dimension of the footprint.  

Then 

x = 5 sin 23.5 

= 1.99 inch 

and 

G = (2) (360)/1.99 = 361 g 

Since this represents an equivalent force vector, the axial 

component can be determined as 

G axial = (361) (cos 23.5) 

= 331 g.
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(d) Results of Horizontal Impact Test. Upon impact, the 

eight 3/8-inch bolts holding the light cover on fractured and the 

lead/steel weight on top of the basket fell out. Examination of 

the fractured surface of the bolts leads to the conclusion that 

the bolts probably sheared due to deformation of the head of the 

simulated cask. This is not indicative of the expected 

performance of the BMI-l cask since the head, cover, and bolting 

design on the simulated cask is significantly different and of 

less rigidity than the BMI-I cask design.  

All accelerometers on the outside of the cask had triggered 

indicating that an impact load in excess of 300 g had occurred.  

Inspection of the top of the basket before removal revealed 

that most of the welds on the light gage components forming the 

cells within each quadrant were broken. The cruciform, however, 

was intact although bent. This observation was confirmed -f-e

the Dasket was removed. The head of the cask was oval and
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moderate force was required to slide the basket out. The basket 
was slightly oval at the top end probably from the action of the 
cask walls.  

All accelerometers on the cruciform in the basket were trig
gered indicating an impact load in excess of 300 g was experi
enced. At the top end of the basket, the horizontal spokes of 
the cruciform were bent down about 1/2 to 3/4 inch at the midspan 
of each spoke, see photograph on p. 2.135. All welds of the 
cruciform to the basket outer walls were intact. Similarly the 
juncture of the four cruciform spokes was intact the full axial 
length of the basket. However, at the ends of the cruciform 
adjacent to the juncture of the four spokes, the end clad weld 
joints which sealed the simulated boral in the cruciform was 
torn, see photographs on p. 2.135. The edge of the simulated 
boral was visible for about 1-inch of the radial direction on the 
vertical spokes, and for less than l/2inch on the two horizontal 
spokes. The simulated boral was intact and no chips or cracks 
were visible. Moreover, the edges of the simulated boral were 
straight. The nature of the "tear" in the edge indicates that i: 
was caused by a "pulling apart" of the cladding on the vertical 
spokes by the horizontal spokes as they deformed. This observa
tion is confirmed by the relatively unaffected straight and 
intact condition of the simulated boral.  

The basket cells were deformed, especially those below the 
horizontal spokes of the cruciform. Many of the welds of the 
light cell walls were broken. The walls of two of the 1/8 x 
3/4 x 3/4 angles forming the basket corners were broken at the 
bottom end.  

The following conclusions can be made regarding the results.  
(1) the neutron poison cruciform structure maintained 

isolation of the four quadrants of the basket. Thus 
the subcritical conditions of the contents are 
maintained.
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(2) Deformation of the fuel elements due to basket 

deformation is not significant.  

(3) The basket retained sufficient structural integrity to 

permit post-accident handling without special 

procedures.  

(e) Evaluation of Other Rotational Orientations for 

Horizontal Impact. As noted above, the 30-foot droptest was 

performed with the walls of the basket cells oriented parallel 

and perpendicular to the direction of impact (Surface A impact in 

the sketch below).  

SaoAV
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•. This orientation produces the most severe loading condition for 

impact in the horizontal position. This is shown by comparing 

the magnitude of the loads on the basket members for this and 

other orientations, for example a Surface B impact in the 

preceeding sketch.  

The structure of the basket cells is shown in Drawing 

BCL-000-500, Rev. A. The structure of the cruciform member is 

shown in Drawing 0048, Rev. A. The light gage cell walls 

(Item 12 in Drawing BCL-000-500, Rev. A) provide negligible 

support to the strength of the cruciform since they have large 

rectangular holes in them to facilitate heat transfer between 

cell cavities and they are attached to the cruciform with skip 

welds. Thus their contribution is neglected. The construction 

of the cruciform is such that the cladding panels, Item 6 in 

Drawing 0048, Rev. A, are firmly bonded to each other at the top, 

bottom, and outside edges where they are welded to common edge 

cladding, Items 2 and 3. There is also a less secure attachment 

S-between the panels at the spot welds between the panels and 

internal spacers, Item 5. These spot welds are light welds made 

to facilitate fabrication. Their contribution to bonding the 

cladding panels on opposite sides of the cruciform to each other 

so they act in unison rather than separately is unknown.  

However, as will be shown, this knowledge is not necessary for 

comparison of the loading patterns to establish the most severe 

one.  

The loading on the cruciform for both the Surface A and 

Surface B impact orientations is shown in the sketch on page 

2.138. The model assumes that the impact loads produced by each 

element are equal and have a value of Wg.  

A free body diagram of the four panels is shown in the 

sketch on page 2.139. The panels are welded to a common edge 

clad/spacer at the ends of the cruciform arms (location of 

reaction forces RI, R2 , R3 , and R4 ). However, since the panels 

are also welded to the basket sides, the reaction forces at the 

outside edges of the panel can be assumed to be indepedent of 
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each other. The impact loading on the panels from each fuel 

element is Wg. The effect of the light cell dividers within each 

quadrant is neglected and the elements are assumed to be in 

intimate contact. The pressure force, P, between the panels 

forming the horizontal arm is the area pressure between the 

panels (through the boral). The reaction force R3 is the direct 

reaction between the vertical arms of the adjacent panels. The 

width and breadth of the fuel elements are "a". Consider an 

upper quadrant in the sketch. Summing forces in the vertical 

direction yields 

R1 + R3 + R2 + P(2a) = 3 Wg . (Eq. 1) 

Similarly, for the lower quadrant, 

R3 + P(2a) = R4 + R2 . (Eq. 2) 

Substitution of Eq. 2 into Eq. 1 yields 

R1 + R4 + 2R 2 = 3 Wg . (Eq. 3) 

Equations 1 and 3 indicate the obvious--that for the test 

orientation (Surface A impact) the sum of the reaction forces 

acting on the cruciform panels total to the impact force of the 

three fuel elements resting on it. This value can now be 

compared with similar equations for the Surface B impact 

orientation.  

A free body diagram for a Surface B impact is shown in the 

following sketch, Page 2.141. For the top quadrant, summing 

moments about Point A yields
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R6u(2a) + R6v(2a) + 2 [Pl(2a)a] + R7(2a) 

0.707 (2Wg) (3a/2) + 0.707 (Wg) (a/2) + 0.707 (2Wg) (a/2) + 

0.707 (Wg) (3a/2) 

R6u + R6v + 2Pla + R7= 2.121 Wg 

However, R6u = R6v = 0.707 R6 .

Then

(Eq. 4)1.414 R6 + 2Pla + R 7 = 2.121 Wg 

0.707 R8 + R9 + P 2 (2a) + 

0.707(RI 0 ) = 3(0.707 Wg) (Eq. 5)

Summing forces in the "u" direction yields

R7 + Pl(2a) = 0.707 R8 + 0.707 R1 0
(Ez. 6)

(The impact forces, Wg, do not act on the cruciform along this 

axis but bear on the side of the basket.) Summing moments about 

Point A yields 

Pl(2a) (a) + R7 (2a) + P2(2a) (a) = 

2 (.707 Wg) (a/2) + (.707 Wg) (3a/2)

Pia + P2a + R7 = 0.884 Wg (E-.

(As above, the Wg force components along the "u" axis do not 

on the cruciform.) Summing moments about Point B yields
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R9 (2a) + P 2 (2a) (a) + Pl(2a) (a) = 

2 (.707 Wg)(3a/2) + 0.707 Wg(a/2) 

R9 + P2a + pla = 1.237 Wg (Eq. 8) 

Equations 5 through 8 are not mutually independent but are pre

sented to show the interaction of the several reaction forces and 

their relationship to the impact forces, Wg. The observation 

which is made from examination of the four equations is that the 

sum of the reaction forces is less than the sum for a Surface A 

impact, Eq. 1.  

Considering the lower quadrant and summing forces in the 

vertical direction yields 

2(0.707)R9 + 2(0.707)(P2)(2a) = 2R 1 I 

R9 + 2P 2 a = 1.414 RII (Eq. 9) 

This can be combined with Eq. 6 to give 

R9 + 1.414 RII + 2Pla = 2.474 Wg (Eq. 10) 

All of the above equations indicate that the sum of the 

reaction forces acting on the cladding panels is less severe for 

the Surface B impact orientation than for the Surface A impact 

orientation which was used in the test. One feature, however, is 

not considered above, that of the in-plane compression loading 

for certain panels.  

Referring to the sketch for the Surface B impact, Page 

2.141, attention is called to the side and bottom quadrant free 

body diagrams--specifically the panel arms in the plane of the 
"u" axis. These arms are acted on by R7 and (0.707)R 1 0 , and by
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R9 and (0.707)RlI. These two pair of forces are opposed and 

place the respective panels in compression. Moreover, the panel 

is subjected to a pressure from P2 and the "v" axis vector of the 

impact forces, Wg. The exact magnitude of the forces and their 

effect can not be determined without extensive computer analysis 

or testing. The magnitude and effect can be inferred, however, 

by examination of the photographs on Page 2.135 and the free body 

diagram for Surface A impact, Page 2.139. In the free body 

diagram it is noted that the forces R3 and R4 act mutually 

opposite in the plane of the panel. From the photographs it is 

noted, however, that although some minor buckling of the panel 

occurred it was not extreme. The nature of the bowing which the 

horizontal arm of the cruciform experienced indicates that the 

force R3 reached the value necessary to initiate buckling of the 

lower vertical arm. However, as motion occurred, the force Rl, 

rapidly increased relieving the buckling force R3 . Meanwhile, 

the action of the fuel element impact load was to produce sig

nificant bowing in the panel with most of the reaction being 

produced by forces R1 and R2. A similar occurrence would be 

expected for impact in the Surface B impact orientation. Consi

der the cladding panel mark "Panel A" in the free body diagram, 

Page 2.141. As the impact event progresses, the force R7 would 

increase and might initiate buckling of the lower diagonal arm of 

the cruciform. However, the R6 forces in the upper quadrant 

would rapidly increase, force R7 would drop, and buckling as such 

would halt (similar to panel response for the test orientation).  

The side force on Panel A would tend to continue the bowing of 

the panel due to the v-axis vector of the impact force Wg which 

is slightly countered by pressure, P2. The loading pattern is 

analogous but less severe to that shown for the upper quadrant of 

the free body diagram on page 2.139 for a Surface A impact (v 

vector of R8 analogous to RI, R9 analogous to R3 , etc). Thus, 

the panel would be expected to bow no more than the amount shown
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S.in the photographs on p. 2.135 and no failure other than the 

minor separation of the edge welds such as experienced by the 

test basket would be expected.  

The above evaluation did not require knowledge about the 

structural integrity of the spot welds at the center spacers of 

the cruciform arms. It is assumed that their influence on panel 

response and performance, whether major or minor, would be the 

same for either a Surface A or Surface B impact orientation.  

The above evaluation also did not consider the nature of the 

reaction forces, i.e., tensile, shear, etc. For the test orien

tation, Surface A impact, the force R1 is a tensile force while 

R2 is a combination shear and bending. The reaction forces for 

the Surface B impact are similar, i.e., tension, shear and 

bending. Thus, similar performance of the weld joints between 

the panels and the side of the bracket would be expected.  

The above evaluation indicates that the sum of all the reac

tion forces acting on any one panel for a Surface B impact orien

"- tation is less than for a Surface A orientation, the orientation 

which was tested. Although the values of the individual reactor 

forces could not be evaluated, the analysis indicated that none 

are higher for the Surface B orientation than for the Surface A 

orientation. For example compare Eq. 1 and Eq. 4.  

Eq. 1. (Surface A) R1 + R2 + R3 + 2Pa = 3 Wg 

Eq. 4. (Surface B) 1.414 R6 + R7 + 2Pla = 2.121 Wg 

Multiplying Eq. 4 by 1.414 yields 

Eq. 4a. 2R 6 + 1.414 R7 + 2.828 P1 a a 3 Wg 

Then if it is assumed that 2R 6 is analogous to R1 + R2 , R3 

analogous to R7 and Pa analogous to Pla, R6 is less than R1 since 

there is greater support from the other reaction forces R7 and 

Pla. Even if R7 and Pla were nil, R6 would be no greater
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than R1 or R2 . Consider the free body diagram, Page 2.139. If 
R3 = 0 and P = 0, then R1 > R2 ; but since R1 + R2 equal 2R6 , then 
R6 < Rl. Similar logic shows that other reaction forces are less 
than experienced by the test basket during the fall in the 
Surface A impact orientation. Thus, it is shown that the Surface 
A impact orientation is the most severe. Any orientation for a 
rotational angle between Surface A and Surface B impact orienta
tion would result in reaction forces between those for the A and 
B orientations.  

(f) Results of 40-inch Drop Puncture Test 

The test basket was subjected to a 40-inch puncture test on 
the side of the package following the 30 foot side drop test.  
Results of this test can be seen in the photographs on page 
2.147. As can be seen from the photographs, there were some 
slight additional deformation of the light gage cell walls.  
However, the cruciform boral sheets dividing the quadrants 
display rather small amounts of increased deformation and remain 
essentially intact. The net effect of the puncture test was to 
clamp the "cask" shell more tightly around the basket making it 
virtually impossible to remove the basket. However, it was still 
possible to remove the fuel element without difficulty.
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(g) Texas A&M MTR Fuel--Drop Analysis. The Texas A&M fuel, 

as shown as BCL Drawing No. 000-236 is covered by the poison 

plates except for approximately 1/8 in. at the bottom end. The 

poison plate is 24-1/2 in. long (Ref. BCL Dwg. No. 0048), the 

active fuel length is 24.62 in. The design of the Texas A&M fuel 

element is such that it is unlikely that there will be any 

significant movement of the fuel below or above the poison plates 

in the event of a 30 ft. end drop at either end.  

The following analysis shows that the fuel elements will not 

fail under end drop conditions on either end. The worst case 

situation is for the plug end drop (bottom) with the fuel element 

resting in the steel bars (2/16 in. x 7/16 in.) as shown on BMI-.  

Fuel Basket Modification Drawing BCL-000-501. In 

this situation eight of the twelve elements could be located such 

that only 50 percent of the end of the plug is supported by the 

steel bars.  

rt z Elements 1, 2, 5, 6, 9, 
10, 11, and 12 can have 

5 io 3 
as little as one half of 

T7 17. 11 4. the end plug bearing 

4 S •surface in contact with 

the steel grid.  

The maximum bearing stress occurs on the edge of the 6061-T6 

aluminum plug as shown below.  

I Inside Diameter - 2.0 in.  

Section A-A. end 

-La I . Area = ir/4 (2.0942 - 22) 

SI = .211 in.  

1 I One-half is in contact 

.211 in. 2/2 = .10 in.2
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Section B-B 

Area - w/4 (2.3722 - 22 

= 1.53 in. 2.  

The allowable bearing yield stress for the 6061 fitting is 

22,000 psi. The weight of the Texas A&M MTR fuel element is 

10.5 lb. The acceleration is a bottom end drop is 368 gs (ref.  

page 2.86) 10.5 x 368 = 3,864 lb.  

fb 3864 lbs - 38,640 psi 

bry A .10 in 2 

This exceeds the allowable bearing yield stress by a factor 

of 1.76 and will result in yielding of the thin edge of the 6061 

end plug until sufficient area has been flattened out to support 

the fuel element at the allowable yield stress. Conservatively 

assuming that yielding will cease when an area three times that 

given above, 3 x .10 = .30 in. 2 , the fuel element will have moved 

approximately 1/16 of an inch. At that point the bearing yield 

stress will be: 

f - 4063.5 = 13,545 psi 
bry .30 

Fbry - 22,000 psi 

M.S.y 22 000 1 - .62 

The movement of approximately 1/16 of an inch is considered 

insignificant.
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Top End Drop - Texas A&M MTR Fuel 

The top end drop for the Texas A&M MTR fuel is less severe 

than the bottom end drop. By constrast, the maximum impact force 
is 87.5 G on the top of the cask. Conservatively assuming no 

attenuation, this shock force is also applied to the fuel.  
The end view of the aluminum side plates which hold the fuel 

plate is shown below: 

2 
End area = (3.15)(.154) + (19)(.122)(.033) 2 = 1.1232 in.  

The fuel elements bear against a smooth steel plate in the 

top end drop. The weight of the fuel element is 10.5 lb. The 

impact force is 10.5 lb x 87.5 G,. 918.75 lb. The allowable 

bearing yield stress for 6061-76 is 22,,-0 psi.  

22,000 -i M.S. 1 high 

(Paragraph deleted)
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Document 20 

•2.12.6 Structural Evaluation of BMI-1 Cask with Eight MURR 
Spent Fuel Elements 

Cask Containment 

The containment criteria specified in 10 CFR 71.51 and therein 

referenced part 71 sections are met by the BMI-1 Type B package. Analysis of 

this is presented in the BMI-1 SAR, Section 2. When used to ship irradiated 

MURR fuel assemblies, the cask itself will be as described in the SAR. We 

comment below on some specific points, in particular those involving the 

MURR fuel and cask basket.  

Closure Bolts 

In SAR Section 2.6, p. 2.30, the total net outward force on the lid due to 

100 psig internal pressure and rubber sealing gasket compression is 34,130 

"-pounds. 
No credit is taken for the 1,100 pound weight of the lid (p. 1.5). Using 

a bolt cross-section area of 0.563 in2 , the stress in each of the 12 bolts is 

5,052 psi. This is well below the tensile yield stress for 304 stainless steel 

of 30,000 psi, and the ultimate stress 75,000 psi, given in SAR Table 2.23 on 

p. 2.2. The bolt' (stud) material is stated in 3.4.2 as 304 SS.  

In addition to the above 5,052 psi stress, we may consider a pre-load due 

to torque on the bolt nuts when the lid is initially tightened down. The pre

load force is 

Fi = T= 50 ft.lb. = 4.725 lb.  
cdB (.15)(.8466 in./12) 

where T is the torque, c is a lubricated bolt-nut friction factor, and dB - .8466 

inch is the bolt minor (inside threads) diameter. This equation is from
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Machine Design: Theory and Practices (Macmillan Publishing Co.) p.916. The 

"-re-load bolt stress is then 4725 lb/0.563 in2 - 8,393. psi and the sum of the 

",.-4tresses is 5,052 + 8,393 - 13,445 psi. This is a factor 2.2 below the yield 

stress and well below the ultimate stress.  

Minimum Coolant Temperatures 

With the most unfavorable ambient temperature of Ta - - 40OF - 4200R 

[10 CFR 71.71(b)(2)], a decay power of 0.5 kW - 1700 Btu/hr, a cask surface 

area of 49.7 ft2 , and heat transfer coefficient 

h - (0.40)(Ts- T- /3 

the cask surface temperature Ts is found from 

1700= (0.1 7 3 )(0.5)(49.74[TO- -01(4-0} + (0.40)(49.7)(Ts-420)4 /3 

This equation is explained in our Thermal Evaluation section. The 

solution is Ts - -160F. With a 10OF rise through the lead and steel walls, and 

100 across the cavity-basket water gap and fuel, the water in the fuel annulus 

would be just above 0°F.  

If we consider the unfavorable but less extreme ambient temperature 

Ta -- 20°F, [10 CFR 71.71(b)], the cask surface temperature is + 30F and the 

water in the fuel annulus center would be about 250F. This could be raised 

above the freezing temperature of water by following SAR Section 3.4.3 and 

covering the cask with a heat-transfer reducing blanket.  

In any shipment at sub-zero °F ambient temperature, we will consider 

the actual decay power and our measurement of the cask surface temperature 

under the blanket. If there is a risk of coolant freezing, sufficient antifreeze 

will be added to the cask to prevent damage of any component of the package 

by freezing, (reference Certificate of Compliance No. 5957).
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2•,ressure Relief Valve Test 

The pressure relief valve will be tested on an annual basis, either by 

Cintichem, Inc., the BMI-1 cask owner, or by MURR.  

Normal Conditions of Transoort 

SAR Section 2. Structural Evaluation and Section 3. Thermal Evaluation, 

and the MURR submissions explain that the radioactivity containment 

requirements of 71.51(a)(1) for normal conditions of transport are met by the 

cask integrity.  

In addition, for radioactive material to escape from the fuel elements, 

the plate cladding must be penetrated by forced cutting, or by temperatures 

above the normal transport conditions. The stainless steel basket with its lid 

holds the elements firmly in place. It is not credible that the cask lid come 

off. Therefore it is not credible that any significant amount of radioactivity 

Scan be released from a fuel element.  

Hvloothetical Accident Conditions 

As in the paragraph above, even in accident conditions, the cask lid does 

not come off. In the hypothetical fire, fuel plates do not get to failure 

temperatures, as explained in our Thermal Evaluation.  

Accordingly, we conclude that there would be no escape of krypton-85 

exceeding 10,000 curies in one week and no escape of radioactive material 

exceeding A2 in one week. The last paragraph of our Shielding Evaluation 

shows that in a hypothetical accident, there would be no external radiation 

dose rate exceeding one rem per hour at one meter from the external surface 

of the package. The requirements of 10 CFR 71.51(a)(2) are met.
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2.12.7 Analysis of MITR Fuel Assemblies in BMI-1 Cask 

Normal Conditions of Tmn. port 

As explained in the BMI-I Safety Analysis Report, the integrity of the BMI-I cask 
meets containment requirements of 71.51 (a)(1) for normal conditions of tmnsport.  

In addition, the MITR-I1 elements will be secured using spas inside the Missouri 
basket so as to preclude any movement within the cask which might cause fuel damage.  
The cladding integrity has been tested for all MrIR-Il fuel elements with no fission product 
leakage indicated. The lower limit of detection for this testing is well below dth of 1064 A2 
per hour, as prescribed in 10 CFR 71.51(a)(1).  

Thirdly, normal conditions of transport will not result in any changes in external 
radiation levels. Even in an absence of the spacers, the fuel elements would only shift 
towards the outside of the cask a total distance of less than one inch, resulting in an 
insignificant increase in external radiation levels.  

Hvnothetical Accident Conditions 

As also explained in the BMI-1 SAR the cask integrity is maintained during 
hypothetical accident conditions. Even if the fuel were damaged, there would be no escape 
of Krypton-85 exceeding 10,000 curies in one week and no escape of radioactive material 
exceeding A2 in one week. Therefore the requirements of 10 CFR 71.51(a)(2) are met.  

The University of Missouri analyzed the Missouri basket under the hypothetical fire 
accident conditions and concluded that the maximum fuel temperature would reach 724 IF, 
which is well below the clad failure temnperature. This analysis is exactly applicable to the 
MITR-U fueL It should be noted however, that there is a larger gap between the fuel and 
basket in the MITR-II case, so that there will be an overall lower ful temperature. Section 
5.4.2.1 of the BMI-1 SAR also explains that the only shielding loss in the h thetical fire 
accident is a 3 inch drop in lead level at the corner of the cask, which resu in a dose less 
than I Rem/hr at 1 meter. Since an MITR-II shipment contains less volume and has a 
lower external dose rate than that analyzed in the SAR, hypothetical radiation levels will be 
even less.  

Finally, 10 CFR 71.51(a)(2) requires that them be no escape of Krypton-5 great 
than 10,000 curies in one week. There is presently no combination of eight MTRM-u spent 
fuel elements that approaches an inventory of 10,000 curies of Kr-85.
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Stress Analysis - HFBR Baskets

E-2.1 Introduction

The function of the baskets is to provide structural support and maintain separation 
between fuel assemblies during transport. During the hypothetical drop accident, 
the fuel assemblies and baskets will be subjected to an impact load due to their 
inertia.  

The structural analysis for the BMI-I Package (Appendix E-1) indicated the Package 
would be subjected to the following 0g9 loads.  

Bottom impact - the cask deforms 1.92 inches (Appendix E-1, p 2.32).  
g - 2 x 360 /1.92 - 375 

Top impact - the cask deforms 1.06 inches (Appendix E-1, p 2.35).  
g - 2 x 360 /1.06 - 680 

Side impact - the cask deforms 1.44 inches (Appendix E-1, p 2.38).  
g - 2 x 360 /1.44 - 500 

Corner impact - the cask deforms 5.63 inches (Appendix E-1, p 2.40)..  
g - 2 x 360 /5.63 - 128

The aga 
damping 
load is

loading on the fuel/baskets will be less than the above values due to 
in the cask body. This analysis conservatively assumes that the entire ago 
transmitted to the internals.

From Drawing No. BNL 93-001 (Rev. 1), it can be seen that the basket is fabricated 
from 3/16 inch thick and 1/4 inch thick 304 stainless steel plates. Each basket 
contains 10 rectangular fuel compartments with a length of 25-3/8 Inches. The fuel 
compartments are about 3 inches square. Fuel assemblies are supported at the bottom 
of each compartment by 3/16 inch thick by 1 inch wide pieces welded to the uprights 
which define compartments. The basket lifting lugs are 1 3/4 inch wide by 1/4 Inch 
thick pieces welded to the compartment exterior at two locales 180 degrees apart.  
The opposing sides have 1/4 inch square separators.  

The envelope diameter defined by the basket is 15 1/8 inches while the Interior 
diameter of the cask is nominally 15 1/2 inches diameter. The resulting diametral 
clearance, 3/8 inch, minimizes basket movement from side to side. Each basket Is 25 
3/4 inches long and the spacer plate is 3/8 inch thick for a total length of 51 7/8 
inches. The nominal internal height of the internal cavity is 54 inches. The 
clearance in the cavity is 2 1/8 inches.  

Component weights relevant to the basket stress analysis are as follows: 

Fuel assembly (lbs) - 9.9 
Spacer plate (lbs) - 18 
Basket total (lbs) - 185 

All internals (lbs) - 586 
Single basket plus fuel (lbs) - 284
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This Appendix presents the analysis to show that the basket is not adversely 
affected when the cask is subjected to the 30 foot drop accident. Since the load 
under the 30 foot drop condition is the worst case, the basket can safely react to 
the designated loads for both normal and accident conditions.  

The allowable yield stress for 304 stainless steel at 200 degrees F is 25,000 psi.  
The ultimate stress at this same temperature is 71,000 psi. These values were used 
throughout the stress analysis.  

E-2.2 Bottom Dro.  
Downward or axial loads are carried by the 1 Inch strips (3/16 inch thick) at the 
bottom of the basket. For a single assembly at 9.9 lbs, the load on the strips is: 

P - 9.9 x 375 - 3,713 lbs 

E-2.2.1 Strip Plate Bendina Stress 

From the referenced drawing, all compartments have 6 square inches of 
support strip at the compartment bottom. The uniformly distributed 
load, W on the strip plate is: 

W - P/6 - 3,713/6 - 619 lbs/in2 

The maximum bending stress at a 3' x 16 strip plate are calculated from: 

Sb - 0.798 x W (1)2 / (3/16)2 - 14,050 psi 

The allowable bending stress is the yield stress (Sa) or 25,000 psi.  

The mrgin of safety is: 

NS - (Sa/Sb) - 1 

KS - (25,000/14,o50) - 1 

MS - +0.78 

E-2.2.2 Strip Plate Shear Stress

Shear stress in the plate is: 

Ss - P / (2 x 3/16 x (3 + 1 + 1)) 

Ss - 1,980 psi
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The allowable shear stress Is 60 percent of the yield stress: 

Sa - 0.6 x 25,000 - 15,000 psi 

The margin of safety is: 

MS - (Sd/Ss) - I 

MS - (15,000/1,980) - 1 

MS - +6.57 

E-2.2.3 Strip Plate To Basket Weld Stress 

From the referenced drawing the strip plate is attached to the basket 
with a 1/8 inch fillet weld. The load on the plate is P/2 or 1,857 lbs.  

The weld area is: 

A - (3 + 1+ 1 ) x 0.125 - 0.625 inz 

The weld stress is: 

Sw - 1,857 / (0.625 x 0.707 x 0.85) 

Sw - 4,944 psi 

The allowable weld stress (Sa) is 30 percent of the ultimate stress: 

Sa - (0.3) x 71,000 psi - 21,300 psi 

The margin of safety is: 

MS- (Sa/Sw) - I 

MS - (21,300/4,944) - 1 

MS - +3.31 

E-2.3 Top-Drop 

During the top drop case, fuel assemblies are not contained and the spacer plate is 
loaded by assemblies in the bottom basket.  

E-2.3.1 Soacer Plate Bending Stress 

For a single assembly at 9.9 lbs, the load on the 3/8 inch thick spacer 
plate is: 

P - 9.9 x 680 - 6,732 lbs 
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The maximum bending stress on a 3 x 3 inch square section of spacer 
plate, simply supported at all edges, is: 

Sb - 0.287 x P / (3/8)2 

Sb - 13,740 psi 

The allowable bending stress (Sa) is the yield stress or 25,000 psi.  

The margin of safety is: 

HS - (Sa/Sb) - 1 

HS - (25,000/13,740) - 1 

MS - +0.82 

E-2.3.2 Spacer Plate Shear Stress 

Shear stress In the plate is: 

Ss - P / (3/8 x (3 + 3 + 3 + 3)) 

Ss - 6,732 / 3/8 x 12 - 1,496 psi 

The allowable shear stress (Sa) is 60 percent of the yield stress: 

Sa - 0.6 x 25,000 - 15,000 psi 

The margin of safety is: 

HS - (Sa/Ss) - 1 

MS - (15,000/1,496) - 1 

MS - +9.03 

E-2.3.3 Basket Frame Yield Stress 

Axial loads are carried by the 1/4 inch thick frame plates (21) with a 
total cross sectional area of: 

A - 1/4 x (2x14 + 2x10 + 13x3.25 + 2x2.25 + 2x0.25) + 1/2 x 2 x 3 

A - 26.81 in2 

The total axial load on the basket frame is: 

P - (lOXPa + Pb + Ps) x 680 - 302 x 680 - 205,360 lbs 

Where: 
Pa - Fuel assembly weight (9.9 lbs) 
Pb - Basket weight (185 lbs) 
Ps - Spacer plate weight (18 lbs)
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The maximum yield stress is: 

Sm - P/A - 205,360 / 26.81 - 7,660 psi 

The allowable yield stress (Sa) Is 25,000 psi.  

The margin of safety is: 

MS - (Sa/S,) - I 

MS - (25,000/7,660) - 1 

MS - + 2.26 

E-2.4 Side Drop 

During the side drop, the fuel assemblies in the two top tiers of compartments plus 
the basket, will produce compressive loads on the basket bottom compartment plates.  
In the same orientation, the lifting lug plates will be loaded in compression and 
the compartment plate attached to the lifting lug will be in bending.  

E-2.4.1 Basket Plate Stress 

The seven assemblies in the upper compartments will load the three lower 
compartments. The lower compartments will conservatively see a combined 
load equal to the weight of seven assemblies plus the basket weight, or 
255 lbs.  

P - ( 7xPa + Pb ) x 500 - 127,150 lbs 

Where: 
Pa - Fuel assembly weight (9.9 lbs) 
Pb - Basket weight (185 lbs) 

The total cross sectional area of the plates is: 

A - 4 x 1/4 x 25.37 - 25.37 in2 

The yield stress on the plates is: 

Sp - P/A - 127,150 / 25.37 - 5,012 psi 

The allowable yield stress (Sa) is 25,000 psi.  

The margin of safety is: 

MS - (Sa/Sp) - 1 

MS - (25,000/6,692) -1 

MS - +3.99
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E-2.4.2 Basket Liftina Lua Comnresston 

All ten assemblies in the basket plus the basket will load the lifting 
lug.  

P " ( lOxPa + Pb ) x 500 - 142,000 lbs 

Where: 
Pa - Fuel assembly weight (9.9 lbs) 
Pb - Basket weight (185 lbs) 

The total cross sectional area of the plate is: 

A - 1/4 x 25.37 - 6.34 in2 

The yield stress on the plates is: 

Sp - P/A - 142,000 / 6.34 - 22,440 psi 

The allowable yield stress (Sa) is 25,000 psi.  

The margin of safety is: 

MS - (Sa/Sp) - 1 

MS - (25,000/22,400) - 1 

MS - +.116 

E-2.4.3 Bendina of Compartment Plate 

All ten assemblies in the basket plus the basket will load the lifting 
lug and subject the bottom compartment to bending. This location has 
been reinforced with a 1/2 inch plate to stiffen the compartment at this 
location.  

Pc - (lOxPa + Pb ) x 500 - 142,000 lbs 

Where: 
Pa - Fuel assembly weight (9.9 lbs) 
Pb - Basket weight (185 lbs) 

Moment(M) - P x L / 8 142,000 x 3 / 8 

M - 53,250 lb in 

I - 25.37 x (3/4)3 / 12 - .892 in4
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The bending stress on the plate is: 

Sb - (M/I) x 3/8 a (53,250 / 0.892) x 0.375 

Sb - 22,386 psi 

The allowable bending stress (Sa) Is 25,000 psi.  

The margin of safety is: 

KS - (Sa/Sb) - I 

HS - (25,000/22,386) - 1 

HS - +.116 

E-2.5 Corner Drop 

Because the corner drop orientation results in substantially reduced "g" loads and 
produces axial and lateral components less than those of the side and end drop 
conditions, they are not presented.  

Rev. I, February 28, 1995
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3. THERMAL EVALUATION 

3.1 Discussion 

3.1.1 Summary of Results 

For normal operation with 1.5 kw decay heat with a 130 F 

ambient temperature, the cask inner liner temperature will be 

about 227 F. During the hypothetical fire accident, the inner 

liner temperature will be about 560 F.  

The Fermi fuel subassembly will be shipped in the BMI-.  

shipping cask, which has been provided with a special basket.  

During shipment, the cask cavity is filled with water. The vcid 

spaces between the fuel rods in the subassembly are filled with 

a settled bed of copper shot in water. The cask is to be shipped.  

by truck so that under normal conditions the maximum fuel and 

water temperature is about 230 F.  

3.1.2 Maximum and Minimum 

Decay Heat 

(a) BRR/MTR Fuel 

The total fission product decay heat is calculated from 

the data in ORNL-2127(I). Following the analysis in Reference 

(1), the Number U-235 atoms in a BRR fuel element is: 

N= 3.2 x 10 10P 

-:here 

P = irradiation power (watts) 

= fission cross section used in Tables = 580 barns 

= thermal neutron flux.  

(2) References to Section 3. found in Section 3.6.1.  
REV A 3-28-80
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The maximum U-235 burn-up in a BRR element is 17.5 percent 

For a fuel loading of 162 g U-235, with a capture to fission 

ratio of 1.18, the fission product production is 24.1 g. For 

an irradiation time of 313 days, the irradiation power is P = 

24.1 MwD/313 D = 7.7 x 104 watts per element (assuming 1 g U-235 = 

1 MwD). Thus, for * = 1014 n/cm2 sec: 

N = (3.2 x 10 20) (7.7 x 104) = 4.25 x 10 2 2 atoms 
(580)(1014) U-235 per element.  

From the data in Reference (1), the total decay heat (beta plus 

gamma) for an irradiation time of 313 days and a cooling time 

of 90 days (with * = 1014) is q = 10- 2 1watts/atom U-235, or: 

Q = (10- 21)(4.25 x 102) = 42.5 watts/element 

For 24 elements with the same irradiation history, the decay heat 

is 24 x 42.5 = 1.02 n.i = 3,480 Btu/hr.  

Wb) Fermi Fuel 

(Paragraph deleted)
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(c) TRIGA Fuel 

The fission product activity was estimated to be 250 

curies per element in November, 1970 (based on radiation measure

ment made at that time). Assuming 2 MEV per event, the decay 

heat of the fuel is: 

250 curies/element x 3.7 x 10 events/sec/curie x 
. 10-13was/Ese 

2 MEV/event x 1.6 x 10 watts/MEV/sec 

- 2.96 watts/element 

The total heat load for the cask is 112.5 watts. This is a very 

conservative estimate since the fuel has cooled - 2 years and has 

a cooling factor greater than 3.0. The BMI-l cask is licensed 

to handle up to 1.5 kw of decay heat. Thus, the thermal inventory 

for this shipment is well within the limits for the cask.  

(Paragraph deleted) 

(d) EPRI Crack Arrest Capsules 

The total decay heat generated by the capsule at discharce 

is 197 watts. The axial heat rate over the height of the capsule 

is (197) (12)/21.5 = 110 watts/ft. The cask .s rated for contents 

whose decay heat is up to 1,500 watts. The cavity length is 

54 inches. Thus, the axial heat rate permitted for the cask is 

(1,500) (12)/54 = 333 watts/ft. Thus, the decay heat is within 

zermissible levels.

REV G, 6-14-85
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(e)Union Carbide Process Uranium Oxide Container 

The total decay heat of the process oxide may vary up to a 
maximum of 20 watts per container. Thus for a shipment of twenty
four (24) containers, each producing the maximum decay heat, the 
total heat generation of the contents is 480 watts. This is below 
the 1500 watt rating of the cask.  

(f) Union Carbide TarQet U2 3 5 SPecial Form Capsules 

The total decay heat for the U2 3 5 target material may vary.  
The number of capsules permitted per shipment shall be limited so 
that the total aggregate decay heat generation will not exceed 1500 
watts, the rating of the BMI-1 cask.  

(g) MURR Fuel Assemblies 

A thermal analysis of the case of eight MURR fuel assemblies 
in the BMI-1 cask was performed. This analysis showed that the 
maximum surface temperature of the cask would be 182 0 F, slightly in 
excess of the 180OF limit permitted by 10 CFR 41.43(g). Starting 
with data from experimental studies on a GE 700 cask, it was 
concluded, however that the BMI-1 will experience a 170°F maximum 
surface temperature. These analyses further concluded that the 
fuel temperature rise and maximum internal pressure are within 
acceptable limits. See Appendix 3.6.3.  

(h) MITR-II Fuel Elemnents 

In the worst case of a MITR-II fuel element which remains in 
the MITR core during continuous 5-day-per-week operation until 45% 
burnup is reached and is then allowed only 90 days cooling, the 
calculated decay heat is 127 watts. For the maximum eight MITR-II 
fuel elements permitted, the maximum decay heat load is 1016 watts, 
less than the 1500 watt rating of the cask. See Appendix 3.6.4.

Rev. I. February 28, 1995



3.4A

Document 22 

SLHFBR Fuel Assemblies 

The decay heat from all sources for a 20 HFBR assembly payload 
was determined using ORIGEN2. The case considered was based on 60 
days operation at 60 MW with a full core of 28 assemblies. The 
ORIGEN2 output was reduced by a factor of 0.71 (20/28) to reflect 
a 20 HFBR assembly payload. An average fuel assembly decay time of 
470 days results in a decay heat load below the MTR fuel limit of 
1.02 kw. See Appendix 3.6.5.  

3.1.3 Solar Heat 

From Reference (3), p 1,636, the solar heating is: 

Q = 429T ( CHAH cos + eVAV cos } V 

where 

T = atmospheric transmittance = 0.6 

e = absorptivity = 0.5 

A = area of surface 

H. = refers to horizontal surface or top of cask 

V = refers to vertical surface or side of cask 

At noon during the summer solstice, at 40 degrees latitude: 

cos O= 0.96 

cos O= 0.284 

The outside of the cask is 33 inches in diameter and 72.375 inches 
in height. Thus:
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2 

A D2 =5.93 feet2 
AH 4 

AV = DH = 16.6 feet2 (protected area).  

The solar heat is: 

Q = 429(0.6) [ (0.5) (5.93) (0.96) + (0.5) (16.6) (0.284) 

= 732 + 607 = 1,339 Btu/hr. = 0.392 kw 

3.2 Summary of Thermal Properties of Materials 

The materials' thermophysical properties which were em

ployed are shown in Table 3.1. Also, since it has been well 

demonstrated that the lead will contract away from the outer 

shell after casting (fabrication experience indicates a potential 

gap of 0.060-0.100 inch), the thermal model included a variable 

air gap (Node 118) which has an effective therm7al conducti ,V

that increases with temperature as shown in Figure 3.1.  

3.3 Technical Specifications of Components 

Relief Value - 75 psig 

Pressure gauge - 30 in Hg vacuum to 100 psig pressure.  

3.4 Thermal Evaluation for Normal Conditions 
of Transport 

3.4.1 Thermal Model 

The analvsis fcr normal operation were :erfor-ed assu.

•na on>,; radia= heat flow from the contents thr:ugh the cask 

walls to the environment.

Rev. A. 3-28-80
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TABLE 3.1 THERMOPHYSICAL PROPERTIES EMPLOYED 
FOR LEAD, STEEL, AND ALUMINUM

Lead

Density = 705 pounds/feet 3 

Melting Temperature = 621 F 
Latent Heat = 10.5 Btu/pounds

Temperature, 
F 

32 
212 
572 
621 
900

Thermal Conductivity, 
Btu/hr-ft-F

20.1 
19.6 
18.0 

8.8 
8.9

Specific Heat, 
Btu/lb 

0.0303 
0.0315 
0.0338 
0.0337 
0.0326

Emissivity 

1.0 
1.0 
1.0 
1.0 
1.0

Steel 

Density = 488 pounds/feet 3 

Latent Heat = 120 Btu/lb 
Melting Temperature = 1,800 F

Temperature, 
F

Thermal Conductivity, 
Btu/hr-ft-F

32 
212 
572 
932 

1,800

8.0 
9.4 

10.9 
12.4 
15.0

Specific Heat, 
Btu/lb

0.11 
0.11 
0 .11 
0 .11 
0.11

Emissivity 

0 8 (a) (b) 
0.8, 1.0 
0.8, 1.0 
0.8, 1.0 
0.8, 1.0

(a) For s-:eel surface exposed to flame, z = 0.8.  

(b) For steel surfaces viewing each other across internal air 
gaps, z = 1.0.

Rev. B. 8-1-80
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TABLE 3.1 THERMOPHYSICAL PROPERTIES EiPLOYED 
FOR LEAD, STEEL, AND ALUMINUM 

(Continued) 

Aluminum, 6061-T6 

Density = 169 pounds/feet 3 

Melting Temperature = 1,140 F 
Latent Heat - 128 Btu/pounds 

Temperature, Thermal Conductivity, Specific Heat, F Btu/hr-ft-F Btu/ib Emissivitv 
77 89.5 0.214 0.15 600 135.0 0.214 0.15

Rev. B. 8-1-80
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3.4.2 Maximum Temperature 

3.4.2.1 BRR/MTR Fuel 

(a) External Heat Transfer

During normal operation, heat is dissipated from the out

side surface of the cask by radiation and natural convection in 

air. The heat transferred by radiation is:

[ 4 T 4 & 

To a 
10 100T)Qr = 0.173 EA

and the heat transferred by convection is: 

Qc = hcAc(T 0 - Ta)

where

S= 
surface emissivity = 0.5 for steel

To= cask surface temperature 

T = ambient temperature = 100 F 

hc 0.19(T 0 - T a)1/3 (McAdams(4), p 173) 

Ar= Ac = heat transfer area 

Heat transf'er from the outside corners and top of the 

cask is partly obstructed due to the air pockets built into the 

lead to provide for lead meltdown space in case of fire. The 

ar -ockets also insulate --he cask from solar heating. r~c.  

estimates of the maximum heat load are made. In the first cazý, 

the full solar load and total cask surface area are considered.

3. 9
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In the second case, heat transfer from areas obstructed by air 

pockets is neglected, and only the solar load on the side is 

included. In the first case, the total heat load on the outside 

surface of the cask is Q = 3,480 + 1,339 = 4,819 Btu/hr; and, 

the heat-transfer area including the top and bottom is A = 52.1 + 

11.36 = 63.96 ft 2 . In the second case, the solar load is 

540 Btu/hr for a total heat load of 4,020 Btu/hr; and the heat

transfer area, neglecting the top and corners, is A = 46.3 + 

3.4 = 49.7 ft 2 . In the first case, the heat flux is 75.4 Btu/hr 

ft 2 , and in the second case is 80.9 Btu/hr ft 2 . The second case 

is calculated below since it leads to conservative results 

(higher surface temperatures).  

The total heat, removal capacity of the cask is: Q=Qr + Qc' or 

Q = (0.173)(49.7)(0.5) ( ') - ( -E.-.-0) + 0.19(49.7) (TO - 560)4/3 

For: 

Q= 3,480 + 540 = 4,020 Btu/hr, 4,020 = 4.29 - 981 

+ 9.44(T 0 - 560)4/3 

and: 

To = 617 R = 157 F.  

Thus, the maximum cask surface temperature will be .57 F, assuming 

there is no heat loss (or addition), through the top and corners 

of the cask. The surface temperature is below 180 -, which -eets 

the AEC requirements.

3. -3
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(b) Heat Transfer i- Cask Wall 

The temperature drop across the lead in the wall of the 

cask is: 

AT Q In D = 4.05 F, 

2TrkL 2 

where 

Q = 3,480 Btu/hr 

k = 19 

L = 5 feet 

D = 32 inches 2 

DI = 16 inches 

The total temperature drop across the inside (thickness = 0.25 

inches) and outside (thickness = 0.5 inch) steel plates is -T = 

0.7 F.  

As the lead solidifies in the manufacturing process, a 

small air gap is formed between the outside steel shell and the 

lead. The thickness of this gap is estimated to be 0.0817 inch.  

The heat transferred by conduction and radiation across the gap 

is: 

Q = kAAT + 0.173 FA 4T3 

t 108 

where 

Q = 3,430 Btu/hr 

A = 50.2 ft 2

t = 0.0817 inch
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F = 0.231 

T = 180 F = 640 R 

The total temperature drop across the cask wall is ýT = 

23.8 F. It is expected that the lead will settle during trans

portation and close the air gap. Thus, the temperature drop 

across the wall of the cask should decrease in later shipments.  

The total temperature drop across the cask wall is AT = 

4.05 + 0.7 + 23.8 = 28.6 F. The temperature at the inside 

surface of the cask wall is T = 157 + 28.6 = 185.6 F.  

(c) Internal Heat Transfer 

During normal operation, the cavity of the cask is filled 

with water, and the fuel elements are cooled by natural circula

tion of the water. The water flows up through and around the 

fuel elements to the top of the cavity and then flows down through 

the space between the cask wall and the fuel elements. The heat 

absorbed by the water as it flows up through the elements is 

dissipated as the water flows down past the cooler cask wall.  

The natural convection heat transfer can be calculated 

from the pertinent pressure drop and heat balance equations.  

These equations have been solved and placed in a form convenient 

for calculation in Reference 5. According to the analysis in 

Reference 5, the equations which must be solved for the maximum 

water temperature T(L) are: 

T(L) =T =l 1 -e-a

3.12
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¥ T(L) - T(o) = Q h

Fý 2AV -1IV 

L- 2(F 1) 384 (AD i2)-1 + (Ao D2) -1 AV (3) 
A r L 9- ] \ 

PHL I h° 
SL (H 0 4) 

h= 0.05 L 2kgc ] y (35) 

where 

T(L) = maximum water temperature (at top of cask) 

T(o) = water temperature at bottom of cask 

T= cask cavity wall temperature 

Q = decay heat 

AV = flow velocity (ft 3 /hr) 

A. = total element flow area (up-flow region) 

D. = equivalent diameter of element region 

A = flow area of down-flow region 

Do= equivalent diameter of down-flow region 

F A = axial peaking factor 

PHL heat-transfer area = area of cavity wall 

g = gravitational constant 

water properties: 

c = specific heat 

Q = density 

= viscosity S= 

vo lume expan sivity (F-1 

k = thermal conductivity

3 .13
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The required numerical data are:

Tav •195 F

C = 1.0 Btu/16 F 

P = 60.2 pounds/ft
3 

384_j = 0.28 x 10-4 
pg8 

2 2 11 
k 0 k 8C j = 487 

P

FA = 1.40 
A2 

AO = 68.5 inches 2 

D. = 2.76 inches 

A. = 88.7 inches 2 

D. = 0.477 inches 

PH = 48.7 inches

L = 52.5 inches 

Q = 3,480 Btu/hr 

Using these numerical data, Equations (2), (3), (4), and .(5) 

become:

y = 57.8/AV

cL = 0.8 + 0.03 (AV/y) 

aL = 0.295 (ho/AV) 

ho = 24.4 (y/aL)i

(2 

(3) 

(4) 

(5)

The solutions to these equations are y = 4.3 F, aL = 0.896, 

AV = 13.5 ft 3 /hr, and h = 41.2 Btu/hr ft 2 F. From Equation (1), 

T(L) - Tc = 7.3 F.  

From Section 3.4.2.1(b), the maximum inside cask wall 

temperature is Tc 185.6 F. The maximum water temperature is 

T(L) = 185.6 + 7.3 = 192.9 F.  

The design pressure of this cask is 100 psig so that -he 

maximum permissible operating pressure is 50 psig. Thus, :*-=e
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maximum operating temperature (193 F) is well below the boiling 
point (298 F) at the maximum permissible operating pressure.

3.4.2.2 Fermi Fuel

(Paragraphs deleted up to Section 3.4.2.3, p. 3.18)
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Material Deleted
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Material deleted
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3.4.2.3 EPRI Crack Arrest Capsules 

It was shown in the September 8, 1969 Addendum that for a 
130 F maximum temperature and 1500 watt thermal load, the

Rev. I, February 28, 1995
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outside wall temperature is about 190 F and the cask wall It 

is about 37 F. For a 100 F ambient with 1,500 watts decay heat 

the outside wall temperature would be 190-30 = 160 F. For the 

reduced heat load of 110 watts/ft, the outside wall temperature 

would be approximately (160-100)(110/333) + 100 = 120 F. The 

at through the cask wall would be (37)(110/333) = 12 F. Thus, 

the cavity wall temperature would be about 120 + 12 = 132 F.  

These temperatures are conservatively high since they assume 

no radial heat flow in the cask wall.  

The temperature of the capsule is calculated assuming 

that all cooling take place by convection and radiation. The 

capsule will be transported without a canister. However, a 

wire mesh basket having a maximum wire size of 11 gage (0.125-inch) 

and minimum mesh size of 1.0 inches may be used to aid in 

handling the capsules. Thus, it is assumed that convection 

and radiation heat transfer will take place directly between the 

capsule wall and the cask inner cavity wall, Figure 3.2.  

In order to facilitate the calculations, it is assumed 

that the cavity wall is a plane, as wide as the capsule (14 inches), 

as tall as the capsule (21.5 inches), and located approximately 

4 inches away. From McAdams(6) the convection heat transfer 

correlation is given by: 

Nu (L/x)1/9 (Gr • Pr)n 

(L/x) 

where 

Nu =hx k 

x = distance between planes = 1/3 ft 

k = fluid thermal conductivity 

L = height of planes = 1.79 ft 

3 Gr =a x &t

a = fluid property constants in Grashof Number
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Cavity 
ID=15.5 in 14 in.

Assumed cavi: 
plane for con 
vection cooli

FIGURE 3.2. SKETCH OF MODEL FOR HEAT FLOW FROM EPRI 

CRACK ARREST CAPSULE TO CAVITY WALL
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Pr = Prandl number which is function of fluid proertv.  

For 

Gr > 2(104); C = 0.071 and n = 1/3 

Thus 

h/k = 0.0589 (aPr)1/3 At1/3 

Heat transfer by convection is expressed by: 

Qcv = hAAt 

A = area of plane surface = (14) (21.5)/144 = 2.09 ft 2 

h = coefficient from above correlation 

Then 

Qcv = 0.123 k (aPr) 1/3 At4/3 

Heat transfer by radiation is expressed by: 

4 4 
Qr = FeFaaA(T 1 - T2 4 

where Fe = emissivity factor 

1 

1 12 

E= emissivity of capsule = 0.2 

E = emissivity of cask wall = 0.5
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Fe = 0.167 

Fa = view factor = 1.0 

a = 1.73 (10-9) R4 

A = 2.09 ft 2 

T1 = capsule temperature, R 

T2 = cask cavity temperature, R 

Thus 

Qr = 6.04 (10-10) (T 1
4 - T 2

4 ) 

It is assumed that the At is about 200 F and that the 

mean air temperature between the capsule and the cask wall is 

about 230 F. Then the air properties are: 

k = 0.0188 Btu/hr ft F 

a = 4.78(10 5)/ft3 F 

Pr = 0.68 

T1 = 460 + 132 + 200 = 792 R 

T2 = 460 + 132 = 592 R 

Substituting the values in the equations above results in the 

following: 

Qcv = 186 Btu/hr 

Qr = 163 Btu hr 

And the total heat flow is 349 Btu/hr = 102 watts. Thus, the 

capsule temperature for normal transportation is about 332 F.

3 .22
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3.4.2.4 Union Carbide Process Uranium Oxide Containers 

During normal transport the heat is transferred from the 

containers to the inner wall of the cask by free air convection and 

radiation. The length of the internal volume of the containers is 

approximately 10.75 inches. However, the process oxide contents will 

fill only about 10 percent of this volume. In order to de+ermine 

if the axial temperature gradient of the container would be signi

ficant for internal heat transfer calculations, an analytical model 

of a single isolated container was developed, Figure 3.2(a). The 

model assumed that all the oxide was in a powder bed, 1-inch deep at 

the bottom of the container. It was further assumed that heat trans

fer from the oxide bed to the container was by conduction at the 

oxide-container interface and by radiation from the top of the bed to 

the inner surface of the container walls. Transfer of heat from 

the container to the environment was assumed to be by convection 

only. These assumptions were made for purposes of convenience and 

are considered conservative. Any convection within the contaierr 

would tend to decrease the axial temperature difference and "flatten 

the gradient". The effect of radiation from the outer surface would 

also be to flatten the gradient. Thus neglecting internal convection 

and external radiation would tend to result in a higher axial 

gradient of the container.  

The external boundry temperature was estimated as the.  

approximate cavity liner temperature for normal transportation.  

Its acutal value is of minor significance since the objective of 

these analyses was to determine the axial temperature gradient 

and not absolute values. The problem was solved using the TRUMP 

computer program7. Properties for the UO2 powder bed are as 

follows:

Rev. B. 8-1-80
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Node 1: U02 Powder; 20 Watts decay heat 

Nodes 9 to 22: 6061-T6 Aluminum

110 

21, 1-.75 

20

9 shell nodes 
1.0 

Tboundary

Convection 

= 250

1 1.0 1 1o 

10 I1.0

Figure 3.2(a) Analytical Thermal Model of Union Carbide Process 
Uranium Oxide Container and Steady-State Temperature 
Profile
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U02 powder: emissivity = 0.9 

Conductivity 
Temperature, F Value, BTU/hr-ft-F 

500 1.45 
1000 1.27 
1500 1.15 

Interface Conductance 2 
Node Interface Value, BTU/hr-ft -F 

1 to 9 34 
1 to 1l 14 

The results of the analyses shown on Figure 3.2(a) indicate 

that there is only a 16 F temperature gradient along the length 

of the container. Thus, if in subsequent internal heat transfer 

calculations, the container is assumed to be isothermal, the 

resulting error would be only about 8 F.  

The BMI-l cask currently is designed for shipment in which 

two baskets. stacked one on the other, are used to transport MTR 

type fuel elements. Each basket can carry twelve (12) elements. A 

It is planned to use these baskets to hold the Union Carbide 

prccess oxide containers. Thus a maximum of twenty-four (24) 

containers can be shipped. The maximum decay heat from the oxide 

in each container is 20 watts. Thus, the total decay for 24 

containers is 480 watts.  

The temperature of the cask and containers during normal 

transportation was determined by analyses using the TRUMP 7) 

computer program. A steady state thermal analyses of the BMI-l 

cask was initially performed to obtain the cavity liner (wall) 

temperature. The analytical model of the cask is shown in 

Figure 3.2(b). The sketch of Figure 3.2(b) shows a longitudinal 

section of the model which consisted of concentric steel and 

lead nodes as shown.  

The 480 watts decay heat was applied uniformly to the 

cavity walls along a 25.50 inch axial length (equal to the en.th 

of two containers without the collars). All heat floh..e 

cask walls to the environment was assumed to be radial.

Rev. B. 8-1-80
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This is conservative since the cavity is 54 inches long and tne 

28.5 inches of cavity length as well as the cask ends are neglected 

for heat transfer from the contents through the cask walls and to 

the environment.  

The solar heat load, from Section 3.4.2.1(a) was taken 

as 80.9 BTU/hr-ft2 and the surface emissivity was taken as 0.5 

The ambient temperature was taken as 100 F, the temperature per

mitted for the start of the hypothetical fire accident. With 

this ambient temperature the cask cavity liner temperature was 

calculated to be 227 F. If the ambient were 130 F, the cavity 

liner temperature would be approximately 30 F greater or 257 F.  

The model for determining the temperature of the containers 

within the baskets is shown in Figure 3.2(c). The model considered 

radiation and free air convection heat transfer between the containers 

and the liner. Heat transfer by convection from the containers 

to the cavity liner was expressed by 

Q = hc A c(T c-TW) 

where 

h = heat transfer coefficient c 
Ac = heat transfer area 

T = container temperature c 
T = cavity liner temperature.  w 

The heat transfer coefficient, hc, was defined by: 

T T 0.25 
H 0.29 c - w Hc 0.29 ( L ) (Reference 8) 

The equation is part of the TRUMP program. Radiation between the 

container, and between the containers and the cavity wall was 

accounted for using the procedure and data presented below in 

Section 3.5.4.2(a), (pages 3.34 to 3.36).
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BMI-1 Basket Cell 
Corners
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1 - Innermost Container 
2 - Outermost Container 

Figure 3.2(c) Sketch of Thermal Model of Union Carbide Process 
Uranium Oxide Containers in BMI-1 Basket
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The analyses indicate that the following te::peratures 

exist: 

Ambient: 10OF 130F 

Cavity wall: 227F 257F 

Outer most containers: 253F 283F 

Inner most containers: 305F 335F 

3.4.2.5 Union Carbide Target U235 Special Form Capsules 

The maximum heat that the aggregate of up to twenty-four 

special form capsules shipped may generate is 1500 watts. However, 

the amount of decay heat within the capsules may vary. Thus, 

analyses were performed to show that in the limit case, a single 

capsule could be shipped in which the total decay heat of 1500 

watts is concentrated.  

The surface temperature of the cask and capsule during 

normal transportation was determined by analysis using the TRUMP 

computer program. The cavity liner temperature was obtained from 

an analysis using the model shown in Figure 3.2(b). It was 

assumed that the 1500 watts of heat wou!U be rejected by the cask 

over only 18 inches of axial length, the ame as the length of 

the special form capsule. This assumpti-Qn made for convenience 

is very conservative and will result in higher cask temperatures 

than if credit were taken for "smearing" the heat over the full 

54 inches of the cask cavity plus the ends. The analyses show 

that for a 100 F ambient temperature, the 1500 watt decay heat 

applied over 18-inches of the cask length would result in a cavity 

liner temperature of 398 F. For a 130 F ambient temperature, 

the liner temperature would be about 428 F.  

The temperature of the special form capsule and the basket 

was determined using the analytical model shown in Figure 3.2(d).

Rev. B. 8-1-80
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Steel Liner

Axis of 
Symmetry
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Figure 3.2(d) Analytical Thermal Model of 
Union Carbide Target U235 
Special Form Capsule in BMI-l 
Cask
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The capsule is assumed located in one of the four innermost basket 

positions. This assumption will result in the highest capsule 

and basket temperatures. The capsule is centered in the basket 

cell by an open structure similar to that shown in Figure 3.2(e).  

This open structure will hold the capsule in place while permitting 

free radiation and convection heat transfer. The model is two 

dimensional, i.e., heat flow is considered radially and tangentially 

(angularly) within the cavity and basket but not axially. Thus, 

the entire 1500 watts is assumed to be transferred to the cask 

cavity, through the walls and to the environment within the 18-inch 

axial dimension of the capsule. This is very conservative since 

it neglects the axial distribution of heat within the cavity and 

basket which will significantly decrease the capsule temperature.  

Because of symmetry of the cask cavity, only one-half 

of the cavity cross section was modeled. Natural convection heat 

transfer within enclosed spaces, especially between Nodes 2 and 
3 and between Nodes 4 and 5 is conduction controlled. Nodes 

2 and 3, and 4 and 5 form sandwiches around the boral poison plates.  

The resistance to heat flow through the boral was considered small 

compared to the interface conductance between the sandwich faces 

(Nodes 2 and 3 for example) and the boral plate. Therefore, the 

boral was not modeled. Rather an interface conductance for two 

0.010 inch thick (assumed) air gaps (between the stainless steel 

plates and the boral) was used between the sandwich faces. These 
values are represented by the expression 

hc = k/x 

where 

k = conductivity of air 

x = gap thickness.

Rev. B. 8-1-80
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For radiation heat transfer between the sandwich plates 

and the cavity liner, the plates and liner were treated as parallel 

planes, view factor = 1.0. For radiation between the two per

pendicular sandwich plates, the view factors for perpendicular 

planes was used (0.39).  

The results indicate that the maximum capsule temperature 

for normal transportation (130 F) will be 1290 F. This is well 

below the 1475 F temperature which the capsule must be able to 

withstand in order to be certified as a special form capsule.

Rev. B. 8-1-80
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3.4.3 Minimum Temperatures 

From Section 3.4.2.1(c), the minimum water temperature 

is 192.9 - 4.3 = 188.6 F for an ambient temperature (Ta) of 100 F 

and a decay heat load (Q) of 3,480 Btu/hr. With no solar load, 

the water temperature is 180 F. For other values of Ta and Q, 

the water temperature (T) is approximately: 

T = (180 - 100)H( + T 
3,480 Ta 

The water will freeze when T = 32 F, or Ta = 32 - Q/43.5. The 

water will not freeze at an ambient temperature of Ta = -20 F 

if the decay heat is greater than Q = 2,260 Btu/hr = 0.662 kw.  

When these conditions are satisfied, no antifreeze is needed in 

the water.  

In later shipments it is expected that the temperature 

drop across the cask wall will decrease due to settling of the 

lead and closing of the air gap between the lead and outer steel 

shell. In this case, the water temperature may decrease from 

180 F to about 160 F under normal conditions. Thus, in later 

shipments the decay heat will have to be over Q = 0.88 kw to 

prevent freezing at Ta = -20 F. Provisions will be made to cover 

the cask with a canvas blanket (which will decrease heat transfer 

from the outer surface) when ambient temperatures and cask internal 

temperatures indicate the possibility of freezing.  

3.4.4 Maximum Internal Pressures 

The design pressure of this cask is 100 psig so that 

the maximum permissible operating pressure is 50 psig. The maxi

mum :.;erating temperature (230 F) is 68 F below the boiln- pc~nt 

(290 F at the maximum permissible operating pressure.
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3.5 Hypothetical Accident Thermal 

Evaluation 

The thermal analysis presented in this section examines 

the thermal response, and associated effects, of the modified 

BMI-l cask when subjected to the environmental fire condition 

outlined in Appendix B of 10-CFR-71. The fire is defined as a 

radiant thermal source having a temperature of 1,475 F lasting 

for 30 minutes. In addition, the "standard fire" is defined to 

have an effective source emissivity of 0.9, and the thermal 

absorptivity of the exposed cask surface is defined to be 0.8.  

3.5.1 Thermal Model 

The thermal transient analysis was carried out using 

the THT-D heat-transfer code (a generalized heat-transfer program 

available at Battelle). A cylindrical section, representative 

of the center region of the BMI-l cask, was analyzed. Figure 3.3 

illustrates the thermal model and THT-D node identification.  

The primary modification to the BMI-l cask, which is 

directed at fire survival, is the addition of a 1/8-inch-thick 

outer stainless steel shell (a thermal buffer shell) which en

capsulates the existing i/2-inch steel outer shell. The planned 

use of evenly spaced weld spots, 1/16-inch high, will assure an 

air gap between buffer shell and original outer shell. Thi6 

air gap will impede the thermal pulse resulting from the hypo

thetical fire. A constant 0.060-inch air gap was employed in 

the transient calculations although it can be shown that a 1/8 

3/16-inch air gap would exist due to differences in thermal 

expansions during the fire period.



FIGURE 3.3. THERMAL MODEL EMPLOYED FOR 
BMI-1 FIRE THERMAL ANALYSIS
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3.5.2 Package Conditions and Environment 

The starting temperatures (at start of the 30-minute fire) 

of the cask system, shown in Figure 3.4, were calculated for 

conditions corresponding to a 130 F day and a cask thermal load 

of 1.5 kwt. The correlation of analytics with experimental 

data is shown in Figure 3.5, where the variation of cask outer 

surface temperature is shown as a function of thermal load and 

environmental temperature. The experimental point, measured 

for the BMI-l cask without an outer shell, shows a measured 

outer shell temperature of 130 F on a 70 F day for a 1.4 kwt 

thermal load. The calculated result is 133 F on a 70 F day.  

The external area change due to the addition of a 1/8-inch fire 

shell can be considered negligible. In addition, the experimental 

data for the 1.4 kwt ther'al load can be scaled to calculate an 

inner liner temperature of 227 F for the conditions of a 130 F 

day with a thermal load of 1.5 kwt. Therefore, normal shipment 

with the contents contained in water will not result in any 

pressurization problems if the 1.5 kwt heat load is not exceeded.  

The data contained in Figure 3.4 and 3.5 can be readily employed 

to assess other ambient and thermal load conditions.  

For conservatism, the thermal capacitance of material(s) 

within the cask internal cavity was neglected, or a- empty cavity 

was assumed for the thermal transient calculations.  

Paragraph deleted

Rev. I, February 28, 1995
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3.5.3 Package Temperatures 

The calculated thermal history of selective nodes (see 

Figure 3.3 for identification) is shown in Figure 3.6. The 1/8

inch outer shell, represented by Node 124 (a shell surface node), 

has little thermal capacitance and, therefore, responds very 

rapidly to the fire pulse. The outer shell, 1/2 inch thick, 

follows in succession, and since it also has only a nominal 

thermal capacitance, results in the closure of the internal air 

gap (Node 118). Commencement of lead melting is calculated to 

be at 16 minutes and the absorption of heat via latent heat 

capacity causes a reversal in the temperature response (see 

Figure 3.6) for a short time period. As the melt front travels 

inward, the outer shells then continue their temperature rise.  

The temperature reversal, and retardation, mentioned above are 

also the result of the thermal capacitance of the lead shield 

which has now become thermally coupled to the outer shell due to 

the lead-shrinkage gap (Node 118) being closed.  

The "melt-front" boundary is shown in Figure 3.7, as a 

function of radial position and time.  

3.5.4 Evaluation of Package Performance 
for the Hypothetical Accident 
Thermal Condition 

3.5.4.1 Lead Melt 

The cylindrical region of the BMI-I cask was analyzed 

in detail to assess the potential for lead melting during a 

postulated hypothetical fire. The analysis assumed temperatures 

at commencement of fire corresponding to normal operation on a 

130 F day with a 1.5 kwt internal heat load.
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This analysis considers heat transfer through the cylindri

cal wall of the cask. This is the most severe thermal condition 

which could exist since the cover lid, corners, and bottom of 

the cask have sufficient thermal protection in the form of thick 

structural plates (i.e., 1-1/4-inch lid plate), skid I-beams, 

and corner lead-expansion voids. These structures provide a 

significant thermal capacitance and/or resistance.  

The results of the thermal transient analysis indicate 

lead melt, within the outer regions of the lead shield.  

The outer radius of the lead is 16.0 inches, and melting 

is calculated to proceed inward to a radial depth of 1.65 inches.  

Lead melting does not occur at the inner regions. Resolidifica

tion begins at about 33 minutes within the lead interior, followed 

by resolidification at the outer radius starting at 40 minutes.  

The results of these transient calculations indicate a maximum 

potential lead melt of 34 volume percent of the total lead if 

the cask is at the starting temperatures used in the calculation.  

Since expansion volume is provided for by shrinkage from the 

original casting, the expansion void needs only to accomodate 

the 3.8 percent increase in volume of the lead that melts. The 

built-in expansion void (752 inches 3 ) is more than sufficient 

to accommodate the excess volume of molten lead (574 inches 3 ), 

therefore, no pressure will be exerted on the wall of the cask.  

Also, no lead is lost. The adequacy of lead shielding after 

resolidification is discussed in the shielding section.  

The lid, bottom, and corner volumes were not analyzed 

specifically since it is felt that the analysis presented above 

contains sufficient conservatism to permit extrapolation to those 

cask regions. For example, the lid cover is 1-1/8 inches thick 

and the corners at the loading end have 3/4-inch steel plates, 

respectively. The thermal capacitance of these plates, along 
;:..- .ga inta : the cover and exoa-s::n 
.o'.. the cnternal air vers in l r' er 
vol,_:7es in the corners) will very! '-.Kely result in zero leaf4
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melt for those regions. The bottom of the cask also has 

corner-expansion volumes, and a 1-inch base plate. The base 

plate is furthermore thermal radiatively shielded by the I-beams 

employed in the skid. Previous calculations (i.e., NRBK-43) 

on similar cask systems have shown that the I-beam structure 

provides sufficient shielding from the fire to preclude, or 

minimize significantly, lead melting. Therefore, the bare 

cylindrical sides are the most susceptible to melting from a 

hypothetical fire, and were analyzed in detail. Based on the 

above analysis, the maximum canister flange temperature reached 

during/after a fire test is estimated to be less than 600 F.  

3.5.4.2 Maximum Contents Temperature 

(a) BRR/MTR Fuel, Loss of Coolant 

The fuel element baskets in this cask contain two solid 

_ sheets of steel (neutron poison) which divide the baskets into 

quadrants containing three elements each. Since no heat is 

transferred between quadrants, the solid sheets have no effect 

on heat transfer. The three fuel elements in each quadrant are 

held in place by means of vertical steel strips on the corners 

of the elements. These strips partially obstruct radiation heat 

transfer, but have no effect on conduction or convection heat 

transfer.  

Figure 3.8 is a sketch of one quadrant of the basket.  

Heat is transferred from Element 2 to Element 1 by radiation and 

conduction in air. Heat is transferred from Element 1 to the 

inner cask wall by radiation and convection. Analytically this 

is expressed as: 

= 0.173 F212 _ - ) + = (T 2 - TI,
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.3, A T 4 T 
Ql = 0.173 FlcA1 (l-- ) - ( - )

4 I+ h c 1 (T1 T T

As discussed later, conduction in the aluminum elements 

smoothes out the axial temperature distribution so that the axial 

power peaking factor does not have to be included in Q21 or Q.,0 

From Section 3.1.2(a), the total decay heat per element is 

145 Btu/hr. Thus, Q21 = 145/2 = 72.5 Btu/hr and Qlc = 145 x 3/2 

= 218 Btu/hr. The heat transfer coefficient hc is:

2 2 h 0.071 2 k 2 Sc 1 (T T )1 
c (L I - c 

(rt

(McAdams 
p 181)

1 AI

FIGURE 3.8. SKETCH OF FUEL BASKET

(7)
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The numerical data needed to calculate h are: 

T = 390 F 

av 

L = 25 inches 

t = D /2 = 1.38 inches 

P k g~c 3- 1.25 

and 

1 

h= 0.0643 (T 1 - Tc • 

Neglecting the effect of the corner strips, the radiation 

interchange factors F1 2 and F 2 c are: 

-1 -1 
F21 = ( 2 /cAl - 1)-1 = (2/0.15 - 1) = 0.081 

Flc = WE/ Al + 1/C -1) = (1/0.15 + 1/0.5 -1)-1 

= 0.131 

For two steel surfaces, F = 0.333.  

Now, consider the effect of the corner strips on radiation 

heat transfer. Assume that the surfaces A1 , A2 , and A3 are parallel 

and that heat is transferred by radiation from A1 to A2 to A3 .  

Then: 

Q12 = aF 1 2 A1 (T1 - T2 4 )
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Q23= F 23A 2 (T 2  - T34 

and 

Q12 + Q23 T4 _T4 
-+ - T -T3 

F12AI c1F2 3 A2 2 3 

Since Q = Q = Q and A1 = A2 = A3 

12F 2 23 132( 

13 F• 2 + F23 

Thus, for the portion of the area between Elements I and 2 where 

the steel strips obstruct radiation heat transfer: 

F = 0.131 x 0.131 = 0.065 

2-' 0.131 + 0.131 

For the obstructed area between Element 2 and the cask wall: 

0.131 x 0.333 = 0.0935 
Flc - 0.131 + 0.333 

The steel corner strips obstruct one inch of the three inch 

element width. Averaging the radiation factors over the element 

width: 

F = 1(0.065) + 2(0.081) 0.076 
21 3 

( r+, 0.  

F = 1(0.0935) + 2(0.131) =0.118 
1C 3

3.4 7
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The assembled numerical data needed to calculate T2 and T1 are:

Q21 = 72.5 Btu/hr 

Qlc= 218 Btu/hr 

F = 0.076 

Flc = 0.118 

T = 186 F = 646 R c 
1 hc = 0.0643(T 1 - T c)3

Using these data, Equations (6)

t = 75 = 0.0625 ft 
12 

A2 = 3 x 25/144 = 0.52 ft 2 

A1 = 2A2 = 1.04 ft 2 

A, = (1 + 1/vY2) A2 = 0.89 ft 2 

k = 0.0239 Btu/hr ft F .

and (7) become:

7 2 4 T 1 4 
72.5 = 0.00683 ((1) -(l0) + 0.199(T 2 - Tl)

218 = 0.01815 [ 1--O - 1,732 + 0.067(T 1 - 646)

The solutions to these equations are T1 = 461 F and T2 = 615 F.  

Thus, the maximum element temperature during loss of coolant is 

615 F.  

In the calculations above, the axial power peaking factor 

has been neglected since the aluminum in the fuel elements effective

ly evens out the axial temperature distribution. For a triangular 

power distribution with an axial peaking factor of 1.4, the 

fraction (1.4-1)/4 = 0.1 of the power is generated at a power 

greater than average. The temperature drop required to conduct 

this 10 per cent excess heat from the center to the end of the 

elerent is approximately: 

0.10( L 

kA

(6)

4/3
(7)

3. 48
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where 

Q = 145 Btu/hr 

L = 25/2 = 12.5 inches 

k = 135(aluminum at 600 F) 

A = 2.55 inches2 

= (0.10)(72.5)(12.5)(12) = 3.1 F (135) (2.55) 

Thus, the axial peaking factor increases the element temperature 

by 3.2 F.  

It has also been assumed in the work above that the fuel 

elements are isothermal. The temperature drops across the elements 

themselves depend on the orientation of the fuel elements in the 

basket. In the worst case, the temperature drop would be about 

15 F.  

In conclusion, considering all the factors discussed 

above, the maximum fuel element temperature during loss-of-coolant 

will be T 2 = 615 + 3 + 15 = 633 F. This is a safe temperature 

for aluminum plate-type fuel elements.  

Steam produced in the cask cavity during a fire is vented 

through a 1/16-inch-thick filter with a flow area of 20 inches 2 .  

According to data obtained for pressure differentials (AP) up 

to about 20 psi, the flow capacities of these filters are W/A 

26.5 AP + 50 ft 3 /min per ft 2 of filter area. Using this equation 

to extrapolate to AP = 75 psi, the flow capacity is W = 283 ft 3 / 

min. (The pop-off value is set at AP = 75 psi.) At 89.7 psia, 

283 pounds of water forms 1,382 feet 3 of steam. Thus, the cavity 

can be vented in t = 1,382/283 = 4.9 minutes. Ten minutes is 

considered a reasonable time to emptv the cask. Thus, a 100 cer 

cent safety factor in the design has been allowed, which is mCre 

than adequate to compensate for the possibility that the extra

polated filter-flow-capacity data is not accurate at -'P = 75 psi.
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(b) Fermi Fuel, Loss of Coolant 

(Paragraphs deleted through page 3.51)
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(c) EPRI Crack Arrest Capsules 

It was shown in the September 8, 1969 SAR Amendment, 

that for a full heat load of 1,500 watts, and starting into the 

hypothetical fire accident from condition for a 130 F ambient 

temperature, the maximum cask cavity wall temperature during the 

incident is about 560 F. Conservatively it is assumed that the 

At from the cask wall to the capsule is the same as for the steady 

state condition. Then the maximum capsule temperature during 

the hypothetical accident is 560 + (332 - 132) = 760 F. This 

is well below the melting temperatures for all the materials in 

the capsule. The maximum temperature of 760 F is a conservative 

value for the following reasons: 

(1) The starting conditions are for an ambient 

temperature of 130 F. However, a 100 F 

ambient is allowed for determining starting 

conditions.  

(2) The heat capacity of the capsule is 

neglected which will lower the maximum 

temperature in reality.  

(3) The At from the capsule to the cask cavity 

wall is assumed to be a constant over the 

temperature range. In reality, radiation 

heat transfer will become more dominant 

at the higher temperatures resulting in 

lower maximum capsule temperatures.
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(d) Union Carbide Process Uranium Oxide Container 

The models shown above in Figures 3.2(b) and 3.2(c) 

were used to determine the temperature of the cask and contents 

during the hypothetical accident. The hypothetical accident 

was defined as a radiant heat source having a temperature of 

1475 F and an effective emissivity of 0.9. Initially, a thermal 

transient analysis was performed for the fueled shipping cask 

(absorptivity = 0.8) to determine cavity liner temperature as a 

function of time. No solar heat load was included during the 

30 minute fire. The resulting temperature/time profile was then 

used as the boundary condition in the contents/cavity transient 

thermal simulation.  

The results of the analyses, shown in Figure 3.8(a), indicate 

that the cavity wall of the cask reaches a peak temperature about 

1 hour after the start of the hypothetical fire and then cools 

rapidly. The temperatures of the capsules continue to "coast uz", 

however, peaking about 3 hours after the start of the fire. The 

maximum temperature of about 586 F is acceptable for the 6061-T6 

aluminum alloy from which the containers are made. The structural 

condition of the container is considered in Section 2.0.  

(e) Union Carbide Target u 235Special Form Capsule 

The models shown above in Figures 3.2(b) and 3.2(d) were 

used to determine the temperature of the cask and contents during 

the hypothetical fire accident. The cavity liner temperature/ 

time profile was obtained from thermal analysis of the entire cask 

and used as the input boundary condition to determine the capsule 

temperature/time profile. The conditions for the "fire" were 

as used for analyses of the Union Carbide process oxide CCn--ineC, 

Section 3.5.4.2(d).

Rev. B. 8-1-80
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The results of the analyses, shown in Figure 3.8(b), 

indicate that the capsule reaches a maximum temperature of 1325 F 

about 1 hour after the start of the hypothetical fire. This is 

well below the temperature of 1475 F which the capsule must 

withstand in order to be certified as a special form capsule.  

The stainless steel shells of the basket experience a maximum 

temperature of 785 F. This is acceptable for stainless steel 

and is well below the melting temperature of the aluminum matrix 

of the boral sandwiched between the stainless steel shells. At 

these temperatures aluminum has sufficient strength to resist 

"Itslurping" due to its own weight. Moreover, the stainless boral 

sandwich is fabricated with stainless pins extending through the 

boral and welded to the two stainless shells. This reinforcement 

will prevent "bulging" of the shells due to the elevated temperature 

and thus also help keep the boral from shifting.

Rev. B. 8-1-80
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3.6 Appendix 
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3.6.2 Experimental Tests of Copper Shot 

(Section 3.6.2 deleted
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3.6.3 Thermal Evaluation - BMI-1 Cask with Eight MURR Spent 
Fuel Elements 

Normal Transgort -Conditions 

1. Maximum Cask Surface Temperature 

We follow the BMI-1 SAR, Section 3, Thermal Evaluation. During normal 

conditions, the cask is water-filled and the ambient temperature Ta 

[10 CFR 71.71(c)(1)] is 100 'F, or 5600R. The decay heat load is 1.5 kW and 

the solar load is 0.392 kW for Fermi fuel. These are exactly applicable to 

MURR fuel.  

The following calculation of the cask outside surface temperature Ts due 

to radiant and convective (air) heat transfer of 0 = 1.892 kW = 6,456Btu/hr 

is from SAR Section 3.4.2.2.  

The needed equations are: 

0 - Qradiation + 0 convection 

Qrad - 0EA ý0 -("]•, 

Qconv = h A (Ts -Ta) 

h - 0.19 (Ts - Ta)1 13 

o - 0.173 Btu/hr , the Stefan-Boltzmann constant 
ft2 (OF/1 00)4

Rev. I, February 28, 1995
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- 0.5, the emissivity; A - 49.7 ft2 , the cask vertical surface area, 

conservative because not including cask corner areas from which heat 

transfer is obscured by air pockets. See SAR Section 3.4.2.1(a), top p. 3.10.  

The heat transfer coefficient h formula is from W. H. McAdams, Heat 

Transmission, McGraw-Hill, Third Edition, p. 173.  

The solution for the cask surface temperature is Ts - 182 0 F.  

By 10 CFR 71.43(g), no accessible surface of a package in an exclusive use 

shipment may have a temperature exceeding 180 0 F. The calculated 1820 F is 

subject to uncertainty because of cask model simplifications and 

assumptions. We have an experimental basis for concluding that the cask 

surface will not exceed 170 0F.  

In October 1984, we placed a 1.5 kW electrical heater inside the GE-700 

cask with the lid on. After equilibrium was reached in 24 hours, the 

maximum cask surface temperature was 126 0 F when the ambient 

temperature was 740F. Using the Qrad and Qconv formulas above, these 

experimental data let us derive a different heat transfer coefficient 

formula 

h = 0.40 (T, - Ta)1O 3 .  

This formula should be better than McAdams' equation for h above, because 

it was measured under somewhat forced convection conditions, and was 

obtained with a cask very much like the BMI-1. The GE-700 cask without 

overpack is quite similar to the BMI-1 cask which does not use an overpack 

in transit. Using this h with the BMI-1 cask instead of the McAdams' 

formula, in a calculation otherwise like that above, gives T. - 1580F. For 

an emissivity of 0.3, Ts is 1640F. For E - 0.7, Ts - 152°F.  

Our QA procedures for spent fuel shipping include measuring the cask 

outside surface temperature for four hours after loading. The GE-700 cask 

surface was always initially at about 1050 F, the pool water temperature,

Rev. I, February 28, 1995
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and cooled to about IO0°0 F in 750 F ambient. This was true for decay 

powers in the range 0.35 to 1.1 kW.  

We believe our measurements with the dummy electrical 1.5 kW load, and 

our experience with actual fuel loads, gives confidence that the BMI-1 cask 

surface temperature will not exceed 1800F. By our QA procedures, we will 

not ship if the AT = Ts - Tamb exceeds 800F. (Tr - cask surface tempera

ture.) 

2. Maximum Fuel Temperature 

We assume a worst case of a 180OF cask surface temperature, and want to 

add to this the calculated temperature rises through the lead (Pb) cask 

wall, across the cask cavity wall-fuel basket coolant-filled gap, and 

radially across the fuel.  

As described in the SAR, Section 3.4.2.2(b), a temperature rise through the 

lead wall of 290 F was measured when an electrical heater of 1.4 kW was in 

the cavity. Scaled to 1.5 kW decay power, this temperature rise is 31 0F.  

MURR spent fuel is shipped as a cylindrical annulus of height H - 2 ft., inner 

radius a - 0.30 ft., and outer radius b - 0.55 ft. in a 0.25 inch 304 stainless 

steel outer cylindrical wall basket with radial 304 walls (0.25 inch and 

0.375 inch alternating) between the fuel elements. There is a 0.75 inch gap 

between the 14 inch O.D. basket and the 15.5 in I.D. cavity.  

To calculate ATOap across the 0.75 inch of water coolant, we will use 

h - 100 Btu/hr.ft. 20F. This value of the heat transfer coefficient is used on 

p. 3.16 of the SAR for Fermi fuel, and there is a reference to McAdams. We 

have also derived essentially this value following D. R. Pitts and L. E.  

Sissom, Heat Transfer, McGraw-Hill, Section 8.3.

Rev. I, February 28, 1995
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Using an average radius of (7 in. + 7.75 in.)1(2)(12) - 0.62 ft., 0 - 1.5 kW 

5118 Btu/hr, and fuel height 2 ft., we get from the Qconv equation above 

- 5118 -7 0 F 

ATgap- (100)(2 x)(.62)(2) 

To calculate the temperature rise across the fuel ATfueI, we solve the heat 

conduction differential equation for a cylindrical annulus, assuming only 

radial temperature variation T(r).  

tIrdTI) r d r r -k f u e lI 

power .5118B__IwLj 
volume x(b2-a2) HftO 

The solution for the boundary condition of zero heat flow to the inside of 

the annulus, (dT/dr) - 0 at r - a, is 

T(r) - T(b) '' .[b2-r 2  +2a 2  InL
4kfuel b 

and ATfuel - T(a) - T(b).  

kfuel is an effective thermal conductivity through the fuel sideplates and 

basket walls. These subtend only 12% of the fuel annulus outer area, but 

metallic conductivities are so high that ATfuel is relatively small.  

k6o61 - 110. Btu/hr. ft.OF , k304 - 19 Btu/hr. ft..OF 

kfuel= k1o661 (16 sideplates) (0.15 in/12) + k3o4 (4 ss walls) (0.25 in + 0.375 in)/12) 

2n (0.55) 2n (0.55) 

- 7.5 

So we get ATfuel - T(a) - T(b) = 130F.
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Finally, for the highest fuel temperature T. at the inside of the-annulus, 

T a - 13 + T(b) - 13 + 7 + 31 + 180 + 2 - 233*F where a 20F rise across the 

stainless steel cask and basket cylindrical walls has been added. This 

result is well below the fuel cladding blister temperature which is greater 

than 9000 F, and is well below the clad failure temperature. See Fuel 

Fabrication Specification TRTR-4 for University of Missouri fuel elements.  

3. Maximum Cask Internal Pressure 

AT 233 0 F, the vapor pressure of water is 25 psia. This will give 25 psig 

inside the cask, well below the maximum permissible operating pressure 

of 50 psig.  

Hypothetical Accident Conditions 

4. Maximum Accident Conditions 

Section 3.5 of the SAR presents an analysis showing that in a "standard" 

1475 0 F fire for 30 minutes, the cask cavity wall will reach about 5600 F, or 

1020 0 R. Loss of coolant occurs, so heat transfer between the fuel basket 

and the cavity wall is by convection of air and radiation. The heat transfer 

coefficient is given by 

h - 0.0643 (Tbasket - Tcavity) 113 

This equation is given on p. 3.48 of the SAR. It may be derived using the 

Grashof/Nusselt empirical correlations. See Pitts and Sissom, Heat 

Transfer, McGraw-Hill, Chapter 8.  

The calculation for the basket temperature is similar to that in the Normal 

Transport Conditions Section 1 above. With basket cylinder area 7.7 ft2, 

the solution of 

5118 Btu/hr - (.173)(.5)(7.7) [1 4 +(.0643) (7.7) (Tbas - 1020100 

is Tbas - 6980F.

Rev. I, February 28, 1995
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For the temperature rise across the fuel, consider a worst case that the 

thermal conductivities of the sideplates and basket walls are half those 

used above, so kfue, - (7.5)/2. Then T(a) - T(b) - 260F. Thus, the maximum 

fuel temperature in a hypothetical fire accident is 698 + 26 - 7240 F, which 

is well below the clad failure temperature.  

5. Maximum Pressure 

With loss of coolant, and treating the cavity air as an ideal gas as was 

done in SAR Section 2.10.5.3, at 612 0F the air pressure would be 

(14.7 psia) [612+ 460- 30 psia 168 +460 

This corresponds to 15 psig, well below the maximum operating pressure 

of 50 psig.  

6. Lead Melting 

SAR Section 3.5 gives the results of a hypothetical fire accident on the 

lead wall. The model for this calculation assumed an empty cavity (SAR 

p.3.37), so the results are not dependent on the type of fuel shipped.  

Lead melts from its outer radius to a depth of 1.65 inches, as discussed in 

Section 3.5.4.1. The most important concepts are that expansion void is 

provided, no pressure is exerted on the walls of the cask by the melted 

lead, the walls remain intact, and no lead is lost. This ensures adequate 

thermal shielding from the fire, and radiation shielding.  

7. Failure of Relief Valve 

In a hypothetical fire, the cask cavity inside wall temperature is 5600 F, as 

shown in item 4 above. If there had not been loss of coolant when this 

temperature was reached, the water vapor pressure in the cavity would be.
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around 1,000 psi. It is not credible that the lid gasket could contain this 

high pressure, especially considering high temperature deterioration of the 

rubber gasket. Therefore failure of the relief valve would not prevent loss 

of coolant. Coolant expulsion will not result in the release of fission 

product activity. See the Structural Evaluation analysis for cask 

containment of radioactivity.

Rev. I, February 28, 1995
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3.6.4 Thermal Evaluation of BMI-l Cask with Eight MITR Fuel 
Elements 

The total fission product decay heat is defined by the following 
relation: 

-P 6 iX03 [ (T -0.2. (TZ+TD+IO) 0.2] 
P010 (i)+ 

PO [(_T+1+1-0.  

where P is the element decay heat in watts, 

P0  is the element steady state rate of heat production 
during the reactor operating time of TI in days, given by 
the ratio of reactor power to number of elements present 
in the core, and, 

TD is the time of decay in days.  

Given the worst case of a fuel element being continuously in 
the MITR core operated 5 days per week until the element has 
reached its allowed burnup limit of 45% and then allowed to decay 
for a minimum of 90 days results in a calculated decay heat of 127 
watts. Having eight of these elements present in the BMI-l cask 
results in a total decay heat load of 1016 watts, well below the 
1.5 kW cask limit.  

It should be noted that all MITR fuel elements intended for 
shipment in the BMI-l cask are operated on a schedule of about 3.75 
days per week and decay for a much longer period than 90 days. Of 
all the fuel elements currently awaiting shipment, the one with the 
largest decay heat has been calculated to be 19 watts. Even given 
a 50% error in the above equation from use at large decay times, 
this decay heat load is not of concern for any scenario involving 
the BMI-1 cask.  

Table 3.3, MIT Spent Fuel Data, gives the decay heat and gamma 
activity for the MITR fuel elements to be shipped.  

Reference: Rust, Nuclear Engineering, Noralson Publishing Company, 
1979, p. 244.
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ELEMENT 
ID 

MIT-16 
4M44 
4M43 
4M42 
4M40 
4M39 
4M38 
4M37 
4M36 
4M35 
4M34 
4M33 
4M32 
4M31 
4M30 
4M29 
4M28 
4M27 
4M26 
4M25 
44M24 
4M23 
4M22 
4M21 
4M20 
4M1V9 
4M18 
4M17 
4M16 
4M15

Beginning 
U-235 

mass (g) 
506 
445 
445 
445 
445 
445 
445 
445 
445 
445 
445 
445 
445 
445.  
445 
445 
445 
445 
445 
445 
445 
445 
.445 
445 
445 
445 
445 
445 
445 
445.

Ending 
U-235 

mass (g) 
317.80 
253.17 
266.00 
249.22 
255.62 
254.26 
266.28 
256.23 
267.35 
268.59 
254.85 
250.75 
255.30 
255.18 
254.74 
255.66 
255.07 
253.81 
252.65 
245.59 
257.26 
256.74 
?57.72 
265.61 
245.86 
257.15 
261.30 
268.11 
255.60 
255.69

Date of 
Removal 

2/25/85 
8/16/82 
10/27/80 
8/20/84 
11/17/76 

8/16/82 
2/23/81 
6/14/82 
7/7/80 
7/7/80 

6/27/83 
8/20/84 
12/15/86 
6/27/83 
2/2/87 
5/20/85 
2/2/87 

12/15/86 
7/22/85 
7/15/85 
11/17/86 
12/15/86 
4/1/85 
9/8/80 

3/29/82 
6/27/83 
6/14/82 
7/7/80 

12/15/86 
6/14/82

No. of days 
cooled as of 

10/1/91 
2411 
3332 
3991 
2598 
5432 
3332 
3872 
3395 
4104 
4104 
3017 
2598 
1750 
3017 
1701 
2325 
1701 
1750 
2262 
2269 
1722 
1750 
2375 
4040 
3475 
3017 
3395 
4104 
1750 
3395

MW01 
produced 

78810 
88276 
81639 
90315 
85337 
88276 
78225 
86967 
80961 
80961 
88003 
88050 
87459 
88003 
89214 
86624 
88956 
88040 
87768 
92718 
84819 
86115 
84491 
81561 
90098 
87958 
81206 
80961 
87011 
84702

Decay 
heat 
(W) 

11.23 
8.92 
6.94 
11.61 
5.19 
8.92 
6.90 
8.65 
6.68 
6.68 
9.82 
11.39 
16.49 
9.82 
17.16 
12.53 
17.10 
16.55 
13.02 
13.52 
16.37 
16.31 
12.04 
6.82 
8.69 
9.82 
8.17 
6.68 
16.43 
8.46

Gamma 
Activity 

(Ci) 
1,291 
1,026 
798 

1,335 
597 

1,026 
794 
994 
768 
768 

1,129 
1,309 
1,896 
1,129 
1.973 
1.441 
1,966 
1,903 
1.497 
1,554 
1,882 
1,875 
1,384 
785 
999 

1,129 
940 
768 

1,889 
973

(

IRRADIATIONPOST.  
U-236 

(g) 
3.082 
3.036 
2.808 
3.106 
2.935 
3.036 
2.690 
2.991 
2.784 
2.784.  
3.026 
3.028 
3.008 
3.026 
3.068 
2.979 
3.059 
3.028 
3.018 
3.189 
2.917 
2.961 
2.906 
2.805 
3.098 
3.025 
2.793 
2.784 
2.992 
2.913

Pu-239 

(g) 
5.20E-03 
5.12E-03 
4.74E-03 
5.24E-03 
4.95E-03 
5.12E-03 
4.54E-03 
5.05E-03 
4.70E.03 
4.70E-03 
5.11E-03 
5.11E-03 
5.08E-03 
5.11E-03 
5.18E-03 
5.03E-03 
5.16E-03 
5.11E-03 
5.09E-03 
5.38E-03 
4.92E-03 
5.OOE-03 
4.90E-03 
4.73E-03 
5.23E-03 
5.10E-03 
4.71 E-03 
4.70E-03 
5.05E-03 
4.92E-03

K

Np-237 
(g) 

4.02E-03 
4.44E-03 
3.80E-03 
4.65E-03 
4.15E-03 
4.44E-03 
3.48E-03 
4.31 E-03 
3.73E-03 
3.73E-03 
4.41 E-03 
4.42E-03 
4.36E-03 
4.41 E-03 
4.53E-03 
4.27E-03 
4.51 E-03 
4.41 E-03 
4.39E-03 
4.90E-03 
4.10E-03 
4.22E-03 
4.07E-03 
3.79E-03 
4.62E-03 
4.41 E-03 
3.76E-03 
3.73E-03 
4.31 E-03 
4.09E-03

w



4M14 445 256.32 6/27/83 3017 85524 9.58 1,102 2.941 4.96E-03 4.17E-03 

4M13 445 269.19 7/7/80 4104 80961 6.68 768 2.784 4.70E-03 3.73E-03 

4M12 445 233.39 3/23/87 1655 99198 18.89 2,173 3.411 5.76E-03 5.60E-03 

4M11 445 265.46 5/12/80 4160 77483 6.34 729 2.665 4.50E-03 3.42E-03 

4M09 445 269.62 5/4/81 3803 81912 7.30 840 2.817 4.75E-03 3.82E-03 

4M08 445 266.39 10/27/80 3991 81640 6.94 798 2.808 4.74E-03 3.80E-03 

4M06 445 254.96 7/22/85 2263 87506 12.96 1,491 3.009 5.08E-03 4.36E-03 

4M05 445 266.77 10/27/80 3991 81640 6.94 798 2.808 4.74E-03 3.80E-03 

4M04 445 258.83 8/16182 3458 82310 8.09 931 2.831 4.78E-03 3.86E-03 •C 

4M03 445 268.24 5/12/80 4160 77806 6.37 732 2.676 4.52E-03 3.45E-03 w 

4M02 445 264.36 9/8/80 4040 81561 6.82 785 2.805 4.73E-03 3.79E-03 

4M01 445 252.55 6/27/83 3017 88289 9.86 1,134 3.036 5.12E-03 4.44E-03 

4M10 445 300.46 6/25179 4482 60880 4.75 546 2.094 3.53E-03 2.11E-03 o0 
MIT-O8 506 446.88 9/6/83 2946 22654 3.05 351 0.886 1.49E-03 3.32E-04 ýr 

MIT-11 506 399.87 2/19186 2054 41614 7.84 902 1.627 2.75E-03 1.12E-03 

MIT-32 506 433.15 7/15/85 2270 28718 5.10 586 1.123 1.90E-03 5.34E-04 

MIT-19 506 471.77 10/14/86 1813 13680 3.32 382 0.535 9.03E-04 1.21 E-04 H 

MIT-12 506 342.39 5/9/88 1241 68135 18.84 2,167 2.664 4.50E-03 3.01E-03 
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3.6.5 Decay Heat Analysis of HFBR Fuel 

The original SAR thermal analysis, Section 3.1.2 (a), 

specifies that the maximum decay heat for BRR/MTR fuel is 1.02 

kw. To determine a shielding source term the decay heat from 

all sources for a 20 HFBR assembly payload was determined 

using ORIGEN2. The case considered was based on 60 days 

operation at 60 MW with a full core of 28 assemblies. The 

ORIGEN2 output (Reference 22) results were reduced by a factor 

of 0.71 (20/28) to reflect a 20 HFBR fuel assembly payload on 

the BMI-1 cask. Table 3.4 summarizes the results of the decay 

heat analysis. As shown, an average fuel assembly decay time 

of 470 days results in a decay heat load below the SAR MTR 

fuel limit of 1.02 kw.
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Table 3.4 

BMI CASK TOTAL DECAY HEAT 
(INCLUDING ALL RADIATION SOURCES) 

ORIGEN2 CASE RESULTS FROM: BNLWATT3 
BURNUP OF BNLCORE 28 ASSY 377.4 GU PER ASSY 60 MW, 60 DAYS

COOLING 28 ASSY 20 ASSY 
TIME DAYS WATTS WATTS 

200 5.66E+.03 4.04E+03 
220 4.88E+03 3.49E+03 
240 4.25E+03 3.03E+03 
260 3.72E+03 2.66E+03 
280 3.28E+03 2.35E+03 
300 2.95E+03 2.11E+03 
320 2.62E+03 1.87E+03 
340 2.37E+03 1.69E+03 
360 2.15E+03 1.54E+03 
380 1.97E+03 1.41 E+03 
400 1.82E+03 1.30E+03 
420 1.69E+03 1.20E+03 
440 1.57E+03 1.12E+03 
460 1.47E+03 1.05E+03 
470 1.42E+031 1.01 E+031 
480 1.38E+03 9.83E+02 
500 1.30E+03 9.26E+02

8
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4.1

4. CONTAINMENT 

4.1 Containment Boundry 

4.1.1 Containment Vessel 

For certain uses as defined in Reference i,(Section 1.4.1) the 

cask cavity liner provides the containment. For other uses, also 

defined in Reference 1, an inner containment-vessel (canister) 

is also used to provide containment. These are described in 

Section 1, including the drawings in the Appendix to Section 1.  

4.1.2 Containment Penetration 

Penetrations to the cask cavity include the vent/pressure 

relief line at the top and a drain at the bottom. The specified 

relief pressure is 75 psig. The drain line is leak tight.  

The special containment canisters used within the cask 

cavity do not have any penetrations.  

4.1.3 Seals and Welds 

Seals on both the cask cavity and inner canisters are 

elastometric as discussed in Section 1. All welds are full 

penetration welds.  

4.1.4 Closure 

The closure of the cask cavity is accomplished by twelve 

1 inch x 6 studs with two lock nuts per stud. The initial tightening 

torque on the nuts is 50 feet/pounds. The closure of the canister 

is accomplished by ten 3/8 x 16 inch bolts. The initial ti::h1en-

torque on the bolts is 60 inch/pounds.
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4.2

4.2 Normal Conditions of Transport 

The performance of the cask and inner canister during 

normal conditions of transport are presented in the applicable 

subsections of Section 2 and 3.  

4.3 Hypothetical Accident Conditions 

The performance of the cask and inner canister during 

the hypothetical accident conditions are presented in the applicable 

subsections of Sections 2 and 3.  

Rev. A. 3-28-80



4. 3 

4.4 APPENDIX 

4.4.1 References 

(1) U.S. Nuclear Regulatory Commission Certificate of 
Compliance for Radioactive Materials Package 
Number 5957, Rev. 4, June 15, 1978.
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