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ABSTRACT

This document presents the analysis of the OECD LOFT LP-SB-1
experiment performed by the Consejo de Seguridad Nuclear of Spain

working group making use of RELAP5/MOD2 in the frame of the
Spanish LOFT Project.

LP-SB-1 experiment studies the effect of an early pump trip in a
small break LOCA scenario with a 3 inches equivalent diameter
break in the hot leg of a commercial PWR.
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EXECUTIVE SUMMARY

Experiment LP-SB-1 was conducted on June 23, 1983 in the LOFT
facility at the Idaho National Engineering Laboratory.

The LP-SB-1 experiment simulated a 7.6 cm (3 inch) equivalent
diameter break in a hot leg pipe of a PWR plant. Experiment
LP-SB-1 addresses the analysis of a small break loss of coolant
accident with the break at the midplane of the intact loop hot
leg. LP-SB-1 was one of a pair of experlments aimed a<t addressing
the effects of early and delayed pump trip on system behaviour.

The primary coolant pumps were tripped early in experiment
LP-SB-~-1.

The main objective of this calculation was to assess the code in
the challenging conditions of a small break scenario.

Our aim was to simulate the major physical phenomena of the
transient that took place until the beginning of the plant
recovery.

The code used to simulate the LP-SB-1 experiment was RELAPS/MOD2
Cycle 36.04 installed on a CYBER 810.

The input data was based on that used in pretest calculations.
Basically we have introduced the following changes:

(i)Use of an ideal steam separator.

(ii)Adjustment of the heat transfer from primary to secondary
through an adjustment of the hydraulic diameter in the secondary
side.

(iii)A change of the nodalization in the upper part of the vessel
by introducing crossflow Jjunctions in the connections of the
nozzles.

(iv)Introduction of crossflow junctions in the connections between
the break line and the surge line with the hot leg. The Fig 3
shows the final nodalization of the preliminary calculation (RUN
A).

A second calculation (called "Base Calculation") was run with
the following modifications in the input deck:

(V)HPIS piping was supressed and the injection was modelled by a
TMDPJUN, in order to avoid the big amplitude flow oscillations
found in RUN A.

(vi)The junction between the hot leg and the break line was
defined as normal junction to make operative the offtake model
under stratified flow conditions.

" (vii)The break line was splitted in two volumes. The node close to

the break nozzle was made short (0.5 m), trying to eliminate the
stepwise behaviour of the break mass flow.
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The preliminary calculation revealed discrepancies with the
experimental results. The most significant ones were:

-The very poor prediction of the break mass flow rate and the
break line density. That did not show at all the break uncovery.
The HZFLOW subroutine that accounts for offtake model in a
crossflow junction under stratified flow conditions was not active
in our code version.

~-The strange, stepwise evolution of the break mass flow rate, due
to the occurrence of large differences for the phase velocities
(slip) in the break. This deficiency has been identified by
JRC-ISPRA as caused by the RELAP5/MOD2 interphase drag
model.

-Strong instabilities of the HPIS mass flow rate, due to the
entrance of vapor in the ECCS line from the cold 1leg.

The base calculation was performed using a normal junction in the
break tee and splitting the break line in two nodes, a small one
close to the break nozzle trying to improve the break flow
behaviour. The comparison with experimental results suggest the
following comments:

-The offtake model in the break tee was active in this run.
However the splitting of the break 1line produced strong
instabilities in the break flow.

-The two-phase natural circulation finished in the experiment at
~500 sec., and reflux condensation around 600 sec. later. In the
simulation this happened at ~700 and ~1200 sec respectively.

-In LP-SB-1, the intact loop hot leg flow stratified at ~50 sec..
In the simulation, the code detected stratified flow regime in
ILHL at ~320 sec..

The major conclusions are:
i)The code could not account for the liquid entrainment and

vapor pull-through in the break tee modelled as a crossflow
junction.

i1)It is necessary to improve the RELAP5/MOD2 choked
flow model to avoid large instabilities in the break phase
velocities and thermal disequilibrium affects.

iii)The Taitel-Dukler model is unable to describe properly
horizontal flow stratification in the LP-SB-1 experiment.

iv)Natural circulation was correctly reproduced by the code.
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1. INTRODUCTION

Thermal-hydraulic research has required close interaction between
experimental and analytical work. A number of separate-effect
experiments have been performed to help in the validation of best
estimate computer codes. Analogously the overall results of code
calculations are assessed wusing data from integral test
facilities. The analyses show that the codes generally provide
accurate calculations of the Loss of Coolant Accident (LOCA).
Areas where model’s improvements are needed have also been
identified by these tests. In particular the Loss of Fluid Test
(LOFT) facility was adapted to study some small breaks. The
motivation of one of these is explained hereafter.

An analysis performed after TMI showed that one of the key factors
in the core damage was the tripping of the primary circuit pumps.
The USNRC requested the reactor vendors to carry out an analysis
of this problem. The conflict between the results of these
investigations led to a recommendation to carry out experiments on
this program in order to clarify the criteria for pump trip. The
experiments LP-SB-1 and LP-SB-2 modelled small breaks in the hot
leg. They differ in time of pump trip which is early in the former
and delayed in the later of these tests. In this paper the results
obtained in a post test analysis of the experiment LP-SB-1 by the
CSN working group, part of the Spanish LOFT project are set down.
The calculations with RELAP5/MOD2 Cycle 36.04 were carried out on
a CYBER 810 in Madrid.

2. DESCRIPTION OF THE LOFT INSTALLATION

The experimental LOFT installation simulates a four loop 1000 MW
commercial PWR. It has a thermal power of 50 MW. The installation
consists of a vessel scaled 1/47 in volume, an intact circuit with
an active steam generator, a pressurizer, two pumps in parallel
and a broken leg, connected by recirculation lines to the intact
circuit in order to maintain a temperature of this broken circuit
near to that of the coolant at core inlet at the beginning of the
experiment.More detailed information on the LOFT systen
configuration is provided in Reference 1.

A LOFT piping schematic with instrumentation for experiment
LP-SB-1 and LP-SB-2, and an axonometric projection of the LOFT
system configuration are shown respectively in Figures 1 and 2.



3. RELAPS5/MOD2 MODEL OF LOFT FACILITY
The code used for this calculation was RELAP5/MOD2 Cycle 36.04.

The input data was based on that used in pretest calculations.
Basically we have introduced the following changes:

(1) Use of an ideal steam separator.

(ii) Adjustment of the heat transfer from primary to secondary
through variation of the hydraulic diameter in the
secondary side.

(iii) A change of the nodalization in the upper part of the
vessel by introducing crossflow junctions in the
connections of the nozzles [10].

(iv) Introcduction of crossflow junctions in the connections
between the break line and the surge line with the hot leg
[(10]. The Fig 3 shows the nodalization of the preliminary
calculation (RUN A).

A second calculation (called "Base Calculation™, RUN B) was run
with the following modifications in the input deck: .

i) HPIS piping was suppressed and the injection was modelled
by a TMDPJUN, in order to avoid the big £l ow
oscillation found in RUN A.

ii) The junction between the hot leg and the break line was
defined as normal junction to make operative the offtake
model under stratified flow conditions.

iii) The break line was splitted in two volumes. The node close
to the break nozzle was made short (0.5 m), trying to
eliminate the stepwise behaviour of the break mass
flow.

Figure 4 shows the final nodalization.
4. EXPERIMENT LP-SB-1

Experiment LP-SB-1 was conducted on June 23, 1983 in the LOFT
facility at thOe Idaho National Engineering Laboratory.

The LP-SB-1 experiment simulated a 7.6 cm (3 inch.) equivalent
diameter break in the midplane of the hot leg pipe of a PWR plant.
LP-SB-1 was one of a pair of experiments aimed to address the
effects of early and delayed pump trip on system behaviour. The
primary coolant pumps were tripped early in experiment LP-SB-1.

A detailed description of the experiment is found in Reference 2.



4.1 Steady state calculations

To accelerate the achievement of steady-state conditions the
following variables were controlled.

(1) Liquid level in the "downcomer"® of the steam generator.
(ii) Primary mass flow.

In addition the upper part of the pressurizer was connected to a
dummy volume to maintain the desired pressure in the primary side.

Under these situation the code achieved steady-state conditions in
100 secs. Then a calculation without controls for 25 secs was
carried out to demonstrate that a true steady state had been
reached. These stationary state conditions are compared with the
initial conditions of the plant in Table 1. The Figures 5 - 8 show
significant parameters during the null transient (RUN A).

4.2 Transient boundary conditions

4.2.1 Decay Heat Data

Reactor power after scram was specified by means of a table.
During the first 2 seconds of the transient, data were taken from
the RELAPS5/MOD1 input deck used for the pretest prediction of
LP-SB-1 (3). After that, data contained in Reference 4 were used
until the end of the transient.

4.2.2 Pumps injection flow

The pumps injection flow was simulated assuming a constant flow of
0.0475 1/s, to each pump (2,5).

4.2.3 Auxiliary Feedwater Flow

An auxiliary feedwater flow of 0.5 1l/s (5) was manually initiated
at 63.4 seconds and turned off at 1864.8 seconds.

4.2.4 High Pressure Injection System

The HPIS was initiated in experiment LP-SB-1 when the intact loop
hot leg pressure had fallen to 8.24 MPa (2).

4.2.5 Secondary Side Steam Control Valve

Descriptive data of the steam bypass valve were not available. Its
function was assumed by the steam control valve. After 80 seconds
it was latched closed to a flow area of 0.0925% of its fully
opened value, throughout the transient.

4.2.6 Operational set-points

The operational set-points measured during the experiment, and
those used in the RELAPS5/MOD2 calculation are given in table 2.

5. POST TEST CALCULATIONS

A preliminary calculation (RUN A) was carried out which led to
3



some important conclusions. To confirm these a number of detailed
modifications were incorporated and used for a second calculation
(RUN B)

5.1 Preliminary calculation (RUN A)

The calculation was run for 2200 secs. This was considered to be
sufficient to obtain the most significant data. Table 3 shows the
event chrenology.

5.1.1 Code Performance

Two thousand seconds of transient required about 100,000 cpu
seconds (Fig. 9). This corresponds to a cpu/real time ratio of
about 45. The user-specified minimum allowable time step
throughout the calculation was 10-7 seconds and the maximun time
step was set to 0.1 seconds.

During the first 27 seconds the code reduced the time step to
0.025 seconds. Afterwards and throughout the whole transient the
step was the specified 0.1 seconds.

The model consisted of 122 hydrodinamic volumes, 128 junctions and
124 heat structures.

The grid time for this run was 34.6 ms per volume per advancement.

In a restart at 700 sec. with new control variables the c.p.u.
time variable was reset to zero by the code (Fig. 9). There is not
any reference at this behaviour in the code manual.

5.1.2 Chronology of events

The predicted timing of significant events is compared with
measurements during the LP-SB-1 transient in Table 3.

5.1.3 Secondary side pressure

The isolation of the main feed water and the closure of the steam
control valve produced an increase on the secondary side pressure.
In our simulation the rate of pressurisation was overpredicted
(Fig. 10). Consequently the steam bypass valve started to open in
advance of the experiment (Fig. 11).

The energy removal from the steam generator was through the steam
valve leakage (around 3 x 10-2 kg/sec. from 500 seconds on ) and
heat losses through the shell. The minimum flow area of the main
steam valve was restricted to 0.0925% of its fully-open value.

5.1.4 Primary side pressure

The primary pressure was in agreement with the experiment during
the subcooled blowdown (Fig. 12). The rate of depressurisation was
approximately well predicted. However, the simulation did not
account for the increase in the rate of depressurisation due to
the break uncovery. The result was that primary pressure was
overpredicted from 1200 seconds on.
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5.1.5. Temperatures

The measured and calculated fluid temperatures are shown in
Figures 13 and 14 for the hot and cold leg, respectively.

The hot 1leg temperature, following the pressure trend, was
overpredicted from 1200 seconds onwards.

Cold leg intact loop temperature is in good agreement with the
experiment until ~400 seconds. At this time the cold leg suddenly
emptied through the vessel downcomer in coincidence with the end
of natur al circulation (Fig. 17). Following this, the big
oscillations of HPIS flow rate (Fig. 15) produced analogous spikes
in liquid temperature (Fig. 14).

The reactor vessel plena temperatures were overpredicted beyond
1000 seconds of transient.

5.1.6 Density distribution

The calculated cold leg mixture density is that of the 1liquid
until -400 seconds (Fig. 16), when the pipe empties. The
experimental density decreases less rapidly.

The hot leg density follows the experimental trend until -750 sec.
After that the calculated density shows two big peaks. This is due
to the steam generator tubes depletion (fig. 18, 19).

5.1.7 Break line density and break mass flow rate

The break line density before the time of measured break uncovery
(~700 sec.) was underpredicted (Fig. 20). In fact the calculated
hot leg and break line densities were nearly equal (Fig. 21). This
shows that the offtake model with stratified flow conditions in
the main pipe does not work in our RELAP5/MOD2 version, when the
crossflow option is used. An obvious consequence is that the
simulation does not account for the break uncovery and
overpredicts density after -700 sec.

Analogously the break mass flow rate was underpredicted before and
overpredicted after the measured break uncovery time (Fig. 22).

The strange step-wise evolution of the calculated break mass flow
rate is due to the occurrence of large differences between the
phase velocities (slip) (Fig. 23).

$.1.8 Primary system mass inventory

The calculated HPIS plus pumps injection mass flow rates became
equal to the break mass flow rate (and so the inventory was
minimum) at around 2200 sec.. This minimum inventory was in good
agreement with the measured data (Fig. 24).



5.2 Base calculation (RUN B)

This calculation was run for 2500 secs. The grid time in this case
was 46.9 ms. per volume per advancement.

5.2.1. Code Performance

The c.p.u. time spent by the code [Fig. 25] was similar to RUN A
until around 1400 seconds. After that, the code ran slowlier (Fig.
26) because of the high velocity in the small node close to the
break nozzle.(Fig. 27).

In this run the model consisted of 117 hydrodinamic volumes, 123
junctions and 122 heat structures.

5.2.2. Chronology of events.

The predicted timing of significant events is compared with
measurements during the LP-SB-1 transient in Table 3.

The opening of the valve in the ILHL break line was the beginning
of the transient.

The reactor scram occured 0.65 seconds later than in the
experiment. The timing of the initial events was predicted, by the
RELAP5/MOD2 calculation, to within -1 second.

Two seconds after the reactor scram, closure of steam control
valve w as initiated. Isolation of the main feedwater took -3
seconds.

The main steam control valve was fully closed at 17 seconds, 2.6
seconds later than in the experiment. It is known (Ref. 7) that
the steam flow bypass valve was open at around 30 seconds when the
secondary side pressure exceeded -6.7 MPa. To account for this
fact, in our calculation the main valve was let to reopen.

The primary coolant pumps trip occured at 26.8 sec. 1in the
calculation. The HPIS initiated at 44 sec., 3 seconds later than
in the experiment.

The coast down of both pumps was completed at 48 seconds.

The break line reached saturated conditions at 76 seconds. This
marks the end of subcooled blowdown.

The auxiliary feedwater was initiated at 62.05 seconds and turned
off at 1862.05 seconds.

In the experiment, the break line was uncovered at 715 sec. That
did not appear in the simulation. Until this time the break mass
flow rate was underpredicted and after that it was overpredicted.

Around 1650 seconds the primary coolant system pressure fell
bellow the secondary system pressure (1077 seconds in the
experiment).



The minimun primary mass inventory was estimated to be reached at
between 1800 and 2200 seconds in the experiment. That happened in
the simulation at 2050 seconds (when the HPIS+pump injection mass
flow rates exceeded the break mass flow rate).

The experiment finished at 3668 seconds.

Up to 50 seconds the chronology of events improved in this
calculation. The break uncovery was poorly predicted because of
the depletion of the S.G. U-tubes as it is explained later.

5.2.3. Secondary side pressure
The general behaviour is similar to that of RUN A.
5.2.4. Primary side pressure.

The primary pressure was well predicted until around 700 seconds.
After that it was overpredicted, though the code detected the
break uncovery at about 1400 seconds (Fig. 28).

5.2.5. Temperatures.

The hot leg temperature was closer to the experimental one than in
RUN A (Fig. 29).

The pressurizer temperature history shows (Fig. 30) a sharp
initial decrease. After the emptying of the component, around 33
seconds, the steam became superheated and its temperature began to
increase. That is due to the radiative heat transfer from the
pressurizer wall.

Cold 1leg 1liquid temperature was right until 400 seconds (leg
depletion). Afterwards it showed spikes due to HPIS injection and
level oscillations (Fig. 31). From 400 seconds on the vapor
temperature was in agreement with the data (Fig. 32 bis).

Steam generator plena temperatures are showed in Figure 33. There
are not big discrepancies between simulated and measured values
until their depletion . Hot wall radiation and thermal conduction
from the wall to the thermocouples seem to have distorted the
measurement beyond 1100 seconds, Ref. 2.

5.2.6. Density distribution.

The cold leg density is similar to RUN A until 1400 seconds.
After that there is a slight increase in density, in coincidence
with the beginning of a circulation loop between the vessel
downcomer and the vessel filler gap.

The hot leg density follows, again, the experimental trend, until
the SG tubes depletion.



The subsequent density peaks are clearly smaller than in RUN A
(Fig. 34). Also, the density does not fall, after 1500 sec, so
rapidly as in RUN A.

The agreement between the experimental and calculated 1loop seal
densities is very good (Fig.35).

5.2.7. Break line density and break mass flow rate.

The offtake model with stratified flow conditions and normal
junction option was active during RUN B. Now the break line void
fraction has a logical behaviour versus that of the hot leg (Fig.
36). In spite of this, the calculated break line density is quite
different from the measured one, between 700 and 1600 sec. . This
is another effect of the SG tubes water depletion (Fig. 37).

The break mass flow rate was again underpredicted before the
measured break uncovery time (Fig. 38). Now the simulation shows
the break uncovery, but much later than in the experiment (1400
sec.).

The break mass flow step-wise evolution in RUN A is in RUN B
replaced by strong instabilities, 1likely due to unsimultaneous
switching between flow regimes in the adjacent volumes of the
break piping (Fig. 39 and 39-bis). Perhaps a time step reduction
should eliminate some of these instabilities.

In both calculations, the code detected choked flow conditions in
the break as soon as it opened.

5.2.8. Primary system mass inventory.

Figure 40 compares the measured and calculated primary system mass
inventory. Although not accurately known from the experimental
data minimum primary mass inventory was estimated to have occurred
at between 1800 and 2200 seconds.

An obvious consequence of the break mass flow underprediction is
the overprediction up to 20 % of the mass inventory during 1500
seconds.

Around 800 seconds began the S.G. tubes depletion (Fig. 37). This
process culminated with the S.G. plena emptying between 1300
seconds (cold side) and 1400 seconds (hot side) (Fig. 41).

The slow fall of the tubes liquid rised the hot leg level above
the break line. This delayed the final break uncovery until 1650
seconds in RUN A and 1400 seconds in RUN B.

Calculated core void fractions (Fig.42) reveal that the core was
not uncovered, as observed in the experiment.



5.3 Selected items
5.3.1 Loop flow and natural circulation

In LP-SB-1 experiment, natural circulation was the only means for
energy transfer between the core and the steam generator.

The measured velocities (Fig. 43) indicate that natural
circulation was established after the pumps coastdown (~50 sec.).
At about 500 sec., the turbine meters showed zero velocity.

Figure 44 [2] indicates that break mass flow rate became larger
than thIGe hot leg mass flow rate at about 400 sec., and this
suggests some flow from the S.G. to the break after this time.
This may be due to the blockage by vapor of the top of the
U-tubes, and the resultant liquid draining from them.

The measured S.G. plena temperatures (Fig. 33) suggest that the
thermocouples remained wet until -1100 sec. because of 1liquid
draining and from possible reflux condensate.

So, it appears that two-phase natural circulation finished at -500
sec., due mainly to flow blocking through the U-tubes.

After this time, the system entered a reflux condensation mode,
and the U-tubes, cold leg and hot leg piping successively drained.
This cooling mode in the S.G. finished at about 1100 sec., when
the secondary pressure became equal to primary pressure.

In our base calculation, the cold leg suddenly emptied at - 400
sec., and the circulation ceased at about 700 sec. (Figures 45 and
46) . Inmediatly, the liquid velocity in the U-tubes indicated that
the system entered the reflux condenKIsation mode (Fig. 47). The
primary coolant-tubes heat transfer coefficient consistently
increased (Fig. 48). At about 1200 sec. the U-tubes emptied (Fig.
37).

When the onset of reflux condensation was detected by the code the
primary coolant mass inventory was of 65% , very close to the
actual inventory of 60%. These values are in the typical range
encountered for experiments in several facilities (Semiscale, PKL,
LSTF,...) [9].

5.3.2 Hot leg flow stratification.

In LP-S8B-1, the intact loop hot leg fJlow stratified at -50 sec.
(Fig. 34)([2].

In our RUN B simulation, the code detected stratified flow
regime in ILHL at -320 sec.



The criterion defining horizontally stratified regime in .
RELAP5/MOD2 is that developed by Taitel and Dukler.{8). It states

that the flow is horizontally stratified when the vapor velocity

satisfies the condition that:

|vg|<vgl

where

(M

1
gl 2 pgDsino

(1-cosv)

The angle ¥ is related to the 1liquid level h and the vapor
fraction by:

h = D(l+cosﬁ)

2

nag= 9 = sind cosd

In Figure 43 we see the comparison between measured and calculated
hot leqg fluid velocities. It is surprising to observe that, during
a short time around 50 sec., the calculated vapor velocity became
very small, and even negative. However, the code did not predict
any change to stratified flow regime during that lapse (Fig. 49).

Figure 50 shows the comparison between the calculated vapor
velocity and the Taitel-Dukler 1limit wvelocity [1] for RUN B. As
expected, the limit velocity is higher than the vapor velocity
from 320 sec. on. Around 50 sec., Vgl is very small. Fiqure 51
plots the difference |Vg|-Vgl and shows that the code never
detected negative values of this magnitude.

We repeated the first 500 sec. of transient with a time step of
0.01 sec. (rather than 0.1 sec.). Now, the above difference becanme
negative during a few seconds, and,consistently, the code detected
stratified flow conditions (Fig. 52 and 53).

So, the code did not notice the change on flow regime because the
time step was too long.

In conclusion, the code predicted well a mninimum of fluid
valocities at around 50 sec., and so, the onset of horizontal
stratified flow in hot 1leg. After that, natural circulation
established, and experimental and calculated velocities increased.
The simulated flow changed back from stratified to bubbly, but the
actual one did not.

Keeping in mind that hot leg density and velocity are reasonably

reproduced by the code, it is obvious that Taitel-Dukler model is
unable to describe properly flow stratification in LP-SB-1.
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6. CONCLUSIONS

The major conclusions are:

i)

ii)

iii)

iv)

The code could not account for the liquid entrainment and
vapor pull-through in the break tee modelled as a
crossflow junction.

It is necessary to improve the RELAP5/MOD2 choked flow
model to avoid large instabilities in the break phase
velocities and thermal disequilibrium effects.

The Taitel-Dukler model is unable to describe properly
horizontal flow stratification in the LP-SPB-1
experiment.

Natural circulation was correctly reproduced by the code.
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TABLE

INITIAL CONDITIONS FOR

PRIMARY COOLANT SYSTEM

Core T (K)
Hot leg pressure
Cold leg temperature (K)

Mass flow rate (kgs-1)

REACTOR VESSEL

Power level (MW)

STEAM GENERATOR SECONDARY SIDE

Liquid level (m)
Water temperature (K)
Pressure (MPa)

Mass flow rate (kgs-1)

PRESSURIZER

Liquid volume (m3)
Steam volume (m3)
Water temperature (K)
Pressure (MPa)

Liquid level (m)

BROKEN LOOP

Cold leg temperature (K)

13

1

EXPERIMENT LP-SB-1

MEASURED PREDICTED
(RUN A)
18.5 t 1.7 18.7
15.00 t 0.08 15.04
557.2 t 1.5 558.1
483.1 * 3.2 484.0
48.8 ¢ 1.2 48.8
3.12 ¢ 0.01 3.116
535.2 ¢ 3.6 526.5
5.53 t 0.05 5.54
25.79 t 0.77 26.
0.625 * 0.001 0.598
0.377 ¢ 0.001 0.403
615.8 t 8.2 615.1
15.06 + 0.11 15.0
1.072 * 0.002 1.126
555.7 t 6.3 558.02



TABLE 2

OPERATIONAL SETPOINTS FOR EXPERIMENT LP-SB-1

Measured
Action Reference Setpoint
Small-break valve Opened Time . 0.
Reactor scrammed ILHL Pressure (MPa) 14.57¢ 0.03
Main feedwater ILHL Pressure (MPa) 14.57+ 0.03
Shut off
Main steam control Time after reactor 2.+ 0.2
" valve started to scram (seconds)
close
Primary coolant ILHL Pressure (MPa) 11.12¢ 0.03
pumps tripped
HPIS Flow) ILHL Pressure (MPa) 8.24t 0.03
initiated
Auxiliary feed- Time after reactor 62.t 0.2
water initiated scram (seccnds)
Auxiliary feed- Time after reactor 1864.2¢+ 0.8
water terminated scram (seconds)
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TABLE 3

LP-SB~-1 CHRONOLOGY OF EVENTS

EVENT
Small-break valve opened
Reactor scramed
Main feedwater shut off
Main steam control valve started to close
Main feedwater isolated
Main steam control valve fully closed
Primary coolant pumps tripped

Pressurizer liquid level below indicating
range

HPIS flow initiated

Primary coolant pump 1 coastdown completed
Primary coolant pump 2 coastdown completed
Subcooled blowdown ended

Auxiliary feedwater initiated

Break started to uncover

Primary system pressure becomes less than

secondary system pressure

Auxiliary feedwater shut off

HPIS + pump injection flow rate
exceeded break flow rate

HPIS flow rate exceeded break flow rate

* Collapsed level under the HL pipe midplane

15

PLANT

15.
24.6

34.6

41.4
42.6
43.0
57.5
63.4

715.

1077.

1864.8

1998.0

4 17.

26.85

33.

44.

48.

48.

76.

62.05

1050.*
1650.*

13.95

25.9

32.

48.

49.

49.

55.

64.

880.*

1440.

1450.

1865.4
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APPENDIX I

DISKETTE CONTAINING THE RELAPS/MOD2 INPUT DECK FOR LP-SB-1
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APPENDIX II

TAITEL-DUKLER CRITERION FOR HORIZONTAL FLOW STRATIFICATION

RELAPS5/MOD2 employs a criterion developed by Taitel and Dukler to
define horizontally stratified flow regime. It applies to
hydrodynamic volumes with an inclination angle = 15°.

Taitel and Dukler proposed that the transition from stratified
horizontal to nonstratified flow regimes occurs as a result of the
instability of a solitary wave on the liquid layer. They derived
this condition of instability as :

vV_|>V
1Vg1>Ygy
where
1
2
(Pe-P,) oA
V_.=C £ 9
gl p. Dsind
g
and

C = —%— (1-cosd)

Pe and pg are liquid and vapor densities, respectively. g is the

acceleration of gravity. A and D are, respectively, the cross
section area and the diameter of the horizontal volunme.

The angle ¢ is related to the 1liquid level, h, and the void
fraction a, by the relationships (Fig. 54)

h = —g— (1+cosé)

an = e-éinécosﬂ
If the horizontal stratification condition
V_I<Vv
Vgl <Vq1

is met, then the flow field undergoes a transition to horizontally
stratified. If it is not met, the flow field undesgoes a
transition to the bubbly, slug, or annular mist flow regime.
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APPENDIX III

HORIZONTAL STRATIFICATION ENTRAINMENT MODEL IN RELAPS5/MOD2

Under stratified conditions in horizontal components, the void
fraction of flow through a junction may be different from the
upstream volume void fraction [8]. Consequently, the regular
donoring scheme for junction void fraction is no longer appropriate
because vapor may be pulled through the junction and liquid may
also be entrained and pulled <through the junction. The
correlations describing the onset of vapor pull through and liquid
entrainment for a centrally oriented junction are given hereafter.
The incipient liquid entrainment is determined by the criterion
that

ngvge

where Vg is the vapor velocity in the junction, and

2
D D
s -h g(pe=-p.) (5 - h)
v =13.25| 2 f g 2

ge P Pq

1/2

Pe and pg are liquid and vapor densities, respectively. g is the
acceleration of gravity. D and 4 are, respectively, the horizontal
volume and junction diameters. h is the liquid level in the volunme.

The condition for the onset of vapor pull-through is determined by

V£>Vfp

where Vf is the liquid velocity in the junction, and

o 15/2 1/2
h -3 9(pg-py) 4
fp a Pe
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For 1liquid entrainment, the junction 1liquid fraction, Tpyo is
related to the donor volume liquid fraction, ®err by the
expression :

_ _ _ _ 2,42
ey -»afk[l. exp[ Y4/ Vge 1ovg/vg1”

where Vgl is the Taitel-Dukler limit velocity (Appendix II). For
vapor pull-through, the junction void fraction is given by '

2,42
agj agk[l exp[ szf/pr 1°Vg/vg1]]

The constants C, and C, are obtained by comparisons of code
calculations with experimental data. Currently, c1 and C2 are both

equal to 1.
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