ATTACHMENT 16

- -.

: 🖷

10 G

2

CONSUMERS ENERGY BIG ROCKPOINT

DOCKET NUMBERS 50-155 AND 72-043

TRANSMITTAL OF SURVEY PACKAGES IN SUPPORT OF BIG ROCK POINT PHASED LICENSE TERMINATION

CLASS 1 AREA –FINAL STATUS SURVEY, TBC_{X1}1 EXCAVATED SOIL FROM TURBINE BUILDING DEMOLITION AREA, SUPPORTING SUBSURFACE STRUCTURE AND COMPONENT REMOVAL


October 9, 2006

51 Pages

Final Status Survey TBC_{x1}1

Excavated Soil From Turbine Building Demolition Area Supporting Subsurface Structure And Component Removal Survey Date: 06-22-2005

· · · ·

Final Status Survey Area Requirements Survey TBC_{X1}1 Excavated Soil From Turbine Building Demolition Area

Survey Description

Final Status Survey $TBC_{x1}1$ consists of excavated soils that were removed from the Turbine Building demolition area for subsurface structure and component removal. Areas of excavation included the foundation walls beneath the Turbine Building in Survey Unit 8 and the heavy-haul roadway traversing Survey Units 5(1), and 5(2). The excavated soil was transported to the soil verification area (SVA) and graded to depth of approximately 0.5 meters. The physical size of the excavated soil survey area is 3100 square meters¹.

Final status evaluation of this excavated soil will be in accordance with procedure RM-76, Final Status Survey Design and the requirements established in LTP 5.4.2.4. Sample locations will be established by random start, systematic square grid pattern over the graded area. Each soil sample will be a full core homogenized composite that is representative of total soil thickness. Surface scanning will be conducted over 100% of the survey area.

History

The soil for survey evaluation originated from a Class 1 area. This soil is a combination of sand and sandy gravel fill material that has been excavated to remove subsurface piping components and expose the concrete foundations beneath the Turbine Building. The foundation walls and footings from this area have been surveyed and released for offsite disposition to the local landfill in accordance with the LTP and provisions established in the NRC approved 10 CFR20.2002 alternate disposal method for BRP demolition debris. Soil remediation efforts were required during demolition for some minor areas associated with subsurface component removal.

Physical inspection and routine surveys performed following transport to the low background area (SVA) identified contaminated demolition debris and several discrete particles of elevated activity that were moved with the soil. These materials were remediated by repetitive grading of the soil and surface scanning in successive layers of reduced thickness until all elevated residual radioactivity and demolition debris were removed.

Current Radiological Status

Based on post remediation analyses and supporting surveys the residual radioactivity in the excavated soil for this survey is not expected to exceed fractional concentrations of the DCGL value. Survey documentation is maintained in the 10 CFR 50.75.G files. Input for this evaluation includes the following survey data:

	Supporting Surveys for Soil Transport and Evaluation									
	TB051005	SB040405	SB042905	TB062805	HH060705					
	TB052405	SB040605	SB050205	HH050505	TB060905					
Γ	TB052505	SB040705	SB051705	HH051705						
Γ	TB052605	SB041205	SB051805	HH051905						
	TB060105	SB041905	HH042705	HH041905						

Turbine Building Demolition

¹ The Survey Design section contains a technical justification for the physical size of this survey area. FSS Survey Area Requirements

TBC_{x1}1 Page 1 of 2

Quality Assurance/Quality Control

As a minimum 5% of the sample population of this survey shall be selected for QA/QC verification in accordance with BRP Procedure RM-79, *Final Status Survey Quality Control*. Both split samples and sample recounts will take place. In addition, a minimum of 5% of the survey area will receive a verification scan. QA/QC soil samples and verification scan locations will be determined by random number selection.

Additional Sample Analysis Requirements

The area of soil excavation intersects the identified waterborne pathway for Tritium migration and shall require Tritium in soil analyses for a minimum of 10% of the sample population. Tritium soil samples will be sent to an independent laboratory for analysis.

Post-Construction Expectations

Survey TBC_{x1}1 will be performed in the following activity sequence:

- 1. Walkdown: Site Characterization personnel will perform a walkdown assessment to insure survey area preparations are complete and confirm that the following post-construction expectations have been satisfied:
 - Groundwater and Surface water control is adequate
 - All construction debris has been removed from the survey area
 - The survey location status meets all applicable safety requirements
- 2. Survey Area Isolation and Control: Control measures will be established to ensure that any potential ongoing decommissioning activities in adjacent locations do not impact the current survey area status. Isolation and control measures include postings, barriers, access points, and the evaluation of ongoing work activities in adjacent areas.
- Survey Design and Execution: Survey design and execution will follow the Data Quality Objectives for TBC_{x1}1 in accordance with the survey requirements established in procedures RM-76, *Final Status Survey Design* and RM-77, *Final Status Survey Implementation*, and LTP, Chapter 5. Survey size will be based on the statistical requirements of the Sign Test for Class 1 areas with soil samples collected in random start, systematic data point locations. Surface scanning will be performed with 100% survey area coverage. This survey will be conducted in accordance with approved BRP procedures and follow the guidance of NUREG 1575.
- 4. Data Quality Assessment: Isolation and control of the survey area will be maintained until the survey Data Quality Assessment demonstrates that the regulatory requirements for unrestricted site release have been satisfied.

DATA QUALITY OBJECTIVES

Survey TBC_{X1}1 Excavated Soils from Turbine Building Demolition

1. STATE THE PROBLEM

The Problem:

To demonstrate that the level of residual radioactivity in soil excavated from the Turbine Building demolition area does not exceed the release criteria of 25 mrem/year Total Effective Dose Equivalent (TEDE) as specified in the License Termination Plan (LTP). This soil has been relocated to the soil verification area (SVA) and is to be prepared for Final Status Survey (FSS) by grading out to a depth of one (1) meter or less. The excavated soil for FSS is to be designated as a Class 1 survey area. It must be demonstrated that soils in this survey area satisfy the criteria established for unrestricted release prior to disposition as fill material for onsite usage.

Stakeholders:

The primary stakeholders interested in the answer to this problem are Consumers Energy Co., and the general public as represented by the Michigan Department of Environmental Quality (MDEQ), and the US Nuclear Regulatory Commission (USNRC).

The Planning Team:

The planning team consists of members of the BRP Environmental Services Survey Group (ESSG). The primary decision maker will be the Final Status Survey Supervisor. The Final Status Survey Supervisor will obtain input from the site Construction Group and Scheduling Group for issues relating to schedule and costs.

Schedule:

Approximately five (5) working days are projected to implement the Final Status Survey to collect and analyze field data.

Resources:

The primary resources needed to determine the answer to the problem are two (2) technicians to perform fieldwork, one (1) technician to prepare the samples and conduct laboratory analyses, and two (2) FSS team members to prepare and review the design, generate maps, coordinate field activities and evaluate data.

2. IDENTIFY THE DECISION

Several decisions need to be defined to address the stated problem.

Principal Study Question (1):

Does the mean concentration of residual radioactivity in the survey unit exceed the release criteria stated above?

Decision (1):

Determine whether the mean concentration of residual radioactivity in the survey exceeds the release criteria stated in the problem.

Actions (1):

Alternative actions include failure of the survey unit, remediation, or no action required.

Principal Study Question (2):

Do any areas of elevated activity in the survey unit exceed the release criteria?

The Decision (2):

Determine if any areas of elevated activity in the survey unit exceed the release criteria.

Actions (2):

Alternative actions include confirmation and investigation, performing the elevated measurement comparison (EMC), remediation, or no action required.

Principal Study Question (3):

Is the potential dose from residual radioactivity in the survey unit ALARA as stated?

The Decision (3):

Determine if the potential dose from residual radioactivity in the survey unit is ALARA. ALARA requirements for soil remediation are defined in Chapter 4 of the LTP.

Actions (3):

Alternative actions include remediation or no action required.

3. IDENTIFY INPUTS TO THE DECISION

Information Needed:

Characterization measurements are required to define the radionuclides present and determine the extent and variability of residual radioactivity in the survey area for design and implementation of the FSS. Survey area classification, ALARA analysis, potential radionuclides of interest, and site-specific DCGL values are also required inputs to the decision process. The primary information required for evaluation is the analytical results of FSS measurements.

Source of the Information:

The soil sample data to be used for FSS development are the radionuclide-specific measurements of soil samples collected to determine transport suitability and final status evaluation. The soil samples obtained are judgmentally selected as a result of multiple surveys of the excavated soil. The ALARA analysis for potential soil remediation is provided in LTP, Section 4.4. Site-specific DCGL values and BRP radionuclides of interest are defined in LTP Section 5, Table 5-1 and Procedure RM-76, *Final Status Survey Design*.

The FSS will be conducted in accordance with applicable regulatory guidance as established in LTP Section 5 for Class 1 areas. Soil samples will be utilized for radionuclide-specific measurements in this evaluation.

4.

BOUNDARIES OF THE STUDY

Boundaries of the Survey:

The target population for this survey is the total thickness of prepared soil in the survey area of 3100 m^2 . The Survey Design section provides technical justification for this survey area size.

Temporal Boundaries:

Scanning and sampling in this survey unit will only be performed during daylight hours under dry weather conditions. Collection of data will take place when surface conditions are most favorable. Surface soils must be free of significant snow cover and standing water prior to surface scanning. Soils must be in a non-frozen state or fragmented for collection to satisfy BRP procedural sampling requirements. The anticipated start date for the survey is 06-29-05.

Constraints:

Cold weather or rainy conditions may effect the operation of electronic equipment. Adverse weather conditions that include accumulations of rain or snow may limit area access and delay survey efforts.

5. DEVELOP A DECISION RULE

The following decision rules have been developed to define a logical process for choosing among alternative actions for the principal study questions associated with this survey area.

Decision Rule (1):

If all reported concentrations for residual radioactivity are less than the site specific DCGL's and the unity rule has been satisfied for each sample, then the survey unit meets release criteria. No further action is required.

Decision Rule (2):

If the mean value of activity in the survey unit is greater than the DCGL, then the survey unit fails to meet the release criteria.¹ Remediate, resurvey, and evaluate the results relative to the decision rule.

Decision Rule (3):

If the mean activity in the survey unit is less than the DCGL and any individual sample measurement exceeds this value, conduct the Sign Test and the elevated measurement comparison (EMC) per LTP, Chapter 5 and Procedure RM-76, *Final Status Survey Design*. If the EMC and the Sign Test have been satisfied then the survey unit meets the release criteria and no further action is required. If the EMC or the Sign Test has not been satisfied then remediate the area(s) of elevated activity, resurvey as appropriate, and evaluate the results relative to the decision rule.

¹ When multiple radionuclides are present the mean activity value is determined as the average of the weighted sum. The DCGL of the weighted sum is 1.

Decision Rule (4):

If the potential dose from residual radioactivity in the survey unit is ALARA, then no further action is necessary. If the potential dose from residual radioactivity in the survey unit is not ALARA, then remediate and resurvey.

6. SPECIFY TOLERABLE LIMITS ON DECISION ERRORS

The Null Hypothesis:

It is assumed that residual radioactivity in the survey unit exceeds the release criterion.

Type I Error (α):

The α error is the maximum probability of rejecting the null hypotheses when it is true. The α error is defined in the LTP at a value of 0.05 (5%) and cannot be changed to a less restrictive value unless prior approval is granted by the USNRC. The α error value of 0.05 will be used for survey planning and data assessment for this survey area.

Type II Error (β):

The β error is the probability of accepting the null hypothesis when it is false. A value of 0.05 (5%) will be used for survey planning and data assessment for this survey area.

The Lower Bound of the Gray Region (LBGR):

The LBGR is initially set at 0.5 for this survey unit. The LBGR may be adjusted during survey design to achieve an optimum relative shift between 1.0 and 3.0.

Relative Shift (Δ/σ) :

The relative shift will be maintained within the range of 1.0 and 3.0 by adjusting the LBGR as appropriate.

7. OPTIMIZE DESIGN FOR OBTAINING DATA

Statistical Test

Sign Test:

Radionuclides of potential plant origin also present in soil as background activity resulting from fallout constitute only a small fraction of the DCGL. Therefore, the Sign Test will be used where applicable in the FSS evaluation to determine if the survey area meets the requirements for unrestricted release.

Number of Samples Determined:

The number of samples required for this survey will be determined based on the relative shift as defined by the requirements of the Sign Test (LTP, Chapter 5.) and Procedure RM-76, *Final Status Survey Design*. The LBGR is initially set at 0.5 and may be adjusted as necessary for optimizing the survey design to achieve a relative shift between 1.0 and 3.0. Sample point locations are to be determined using a random start, systematic square grid spacing.

Biased Sampling:

Co-60 is the most limiting radionuclide for identification by surface scanning; biased surface and subsurface core samples will be collected in any location that exceeds the scan investigation level.

Scan Coverage:

Scanning for this survey area will provide 100% coverage.

Number of Samples for Quality Control:

A minimum of 5% of the sample population will be collected for quality evaluation. These samples may include sample splits, sample recounts, or 3rd party sample analysis. Quality analyses will be conducted as defined in LTP, Chapter 5 and Procedure RM-79, *Final Status Survey Quality Control.*

Additional Sample Analysis Requirements:

A minimum quantity of 10% of the sample population shall be collected for tritium analysis in the same locations as samples selected for QA/QC. Tritium analyses will be performed by an independent laboratory. Data results will be provided in the FSS package.

Investigation Levels:

Investigation levels defined in LTP, Chapter 5 and BRP Procedure RM-76, *Final Status Survey Design*, shall be conservatively established for this survey as shown below:

Classification	Scan Measurement	Soil Sample Analysis
Class 1	> DCGL	> DCGL _w

Investigation Levels for Survey TBC_{x1}1

The investigation levels for soil sample measurements are meant to include any individual radionuclide result greater than the site-specific DCGL or where the combined radionuclide values exceed the unity rule. Co-60 is the most limiting radionuclide for identification by surface scanning; further investigation will be initiated at any location that exceeds the Co-60 Scan _{DCGL} of 1818 CPM above background as detailed in the survey design.

SURVEY DESIGN

Survey TBC_{x1}1 Final Status Survey Design Excavated Soils from Turbine Building Demolition

Survey Unit Description

Final Status Survey $TBC_{x1}1$ consists of excavated soils that have been removed from the Turbine Building demolition area for subsurface structure and component removal. Areas of excavation include the foundation walls beneath the Turbine Building in Survey Unit 8 and the heavy-haul roadway traversing Survey Units 5(1), and 5(2).

The physical size of this survey area is approximately 3100 m^2 . In accordance with LTP Section 5.2.3.1, Class 1 survey unit sizes exceeding 2000 m² require a technical justification. Since the prepared area of excavated soil required grading to a depth of approximately 0.5 meters to allow demolition debris removal (typically small pieces of concrete and rebar), it was determined that the final status evaluation could be performed at this depth thereby utilizing site resources efficiently without compromising the quality of the survey design. The larger survey area, at 0.5 meter depth, will result in an increase in the soil surface exposed for FSS scanning. Sample density for this survey will be consistent with that required for the same volume of excavated soil in the standard Class geometry (2000 m² at 1 meter depth).

Soil sample locations for this survey will be determined using a random start, systematic, square-grid pattern over the graded area. Each soil sample will be a homogenized composite representative of the total thickness of soil. Surface scanning will be conducted over 100% of the graded area.

Soil Sample Design

Scoping Data

Sample measurements obtained to determine suitability for soil transport to the designated FSS area have not identified residual radioactivity above fractional concentrations of the DCGL value. Input data for survey design were based on values identified in characterization and supporting surveys for transport suitability.

Radionuclides	Cs-137	Co-60					
σ*	0.524	0.255					
DCGL	11.93	3.21					

			Table 1		
Input	Data	for	Survey	Design	(pCi/g)

*see Attachment 1

Sample Requirements

The number of sample data points for this survey is based on the requirements of the Sign Test. The Unity Rule is used for the presence of multiple radionuclides. The Standard Deviation of the weighted sum is described by the following:

$$\sigma = \sqrt{\left(\frac{\sigma_{cs_{137}}}{DCGL_{cs_{137}}}\right)^2 + \left(\frac{\sigma_{coeo}}{DCGL_{coeo}}\right)^2}$$

$$\sigma = \sqrt{\left(\frac{0.524}{11.93}\right)^2 + \left(\frac{0.255}{3.21}\right)^2}$$

σ = 0.091

Relative Shift

The DCGL_w for the weighted sum is 1.0. The relative shift is determined using an LBGR value set at approximately 82% of the DCGL_w.

Relative Shift = $\frac{DCGLw - LBGR}{\sigma}$ Relative Shift = $\frac{1 - 0.818}{0.091}$

Relative Shift = 2.0

With α and β error levels set at 0.05 and the relative shift of 2.0, the Sign Test requires 15 sample data points (Table 5.5 NUREG 1575). As a conservative measure a minimum of 18 samples will be collected for this survey.

Sample Locations

Sample locations are selected in a random start, systematic square grid pattern with the southwest corner of the survey unit as origin (X=0, Y=0). Two numbers between 0 and 1 have been randomly selected and then applied to the survey unit maximum X and Y dimensions to determine the random start location as shown below:

Table 2 Random Numbers

Random #, X Axis	Random #, Y Axis
0.417274	0.810911

Survey Unit TBC_{X1}1 Dimensions: X = 149 meters Y = 20.8 meters

Random Start Location:	X = (0.417274)(149)	=	62.2 meters
With SW Corner Origin	Y = (0.810911)(20.8)	=	16.9 meters

```
FSS Design
TBC<sub>x1</sub>1
Page 2 of 8
```

Sample Spacing

Samples are located in a systematic square grid pattern with sample spacing determined by the following:

$$L=\sqrt{\frac{A}{n}}$$
 ,

where A= area of survey unit, and n = number of samples.

 $L = \sqrt{\frac{3100}{18}} = 13.1$ meters

With Sample spacing established at 13.1 meters, 22 data point locations are available for survey as identified in Attachment 2.

QA/QC Sampling

A minimum of 5% of the sample population and 5% of the scan survey area are required to be selected for QA/QC verification in accordance with BRP Procedure RM-79, *Final Status Survey Quality Control.* As a conservative measure, three (3) soil samples and 10% of the scan survey area will be selected for QA/QC evaluation. Data point locations for soil samples willbe determined by random number selection.

The starting point and track direction are also determined by random number selection for QA/QC scanning. The first random data point selected will identify the scanning start point and the second random data point will determine the direction in which the scan will track. QA/QC location results are provided in Table 3 below:

QA/QC Soil Samples	Random Sample Number	Verification Scan	Random Sample Number
Split Sample:	10	Start Point:	4
Sample Recount:	14	Scan Towards :	3
Sample Recount:	17	Minimum Scan Area Requirement:	310 m ²

Table 3 Random Numbers Generated for QA/QC

Surface Scanning

The coverage requirement for surface scanning in this Class 1 area is 100%. The Scan $_{MDC}$ has been established at fractional values of the DCGL_w for typical background activity levels at Big Rock Point. Scan $_{MDC}$ values for varying backgrounds are provided in Attachment 4. The

investigation level for identification of potential areas of elevated activity in this survey area will be the Scan _{DCGL} as defined by the following:

Scan _{DCGL} = Detector Rating $\frac{CPM}{uR/hr}$ * Exposure Model $\frac{uR/hr}{pCi/g}$ * DCGL_w

Scan _{DCGL} for Co-60 = 1818 CPM

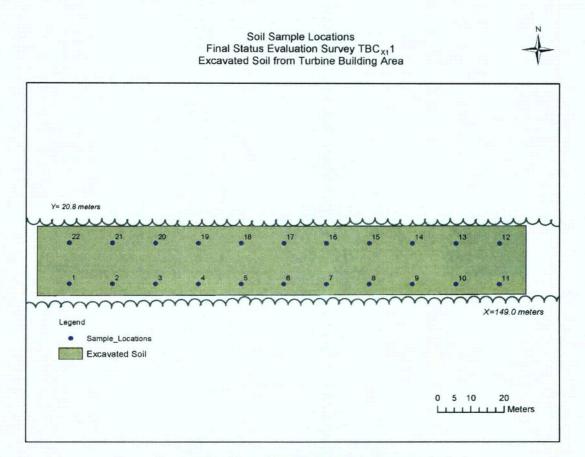
Scan _{DCGL} for Cs-137 = 3518 CPM

Where:1

Detector Rating = $\frac{1200 \text{ CPM}}{\mu\text{R/hr}}$ Cs - 137 and $\frac{565 \text{ CPM}}{\mu\text{R/hr}}$ Co - 60

Exposure Model = $\frac{1.229 \,\mathrm{uR/hr}}{5 \,\mathrm{pCi/g}} \,\mathrm{Cs} - 137$ and $\frac{5.029 \,\mathrm{uR/hr}}{5 \,\mathrm{pCi/g}} \,\mathrm{Co} - 60$

DCGL_w = 11.93 pCi/g Cs-137 and 3.21 pCi/g Co-60


The DCGL_w for Co-60 is the most limiting value for scanning measurements performed to identify areas of potentially elevated activity. Scanning conducted for this Final Status Survey will assume all residual radioactivity to originate from Co-60 and the instrument response at the Co-60 DCGL_w (1818 cpm) will be used as the scanning investigation level for Survey TBC_{x1}1.

¹ These values established in EA-BRP-SC-0201, *Nal Scanning Sensitivity for Open Land Survey*.

Design Data - Survey TBC_{x1}1 Excavated Soil from Turbine Building Demolition Area

Survey No.	Sequence No.	Cs-137 Activity (pCi/g)	Co-60 Activity (pCi/g)		
HH060705	16538	1.26	0.66		
HH060705	16539	0.06	0.06*		
HH060705	16540	1.05	0.66		
TB062805	16755	1.16	0.27		
TB062805	16756	0.47	0.15*		
TB062805	16774	0.19	0.31		
	Mean:	0.698	0.352		
	Std Dev:	0.524	0.255		

* Measurement system MDA - Co-60 not identified in this sample

Sample	X	Y
No.	Coord.	Coord.
1	9.8	3.8
2	22.9	3.8
3	36.0	3.8
4	49.1	3.8
5	62.2	3.8
6	75.3	3.8
7	88,4	3.8
8	101.5	3.8
9	114.6	3.8
10	127.6	3.8
11	140.7	3.8

Sample No.	X Coord.	Y Coord.
12	140.7	16.9
13	127.6	16.9
14	114.6	16.9
15	101.5	16.9
16	88.4	16.9
17	75.3	16.9
18*	62.2	16.9
19	49.1	16.9
20	36.0	16.9
21	22.9	16.9
22	9.8	16.9

*Sample no. 18 is the random start location Sample spacing is 13.1 meters

> FSS Design TBC_{x1}1 Page 6 of 8

• •

-

Scan MDC In Varying Backgrounds

				CPM			Scan MDC	pCi/g
Background	d'	1	S _i	MDCR _{surveyor}	Cs-137	Co-60	Cs-137	Co-60
2000	2.48	4	28.64	607.47	0.51	1.08	2.06	1.07
2500	2.48	4	32.02	679.18	0.57	1.20	2.30	1.20
3000	2.48	4	35.07	744.00	0.62	1.32	2.52	1.31
3500	2.48	4	37.88	803.61	0.67	1.42	2.72	1.41
4000	2.48	4	40.50	859.10	0.72	1.52	2.91	1.51
4500	2.48	4	42.95	911.21	0.76	1.61	3.09	1.60
5000	2.48	4	45.28	960.50	0.80	1.70	3.26	1.69
5500	2.48	4	47.49	1,007.38	0.84	1.78	3.42	1.77
6000	2.48	4	49.60	1,052.17	0.88	1.86	3.57	1.85
6500	2.48	4	51.63	1,095.14	0.91	1.94	3.71	1.93
7000	2.48	4	53.57	1,136.48	0.95	2.01	3.85	2.00
7500	2.48	4	55.45	1,176.37	0.98	2:08	3.99	2.07
8000	2.48	4	57.27	1,214.95	1.01	2.15	4.12	2.14
8500	2.48	4	59.04	1,252.34	1.04	2.22	4.25	2.20
9000	2.48	4	60.75	1,288.65	1.07	2.28	4.37	2.27
9500	2.48	4	62.41	1,323.96	1.10	2.34	4.49	2.33
1,0000	2.48	4	64.03	1,358.35	1.13	2.40	4.61	2.39
10500	2.48	4	65.61	1,391.90	1.16	2.46	4.72	2.45
11000	2.48	4	67.16	1,424.65	1.19	2.52	4.83	2.51
11500	2.48	4	68.67	1,456.67	1.21	2.58	4.94	2.56
12000	2.48	4	70.14	1,488.00	1.24	2.63	5.04	2.62
12500	2.48	4	71.59	1,518.68	1.27	2.69	5.15	2.67
13000	2.48	4	73.01	1,548.76	1.29	2.74	5.25	2.73
13500	2.48	4	74.40	1,578.26	1.32	2.79	5.35	2.78
14000	2.48	4	75.77	1,607.22	1.34	2.84	5.45	2.83
14500	2.48	4	77.11	1,635.67	1.36	2.89	5.55	2.88
15000	2.48	4	78.42	1,663.63	1.39	2.94	5.64	2.93
Modeled Expo) sure (uR/h	r) @ 5 pCi/g	n na ser en					
	Cs-137	1.23E+00	<u>. 1928 - 1939 (</u>	the second state of the se		1	a <u>r i 1999 di vel 1987</u> -	1 P. 1 - 1 - 1
······	Co-60	5.03E+00	<u></u>		<u> </u>	 		
					+		1	<u> </u>

Calculated Area Factors at Time of Peak Dose									
Contaminated									
Area (m ²)	H-3	Mn-54	Fe-55	Co-	Sr-90	Cs-137	Eu-152	Eu-	Eu-155
Alea (m)				60				154	
8094	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
4047	1.00	1.01	1.00	1.01	1.00	1.02	1.02	1.01	1.02
2024	1.00	1.03	1.00	1.03	1.00	1.03	1.03	1.03	1.03
1012	1.35	1.04	1.00	1.04	1.00	1.04	1.05	1.04	1.04
506	2.91	1.09	1.98	1.08	1.98	1.13	1.07	1.07	1.06
253	6.05	1.14	3.95	1.13	3.94	1.20	1.11	1.11	1.09
126	12.4	1.20	7.93	1.20	7.87	1.29	1.17	1.16	1.14
63	24.9	1.30	15.8	1.30	15.6	1.41	1.27	1.26	1.23
32	49.2	1.49	31.2	1.49	30.5	1.62	1.44	1.45	1.39
16	98.9	1.78	62.0	1.78	59.9	1.93	1.72	1.73	1.63
8	198	2.38	123	2.38	117	2.58	2.30	2.31	2.14
4	397	3.61	243	3.62	230	3.91	3.49	3.52	3.19
2	794	5.68	473	5.75	452	6.14	5.48	5.55	4.90
1	1590	9.57	905	9.73	887	10.3	9.24	9.39	7.88

Area Factors for Open Land Survey Evaluation

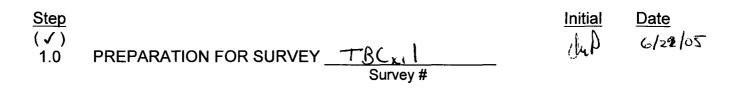
RM-76 FINAL STATUS SURVEY DESIGN

4

t.

RM-76-5 FINAL STATUS SURVEY APPROVAL AND AUTHORIZATION FOR IMPLEMENTATION

Survey Code TBCx, 1


Survey Area Description: Tuebene Bu Excave 100

The survey area is authorized for Final Status Survey Implementation.

6/22 03 Designed by Date 61 Technical Review by Date

RM-77 FINAL STATUS SURVEY IMPLEMENTATION

RM-77-1
SURVEY IMPLEMENTATION CHECKLIST
Page 1 of 3

- 1.1 Survey Area Status:
 - A. Final Status Survey Design has been approved for implementation (see RM-76-5, Final Status Survey Approval and Authorization for Supplementation).
 - 1. Survey area walkdown complete
 - 2. Survey area determined ready for FSS
 - 3. Decommissioning activities that may impact the environmental status of the survey area have been completed.
 - 4. Survey area environment is controlled by barriers and postings or other approved method to restrict access.
- b. Survey area has been turned over to the Environmental Services Survey Group (ESSG) in acceptable condition for FSS.

1.2 Field Preparation:

- ____
- a. Survey unit boundaries delineated (Step 6.1.1)
- b. Statistical soil samples predetermined in the survey design are located and marked within the survey unit. (Step 6.1.2)
- $-\frac{1}{1}$ c. S
- c. Soil sample locations verified (Step 6.1.2.c)
 - d. Instruments and equipment have been collected and calibrated for data measurement and collection (Step 6.1.3)
 - e. Field documentation is prepared (Step 6.1.4)

(hu) 6/24/05 ESSG

6/28/05

<u>ilin 6/29/05</u> ESSG

R

RM-77 FINAL STATUS SURVEY IMPLEMENTATION

RM-77-1 SURVEY IMPLEMENTATION CHECKLIST Page 2 of 3

2.0 DATA COLLECTION

- 2.1 Soil Survey:
- \checkmark All soil samples collected and controlled (Step 6.2.1).
- 2.2 Surface Scan:
- Surface Scan complete. Action response requirements have been conducted on any identified areas exceeding the investigation level (Step 6.3).
- 2.3 Judgmental Soil Samples:
- <u>NA</u> a. Judgmental soil samples have been collected and controlled (Step 6.2.3).
- $\underline{N/A}$ b. Deep core profiles performed in areas identified to contain elevated residual activity (Step 6.2.3).

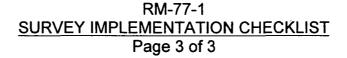
3.0 SAMPLE PREPARATION AND LABORATORY ANALYSIS

- 3.1 Sample Preparation (Step 6.4.1):
 - a. Soil samples are homogenous
 - b. Soil samples are visibly dry prior to packing
 - c. Non-soil materials have been removed from sample
 - d. Soil samples have been transferred to one-liter Marinelli containers and are labeled and sealed.

6/30/05

6130/05

6/3/05


IAR <u>orloal</u>os ESSG

Revision 2 Page 10 of 12

Initial Date

RM-77 FINAL STATUS SURVEY IMPLEMENTATION

Revision 2 Page 11 of 12

3.2 Laboratory Analysis:

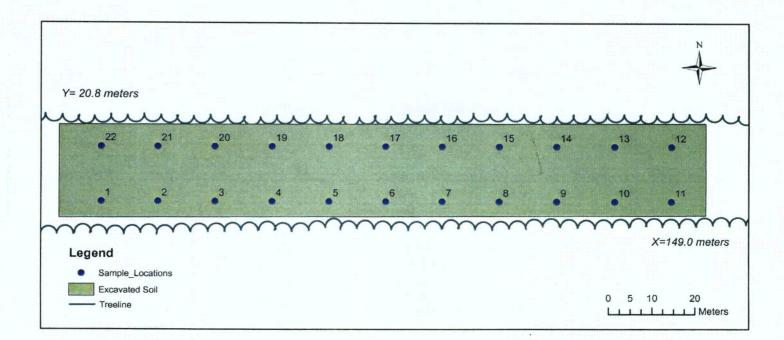
Isotopic analyses are complete. The spectroscopy report requires a signature of completion by the laboratory analyst and a signature of evaluation documenting that a second level review has been performed (Step 6.4.2).

3.3 Sample Control and Documentation:

Chain of custody documentation exhibits control of soil samples (Step 6.4.3).

Rev

65

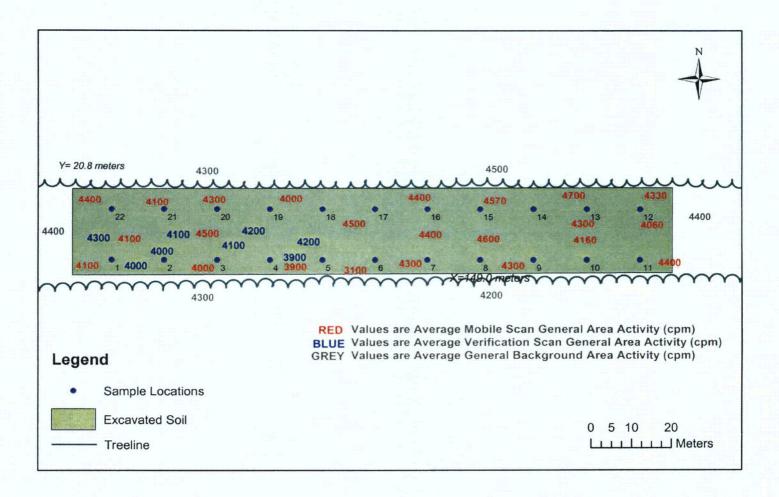

717/05

4.

ATTACHMENT RM-59-1 SAMPLING AND ANALYSIS REPORT

Date: 06-29-05	Time: 1400	Location: SVA	Tech: DWParish				
SURVEY IDENTIFICATION / DESCRIPTION							
Survey TBC _{x1} 1 Final	Status Survey of exc	avated soil from the T	urbine Building				
demolition area.							
		······································					
	SURV	EY TYPE					
Survey Type:	Characterization Remediation	Scan (Motive)					
	Remediation	Scan (Static)					
			ging (use RM-59-3)				
			<u></u>				
	SURVE	Y DESIGN					
Sample Collection:	Judgmental	Random Sys	stematic				
Scan Coverage: 10D	%						
	ANA						
186201 /		LYSIS	UNSAT INIT:				
Inst./Serial No. JB635 1A Inst./Serial No. Det 6	DAILY CH		UNSAT INIT: ///. UNSAT INIT: ////				
Investigation Of Unidentifi		SAT	UNSAT INIT: WILL				
Minimum Detectable Activ		SAT	UNSAT INIT:				
	<u>COM</u>	MENTS	······································				
FSS TBC _{x1} 1 was per	ormed in a random s	tart, square grid, syste	matic sampling pattern				
resulting in the collect	ion of 22 soil sample	s. Laboratory gamma	spectroscopy				
analyses do not ident	ify the presence of re	sidual radioactivity abo	ove trace levels of the				
	-	coverage identified no					
residual radioactivity. The results of the QA/QC verification scan (10% coverage) were consistent with the surface scanning results as detailed in the Surface Scan Summary							
attachment.							
Technician Signature:	Adapa	Date	: 7/6/05				
Second Level Review: Signature:	U.M.	Date					

Activity Summary Soil Sample Analysis-FSS TBC _{x1}1 Excavated Soil from Turbine Building Area


Sample	X	Y	Cs-137 (pCi/g)		Co-60	(pCi/g)
No.	Coord.	Coord.	Activity	MDA	Activity	MDA
1	9.8	3.8	0.13		** 0.06	0.08
2	22.9	3.8	0.08	AND TRACTOR	** 0.07	0.08
3	36.0	3.8	0.13	J. Sector Land	** 0.01	0.07
4	49.1	3.8	0.07	121215	0.06	
5	62.2	3.8	0.07	Caratteners 24	** 0.03	0.07
6	75.3	3.8	0.09		** 0.02	0.07
7	88.4	3.8	0.11	station for	** 0.01	0.06
8	101.5	3.8	0.10	ar Sales ve	** 0.06	0.08
9	114.6	3.8	0.06		** 0.02	0.07
10	127.6	3.8	0.02	A second second	** 0.01	0.06
11	140.7	3.8	** 0.02	0.05	** 0.01	0.05
12	140.7	16.9	** 0.02	0.04	** 0.01	0.05
13	127.6	16.9	** 0.02	0.05	** 0.02	0.06
14	114.6	16.9	0.04	Active Theorem in the	** 0.02	0.06
15	101.5	16.9	0.05	Contraction of the second	0.09	
16	88.4	16.9	0.08		** 0.04	0.08
17	75.3	16.9	0.09	A CONTRACTOR	** 0.02	0.08
18	62.2	16.9	0.12		** 0.07	0.09
19	49.1	16.9	0.13	and selected as	** 0.04	0.08
20	36.0	16.9	0.10	M. BULLING	** 0.04	0.07
21	22.9	16.9	0.09		** 0.02	0.06
22	9.8	16.9	0.07		** 0.02	0.06

*Coordinate location relative to SW Corner of survey unit where X=0 m. and Y=0 m.

** Forced-count values

١

Surface Scan Summary Scan Survey Data - FSS TBC_{x1}1 Excavated Soil from Turbine Building Area

Primary Scan: % 100 Date: 6 **Technician Signature:** m Time: 1500 QC Verification Scan: % 10

earss **Technician Signature:**

Date: 7-6-05 Time: 1300

RM-72

SAMPLE CHAIN-OF-CUSTODY

FSS. TBCXII	
RM-72-1	
CHAIN-OF-CUSTODY R	ECORD

Sample Number	Sampling Location	Date	Time	Final Disposition of Sample
/				
	(9.8)(3.8)	6-30-05	1243	82B
2	(22.9) (3.8)	6.30-65	1245	82B
3	(36.0)(3.8)	6-30-05	1248	82B
4	(49.1)(3.8)	6-30-05	1250	850
5	(62.2)(3.8)	6-30-05	1252	820
6	(75.3)(3.8)	6-30-05	1254	826
7	(88.4)(3.8)	6.30.05	1256	rac
8	(101.5)(3.8)	6-30-05	1257	820
9	(114.6)(3.8)	6-30-05	1258	826
10	(127.6)(3.8)	6-30.05	1303	822
11	(140.7)(3.8)	20.05-01	1305	82D
12	(140.7) (16.9)	20.05-01	1308	820
13	(1276)(169)	6-30.05	1310	82D
14	(114.6)(16.9)	6-30-05	1312	612
15	(101.5)(16.9)	6-30-05	1313	82 E
16	(88.4)(169)	6-30-05	کردر	82 E
17	(75.3)(16.9)	6-30-05	1317	82E
18	(102.2)(10.9)	6-30-05	1318	825
19	(49.1)(10.9)	6-30-05	1320	82E
20	(36.0)(169)	6-30-05	1347	82F

(Samples may be analyzed and stored, shipped for offsite evaluation or analyzed and disposed of.)

1. Relinquished by:	Date 6/30/05	Time 1420	Received in good condition by: Chen Lab. Locked in Storage Cabinet
2. Relinquished by: J. d. Reed	Date	Time	Received in good condition by: Locked in over
3. Relinquished by: J. L. R. e. d	Date 07/02/05	Time	Received in good condition by: Chem lab. Locked in Sturage automet
4. Relinquished by: G. Read	Date	Time //38	Received in good condition by: Locked in Env. Seavan for permanent Storage.

RM-72.doc

RM-72

SAMPLE CHAIN-OF-CUSTODY

Revision 0 Page 4of 5

F35- TBC ...) RM-72-1 CHAIN-OF-CUSTODY RECORD

Sample Number	Sampling Location	Date	Time	Final Disposition of Sample
21	(22.9)(10.9)	6-30-05	1349	82F
22	(9.8) (16.9)	6-30.05	1351	82F
10 split	(127.6)(3.8)	6-30-05	1302	Environmental Lab
10 H.3	(127.6)(3.8)	6-30-05	1300	GEL
14 43	(114·6)(16 A)	6-30-05	1351	GEL
17 #3	(75.3)(16.9)	6-30-05	1350	6EL
	· · · · · · · · · · · · · · · · · · ·			
	·			· ·
	· · · · · · · · · · · · · · · · · · ·			
		·		
	·			
·				

(Samples may be analyzed and stored, shipped for offsite evaluation or analyzed and disposed of.)

1. Relinguished by:	Date 6/30/05	Time 1420	Received in good condition by: Chem. Lab Locked in Storage Cabinet	
2. Relinquished by: J.J.R.eed	Date 07/01/05	Time /220	Received in good condition by: 10 split, 21 + 22 locked nover 10 H3,14H3,+17H3 locked in Cabler	
3. Relinquished by:	Date <i>o 7/02/05</i>	Time <i>0740</i>	Received in good condition by: chem lab. Locked in Storage Cabinet.	
4. Relinquished by:	Date 07/01/05	Time 1/38	Received in good condition by: #21 + 22 locked in Env. seaven For Per #10 spl2 - Tritium Samples	-m. Storac
			Shipped to GEL.	

RM-72.doc

RM-78-3 DATA ASSESSMENT REPORT Page 1 of 8

FINAL STATUS SURVEY: TACK

- 1.0 DATA VERIFICATION
- 1.1 Data Acceptance
- Review the Implementation Checklist (RM-77-1) to verify that survey isolation and control measures were executed prior to FSS and are being maintained.
- Review RM-77, Final Status Survey Implementation, to verify that methods, techniques, and survey activities required for FSS have been applied in accordance with the appropriate procedures.
- 1.2 Field QC Records:
- _____ Review all assessments, Condition Reports and audits to ensure that identified issues have been resolved.

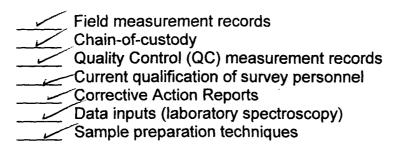
Comments:

- Verify scan instrumentation was in calibration and the QC source checks were performed prior to and after surveys.
- Verify daily QC source checks for Canberra gamma spectroscopy detector properly logged prior to soil sample analysis.
- 1.3 Review Verification:
- _____ Verify that the Data Quality Objectives are complete.
- _____ Verify that the survey design has been technically reviewed.

RM-78-3 DATA ASSESSMENT REPORT Page 2 of 8

Verify that gamma spectroscopy results have received a technical review. Verify the Sample and Analysis Report (RM-59-1) is completed and reviewed. Data Verification Completed: Yes No Comments

Assessor


Date

RM-78-3 DATA ASSESSMENT REPORT Page 3 of 8

2.0 DATA VALIDATION

2.1 Documentation Review:

Perform documentation review for quality control purposes and validate the data collected is complete and appropriate for use as defined by the survey design. Documentation includes:

2.2 Detection Limit Review:

Scan MDCs are below established site DCGLs.

Forced-count values are assigned as necessary when activity is not detected in a sample.

Minimum Detectable Concentration (MDC) values of gamma spectroscopy are below established DCGLs.

- 2.3 Quality Control (QC) Data Review:
 - Quality Control (QC) data results have received required reviews and are complete and consistent.

Results of judgmental samples have been reviewed and evaluated.

Review to ensure that the analytical results of judgmental samples do not impact the evaluation for unrestricted release of the survey area.

RM-78-3 DATA ASSESSMENT REPORT Page 4 of 8

2.4 Qualification of Data:

Statistical radionuclide-specific measurements for completeness. Evaluate the survey for determination of data usability and confirm that sufficient qualified data are present for the decision process.


a.	Total number of statistical samples planned for the survey:	15
----	---	----

b. Total number of statistical samples determined as valid: _____

- c. Calculate % Completeness:
- $\frac{b \times 120}{a} = -\frac{17690}{2000}$

Qualified data are ≥100% completeness and are sufficient to support the Sign Test requirement for determination of unrestricted release.

Data Validation Completed:

Comments: _____

sessor Date

RM-78-3 DATA ASSESSMENT REPORT Page 5 of 8

3.0 DATA QUALITY ASSESSMENT

- 3.1 Review the DQOs and Survey Design:
 - Confirm that all inputs to the decision have been reviewed and are complete.

6

Verify that boundaries or constraints identified in the survey area have not affected the quality of the data.

Review the Statement of Hypothesis and confirm that it remains relevant.

Confirm that Type I and Type II error limits are consistent with DQOs.

Confirm that the survey design is consistent with DQOs and that the appropriate number of data points were obtained.

- 3.2 Preliminary Review:
- 3.2.1 Preliminary Evaluation:
 - <u>NA</u> Quality Assessment (QA) reports consistent with procedure RM-79, Final Status Survey Quality Control.

Survey is of sufficient intensity to satisfy classification requirement.

Potential trends of radioactivity levels in the survey area do not impact a decision for unrestricted release.

Comments: _____

RM-78-3 DATA ASSESSMENT REPORT Page 6 of 8

3.2.2 Calculate Basic Statistical Quantities:

a.	Number of qualified data points	
b.	Calculation of the Mean	0.017 SOR
C .	Calculation of the Median	0,014 JOR
d.	Calculation Standard Deviation	0.010 508

<u>MA</u> Attach graphic representation of the data if any radionuclide-specific measurements exceed 50% of the DCGL.

- 3.3 Statistical Evaluation:
 - <u>NOTE</u>: If all measurement data are less than the DCGL_w, statistical testing in not required and the survey unit meets the regulatory requirement for unrestricted release.

All survey measurements are below the DCGL_w.

- 3.3.1 Verify Assumptions of the Statistical Test
 - <u>MA</u> Review the posting plot to verify that the if data exhibits spatial independence. Spatial trends must be investigated and resolved prior to further assessment.
 - <u>AIA</u> Review to verify dispersion symmetry. The appearance of skewed data must be investigated for cause and documented prior to further assessment.

Sample QA/QC measurements consistent with FSS data

RM-78-3 DATA ASSESSMENT REPORT Page 7 of 8

- $\mathcal{M}A$ Review the dataset standard deviation and range for data variance. Questionable data must be investigated for cause and documented prior to further assessment.
- NA Compare the prospective power curve with the retrospective power curve. Verify that the data exhibits adequate power and confirm that the sample size is sufficient to satisfy the DQOs.
- 3.4 Draw Conclusions from the Data:
- 3.4.1 Investigation Levels and Response Actions

Determine if data results have exceeded any investigation level. Document findings. No meetingation levels exceeded

3.4.2 **Evaluation for Unrestricted Release**

Select applicable conclusion:

Survey area acceptance criteria met and survey area satisfies the requirements for unrestricted release:

> All concentrations are less than the DCGL_{w} . The Null Hypothesis-is-rejected.

NA The mean concentration of the survey area is below the DCGL_w but individual measurements in the survey unit exceed the DCGL_w. The Sign Test and EMC evaluation are successful and the Null Hypothesis is rejected.

RM-78-3 DATA ASSESSMENT REPORT Page 8 of 8

- $\mathcal{M}A_{-}$ Survey area acceptance criteria not met and survey area fails to satisfy the requirements for unrestricted release:
 - \sqrt{A} The mean concentration in the survey area exceeds the DCGL_w. and the null hypothesis is confirmed.
 - $\underline{N}A$ The mean concentration of the survey area is below the DCGL_w but individual measurements in the Unit exceed the DCGLw.. The Sign Test and EMC evaluation are unsuccessful and the null hypothesis is confirmed.

Data Quality Assessment Completed: (Yes No quantities provided in RM 78-3, 4Hachmon Comments _ Statistica 8/131 Ássessor Date

Reviews leview inica 8/23/05 ES SuperIntendent E-24 ver Date

RP&ES Manager

RM-78.doc

Attachment 1 Statistical Quantities Final Status Survey TBC_{x1}1 Excavated Soil from Turbine Building Demolition Area

Sample Number	Cs-137 (pCi/g)	Co-60 (pCi/g)	Weighted Sum (SOR)	*Weighted Sum <dcglw?< th=""><th>DCGL-W. Sum</th><th>Sign</th></dcglw?<>	DCGL-W. Sum	Sign
1	0.13	0.06	0.030	yes	0.970	+1
2	0.08	0.07	0.029	yes	0.971	+1
3	0.13	0.01	0.014	yes	0.986	+1
4	0.07	0.06	0.025	yes	0.975	+1
5	0.07	0.03	0.015	yes	0.985	+1
6	0.09	0.02	0.014	yes	0.986	+1
7	0.11	0.01	0.012	yes	0.988	+1
8	0.10	0.06	0.027	yes	0.973	+1
9	0.06	0.02	0.011	yes	0.989	+1
10	0.02	0.01	0.005	yes	0.995	+1
11	0.02	0.01	0.005	yes	0.995	+1
12	0.02	0.01	0.005	yes	0.995	+1
13	0.02	0.02	0.008	yes	0.992	+1
14	0.04	0.02	0.010	yes	0.990	+1
15	0.05	0.09	0.032	yes	0.968	+1
16	0.08	0.04	0.019	yes	0.981	+1
17	0.09	0.02	0.014	yes	0.986	+1
18	0.12	0.07	0.032	yes	0.968	+1
19	0.13	0.04	0.023	yes	0.977	+1
20	0.10	0.04	0.021	yes	0.979	+1
21	0.09	0.02	0.014	yes	0.986	+1
22 ·	0.07	0.02	0.012	yes	Ó.988	+1
		St. Deviation (SOR):				

Mean (SOR): 0.017

Median (SOR): 0.014

Number of Positive Differences (S+): n/a

Critical Value, k, Table I.3 of Marssim: n/a

S+ > than k?: n/a

Survey Unit Pass or Fail: *Pass

Note: Forced-Count values are used for samples with activity levels below the MDA.

* If all measurement data are less than the DCGL_w, then the Sign Test is not required.

RM-79 FINAL STATUS SURVEY QUALITY CONTROL

RM-79-1 **FSS QUALITY CONTROL EVALUATION RESULTS**

FSS Package # TBCx1

QC Package # TBCx

QC Measurement Type	Acceptance Criteria Met*?	Reference
1. Replicate Scan	Yes/No	Step 5.1.3
2. Sample Recounts a. In-house b. Third party	Yes/No Yes/No	Step 5.1.4.1
3. Split Samples c. In-house d. Third party	Yes / No Yes No	Step 5.1.4.2

*NOTE: If Acceptance Criteria is not met, completion of Attachment RM-79-2, FSS Quality Control Investigation Results, is required.

Comments:

Reviews: n Evaluator

Technical Review

Date

QA Verification Sample Recount Analysis

		Table 1
Date:	8/3/2005	Acceptance Criteria
		Resolution Ratio
QA:	FSS TBC _{x1} 1 Excavated Soil From TB Area	N/A
		4-7 0.5-2.0
Туре:	Sample Recount	8-15-0.6-1.66
		0.75-1.33
Lab:	<u>In- House</u>	51-200 0.8-1.25
		200 . 0.85-1 18
		〒 ♥

	·····		<u> </u>	B	C	D	E	F	G	
Sample	Radionuclide	BRP Result Below MDA	BRP Results (pCi/g)	BRP % Error (Sigma)	BRP Resolution	Acceptance Ratio (Table 1) Recount Result Below MD		Recount Results (pCi/g)	Comparison Ratio F/A	Results in Agreement Compare G with D)
14	Co-60	<	0.0572	n/a	n/a	n/a	<	0.0592	1.03	YES
14	Cs-137		0.0388	28.82	3.47	n/a		0.0666	1.72	YES
17	Co-60	<	0.0760	n/a	n/a	n/a	<	0.0756	0.99	YES
17	Cs-137		0.0939	19.76	5.06	0.5-2.0	<	0.0803	0.86	YES
					· ·					

Resolution C = $\frac{A}{(A)(B/100)}$

< Indicates results less than the MDA.

*Note: Results fthat fail agreement must be investigated per RM-79.

QA Verification Split Sample Analysis

		Table 1
Date:	8/3/2005	Acceptance Criteria
		Resolution
QA:	FSS TBC _{x1} 1 Excavated Soil from TB Area	<4 NA-
		4-7 0.5-2.0
Туре:	Split Samples	8-15 0.6-1.66
		16-50 0.75-1.33
Lab:	In-House	51-200 0.8-1.25
		>200 0.85-1.18

≜	↓
С	D

			1		1	V				
			Α	В	C	D	E	F	G	
Sample	Radionuclide	BRP Result Below MDA	BRP Results (pCi/g)	BRP % Error (Sigma)	BRP Resolution	Acceptance Ratio (Table 1)	Split Results Below MDA	Split Results (pCi/g)	Comparison Ratio F/A	Results in Agreement Compare G with D)
10	Co-60	<	0.0623	n/a	n/a	n/a	<	0.0516	0.83	YES
10	Cs-137		0.0247	50.96	1.96	0.5-2.0		0.0532	2.15	YES
·······					1			**		
					[······				
				-		.				

Resolution C = $\frac{A}{(A)(B/100)}$

.

< Indicates results less than the MDA.

QA Verification Split Sample Analysis

Date: QA: Type: Lab:	8/3/2005 FSS TBC _{x1} 1 Excavated Soil from TB Area <u>Split Samples</u> Environmental Inc.					N/A				
			A	В	↑ C	↓ D	E	F	G	
Sample	Radionuclide	BRP Result Below MDA	BRP Results (pCi/g)	BRP % Error (Sigma)	BRP Resolution	Acceptance Ratio (Table 1)	Split Results Below MDA	Split Results (pCi/g)	Comparison Ratio F/A	Results in Agreement Compare G with D)
10	Co-60	<	0.0623	n/a	n/a	n/a	<	0.0200	0.32	YES
	Cs-137		0.0247	50.96		0.5-2.0	<	0.0400	1.62	YES

Resolution C = $\frac{A}{(A)(B/100)}$

< Indicates results less than the MDA.

General Engineering Laboratories, LLC TBC_{x1}1 Tritium Report Summary

Sample	Tritium pCi/g
10	0.193
14	0.394
17	1.24
Mean	0.609
Median	0.394
Std Dev	0.556

Environmental Incorporated Midwest Laboratory

An Allegheny Technologies Company 700 Landwehr Road • Northbrook, IL 60062-2310 Phone (847) 564-0700 • Fax (847) 564-4517

Mr. Chuck Barsy	LABORATORY REPORT NO.	8022-100-190
Big Rock Point	DATE:	08-02-2005
10269 US-31 North	SAMPLES RECEIVED:	07-11-2005
Charlevoix, Michigan 49720	PURCHASE ORDER NO:	

Dear Mr. Barsy:

К.,

Below are the results of the gamma scan on one soil sample. The sample was analyzed as received.

Sample Description: Collection Date: Sample weight (gram):	FSS TBCX-1 #10 06-30-05 1724	
Lab Code:	BRSO-3916	
Isotope	Concentration (pCi/g)	
K-40 Mn-54 Fe-59 Co-58 Co-60 Zn-65 Nb/Zr-95 Cs-134 Cs-137 Ce-141 Ce-144	7.84 ± 1.11 < 0.02 < 0.04 < 0.02 < 0.02 < 0.09 < 0.03 < 0.04 < 0.04 < 0.09 < 0.04 < 0.09 < 0.21	

The error given is the probable counting error at the 95% confidence level. Less than, (<) value is based on a 4.66sigma counting error for background sample.

Sinøerelv Bronia Grob, M.S. Laboratory Manager APPROVED BY Tony Coorlim, Quality Assurance

Page: of Project #: GEL Quote #: COC Number ⁽¹⁾ :	GEL CI	nain of	Cust	ody an	d A	nal	lyti		-			204 Cha	eral Eng 0 Savage rleston, 1 ne: (843)	e Road SC 294	407
PO Number:								ľ	10319	<u>7.7.</u>		Fax	: (843) 7	66-11	78
Client Name: C. BARSY Project/Site Name: BIG ROCK				\$78120				iple Ar	nalysis R	equest	ed ⁽⁵⁾ (1	Fill in th	ne numb	er of	containers for each test)
Project/Site Name: BIG-ROCK		Fax #: 22	31-23	7-2594	Shou	uld this	containers	6	3						< Preservative Type (6)
Address:						idered:	cont		Ř	1					Gummata
Collected by: Send Resu	lts To:					teđ	ber of	T	L'S						Comments Note: extra sample is
Sample ID	Date Collected (mm-dd-yy)	Time Collected (Military) (hhmm)		Field Sample Itered ⁽³⁾ Matrix ⁽⁴⁾		TSCA Regulated	Total number	TRITW	% MOISTUNS						required for sample specific QC
FSS TBCX-1 # 10	06/30/05	1300					١	X	X						
	(
FSS TRCX-1#14	06/30/01	1351					1	X	×						
FSS TBCX -1 #17	66/30/05	1350					١	x	X						
				_										I	
	· ·														
TAT Requested: Normal: Rush: X Specify:	(Subject to Surch	arge) Fax Re	sults:	Yes /	N	io	Cir	cle Deli	iverable: (CofA	/ 003	Summar	v / Le	vel 1	/ Level 2 / Level 3 / Level 4
Remarks: Are there any known hazards applicable to TRITIOM VIA VACUNM EXT	these sample.	s? If so, ple	ase list the	e hazards		<u> </u>		AC	ຈມ່	· /.		H. /	<u></u>	17	HAMDA 2500 P.
ALSO PROVIDE TRITIUM CO.	NCSINTD	ATION	IN Pr	le Sai	211	A A	າ ພາ	70.	5 17 18	JC SE	0/2			+-\ /	
Chain of Custo			<u> </u>	11 0011	<u> </u>			110							Details
Relinquished By (Signed) Date Time	Received by (s	gned) I	Date 7	Time		GEL	PM:								
1 Chan 7/6/05 1430	$ _{1}QW$	uls	7.11.05	- 820				ipment:				Dat	e Shippe	d:	
2	2					Airbill						•			
3	3	· .				Airbill									
 Chain of Custody Number = Client Determined QC Codes: N = Normal Sample, TB = Trip Blank, FD = Field Duplicate, EE 	= Fouinment Blank	MS - Matrix S	oike Sample N		c . /		D		VA		IR	6.EF			For Lab Receiving Use Only
3.) Field Filtered: For liquid matrices, indicate with a - Y - for yes the sample w	as field filtered or - N	- for sample wa	s not field filte	als.		J 🖌				i hai		1999		ŀ	Custody Seal Intact?
 4.) Matrix Codes: DW = Drinking Water, GW = Groundwater, SW = Surface W 5.) Sample Analysis Requested: Analytical method requested (i.e. 8260B, 6010) 	ater, WW = Waste V	Vater, W = Wate	r, SO = Soil, S	D = Sediment, SL	, = Sludy	ge, SS = :	Solid W	aste, O =	Oil, F = Filt	er, P = V	Vipe, U = l	rine, F =	Fecal, N =	Nasal	YES NO
 6.) Preservative Type: HA = Hydrochloric Acid, NI = Nitric Acid, SH = Sodium 	Hydroxide, SA = Su	furic Acid, AA =	= Ascorbic Aci	id, HX = Hexane,	ST ≈ So	odium Th	1). Liosulfat	e, lf no pi	reservative i	s added	= leave fie	d blank			Cooler Temp: C
WHITE = LABOR		1	YELLOW					K = CL						L	

SAMPLE RECEIPT & REVIEW FORM

	PATORIES!		-		PM use only				
Clien	1: Dia Rock				SDG/ARCOC/Work Order: 140819, 140320				
	Received:)11.05				PM(A) Review (ensure non-conforming items are resolved prior to signing):				
		5.0		0.0					
	Sample Receipt Criteria	Conforming	NA	Non- Conforming	Comments/Qualifiers (Required for Non-Conforming Items)				
	nipping containers received intact nd sealed?	J			Circle Applicable: seals broken damaged container leaking container other (describe)				
2 pr	amples requiring cold reservation within (4 +/- 2 C)? ecord preservation method.		Ĺ		Circle Temp device serial # ice bags blue ice dry ice none other(describe) 25.6				
1 4 1	hain of custody documents icluded with shipment?	し	2 2						
1 4 1	ample containers intact and ealed?	し	1		Circle Applicable: seals broken damaged container leaking container other (describe)				
1 2 1	amples requiring chemical reservation at proper pH?		-	\vdash	Sample ID's, containers affected and observed pH:				
161	OA vials free of headspace lefined as < 6mm bubble)?		L	\vdash	Sample ID's and containers affected:				
	amples received within holding me?		1.1.1. ×		Id's and tests affected:				
1 8 1	ample ID's on COC match ID's n bottles?	V	u, , 1 		Sample ID's and containers affected:				
	ate & time on COC match date & me on bottles?	レ			Sample ID's affected:				
	umber of containers received natch number indicated on COC?	v			Sample_ID's affected:				
	OC form is properly signed in linquished/received sections?	L	- - -						
	ir Bill ,Tracking #'s, & dditional Comments	Z	35		1240 8460				
	adiological Information	Non- RAD	RAD	Idia	RSO RAD Rcceipt #				
cl	hat is the radiological assification of the samples?		V		Comments:				
	adioactivity Screening Results naximum observed CPM)	L	10e	pr-	*If > x2 area background is observed on a non-radioactive sample, contact the RSO to investigate.				
P	M (or PMA) review of Receiving R	ad cla	ssifi	ation	n: Initials _ 7/11/05 Date				
			-		()				

BEST COPY AVAILABLE

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis Report for for ROCK001 Big Rock Nuclear Facility

Client SDG: 140319 GEL Work Order: 140319

Sample(s) Contained within this report:									
Lab Sample ID	Client Sample ID	Sample Description	Collected						
140319001	FSS TBCX-1#10	N/A	06/30/2005 13:00						
140319002	FSS TBCX-1#14	N/A	06/30/2005 13:51						
140319003	FSS TBCX-1#17	N/A	06/30/2005 13:50						
140319004	FSS TBCX-1#10	N/A	06/30/2005 13:00						
140319005	FSS TBCX-1#14	N/A	06/30/2005 13:51						
140319006	FSS TBCX-1#17	N/A	06/30/2005 13:50						

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

This data report has been prepared and reviewed in accordance with General Engineering Laboratories, LLC standard operating procedures. Please direct any questions to your Project Manager, Cheryl Jones.

Reviewed by

1 I.

A

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

10 CFR Part 50/61 Certificate of Analysis

GEL Sample ID:	140319001	Client: Big	Big Rock Nuclear Facility				
Client Sample ID:	FSS TBCX-1#10	Collect Date: Jun	ie 30, 2005				
Matrix:	Misc Solid	Receive Date: July	y 11, 2005				
Amount of Sample Received	:	Report Date: July	y 25, 2005				

Analyte	Aliquot ()	Run Date		Uncertainty	MDA ¹	RL	Units	Qualifier	
H-3		07/19/05	5.15E+03	4.51E+02	3.45E+02	5.00E+02	pCi/L	3	
Moisture		07/13/05	3.03E+00				percent		

Note(s):1. Calculated MDAs are a-posteriori values.

£ 1

.

2. Activity concentration net +/- 2 sigma overall on reference date.

3. Results are statistically positive at the 99.9% confidence level (activity is greater than three times the one sigma uncertainty)

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

10 CFR Part 50/61 Certificate of Analysis

GEL Sample ID:140319002Client Sample ID:FSS TBCX-1#14Matrix:Misc SolidAmount of Sample Received:Kernel Sample Received:		Client: Big Rock Nuclear Facility Collect Date: June 30, 2005 Receive Date: July 11, 2005 Report Date: July 25, 2005						
	liquot () Run Date							

4.96E+02

3.43E+02

5.00E+02

pCi/L

percent

3

6.52E+03

5.81E+00

07/19/05

07/13/05

Note(s):1. Calculated MDAs are a-posteriori values.

.

.

H-3

Moisture

2. Activity concentration net +/- 2 sigma overall on reference date.

3. Results are statistically positive at the 99.9% confidence level (activity is greater than three times the one sigma uncertainty)

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

10 CFR Part 50/61 Certificate of Analysis

GEL Sample ID:	140319003	Client: H	Big Ro	ock Nuclear Facility
Client Sample ID:	FSS TBCX-1#17	Collect Date: J	June	30, 2005
Matrix:	Misc Solid	Receive Date: J	July	11, 2005
Amount of Sample Received	:	Report Date: J	July	25, 2005

Analyte	Aliquot	Run Date		Uncertainty	MDA ¹	RL	Units	Qualifier
H-3 Moisture		07/19/05 07/13/05	1.87E+04 5.75E+00	7.94E+02	3.40E+02	5.00E+02	pCi/L percent	3

Note(s):1. Calculated MDAs are a-posteriori values.

2. Activity concentration net +/- 2 sigma overall on reference date.

3. Results are statistically positive at the 99.9% confidence level (activity is greater than three times the one sigma uncertainty)

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

10 CFR Part 50/61 Certificate of Analysis

GEL Sample ID:	140319004	Client: Big I	Rock Nuclear Facility
Client Sample ID:	FSS TBCX-1#10	Collect Date: June	30, 2005
Matrix:	Misc Solid	Receive Date: July	11, 2005
Amount of Sample Received	d:	Report Date: July	25, 2005
···· · ···· · · · · · · · · · · · · ·		······································	
A 15			

Analyte	Aliquot (L)	Run Date		ncertainty	MDA ¹	RL	Units	Qualifier	
		0.7.10.10.5					-		
H-3	1.00E-02	07/19/05	1.93E-01	1.69E-02	1.29E-02	6.00E+00	pCi/g	3	

Note(s):1. Calculated MDAs are a-posteriori values.

4 L

*

2. Activity concentration net +/- 2 sigma overall on reference date.

3. Results are statistically positive at the 99.9% confidence level (activity is greater than three times the one sigma uncertainty)

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

10 CFR Part 50/61 Certificate of Analysis

GEL Sample ID:	140319005	Client: Big R	ock Nuclear Facility
Client Sample ID:	FSS TBCX-1#14	Collect Date: June	30, 2005
Matrix:	Misc Solid	Receive Date: July	11, 2005
Amount of Sample Received:		Report Date: July	25, 2005
····· ·· · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	······	
	Aliquot	-	

Analyte	(L)	Run Date		Uncertainty		RL	Units	Qualifier
H-3	1.00E-02	07/19/05	3.94E-01	2.99E-02	2.07E-02	6.00E+00	pCi/g	3

Note(s):1. Calculated MDAs are a-posteriori values.

t t 1 1 1 1

2. Activity concentration net +/- 2 sigma overall on reference date.

.....

3. Results are statistically positive at the 99.9% confidence level (activity is greater than three times the one sigma uncertainty)

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

10 CFR Part 50/61 Certificate of Analysis

GEL Sample ID:	140319006	Client: Big Rock Nuclear Facilit	y
Client Sample ID:	FSS TBCX-1#17	Collect Date: June 30, 2005	
Matrix:	Misc Solid	Receive Date: July 11, 2005	
Amount of Sample Receiv	/ed:	Report Date: July 25, 2005	
Client Sample ID:FSS TBCX-1#17Collect Date: June30, 2005Matrix:Misc SolidReceive Date: July11, 2005			

Analyte	Aliquot (L)	Run Date		Uncertainty		RL	Units	Qualifier
H-3	1.00E-02	07/19/05	1.24 E+00	5.28E-02	2.26E-02	6.00E+00	pCi/g	3

Note(s):1. Calculated MDAs are a-posteriori values.

2. Activity concentration net +/- 2 sigma overall on reference date.

3. Results are statistically positive at the 99.9% confidence level (activity is greater than three times the one sigma uncertainty)

U Target analyte was analyzed for but not detected above the MDL or LOD.

.

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

				Q	<u>C Su</u>	immary			Report Date: July 25, 2005				
Contact:	Big Rock Nu 10269 US 31 Charlevoix, Mr. Chuck I	North Michigan	ty							Page 1			
Workorder:	140319												
Parmname			NOM	Sample	Qual	QC	Units	RPD%	REC%	Range	Anlst	Date	Time
Gravimetric Solid Batch	is 441799												
QC12008860 Moisture	09 140319001	DUP		3.03		2.87	percent	5		(0%-20%)	TCI	07/13/05	5 11:14
Rad Liquid Scint Batch	illation 441910												
QC12008862 Tritium	33 140319001	DUP		5150 +/-451		5610 +/-468	pCi/L	9		(0%-20%)	LAG1	07/19/0:	5 19:38
QC12008862 Tritium	35 LCS		5110			5610 +/-459	pCi/L		110	(75%-125%)		07/19/0:	5 21:10
QC12008862 Tritium	32 MB				U	189 +/-207	pCi/L					07/19/0:	5 18:52
QC12008862 Tritium	34 140319001		15400	5150 +/-451		20900 +/-845	pCi/L		103	(75%-125%)		07/19/0	5 20:24
Batch	441989												
QC12008864 Tritium	51 140319004	DUP		0.193 +/-0.0169		0.210 +/-0.0175	pCi/g	9		(0%-20%)	LAGI	07/19/0	5 19:38
QC12008864 Tritium	53 LCS		5.11			5.61 +/-0.459	pCi/g		110	(75%-125%)		07/19/0	5 21:10
QC12008864 Tritium	50 MB				U	0.189 +/-0.207	pCi/g					07/19/0	5 18:52
	52_140319004	MS	0.535						102	1750 1050		07/10/0	
Tritium			0.575	0.193 +/-0.0169		0.782 +/-0.0316	pCi/g		103	(75%-125%)		07/19/0	5 20:24

Notes:

1 3 X 4

The Qualifiers in this report are defined as follows:

** Indicates the analyte is a surrogate compound.

B Target analyte was detected in the sample as well as the associated blank.

BD Results below the MDC or low tracer recovery.

E Concentration of the target analyte exceeds the instrument calibration range.

H Analytical holding time exceeded.

J Indicates an estimated value.

U Target analyte was analyzed for but not detected above the MDL or LOD.

UI Uncertain identification for gamma spectroscopy.

X Lab-specific qualifier-please see case narrative, data summary package or contact your project manager for details.

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workord	er: 14	40319								Page 2	of 2		
Parmnam	e		NOM	Sample	Qual	QC	Units	RPD%	REC%	Range	Anlst	Date T	ime
d	d the 2:1 depletion requirement was not met for this sample												

h Sample preparation or preservation holding time exceeded.

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more.

^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/the RL is used to evaluate the DUP result.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.