

Entergy Nuclear Northeast Entergy Nuclear Operations, Inc. James A. Fitzpatrick NPP P.O. Box 110 Lycoming, NY 13093 Tel 315 342 3840

October, 16, 2006 JAFP 06-0150

United States Nuclear Regulatory Commission Attn: Document Control Desk Washington, DC 20555-0001

Subject: James A. FitzPatrick Nuclear Power Plant Docket No. 50-333 <u>Core Operating Limits Report</u> <u>Revision 21 (Cycle 18)</u>

Dear Sir or Madam:

Attached is Revision 21 to the James A. FitzPatrick Core Operating Limits Report (COLR). This report is submitted in accordance with Technical Specifications (TS) 5.6.5.

Revision 21 of the COLR incorporates reload analysis completed by Global Nuclear Fuel (GNF) for Cycle 18 operations. In addition, editorial corrections and administrative changes are included that do not alter the intent.

There are no commitments contained in this report.

Questions concerning this report may be addressed to Mr. William Drews, Reactor Engineering Superintendent, at (315) 349-6562.

Very truly yours,

Raploy (octing)

Rick Plasse Regulatory Compliance Manager

RP/tp

Attachment as stated

cc: USNRC Regional Administrator, Region I USNRC Project Manager USNRC Resident Inspector

4

.

ENTERGY NUCLEAR OPERATIONS, INC. JAMES A. FITZPATRICK NUCLEAR POWER PLANT REPORT

CORE OPERATING LIMITS REPORT REVISION 21

DATE: 10/9/06 APPROVED BY: William Drews **REACTOR ENGINEERING SUPERINTENDENT**

DATE: 10/9/06 APPROVED BY: Kevin Mulligan GENERAL MANAGER - PLANT OPERATIONS

A.	TABLE OF CONTENTS	;
SECTION	$_{ m pr}$, $_{ m constants}$, $_{ m consta$	PAG
1.0 PUR	POSE	•••••
2.0 APP	LICABILITY	•••••
3.0 REF	ERENCES	•••••
4.0 DEF	INITIONS	••••••
5.0. RES	PONSIBILITIES	•••••
6.0 SPE	CIAL INSTRUCTIONS/REQUIREMENTS	
7.0 PRO	CEDURE	
7.1	Operating Limit MCPR	•••••
7.1 7.2	Operating Limit MCPR Average Planar Linear Heat Generation Rate (APLHGR)	
7.1 7.2 7.3	Operating Limit MCPR Average Planar Linear Heat Generation Rate (APLHGR) Linear Heat Generation Rate (LHGR)	
7.1 7.2 7.3 7.4	Operating Limit MCPR Average Planar Linear Heat Generation Rate (APLHGR) Linear Heat Generation Rate (LHGR) APRM Trip Settings (Digital Flow Cards)	•••••
7.1 7.2 7.3 7.4 7.5	Operating Limit MCPR Average Planar Linear Heat Generation Rate (APLHGR) Linear Heat Generation Rate (LHGR) APRM Trip Settings (Digital Flow Cards) RBM Upscale Rod Block Trip Setting	
7.1 7.2 7.3 7.4 7.5 7.6	Operating Limit MCPR Average Planar Linear Heat Generation Rate (APLHGR) Linear Heat Generation Rate (LHGR) APRM Trip Settings (Digital Flow Cards) RBM Upscale Rod Block Trip Setting Stability Option 1-D Exclusion Region and Buffer Zone.	1
7.1 7.2 7.3 7.4 7.5 7.6 7.7	Operating Limit MCPR Average Planar Linear Heat Generation Rate (APLHGR) Linear Heat Generation Rate (LHGR) APRM Trip Settings (Digital Flow Cards) RBM Upscale Rod Block Trip Setting Stability Option 1-D Exclusion Region and Buffer Zone Ke – Flow Dependent MCPR Limit.	····· 1(1(
7.1 7.2 7.3 7.4 7.5 7.6 7.6 7.7 8.0 FIGI	Operating Limit MCPR Average Planar Linear Heat Generation Rate (APLHGR) Linear Heat Generation Rate (LHGR) APRM Trip Settings (Digital Flow Cards) RBM Upscale Rod Block Trip Setting Stability Option 1-D Exclusion Region and Buffer Zone K _f – Flow Dependent MCPR Limit	1 1 1

.

• •

1.0 PURPOSE

- This report provides the cycle-specific operating limits for Cycle 18 of the James A. FitzPatrick Nuclear Power Plant. The following limits are addressed:
 - Operating Limit Minimum Critical Power Ratio (MCPR)
 - Flow Dependent MCPR Limits
 - Average Planar Linear Heat Generation Rate (APLHGR)
 - Linear Heat Generation Rate (LHGR)
 - Flow-Biased Average Power Range Monitor (APRM) and Rod Block Monitor (RBM)
 Settings

Stability Option ID Exclusion Region

2.0 APPLICABILITY

The plant shall be operated within the limits specified in this report. If any of these limits are exceeded, the corrective actions specified in the Technical Specifications shall be taken.

. . .

一边了, 一边,这个主要是是

3.0 REFERENCES

- 3.1 EN-LI-113, Licensing Basis Document Change process
- 3.2 JAFNPP Technical Specifications.
- 3.3 Design Change Package ER-JF-06-13005, Cycle 18 Core Reload
- .3.4 ENN-DC-503, 3D Monicore New Cycle Update and Databank Maintenance.
- 3.5 Plant Operation Up To 100% Power With One Steam Line Isolated, JAF-SE-96-035.
- 3.6 James A. FitzPatrick Nuclear Power Plant K⁶ Curve Update, GE-NE-J11-03426-00-01, September 1998.
- 3.7 General Electric Standard Application for Reload Fuel, NEDE-24011-P-A-15
- 3.8 GNF Report, Supplemental Reload Licensing Report for James A. FitzPatrick Reload 17 Cycle 18, 0000-0049-7976SRLR, Rev.0, Class I, July, 2006.
- 3.9 JAF-SE-00-032, Rev.0, Extended Loadline Limit Analysis (ELLLA) Implementation.
- 3.10 JAF-RPT-MISC-04054, Rev.0, Operation under Extended Loadline Limit Analysis (ELLLA) and Power Uprate
- 3.11 GE Letter, R. Kingston to P. Lemberg, Scram Time Versus Notch Positions for Option B, REK-E: 02-009, May 28, 2002

Rev. No. <u>21</u>

Page 3 of 29

3.12	GE Report, James A. FitzPatrick Nuclear Power Plant Final Feedwater Temperature Reduction NEDC-33077, September 2002.		
3.13	JD-02-122, Final Feedwater Temperature Reduction Implementation.		
3.14	GE Report, GE14 Fuel Design Cycle-Independent Analyses for J. A. Fitzpatrick Nuclear Power Plant, GE-NE-0000-0002-1752-01P, Rev. 0, DRF 0000-0002-1752, September 2002.		
3.15	GNF Report, GNF Report, Fuel Bundle Information Report for James A. FitzPatrick Reload 17 Cycle 18, 0000-0049-7976FBIR, Revision 0, July 2006.		
3.16	• Not Used		
3.17	Not Used		
3.18	JF-03-00402, ARTS/MEOD Phase 1 Implementation		
3.19	JAF-RPT-MISC-04489, Rev.2, Power-Flow Map Report		
3.20	Not Used		
3.21	Not Used, at the second second and the second secon		
3.22	GE Letter, FitzPatrick APRM Flow Biased Rod Block and Scram Setpoints, NSA01-273, July 3, 2001		
4.0	DEFINITIONS		
4.1	Average Planar Linear Heat Generation Rate (APLHGR): The APLHGR shall be applicable to a specific planar height and is equal to the sum of the heat generation rate per unit length of fuel rod for all the fuel rods in the specified assembly at the specified height divided by the number of fuel rods in the fuel assembly at the height.		

4.2 <u>Fraction of Limiting Power Density</u>: The ratio of the linear heat generation rate (LHGR) existing at a given location to the design LHGR. The design LHGR is given in Table 8.2.

4.3 <u>Linear Heat Generation Rate(LHGR)</u>: The LHGR shall be the heat generation rate per unit length of fuel rod. It is the integral of the heat flux over the heat transfer area associated with the unit length.

4.4 <u>Maximum Fraction of Limiting Power Density (MFLPD)</u>: The MFLPD shall be the largest value of the fraction of limiting power density in the core. The fraction of limiting power density shall be the LHGR existing at a given location divided by the specified LHGR limit for that bundle type.

Rev. No. <u>21</u>

. . **.**

• .

... ...

. .

.

4.5	Minimum critical power ratio (MCPR): The MCPR shall be the smallest critical power ratio (CPR) that of type of fuel. The CPR is that power in the assembly that is calculated appropriate correlation(s) to cause some point in the assembly to transition, divided by the actual assembly operating power.	exists in the core for e ulated by application o o experience boiling	each of the
4.6	Rated Recirculation Flow: That drive flow which produces a core flow of 77.0 x 10 ⁶ lb/hr.	an an an an Arthur An Arthur an Arthur An Anna an Arthur	
5.0	RESPONSIBILITIES		۰
	NOTE: See EN-LI-113 (Reference 3.1)	19 - 19 - 19 - 19 - 19 - 19 - 19 - 19 -	۰.
5.1	Shift Manager:		8.
	Assure that the reactor is operated within the limits described he	erein.	· :
5.2	Reactor Engineering Superintendent:		ъ. ⁶ , 1
	Assure that the limits described herein are properly installed in the used for thermal limit surveillance (Reference 3.4)	he 3D-Monicore data	bank `
6.0	SPECIAL INSTRUCTIONS/REQUIREMENTS		
	Not Applicable		

.

الاستانية. 1937 - مالية من المالية في من المالي المالية المالية المالية من المالية من المالية المالية المالية المراجع الم 1937 - مالية المالية في من المالية الم

ter and the second s Second s í. e and and a second second

en de la companya de la compañsión de la c a manager a construction of a construction of the second state of the second state of the second state of the s the products where the transmission were referred to the result of the result.

۰.

. . .

7.0 **PROCEDURE**

7.1 **Operating Limit MCPR**

During operation, with thermal power $\geq 25\%$ of rated thermal power (RTP), the Operating Limit MCPR shall be equal to or greater than the limits given below.

e., ...

7.1.1	Technical Specification LCO 3.2.2, Minimum Critical Power Ratio (MCPR)
7.1.2	The Operating Limit MCPR shall be determined based on the following requirement:
	and the second

7.1.2.1. The average scram time to notch position 36 shall be:

entre regione de la particulation **t_{ave}t s t_{avet} s t**anta de la companya de la

7.1.2.2. The average scram time to notch position 36 is determined as follows:

$$\tau_{AVE} = \sum_{i=1}^{n} N_{i} \tau_{i}$$

WHERE:

n =Number of surveillance tests p

= Number of surveillance tests performed to date in the cycle,

 N_1 = Number of active rods measured in the surveillance i

 τ_i = Average scram time to notch position 36 of all rods measured in surveillance test i.

. . .

paller and the second process of the produce bares. An only

ان در ۱۹۹۵ از این از میکند. برخی از میکند و این از میکند. این آرمنده میکند میکند از میکند و این میکند.

.

۰.

CORE OPERATING LIMITS REPORT

CYCLE 18

...

7.1.2.3.	The adjusted a	nalysis mean scram time is calculated as follows:
	$\tau_B(\mathrm{sec}) =$	$u+1.65\sigma\left \frac{N_1}{n}\right $
n an an an an tha		$\sum_{i=1}^{n} N_i = \sum_{i=1}^{n} N_i = \sum_{i=1}^{n$
an an an an an an	WHERE:	an an 1971 an Anna Anna Anna Anna Anna Anna Anna
÷	μ = 	Mean of the distribution for the average scram insertion time to the dropout of notch position $36 = 0.830$ sec.
. 0 7	σ =	Standard deviation of the distribution for average scram insertion time to the dropout of notch position $36 = 0.019$ sec.
	N ₁ =	The total number of active rods measured in Technical Specification SR 3.1.4.4.
	The number of Technical Spec	rods to be scram tested and the test intervals are given in ification LCO 3.1.4, Control Rod Scram Times
7.1.3	When requirements be less than that	ent of 7.1.2.1 is met, the Operating Limit MCPR shall not specified in Table 8.1, Table 8.1.A, Table 8.1.B or Table
	8.1.C as applicat	ble. And the second
7.1.4	WHEN the req Operating Limit Figure 8.1.A, Fig	uirement 7.1.2.1 is not met (i.e. $\tau_B < \tau_{AVE}$), THEN the MCPR values (as a function of τ) are given in Figure 8.1, gure 8.1.B or Figure 8.1.C as applicable.
92 - Sector State - 12 (1	$t = \frac{(\tau_{AVE} - \tau_B)}{(\tau_A - \tau_B)}$)
,	WHERE:	
Υ	$ au_{AVE} =$	The average scram time to notch position 36 as defined in 7.1.2.2.
	τ _в =	The adjusted analysis mean scram time as defined in 7.1.2.3.

 τ_A = the scram time to notch position 36 as defined in Technical Specification Table 3.1.4-1.

(

, , a, a. .

. . .

~ "

• 7•

NOTE: IF les	the operating limit MCPR obtained from these figures is determined to be than the operating limit MCPR found in 7.1.3, THEN 7.1.3 shall apply.
7.1.5	During single-loop operation, the Operating Limit MCPR shall be increased by 0.02.
7.1.6	During reactor power operation with core flow less than 100 percent of rated, the Operating Limit MCPR shall be multiplied by the appropriate K_f specified in Figure 8.2.
7.2 Average Planar	Linear Heat Generation Rate (APLHGR)
7.2.1	Technical Specification LCO 3.2.1, Average Planar Linear Heat Generation Rate (APLHGR)
7.2.2	During operation, with thermal power $\geq 25\%$ rated thermal power (RTP), the APLHGR shall be within the limits given in Table 8. (Figure 8.3) for the appropriate fuel type.
7.2.3	During single loop operation, the APLHGR for each fuel type shall not exceed the values given in 7.2.2 above multiplied by the appropriate value (0.78 for GE14 fuel).
7.3 Linear Heat Ge	neration Rate (LHGR)
1998 - Norski A. 1997 - A. 1997 7.3.1	Technical Specification LCO 3.2.3, Linear Heat Generation Rate (LHGR)
, 7 .3.2	During operation, with thermal power $\geq 25\%$ rated thermal power (RTP), the LHGR for each fuel rod as a function of axial location and exposure shall be within limits based on applicable LHGR limit values given in Table 8.2 for appropriate fuel and rod type.
7.3.3	During single loop operation, the LHGR for each fuel type shall not exceed the values given in 7.3.2 above multiplied by the appropriate value (0.78 for GE14 fuel).
7.4 APRM Trip Set	tings (Digital Flow Cards)
7.4.1	APRM Flow Referenced Flux Scram Trip Setting (Run Mode)
7.4.1.1 .	Technical Specifications: LCO 3.2.4, Average Power Range Monitor (APRM) Gain and Setpoint LCO 3.3.1.1, Reactor Protection System (RPS) Instrumentation
7.4.1.2.	When operating in Mode 1, the APRM Neutron Flux-High (Flow Biased) Trip setting shall be

Page <u>8</u> of <u>29</u>

. .

,

•

. . .

•••

. .

CYCLE 18

r

÷ • •

. ·

·	the second se	···
	for two loop operation:	
	$S \le (\% RTP) = 0.38*W+61.0\%$	0< ₩ ≤ 24.7%
	$S \le (\% RTP) = 1.15*W+42.0\%$	24.7< W ≤ 47.0%
	S≤ (% RTP) = 0.63*₩+73.7%	47.0< ₩ ≤ 68.7%
	S≤ (% RTP) = 117.00% (Clamp)	W > 68.7%
e (for single loop operation: $S < \langle 0 \rangle$ p.T.D. = 0.39*W(1.57.00)	
	$S \ge (\% \text{ RTP}) = 0.38^{+}\text{W} + 57.9\%$	$0 \le W \le 32.7\%$
	$S \le (\% \text{ RTP}) = 0.59 \text{ W} + 52.8\%$	$52.7 \le W \le 50.1\%$
	$S \le (\% \text{ RTP}) = 0.58^{+} \text{ W} + 01.5\%$ $S \le (\% \text{ RTP}) = 117.00\% (Clamp)$	$50.1 \le W \le 95.9\%$
. (T)	32(70 KH) = 117.0070 (Clamp)	W - 33.370
S	ja teknologi (k. 1944). Ja se	
	WHERE:	
	$\mathbf{S} = \mathbf{S} \mathbf{S} \mathbf{S} \mathbf{S} \mathbf{S} \mathbf{S} \mathbf{S} \mathbf{S}$	nted thermal normal
	W = Recirculation flow in	percent of rated;
the state of the state of the	¹ If the second s	
n Maria di Angelaria di Angelaria	Map, Figure 3.7-1 of the FSAR is defin and is individually controlled and assur during normal operation.	ed by the equation 0.58W + 50% es boundaries are not exceeded
	In the event of operation with a Maxim Density (MFLPD) greater than the Fra- setting shall be modified as follows	num Fraction of Limiting Power ction of Rated Power (FRP), the
·	for two loop operation:	
, , , , , ,	$S \le (\% RTP) = (0.38*W+61.0\%)(FRP/$	MFLPD) $0 < W \le 24.7\%$
Alter in the state of the state	$S \le (\% RTP) = (1.15*W+42.0\%)(FRP/$	MFLPD) $24.7 < W \le 47.0\%$
	$S \le (\% RTP) = (0.63*W+73.7\%)(FRP/$	MFLPD) $47.0 < W \le 68.7\%$
	$S \le (\% RTP) = (117.00\%(Clamp))(FRP)$	/MFLPD) W > 68.7%
	for single loop operations	and the second
١	$S < \sqrt{9}$ PTD - (0.38*W +57.0%)/CD D	(MEI DD) 0 < W < 32.70
، رب بر ۵ - · ·	$S \leq (70 \text{ RTF}) = (0.30^{\circ} \text{ W}_{d} + 57.970)(1 \text{ RF})$	$\frac{WFLFD}{227} = \frac{327}{25010}$
12 Mar 1.	$3 \le (\% \text{ RTP}) = (0.135 \text{ W}_{d} + 52.8\%)(\text{PRP})$	(MFLPD) = 50.1 < W < 05.09/
	$3 \le (\% \text{ RIP}) = (0.38 \text{ W}_{d} + 01.3\%)(\text{PRP})$	$W(FLFD) = 50.1 \le W \le 95.9\%$
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	$S \le (\% RTP) = (117.00\% (Clamp))(FRP)$	/MFLPD) W > 95.9%
8 1 4.V.22 ⁶	WHERE:	
terren de la Constante des	FRP = Fraction of Rated	Power;

÷

	operating value is less than the design value of 1.0, in which case the actual operating value will be used.
7.4.2	APRM Neutron Flux-High (Flow Biased) Rod Block Trip Setting (Relocated to the Technical Requirements Manual)
RBM Ups	scale Rod Block Trip Setting
7.5.1	Technical Specification LCO 3.3.2.1, Control Rod Block Instrumentation
7.5.2	The RBM upscale rod block trip setting shall be:
	$S \leq 0.66W + K$ for two loop operation;
	$S \leq 0.66W + K - 0.66 \Delta W$ for single loop operation;
• • • •	WHERE:
·	S = rod block setting in percent of initial;
	W = Loop flow in percent of rated
	K = Any intercept value may be used because the RBM intercept value <u>does not</u> effect the MCPR Operating Limit and the RBM is not assumed to function to protect the Safety Limit MCPR.
	ΔW = Difference between two loop and single loop effective drive flow at the same core flow.
	NOTE: If K can be any value, then $K = 0.66\Delta W$ can also be any value, and the trip setting adjustment for single loop operation is not necessary.
Stability C	Option 1-D Exclusion Region and Buffer Zone.
7.6.1	Technical Specification LCO 3.4.1, Recirculation Loops Operating
7.6.2	The reactor shall not be intentionally operated within the Exclusion

MFLPD = Maximum Fraction Of Limiting Power Density, see

1

Definition 4.4.

The ratio of FRP to MFLPD shall be set equal to 1.0 unless the actual

7.6.3 The reactor shall not be intentionally operated within the Buffer Zone given in Figure 8.4 when the SOLOMON Code is inoperable.

Region given in Figure 8.4 when the SOLOMON Code is operable.

7.6

7.5

Page <u>10</u> of <u>29</u>

CYCLE 18

7.7 K_f - Flow Dependent MCPR Limit

Figure 8.2 is the K_f limit. Values of K_f are obtained using the following equation (see Reference 3.6):

 $K_{z} = MAX [1.0, A - SLOPE * WT]$

WHERE:

1. 1. 1

WT = Core Flow as % of Rated, $30\% \le WT \le 100\%$

SLOPE = $(A_F/100/OLMCPR) * (SLMCPR / SLMCPR generic)$

A = $(B_F/OLMCPR) * (SLMCPR / SLMCPR generic)$

SLMCPR generic = 1.07

SLMCPR = Technical Specification LCO 2.1.1, Reactor Core SLs

OLMCPR = The lowest value obtained from Figures 8.1, 8.1.A, 8.1.B and 8.1.C as per 7.1.4, or, if the note in 7.1.4 applies, then 7.1.3 requirement must be met.

 A_F , B_F = Coefficients for the K_f curve listed below:

Scoop Tube Setpoint %	A,	Br	
102.5	0.571	1.655	
107.0	0.586	1.697	
112.0	0.602	1.747	
117.0	0.632	1.809	

All coefficients apply to Manual Flow Control Mode

The second state of the second s

2 . . .

production of the second se	5 (j. 1
na ang tangkan kanala ang tangkan na sangkan na sangkan na sangkan na sangkan na sangkan na sangkan na sangkan Ang tangkan na sangkan s	an shi Maria
	, I

가는 것은 것을 가지 않는 것을 가지 않는다. 것을 가지 같은 것은 것은 것은 것은 것을 수 있는 것을 수 있는 것을 하는 것을 것을 하는 것을 것을 수 있는다. 것을 것을 수 있는 것을 것을 수 있는 것을 것을 수 있는 것을 것을 수 있는 것을 같은 것을

Page 11 of 29

· · · -

CYCLE 18

8.0	FIGURES A	ND TABLES
8.1	FIGURES	
• 1	Figure 8.1.	MCPR Operating Limit Versus τ for GE14.
	Figure 8.1.A.	MCPR Operating Limit Versus τ for Operation above 75% of Rated Thermal Power with Three Steam Lines in Service for GE14.
	Figure 8.1.B	MCPR Operating Limit Versus τ for Operation with Turbine Bypass Valves Out of Service
۰.	Figure 8.1.C	MCPR Operating Limit Versus τ for Operation with Final Feedwater Temperature Reduction
	Figure 8.2	K _f Factor
	Figure 8.3	Exposure Dependent APLHGR Limit for GE14 Fuel
	Figure 8.4	Stability Option 1-D Exclusion Region
	Figure 8.5	Exposure Dependent LHGR Limit for GE14 Fuel.
	Figure 8.6.	Cycle 18 Loading Pattern, Full Core by Bundle Design
	Figure 8.7	Users Guide

- ..

Rev. No. <u>21</u>

÷

Page <u>12</u> of <u>29</u>

(No. -

1 . . .

CORE OPERATING LIMITS REPORT

. .

CYCLE 18

۰.

8.2	TABLES				
	Table 8.1	MCPR Operating Limit for Incremental Cycle Core Ave	erage Exposure		
	Table 8.1.A	MCPR Operating Limit for Incremental Cycle Core Average Exposure for Operation above 75% of Bated Thermal Power with Three Steam Lines in			
	1	Service	iree Steam Lines in		
" <u>†</u>	Table 8.1.B	MCPR Operating Limit for Operation with Turbine By Service	pass Valves Out of		
ĸ	Table 8.1.C	MCPR Operating Limit for Operation with Final Feedw Reduction	vater Temperature		
	Table 8.2	Maximum LHGR – GE14	* · · · · · · · · · · ·		
	Table 8.3	APLHGR Limits for GE14 Fuel			
9.0	EXHIBITS		i kan is		
	NONE	e e e e e e e e e e e e e e e e e e e			

Ċ

,

. .

.

ŝ

" t `,

TABLE 8.1

Cycle 18 Exposure Ra	nge		ll Fuel Types	ε. ω. '
e E		1		·· ,
BOC to EOC	7 142	- <u>-</u>	1.44	į
e e se e	• • • • • • •	ب ن تي ۽ . •	exaptive its of the set	• • }
·			· • •	•
NA			NA	

Technical Specification LCO 3.2.2, Minimum Critical Power Ratio (MCPR)

For single loop operation, these limits shall be increased as given in Section 7.1.5.

- NOTE: 1. When entering a new Exposure Range, check the current value of τ to assure adjustment per Step 7.1.4
 - 2. Applicable for any value of K, see Step 7.5.2
 - an general second for the second s Second second

CYCLE 18

TABLE 8.1.A

MCPR Operating Limit for Incremental Cycle Core Average Exposure for Operation above 75% of Rated Thermal Power with Three Steam Lines in Service

Cycle 18 Exposure Range	All Fuel Types	
BOC to EOC	1.46	
and the second		
NA	NA	
	n an that the second	

化合物 化氟化 医外外的 医外部的 化化物理试剂 化磷酸钙 化磷酸钙 化硫酸钙 化乙基苯化乙基

Technical Specification LCO 3.2.2, Minimum Critical Power Ratio (MCPR)

For single loop operation, these limits shall be increased as given in Section 7.1.5.

NOTE: 1. When entering a new Exposure Range, check the current value of τ to assure adjustment per Step 7.1.4

2. Applicable for any value of K, see Step 7.5.2

1.72

TABLE 8.1.B

MCPR Operating Limit for Operation with Turbine Bypass Valves Out of Service

Cycle 18 Exposure R	arge	All Fuel Types	
ALL	, ,	1.48	;
a ala and a second a	ì		

Technical Specification LCO 3.2.2, Minimum Critical Power Ratio (MCPR)

Technical Specification LCO 3.7.6, Main Turbine Bypass System

For single loop operation, these limits shall be increased as given in Section 7.1.5.

- NOTE: 1. When entering a new Exposure Range, check the current value of τ to assure adjustment per Step 7.1.4
 - 2. Applicable for any value of K, see Step 7.5.2

TABLE 8.1.C

MCPR Operating Limit for Operation with Final Feedwater Temperature Reduction

Cycle 18 Exposure Range	All Fuel Types	
At EOC only (see below)	1.44	

Technical Specification LCO 3.2.2, Minimum Critical Power Ratio (MCPR)

For single loop operation, these limits shall be increased as given in Section 7.1.5.

- NOTE: 1. When entering a new Exposure Range, check the current value of τ to assure adjustment per Step 7.1.4
 - 2. Applicable for any value of K, see Step 7.5.2

MCPR Operating Limits in this table apply when at reduced feedwater temperature near end-of-cycle, see JD-02-122 (Reference 3.13) for further information.

, show a show of

. .

CYCLE 18

TABLE 8.2

...

. .

. **.**

. .

. 1

1

Peak Pellet Exposure	UO ₂ LHGR Limit kW/ft	
GWd/ST		
0.00	13.40	
14.51	13.40	
57.61	8.00	
63.50	5.00	
	• • • • • • • • • • • • • • • • • • •	

Maximum LHGR – GE14

Pe	ak Pellet Exposure	Most Limiting Gadolinia LHGR Limit	
-	GWd/ST	kW/ft	
25	0.00	12.26	
	12.28	12.26	
	55.00	7.32	
	60.84	4.57	

Technical Specification LCO 3.2.3, Linear Heat Generation Rate (LHGR)

Design features of the fuel assemblies in the Cycle 18 core are provided in References 3.3, 3.15

For single loop operation these LHGR values shall be multiplied by 0.78

Linearly interpolate for LHGR at intermediate exposure

1.1.1

CYCLE 18

CORE OPERATING LIMITS REPORT

and the second	ан с Тарана с с сала с с с с с с с с с с с с с с с с
Average Planar Exposure	APLHGR Limi
GWd/ST	k₩/ft
0.00	12.82
14.51	12.82
19.13	12.82
57.61	
63.50	5.00

ingen ver er er

Technical Specification LCO 3.2.1, Average Planar Linear Heat Generation Rate (APLHGR) For single loop operation these APLHGR values shall be multiplied by 0.78

Linearly interpolate for APLHGR at intermediate exposure

> Manual Andrews Contract States and Annual Stat Annual States and Annual Stat Annual States and Annual Sta Annual States and A

> > and the second and the second second

÷

CYCLE 18

Technical Specification LCO 3.2.2, Minimum Critical Power Ratio (MCPR)

For single loop operation, these limits shall be increased as given in Section 7.1.5.

NOTE: Should the operating limit MCPR obtained from this figure be less than the operating limit MCPR found in 7.1.3 for the applicable RBM Upscale Rod Block trip level setting then 7.1.3 shall apply. Alter 1 IN CALLER A 123 \mathbf{i} ا ي Charles and the second

Rev. No. <u>21</u>

. . .

K ...

CYCLE 18

.

FIGURE 8.1.A

MCPR Operating Limit Versus τ For Operating Above 75% of Rated Thermal Power with Three Steam Lines in Service For all Fuel Types

Technical Specification LCO 3.2.2, Minimum Critical Power Ratio (MCPR)

For single loop operation, these limits shall be increased as given in Section 7.1.5.

NOTE: Should the operating limit MCPR obtained from this figure be less than the operating limit MCPR found in 7.1.3 for the applicable RBM Upscale Rod Block trip level setting then 7.1.3 shall apply

..

. . .

. .

CYCLE 18

FIGURE 8.1.B

× .

Technical Specification LCO 3.2.2, Minimum Critical Power Ratio (MCPR)

For single loop operation, these limits shall be increased as given in Section 7.1.5.

NOTE: Should the operating limit MCPR obtained from this figure be less than the operating limit MCPR found in 7.1.3 for the applicable RBM Upscale Rod Block trip level setting then 7.1.3 shall apply

Rev. No. <u>21</u>

Page <u>22</u> of <u>29</u>

CYCLE 18

FIGURE 8.1.C

MCPR Operating Limit Versus τ for Operation with Final Feedwater Temperature Reduction

Technical Specification LCO 3.2.2, Minimum Critical Power Ratio (MCPR)

For single loop operation, these limits shall be increased as given in Section 7.1.5.

NOTE: Should the operating limit MCPR obtained from this figure be less than the operating limit MCPR found in 7.1.3 for the applicable RBM Upscale Rod Block trip level setting then 7.1.3 shall apply

and the second s

~ . .

CYCLE 18

FIGURE 8.2

K_f Factor

Technical Specification LCO 3.2.2, Minimum Critical Power Ratio (MCPR)

See Section 7,7

NOTE: K_f for Single Loop Operation is slightly greater than for Dual Loop Operation limits. Therefore, K_f calculated for Single Loop Operation is more conservative and will be applied to Dual Loop Operation as well.

• •

CYCLE 18

FIGURE 8.3

Technical Specification LCO 3.2.1, Average Planar Linear Heat Generation Rate (APLHGR) . . . Str. 1 and the second s For single loop operation these APLHGR values shall be multiplied by 0.78.

1..... Consection program is a non-sheater of processed. 人口人名法尔兰 法公司 网络人名英格兰

Rev. No. 21

. ..

FIGURE 8.4

Rev. No. <u>21</u>

ł

Page <u>26</u> of <u>29</u>

١.

(

FIGURE 8.5

Exposure Dependent LHGR Limit for GE14 Fuel

Technical Specification LCO 3.2.3, Linear Heat Generation Rate (LHGR) This curve represents the limiting exposure dependent LHGR values per Reference 3.15 Design features of the fuel assemblies in the Cycle 18 core are provided in Reference 3.3

CYCLE 18

FIGURE 8.7

USERS GUIDE

The COLR defines thermal limits for the various operating conditions expected during the cycle. At the start of the cycle the 3D-Monicore databank contains limits for;

- Cycle exposure range of BOC to EOC18
- $\tau = 0$
- Dual recirculation pump operation
- Four steam line operation, and
- Final Feedwater Temperature Reduction

The following is a table that offers a check to assure the correct limits are applied when operating states or conditions change.

Change in Operating State	Change in Limits	Procedure Reference
Cycle Exposure = EOC18 - 3.5 GWD/ST	See Table 8.1 or Figure 8.1 for $\tau \neq 0$ for change in MCPR.	None
OLMCPR changes to EOC values at cycle exposure of 12.0 GWD/ST	K_f limit may be changed in recognition of higher OLMCPR.	and the second sec
Scram Time Test Results such that $\tau \neq 0$ Option B limits for OLMCPR must be interpolated with Option A limits	Use new T and see Figure 8 K _f limit <u>may</u> be changed in recognition of higher OLMCPR.	RAP-7.4.1
Single Loop Operation The SLMCPR increases by 0.02 and therefore OLMCPR limits increase	Increase MCPR Limits by 0.02, or change acceptance criterion in ST-5E to 0.98. K_f does not change.	ST-5E,
by 0.02. MFLPD and MAPLHGR are reduced by a multiplier in SLO.	Verify that 3D-Monicore has recognized the idle recirculation loop and is applying the SLO MFLPD and MAPLHGR multiplier of 0.78.	
Three Steam Line Operation (3SL) OLMCPR values increase by 0.02 when operating on 3SL	Increase OLMCPR according to Table 8.1.A or Figure 8.1.A($\tau \neq 0$). K _f limit <u>may</u> be changed in recognition of higher OLMCPR.	None
Operation with Turbine Bypass Valves Out-of-Service OLMCPR values increase, no LHGR change required	Increase OLMCPR according to Table 8.1.B or Figure 8.1.B($\tau \neq 0$). K _f limit may be changed in recognition of higher OLMCPR.	.None
Operation under Final Feedwater Temperature Reduction OLMCPR values increase, no LHGR change required	Increase OLMCPR according to Table 8.1.C or Figure 8.1.C ($\tau \neq 0$). Ke limit may be changed in recognition of higher OLMCPR.	None