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Abstract

This report presents an assessment study for the use of the code RELAP 5/MOD3/5M5 in
the calculation of transient hydrodynamic loads on safety and relief discharge pipes.
Its predecessor, RELAP 5/MOD1, was found adequate for this kind of calculations by
EPRI. The hydrodynamic loads are very important for the discharge piping design
because of the fast opening of the valves and the presence of liquid in the upstream loop
seals.

The code results are compared to experimental load measurements performed at the
Combustion Engineering Laboratory in Windsor (U.S.A.). Those measurements were
part of the PWR Valve Test Program undertaken by EPRI after the TMI-2 accident.

This particular kind of transients challenges the applicability of the following code
models

- Two-phase choked discharge
- Interphase drag in conditions with large density gradients
- Heat transfer to metalic stuctures in fast changing conditions

- Two-phase flow at abrupt expansions.

The code applicability to this kind of transients is investigated. Some sensitivity
analyses to different code and model options are performed. Finally, the suitability of
the code and some modeling guidelines are discussed.

RELAP 5/MOD3
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EXECUTIVE SUMMARY

In 1979, following TMI, the US Nuclear Regulatory Commission (USNRC) recommended
utilities operating nuclear power plants to develop a program in order to test the
performance of the valves which were used in the reactor primary coolant System The
program was undertaken by EPRI as requested by those utilities.

The objectives of the EPRI Safety and Relief Valve Test Program were the following

- To test the full scale operability of a set of valves representative of those to be
utilized in PWRs over the full range of fluid conditions under which they were
expected to operate.

- To establish a basis to evaluate discharge piping configurations and supports.

From all the loads considered in discharge piping design, the transient hydrodynamic
loads are particularly important for safety and relief valve discharge piping since the
opening time of the safety valves is very fast and can induce large hydrodynamic forces
on the downstream piping, especially when water solid loop seals are present. An
accurate solution of the dynamic evolution of the fluid inside the piping is required in
order to evaluate the hydrodynamic loads.

The safety valves were tested at the Combustion Engineering experimental facility at
Windsor, U.S.A. The discharge piping at that facility consisted on 4 pipe segments.
Loads were measured at the supports of those segments that were made as stiff as
possible so as to reflect directly the transient fluid loads.

RELAP 5/MOD1 was selected by EPRI to verify its application to calculation of the
transient hydrodynamic loads. The RELAP 5/MOD1 results were satisfactorily
compared to the measured data. The structural effects were considered by processing of
the RELAP 5/MOD1 predicted loads with a dynamic analysis structural model.

The goal of this report is to repeat the validation performed on RELAP 5/MOD1 over
its updated and improved version RELAP 5/MOD3. The changes introduced in this
latter version (mainly the addition of a 6th field equation and improvements in the
empirical closure relations as compared to MOD1) could eventually modify the results
of the former validation. The objectives of this validation process can be summarized
as follows

- Assess RELAP 5/MOD3 for predicting safety and relief valve discharge piping
hydrodynamic loads

- Propose modelization guidelines

- Highlight the impact that the different physical models in the RELAP 5
versions have on the piping load results.

RELAP 5MOD3
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From all the tests performed at the Combustion Engineering laboratory the ones
involving loop seal discharges have been chosen to benchmark RELAP 5/MOD3. The
reasons for that choice are the following

- liquid loop seal discharge induces the largest loads on the piping supports

- the discharge of a liquid slug through a valve and its attached pipes is a very
fast two-phase process that challenges the applicability limits of the code.

Neither code changes nor result postprocessing have been performed in order to
evaluate the induced loads (the code does not calculate them). The loads have been
calculated with the appropriate control blocks available in RELAP 5 put together with
the aid of TROPIC, the TRACTEBEL's preprocessor code for RELAP.

The conclusions that have been obtained in the assessment process for RELAP 5/MOD3
are

1. - The effect of heat transfer to the pipe heat structures need not be modeled for a
correct evaluation of liquid discharge loads. This was also true for
RELAP 5/MOD1 but not for RELAP 5/MOD2.

2. - RELAP 5/MOD3 underestimates the coupling between the liquid and vapour
phases giving a lower liquid slug velocity than in the experiments. Although the
maximum loads are quite comparable to measurements, they are delayed in time.

3. - The inclusion of a transition zone between subcooled and two phase choked flow in
RELAP 5/MOD3 produces a characteristic two-bump flow that is reflected on the
loads of the downstream piping.

4. - Some recommendations are to be added to the RELAP 5/MOD1 modelization
guidelines. A proper orientation of pipe segments (horizontal or vertical) and a 2
velocity solution at the valve junction should be considered.

5. - RELAP 5/MOD3 can be considered acceptable to evaluate the hydraulic forces
following a discharge from safety or relief valves, when above options are used
and a suitable safety margin is added for design of the piping support.

RELAP 5MOD3
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Introduction

In 1979, following TMI, the US Nuclear Regulatory Commission (USNRC) recommended
utilities operating nuclear power plants to develope a program to test the performance
of the valves which were used in the reactor primary coolant system (ref. 1). The
program was undertaken by EPRI as requested by those utilities.

The objectives of the EPRI PWR Safety and Relief Valve Test Program were twofold.
On one hand the full scale operability of those valves was to be tested over the full
range of fluid conditions under which they were expected to operate. On the other
hand, a basis to evaluate discharge piping configuration and supports was to be
established (ref. 2).

Several loads are considered in discharge piping design : deadweight, seismic, thermal
expansion, pressure and transient hydrodynamic loading. The last one is particularly
important for S/RV discharge piping since the opening time of safety valves is very
fast and can induce large hydrodynamic forces on the downstream piping, especially
when loop seals are present. For the calculation of these transient hydrodynamic loads
EPRI selected two codes SOLA-NET (EPRI version of SOLA-LOOP code developed at
LASL) and RELAP5/MOD1. The application of those codes to the calculation of
hydrodynamic discharge loads was compared to experimental data (refs 3 and 4).
These references showed the capacity of those codes to calculate the discharge induced
loads and to provide appropriate input data to the structural analysis codes.

The purpose of this report is to assess the potential of RELAP 5/MOD3/5M5 (ref. 5) for
evaluating discharge piping hydrodynamic loads. First, the main objectives of this
study are presented followed by a brief description of the EPRI/Combustion-
Engineering (CE) experimental facility at Windsor. The RELAP 5 model for the
experiment is described next, as well as the method to compute induced loads. The
results of the study are shown as well as a sensitivity analysis on the most relevant
parameters. Finally the conclusions and guidelines for the code options are summarized.

RELAP 5MOD3
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Objectives

As RELAP 5/MOD3 can be considered as an updated version of MOD], it is of interest to
demonstrate its applicability to the transients that the first version was validated for.
It is of particular interest to illustrate the impact of the addition of a 6th field
equation and improvements in the empirical closure equations on the calculated
hydrodynamic loads and to gauge the sentivity of the valve opening time and the loop
seal temperature on the induced forces on the downstream piping. The objectives of this
report can be summarized as follows

1- Assess the potential of RELAP-5/MOD-3 to predict safety and relief valve
discharge piping hydrodynamic loads

2- Propose modelization guidelines for this kind of transients and analysis

3- Highlight the impact that the different physmal models in the RELAP 5 versions
have on the piping load results.

The results of this assessment process for RELAP5/MOD3 will be presented in next
paragraphs. It must be pointed out that no structural analysis results are given in this
report. The EPRI/CE test rig was originally designed as stiff as possible to allow for a
direct comparison between load measurements and the loads computed with RELAP 5.
The hydraulic snubber supports originally installed were replaced by solid links to
achieve that purpose. However, load oscillations were measured on the supports
resulting from an incomplete rigidity of the structures. This dynamic load response can
be obtained by a structural analysis code with fluid conditions supplied by RELAP 5.
The maximum load values that are given by the structural codes are also different from
the thermal hydraulic code results. From this point of view the results that are
presented in this report should be considered as partially valid, provided no structural
analysis is done.

RELAP sMOD3
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Basic data : EPRI / CE test facility description

The selected safety valves (Crosby, Dresser and Target Rock), representative of the
valves used in most of the plants, were tested at the Combustion-Engineering's Kreising
Development Laboratory in Windsor, Connecticut (U.S.A.). The major components of the
system are shown in Fig. 3.1. Tank 2 was fed by steam from the boiler of the Laboratory
and served as the driver vessel by expansion or evaporation of the fluid inside it. The
smaller accumulator (tank 1) served as a surge vessel and played the role of the PWR
pressurizer. Fig. 3.1. shows two inlets configurations to the valve : short vertical inlet
and long loop seal configuration. Simulations in this report are done on the latter (i.e.,
loop seal). Outlet piping was divided in four segments (Table 3.1.) : horizontal, vertical
downwards with an area increase at its middle part, long horizontal and short vertical
upwards discharging into the atmosphere (Fig. 3.2). Load data are measured for each
of these segments provided the pipe supports were made as stiff as possible so as to
reflect directly the transient fluid loads. To achieve this goal ("limit the peak
dynamic response amplification to 1.1. of the hydraulic forcing fonction peak value”,
ref. 2, Vol. 2) extremely rigid supports were designed. The snubbers that originally
supported the discharge piping were replaced by solid links. The pipe oscillation in its
perpendicular direction was restricted by springs. The pipe deadweight was supported
by spring hangers. All those springs were conveniently adjusted in the hot experiment
conditions. Fluid temperature and pressure were measured at the inlet and downstream
the valve. Flow rate was measured by a venturi nozzle at the outlet of tank 1. Different
test valve parameters were measured, including the valve stem position. A summary of
the main characteristics of the instruments is presented in Table 3.2. A detailed and
complete description of the EPRI/CE test facility can be found in volume 2 of ref. 2.

Discharge of fluid through the test valves was made at different upstream conditions
from pure steam to subcooled liquid, as well as hot and cold water loop seal followed by
steam discharge. Transients in this report refer to all the water loop seal discharge
cases available : two cases for the Crosby valve (tests 917 and 908) and one case for the
Dresser valve (test 1017). These tests have been chosen because they are representative
of the normal plant conditions and because they give place to the largest loads. A brief
description of these tests follows.

Test number 917 consisted on a hot water loop seal discharge through a Crosby valve.
The slug temperature ranged from 150°C up to 350°C, the saturation temperature at
Tank 1 pressure. The mass of the liquid contained in the loop seal was approximately of
9 kg. Test number 908 was repeated on the same configuration of test 917, but an orifice
plate was installed at the end of the discharge pipe. The conditions of the slug were
different to test a cold water loop seal discharge temperature from 40°C up to 350°C).
Test number 1017, over the Dresser valve, had a configuration similar to test 917 (slight
changes due to minor differences in valve dimensions) and slug temperature identical to
the one of test 908 (cold water loop seal discharge). .

RELAP 5MOD3
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TABLE 3.1. : DISCHARGE PIPING GEOMETRIC PARAMETERS

SEGMENT SCHEDULE AREA (m2) LENGHT (m) INCLINATION
1 6"SCH 40 0.0186364 1.6764 HORIZONTAL
2 6" SCH 40 0.0186364 1.8288 VERTICAL
' DOWN
2 12" SCH 80 -0.0655710 4.572 VERTICAL
: DOWN
3 12" SCH 80 0.0655710 13.228 HORIZONTAL
4 12"SCH 80 0.0655710 0.4572 VERTICAL UP

TABLE 3.2. : SUMMARY OF INSTRUMENT CHARACTERISTICS

PARAMETER TYPE TRANSDUCER SYSTEM FREQUENCY | SCALE RANGE
ACCURACY (% RESPONSE ,
full scale)

FORCE - Strain Gage 0.5 400 +445kN

Load Cells
PRESSURE Strain Gage 1027 >1000 0-3500 psia

Diaphragm
TEMPERATURE k Thermocouples or +22°C 10 orlower 0-430°C

' Platinum RTD : |

POSITION Linear Variable

Differential

Transformers (LVDT) +025 250 -

RELAP 5MOD3




JPD/EN17 ' 8

Relap 5 simulation of the EPRI/CE experiments

Modeling guidelines developed for RELAP 5/MOD1 application to calculation of
hydrodynamic loads were assumed as a starting point. Those guidelines can be taken as
more or less generic for any finite difference code applied to this kind of computation
and can be summarized as follows

- control volumes should have a length between 0.5 and 1.0 feet (0.15 to 0.30 m) to
prevent numerical diffusion

- time step must be limited externally since RELAP 5 overrides material Courant
limit in some volumes

- no-choking option should be selected downstream the valve

- heat transfer to the pipe walls must be considered for properly determination of
loads

- cold water (< 100°C) loop seal cases, should be initialized with the loop seal water
distributed isenthalpycally in the first control volumes downstream of the valve
(due to valve leakage prior to fast opening).

Figure 4.1. shows the nodalization diagram of the experimental facility for
RELAP 5/MOD3. The model has been built with TROPIC, the TRACTEBEL'S RELAP
Object-Oriented Preprocessing Interactive Code (ref. 6). Tank 1 was represented by a
"time dependent volume” for simulating upstream fluid conditions as a function of time.
The safety valve was modeled by a "servo valve” component with a linear area
opening characteristic. Piping network downstream the valve was modeled using
"pipe” components for straight lenghts of pipe and "single volumes" components for
elbows. Dimensions and code options correspond to the RELAP 5/MOD1 model (ref. 4).
Tables 4.1. and 4.2. present the geometric data and component options for the upstream
and downstream piping parts respectively. Table 4.3. shows the heat structure data.

Two minor changes had to be done to the original RELAP 5/MOD1 model to avoid
program errors. Valve discharge junction originally taken as homogeneous (one
velocity) had to be turned into nonhomogeneous solution. Time dependent volume
representing the atmosphere was changed into a single volume modelization to avoid
an error related to heat transfer coefficient evaluation.

Code changes described in ref. 4 have not been included in RELAP 5/MOD3. Loads are
calculated making use of the control systems available within RELAP. The method for
load determination and its implementation are described in the next paragraph.

RELAP 5MOD3
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Table 4.1,
UPSTREAM PIPING GEOMETRIC DATA (CROSBY TESTS)

Component Volumeor Component Lenght Area Forward Loss Reverse Loss  Junction Flagsor Comments
Number Junction Number Type (ft/m) (f2/m2) Cocfficient Coefficient Volume Flags
001 Vi TMDPVOL 20.0/6.096 250/2.3226 -- o 1 Accumulator
002 n SNGLJUN -- 0.2532/0.0235231 0.04 1.0 00000 Nozzle
003 \A! SNGLVOL 5.0/1524 0.2532/0.0235231 - - 01 Venturi
004 J1 SNGLJUN -- 0.1308/0.0121517 0.0 0.0 00100 Reduéoer 8-in. x
. -in.,
005 V19 PIPE 1.0/0.3048 0.1308/0.0121517 . - 00 Loop seal
J - 0.1308/0.0121517 0.0 0.0 00000 piping
2 -- 0.1308/0.0121517 0.195 0.195 00000
3 -- 0.1308/0.0121517 0.0 0.0 00000
4 - 0.1308/0.0121517 0195 0.195 00000
5 .- 0.1308/0.0121517 0.0 0.0 00000
6 - 0.1308/0.0121517 0.195 0.195 00000
7 -- 0.1308/0.0121517 0.0 0.0 00000
8 . 0.1308/0.0121517 0.0195 0.195 00000
006 J1 SNGLJUN .- 0.0204/0.0018952 0.0 0.0 ' 00100 Valve in
007 Vi SNGLVOL 1.0/0.3048 0.0204/0.0018952 ' - - ' .- 10 Valve

RELAP 5YMOD3



Table 4.2.
DOWNSTREAM PIPING GEOMETRIC DATA (CROSBY TESTS)

Component Volumeor Component Lenght Area Forward Loss Reverse Loss  Junction Flags or Comments
Number Junction Number Type H/m) (2 /m2) Coefficient Coefficient Volume Flags
008 1 VALVE - 0.0204/0.00189522 0.0 0.0 00100 Servo-valve
009 V-1-3 PIPE 050/0.1524 0.2006/0.0186364 - - 10 Valve
| J12 | | 0.2006/0.0186364 0.0 0.0 Discharge
010 n SNGLJUN - 0.2006/0.0186364 0.0 0.0 01000
o1 V18 PIPE 050/0.1524  0.2006/0.0186364 . - 01000
J1-7 - 0.2006/0.0186364 0.0 0.0 00
| 01000
012 J1 SNGLJUN - 0.2006/0.0186364 0.210 0.210 01000 Elbow 1in
013 \A! SNGLVOL ~ 050/00.1524  0.2006/0.0186364 . - 00 Elbow 1 volume
014 J1 SNGLJUN - 0.2006/0.0186364 0.0 0.0 01000 Elbow 1 out
015 V112 PIPE 050/0.1524 0.2006/0.0186364 .- - 00
J1-11 - 0.2006/0.0186364 0.0 0.0 01000
016 J1 SNGLJUN - 0.2006,/0.0186364 0.0 0.0 01000 Expansion in
017 Vi PIPE 0.50/0.1524 0.2006/0.0186364 - - 00
V2 0.50/0.1524 0.7058/0.0655710 - - )
J1 ' - ~ 0.2006/0.0186364 051235 051235 01000
018 J1 SNGLJUN - 0.7058/0.0655710 0.0 0,0 01000 Expansion out

RELAP MOD3
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Table 4.2, (Cont'd)

DOWNSTREAM PIPING GEOMETRIC DATA (CROSBY TESTS)

Component Volumeor Component Lenght Area Forward Loss Reverse Loss  Junction Flags or Comments
Number Junction Number Type (ft/m) (2 /md) Coefficient Coefficient Volume Flags
019 V1-30 PIPE 050/0.1524 0.7058/0.065571 - - 00
J1-29 - 0.7058/0.065571 0.0 0.0 01000
020 n SNGLJUN - 0.7058/0.065571 0.182 0.182 01000 Elbow 2in
021 A\ SNGLVOL 0.70/0.21336 0.7058/0.065571 0.0 0.0 00 Elbow 2 volume
022 J1 SNGLJUN - 0.7058/0.065571 - . 01000 Elbow 2 out
023 \A| PIPE 0.70/0.21336 0.7058/0.065571 - - 00
v2 1.00/0.3048 0.7058/0.065571 - - 00
V342 1.00/0.3048 0.7058/0.065571 - - 00
V-43 1.00/0.3048 0.7058/0.065571 - - 00
vy 0.70/021336 0.7058/0.065571 - - 00
B b t1 - 0.7058/0.065571 0.0 0.0 01000
J26-28 - 0.7058/0.065571 0.3192 0.3192 01000 Valve SW-2
j2943 - 0.7058/0.065571 0.0 0.0 01000 '
024 J1 SNGLJUN - 0.7058/0.065571 0.182 0.182 01000 Elbow 3in
025 Vi SNGLVOL 0.70/0.21336 0.7058/0.065571 - - 00 Elbow 3 volume
026 n SNGLJUN - 0.7058/0.065571 0.0 01000 Elbow 3 out

00

RELAP 5MOD3
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Table 4.2, (Cont'd)

DOWNSTREAM PIPING GEOMETRIC DATA (éROSBY TESTS)

Component Volumeor Component Lenght Area Forward Loss ReverseLoss  Junction Flagsor Comments
Number Junction Number Type (ft/m) (12 /md) Coefficient Coefficient Volume Flags
027 V12 PIPE 0.50/0.1524 0.7058/0.065571 - - 00
V3 0.50/0.1524  05592/0.0519514 - - 00
J1-2 - 0.7058/0.065571 0.0 0.0 01000
028 J1 SNGLJUN - 05592/0.0519514 0.0 0.0 01100
029 \A SNGLVOL 10000.0 10000.0 - - 1 Atmosphere

RELAP YMOD3
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Table 4.3.
DOWNSTREAM PIPING HEAT STRUCTURE (CROSBY TESTS)

Heat Left Right Volume
Description Geometry Mesh Material Left(!f}oundary Right Boundary S':;::;: 83:{::’!:3 B{’,‘;;‘udr::y Lenght (ft/m)
t/m) (ft/m)
009
Valf\;e outlet CYL 1-10 Carbon steel  0.2527/0.077023 0.2760/0.084125 0091 0501-03 2501 0.50/0.1524
ange
on
Pipe 1 CYL 1-10 - Carbon steel  0.2527/0.077023 0.2760/0.084125 0111 1101-08 2901 0.50/0.1524
Horizontal
013
Elbow 1 CYL 1-10 Carbon steel 0.2527/0.077023 0.2760/0.084125 0131 1301 2901 0.50/0.1524
015
Pipe 2 cYL 1-10 Carbon steel 0.2527/0.077023 02760/0.084125 0151 1501-12 2901 0.50/0.1524
Vertical :
017
Expansion "N/A N/A N/A N/A N/A N/A N/A N/A N/A
019
Pipe 3 CYL 1-10 Carbon steel  0.4740/0.144475 0.53129/0.161937 0191 1901-30 2901 050/0.1524
o1
Elbow 2 YL 1-10 Carbon steel 0.4740/0.144475 053129/0.161937 0211 2101 2901 0.70/021336

RELAP ¥MOD3
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Table 4.3. (Cont'd)
DOWNSTREAM PIPING HEAT STRUCTURE (CROSBY TESTS)

Description Geometry Mesh Material Left Boundary  Right Boundary Heat Left Right 'Volume
(ft/m) (ft/m) Structure Boundary Boundary  Lenght (ft/m)
Number Volume Volume
023
Pipe 3 CYL 1-10 Carbon steel  0.4740/0.144475  0.53129/0.161937 0231 2301 2901 0.70/0.21336
Horizontal 202 2901 1.00/0.3048
230342 2901 1.00/0.3048
2343 2901 1.00/0.3048
234 2901 0.70/0.21336
025
Elbow 3 cYL 1-10 Carbonsteel  04740/0.144475 0.53129/0.161937 0251 2501-01 2901 0.70/0.21336
027
vPipe4] CYL 110 Carbonsteel  04740/0.144475 0.53129/0.161937 0271 2701-02 . 2901 0.50/0.1524
ertica )

RELAP MOD3
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Mechanical loads determination

Two methods are commonly used for evaluating the mechanical loads on a piping
system : force balance and momentum balance (ref. 7). The force balance method equates
the resultant force transmitted from the fluid to the structure as the sum of the pressure
and frictional forces acting on the wetted surface of the pipe. The momentum balance
method equates the force on the element to the time rate of change of fluid momentum
within the pipe. The former has the difficulty of calculating fluid friction forces on the
wetted surface. The latter has the potential risk of numeric instabilities coming from
the time derivative nature of the method. This latter method has been used in this
analysis and no instabilities have been found.

Two kind of terms appear in the momentum balance method (ref. 8) : the wave or
acceleration force.

Fu=- B({I)’V)dv
ot

Cv

(5.1)

(where P and v stand for the density and velocity of the fluid in the pipe respectively
and the volumetric integral extends to the fluid control volume c, in the pipe).

And the blowdown force that appears only for open ended pipe segments.

Fg =2 AP +Pv2) (5.2)

(where A is the area, P, P and v are the relative pressure, density and velocity of the
fluid at the open end respectively ; the positive sign is applied to inlets and the
negative one to outlets). The numerical discretisation of the wave force (eq. 5.1) yields
for segment K,

d
ka=-2ig(vi(asipgngi'f'aﬁPﬁVfi)] (5.3)

where the sumation extends to all the nodes i of a bounded segment K of the pipe. The

phasic void fraction, density and velocity are represented by «, Pand v respectively.
The subindexes g and f refer to the gaseous and liquid phases. V stands for the node
volume. Figure 5.1. shows the implementation of that expression for a part of segment 2
with the aid of the TROPIC preprocessor. The Vi factor in expression 5.3 is included as
a multiplier in the adder control block. For the last segment in the test facility, which
is an open-ended segment, the total force is the sum of the wave force (eq. 5.1) and the
blowdown force (eq. 5.2) which can be computed as follows

FB=°A0(P o+agopgo"'%o+afopfov?o) (5.4)

where the subindex o refers to the conditions at the discharge junction.

RELAP 5MOD3
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Analysis and results

The RELAP 5/MOD3 code version has been received at TRACTEBEL recently. As it is
going to be the future tool for thermal hydraulic analysis, an assessment has been
conducted to prove the convenience of its application to the evaluation of discharge
piping hydrodynamic loads. Different code options had been tested on this version to
check the range of the modifications and new models introduced in the MOD3 version.
EPRI/CE test number 917 is used for this assessment process.

Test 917 (Crosby hot water loop seal discharge)

Table 6.1. summarizes the different options that have been tested on RELAP 5/MOD3.
Table 6.2. compares the characteristic values of the loads on the segments and pressures
to test measurements and MODI. Figures 6.1. to 6.6. present the time evolution of those -
variables for some significative cases compared to experimental data. The results are
commented in next paragraph.

Results with the original MOD1 model (CASE 0)

" Load peak values are close to the test measurements and RELAP 5/MOD1 results (Table

6.2.). However, it can be observed from Figs 6.3. to 6.6. that RELAP 5/MOD3 loads are
clearly delayed with respect to the experiment, just the opposite of MOD1 results,
reflecting a lower slug velocity in MOD3 transient discharge evolution.

This is the consequence of a low coupling between phases (low interphase drag
coefficients , Fig. 6.7.) given by the last version of RELAP 5. On the contrary MOD1
exhibited a high coupling between liquid and steam that is translated into a higher
slug velocity and hence an anticipation in the loads as compared to the experiment.

Results with bundle Interphase friction (CASES 1 and 8)

The liquid loop seal discharge is extremely dependent on the interfacial friction
between phases. RELAP 5/ MOD3 allows for the possibility of choosing an alternative
interphase friction correlation that is applicable to bundle geometries. In order to test
the effect of this new correlation on the loads, two trials have been done : case 1 and
case 8 (Tables 6.1. and 6.2.). Case 1 was equivalent to base case 0 (piping is arranged
horizontally) and case 8 was similar to case 4 (segment 2 is considered vertical) but both
cases used the bundle interphase drag option. Comparison of case 1 to case 0 results and
case 8 versus case 4 shows no effect neither on the loads nor on the pressure. The
Bestion's interfacial friction correlation for rod bundles is only applied in bubbly /slug
flow regime. Such regimes are not developed in the discharge of a liquid loop seal and
the results must be unsensitive to this option.

Sensitivity to the horizontal stratification option at junctions (CASE 2)

Most of the flow regime during the loop seal discharge is annular-mist. Horizontal
stratification is initially present since an air-steam-liquid mixture is assumed filling
the pipe. Junction options were changed in this case (case 2 in Tables 6.1 and 6.2) to
account for a possible horizontal stratification downstream the valve. The results
show a negligible or null effect on the loads or pressure values. The very small amount
of liquid that is initially stratified and the fast development into annular-mist regime
are the reasons for that minor effect.

RELAP 5/MOD3
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Table 6.1 Summary of run sequence for RELAP .5/MOD -3, Test CE 917

PARAMETER SELECTION &SEEO CASE 1 CASE2 CASE 6 CASE7 C{\SE 4 CASE S8 CASE 9 CASE10 | RECOMMENDED OI'TION
Interphase friction model pipe (b=0) |bundie (b=1)] pipe pipe pipe pipe bundle pipe pipe Pipe interphase friction
Horizontal Stratif, in Jun. off (v=0) off on (v=3) off off off off off off No horizontal stratification
Expansion -Contraction K¢ K¢ Ki Abrupt area | K¢ K¢ K¢ K¢ K¢ Local pressure losses
Heat slab modeling yes yes yes yes ™ o 1] o yes No heat slab modeling
Vertical orientation of seg. 2 1] o o o o yes yes yes ™ Apply appropiate orientation
Choking modd downstream ) o - o o o o yes ro No choking opﬁon

downstream
Phase velodty option 2 (h=0) 2 2 2 2 2 2 2 1 (h=2) Two velodity solution

RELAP SMODJ
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Table 6.2 Comparison of RELAP 5/MOD 3 results from parametric studies and experiment for test CE 917

RELAPS/
TEST MOD1 CASEO CASE1 CASE 2 CASE 6 CASE7 CASE 4 CASE 8 CASE 10

LOAD (kN) max® - - 8.3 83 83 83 8.4 81~ 8.1 7.2
ONSEGMENT1 MAX 184 105 21.2 21.2 212 20.4 21.2 20.7 20.7 19.7

MIN -19.8 -11.3 -23.0 -23.0 -23.0 -16.0 -33.1 -324 -32.4 -23.6
LOAD (kN) MAX 50.8 56.8 40.3 403 403 . 650 404 458 458 45.6
ON SEGMENT2 MIN -59.8 -65.3 -87.3 -87.3 -89.3 -205.3 -101.4 -66.0 -66.0 -41.2
LOAD (kN) MAX 783 1233 96.3 96.3 98.7 1914 1109 771 77.1 90.3
ON SEGMENT3 min -31.6 -42.1 -20.1 <20.1 -20.3 -25.8 -21.4 - -

MIN -74.3 -47.5 -55.2 -55.2 -55.0 -46.7 -52.2 -43.9 -43.9 -48.7
LOAD (k) MAX 64.8 709 96.2 9.2 95.9 86.7 95.2 789 789 95.2
ON SECMENT 4
PRESSURE (bar) MAX 343 28.8 249 249 249 249 249 5.0 250 256
ATPT09 STEADY 163 17.0 15.9 159 158 159 15.9 16.8 16.8 16.4
PRESSURE (bar) MAX 77 6.9 6.6 6.6 6.6 6.2 6.8 6.5 65 8.0
ATPT10

* Values in the table are given for characteristic points in the figures : maximum (MAX), minimum (MIN), local minimum and maximum (min and max), and steady

state (t = 0.3 sex).

REALP SMOD3

8T



JPD/SHLT 19

6.1.4. Senslitivity to the abrupt area change model at expansion (CASE 6)

It was proven for MOD2 that using the abrupt area change model at the expansion in
segment 2 instead of a local pressure loss coefficient contributed to reduce induced loads.
The results are just the opposite for MOD3 (see Table 6.2, case 6). The negative load in
segment 2 and the positive load in segment 3 are doubled when using the abrupt area
change. The explanation for the contradiction is that in MOD2 the important variable
driving the load was the mass profile and in MOD3 (with a smoother slug mass
distribution) the relevant parameter is the slug velocity. The abrupt area change
model results in a lower pressure loss for the liquid phase than in the base case where a
local form loss coefficient is applied. As the liquid is not slowed down when the slug
goes through the expansion, the effect of front densification in MOD2 is not enhanced
and loads are lower. MOD3 does not produce sharp fronts and a lower pressure loss at
expansion makes slug velocity larger and induced loads have higher values.

6.1.5. Effect of heat slab modeling (CASE 7)

It has been shown that heat transfer to pipe walls had an striking effect on RELAP 5/
MOD2 computed loads. The sensitivity analysis has been repeated on RELAP 5/
MOD3. The results are presented in Table 6.2 under the header case 7 ( to be compared
to base case 0). Except for the loads on segment 1 that exhibit a very oscillatory
pattern, all load and pressure values are quite similar to the case with heat transfer to
the cold pipe walls (case 0). The same low influence was observed for MOD1 results
(Tractebel results for MOD1 differ from ITI ones in heat slab modeling). Comparing
condensation rates for MOD2 and MOD3 it has been found that MOD2 produced 10 times
more condensation than MOD3. Because of this the influence of heat slab modeling in
MOD?2 was so important , while being negligible for MOD3.

6.1.6. Effect of vertical orlentatlon of segment 2 (CASE 4)

The original MOD1 input model assumed there was no change in the elevation for the
discharge pipes, i.e., an horizontal arrangement was considered for the input model. It
has been alrcady pointed out that the dominant flow regime is annular-mist. There are
no different correlations for the interphase drag coefficient on vertical and horizontal
pipes. Any possible difference when verticality is imposed should be attributed to
body force effect on the slug and/or changes in the onset of annular-mist conditions.

Table 6.2 shows the results under the case 4 header. Positive load on segment 2
increases and negative one is reduced, getting closer to the experimental measurements.
The other loads are also closer to the experiment (except load on segment 1 because of its
oscillatory behaviour).

Case 4 includes all the recommended options for the application of RELAP 5/MOD3 to
the calculation of hydrodynamic loads. Figures 6.8 to 6.14 compare the pressure and
load results to the experimental measurements and the MOD1 computations (IT] results
are the EPRI validation for MOD1 and TRA results are the TRACTEBEL check for
MOD1). Some oscillations can be observed in the load for segment 1 as a result of the
new choking model for MOD3 (Fig. 6.14).

RELAP 5MOD3
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6.1.7. Results of a fully choked solution downstream the valve (CASE 9)

Some changes have been introduced in MOD3 for the choking model (ref. 10). The
improvements consisted on smoothing the transition from the subcooled to the two-
phase choking model and elimination of a coding error. Although it is still
recommended not to use the choking model in succesive junctions, a trial was made to
study the slug evolution using the choking model at all junctions downstream the valve,
as it was tried for MOD2. As a result, the liquid slug remained still in the first volumes
downstream until t = 0.2, when the code failed. Recommendation of not using the
choking option downstream the valve is made again.

6.1.8. One velocity solution In RELAP 5/MOD3 (CASE 10)

One-velocity analysis has been repeated with MOD 3 as it was done with MOD2 to
assess the effect of interphase drag coefficients. Results are presented in Table 6.2
referred to as case 10. Although it is not shown in that table, the load peak timing is
quite similar to the RELAP 5/MODI1 results proving that MOD1 solution was very close
to one speed calculation. However the peak values are not equivalent, the differences

arising from a different valve discharge due to the changes in the choking model in
RELAP 5/MOD3. -

RELAP 5/MOD3
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Run statistics

The simulation has been performed on a computer APOLLO 10020 running with a UNIX
operating system.

The requested time step for the whole calculation was 0.0002 sec yielding 1803
attempted advances (14 repeated) for the transient time of 0.35 sec (run statistics are
taken from case 4).

The time step history as a function of the transient time is presented in Fig. 7.1 as well
as the Courant time step. Figure 7.2 shows the CPU time performance.

The code performance PF = (1000*CPU)/(N*DT) is (1000*463)/(118°1789) =
2.19 ms/step/volume. ‘ '

In case 4 heat transfer to the pipe walls is not accounted for.

RELAP 5MOD3
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Conclusions

RELAP 5/MOD1 was validated by EPRI for the calculation of safety and relief value
discharge piping hydrodynamic loads (ref. 4). Modelization guidelines were issued for
~ a proper code application to this kind of calculations and are summarized as follows :

control volumes must have a length between 0.15 and 0.3 m for a correct slug and
pressure fronts tracking. :

time step must be limited externally to the material Courant limit (= 0.2 m sec)

the no-chocking option must be imposed to all the junctions downstream the test
valve

heat transfer to pipe walls must be included; ten radial nodes suffice to yield a
solution not dependent on noding detail

cold water loop seals (< 100°C) should be located initially downstream the test
valve.

The suitability of some of these guidelines has been checked for RELAP 5/MOD3/5MS.
One additional guideline has been found suitable for RELAP 5/MOD?3 calculations.

pipe orientation (horizontal or vertical) should be taken into account for pipes
downstream the valve.

The main conclusions that have been reached during the assessment process are the
folowing.

1.

For liquid loop seal discharges the effect of heat transfer to pipe heat structures
need not be modeled for a correct evaluation of liquid discharge loads. The same
conclusion was obtained for REALP 5/ MOD1.

RELAP 5/MOD3 underestimates the coupling between the liquid and vapour phases
producing a lower liquid slug velocity than in the experiments. Although maximum
values for the loads are quite comparable to the measurements, the loads are
delayed in time.

. The changes that have been introduced to the choking model in RELAP 5/MOD3

(inclusion of a transition zone between the subcooled and two phase flow regimes)
produces a characteristic two-bump valve flow discharge that is reflected on the
loads of the downstream piping.

. From this assessment study, one can recommend to use the following options using

RELAP 5/MOD3:

a. control volumes must have between 0.15 and 0.3 m for a correct slug and pressure
fronts tracking.

b. time step must be limited externally to the material Courant limit (= 0.2 m sec).

¢. the no-chocking option must be imposed to all the junctions downstream the test
valve.

d. heat transfer to pipe walls is not requiered to be included for water loop seal
discharges. '

RELAP 5/MOD3
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e. cold water loop seals (< 100° C) should be located initially downstream the test
valve.

The suitability of some of these guidelines has been checked for RELAP 5/MOD3.
Some additional guidelines have been found suitable for RELAP 5/MOD3
calculations.

f. pipe orientation (horizontal or vertical) should be taken into account for pipes
downstream the valve.

g- valve junction is modeled with the 2 velocity option.

Comparing the RELAP 5/MODS3 results for case 4, which corresponds to the
recommended options above, and the experimental data (Table 6.2) it is observed
that

a. The positive forces agree with the measured forces and a margin of 10 % covers
all experimental points.

b. The calculated negative forces all exceed the measured forces except for segment
3, where the measured results exceed the calculated values by 80 %. However,

the large negative measured value is probably due to the lower stiffness of the

supports for this segment (ref. 11) and the same discrepancy was found for

RELAP 5/MOD1 and ignored for its qualification. Hence, it is proposed to

consider the RELAP 5/MOD3 results acceptable, with a suitable margin to bring

the data in line with the RELAP 5/MOD] results, and to estimate the negative
* forces on all segments.

RELAP 5MOD3
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