Final Precursor Analysis

Accident Sequence Precursor Program -- Office of Nuclear Regulatory Research

Grand Gulf Unit 1	Automatic Reactor SCRAM Due To Loss of Offsite Power With Condenser Vacuum Pump Inoperable and Subsequent Failure of Instrument Air			
Event Date 4/24/2003	LER: 416/03-002	CCDP ¹ = 1.3x10 ⁻⁶		
August 22, 2005				

Event Summary:

On April 14, 2003, *ENTERGY Mississippi* removed 500 kV Breaker J5204 (See Figure 1) from service in the switchyard at Grand Gulf Nuclear Station by opening disconnects J5203 and J5205 in order to repair an internal gas leak (See Figure 1). On the morning of April 24, 2003, work was continuing on Breaker J5204 when high winds in the switchyard caused Disconnect Switch J5205 to close, creating a line-to-ground fault, which isolated all incoming 500 kV power to Service Transformer 21 (ST21). Coincident with this, failures in the *ENTERGY Mississippi* carrier transmission fault relaying system caused both 500 kV power sources from the Baxter-Wilson Station and the Franklin Station switchyards to be isolated from the Grand Gulf Nuclear Station switchyard. The Grand Gulf generator temporarily remained on the 500 kV east bus powering ST11.

Because of this 500 kV electrical grid transient, the Grand Gulf Nuclear Station turbine generator control system sensed a full load rejection and responded by initiating a turbine control valve fast closure and automatic reactor trip. (References 1,2) All control rods inserted as designed. Loss of transformer ST21 resulted in a bus undervoltage on the Division I, II and III ESF busses that resulted in the start of the Division I, II and III emergency diesel generators. Reactor water level 2 was reached, MSIVs closed (due to loss of the two RPS buses), and the High Pressure Core Spray (HPCS) and Reactor Core Isolation Cooling (RCIC) systems started as designed. Operators stabilized and maintained reactor pressure vessel (RPV) water level according to procedures. Reactor pressure was maintained by the proper cycling of the Safety/Relief Valves (S/RVs). Approximately a half hour into the event, suppression pool cooling was initiated using the Residual Heat Removal (RHR) Systems. A detailed sequence of events is provided in Appendix A.

Essential AC electrical buses were properly supplied throughout the duration of the event by the operation of the emergency diesel generators. Had any of the emergency buses become deenergized due to the failure of a diesel, the buses could be transferred back to offsite sources.

¹For the initiating event assessment, the parameter of interest is the measure of the CCDP. This is the value obtained when calculating the probability of core damage for an initiating event with subsequent failure of one or more components following the initiating event. The value reported here is the mean value.

The transition of the plant to eventual cold shutdown was complicated by the loss of the Instrument Air System which required approximately 2 hours to restore. The Instrument Air System supports several systems credited in the plant emergency procedures for alternate emergency decay heat removal and containment cooling. These systems include: CRD flow (in the enhanced flow control mode), Fire Water makeup to the RPV, and Containment Venting for Containment Heat Removal. Had the normal operation of HPCS, RCIC, and RHR systems failed and the need to utilize alternate RPV makeup and containment cooling, these alternate measures would have been impacted until Instrument Air was restored. Firewater makeup to the RPV can be accomplished without Instrument Air by opening a motor operated bypass valve either remotely or via turning a handwheel.

Analysis Results

• Conditional Core Damage Probability (CCDP)

This event was modeled as an initiating event loss of offsite power (LOOP) with complications caused by the additional loss of Instrument Air. The CCDP for this event was calculated as 1.0×10^{-6} (point estimate). An uncertainty analysis was performed to assess the effects of parameter uncertainties. The results are summarized below.

	CCDP			
	5%	Mean	95%	
Grand Gulf Unit 1	1.0 x 10 ⁻⁷	1.3 x 10 ⁻⁶	4.3 x 10 ⁻⁶	

• Dominant Sequences

Appendix B provides the event tree models used in this analysis. The actual event sequence of the April 24, 2003 event is LOOP Sequence 1, shown in Figure B-1 of Appendix B. If additional system or component failures had occurred a core damage sequence could occur. There are five dominant accident sequences (See Table 1) which account for 79% of the total CCDP. All other accident sequences account for less than 6.5% of the total CCDP.

The most dominant accident sequence is LOOP Sequence 41-04 which accounts for 24% of the total CCDP. The important system and component failures in Sequence LOOP 41-04 (See Figures B-1, B-2 of Appendix B) are:

- Loss of Offsite Power occurs
- Automatic Reactor Trip occurs
- Emergency Power is supplied by the Diesel Generators
- S/RVs open and close to control RPV pressure and one fails to re-close
- High Pressure Core Spray is actuated
- Suppression Pool Cooling is attempted but fails
- Containment Spray Cooling is initiated
- Containment Venting fails due to Loss of Instrument Air

The next most dominant Sequence: LOOP 44-03-14 accounts for 18% of the total CCDP. The important system and component failures of Sequence LOOP 44-03-14 (See Figures B-1, B-3, and B-4 of Appendix B) are:

- Loss of Offsite Power occurs
- Automatic Reactor Trip occurs
- Emergency Power from the Diesel Generators fails
- Division III Emergency Power from the HPCS Diesel Generator is available
- High Pressure Core Spray is attempted but fails
- Operators successfully cross-tie the Division III Bus to other plant Buses
- S/RVs open and close to control RPV pressure without failure to re-close
- Reactor Core Isolation Cooling is actuated but fails
- Operators successfully carry out Emergency RPV Depressurization
- Low Pressure Coolant Injection is attempted but fails

The next most dominant Sequence: LOOP 40 accounts for 15% of the total CCDP. The important system and component failures of Sequence LOOP 40 (See Figure B-1 of Appendix B) are:

- Loss of Offsite Power occurs
- Automatic Reactor Trip occurs
- Emergency Power is supplied by the Diesel Generators
- S/RVs open and close to control RPV pressure without failing to re-close
- High Pressure Core Spray is actuated but fails
- Reactor Core Isolation Cooling is actuated but fails
- Manual Depressurization fails
- 2/2 CRD injection in high flow mode fails

The next most dominant Sequence: LOOP 05 accounts for 12% of the total CCDP. The important system and component failures of Sequence LOOP 05 (See Figure B-1 of Appendix B) are:

- Loss of Offsite Power occurs
- Automatic Reactor Trip occurs
- Emergency Power is supplied by the Diesel Generators
- S/RVs open and close to control RPV pressure without failing to re-close
- High Pressure Core Spray is actuated to provide RPV makeup
- Suppression Pool Cooling is attempted but fails
- Operators successfully carry out Emergency RPV Depressurization
- Containment Spray Cooling is attempted but fails
- Containment Venting fails due to Loss of Instrument Air

The next most dominant Sequence: LOOP 44-39 accounts for 10% of the total CCDP. The important system and component failures of Sequence LOOP 44-39 (See Figures B-1 and B-3 of Appendix B) are:

- Loss of Offsite Power occurs
- Automatic Reactor Trip occurs
- Emergency Power from the Diesel Generators fails
- Division III Emergency Power from the HPCS Diesel Generator fails
- S/RVs open and close to control RPV pressure without failing to re-close
- Reactor Core Isolation Cooling is attempted but fails

• Results Tables

- The conditional probabilities for the dominant sequences are shown in Table 1.
- The event tree sequence logic for the dominant sequences are presented in Table 2a.
- Table 2b defines the nomenclature used in Table 2a.
- The most important cut sets for the dominant sequences are listed in Table 3a and 3b.
- Definitions and probabilities for modified or dominant basic events are provided in Table 4.

Modeling Assumptions:

• Analysis Type

The actual event was a loss of onsite electric power (OEP) that occurred with two sources of offsite power available and that could be reconnected if necessary. The event was modeled in this analysis as a loss of offsite power initiating event (IE-LOOP) using the Grand Gulf Revision 3.10 Standardized Plant Analysis Risk (SPAR) Model (Reference 4). The probability of IE-LOOP was set to 1.0. The probabilities of the other initiating events were set to 0.0. The analyzed LOOP duration is equivalent to the actual event. The LOOP initiating event and its duration are therefore considered key boundary conditions for this analysis.

Equipment and operator actions that were successful during the actual event are assumed to perform at their normal failure probability values. Equipment and operator actions that failed during the event are failed (set to TRUE) in the analysis.

LOOP recovery basic events that occur prior to offsite power being available are set TRUE (failed). These events can not be successful since the know duration of the offsite power event is greater than the time available for recovery action. LOOP recovery basic events that occur after offsite power is available are set consistent with the human error likelihood of re-energizing the ESF buses. This analysis approach of replacing the statistically based non-recovery curves contained in the SPAR model with specific human actions which follows the approach of analyzing a LOOP event of known duration. Since the LOOP duration is known, then the status of power to the switchyard is known at any given time. However, the normal value for the actions to re-energize the ESF buses given switchyard power is available needs to be determined. The human error likelihood is determined using the SPAR-H methodology (Reference 5). Since the Grand Gulf event was a momentary LOOP, then there are no LOOP recovery events set to true.

The emergency diesel generator mission run times have been adjusted consistent with the time it took to re-energize the various ESF buses from the offsite power following the event.

Other changes to model the event are described below.

• Unique Design Features

Grand Gulf is a standard General Electric BWR-6, with a Mark III containment.

• Modeling Assumptions Summary

Key modeling assumptions. The key modeling assumption are listed below and discussed in detail in the following sections. These assumptions are important contributors to the overall risk.

- Offsite 500kV Power was lost for approximately 74 seconds. Following the inadvertant closure of the disconnect, an undervoltage condition of Division II and III ESF buses cause the autostart of the Division II and III emergency diesel generators. Failures in the carrier transmission fault relaying system caused both normal 500kV power sources from the Baxter-Wilson Station and Franklin Station switchyards to be isolated from the Grand Gulf switchyard. Because the of this 500kV power grid transient, the Grand Gulf turbine generator controls sensed a load rejection resulting in an automatic reactor scram. Approximately 74 seconds later, the main generator output breaker opened resulting in a loss of 500kV to the Division I ESF bus. The Division I emergency diesel generator then autostarted. At about the same time, the 500kV Franklin and Baxter-Wilson line feeder breakers closed and restored power to the Grand Gulf Nuclear Station (GGNS) switchyard (Reference 6).
- The Port Gibson 115kV line was available throughout the event. GGNS is supplied with AC power from the 500kV switchyard and the 115kV (Port Gibson) offsite circuit. From the switchyard, AC voltage is stepped down to 34.5kV through two service transformers that supply two ESF transformers and eight balance of plant (BOP) transformers. The 115kV offsite circuit feeds another ESF transformer with 4160V output voltage (References 1, 2). This 115kV line available for offsite power recovery at all times during this event and the operators were found to adequately trained on connecting this power supply in a proper and safe manner (Reference 6).
- The GGNS emergency diesel generators ran for the following mission times -Division I: 6.2 hours, Division II: 5.8 hours, and Division III: 5.075 hours (Reference 1). Diesel generator fail to run and common cause failure to run probabilities were adjusted to reflect the run time of the first diesel to be secured, namely 5.07 hours.
- Instrument Air system became totally unavailable at the time of loss of offsite power and was not recovered until an instrument air compressor was successfuly restarted at two hours into the event. During the actual loss of

offsite power event, the running Instrument Air and Service Air System compressors shutdown as designed. Operators were unable to remotely restart the air compressors due to a loss of control air. The Unit 1 Instrument Air compressor was manually started about 20 minutes into the event (Reference 1) but was ineffective in restoring the air header and was shutdown several minutes later. Approximately two hours into the event, operators were successful in starting the Unit 2 Instrument Air compressor and used it to restore the air header pressure.

The CRD pumps and Containment Vent valves, both credited for long term heat removal, depend on the Instrument Air System. The Grand Gulf IPE (Table 3.2-3 of Reference) illustrates that the Instrument Air System supports all of the following systems:

(a) CRD pump enhanced flow control (alternate RPV makeup),

- (b) Opening valves to allow Fire Water Injection (alternate RPV makeup),
- (c) Long term makeup to the dedicated bottled air supply for the S/RVs²,

(d) Opening, modulation of Feedwater flow control valves (alternate RPV makeup),

- (e) Opening Containment vent valves (alternate decay heat removal),
- (f) Plant Service Water which supports Instrument Air compressor cooling,
- (g) Modulation of the chilled water system flow control.
- (h) Re-opening of closed Main Steam Isolation Valves to restore heat removal by Main Condenser

In the SPAR loss of offsite power event sequence analysis, only items (a) and (e) are modeled in the current SPAR event trees. Modeling the support dependencies of the other systems would only be necessary in non-LOOP transient events.

• There was no possibility to recover the main condenser unit as an alternate decay heat removal system. At the time the April 24th event, Reference 2 noted that the main condenser mechanical vacuum pump system was tagged out for maintenance. This implies any temporary interruption in loss of main steam flow (such as via the closure of the MSIVs) would incapacitate the steam jet air ejectors that remove non-condensible gasses. Without a mechanical vacuum pump, this combination results in a loss of condenser vacuum and inability to use the use the main condenser as an alternate decay heat removal. The current SPAR loss of offsite power event sequence models do not credit recovery of the main condenser after re-opening the MSIVs.

• Fault Tree Modifications

Addition of a basic event AIR-XHE-NOREC-2HR to the Control Rod Drive (CR1) and Containment Venting of the Suppression Pool (CVS) fault trees for the non-recovery of Instrument Air. Two changes were made to the Grand Gulf 1 SPAR Model Fault Trees:

(1) Modifications to the CR1 Fault Tree to Account for Non-recovery of Instrument Air

²Compressed air to operate the Safety/Relief valves was available throughout the event from dedicated bottles which are hold a sufficient reserve to allow multiple cycles.

The base case CR1 fault tree was modified by the addition of a basic event describing the non-recovery of Instrument Air over the long term (~ 2 hours) which similarly prevents modulating the CRD flow control valves to their full open position. The specific logic modifications are shown in Figure C-1 in Appendix C. The fault probability is derived in the HRA in Appendix D.

(2) Modifications to the CVS Fault Tree to Account for Non-recovery of Instrument Air The base case CVS fault tree was modified by the addition of a basic event describing the non-recovery of Instrument Air over the long term (~ 2 hours) which similarly prevents opening the containment venting valves to their full open position. The specific logic modifications are shown in Figure C-2 in Appendix C. The fault probability is derived in the HRA in Appendix D.

• **Basic Event Probability Changes** Table 4 provides all the basic events that were modified to reflect the best estimate of the conditions during the event. The basis for these changes are provided below.

Operators fail to recover offsite power in 30 minutes (OEP-XHE-XL-NR30M) and within one hour (OEP-XHE-XL-NR01H). These basic event probabilities were changed to 2.0 x 10⁻² reflecting the fact that offsite power was available and all that was required was to properly execute the procedure to reconnect. Short term offsite power recovery is considered in the situation of a Station Blackout with a stuck open S/RV. The bases for this number is formally derived in the HRA in Appendix D and considers the fact that required time to carry out the recovery was on the order of the available time.

Operators fail to recover offsite power at 2 hours, 4 hours, 8 hours and 10 hours (OEP-XHE-XL-NR02H, OEP-XHE-XL-NR04H, OEP-XHE-XL-NR08H, OEP-XHE-XL-NR10H). These basic event probabilities were all changed to 2.0×10^{-4} reflecting the fact that offsite power was available and all that was required was to properly execute the procedure to reconnect. Longer term offsite power recovery is credited for sequences where suppression cooling is required. The bases for this number is formally derived in the HRA in Appendix D and considers the fact that required time to carry out the recovery was significantly less than the available time.

Modifications to diesel generator failure to run probability to reflect actual diesel run times during the event. The diesel generator failure to run probability in the base case SPAR model (Reference 4) is based on a compound event which includes portions dealing with short term failure to run (one hour or less) and a longer term failure model which uses a different failure rate. The base case model assumes a 24 hour run time mission. The base events involved are: **EPS-DGN-FR-DGA, EPS-DGN-FR-DGB,** and **EPS-DGN-FR-DGC.** These compound base events are in turn composed of short term and longer term basic elements: **ZTN-DGN-FR-E,** and **ZTN-DGN-FR-L** which are each calculated based on $Pr(t) = 1 - exp(-\lambda t)$ using different hourly failure rates.

Where: $\lambda_e = 3.0 \times 10^{-3} \text{ hr}^{-1}$ (short term failure rate) and $\lambda_I = 8.4 \times 10^{-4} \text{ hr}^{-1}$ (longer term failure rate)

The total diesel failure to run probability becomes for 5.07 hour mission time:

Pr = 1 - exp($-\lambda_e x$ 1hr) + 1- exp($-\lambda_1 x(5.07 - 1hr)$) = 6.25 x 10⁻³

The **EPS-DGN-FR-DGA**, **EPS-DGN-FR-DGB**, and **EPS-DGN-FR-DGC** values were changed to the value noted above as shown in Table 4. This change results in a reduction in the failure to run probabilities for all three diesels.

• SPAR Model Corrections

The existing SPAR Model LOOP event tree assumptions for scenarios where emergency power is available, there are no open S/RVs, and some form of RPV makeup has been continuously maintained do not consider the availability of Shutdown Cooling and are excessively pessimistic. This is an inconsistency in modeling assumptions for equivalent modeling for general plant transients. To correct this model assumption, the recovery model for the LOOP event tree was modified by addition of the following recovery rule:

| Long-term recovery of SDC given initial success of injection. if system(/SRV) *(system(/HCS)+system(/RCI)+system(/CRD)+system(/CDS)+system(/LCS)+ system(/LCI)+system(/VA)) * (system(SD1) + system(SDC)) then AddEvent = SDC-LTERM-NOREC;

This recovery rule is identical to that utilized for general plant transients.

• Sensitivity Analyses

Sensitivity analyses were performed to determine the effects of data and modeling uncertainties on the CCDP = 1.0×10^{-6} point estimate result which is treated as the base case. To assess data uncertainties, an Importance Analysis using Fussel-Vesely and Risk Increase Ratio importance measures was conducted to identify the most sensitive parameters.

The following table provides the results of the sensitivity analyses and how the resultant CCDP changed from the base case value of 1.0×10^{-6} as a result of single parameter changes.

Sensitivity Study	Modification	CCDP ¹
1	RCI-XHE-XO-ERROR (Operator fails to start or control RCIC) failure probability increased by x 5.0	1.8 x 10⁻ ⁶
2	SSW-MDP-TM-TRNA (Service Water Pump Test and Maintenance) unavailability increased by x 5.0	2.0 x 10 ⁻⁶
3	ADS-XHE-XM-MDEPR (Operator fails to Start or Control RHR) failure probability increased by x 5.0	1.7 x 10⁻ ⁶
4	OEP-XHE-XL-NR08H (Operator fails to recover onsite electric power within 8 hours) failure probability increased by x 5.0	1.3 x 10⁻ ⁶
5	AIR-XHE-NOREC-2HR (Operators fail to recover Instrument Air within 2 Hours) failure probability increased by x 5.0	1.5 x 10⁻ ⁶

Note 1: CCDP sensitivity study calculations are based on point estimate values.

The conclusion from these sensitivity studies is that relatively large changes in the most sensitive base event probability values results in effects that are within the 90% bounds.

References:

- 1. Grand Gulf Nuclear Station, Unit 1, LER: 416/03-002, "Reactor Scram Due to a Partial Loss of Offsite Power", issued June 23, 2003. ML032790367
- 2. Inspection Report IR: 50-416/2003-02. ML032090437
- 3. "Risk Assessment for Reactor Trip with Loss of Offsite Power and Loss of Instrument Air", Memo from D.P. Loveless(NRC Region IV) to W.D. Johnson, issued April 30, 2003.
- 4. Idaho National Engineering and Environmental Laboratory, "Standardized Plant Analysis Risk Model for Grand Gulf 1 (ASP BWR C)," Revision 3.10, December 10, 2004.
- 5. Grand Gulf Nuclear Station, Individual Plant Evaluation Summary Report, December 1992.
- 6. "The SPAR-H Human Reliability Analysis Method," INEEL/EXT-02-01307, May 30, 2004.

Figure 1

Event tree name	Sequence no.	CCDP ¹	Contribution
LOOP	41-04	2.4 x 10 ⁻⁷	24.6%
LOOP	44-03-14	1.8 x 10 ⁻⁷	18%
LOOP	40	1.5 x 10 ⁻⁷	15%
LOOP	05	1.2 x 10 ⁻⁷	12%
LOOP	44-39	1.0 x 10 ⁻⁷	10%
Total (all se	equences) ²	1.0 x 10 ⁻⁶	100 %

 Table 1. Conditional core damage probabilities of dominating sequences.

1. Values are point estimates.

2. Total CCDP includes all sequences (including those not shown in this table).

Event tree name	Sequenc e no.	Logic ("/" denotes success; see Table 2b for top event names)								
LOOP	41-04	/RPS	/EPS	P1	/HCS	SPC	CSS	CVS		
LOOP	44-03-14	/RPS	EPS	/B1	HCS	/DGX	/SRV	RC1	/DEP	LCI1
LOOP	40	/RPS	/EPS	/SRV	HCS	RCI	DEP	CRD		
LOOP	05	/RPS	/EPS	/SRV	/HCS	SPC	/DEP	SDC	CSS	CVS
LOOP	44-39	/RPS	EPS	B1	P1	RCI				

Table 2a. Event tree sequence logic for dominant sequence.

Top Event	Definition
RPS	REACTOR SHUTDOWN FAILS
EPS	LOSS OF ONSITE EMERGENCY POWER
SRV	ONE OR MORE SRVS FAIL TO CLOSE
P1	ONE SRV FAILS TO CLOSE
B1	DIVISION III POWER AVAILABLE
HCS	HPCS FAILS TO PROVIDE SUFFICIENT FLOW TO RX VESSEL
SPC	SUPPRESSION POOL COOLING MODE OF RHR FAILS
DGX	DIVISION III POWER CROSS-TIE
RCI	REACTOR CORE ISOLATION COOLING
RC1	REACTOR CORE ISOLATION COOLING
DEP	MANUAL DEPRESSURIZATION FAILS
SDC	SHUTDOWN COOLING MODE OF RHR IS UNAVAILABLE
CSS	CONTAINMENT SPRAY MODE OF RHR FAILS
LCI1	LOW PRESSURE COOLANT INJECTION (ONE TRAIN)
CRD	CONTROL ROD DRIVE PUMP INJECTION (2 PUMPS)
CVS	CONTAINMENT (SUPPRESSION POOL) VENTING

Table 2b. Definitions of top events listed in Table 2a.

CCDP	Percent Contributio n	Minimum Cut Sets (of basic events)					
Event Tree: LOOP Sequence 41-04							
3.1E-008	12.94	PPR-SRV-00-1VLV AIR-XHE-NOREC-2HR	RHR-XHE-XM-ERROR				
1.6E-008	6.47	PPR-SRV-OO-1VLV CVS-XHE-XM-VENT	RHR-XHE-XM-ERROR				
1.4E-008	5.82	CVS-AOV-CC-AV36 RHR-XHE-XM-ERROR	PPR-SRV-00-1VLV				
1.4E-008	5.82	CVS-AOV-CC-AV34 RHR-XHE-XM-ERROR	PPR-SRV-00-1VLV				
1.4E-008	5.82	CVS-AOV-CC-AV35 RHR-XHE-XM-ERROR	PPR-SRV-00-1VLV				
1.4E-008	5.82	CVS-AOV-CC-AV37 RHR-XHE-XM-ERROR	PPR-SRV-00-1VLV				
3.4E-009	1.40	PPR-SRV-OO-1VLV AIR-XHE-NOREC-2HR	RHR-MDP-CF-START				
2.46 x 10 ⁻⁷	24.6%	Total (all cutsets) ¹					

Table 3a. Conditional cut sets for the dominant sequences.

CCDP	Percent Contribution	Minimum Cut Sets (of basic events)					
Event Tree: LOOP Sequence 44-03-14							
1.8E-008	10.07	RCI-XHE-XO-ERROR EPS-DGN-FR-DGB	SSW-MDP-TM-TRNA HCS-XHE-XO-ERROR1				
1.2E-008	6.62	EPS-FAN-FR-DGB SSW-MDP-TM-TRNA	RCI-XHE-XO-ERROR HCS-XHE-XO-ERROR1				
1.1E-008	6.40	RCI-XHE-XO-ERROR EPS-DGN-FS-DGB	SSW-MDP-TM-TRNA HCS-XHE-XO-ERROR1				
4.2E-009	2.40	RCI-XHE-XO-ERROR SSW-MDP-FS-PUMPB	SSW-MDP-TM-TRNA HCS-XHE-XO-ERROR1				
3.0E-009	1.69	SSW-MDP-TM-TRNA HCS-MDP-TM-TRAIN RCI-XHE-XL-START	EPS-DGN-FR-DGB RCI-TDP-FS-TRAIN				
2.8E-009	1.60	RCI-XHE-XO-ERROR SSW-XHE-XR-TRNB	SSW-MDP-TM-TRNA HCS-XHE-XO-ERROR1				
2.8E-009	1.60	RCI-XHE-XO-ERROR SSW-MOV-CC-F018B	SSW-MDP-TM-TRNA HCS-XHE-XO-ERROR1				
2.8E-009	1.60	RCI-XHE-XO-ERROR	SSW-MDP-TM-TRNA				
		SSW-MOV-CC-F001B	HCS-XHE-XO-ERROR1				
2.8E-009	1.60	RCI-XHE-XO-ERROR SSW-MOV-CC-F006B	SSW-MDP-TM-TRNA HCS-XHE-XO-ERROR1				
2.8E-009	1.60	RCI-XHE-XO-ERROR SSW-MOV-CC-F005B	SSW-MDP-TM-TRNA HCS-XHE-XO-ERROR1				
2.2E-009	1.28	EPS-FAN-FS-DGB SSW-MDP-TM-TRNA	RCI-XHE-XO-ERROR HCS-XHE-XO-ERROR1				
2.0E-009	1.11	EPS-FAN-FR-DGB HCS-MDP-TM-TRAIN RCI-XHE-XL-START	SSW-MDP-TM-TRNA RCI-TDP-FS-TRAIN				
1.9E-009	1.07	SSW-MDP-TM-TRNA HCS-MDP-TM-TRAIN RCI-XHE-XL-START	EPS-DGN-FS-DGB RCI-TDP-FS-TRAIN				
1.8E-009	1.04	SSW-MDP-TM-TRNA HCS-MDP-TM-TRAIN RCI-XHE-XL-RUN	EPS-DGN-FR-DGB RCI-TDP-FR-TRAIN				
1.8E-009	1.04	RCI-TDP-TM-TRAIN EPS-DGN-FR-DGB	SSW-MDP-TM-TRNA HCS-MDP-FS-HPCS				
1.8 x 10 ⁻⁷	18%	Total (all cutsets) ¹					

Table 3a. (Continued) Conditional cut sets for the dominant sequences.

CCDP	Percent Contribution	Minimum Cut Sets (of basic events)						
Event Tree:	Event Tree: LOOP Sequence 40							
7.0E-008	45.86	CRD-XHE-XM-VLVS ADS-XHE-XM-MDEPR	RCI-XHE-XO-ERROR HCS-XHE-XO-ERROR1					
1.2E-008	7.71	CRD-XHE-XM-VLVS HCS-MDP-TM-TRAIN RCI-XHE-XL-START	ADS-XHE-XM-MDEPR RCI-TDP-FS-TRAIN					
7.3E-009	4.75	CRD-XHE-XM-VLVS HCS-MDP-TM-TRAIN RCI-XHE-XL-RUN	ADS-XHE-XM-MDEPR RCI-TDP-FR-TRAIN					
7.2E-009	4.72	CRD-XHE-XM-VLVS ADS-XHE-XM-MDEPR	RCI-TDP-TM-TRAIN HCS-MDP-FS-HPCS					
6.0E-009	3.93	CRD-XHE-XM-VLVS ADS-XHE-XM-MDEPR	RCI-TDP-TM-TRAIN HCS-XHE-XO-ERROR					
6.0E-009	3.93	CRD-XHE-XM-VLVS ADS-XHE-XM-MDEPR	RCI-TDP-TM-TRAIN HCS-MOV-CC-INJEC					
3.6E-009	2.36	CRD-XHE-XM-VLVS ADS-XHE-XM-MDEPR	RCI-TDP-TM-TRAIN HCS-MOV-FT-SUCTR					
3.5E-009	2.29	CRD-XHE-XM-VLVS HCS-MDP-TM-TRAIN	ADS-XHE-XM-MDEPR RCI-MOV-CC-INJEC					
3.5E-009	2.29	CRD-XHE-XM-VLVS ADS-XHE-XM-MDEPR	RCI-XHE-XO-ERROR HCS-MDP-TM-TRAIN					
3.1E-009	2.02	CRD-XHE-XM-VLVS ADS-XHE-XM-MDEPR	RCI-TDP-TM-TRAIN HCS-MDP-FR-HPCS					
2.0E-009	1.32	CRD-XHE-XM-VLVS HCS-MDP-FS-HPCS RCI-XHE-XL-START	ADS-XHE-XM-MDEPR RCI-TDP-FS-TRAIN					
1.8E-009	1.17	CRD-XHE-XM-VLVS HCS-MDP-TM-TRAIN RCI-RESTART	ADS-XHE-XM-MDEPR RCI-TDP-FS-RSTRT RCI-XHE-XL-RSTRT					
1.7E-009	1.10	CRD-XHE-XM-VLVS HCS-MOV-CC-INJEC RCI-XHE-XL-START	ADS-XHE-XM-MDEPR RCI-TDP-FS-TRAIN					
1.7E-009	1.10	CRD-XHE-XM-VLVS RCI-TDP-FS-TRAIN RCI-XHE-XL-START	ADS-XHE-XM-MDEPR HCS-XHE-XO-ERROR					
1.5 x 10 ⁻⁷	15%	Total (all cutsets) ¹						

Table 3a. (Continued) Conditional cut sets for the dominant sequences.

CCDP	Percent Contribution	Minimum Cut Sets (of basic events)						
Event Tree:	Event Tree: LOOP Sequence 05							
1.6E-008	13.12	RHR-XHE-XM-ERROR SDC-LTERM-NOREC	AIR-XHE-NOREC-2HR					
8.0E-009	6.56	RHR-XHE-XM-ERROR SDC-LTERM-NOREC	CVS-XHE-XM-VENT					
7.2E-009	5.91	CVS-AOV-CC-AV37 SDC-LTERM-NOREC	RHR-XHE-XM-ERROR					
7.2E-009	5.91	CVS-AOV-CC-AV34 SDC-LTERM-NOREC	RHR-XHE-XM-ERROR					
7.2E-009	5.91	CVS-AOV-CC-AV36 SDC-LTERM-NOREC	RHR-XHE-XM-ERROR					
7.2E-009	5.91	CVS-AOV-CC-AV35 SDC-LTERM-NOREC	RHR-XHE-XM-ERROR					
1.7E-009	1.42	RHR-MDP-CF-START SDC-LTERM-NOREC	AIR-XHE-NOREC-2HR					
1.2 x 10 ⁻⁷	12%	Total (all cutsets) ¹						

 Table 3a. (Continued) Conditional cut sets for the dominant sequences.

CCDP	Percent Contribution	Minimum Cut Sets (of basic events)						
Event Tree:	Event Tree: LOOP Sequence 44-39							
1.8E-008	17.27	PPR-SRV-00-1VLV EPS-DGN-CF-RUN	RCI-TDP-TM-TRAIN					
1.5E-008	14.33	EPS-FAN-CF-RUN RCI-TDP-TM-TRAIN	PPR-SRV-00-1VLV					
7.1E-009	7.00	PPR-SRV-OO-1VLV EPS-DGN-CF-START	RCI-TDP-TM-TRAIN					
4.9E-009	4.84	PPR-SRV-OO-1VLV RCI-TDP-FS-TRAIN	EPS-DGN-CF-RUN RCI-XHE-XL-START					
4.1E-009	4.01	EPS-FAN-CF-RUN RCI-TDP-FS-TRAIN	PPR-SRV-00-1VLV RCI-XHE-XL-START					
3.0E-009	2.98	PPR-SRV-OO-1VLV RCI-TDP-FR-TRAIN	EPS-DGN-CF-RUN RCI-XHE-XL-RUN					
2.5E-009	2.47	EPS-FAN-CF-RUN RCI-TDP-FR-TRAIN	PPR-SRV-OO-1VLV RCI-XHE-XL-RUN					
2.3E-009	2.26	EPS-FAN-CF-START RCI-TDP-TM-TRAIN	PPR-SRV-00-1VLV					
2.0E-009	1.96	PPR-SRV-OO-1VLV RCI-TDP-FS-TRAIN	EPS-DGN-CF-START RCI-XHE-XL-START					
1.5E-009	1.44	PPR-SRV-OO-1VLV RCI-XHE-XM-RCOOL	EPS-DGN-CF-RUN					
1.5E-009	1.44	PPR-SRV-OO-1VLV EPS-DGN-CF-RUN	RCI-XHE-XO-ERROR					
1.5E-009	1.44	PPR-SRV-00-1VLV RCI-MOV-CC-INJEC	EPS-DGN-CF-RUN					
1.3E-009	1.29	PPR-SRV-00-1VLV	DCP-BAT-CF-BATT					
1.2E-009	1.21	PPR-SRV-OO-1VLV RCI-TDP-FR-TRAIN	EPS-DGN-CF-START RCI-XHE-XL-RUN					
1.2E-009	1.19	EPS-FAN-CF-RUN RCI-XHE-XO-ERROR	PPR-SRV-00-1VLV					
1.2E-009	1.19	EPS-FAN-CF-RUN RCI-MOV-CC-INJEC	PPR-SRV-00-1VLV					
1.2E-009	1.19	EPS-FAN-CF-RUN RCI-XHE-XM-RCOOL	PPR-SRV-00-1VLV					
1.0 x 10 ⁻⁷	10%	Total (all cutsets) ¹						

Table 3a. (Continued) Conditional cut sets for the dominant sequences.

ADS-SRV-CC-VALV1ADS VALVE FAILS TO OPEN2.5E-003ADS-SRV-CC-VALV2ADS VALVE FAILS TO OPEN2.5E-003ADS-SRV-CC-VALV3ADS VALVE FAILS TO OPEN2.5E-003ADS-SRV-CC-VALV4ADS VALVE FAILS TO OPEN2.5E-003ADS-SRV-CC-VALV5ADS VALVE FAILS TO OPEN2.5E-003ADS-SRV-CC-VALV5ADS VALVE FAILS TO OPEN2.5E-003ADS-SRV-CC-VALV5ADS VALVE FAILS TO OPEN2.5E-003ADS-SRV-CC-VALV5ADS VALVE FAILS TO OPEN2.5E-003ADS-SRV-CC-VALV6ADS VALVE FAILS TO OPEN2.5E-003ADS-SRV-CC-VALV7ADS VALVE FAILS TO OPEN2.5E-003ADS-SRV-CC-VALV8ADS VALVE FAILS TO OPEN2.5E-003ADS-SRV-CC-VALV8OPERATOR FAILS TO RESTORE INTRUMENT AT IN2.0E-004ADS-KHE-XM-STEMINOPERATOR FAILS TO ALIGN CCD VALVES FOR ENHANC1.0E-003ADS-KHE-XM-VIVSOPERATOR FAILS TO ALIGN CRU VALVES FOR ENHANC1.0E-003CCW-KHE-XO-ERCOROPERATOR FAILS TO OPEN9.0E-004CVS-AOV-CC-AV35VENT VALVE FAILS TO OPEN9.0E-004CVS-AOV-CC-AV35VENT VALVE FAILS TO OPEN9.0E-004CVS-AOV-CC-AV37VENT VALVE FAILS TO OPEN9.0	Event Name	Description	Probability/ F (per ye	requency ar)	Modified
ADS-SRV-CC-VALV2ADS VALVE FAILS TO OPEN2.58-003ADS-SRV-CC-VALV4ADS VALVE FAILS TO OPEN2.58-003ADS-SRV-CC-VALV5ADS VALVE FAILS TO OPEN2.58-003ADS-SRV-CC-VALV6ADS VALVE FAILS TO OPEN2.58-003ADS-SRV-CC-VALV7ADS VALVE FAILS TO OPEN2.58-003ADS-SRV-CC-VALV6ADS VALVE FAILS TO OPEN2.58-003ADS-SRV-CC-VALV6ADS VALVE FAILS TO OPEN2.58-003ADS-SRV-CC-VALV6ADS VALVE FAILS TO OPEN2.58-003ADS-SRV-CC-VALV6ADS VALVE FAILS TO OPEN2.58-003ADS-SRV-CC-VALV8ADS VALVE FAILS TO OPEN2.58-003ADS-KHE-XM-MERFOPERATOR FAILS TO ALIGN CCT STEAM LINE FOR D1.08-003ADS-KHE-XM-STMLNOPERATOR FAILS TO ALIGN CCT STEAM LINE FOR D1.08-003CCW-KHE-XO-ERROROPERATOR FAILS TO ALIGN CCM FLOW1.08-003CCW-KHE-XO-C-AV34VENT VALVE FAILS TO OPEN9.08-004CVS-AOV-CC-AV35VENT VALVE FAILS TO OPEN9.08-004CVS-AOV-CC-AV37VENT VALVE FAILS TO OPEN9.08-004 <td>ADS-SRV-CC-VALV1</td> <td>ADS VALVE FAILS TO OPEN</td> <td></td> <td>2.5E-003</td> <td></td>	ADS-SRV-CC-VALV1	ADS VALVE FAILS TO OPEN		2.5E-003	
ADS-SRV-CC-VALV3ADS VALVE FAILS TO OPEN2.5E-003ADS-SRV-CC-VALV5ADS VALVE FAILS TO OPEN2.5E-003ADS-SRV-CC-VALV6ADS VALVE FAILS TO OPEN2.5E-003ADS-SRV-CC-VALV7ADS VALVE FAILS TO OPEN2.5E-003ADS-SRV-CC-VALV8ADS VALVE FAILS TO OPEN2.5E-003ADS-SRV-CC-VALV7ADS VALVE FAILS TO OPEN2.5E-003ADS-SRV-CC-VALV8ADS VALVE FAILS TO OPEN2.5E-003ADS-TSW-TD-C125POWER TRANSFER SHITCH FAILS TO TRANSFER1.5E-003ADS-SRV-CC-VALV7ADS VALVE FAILS TO DEPRESSURIZE THE REACTOR5.0E-004ADS-XHE-XM-MDEROPERATOR FAILS TO ALIGN RCIC STEAM LINE FOR D1.0E-003AIR-XHE-NOREC-2HROPERATOR FAILS TO ALIGN RCIC VALVES FOR ENHANC1.0E-003CCW-XHE-XO-ERROROPERATOR FAILS TO OPEN9.0E-004CVS-AOV-CC-AV33VENT VALVE FAILS TO OPEN9.0E-004CVS-AOV-CC-AV34VENT VALVE FAILS TO OPEN9.0E-004CVS-AOV-CC-AV35VENT VALVE FAILS TO OPEN9.0E-004CVS-AOV-CC-AV37VENT VALVE FAILS TO OPEN9.0E-004CVS-AOV-CC-AV37VENT VALVE FAILS TO OPEN9.0E-004CVS-ADV-CC-PATTOPERATOR FAILS TO VENT CONTAINMENT1.0E-003DCP-BAT-LP-BATTADIVISION II BATTERIES FAIL1.2E-005DCP-BAT-LP-BATTBDIVISION II BATTERIES FAIL1.2E-005DCP-BAT-LP-BATTBDIVISION II BATTERIES FAIL1.2E-005DCP-BAT-LP-BATTBDIVISION II BATTERIES FAIL1.2E-005DCP-BAT-LP-BATTBDIVISION II BATTERIES FAIL1.2E-005DCP-BAT-LP-BATTB<	ADS-SRV-CC-VALV2	ADS VALVE FAILS TO OPEN		2.5E-003	
ADS-SRV-CC-VALV4ADS VALVE FAILS TO OPEN2.5E-003ADS-SRV-CC-VALV6ADS VALVE FAILS TO OPEN2.5E-003ADS-SRV-CC-VALV6ADS VALVE FAILS TO OPEN2.5E-003ADS-SRV-CC-VALV7ADS VALVE FAILS TO OPEN2.5E-003ADS-SRV-CC-VALV6ADS VALVE FAILS TO OPEN2.5E-003ADS-SRV-CC-VALV7ADS VALVE FAILS TO OPEN2.5E-003ADS-SRV-CC-VALV6ADS VALVE FAILS TO OPEN2.5E-003ADS-XHE-XM-OPEROPERATOR FAILS TO ALIGN RCTC STEAM LINE FOR D1.0E-003ADS-XHE-XM-STRUNOPERATOR FAILS TO MAINTAIN CONFICM1.0E-003AIR-XHE-NOREC-2HROPERATOR FAILS TO ALIGN CRD VALVES FOR ENHANC1.0E+000CWS-ACV-CC-AV34VENT VALVE FAILS TO OPEN9.0E-004CVS-ACV-CC-AV35VENT VALVE FAILS TO OPEN9.0E-004CVS-ACV-CC-AV36VENT VALVE FAILS TO OPEN9.0E-004CVS-ACV-CC-AV37VENT VALVE FAILS TO RECOVER9.0E-0	ADS-SRV-CC-VALV3	ADS VALVE FAILS TO OPEN		2.5E-003	
ADS-SRV-CC-VALV5ADS VALVE FAILS TO OPEN2.5E-003ADS-SRV-CC-VALV5ADS VALVE FAILS TO OPEN2.5E-003ADS-SRV-CC-VALV3ADS VALVE FAILS TO OPEN2.5E-003ADS-TSW-FT-DC125POWER TRANSFER SWITCH FAILS TO TRANSFER1.5E-003ADS-TSW-FT-DC125POWER TRANSFER SWITCH FAILS TO TRANSFER1.5E-003ADS-KHE-KM-MDEPROPERATOR FAILS TO DEPRESSURIZE THE REACTOR5.0E-004ADS-KHE-KM-MDEPROPERATOR FAILS TO ALION RCIC STEAM LINE FOR D1.0E-003CCW-KHE-KO-ERROROPERATOR FAILS TO ALION RCIC STEAM LINE FOR D1.0E-003CCW-KHE-KM-VLVSOPERATOR FAILS TO OPEN9.0E-004CVS-AOV-CC-AV34VENT VALVE FAILS TO OPEN9.0E-004CVS-AOV-CC-AV35VENT VALVE FAILS TO OPEN9.0E-004CVS-AOV-CC-AV36VENT VALVE FAILS TO OPEN9.0E-004CVS-AOV-CC-AV37VENT VALVE FAILS TO OPEN9.0E-004CVS-ADV-CC-AV37VENT VALVE FAILS TO OPEN9.0E-004CVS-ADV-CC-AV37VENT VALVE FAILS TO OPEN9.0E-004CVS-ADV-CC-AV37VENT VALVE FAILS TO OPEN9.0E-005DCP-BAT-DCF-BATTCOMMON CAUSE FAIL1.2E-005DCP-BAT-DCF-BATTDIVISION II BATTERIES FAIL1.2E-005DCP-BAT-CF-BATTDIVISION II BATTERIES FAIL1.2E-005DCP-BAT-CF-STARTDIES	ADS-SRV-CC-VALV4	ADS VALVE FAILS TO OPEN		2.5E-003	
ADS-SRV-CC-VALV6ADS VALVE FALLS TO OPEN2.5E-003ADS-SRV-CC-VALV8ADS VALVE FALLS TO OPEN2.5E-003ADS-SRV-CC-VALV8ADS VALVE FALLS TO OPEN2.5E-003ADS-XEE-MM-MDEPOPERATOR FALLS TO OPEN2.5E-003ADS-XEE-MM-MDEPOPERATOR FALLS TO DEPRESSURIZE THE REACTOR5.0E-004ADS-XEE-XM-NECC-2MTOPERATOR FALLS TO ALIGN RCIC STEAM LINE FOR D1.0E-003AIR-XEE-NOREC-2MTOPERATOR FALLS TO ALIGN CCT VALVES FOR ENHANC1.0E-003CCW-XHE-XO-CERVGNOPERATOR FALLS TO ALIGN CCT VALVES FOR ENHANC1.0E-003CCW-XHE-XO-CC-AV33VENT VALVE FALLS TO OPEN9.0E-004CVS-AOV-CC-AV35VENT VALVE FALLS TO OPEN9.0E-004CVS-AOV-CC-AV37VENT VALVE FALLS TO OPEN9.0E-004CVS-AOV-CC-AV37VENT VALVE FALLS TO OPEN9.0E-004CVS-AOV-CC-AV37VENT VALVE FALLS TO OPEN9.0E-004CVS-AOV-CC-AV37VENT VALVE FALLS TO VENT CONTAINMENT1.0E-003CCP-BAT-LP-BATTADIVISION I BATTERIES FAIL1.2E-005DCP-BAT-LP-BATTADIVISION I I BATTERIES FAIL1.2E-005DCP-BAT-LP-BATTADIVISION I I BATTERIES FAIL STO RUN6.3E-003 YES(1)DSP-DCM-CF-RUNDIESEL GENERATORS FAIL FROM COMMON CAUSE TO R4.8E-006EPS-DCM-CF-STARTDIESEL GENERATOR FAILS TO RIN6.3E-003 YES(1)EPS-DCM-FF-DGADIESEL GENERATOR FAILS TO RIN6.3E-003 YES(1)EPS-DCM-FF-DGADIESEL GENERATOR FAILS TO RINTENANCE9.0E-003EPS-DCM-FF-DGADIESEL GENERATOR FAILS TO RINT6.3E-003 YES(1)EPS-DCM-FF	ADS-SRV-CC-VALV5	ADS VALVE FAILS TO OPEN		2.5E-003	
ADS-SRV-CC-VALV7ADS VALVE FALLS TO OPEN2.5E-003ADS-SRV-CC-VALV3ADS VALVE FALLS TO OPEN2.5E-003ADS-TSW-FT-DC125POWER TRANSFER SWITCH FALLS TO TRANSFER1.5E-003ADS-XHE-XM-STMLNOPERATOR FALLS TO DEPRESSURIZE THE REACTOR5.0E-004ADS-XHE-XM-STMLNOPERATOR FALLS TO ALIGN RCIC STEAM LINE FOR D1.0E-003AIR-XHE-NOREC-2HROPERATOR FAILS TO ALIGN RCIC STEAM LINE FOR D1.0E-003CCW-XHE-XO-ERROROPERATOR FAILS TO ALIGN RCW VALVES FOR ENHANC1.0E-003CCW-XHE-XO-CC-AV35VENT VALVE FAILS TO OPEN9.0E-004CVS-AOV-CC-AV35VENT VALVE FAILS TO OPEN9.0E-004CVS-AOV-CC-AV36VENT VALVE FAILS TO OPEN9.0E-004CVS-AOV-CC-AV37VENT VALVE FAILS TO OPEN9.0E-004CVS-AAU-LCF-BATTCOMMON CAUSE FAILURE OF DIVISION 1-3 BATTERIE4.3E-008DCP-BAT-LP-BATTBDIVISION I BATTERIES FAIL1.2E-005DCP-BAT-LP-BATTBDIVISION I BATTERIES FAIL1.2E-005DCP-BAT-LP-BATTBDIVISION I LATTERIES FAIL1.2E-005DCP-BAT-LP-BATTBDIVISION I LENRATORS FAIL FROM COMMON CAUSE TO S1.9E-003PS-DCM-CF-STARTDIESEL GENREATORS FAIL FROM COMMON CAUSE TO S1.9E-003EPS-DCM-FF-DGBDIESEL GENREATOR A FAILS TO RUN6.3E-003 YES(1)EPS-DCM-FF-DGBDIESEL GENREATOR A FAILS TO RUN </td <td>ADS-SRV-CC-VALV6</td> <td>ADS VALVE FAILS TO OPEN</td> <td></td> <td>2.5E-003</td> <td></td>	ADS-SRV-CC-VALV6	ADS VALVE FAILS TO OPEN		2.5E-003	
ADS-SRV-CC-VAUV8ADS VALVE FALLS TO OPEN2.5E-003ADS-TSW-FT-DC125POWER TRANSFER SWITCH FALLS TO TRANSFER1.5E-003ADS-XHE-XM-MDEPOPERATOR FALLS TO DEPRESSURIZE THE REACTOR5.0E-004ADS-XHE-XM-NORCC-2HROPERATOR FALLS TO ALION RCIC STEAM LINE FOR1.0E-003AR-XHE-NORCC-2HROPERATOR FALLS TO ALION RCIC STEAM LINE FOR D1.0E-003CCW-XHE-XO-CERROROPERATOR FALLS TO ALION CCV FLOW1.0E-003CCW-XHE-XO-CC-AV34VENT VALVE FALLS TO ADEN9.0E-004CVS-AOV-CC-AV35VENT VALVE FALLS TO OPEN9.0E-004CVS-AOV-CC-AV36VENT VALVE FALLS TO OPEN9.0E-004CVS-AOV-CC-AV37VENT VALVE FALLS TO OPEN9.0E-004CVS-AOV-CC-AV36VENT VALVE FALLS TO OPEN9.0E-004CVS-AOV-CC-AV37VENT VALVE FALLS TO OPEN9.0E-004CVS-AOV-CC-AV35VENT VALVE FALLS TO OPEN9.0E-003CP-BAT-LP-BATTADIVISION I BATTERIES FALL1.2E-005DCP-BAT-LP-BATTADIVISION I BATTERIES FALL1.2E-005DCP-BAT-LP-BATTADIVISION I LASTORES FALL FROM COMMON CAUSE TO R4.7E-005E	ADS-SRV-CC-VALV7	ADS VALVE FAILS TO OPEN		2.5E-003	
ADS-SHE-FT-DC125POWER TRANSPER SWITCH FAILS TO TRANSFER1.5E-003ADS-XHE-XM-MDEPROPERATOR FAILS TO DEPRESURIZE THE REACTOR5.0E-004ADS-XHE-XM-STMLNOPERATOR FAILS TO ALIGN RCIC STEAM LINE FOR D1.0E-003AIR-XHE-NOREC-22ROPERATOR FAILS TO ALIGN RCIC STEAM LINE FOR D1.0E-003CCW-XHE-XM-VLVSOPERATOR FAILS TO MAINTAIN CCW FLOW1.0E-003CCW-XHE-XM-VLVSOPERATOR FAILS TO MAINTAIN CCW FLOW1.0E-003CCW-XHE-XM-VLVSOPERATOR FAILS TO OPEN9.0E-004CVS-AOV-CC-AV35VENT VALVE FAILS TO OPEN9.0E-004CVS-AOV-CC-AV36VENT VALVE FAILS TO OPEN9.0E-004CVS-AOV-CC-AV376VENT VALVE FAILS TO OPEN9.0E-004CVS-AOV-CC-AV376VENT VALVE FAILS TO OPEN9.0E-004CVS-AOV-CC-AV376VENT VALVE FAILS TO VENT CONTAINMENT1.0E-003DCP-BAT-LP-BATTADIVISION I BATTERIES FAIL1.2E-005DCP-BAT-LP-BATTBDIVISION I BATTERIES FAIL1.2E-005DCP-BAT-LP-BATTBDIVISION I 12SUC BUS FAILS FOR COMMON CAUSE TO R4.7E-005DCP-BAT-LP-BATTBDIVISION I 12SUC BUS FAILS TO RUN6.3E-003 YES(1)EPS-DCR-CF-STARTDIESEL GENERATORS FAIL FROM COMMON CAUSE TO S1.9E-003EPS-DCR-FF-DGADIESEL GENERATOR A FAILS TO RUN6.3E-003 YES(1)EPS-DCR-FF-DGBDIESEL GENERATOR A FAILS TO RUN6.3E-003 YES(1)EPS-DCR-FF-DGBDIESEL GENERATOR A FAILS TO START4.0E-003EPS-DGN-FF-DGBDIESEL GENERATOR A FAILS TO START4.0E-003EPS-PAN-FF-DGBDIESEL GENERATOR A FAILS TO RUN	ADS-SRV-CC-VALV8	ADS VALVE FAILS TO OPEN		2.5E-003	
ADS-XHE-XM-MDEFROPERATOR FAILS TO DEPRESSURIZE THE REACTOR5.0E-004ADS-XHE-XM-STMLNOPERATOR FAILS TO ALIGN RCIC STEAM LINE FOR D1.0E-003AIR-XHE-NOREC-2HROPERATOR FAILS TO ALIGN RCIC STEAM LINE FOR D1.0E-003CCW-XHE-XO-EROROPERATOR FAILS TO ALIGN CRU VALVES FOR ENHANC1.0E-003CCW-XHE-XM-VLVSOPERATOR FAILS TO ALIGN CRU VALVES FOR ENHANC1.0E-003CCW-XHE-XM-VLVSOPERATOR FAILS TO OPEN9.0E-004CVS-AOV-CC-AV35VENT VALVE FAILS TO OPEN9.0E-004CVS-AOV-CC-AV37VENT VALVE FAILS TO OPEN9.0E-004CVS-AOV-CC-AV37VENT VALVE FAILS TO OPEN9.0E-004CVS-AOV-CC-AV37VENT VALVE FAILS TO OPEN9.0E-004CVS-ACV-CC-AV37VENT VALVE FAILS TO OPEN9.0E-004CVS-ADV-CC-AV37VENT VALVE FAILS TO VENT CONTAINMENT1.0E-003CCP-BAT-LP-BATTADUVISION I BATTERIES FAIL1.2E-005DCP-BAT-LP-BATTBDIVISION I BATTERIES FAIL1.2E-005DCP-BAT-LP-BATTBDIVISION I 125VDC BUS FAILS4.0E-006EPS-DGR-CF-STARTDIESEL GENERATORS FAIL FROM COMMON CAUSE TO R4.7E-005EPS-DGR-FR-DGADIESEL GENERATOR A FAILS TO RUN6.3E-003 YES(1)EPS-DGR-FR-DGBDIESEL GENERATOR C FAILS TO START4.0E-003EPS-DGN-FS-DGADIESEL GENERATOR C FAILS TO START4.0E-003EPS-DGN-FS-DGADIESEL GENERATOR C FAILS TO RUN4.1E-003EPS-DGN-FS-DGBDIESEL GENERATOR C FAILS TO RUN4.0E-003EPS-DGN-FS-DGBDIESEL GENERATOR C FAILS TO START4.0E-003EPS-PAN-F	ADS-TSW-FT-DC125	POWER TRANSFER SWITCH FAILS TO	TRANSFER	1.5E-003	
ADS_XHE_XM_STMLNOPERATOR FAILS TO ALIGN RCIC STEAM LINE FOR D1.0E-003AIR-XHE_NOREC-2HROPERATOR FAILS TO RESTORE INSTRUMENT AIR IN2.0E-003CCW-XHE_XM-VLVSOPERATOR FAILS TO MAINTAIN CCW FLOW1.0E-003CCW-XHE_XM-VLVSOPERATOR FAILS TO MAINTAIN CCW FLOW1.0E-004CVS-AOV-CC-AV35VENT VALVE FAILS TO OPEN9.0E-004CVS-AOV-CC-AV36VENT VALVE FAILS TO OPEN9.0E-004CVS-AOV-CC-AV37VENT VALVE FAILS TO OPEN9.0E-004CVS-AOV-CC-AV36VENT VALVE FAILS TO OPEN9.0E-004CVS-AOV-CC-AV37VENT VALVE FAILS TO OPEN9.0E-004CVS-AOV-CC-AV36VENT VALVE FAILS TO OPEN9.0E-004CVS-ACC-CA-A075VENT VALVE FAILS TO OPEN9.0E-004CVS-ACL-D-BATOPERATOR FAILS TO VENT CONTAINMENT1.0E-003DCP-BAT-LP-BATBDIVISION I BATTERIES FAIL1.2E-005DCP-BAT-LP-BATBDIVISION II BATTERIES FAIL1.2E-005DCP-BAT-LP-BATTBDIVISION I I BATTERIES FAIL1.2E-005DCP-BAT-LP-BATTBDIVISION I BATTERIES FAIL FOM COMMON CAUSE TO S1.9E-005EPS-DGN-CF-STARTDIESEL GENERATORS FAIL FROM COMMON CAUSE TO S1.9E-005EPS-DCN-FR-DGADIESEL GENERATOR DE FAILS TO START4.0E-003EPS-DCN-FS-DGADIESEL GENERATOR DE FAILS TO START4.0E-003EPS-DGN-FS-DGCDIESEL GENERATOR C FAILS TO START4.0E-003EPS-PAN-CF-STARTDG A IS UNAVAILABLE BECAUSE OF MAINTENANCE9.0E-003EPS-PAN-FS-DGBDG ROOM VENTILLATION FAN FAILS TO RUN4.1E-003EPS-FAN-FR-DGC <t< td=""><td>ADS-XHE-XM-MDEPR</td><td>OPERATOR FAILS TO DEPRESSURIZE</td><td>THE REACTOR</td><td>5.0E-004</td><td></td></t<>	ADS-XHE-XM-MDEPR	OPERATOR FAILS TO DEPRESSURIZE	THE REACTOR	5.0E-004	
AIR-XHE-NOREC-2HROPERATOR FAILS TO RESTORE INSTRUMENT AIR IN2.0E-003CCW-XHE-XO-ERROROPERATOR FAILS TO MAINTAIN CCW FLOW1.0E-003CCW-XHE-XO-ERROROPERATOR FAILS TO ALIGN CRD VALVES FOR ENHANC1.0E-004CVS-AOV-CC-AV34VENT VALVE FAILS TO OPEN9.0E-004CVS-AOV-CC-AV37VENT VALVE FAILS TO OPEN9.0E-004CVS-ADTOR FAILSVENT VALVE FAILS1.0E-003DCP-BAT-LP-BATTADIVISION II BATTERIES FAIL1.2E-005DCP-BAT-LP-BATTADIVISION II BATTERIES FAIL1.2E-005DCP-BDC-LP-DIDIVISION II 125VDC BUS FAILS4.8E-006EPS-DGN-CF-RDRDIESEL GENERATOR S FAIL FROM COMMON CAUSE TO R4.7E-005EPS-DGN-FR-DGBDIESEL GENERATOR A FAILS TO RUN6.3E-003 VES(1)EPS-DGN-FR-DGBDIESEL GENERATOR C FAILS TO RUN6.3E-003 VES(1)EPS-DGN-FS-DGADIESEL GENERATOR A FAILS TO START4.0E-003EPS-DGN-FS-DGADIESEL GENERATOR C FAILS TO START4.0E-003EPS-DGN-FS-DGADIESEL GENERATOR C FAILS TO START4.0E-003EPS-DGN-FS-DGADIESEL GENERATOR C FAILS TO RUN4.1E-003EPS-FAN-CF-RUNDG ROM VENTILLATION FANS FAILS TO RUN4.1	ADS-XHE-XM-STMLN	OPERATOR FAILS TO ALIGN RCIC ST	EAM LINE FOR D	1.0E-003	
CCM-XHE-XO-ERROROPERATOR FAILS TO MAINTAIN CCW FLOW1.0E-003CRD-XHE-XM-VLVSOPERATOR FAILS TO ALIGN CRD VALVES FOR ENHANC1.0E+000CVS-AOV-CC-AV35VENT VALVE FAILS TO OPEN9.0E-004CVS-AOV-CC-AV36VENT VALVE FAILS TO OPEN9.0E-004CVS-AOV-CC-AV37VENT VALVE FAILS TO VENT CONTAINMENT1.0E-003DCP-BAT-LP-BATTADIVISION I BATTERIES FAIL1.2E-005DCP-BAT-LP-BATTBDIVISION I BATTERIES FAIL1.2E-005DCP-BAC-LP-DIDIVISION I 125VDC BUS FAILS TO COMMON CAUSE TO R4.7E-005EPS-DGN-CF-STARTDIESEL GENERATORS FAIL FROM COMMON CAUSE TO R4.7E-005EPS-DGN-FR-DGADIESEL GENERATOR S FAILS TO RUN6.3E-003YES(1)EPS-DGN-FR-DGADIESEL GENERATOR A FAILS TO RUN6.3E-003YES(1)EPS-DGN-FS-DGADIESEL GENERATOR C FAILS TO START4.0E-003EPS-DGN-FS-DGADIESEL GENERATOR C FAILS TO START4.0E-003EPS-DGN-FS-DGCDIESEL GENERATOR C FAILS TO RUN4.1E-003EPS-DGN-FS-DGCDIESEL GENERATOR C FAILS TO RUN4.1E-003EPS-DGN-FS-DGCDIESEL GENERATOR C FAILS TO RUN4.1E-003EPS-PAN-FS-DGBDG A IS UNAVAILABLE BECAUSE OF MAINTENANCE9.0E-004EPS-FAN-FF-DGC <td>AIR-XHE-NOREC-2HR</td> <td>OPERATOR FAILS TO RESTORE INSTR</td> <td>UMENT AIR IN</td> <td>2.0E-003</td> <td>YES (2)</td>	AIR-XHE-NOREC-2HR	OPERATOR FAILS TO RESTORE INSTR	UMENT AIR IN	2.0E-003	YES (2)
CRD-XHE-XM-VLVSOPERATOR FAILS TO ALIGN CRD VALVES FOR ENHANC1.0E+000CVS-AOV-CC-AV34VENT VALVE FAILS TO OPEN9.0E-004CVS-AOV-CC-AV35VENT VALVE FAILS TO OPEN9.0E-004CVS-AOV-CC-AV37VENT VALVE FAILS TO OPEN9.0E-004CVS-ACV-CC-AV37VENT VALVE FAILS TO OPEN9.0E-004CVS-XHZ-XM-VENTOPERATOR FAILS TO VENT CONTAINMENT1.0E-003DCP-BAT-CF-BATTOPERATOR FAILS TO VENT CONTAINMENT1.0E-003DCP-BAT-LP-BATTADIVISION I BATTERIES FAIL1.2E-005DCP-BAT-LP-BATTBDIVISION I I BATTERIES FAIL1.2E-005DCP-BCC-LP-DIDIVISION I 125VDC BUS FAILS4.8E-006EPS-DGN-CF-FUNDIESEL GENERATORS FAIL FROM COMMON CAUSE TO R4.7E-005EPS-DGN-FF-DGBDIESEL GENERATORS FAIL FROM COMMON CAUSE TO R4.7E-005EPS-DGN-FF-DGBDIESEL GENERATOR A FAILS TO RUN6.3E-003 YES (1)EPS-DGN-FF-DGBDIESEL GENERATOR A FAILS TO RUN6.3E-003 YES (1)EPS-DGN-FF-DGBDIESEL GENERATOR C FAILS TO START4.0E-003EPS-DGN-FS-DGBDIESEL GENERATOR C FAILS TO START4.0E-003EPS-DGN-FS-DGBDIESEL GENERATOR C FAILS TO RUN NUE TO 3.9E-005EPS-DGN-FS-DGBDIESEL GENERATOR C FAILS TO RUN NUE TO 3.9E-005EPS-DGN-FS-DGBDIESEL GENERATOR C FAILS TO START4.0E-003EPS-DGN-FS-DGBDIESEL GENERATOR C FAILS TO START4.0E-003EPS-DGN-FS-DGBDIESEL GENERATOR C FAILS TO RUN MUE TO 3.9E-005EPS-FAN-CF-RUNDG ROOM VENTILLATION FANS FAILS TO RUN 4.1E-003EPS-FAN-FR-DGBDG ROOM VENTI	CCW-XHE-XO-ERROR	OPERATOR FAILS TO MAINTAIN CCW	FLOW	1.0E-003	
CVS-ACV-CC-AV34VENT VALVE FAILS TO OPEN9.0E-004CVS-ACV-CC-AV35VENT VALVE FAILS TO OPEN9.0E-004CVS-ACV-CC-AV36VENT VALVE FAILS TO OPEN9.0E-004CVS-ACV-CC-AV37VENT VALVE FAILS TO OPEN9.0E-004CVS-ACV-CC-AV37VENT VALVE FAILS TO OPEN9.0E-004CVS-ACV-CC-AV37VENT VALVE FAILS TO VENT CONTAINMENT1.0E-003DCP-BAT-CF-BATTOPERATOR FAILS TO VENT CONTAINMENT1.0E-003DCP-BAT-LP-BATTBDIVISION I BATTERIES FAIL1.2E-005DCP-BAT-LP-BATTBDIVISION I I BATTERIES FAIL1.2E-005DCP-BAT-LP-BATTBDIVISION I I SATTERIES FAIL6.3E-003 VES(1)EPS-DGN-FR-DGADIESEL GENERATOR S FAILS TO RUN6.3E-003 VES(1)EPS-DGN-FR-DGCDIESEL GENERATOR S FAILS TO START4.0E-003EPS-DGN-FS-DGBDIESEL GENERATOR C FAILS TO START4.0E-003EPS-DGN-FS-DGCDIESEL GENERATOR C FAILS TO START4.0E-003EPS-DGN-FS-DGCDIESEL GENERATOR C FAILS TO START4.0E-003EPS-DGN-FS-DGCDIESEL GENERATOR C FAILS TO START4.0E-003EPS-CAN-FR-DGCDG C IS UNAVAILABLE BECAUSE OF MAINTENANCE9.0E-003<	CRD-XHE-XM-VLVS	OPERATOR FAILS TO ALIGN CRD VAL	VES FOR ENHANC	1.0E+000	
CVS-AOV-CC-AV35VENT VALVE FAILS TO OPEN9.0E-004CVS-AOV-CC-AV36VENT VALVE FAILS TO OPEN9.0E-004CVS-AOV-CC-AV37VENT VALVE FAILS TO OPEN9.0E-004CVS-ACV-CC-AV37VENT VALVE FAILS TO OPEN9.0E-004CVS-ACV-CC-AV37VENT VALVE FAILS TO OPEN9.0E-004CVS-ACV-CC-AV37VENT VALVE FAILS TO VENT CONTAINMENT1.0E-003DCP-BAT-CF-BATTCOMMON CAUSE FAILURE OF DIVISION 1-3 BATTERIE 4.3E-006DCP-BAT-LP-BATTBDIVISION I BATTERIES FAIL1.2E-005DCP-BAT-LP-BATTBDIVISION I 125VDC BUS FAILS4.8E-006EPS-DGN-CF-STARTDIESEL GENERATORS FAIL FROM COMMON CAUSE TO R4.7E-005EPS-DGN-CF-STARTDIESEL GENERATORS FAIL FROM COMMON CAUSE TO S1.9E-003EPS-DGN-FR-DGBDIESEL GENERATOR B FAILS TO RUN6.3E-003 YES(1)EPS-DGN-FR-DGBDIESEL GENERATOR C FAILS TO RUN6.3E-003 YES(1)EPS-DGN-FR-DGBDIESEL GENERATOR C FAILS TO START4.0E-003EPS-DGN-FS-DGBDIESEL GENERATOR C FAILS TO START4.0E-003EPS-DGN-FS-DGBDIESEL GENERATOR C FAILS TO START4.0E-003EPS-DGN-FS-DGBDIESEL GENERATOR C FAILS TO RUN TO 3.9E-005EPS-DGN-TM-DGCDG C IS UNAVAILABLE BECAUSE OF MAINTENANCE9.0E-004EPS-FAN-FS-DGBDG A IS UNAVAILABLE BECAUSE OF MAINTENANCE9.0E-003EPS-FAN-FF-DGADGA ROOM VENTILLATION FANS FAIL TO START DUE T6.2E-006EPS-FAN-FF-DGADGA ROOM VENTILLATION FANS FAILS TO RUN4.1E-003EPS-FAN-FF-DGBDGB ROOM VENTILLATION FAN FAILS TO RUN4.1E-003 <tr<< td=""><td>CVS-AOV-CC-AV34</td><td>VENT VALVE FAILS TO OPEN</td><td></td><td>9.0E-004</td><td></td></tr<<>	CVS-AOV-CC-AV34	VENT VALVE FAILS TO OPEN		9.0E-004	
CVS-AOV-CC-AV36VENT VALVE FAILS TO OPEN9.0E-004CVS-AOV-CC-AV37VENT VALVE FAILS TO OPEN9.0E-004CVS-AUE-ZM-VENTOPERATOR FAILS TO OPEN9.0E-003DCP-BAT-CF-BATTCOMMON CAUSE FAILURE OF DIVISION 1-3 BATTERIE4.3E-008DCP-BAT-LP-BATTADIVISION I BATTERIES FAIL1.2E-005DCP-BAT-LP-BATTBDIVISION I BATTERIES FAIL1.2E-005DCP-BAT-LP-BATTBDIVISION I 125VDC BUS FAILS4.8E-006EPS-DGN-CF-RUNDIESEL GENERATORS FAIL FROM COMMON CAUSE TO R4.7E-005EPS-DGN-FF-DGADIESEL GENERATOR FAILS TO RUN6.3E-003YES(1)EPS-DGN-FF-DGBDIESEL GENERATOR B FAILS TO RUN6.3E-003YES(1)EPS-DGN-FS-DGCDIESEL GENERATOR A FAILS TO START4.0E-003EPS-DGN-FS-DGCDIESEL GENERATOR C FAILS TO START4.0E-003EPS-DGN-FS-DGCDIESEL GENERATOR C FAILS TO START4.0E-003EPS-DGN-FS-DGCDIESEL GENERATOR C FAILS TO START9.0E-003EPS-DGN-FS-DGCDIESEL GENERATOR C FAILS TO START9.0E-003EPS-DGN-FS-DGCDIESEL GENERATOR C FAILS TO RUN DUE TO3.9E-005EPS-FAN-CF-RUNDG ROOM VENTILLATION FANS FAILS TO RUN4.1E-003EPS-FAN-FR-DGADGR COM VENTILLATION FANS FAILS TO RUN4.1E-003EPS-FAN-FR-DGBDGR ROM VENTILLATION FANS FAILS TO START2.0E-004EPS-FAN-FR-DGBDGR ROM VENTILLATION FAN FAILS TO START2.0E-004EPS-FAN-FR-DGCDGR ROM VENTILLATION FAN FAILS TO START2.0E-003EPS-FAN-FR-DGBDGB ROM VENTILLATION FAN FAILS TO START2.0E-00	CVS-AOV-CC-AV35	VENT VALVE FAILS TO OPEN		9.0E-004	
CVS-AOV-CC-AV37VENT VALVE FAILS TO OPEN9.0E-004CVS-XHE-XM-VENTOPERATOR FAILS TO VENT CONTAINMENT1.0E-003DCP-BAT-CF-BATTCOMMON CAUSE FAILURE OF DIVISION 1-3 BATTERIE4.3E-006DCP-BAT-LP-BATTADIVISION I BATTERIES FAIL1.2E-005DCP-BAT-LP-BATTBDIVISION II DATTERIES FAIL1.2E-006DCP-BAT-LP-BATTBDIVISION II 12SVDC BUS FAILS4.6E-006EPS-DCN-CF-RUNDIESEL GENERATORS FAIL FROM COMMON CAUSE TO R4.7E-005EPS-DCN-CF-RTATDIESEL GENERATORS FAIL FROM COMMON CAUSE TO S1.9E-005EPS-DCN-FR-DGADIESEL GENERATOR B FAILS TO RUN6.3E-003YES(1)EPS-DCN-FR-DGBDIESEL GENERATOR A FAILS TO RUN6.3E-003YES(1)EPS-DCN-FF-DGCDIESEL GENERATOR A FAILS TO RUN6.3E-003YES(1)EPS-DCN-FF-DGBDIESEL GENERATOR A FAILS TO START4.0E-003EPS-DCN-FF-DGCDIESEL GENERATOR A FAILS TO START4.0E-003EPS-DCN-FF-DGCDIESEL GENERATOR C FAILS TO START4.0E-003EPS-DCN-FF-DGCDIESEL GENERATOR C FAILS TO START4.0E-003EPS-DCN-TM-DGCDG A IS UNAVAILABLE BECAUSE OF MAINTENANCE9.0E-003EPS-FAN-CF-RUNDG ROOM VENTILLATION FANS FAILS TO RUN 4.1E-003EPS-FAN-CF-RUN 4.1E-003EPS-FAN-FF-DGADGB ROOM VENTILLATION FANS FAILS TO RUN 4.1E-003EPS-FAN-FF-DGBEPS-FAN-FF-DGBDGB ROOM VENTILLATION FAN FAILS TO RUN 4.1E-003EPS-FAN-FF-DGBEPS-FAN-FF-DGBDGB ROOM VENTILLATION FAN FAILS TO RUN 4.1E-003EPS-FAN-FF-DGBEPS-FAN-FF-DGBDGB ROOM VENTILLATION FAN FAILS	CVS-AOV-CC-AV36	VENT VALVE FAILS TO OPEN		9.0E-004	
CVS-XHE-XM-VENTOPERATOR FAILS TO VENT CONTAINMENT1.0E-003DCP-BAT-CF-BATTCOMMON CAUSE FAILURE OF DIVISION 1-3 BATTERIE4.3E-008DCP-BAT-LP-BATTADIVISION I BATTERIES FAIL1.2E-005DCP-BAT-LP-BATTBDIVISION I BATTERIES FAIL1.2E-005DCP-BCC-LP-DIDIVISION I 125VDC BUS FAILS4.8E-006EPS-DGN-CF-RUNDIESEL GENERATORS FAIL FROM COMMON CAUSE TO R4.7E-005EPS-DGN-FR-DGADIESEL GENERATOR A FAILS TO RUN6.3E-003YES (1)EPS-DGN-FR-DGBDIESEL GENERATOR B FAILS TO RUN6.3E-003YES (1)EPS-DGN-FR-DGBDIESEL GENERATOR B FAILS TO START4.0E-003EPS-DGN-FR-DGADIESEL GENERATOR B FAILS TO START4.0E-003EPS-DGN-FS-DGBDIESEL GENERATOR C FAILS TO START4.0E-003EPS-DGN-FS-DGBDIESEL GENERATOR C FAILS TO START4.0E-003EPS-DGN-FS-DGBDIESEL GENERATOR C FAILS TO START4.0E-003EPS-DGN-FS-DGCDG C IS UNAVAILABLE BECAUSE OF MAINTENANCE9.0E-003EPS-DGN-TM-DGCDG C IS UNAVAILABLE BECAUSE OF MAINTENANCE9.0E-003EPS-FAN-CF-STARTDG ROOM VENTILLATION FANS FAILS TO RUN4.1E-003EPS-FAN-FR-DGBDGE ROOM VENTILLATION FANS FAILS TO RUN4.1E-003EPS-FAN-FR-DGBDGE ROOM VENTILLATION FANS FAILS TO RUN4.1E-003EPS-FAN-FR-DGBDGE ROOM VENTILLATION FAN FAILS TO RUN4.1E-003EPS-FAN-FR-DGBDGE ROOM VENTILLATION FAN FAILS TO START8.0E-004EPS-FAN-FR-DGBDGR ROOM VENTILLATION FAN FAILS TO START8.0E-004EPS-FAN-FR-DGBDGR	CVS-AOV-CC-AV37	VENT VALVE FAILS TO OPEN		9.0E-004	
DCP-BAT-CF-BATTCOMMON CAUSE FAILURE OF DIVISION 1-3 BATTERIE4.3E-008DCP-BAT-LP-BATTADIVISION I BATTERIES FAIL1.2E-005DCP-BAT-LP-BATTBDIVISION I BATTERIES FAIL1.2E-005DCP-BCC-LP-DIDIVISION I 125VDC BUS FAILS4.8E-006EPS-DGN-CF-RUNDIESEL GENERATORS FAIL FROM COMMON CAUSE TO R4.7E-005EPS-DGN-FR-DGADIESEL GENERATORS FAIL FROM COMMON CAUSE TO S1.9E-005EPS-DGN-FR-DGBDIESEL GENERATOR A FAILS TO RUN6.3E-003 YES(1)EPS-DGN-FR-DGBDIESEL GENERATOR A FAILS TO RUN6.3E-003 YES(1)EPS-DGN-FS-DGADIESEL GENERATOR A FAILS TO START4.0E-003EPS-DGN-FS-DGBDIESEL GENERATOR A FAILS TO START4.0E-003EPS-DGN-FS-DGBDIESEL GENERATOR C FAILS TO START4.0E-003EPS-DGN-FS-DGBDIESEL GENERATOR C FAILS TO START4.0E-003EPS-DGN-FS-DGCDIESEL GENERATOR C FAILS TO START4.0E-003EPS-DGN-TM-DGADG A IS UNAVAILABLE BECAUSE OF MAINTENANCE9.0E-003EPS-FAN-CF-RUNDG ROOM VENTILLATION FANS FAILS TO RUN DUE TO3.9E-005EPS-FAN-CF-RUNDG ROOM VENTILLATION FANS FAILS TO RUN4.1E-003EPS-FAN-FR-DGBDGB ROOM VENTILLATION FANS FAILS TO RUN4.1E-003EPS-FAN-FR-DGBDGB ROOM VENTILLATION FAN FAILS TO RUN4.1E-003EPS-FAN-FR-DGBDGB ROOM VENTILL	CVS-XHE-XM-VENT	OPERATOR FAILS TO VENT CONTAINM	ENT	1.0E-003	
DCP-BAT-LP-BATTADIVISION I BATTERIES FAIL1.2E-005DCP-BAT-LP-BATTBDIVISION II BATTERIES FAIL1.2E-005DCP-BDC-LP-DIDIVISION I 125VDC BUS FAILS4.8E-006EPS-DCM-CF-RUNDIESEL GENERATORS FAIL FROM COMMON CAUSE TO R4.7E-005EPS-DGN-CF-STARTDIESEL GENERATORS FAIL FROM COMMON CAUSE TO S1.9E-005EPS-DCM-FR-DGADIESEL GENERATOR A FAILS TO RUN6.3E-003 YES(1)EPS-DCM-FR-DGBDIESEL GENERATOR A FAILS TO RUN6.3E-003 YES(1)EPS-DCM-FR-DGCDIESEL GENERATOR C FAILS TO START4.0E-003EPS-DCM-FS-DGADIESEL GENERATOR C FAILS TO START4.0E-003EPS-DCM-FS-DGBDIESEL GENERATOR C FAILS TO START4.0E-003EPS-DCM-FS-DGCDIESEL GENERATOR C FAILS TO START4.0E-003EPS-DCM-FS-DGCDIESEL GENERATOR C FAILS TO START4.0E-003EPS-DCM-FS-DGCDG C IS UNAVAILABLE BECAUSE OF MAINTENANCE9.0E-003EPS-DGN-FS-DGCDG C IS UNAVAILABLE BECAUSE OF MAINTENANCE9.0E-003EPS-FAN-CF-STARTDG ROOM VENTILLATION FANS FAILS TO RUN4.1E-003EPS-FAN-FR-DGADGA ROOM VENTILLATION FANS FAILS TO RUN4.1E-003EPS-FAN-FR-DGBDGB ROOM VENTILLATION FAN FAILS TO RUN4.1E-003EPS-FAN-FR-DGBDGB ROOM VENTILLATION FAN FAILS TO RUN4.1E-003EPS-FAN-FR-DGBDGB ROOM VENTILLATI	DCP-BAT-CF-BATT	COMMON CAUSE FAILURE OF DIVISIO	N 1-3 BATTERIE	4.3E-008	
DCP-BAT-LP-BATTBDIVISION II BATTERIES FAIL1.2E-005DCP-BDC-LP-DIDIVISION I 125VDC BUS FAILS4.6E-006EPS-DGN-CF-STARTDIESEL GENERATORS FAIL FROM COMMON CAUSE TO R4.7E-005EPS-DGN-CF-STARTDIESEL GENERATORS FAIL FROM COMMON CAUSE TO R4.7E-003EPS-DGN-FR-DGADIESEL GENERATOR A FAILS TO RUN6.3E-003 YES(1)EPS-DGN-FR-DGBDIESEL GENERATOR B FAILS TO RUN6.3E-003 YES(1)EPS-DGN-FR-DGBDIESEL GENERATOR A FAILS TO START4.0E-003EPS-DGN-FS-DGADIESEL GENERATOR C FAILS TO START4.0E-003EPS-DGN-FS-DGBDIESEL GENERATOR C FAILS TO START4.0E-003EPS-DGN-FS-DGCDIESEL GENERATOR C FAILS TO START4.0E-003EPS-DGN-FS-DGCDIESEL GENERATOR C FAILS TO START4.0E-003EPS-DGN-FS-DGCDIESEL GENERATOR C FAILS TO START9.0E-003EPS-DGN-TM-DGADG A IS UNAVAILABLE BECAUSE OF MAINTENANCE9.0E-003EPS-FAN-CF-RUNDG ROOM VENTILLATION FANS FAILS TO RUN DUE TO3.9E-005EPS-FAN-CF-STARTDG ROOM VENTILLATION FANS FAILS TO RUN4.1E-003EPS-FAN-FR-DGADGB ROOM VENTILLATION FAN FAILS TO RUN4.1E-003EPS-FAN-FR-DGBDGB ROOM VENTILLATION FAN FAILS TO START8.0E-004EPS-FAN-FS-DGBDGB ROOM VENTILLATION FAN FAILS TO START8.0E-004EPS-FAN-FS-DGBDGB ROOM VENTILLATION FAN FAILS TO START8.0E-004EPS-FAN-FS-DGBDGB ROOM VENTILLATION FAN FAILS TO START2.0E-003EPS-FAN-FS-DGBDGB ROOM VENTILLATION FAN FAILS TO START8.0E-004EPS-FAN-FS-DGBDG	DCP-BAT-LP-BATTA	DIVISION I BATTERIES FAIL		1.2E-005	
DCP-BDC-LP-DIDIVISION I 125VDC BUS FAILS4.8E-006EPS-DGN-CF-RUNDIESEL GENERATORS FAIL FROM COMMON CAUSE TO R4.7E-005EPS-DGN-CF-STARTDIESEL GENERATORS FAIL FROM COMMON CAUSE TO S1.9E-005EPS-DGN-FR-DGADIESEL GENERATOR A FAILS TO RUN6.3E-003 YES(1)EPS-DGN-FR-DGBDIESEL GENERATOR B FAILS TO RUN6.3E-003 YES(1)EPS-DGN-FR-DGCDIESEL GENERATOR A FAILS TO START4.0E-003EPS-DGN-FS-DGADIESEL GENERATOR A FAILS TO START4.0E-003EPS-DGN-FS-DGBDIESEL GENERATOR C FAILS TO START4.0E-003EPS-DGN-FS-DGCDIESEL GENERATOR C FAILS TO START4.0E-003EPS-DGN-FS-DGCDIESEL GENERATOR C FAILS TO START4.0E-003EPS-DGN-FS-DGCDIESEL GENERATOR C FAILS TO START4.0E-003EPS-DGN-TM-DGADG A IS UNAVAILABLE BECAUSE OF MAINTENANCE9.0E-003EPS-FAN-CF-RUNDG ROOM VENTILLATION FANS FAILS TO RUN DUE TO3.9E-005EPS-FAN-FR-DGADGA ROOM VENTILLATION FANS FAILS TO RUN4.1E-003EPS-FAN-FR-DGBDGB ROOM VENTILLATION FAN FAILS TO RUN4.1E-003EPS-FAN-FR-DGBDGB ROOM VENTILLATION FAN FAILS TO START8.0E-004EPS-FAN-FR-DGBDGB ROOM VENTILLATION FAN FAILS TO START2.0E-003EPS-FAN-FR-DGBDGB ROOM VENTILLATION FAN FAILS TO START8.0E-004EPS-FAN-FR-DGBDGB ROOM VENTILLATION FAN FAILS TO RUN4.1E-003EPS-FAN-FR-DGBDGB ROOM VENTILLATION FAN FAILS TO START8.0E-004EPS-FAN-FR-DGCDGC ROOM VENTILLATION FAN FAILS TO START8.0E-004EPS-FAN-FR-DGB <td>DCP-BAT-LP-BATTB</td> <td>DIVISION II BATTERIES FAIL</td> <td></td> <td>1.2E-005</td> <td></td>	DCP-BAT-LP-BATTB	DIVISION II BATTERIES FAIL		1.2E-005	
EPS-DGN-CF-RUNDIESEL GENERATORS FAIL FROM COMMON CAUSE TO R4.7E-005EPS-DGN-CF-STARTDIESEL GENERATORS FAIL FROM COMMON CAUSE TO S1.9E-005EPS-DGN-FR-DGADIESEL GENERATOR A FAILS TO RUN6.3E-003 YES(1)EPS-DGN-FR-DGBDIESEL GENERATOR C FAILS TO RUN6.3E-003 YES(1)EPS-DGN-FR-DGCDIESEL GENERATOR C FAILS TO RUN6.3E-003 YES(1)EPS-DGN-FS-DGADIESEL GENERATOR C FAILS TO RUN6.3E-003 YES(1)EPS-DGN-FS-DGADIESEL GENERATOR C FAILS TO START4.0E-003EPS-DGN-FS-DGBDIESEL GENERATOR B FAILS TO START4.0E-003EPS-DGN-FS-DGBDIESEL GENERATOR C FAILS TO START4.0E-003EPS-DGN-FS-DGCDG A IS UNAVAILABLE BECAUSE OF MAINTENANCE9.0E-003EPS-FAN-CF-RUNDG ROOM VENTILLATION FANS FAILS TO RUN DUE TO3.9E-005EPS-FAN-CF-STARTDG ROOM VENTILLATION FANS FAILS TO RUN4.1E-003EPS-FAN-FR-DGBDGB ROOM VENTILLATION FANS FAILS TO RUN4.1E-003EPS-FAN-FR-DGBDGB ROOM VENTILLATION FAN FAILS TO START2.0E-004EPS-FAN-FS-DGBDGB ROOM VENTILLATION FAN FAILS TO START2.0E-003EPS-FAN-FS-DGBDGB ROOM VENTILLATION FAN FAILS TO START2.0E-003EPS-FAN-FS-DGBDGB ROOM VENTILLATION FAN FAILS TO RUN4.1E-003EPS-FAN-FS-DGBDGB ROOM VENTILLATION FAN FAILS TO START2.0E-004EPS-FAN-FS-DGBDGB ROOM VENTILLATION FAN FAILS TO START2.0E-003EPS-FAN-FS-DGBDGB ROOM VENTILLATION FAN FAILS TO START3.0E-001EPS-FAN-FS-DGBDGB ROOM VENTILLATION FAN FAILS TO START3.0E-001 <td>DCP-BDC-LP-DI</td> <td>DIVISION I 125VDC BUS FAILS</td> <td></td> <td>4.8E-006</td> <td></td>	DCP-BDC-LP-DI	DIVISION I 125VDC BUS FAILS		4.8E-006	
EPS-DGN-CF-STARTDIESEL GENERATORS FAIL FROM COMMON CAUSE TO S1.9E-005EPS-DGN-FR-DGADIESEL GENERATOR A FAILS TO RUN6.3E-003YES (1)EPS-DGN-FR-DGBDIESEL GENERATOR B FAILS TO RUN6.3E-003YES (1)EPS-DGN-FR-DGCDIESEL GENERATOR C FAILS TO RUN6.3E-003YES (1)EPS-DGN-FS-DGADIESEL GENERATOR C FAILS TO RUN6.3E-003YES (1)EPS-DGN-FS-DGBDIESEL GENERATOR C FAILS TO START4.0E-003EPS-DGN-FS-DGBDIESEL GENERATOR C FAILS TO START4.0E-003EPS-DGN-FS-DGCDIESEL GENERATOR C FAILS TO START4.0E-003EPS-DGN-FS-DGCDIESEL GENERATOR C FAILS TO START4.0E-003EPS-DGN-FS-DGCDIESEL GENERATOR C FAILS TO START4.0E-003EPS-DGN-TM-DGADG A IS UNAVAILABLE BECAUSE OF MAINTENANCE9.0E-003EPS-FAN-CF-RUNDG ROOM VENTILLATION FANS FAILS TO RUN DUE TO3.9E-005EPS-FAN-FR-DGADGA ROOM VENTILLATION FANS FAILS TO RUN4.1E-003EPS-FAN-FR-DGBDGB ROOM VENTILLATION FAN FAILS TO RUN4.1E-003EPS-FAN-FR-DGBDGB ROOM VENTILLATION FAN FAILS TO RUN4.1E-003EPS-FAN-FR-DGBDGB ROOM VENTILLATION FAN FAILS TO START2.0E-004EPS-FAN-FR-DGADGA ROOM VENTILLATION FAN FAILS TO START2.0E-003EPS-FAN-FR-DGBDGB ROOM VENTILLATION FAN FAILS TO START	EPS-DGN-CF-RUN	DIESEL GENERATORS FAIL FROM COM	MON CAUSE TO R	4.7E-005	
EPS-DGN-FR-DGADIESEL GENERATOR A FAILS TO RUN6.3E-003YES (1)EPS-DGN-FR-DGBDIESEL GENERATOR B FAILS TO RUN6.3E-003YES (1)EPS-DGN-FR-DGCDIESEL GENERATOR C FAILS TO RUN6.3E-003YES (1)EPS-DGN-FS-DGADIESEL GENERATOR C FAILS TO START4.0E-003EPS-DGN-FS-DGBDIESEL GENERATOR C FAILS TO START4.0E-003EPS-DGN-FS-DGCDIESEL GENERATOR C FAILS TO START4.0E-003EPS-DGN-FS-DGCDIESEL GENERATOR C FAILS TO START4.0E-003EPS-DGN-TM-DGADG A IS UNAVAILABLE BECAUSE OF MAINTENANCE9.0E-003EPS-DGN-TM-DGCDG C IS UNAVAILABLE BECAUSE OF MAINTENANCE9.0E-003EPS-FAN-CF-RUNDG ROOM VENTILLATION FANS FAILS TO RUN DUE TO3.9E-005EPS-FAN-FR-DGADGA ROOM VENTILLATION FANS FAILS TO RUN4.1E-003EPS-FAN-FR-DGADGB ROOM VENTILLATION FAN FAILS TO RUN4.1E-003EPS-FAN-FR-DGBDGB ROOM VENTILLATION FAN FAILS TO START8.0E-004EPS-FAN-FR-DGBDGB ROOM VENTILLATION FAN FAILS TO START8.0E-004EPS-FAN-FR-DGADGA ROOM VENTILLATION FAN FAILS TO START8.0E-004EPS-FAN-FR-DGBDGB ROOM VENTILLATION FAN FAILS TO START1.0E-003EPS-FAN-FR-DGADGA ROOM VENTILLATION FAN FAILS TO START1.0E-003EPS-FAN-FR-DGBDGB ROOM VENTILLATION FAN FAILS TO START2.0E-003EPS-FAN-FR-DGBDGB ROOM VENTILLATION FAN FAILS TO START2.0E-003EPS-FAN-FR-DGBDGB ROOM VENTILLATION FAN FAILS TO START2.0E-003EPS-FAN-FR-DGBDGB ROOM VENTILLATION FAN FAILS TO START <td< td=""><td>EPS-DGN-CF-START</td><td>DIESEL GENERATORS FAIL FROM COM</td><td>MON CAUSE TO S</td><td>1.9E-005</td><td></td></td<>	EPS-DGN-CF-START	DIESEL GENERATORS FAIL FROM COM	MON CAUSE TO S	1.9E-005	
EPS-DGN-FR-DGBDIESEL GENERATOR B FAILS TO RUN6.3E-003YES(1)EPS-DGN-FR-DGCDIESEL GENERATOR C FAILS TO RUN6.3E-003YES(1)EPS-DGN-FS-DGADIESEL GENERATOR A FAILS TO START4.0E-003EPS-DGN-FS-DGBDIESEL GENERATOR B FAILS TO START4.0E-003EPS-DGN-FS-DGCDIESEL GENERATOR C FAILS TO START4.0E-003EPS-DGN-FS-DGCDIESEL GENERATOR C FAILS TO START4.0E-003EPS-DGN-TM-DGADG A IS UNAVAILABLE BECAUSE OF MAINTENANCE9.0E-003EPS-FAN-TM-DGCDG C IS UNAVAILABLE BECAUSE OF MAINTENANCE9.0E-003EPS-FAN-CF-RUNDG ROOM VENTILLATION FANS FAILS TO RUN DUE TO3.9E-005EPS-FAN-CF-STARTDG ROOM VENTILLATION FANS FAILS TO RUN4.1E-003EPS-FAN-FR-DGBDGB ROOM VENTILLATION FANS FAILS TO RUN4.1E-003EPS-FAN-FR-DGBDGB ROOM VENTILLATION FAN FAILS TO START8.0E-004EPS-FAN-FR-DGBDGB ROOM VENTILLATION FAN FAILS TO START8.0E-004EPS-PAN-FR-DGADGA ROOM VENTILLATION FAN FAILS TO START8.0E-004EPS-FAN-FR-DGADGA ROOM VENTILLATION FAN FAILS TO START2.0E-003EPS-PAN-FR-DGADGA ROOM VENTILLATION FAN FAILS TO START2.0E-003EPS-PAN-FR-DGADGA ROOM VENTILLATION FAN FAILS TO START8.0E-004EPS-PAN-FR-DGADGA ROOM VENTILLATION FAN FAILS TO START8.0E-004EPS-PAN-CF-ALLDG ROOM VENTILLATION DAMPERS FAIL DUE TO CCF1.5E-006EPS-XHE-XL-NR0HOPERATOR FAILS TO RECOVER EMERGENCY DIESEL IN8.4E-001EPS-XHE-XL-NR0HOPERATOR FAILS TO RECOVER EMERGENCY DIESEL I	EPS-DGN-FR-DGA	DIESEL GENERATOR A FAILS TO RUN		6.3E-003	YES(1)
EPS-DGN-FR-DGCDIESEL GENERATOR C FAILS TO RUN6.3E-003YES(1)EPS-DGN-FS-DGADIESEL GENERATOR A FAILS TO START4.0E-003EPS-DGN-FS-DGBDIESEL GENERATOR B FAILS TO START4.0E-003EPS-DGN-FS-DGCDIESEL GENERATOR C FAILS TO START4.0E-003EPS-DGN-TM-DGADG A IS UNAVAILABLE BECAUSE OF MAINTENANCE9.0E-003EPS-DGN-TM-DGCDG C IS UNAVAILABLE BECAUSE OF MAINTENANCE9.0E-003EPS-FAN-CF-RUNDG ROOM VENTILLATION FANS FAILS TO RUN DUE TO3.9E-005EPS-FAN-CF-STARTDG ROOM VENTILLATION FANS FAILS TO RUN4.1E-003EPS-FAN-FR-DGBDGB ROOM VENTILLATION FAN FAILS TO RUN4.1E-003EPS-FAN-FR-DGBDGB ROOM VENTILLATION FAN FAILS TO RUN4.1E-003EPS-FAN-FR-DGCDGC ROOM VENTILLATION FAN FAILS TO START8.0E-004EPS-FAN-FR-DGBDGB ROOM VENTILLATION FAN FAILS TO START8.0E-004EPS-FAN-FR-DGADGA ROOM VENTILLATION FAN FAILS TO START1.0E-003EPS-FAN-FR-DGBDGB ROOM VENTILLATION FAN FAILS TO START2.0E-003EPS-FAN-FR-DGADGA ROOM VENTILLATION FAN FAILS TO START8.0E-004EPS-FAN-FR-DGBDGB ROOM VENTILLATION FAN FAILS TO START1.0E-003EPS-FAN-CF-ALLDG ROOM VENTILLATION DAMPERS FAIL DUE TO CCF1.5E-006EPS-XHE-XE-DGXTIOPERATOR FAILS TO RECOVER EMERGENCY DIESEL IN8.4E-001EPS-XHE-XL-NR04HOPERATOR FAILS TO RECOVER EMERGENCY DIESEL IN5.0E-001EPS-XHE-XL-NR08HOPERATOR FAILS TO RECOVER EMERGENCY DIESEL IN9.2E-001EPS-XHE-XL-NR08HOPERATOR FAILS TO RECOVER EMER	EPS-DGN-FR-DGB	DIESEL GENERATOR B FAILS TO RUN		6.3E-003	YES(1)
EPS-DGN-FS-DGADIESEL GENERATOR A FAILS TO START4.0E-003EPS-DGN-FS-DGBDIESEL GENERATOR B FAILS TO START4.0E-003EPS-DGN-FS-DGCDIESEL GENERATOR C FAILS TO START4.0E-003EPS-DGN-TM-DGADG A IS UNAVAILABLE BECAUSE OF MAINTENANCE9.0E-003EPS-DGN-TM-DGCDG C IS UNAVAILABLE BECAUSE OF MAINTENANCE9.0E-003EPS-FAN-CF-RUNDG ROOM VENTILLATION FANS FAILS TO RUN DUE TO3.9E-005EPS-FAN-CF-STARTDG ROOM VENTILLATION FANS FAILS TO RUN4.1E-003EPS-FAN-FR-DGBDGB ROOM VENTILLATION FAN FAILS TO START8.0E-004EPS-FAN-FR-DGBDGB ROOM VENTILLATION FAN FAILS TO START2.0E-003EPS-FAN-FS-DGBDGB ROOM VENTILLATION FAN FAILS TO START2.0E-003EPS-FAN-FS-DGBDGB ROOM VENTILLATION DAMPERS FAIL DUE TO CCF1.5E-006EPS-SHD-CF-ALLDG ROOM VENTILLATION DAMPERS FAIL DUE TO CCF1.5E-006EPS-XHE-XE-DGXTIOPERATOR FAILS TO RECOVER EMERGENCY DIESEL IN8.4E-001EPS-XHE-XL-NR04HOPERATOR FAILS TO RECOVER EMERGENCY DIESEL IN2.5E-001EPS-XHE-XL-NR08HOPERATOR FAILS TO RECOVER EMERGENCY DIESEL IN2.5E-001EPS-XHE-XL-NR08HOPERATOR FAILS TO RECOVER EMERGENCY DIESEL IN9.2E-001FW2-XHE-XM-ERROROPERATOR FAILS TO ALIGN FIRE	EPS-DGN-FR-DGC	DIESEL GENERATOR C FAILS TO RUN	,	6.3E-003	YES(1)
EPS-DGN-FS-DGBDIESEL GENERATOR B FAILS TO START4.0E-003EPS-DGN-FS-DGCDIESEL GENERATOR C FAILS TO START4.0E-003EPS-DGN-TM-DGADG A IS UNAVAILABLE BECAUSE OF MAINTENANCE9.0E-003EPS-DGN-TM-DGCDG C IS UNAVAILABLE BECAUSE OF MAINTENANCE9.0E-003EPS-FAN-CF-RUNDG ROOM VENTILLATION FANS FAILS TO RUN DUE TO3.9E-005EPS-FAN-CF-STARTDG ROOM VENTILLATION FANS FAILS TO RUN DUE TO3.9E-006EPS-FAN-FR-DGADGA ROOM VENTILLATION FANS FAILS TO RUN4.1E-003EPS-FAN-FR-DGBDGB ROOM VENTILLATION FANS FAILS TO RUN4.1E-003EPS-FAN-FR-DGBDGB ROOM VENTILLATION FAN FAILS TO RUN4.1E-003EPS-FAN-FR-DGBDGB ROOM VENTILLATION FAN FAILS TO RUN4.1E-003EPS-FAN-FR-DGCDGC ROOM VENTILLATION FAN FAILS TO START8.0E-004EPS-FAN-FR-DGBDGB ROOM VENTILLATION FAN FAILS TO START2.0E-003EPS-FAN-TM-DGADGA ROOM VENTILLATION DAMPERS FAIL DUE TO CCF1.5E-006EPS-SAHE-XE-DGXTIOPERATOR FAILS TO RECOVER EMERGENCY DIESEL1.3E-001EPS-XHE-XL-NR01HOPERATOR FAILS TO RECOVER EMERGENCY DIESEL1.3E-001EPS-XHE-XL-NR04HOPERATOR FAILS TO RECOVER EMERGENCY DIESEL IN5.0E-001EPS-XHE-XL-NR08HOPERATOR FAILS TO RECOVER EMERGENCY DIESEL IN2.5E-001EPS-XHE-XL-NR08HOPERATOR FAILS TO RECOVER EMERGENCY DIESEL IN2.5E-001EPS-XHE-XL-NR08HOPERATOR FAILS TO RECOVER EMERGENCY DIESEL IN9.2E-001FW2-XHE-XM-ERROROPERATOR FAILS TO ALIGN FIREWATER1.0E-003	EPS-DGN-FS-DGA	DIESEL GENERATOR A FAILS TO STA	RT	4.0E-003	
EPS-DGN-FS-DGCDIESEL GENERATOR C FAILS TO START4.0E-003EPS-DGN-TM-DGADG A IS UNAVAILABLE BECAUSE OF MAINTENANCE9.0E-003EPS-DGN-TM-DGCDG C IS UNAVAILABLE BECAUSE OF MAINTENANCE9.0E-003EPS-FAN-CF-RUNDG ROOM VENTILLATION FANS FAILS TO RUN DUE TO3.9E-005EPS-FAN-CF-STARTDG ROOM VENTILLATION FANS FAILS TO RUN6.2E-006EPS-FAN-FR-DGADGA ROOM VENTILLATION FANS FAILS TO RUN4.1E-003EPS-FAN-FR-DGBDGB ROOM VENTILLATION FANS FAILS TO RUN4.1E-003EPS-FAN-FR-DGBDGB ROOM VENTILLATION FAN FAILS TO RUN4.1E-003EPS-FAN-FR-DGCDGC ROOM VENTILLATION FAN FAILS TO RUN4.1E-003EPS-FAN-FR-DGBDGB ROOM VENTILLATION FAN FAILS TO START8.0E-004EPS-FAN-FS-DGBDGB ROOM VENTILLATION FAN FAILS TO START2.0E-003EPS-FAN-TM-DGADGA ROOM VENTILLATION FAN FAILS TO START1.3E-001EPS-FAN-TM-DGADGA ROOM VENTILLATION DAMPERS FAIL DUE TO CCF1.5E-006EPS-S-XHE-XL-NR01HOPERATOR FAILS TO RECOVER EMERGENCY DIESEL1.3E-001EPS-XHE-XL-NR04HOPERATOR FAILS TO RECOVER EMERGENCY DIESEL IN5.0E-001EPS-XHE-XL-NR08HOPERATOR FAILS TO RECOVER EMERGENCY DIESEL IN5.0E-001EPS-XHE-XL-NR08HOPERATOR FAILS TO RECOVER EMERGENCY DIESEL IN2.5E-001FW2-XHE-XM-ERROROPERATOR FAILS TO RECOVER EMERGENCY DIESEL IN9.2E-001FW2-XHE-XM-ERROROPERATOR FAILS TO ALIGN FIREWATER1.0E-003	EPS-DGN-FS-DGB	DIESEL GENERATOR B FAILS TO STA	RT	4.0E-003	
EPS-DGN-TM-DGADG A IS UNAVAILABLE BECAUSE OF MAINTENANCE9.0E-003EPS-DGN-TM-DGCDG C IS UNAVAILABLE BECAUSE OF MAINTENANCE9.0E-003EPS-FAN-CF-RUNDG ROOM VENTILLATION FANS FAILS TO RUN DUE TO3.9E-005EPS-FAN-CF-STARTDG ROOM VENTILLATION FANS FAIL TO START DUE T6.2E-006EPS-FAN-FR-DGADGA ROOM VENTILLATION FANS FAILS TO RUN4.1E-003EPS-FAN-FR-DGBDGB ROOM VENTILLATION FANS FAILS TO RUN4.1E-003EPS-FAN-FR-DGCDGC ROOM VENTILLATION FAN FAILS TO RUN4.1E-003EPS-FAN-FS-DGBDGB ROOM VENTILLATION FAN FAILS TO START8.0E-004EPS-FAN-TM-DGADGA ROOM VENTILLATION FAN FAILS TO START2.0E-003EPS-FAN-TM-DGADGA ROOM VENTILLATION DAMPERS FAIL DUE TO CCF1.5E-006EPS-S-FAN-TM-DGADG ROOM VENTILLATION DAMPERS FAIL DUE TO CCF1.5E-006EPS-S-ND-CF-ALLDG ROOM VENTILLATION DAMPERS FAIL DUE TO CCF1.5E-006EPS-XHE-XL-NR01HOPERATORS FAILS TO RECOVER EMERGENCY DIESEL1.3E-001EPS-XHE-XL-NR04HOPERATOR FAILS TO RECOVER EMERGENCY DIESEL IN5.0E-001EPS-XHE-XL-NR08HOPERATOR FAILS TO RECOVER EMERGENCY DIESEL IN2.5E-001EPS-XHE-XL-NR30MOPERATOR FAILS TO RECOVER EMERGENCY DIESEL IN9.2E-001FW2-XHE-XM-ERROROPERATOR FAILS TO ALIGN FIREWATER1.0E-003	EPS-DGN-FS-DGC	DIESEL GENERATOR C FAILS TO STA	RT	4.0E-003	
EPS-DGN-TM-DGCDG C IS UNAVAILABLE BECAUSE OF MAINTENANCE9.0E-003EPS-FAN-CF-RUNDG ROOM VENTILLATION FANS FAILS TO RUN DUE TO3.9E-005EPS-FAN-CF-STARTDG ROOM VENTILLATION FANS FAIL TO START DUE T6.2E-006EPS-FAN-FR-DGADGA ROOM VENTILLATION FANS FAILS TO RUN4.1E-003EPS-FAN-FR-DGBDGB ROOM VENTILLATION FANS FAILS TO RUN4.1E-003EPS-FAN-FR-DGCDGC ROOM VENTILLATION FAN FAILS TO RUN4.1E-003EPS-FAN-FS-DGBDGB ROOM VENTILLATION FAN FAILS TO START8.0E-004EPS-FAN-TM-DGADGA ROOM VENTILLATION FAN FAILS TO START2.0E-003EPS-FAN-TM-DGADGA ROOM VENTILLATION FAN FAILS TO START2.0E-003EPS-FAN-TM-DGADGA ROOM VENTILLATION DAMPERS FAIL DUE TO CCF1.5E-006EPS-SHE-XE-DGXTIOPERATORS FAIL TO CROSS-TIE HPCS DIESEL1.3E-001EPS-XHE-XL-NR01HOPERATOR FAILS TO RECOVER EMERGENCY DIESEL IN8.4E-001EPS-XHE-XL-NR08HOPERATOR FAILS TO RECOVER EMERGENCY DIESEL IN5.0E-001EPS-XHE-XL-NR08HOPERATOR FAILS TO RECOVER EMERGENCY DIESEL IN2.5E-001EPS-XHE-XL-NR30MOPERATOR FAILS TO RECOVER EMERGENCY DIESEL IN9.2E-001FW2-XHE-XM-ERROROPERATOR FAILS TO ALIGN FIREWATER1.0E-003	EPS-DGN-TM-DGA	DG A IS UNAVAILABLE BECAUSE OF	MAINTENANCE	9.0E-003	
EPS-FAN-CF-RUNDG ROOM VENTILLATION FANS FAILS TO RUN DUE TO3.9E-005EPS-FAN-CF-STARTDG ROOM VENTILLATION FANS FAIL TO START DUE T6.2E-006EPS-FAN-FR-DGADGA ROOM VENTILLATION FANS FAILS TO RUN4.1E-003EPS-FAN-FR-DGBDGB ROOM VENTILLATION FANS FAILS TO RUN4.1E-003EPS-FAN-FR-DGCDGC ROOM VENTILLATION FAN FAILS TO RUN4.1E-003EPS-FAN-FS-DGBDGB ROOM VENTILLATION FAN FAILS TO RUN4.1E-003EPS-FAN-FS-DGBDGB ROOM VENTILLATION FAN FAILS TO START8.0E-004EPS-FAN-TM-DGADGA ROOM VENTILLATION FAN FAILS TO START2.0E-003EPS-PND-CF-ALLDG ROOM VENTILLATION DAMPERS FAIL DUE TO CCF1.5E-006EPS-XHE-XE-DGXTIOPERATORS FAIL TO CROSS-TIE HPCS DIESEL1.3E-001EPS-XHE-XL-NR01HOPERATOR FAILS TO RECOVER EMERGENCY DIESEL IN8.4E-001EPS-XHE-XL-NR04HOPERATOR FAILS TO RECOVER EMERGENCY DIESEL IN5.0E-001EPS-XHE-XL-NR08HOPERATOR FAILS TO RECOVER EMERGENCY DIESEL IN2.5E-001EPS-XHE-XL-NR30MOPERATOR FAILS TO RECOVER EMERGENCY DIESEL IN9.2E-001FW2-XHE-XM-ERROROPERATOR FAILS TO ALIGN FIREWATER1.0E-003	EPS-DGN-TM-DGC	DG C IS UNAVAILABLE BECAUSE OF	MAINTENANCE	9.0E-003	
EPS-FAN-CF-STARTDG ROOM VENTILLATION FANS FAIL TO START DUE T6.2E-006EPS-FAN-FR-DGADGA ROOM VENTILLATION FANS FAILS TO RUN4.1E-003EPS-FAN-FR-DGBDGB ROOM VENTILLATION FANS FAILS TO RUN4.1E-003EPS-FAN-FR-DGCDGC ROOM VENTILLATION FAN FAILS TO RUN4.1E-003EPS-FAN-FS-DGBDGB ROOM VENTILLATION FAN FAILS TO START8.0E-004EPS-FAN-TM-DGADGA ROOM VENTILLATION FAN FAILS TO START2.0E-003EPS-PND-CF-ALLDG ROOM VENTILLATION DAMPERS FAIL DUE TO CCF1.5E-006EPS-XHE-XE-DGXTIOPERATORS FAIL TO CROSS-TIE HPCS DIESEL1.3E-001EPS-XHE-XL-NR01HOPERATOR FAILS TO RECOVER EMERGENCY DIESEL IN8.4E-001EPS-XHE-XL-NR04HOPERATOR FAILS TO RECOVER EMERGENCY DIESEL IN5.0E-001EPS-XHE-XL-NR08HOPERATOR FAILS TO RECOVER EMERGENCY DIESEL IN2.5E-001EPS-XHE-XL-NR30MOPERATOR FAILS TO RECOVER EMERGENCY DIESEL IN9.2E-001FW2-XHE-XM-ERROROPERATOR FAILS TO ALIGN FIREWATER1.0E-003	EPS-FAN-CF-RUN	DG ROOM VENTILLATION FANS FAILS	TO RUN DUE TO	3.9E-005	
EPS-FAN-FR-DGADGA ROOM VENTILLATION FAN FAILS TO RUN4.1E-003EPS-FAN-FR-DGBDGB ROOM VENTILLATION FANS FAILS TO RUN4.1E-003EPS-FAN-FR-DGCDGC ROOM VENTILLATION FAN FAILS TO RUN4.1E-003EPS-FAN-FS-DGBDGB ROOM VENTILLATION FAN FAILS TO START8.0E-004EPS-FAN-TM-DGADGA ROOM VENTILLATION FAN FAILS TO START2.0E-003EPS-FAN-TM-DGADGA ROOM VENTILLATION DAMPERS FAIL DUE TO CCF1.5E-006EPS-PND-CF-ALLDG ROOM VENTILLATION DAMPERS FAIL DUE TO CCF1.3E-001EPS-XHE-XE-DGXTIOPERATORS FAIL TO CROSS-TIE HPCS DIESEL1.3E-001EPS-XHE-XL-NR01HOPERATOR FAILS TO RECOVER EMERGENCY DIESEL IN8.4E-001EPS-XHE-XL-NR04HOPERATOR FAILS TO RECOVER EMERGENCY DIESEL IN5.0E-001EPS-XHE-XL-NR08HOPERATOR FAILS TO RECOVER EMERGENCY DIESEL IN2.5E-001EPS-XHE-XL-NR30MOPERATOR FAILS TO RECOVER EMERGENCY DIESEL IN9.2E-001FW2-XHE-XM-ERROROPERATOR FAILS TO ALIGN FIREWATER1.0E-003	EPS-FAN-CF-START	DG ROOM VENTILLATION FANS FAIL	TO START DUE T	6.2E-006	
EPS-FAN-FR-DGBDGB ROOM VENTILLATION FANS FAILS TO RUN4.1E-003EPS-FAN-FR-DGCDGC ROOM VENTILLATION FAN FAILS TO RUN4.1E-003EPS-FAN-FS-DGBDGB ROOM VENTILLATION FAN FAILS TO START8.0E-004EPS-FAN-TM-DGADGA ROOM VENTILLATION FAN FAILS TO START2.0E-003EPS-PND-CF-ALLDG ROOM VENTILLATION DAMPERS FAIL DUE TO CCF1.5E-006EPS-XHE-XE-DGXTIOPERATORS FAIL TO CROSS-TIE HPCS DIESEL1.3E-001EPS-XHE-XL-NR01HOPERATOR FAILS TO RECOVER EMERGENCY DIESEL IN8.4E-001EPS-XHE-XL-NR04HOPERATOR FAILS TO RECOVER EMERGENCY DIESEL IN5.0E-001EPS-XHE-XL-NR08HOPERATOR FAILS TO RECOVER EMERGENCY DIESEL IN2.5E-001EPS-XHE-XL-NR30MOPERATOR FAILS TO RECOVER EMERGENCY DIESEL IN9.2E-001FW2-XHE-XM-ERROROPERATOR FAILS TO ALIGN FIREWATER1.0E-003	EPS-FAN-FR-DGA	DGA ROOM VENTILLATION FAN FAILS	TO RUN	4.1E-003	
EPS-FAN-FR-DGCDGC ROOM VENTILLATION FAN FAILS TO RUN4.1E-003EPS-FAN-FS-DGBDGB ROOM VENTILLATION FAN FAILS TO START8.0E-004EPS-FAN-TM-DGADGA ROOM VENTILLATION FAN FAILS TO START2.0E-003EPS-PND-CF-ALLDG ROOM VENTILLATION DAMPERS FAIL DUE TO CCF1.5E-006EPS-XHE-XE-DGXTIOPERATORS FAIL TO CROSS-TIE HPCS DIESEL1.3E-001EPS-XHE-XL-NR01HOPERATOR FAILS TO RECOVER EMERGENCY DIESEL IN8.4E-001EPS-XHE-XL-NR04HOPERATOR FAILS TO RECOVER EMERGENCY DIESEL IN5.0E-001EPS-XHE-XL-NR08HOPERATOR FAILS TO RECOVER EMERGENCY DIESEL IN2.5E-001EPS-XHE-XL-NR30MOPERATOR FAILS TO RECOVER EMERGENCY DIESEL IN9.2E-001FW2-XHE-XM-ERROROPERATOR FAILS TO ALIGN FIREWATER1.0E-003	EPS-FAN-FR-DGB	DGB ROOM VENTILLATION FANS FAIL	S TO RUN	4.1E-003	
EPS-FAN-FS-DGBDGB ROOM VENTILLATION FAN FAILS TO START8.0E-004EPS-FAN-TM-DGADGA ROOM VENTILLATION FAN FAILS TO START2.0E-003EPS-PND-CF-ALLDG ROOM VENTILLATION DAMPERS FAIL DUE TO CCF1.5E-006EPS-XHE-XE-DGXTIOPERATORS FAIL TO CROSS-TIE HPCS DIESEL1.3E-001EPS-XHE-XL-NR01HOPERATOR FAILS TO RECOVER EMERGENCY DIESEL IN8.4E-001EPS-XHE-XL-NR04HOPERATOR FAILS TO RECOVER EMERGENCY DIESEL IN5.0E-001EPS-XHE-XL-NR08HOPERATOR FAILS TO RECOVER EMERGENCY DIESEL IN2.5E-001EPS-XHE-XL-NR30MOPERATOR FAILS TO RECOVER EMERGENCY DIESEL IN9.2E-001FW2-XHE-XM-ERROROPERATOR FAILS TO ALIGN FIREWATER1.0E-003	EPS-FAN-FR-DGC	DGC ROOM VENTILLATION FAN FAILS	TO RUN	4.1E-003	
EPS-FAN-TM-DGADGA ROOM VENTILLATION FAN FAILS TO START2.0E-003EPS-PND-CF-ALLDG ROOM VENTILLATION DAMPERS FAIL DUE TO CCF1.5E-006EPS-XHE-XE-DGXTIOPERATORS FAIL TO CROSS-TIE HPCS DIESEL1.3E-001EPS-XHE-XL-NR01HOPERATOR FAILS TO RECOVER EMERGENCY DIESEL IN8.4E-001EPS-XHE-XL-NR04HOPERATOR FAILS TO RECOVER EMERGENCY DIESEL IN5.0E-001EPS-XHE-XL-NR08HOPERATOR FAILS TO RECOVER EMERGENCY DIESEL IN2.5E-001EPS-XHE-XL-NR30MOPERATOR FAILS TO RECOVER EMERGENCY DIESEL IN9.2E-001FW2-XHE-XM-ERROROPERATOR FAILS TO ALIGN FIREWATER1.0E-003	EPS-FAN-FS-DGB	DGB ROOM VENTILLATION FAN FAILS	TO START	8.0E-004	
EPS-PND-CF-ALLDG ROOM VENTILLATION DAMPERS FAIL DUE TO CCF1.5E-006EPS-XHE-XE-DGXTIOPERATORS FAIL TO CROSS-TIE HPCS DIESEL1.3E-001EPS-XHE-XL-NR01HOPERATOR FAILS TO RECOVER EMERGENCY DIESEL IN8.4E-001EPS-XHE-XL-NR04HOPERATOR FAILS TO RECOVER EMERGENCY DIESEL IN5.0E-001EPS-XHE-XL-NR08HOPERATOR FAILS TO RECOVER EMERGENCY DIESEL IN2.5E-001EPS-XHE-XL-NR30MOPERATOR FAILS TO RECOVER EMERGENCY DIESEL IN9.2E-001FW2-XHE-XM-ERROROPERATOR FAILS TO ALIGN FIREWATER1.0E-003	EPS-FAN-TM-DGA	DGA ROOM VENTILLATION FAN FAILS	TO START	2.0E-003	
EPS-XHE-XE-DGXTIOPERATORS FAIL TO CROSS-TIE HPCS DIESEL1.3E-001EPS-XHE-XL-NR01HOPERATOR FAILS TO RECOVER EMERGENCY DIESEL IN8.4E-001EPS-XHE-XL-NR04HOPERATOR FAILS TO RECOVER EMERGENCY DIESEL IN5.0E-001EPS-XHE-XL-NR08HOPERATOR FAILS TO RECOVER EMERGENCY DIESEL IN2.5E-001EPS-XHE-XL-NR30MOPERATOR FAILS TO RECOVER EMERGENCY DIESEL IN9.2E-001FW2-XHE-XM-ERROROPERATOR FAILS TO ALIGN FIREWATER1.0E-003	EPS-PND-CF-ALL	DG ROOM VENTILLATION DAMPERS FA	IL DUE TO CCF	1.5E-006	
EPS-XHE-XL-NR01HOPERATOR FAILS TO RECOVER EMERGENCY DIESEL IN8.4E-001EPS-XHE-XL-NR04HOPERATOR FAILS TO RECOVER EMERGENCY DIESEL IN5.0E-001EPS-XHE-XL-NR08HOPERATOR FAILS TO RECOVER EMERGENCY DIESEL IN2.5E-001EPS-XHE-XL-NR30MOPERATOR FAILS TO RECOVER EMERGENCY DIESEL IN9.2E-001FW2-XHE-XM-ERROROPERATOR FAILS TO ALIGN FIREWATER1.0E-003	EPS-XHE-XE-DGXTI	OPERATORS FAIL TO CROSS-TIE HPC	S DIESEL	1.3E-001	
EPS-XHE-XL-NR04HOPERATOR FAILS TO RECOVER EMERGENCY DIESEL IN5.0E-001EPS-XHE-XL-NR08HOPERATOR FAILS TO RECOVER EMERGENCY DIESEL IN2.5E-001EPS-XHE-XL-NR30MOPERATOR FAILS TO RECOVER EMERGENCY DIESEL IN9.2E-001FW2-XHE-XM-ERROROPERATOR FAILS TO ALIGN FIREWATER1.0E-003	EPS-XHE-XL-NR01H	OPERATOR FAILS TO RECOVER EMERG	ENCY DIESEL IN	8.4E-001	
EPS-XHE-XL-NR08HOPERATOR FAILS TO RECOVER EMERGENCY DIESEL IN2.5E-001EPS-XHE-XL-NR30MOPERATOR FAILS TO RECOVER EMERGENCY DIESEL IN9.2E-001FW2-XHE-XM-ERROROPERATOR FAILS TO ALIGN FIREWATER1.0E-003	EPS-XHE-XL-NR04H	OPERATOR FAILS TO RECOVER EMERG	ENCY DIESEL IN	5.0E-001	
EPS-XHE-XL-NR30MOPERATOR FAILS TO RECOVER EMERGENCY DIESEL IN9.2E-001FW2-XHE-XM-ERROROPERATOR FAILS TO ALIGN FIREWATER1.0E-003	EPS-XHE-XL-NR08H	OPERATOR FAILS TO RECOVER EMERG	ENCY DIESEL IN	2.5E-001	
FW2-XHE-XM-ERROR OPERATOR FAILS TO ALIGN FIREWATER 1.0E-003	EPS-XHE-XL-NR30M	OPERATOR FAILS TO RECOVER EMERG	ENCY DIESEL IN	9.2E-001	
	FW2-XHE-XM-ERROR	OPERATOR FAILS TO ALIGN FIREWAT	ER	1.0E-003	

 Table 4. Definitions and probabilities for modified and dominant basic events.

NOTES:

Base case values modified to reflect actual diesel generator run times.
 Base case values modified to reflect short term, long term non-recovery modeling assumptions. (See Appendix D)
 Values selected to simulate loss of onsite electric power.

Table 4. (Co	ontinued)	Definitions and	probabilities	for modified	and	dominant	basic	events.
	/							

Event Name	Description	Probability/ Frequenc (per year)	cy Modified
Event Name HCS-MDP-FR-HPCS HCS-MDP-FS-HPCS HCS-MDP-TM-TRAIN HCS-MOV-CC-INJEC HCS-MOV-FT-SUCTR HCS-XHE-XO-ERROR HCS-XHE-XO-ERROR HCS-XHE-XO-ERROR HCS-XHE-XL-NR04H OEP-XHE-XL-NR04H OF-XHE-XL-NR04H OF-XHE-XL-NR04H NCI-TDP-FS-RSTRT RCI-TDP-FS-RSTRT RCI-TDP-FS-RSTRT RCI-XHE-XL-RSTRT RCI-XHE-XL-RSTRT RCI-XHE-XL-RTAIN RCI-XHE-XL-START RCI-XHE-XL-START RCI-XHE-XL-START RCI-XHE-XD-ERROR RHR-MDP-FS-PUMPA RHR-MDP-FS-PUMPA RHR-MDP-FS-PUMPB RHR-MDP-TM-TRNA RHR-MDP-TM-TRNA RHR-MDP-TM-TRNB RHR-MOV-CC-F003A PHP-MOV-CC-F003A	Description HPCS PUMP FAILS TO RUN HPCS PUMP FAILS TO START HPCI TRAIN IS UNAVAILABLE BECAU HPCS SUCTION TRANSFER FAILS OPERATOR FAILS TO START/CONTROL OPERATOR FAILS TO START/CONTROL OPERATOR FAILS TO RECOVER OFFSI OPERATOR FAILS TO ALIGN ALTERNA OPERATOR FAILS TO CLOSE TWO SRVS FAIL TO CLOSE TWO SRVS FAIL TO CLOSE THREE OR MORE SRVS FAIL TO CLOS RCIC INJECTION VALVE CAUSES FAI RESTART OF RCIC IS REQUIRED RCIC PUMP FAILS TO RESTART GIVEN STA RCIC PUMP FAILS TO RECOVER RCIC OPERATOR FAILS TO RUN RHR PUMP A FAILS TO RUN RHR PUMP A FAILS TO START RHR TRAIN A IS UNAVAILABLE BECA RHR TRAIN A IS UNAVAILABLE BECA RHR TRAIN A IS UNAVAILABLE BECA RHR TRAIN B IS UNAVAILABLE BECA	Probability/ Frequence (per year) 5.2E-00 1.2E-00 SE OF MAINTENA 7.0E-00 PEN 1.0E-01 6.0E-01 1.0E-01 6.0E-01 1.0E-01 6.0E-01 1.0E-01 6.0E-01 1.0E-01 6.0E-01 1.0E-01 6.0E-01 1.0E-01 1.0E-0	Cy Modified 04 03 03 03 04 03 03 04 03 04 03 01 02 YES (2) 04 YES (2) 04 YES (2) 03 03 03 03 03 03 04 YES (2) 03 03 03 03 04 03 03 03 04 03 03 03 04 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03
RHR-MOV-CC-F003B RHR-MOV-OO-BYPSA RHR-STR-CF-SPOOL RHR-XHE-XM-ERROR RHR-XHE-XR-TRNA RHR-XHE-XR-TRNB RPS-SYS-FC-CRD	KHK HIX B DISCHARGE MOV F003A F RHR LOOP A HEAT EXCHANGER BYPAS RHR LOOP B HEAT EXCHANGER BYPAS ECCS SUPPRESSION POOL STRAINERS OPERATOR FAILS TO START/CONTROL RHR TRAIN A NOT RESTORED AFTER RHR TRAIN B NOT RESTORED AFTER CONTROL ROD DRIVE MECHANICAL FA	AILS TO OPEN 1.0E-01 S VALVE FAILS 1.0E-01 S VALVES FAIL 1.0E-01 FAIL FROM COM 5.6E-01 RHR 5.0E-01 MAINTENANCE 1.0E-01 JLURE 2.5E-01	03 03 08 04 03 03 03 07

NOTES:

Base case values modified to reflect actual diesel generator run times.
 Base case values modified to reflect short term, long term non-recovery modeling assumptions. (See Appendix D)

3. Values selected to simulate loss of onsite electric power.

Event Name	Description	Probability/ Frequency (per year)	Modified
RPS-SYS-FC-HCU RPS-SYS-FC-PSOVS RPS-SYS-FC-RELAY RRS-CRB-CC-PUMP1 RRS-CRB-CC-PUMP2 SDC-LTERM-NOREC SLC-CKV-CC-F006 SLC-CKV-CC-F007 SLC-CKV-CC-F222 SLC-MDP-TM-TRNB SLC-XHE-XM-ERROR SLC-XHE-XM-ERROR SLC-XHE-XR-SLCS SSW-MDP-FS-PUMPB SSW-MDP-FS-PUMPB SSW-MDP-FS-PUMPB SSW-MDP-FS-PUMPB SSW-MDP-FS-PUMPB SSW-MDP-TM-TRNA SSW-MDP-TM-TRNA SSW-MOV-CC-F001B SSW-MOV-CC-F014A SSW-MOV-CC-F014B SSW-MOV-CC-F018B SSW-MOV-CC-F018B SSW-MOV-CC-F068A SSW-MOV-CC-F068B SSW-MOV-CC-F068B	HCU COMPONENTS FAIL HCU SCRAM PILOT SOVS FAIL TRIP SYSTEM RELAYS FAIL RECIRC PUMP 1 FIELD BREAKER FAI OPERATOR FAILS TO RECOVER SDC INJECTION CHECK VALVE F006 SLC INJECTION CHECK VALVE F007 SLC INJECTION CHECK VALVE F007 SLC INJECTION CHECK VALVE F222 SLC PUMP TRAIN B IS UNAVAILABLI OPERATOR FAILS START/CONTROL SI OPERATOR FAILS TO RESTORE SLCS SSW PUMP B FAILS TO RESTORE SLCS SSW PUMP B FAILS TO START SSW PUMP A FAILS TO START SSW PUMP A FAILS TO START SSW PUMP A IS UNAVAILABLE BECAU SSW PUMP A IS UNAVAILABLE BECAU SSW PUMP B DISCHARGE MOV F001B SSW PUMP B RECIRC MOV F006B FAI RHR HTX SSW SUPPLY VALVE F014A RHR HTX SSW SUPPLY VALVE F014A RHR HTX SSW OUTLET ISOLATION VI RHR HTX SSW OUTLET ISOLATION VI SSW TRAIN B NOT RESTORED AFTER	1.1E-007 1.7E-006 3.8E-007 1.5E-003 ILS TO OPEN 1.5E-003 IN THE LONG-TER 1.6E-002 FAILS TO OPEN 1.0E-004 FAILS TO OPEN 1.0E-004 FAILS TO OPEN 1.0E-004 FAILS TO OPEN 1.0E-003 LC 1.0E-003 LC 1.0E-003 JSE OF MAINTENA 1.0E-003 JSE OF MAINTENA 2.0E-002 JSE OF MAINTENA 2.0E-002 JSE OF MAINTENA 2.0E-003 LS TO OPEN 1.0E-003 STAILS TO OPEN 1.0E-003 ILS TO OPEN 1.0E-003 FAILS TO OPEN 1.0E-003 ILS TO OPEN 1.0E-003 ILS TO OPEN 1.0E-003 ILS TO OPEN 1.0E-003 ILS TO OPEN 1.0E-003 LV F068A FAILS 1.0E-003 LV F068B FAILS 1.0E-003 MAINTENANCE 1.0E-003	
IE-HCS-V IE-LCS-V IE-LLOCA IE-LOOP IE-MLOCA IE-RHR-V-A IE-RHR-V-B IE-RHR-V-C IE-RHR-V-C IE-RHR-V-S IE-SLOCA IE-TDCB IE-TRANS IE-TSWS	HPCS ISOLATION VALVE 13-21 0LPCS ISOLATION VALVE 13-21 0LARGE LOCA INITIATORLOSS OF OFFSITE POWERMEDIUM LOCA INITIATORRCIC ISOLATION VALVE 13-21 0LPCI LOOP A ISOLATION VALVELPCI LOOP B ISOLATION VALVELPCI LOOP C ISOLATION VALVESHUTDOWN COOLING ISOLATION VSMALL LOCA INITIATING EVENTLOSS OF VITAL DC BUSTRANSIENT INITIATORTOTAL LOSS OF SERVICE WATER	5.7E-007 +0.0E+000 FALSE 5.7E-007 +0.0E+000 FALSE 3.0E-005 +0.0E+000 FALSE 3.3E-002 1.0E+000 FALSE 4.0E-005 +0.0E+000 FALSE 5.7E-007 +0.0E+000 FALSE 5.7E-007 +0.0E+000 FALSE 5.7E-007 +0.0E+000 FALSE 5.7E-007 +0.0E+000 FALSE 5.7E-007 +0.0E+000 FALSE 4.0E-004 +0.0E+000 FALSE 3.0E-001 +0.0E+000 FALSE 4.0E-004 +0.0E+000 FALSE	YES (3) YES (3)
ZV-LOOP-EW-LAMBDA ZV-LOOP-GR-LAMBDA ZV-LOOP-PC-LAMBDA ZV-LOOP-SC-LAMBDA ZV-LOOP-SW-LAMBDA	EXTREME WEATHER RELATED LOSS GRID RELATED LOSS OF OFFSITE PLANT CENTERED LOSS OF OFFSI SWITCHYARD CENTERED LOSS OF SEVERE WEATHER RELATED LOSS	2.3E-003 +0.0E+000 1.7E-002 +0.0E+000 2.4E-003 +0.0E+000 3.7E-003 1.0E+000 3.0E-003 +0.0E+000	YES (3) YES (3) YES (3) YES (3) YES (3)

Table 4. (Continued) Definitions and probabilities for modified and dominant basic events.

NOTES:

Base case values modified to reflect actual diesel generator run times.
 Base case values modified to reflect short term, long term non-recovery modeling assumptions. (See Appendix D)
 Values selected to simulate loss of onsite electric power.

Appendix A

Sequence of Key Events

April 24, 2003

- 09:48:34 500 kV Breaker J5204 Disconnected J5205 closes (due to wind) causing a line-toground fault.
- 09:48:34 ST21 Lockout Trip, Breakers J5208 and J1652 Open, ST21 Lost. Breakers J2425, J2420 Open. Franklin 500 kV Line De-energized. Breakers J2240, 2244 Open. Baxter-Wilson 500 kV Line De-energized. West Bus Lockout. Breakers J5228, J5240, J5216 Open.
- 09:48:34 Load rejection relay actuates, Turbine Control Valve Fast Closure, Automatic Reactor Protection System trip.
- 09:48:34 Condensate Booster Pump C, Condensate Pumps B and C trip.
- 09:48:37 Division II EDG start sequence initiated.
- 09:48:37 Division III EDG start sequence initiated.
- 09:48:38 Turbine trip, Turbine stop valve closure.
- 09:48:41 Unit 2 Instrument Air Compressor trip.
- 09:48:42 Safety/Relief Valve auto actuation (2 S/RVs open for approximately 1 minute and begin to cycle to maintain pressure control)
- 09:48:46 Condensate Booster Pump A trip.
- 09:48:50 Condensate Booster Pump B trip.
- 09:48:53 Manual Reactor Scram, Mode switch placed in Shutdown Mode.
- 09:49:15 Main Steam Line Isolation Valves close.
- 09:49:20 Condensate Pump A trip.
- 09:49:47 Reactor Feedwater Pumps A,B trip.
- 09:49:47 Main Generator lockout relay actuated (Volts/Hertz ratio)
- 09:49:48 Main Generator output breaker opens. Generator is off-line and East 500 kV bus deenergized.
- 09:49:49 Breaker J2425 auto-closes. Franklin 500 kV line re-energizes.
- 09:49:51 Breaker J2240 auto-closes. Baxter-Wilson 500 kV line re-energizes.
- 09:49:53 Division I EDG start sequence initiated.
- 09:50:05 Service Air and Instrument Air auto cross-connect at ~90 psig.

- 09:56:02 RPV Level 2 reached.
- 09:56:07 High Pressure Core Spray (HPCS) and Reactor Core Isolation Cooling (RCIC) systems auto-start.
- 09:58:40 HPCS pump secured by control room operator.
- 09:58:xx Control room operators establish and maintain RPV pressure and level via manual operation of S/RVs and RCIC.
- 09:59:41 Unit 1 Instrument Air Compressor auto-start.
- 10:18:29 Unit 1 Instrument Air Compressor trip (loss of seal air pressure).
- 10:20:51 Control room operators start Suppression Pool Cooling using Residual Heat Removal (RHR) System A.
- 10:25:28 Control room operators start Suppression Pool Cooling using RHR System B.
- 10:25:xx Unit 1 Instrument Air Compressor restarted and secured several times in attempt to provide temporary control air. Instrument air header pressure not restored.
- 10:58:xx Offsite Power restored to ST21.
- 11:08:xx Abnormal sounds and vibration reported by eyewitnesses near the Unit 1 Instrument Air Compressor.
- 11:45:xx Unit 2 Instrument Air Compressor started by manually adjusting fittings and regulators.
- 11:50:xx Attempts to restore Unit 1 Instrument Air Compressor suspended.
- 11:51:xx Unit 2 Instrument Air Compressor restores header air pressure.
- 14:38:xx Condensate Pump A restarted.
- 14:53:xx Power restored to Division III ESF Bus from offsite power. Division III EDG secured.
- 15:30:xx Condensate Booster Pump C restarted.
- 15:37:xx Power restored to Division II ESF Bus from offsite power. Division II EDG secured.
- 16:00:xxPower restored to Division I ESF Bus from offsite power. Division I EDG secured.17:00:xxFeedwater Control System placed on start-up water level control.
- 22:02:xx Spent Fuel Pool Cooling restored.
- 23:25:xx Main Steam Isolation Valves re-opened. Unable to recover Main Condenser due to inoperable (tagged out) mechanical vacuum pump.

April 25, 2003

05:15:xx RHR System B started in Shutdown Cooling Mode.

06:35:00 Reactor plant in Mode 4. Reactor plant temperature < 200 °F.

Appendix B

Event Tree Model

Showing Dominant Sequences

Figure B-1 - Grand Gulf 1 Loss of Offsite Power Event Tree

Figure B-2 - Grand Gulf 1 Open Relief Valve Event Tree

Figure B-3 - Grand Gulf 1 Station Blackout Event Tree

Figure B-4 - Grand Gulf 1 Station Blackout Event Tree

Appendix C

Fault Tree Models

Showing Changes

Figure C-1 Modifications to the Base Case CR1 Fault Tree

CVS OR CONTAINMENT (SUPPRESSION POOL) VENTING
air-xhe-norec-2hr BE OPERATOR FAILS TO RESTORE INSTRUMENT AIR IN 2HR.
CVS-aov-cc-av34 BE VENT VALVE FAILS TO OPEN
CVS-aov-cc-av35 BE VENT VALVE FAILS TO OPEN
CVS-aov-cc-av36 BE VENT VALVE FAILS TO OPEN
CVS-aov-cc-av37 BE VENT VALVE FAILS TO OPEN
Cvs-xhe-xm-vent BE OPERATOR FAILS TO VENT CONTAINMENT
🖻 🙈 CVS-1-OR — VENT VALVE POWER SUPPLIES ARE UNAVAILABLE
A DIV-1-AC TRAN DIVISION I AC POWER IS UNAVAILABLE
A DIV-1-DC TRAN DIVISION I 125 VDC POWER IS UNAVAILABLE
A DIV-2-AC TRAN DIVISION II AC POWER IS UNAVAILABLE
▲ DIV-2-DC_TRAN_DIVISION II 125 VDC POWER IS UNAVAILABLE

Figure C-2 Modifications to the Base Case CVS Fault Tree

•

Appendix D

Human Reliability Analysis

SPAR Model Human Error Worksheet (Page 1 of 3)

Plant: Grand Gulf Unit 1 Event Name: AIR-XHE-NOREC-2HR

 Task Error Description:
 Operator fails to recover Instrument Air to allow Containment Venting and enhanced CRD flow over the long term following the success of HPCS and RCIC but failure of

Suppression Pool Cooling mode of RHR..

If Yes, Use Table 1 below to evaluate the PSFs for the Diagnosis portion of the task before going to Table 2. If No, go directly to Table 2.

 Table 1. Diagnosis worksheet.

		Multiplier for	If non-nominal PSF levels are selected, please note specific reasons in this column
PSFs	PSF Levels	Diagnosis	
1. Available	Inadequate	1.0a	Indications on Instrument Air system status
Time	Barely adequate < 20 m	10	exist in the Control Room. The diagnosis of inadequate air pressure would take place after
	Nominal $\approx 30 \text{ m}$	1	verifying that other ESF features are
	Extra > 60 m	0.1 🗸	operating. Suppression pool cooling would not be entered until pool temperatures
	Expansive > 24 h	0.01	reached specific limits.
2. Stress	Extreme	5	Failure of Suppression Pool Cooling mode of
	High	2	RHR would be the first significant ESF
	Nominal	1 🗸	failure.
3.Complexity	Highly	5	Diagnosis and restoration, or crosstie of Air
	Moderately	2	Compressors is clearly an operation that is
	Nominal	1 🗸	done during maintenance activities.
4. Experience	Low	10	Diagnosis and restoration, or crosstie of Air
/Training	Nominal	1 🗸	Compressors is clearly an operation that is
	High	0.5	done during maintenance activities.
5. Procedures	Not available	50	Diagnosis and restoration, or crosstie of Air
	Available, but poor	5	Compressors is clearly an operation that is
	Nominal	1 🗸	done during maintenance activities.
	Diagnostic/symptom oriented	0.5	
6.Ergonomics	Missing/Misleading	50	Control room indication and alarms exist.
	Poor	10	
	Nominal	1 🗸	
	Good	0.5	
7. Fitness for	Unfit	1.0a	
Duty	Degraded Fitness	5	
	Nominal	1 🗸	
8. Work	Poor	2	
Processes	Nominal	1 🗸	
	Good	0.5	

PSFs	PSF Levels	Multiplier for Action	If non-nominal PSF levels are selected, please note specific reasons in column
1. Available	Inadequate	1.0a	Successful operation of HPCS and RCIC
Time	Time available \approx time required	10	provides several hours to carry out the
	Nominal	1 🗸	recovery - as compared to situation where they both fail early
	Available > 5x time required	0.1	they both fair early.
	Available > 50x time required	0.01	
2. Stress	Extreme	5	This would not be a normal or routine
	High	2 🗸	restoration of Instrument Air.
	Nominal	1	
3. Complexity	Highly	5	Diagnosis and restoration, or crosstie of Air
	Moderately	2	Compressors is clearly an operation that is
	Nominal	1 🗸	done during maintenance activities.
4. Experience/	Low	3	Diagnosis and restoration, or crosstie of Air
Training	Nominal	11	Compressors is clearly an operation that is
	High	0.5	done during maintenance activities.
5. Procedures	Not available	50	Diagnosis and restoration, or crosstie of Air
	Available, but poor	5	Compressors is clearly an operation that is
	Nominal	11	done during maintenance activities.
6. Ergonomics	Missing/Misleading	50	
	Poor	10	
	Nominal	11	
	Good	0.5	
7. Fitness for	Unfit	1.0a	
Duty	Degraded Fitness	5	
	Nominal	14	
8. Work	Poor	2	Pre-positioned equipment (fittings and hoses)
Processes	Nominal	1	existed to facilitate cross-connection.
	Good	0.5 🖌	

SPAR Model Human Error Worksheet (Page 2 of 3) Table 2. Action worksheet.

a. Task failure probability is 1.0 regardless of other PSFs.

Та	able 3. Ta	ask failure	probability	without formal	dependence	worksheet.
		,			1	

Task Portion	Nom. Prob.	Time	Stress	Compl.	Exper./ Train.	Proced.	Ergon.	Fitness	Work Process	Prob.
Diag.	1.0E-2	x 0.1	x 1.0	x 1.0	x 1.0	x 1.0	x 1.0	x 1.0	x 1.0	1.0E-3

Action	1.0E-3	x 1.0	x 2.0	x 1.0	x 0.5	1.0E-3				
Total										2.0E-3

SPAR Model Human Error Worksheet (Page 3 of 3)

For all tasks, except the first task in the sequence, use the table and formulae below to calculate the Task Failure Probability With Formal Dependence.

				eneg contaition		1
Condition Number	Crew (same or different)	Location (same or different)	Time (close in time or not close in time)	Cues (additional or not additional)	Dependency	Number of Human Action Failures Rule
1	S	s	с	_	complete	If this error is the 3rd error in
2	S	S	nc	na	high	the sequence, then the
3	S	s	nc	a	moderate	dependency is at least
4	S	d	с	_	high	moderate.
5	S	d	nc	na	moderate	If this error is the 4th error in
6	S	d	nc	a	low	the sequence, then the
7	d	s	с	_	moderate	dependency is at least high.
8	d	S	nc	na	low	This rule may be ignored only if
9	d	s	nc	a	low	there is compelling evidence for
10	d	d	с	_	moderate	less dependence with the
11	d	d	nc	na	low	previous tasks.
12	d	d	nc	a	low	
13 🗸					zero	

Table 4.	Dependency	condition	worksheet.
	Dependency	condition	WOLKSHEEL

Using P = Task Failure Probability Without Formal Dependence (calculated on page 2):

For Complete Dependence the probability of failure = 1.0For High Dependence the probability of failure = (1 + P)/2For Moderate Dependence the probability of failure = (1 + 6P)/7For Low Dependence the probability of failure = (1 + 19P)/20 \checkmark For Zero Dependence the probability of failure = P

SPAR Model Human Error Worksheet (Page 1 of 3)

 Plant:
 Grand Gulf Unit 1
 Event Names:
 ACP-XHE-NOREC-30M, OEP-XHE-NOREC-1H

 Task Error Description:
 Operator fails to recover AC Power to de-energized plant buses given that power is available on offsite grid.

Does this task contain a significant amount of diagnosis activity ? YES _____ NO _____. .Condition of de-energized plant buses is obvious.

If Yes, Use Table 1 below to evaluate the PSFs for the Diagnosis portion of the task before going to Table 2. If No, go directly to Table 2.

Table 1. Diagnosis worksheet.

		Multiplier	If non-nominal PSF levels are selected. please
		for	note specific reasons in this column
PSFs	PSF Levels	Diagnosis	
1. Available	Inadequate	1.0a	
Time	Barely adequate < 20 m	10	
	Nominal $\approx 30 \text{ m}$	1]
	Extra > 60 m	0.1]
	Expansive > 24 h	0.01	
2. Stress	Extreme	5	
	High	2]
	Nominal	1	
3. Complexity	Highly	5	
	Moderately	2	
	Nominal	1	
4. Experience/	Low	10	
Training	Nominal	1	
	High	0.5	
5. Procedures	Not available	50	
	Available, but poor	5	
	Nominal	1	
	Diagnostic/symptom oriented	0.5	
6. Ergonomics	Missing/Misleading	50	
	Poor	10]
	Nominal	1	
	Good	0.5	
7. Fitness for	Unfit	1.0a	
Duty	Degraded Fitness	5]
	Nominal	1	
8. Work	Poor	2	
Processes	Nominal	1]
	Good	0.5	

SPAR Model Human Error Worksheet (Page 2 of 3)

PSFs	PSF Levels	Multiplier for Action	If non-nominal PSF levels are selected, please note specific reasons in this column
1. Available	Inadequate	1.0a	This HEP is for scenarios involving Station
Time	Time available \approx time required	10 🗸	Blackout with stuck open S/RVs. In such
	Nominal	1	scenarios core damage can occur in the
	Available > 5x time required	0.1	available is nominally the required time.
	Available > 50x time required	0.01	
2. Stress	Extreme	5	Given local blackout of plant buses stress
	High	2 🗸	levels would be higher than nominal.
	Nominal	1	
3. Complexity	Highly	5	Restoration of in-house loads from offsite
	Moderately	2	sources would be covered by standard
	Nominal	1 🗸	operating procedures.
4. Experience/ Training	Low	3	Restoration of in-house loads from offsite
	Nominal	11	sources would be covered by standard
	High	0.5	operating procedures.
5. Procedures	Not available	50	Restoration of in-house loads from offsite
	Available, but poor	5	sources would be covered by standard
	Nominal	11	operating procedures.
6. Ergonomics	Missing/Misleading	50	
	Poor	10	
	Nominal	11	
	Good	0.5	
7. Fitness for	Unfit	1.0a	
Duty	Degraded Fitness	5	
	Nominal	11	
8. Work	Poor	2	Restoration of in-house loads from offsite
Processes	Nominal	1 🗸	sources would be covered by standard
	Good	0.5	operating procedures.

Table 2. Action worksheet.

a. Task failure probability is 1.0 regardless of other PSFs.

Task Portion	Nom. Prob.	Time	Stress	Compl.	Exper./ Train.	Proced.	Ergon.	Fitness	Work Process	Prob.
Diag.										N/A
Action	1.0E-3	x 10	x 2.0	x 1.0	x 1.0	x 1.0	x 1.0	x 1.0	x 0.5	2.0E-2
Total										2.0E-2

SPAR Model Human Error Worksheet (Page 3 of 3)

For all tasks, except the first task in the sequence, use the table and formulae below to calculate the Task Failure Probability With Formal Dependence. Recovery of electrical power on plant buses would be first task.

1		140	le 1. Depend	ency condition	i worksheet.	
Condition Number	Crew (same or different)	Location (same or different)	Time (close in time or not close in time)	Cues (additional or not additional)	Dependency	Number of Human Action Failures Rule
1	S	S	с	_	complete	If this error is the 3rd error in
2	S	S	nc	na	high	the sequence, then the
3	S	S	nc	a	moderate	dependency is at least
4	S	d	с	_	high	moderate.
5	S	d	nc	na	moderate	If this error is the 4th error in
6	S	d	nc	a	low	the sequence, then the
7	d	S	с	_	moderate	dependency is at least high.
8	d	S	nc	na	low	This rule may be ignored only if
9	d	S	nc	a	low	there is compelling evidence for
10	d	d	с	_	moderate	less dependence with the
11	d	d	nc	na	low	previous tasks.
12	d	d	nc	a	low	
13 🗸					zero	

Table 4. Dependency condition worksheet

Using P = Task Failure Probability Without Formal Dependence (calculated on page 2):

For Complete Dependence the probability of failure = 1.0For High Dependence the probability of failure = (1 + P)/2For Moderate Dependence the probability of failure = (1 + 6P)/7For Low Dependence the probability of failure = (1 + 19P)/20 \checkmark For Zero Dependence the probability of failure = P SPAR Model Human Error Worksheet (Page 1 of 3)

Plant:Grand Gulf Unit 1Event Names:OEP-XHE-NOREC-2H,OEP-XHE-NOREC-4H,OEP-XHE-NOREC-8H,OEP-XHE-NOREC-10H,OEP-XHE-NOREC-12HTask

Error Description:	Operator fails to recover AC Power over the long term to de-energized plant buses					
given that power is available on offsite grid.						

Does this task contain a significant amount of diagnosis activity ? YES NO 🗸 Condition of de-energized plant buses is obvious.

If Yes, Use Table 1 below to evaluate the PSFs for the Diagnosis portion of the task before going to

Table 2. If No, go directly to Table 2.

Table 1. Diagnosis worksheet.

		Multiplier	If non-nominal PSF levels are selected, please
DOD		for	note specific reasons in this column
PSFs	PSF Levels	Diagnosis	
I. Available	Inadequate	1.0a	_
Time	Barely adequate < 20 m	10	_
	Nominal $\approx 30 \text{ m}$	1	
	Extra > 60 m	0.1	
	Expansive > 24 h	0.01	
2. Stress	Extreme	5	
	High	2	
	Nominal	1	
3. Complexity	Highly	5	
	Moderately	2	
	Nominal	1	
4. Experience/	Low	10	
Training	Nominal	1	
	High	0.5	
5. Procedures	Not available	50	
	Available, but poor	5	
	Nominal	1	
	Diagnostic/symptom oriented	0.5	
6. Ergonomics	Missing/Misleading	50	
	Poor	10	
	Nominal	1	
	Good	0.5	
7. Fitness for	Unfit	1.0a	
Duty	Degraded Fitness	5	
	Nominal	1	
8. Work	Poor	2	
Processes	Nominal	1	
	Good	0.5	

PSFs	PSF Levels	Multiplier for Action	If non-nominal PSF levels are selected, please note specific reasons in this column
1. Available	Inadequate	1.0a	The specific scenarios involved for these
Time	Time available \approx time required	10	HEPs are failures to restore power in time to
	Nominal	1	prevent suppression pool failure due to lack
	Available > 5x time required	0.1 🗸	pool failure is assumed much greater than 2
	Available > 50x time required	0.01	hours.
2. Stress	Extreme	5	Given local blackout of plant buses stress
	High	2 🗸	levels would be higher than nominal.
	Nominal	1	
3. Complexity	Highly	5	Restoration of in-house loads from offsite
	Moderately	2	sources would be covered by standard
	Nominal	1 🗸	operating procedures.
4. Experience/ Training	Low	3	Restoration of in-house loads from offsite
	Nominal	11	sources would be covered by standard
	High	0.5	operating procedures.
5. Procedures	Not available	50	Restoration of in-house loads from offsite
	Available, but poor	5	sources would be covered by standard
	Nominal	11	operating procedures.
6. Ergonomics	Missing/Misleading	50	
	Poor	10	
	Nominal	1	
	Good	0.5	
7. Fitness for	Unfit	1.0a	
Duty	Degraded Fitness	5	
	Nominal	1	
8. Work	Poor	2	Restoration of in-house loads from offsite
Processes	Nominal	1	sources would be covered by standard
	Good	0.5_	operating procedures.

SPAR Model Human Error Worksheet (Page 2 of 3) Table 2. Action worksheet.

a. Task failure probability is 1.0 regardless of other PSFs.

	Table 3	Task failure	probability withou	t formal depe	endence worksheet.
--	---------	--------------	--------------------	---------------	--------------------

Task Portion	Nom. Prob.	Time	Stress	Compl.	Exper./ Train.	Proced.	Ergon.	Fitness	Work Process	Prob.
Diag.										N/A
Action	1.0E-3	x 0.1	x 2.0	x 2.0	x 1.0	x 1.0	x 1.0	x 1.0	x 0.5	2.0E-4
Total										<u>2.0E-4</u>

SPAR Model Human Error Worksheet (Page 3 of 3)

For all tasks, except the first task in the sequence, use the table and formulae below to calculate the Task Failure Probability With Formal Dependence.

Recovery of electrical power on plant buses would be first task.

Condition Number	Crew (same or different)	Location (same or different)	Time (close in time or not close in time)	Cues (additional or not additional)	Dependency	Number of Human Action Failures Rule
1	S	S	с	_	complete	If this error is the 3rd error in
2	S	S	nc	na	high	the sequence, then the
3	S	S	nc	а	moderate	dependency is at least
4	S	d	с	—	high	
5	S	d	nc	na	moderate	If this error is the 4th error in
6	S	d	nc	a	low	the sequence, then the
7	d	S	с	_	moderate	dependency is at least high.
8	d	S	nc	na	low	This rule may be ignored only if
9	d	S	nc	a	low	there is compelling evidence for
10	d	d	с	_	moderate	less dependence with the
11	d	d	nc	na	low	previous tasks.
12	d	d	nc	a	low	
13 🗸					zero	

T-1-1- 4	D 1		
Table 4.	Dependency	condition	worksneet.

Using P = Task Failure Probability Without Formal Dependence (calculated on page 2):

V

Appendix E

Resolution of Licensee Review Comments on Draft Version

Comments on Preliminary Precursor Analysis Automatic Reactor Scram Due to Loss of Offsite Power With Condenser Vacuum Pump Inoperable and Subsequent Failure of Instrument Air

It is estimated that incorporation of the following comments would result in at least a 2.6E-07 reduction in the point estimate CCDP. (The 2.6E-07 is from removal of the contribution from sequences LOOP 41-04 and LOOP 05. Incorporation of other comments would also reduce the remaining CCDP.) The overall point estimate CCDP would be less than 7.4E-07

7. Event Summary, 2nd paragraph--Bus undervoltage on the Division I, II and III ESF buses was caused by the loss power from both ST21 and ST 1 I. The loss of ST21caused undervoltage on the Division II and III ESF buses. The Division I bus, which was connected to ST 11, was carried for a short period of time by the plant generator until J5232 opened.

Response: This does not effect the results or conclusions of the analysis. No changes are incorporated.

8. Event Summary, 4th paragraph-Instrument Air is not required for fire water makeup to the RPV since there is a motor operated bypass valve which can be opened (manually, if necessary) to supply firewater to the auxiliary building. Also, firewater and CRD are considered level control systems, not decay heat removal systems.

Response: The subject paragraph was revised to note that RPV makeup using Firewater can be accomplished without availability of Instrument Air. This does not change the results or conclusions of the analysis.

9. Analysis Results, Dominant Sequences, 2nd paragraph (sequence LOOP 41 -04)-This sequence is not a realistic depiction of the GGNS response. It includes a dependency between containment heat removal and continued operation of ECCS pumps that does not exist. The HPCS pump (as well as the LPCI and LPCS pumps) can pump saturated water and GGNS has concluded that the HPCS system will not fail as a result of containment failure.

Response: The assumed ability to continuously recirculate saturated water from the suppression pool to the RPV *following containment failure* and maintain core cooling has not been conclusively demonstrated. No changes were made to the analysis.

10. Analysis Results, Dominant Sequences, 4th paragraph (sequence LOOP 40)-The list of important system and component failures is not consistent with the event tree sequence. The event tree sequence includes failure of depressurization and CRD and it does not include failure of containment spray and containment venting. Note also that GGNS does not consider that CRD can be successful unless some other high pressure system has controlled level for approximately 5 hours.

Response: The text description has been modified as suggested. The modeling change suggested by the licensee, however, will not reduce the estimated ASP CCDP.

11. Analysis Results, Dominant Sequences, 5th paragraph (sequence LOOP 5)-See comment 3 above. This sequence also includes a non-realistic dependency between containment heat removal and continued operation of HPCS and is not applicable to GGNS.

Response: The assumed ability to continuously recirculate saturated water from the suppression pool to the RPV *following containment failure* and maintain core cooling has not been conclusively demonstrated. No changes were made to the analysis.

12. Modeling Assumptions, Analysis Type, 3rd paragraph-At GGNS any or all of the 3 ESF buses can be connected to any combination (even, only one) of the three ESF transformers. Note also, that once power was restored to the East bus no operator actions were required to restore power to the ESF 11 transformer. In addition the ESF 12 transformer (powered for 115 kv Port Gibson line) was never lost. So with this set of circumstances there would only be operator actions to transfer the ESF buses to either ESF 11 or 12. This is a very simple manipulation (i.e., one switch for each ESF bus) that can be performed in the control room.

Response: The ASP analysis process did consider this simple operator recovery action, but also considered the possibility that the operator s failed to accomplish the recovery. This does not effect the results or conclusions of the analysis. No changes incorporated.

13. Modeling Assumptions, Analysis Type, 4th paragraph-This states that mission run times have been adjusted consistent with the "time it took to re-energize the ESF buses. Later in the Key modeling assumptions, it is stated that the diesel generator fail to run and common cause failure to run probabilities were adjusted to reflect the run time of the first diesel (5.07 hrs). The statement in the 4th paragraph implies that it "takes" 5.07 hours to re-energize the ESF buses, while the actual time to re-energize a bus is much less than that. This should be revised to state the mission run times were adjusted to be consistent with actual diesel generator run times for the event.

Response: The ASP analysis was carried out consistent with standard NRC practice for performing such analyses. No changes are incorporated.

14. Modeling Assumptions, Key Modeling Assumptions, 5th bullet, (b)-While it is true that there are air operated valves associated with the fire water RPV makeup, there are also motor operated valves, which can be opened manually, that bypass the air operated valves. Procedures for fire water makeup note that the bypass valves (both remote operation and local manual operation) may have to be utilized.

Response: This does not effect the results or conclusions of the analysis. No changes are incorporated.

15. Modeling Assumptions, Key Modeling Assumptions, 5th bullet, (c)-This is slightly misleading. Instrument air provides air to the S/RVs for their opening. If air is lost, then it is necessary in the long term to connect bottled air to ensure continued operation of the ADS valves. All of the S/RVs have accumulators that will allow a number of valve cycles. The ADS S/RVs have, in addition, larger receiver tanks that allow more valve cycles for the ADS valves. Thus, the S/RVs have adequate air to operate for a period of time without the bottles connected.

Response: This does not effect the results or conclusions of the analysis. No changes are incorporated.

 Modeling Assumptions, Key Modeling Assumptions, 5th bullet, (f) -Note that the instrument air/service air compressors are cooled by turbine building cooling water (TBCW). Note also that instrument air compressor cooling can be cross-tied from TBCW to standby service water B (SSW B).

Response: This does not effect the results or conclusions of the analysis. No changes are incorporated.

17. Modeling Assumptions, Basic Event Probability Changes, 2nd paragraph (OEP-XHE-XL-NR30M & OEP-XHE-XL-NRO1H and associated Appendix D worksheet)-This paragraph indicates that the time required to reconnect offsite power to a bus (assuming a ESF bus) is on the order of the available time. This is not true for a station blackout condition. With a dead bus (i.e., diesels failed to start or load) the only action required is to close one switch in the control room for each ESF bus. The action time for this is seconds or a couple of minutes at most. Therefore, the multiplier utilized in Appendix D for Available Time should be at most 0.1 (>5x time required) instead of a multiplier of 10. This would change the probability for these events to 2E-04 instead of 2E-02.

Response: The base events noted above *do not appear in any of the dominant cutsets* and do not effect the results or conclusions of the analysis. No changes are incorporated.

 Modeling Assumptions, Basic Event Probability Changes, 2nd paragraph (OEP-XHE-XLNR04H, OEP-XHE-XL-NR08H, and OEP-XHE-XL-NR1 OH and associated Appendix D worksheet)-Same basic comment as comment number 11 above. In this case the multiplier for Available Time should be 0.01 instead of 0.1. This would result in a probability for these events of 2E-05 instead of 2E-04.

Response: The base events noted above *do not appear in any of the dominant cutsets* and do not effect the results or conclusions of the analysis. No changes are incorporated.

19. Table 3a., Minimum Cut Sets for LOOP Sequence 41-04-As indicated in comment 3 above, this sequence includes a non-realistic dependency between containment heat removal and continued operation of HPCS and is not applicable to GGNS.

Response: The assumed ability to continuously recirculate saturated water from the suppression pool to the RPV *following containment failure* and maintain core cooling has not been conclusively demonstrated. No changes were made to the analysis.

20. Table 3a., Minimum Cut Sets for LOOP Sequence 44-03-14-These cut sets do not include credit for recovery of offsite power. Credit for recovery of off site power is appropriate since

offsite power recovery to either the Division I or II bus would make other mitigating equipment available. This appears to be true for all of the displayed cut sets. Most of the LCII (one train of low pressure coolant injection) failures appear to be the result of SSW failures. It should be noted that none of the LPCI or LPCS pumps have a direct dependency on SSW. The LPCS pump will fail at approximately 10 to 12 hours due to lack of room cooling although the HPCS DG cross-tie procedure does not allow the use of the LPCS pump if the HPCS DG has been cross-tied to the Div 1 ESF bus. LPCI A and B will automatically switch to containment spray mode on high containment pressure (-9 psig) and there is not a procedure to bypass the automatic realignment. This will occur in approximately 6 to 8 hours if SSW or venting is not available for containment cooling. LPCI C should be able to continue to run even if the low pressure pump for the selected division, there is significant time available to recover offsite.

Response: LOOP Sequence 44-03-14, which is a sequence transferred from the LOOP event tree to the SBO event tree (upon failure on the onsite power system). The 44-03-14 sequence does not need to consider offsite power recover *because Division III power is available* and is successfully cross-connected. The basic events which are found in the dominant sequence cutsets (Table 3a) do not involve unavailability of electric power, they involve equipment unavailability due to test/maintenance, common cause failures, and human errors. No changes were made to the analysis.

21. Table 3a., Minimum Cut Sets for LOOP Sequence 05- As indicated in comment 5 above, this sequence includes a non-realistic dependency between containment heat removal and continued operation of HPCS and is not applicable to GGNS.

Response: The assumed ability to continuously recirculate saturated water from the suppression pool to the RPV *following containment failure* and maintain core cooling has not been conclusively demonstrated. No changes were made to the analysis.

22. Table 3a., Minimum Cut Sets for LOOP Sequence 44-39-Shouldn't there be recovery of offsite power events in these cutsets? Even with a stuck open relief valve, no HPCS and no RCIC there is approximately 30 minutes available to recover offsite power. More time is available for the RCIC fail to run events.

Response: The ASP model presumes that with: (a) a loss of offsite power, (b) the failure of all onsite power sources (which incapacitates: HPCS, LPCI, and CRD), (c) the failure of the steam driven RCIC, *and* (*d*) *a stuck open S/RV*, that there is insufficient time for offsite power recovery. No analysis has been provided demonstrating that this scenario can be recovered in time. No changes were made to the analysis.

23. Table 3a., Minimum Cut Sets for LOOP Sequence 44-39-Several of the cut sets include a failure of operator to establish room cooling event (RCI-XHE-XM-RCOOL). This is not a failure at GGNS. RCIC does not require room cooling for continued operation for the PRA mission time.

Response: The basic event **RCI-XHE-XM-RCOOL** appears in two dominant sequence cutsets which respectively contribute to: 1.44% and 1.19% of a 10% contributor to CCDP. No analysis has been provided demonstrating the ability of the RCIC to operate without room cooling for specific periods of time. No changes were made to the analysis.

24. Appendix A, April 24, 2003, 09:49:48-East 500 kV line should be East 500 kV bus.

Response: The text has been corrected as suggested.