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TRAC-PF1/MOD1 CALCULATIONS OF LOFT EXPERIMENT LP-02-6

o

P CODDINGTON
C GILL

SUMMARY

The report describes four TRAC-PF1/MOD1 calculations modelling
the OECD-LOFT experiment LP-~02-6. This was a 200% double-ended
cold leg break experiment performed at nearly full power (47 MW)
and with a loop mass flow of 248 kg/s. In the experiment the
pumps were tripped and then allowed to coast down naturally after
the start of the transient. Two of the calculations compared the
results of two versions of the code (12.2 and 13.0), one
incorporated a reduced gap between the fuel and the cladding to
reduce the initial fuel stored energy, and the other had the TRAC
interface sharpener model switched off.

Following the opening of the quick acting blowdown relief valves
to initiate the transient there is a net flow out of the vessel
until about 4 seconds, at which time the broken loop cold leg
fiow out ‘of the vessel drops below the flow into the vessel from
the intact locp cold leg, being driven by the pumps' inertia.
This net flow into the vessel, enhanced by flashing of subcooled
liquid in the downcomer and lower plenum, causes a bottom-up flow
of liquid and quenches about 2/3 of the core. Additionally a
top-down partial quench, extending to about the 30 inch
elevation, is observed at about 15 seconds. This corresponds to
fluid running back into the upper plenum and down into the core
as the fluid in the pressurizer and steam generator begins to
flow back along the intact loop hot leg.

The nature of the observed quenching is not entirely clear: it
may be genuine fuel pin quenching or simply localised quenching
of the thermocouples.

At 17.5 seconds, the primary system pressure reaches 42 bars, at
which point the Emergency Core Cooling System trips.

Measurements suggest oscillatory flow immediately upstream of the
accumulator injection point in the intact loop cold leg. Except
for two slugs of liquid, totalling about 200-250 kg, compared to
a total accumulator flow of about 1,690 kg, no continuous
bypassing of the downcomer by the .accumulator fluid occurs.

Most of it finds its way to the lower plenum. As the water level
here rises, it begins to gquench the bottom of the core at about
37 seconds and the quench moves progressively upwards. The £final
quench of the uppermost elevations is coincident with the entry
of accumulator nitrogen into the intact loop cold leg and the
consequent rise in the primary system pressure.

AEEW - M 2464 '11{



""SUMMARY (Continued)

All four TRAC calculations predict similar hydraulic behaviour to
each other. The bottom-up liguid flow at 4 seconds extends to
the top of the core, as opposed to just 2/37of the way up as in
the experiment. The TRAC modelling does not predict either the
bottom-up or the top-down quench at 15 seconds and following the
subsequent fuel rod dryout the calculated temperatures are too
high, particularly at the top and bottom of the fuel rods. The
reduced fuel-gap calculations (ZEROGAP and ISHARP) are .
considerably better in this respect due to their lower stored
energy. The calculations predict no bypass of ECCS fluid in line
with the experiment and all predict oscillatory core inlet flow.
There were differences, however, in the behaviour of fluid in the
intact loop cold leg, for in some of the calculations the
production of liquid slugs was predicted, in others it was not.
These differences are believed to be due to the sensitivity of
the TRAC condensation model rather than any specific changes to
the models.

All the calculations predict a surge of £luid into the core on
the entry of nitrogen into the intact loop cold leg. However,
the higher rod temperatures in the calculations mean that the

final quench is delayed longer than in the experiment.

The main differences between the calculations are therefore
regstricted to the thermal behaviour of the fuel rods due for
example to the different dispersed flow heat transfer used in
versions 12.2 and 13.0 and the reduced fuel stored energy in the
ZEROGAP and ISHARP calculations.

Reactor Systems Analysis Division
AEE Winfrith

August 1987
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COMMERCIAL IN CONFIDENCE
1 INTRODUCTION '

This report provides a description of the results of four
TRAC-PF1/MOD1l calculations of the OECD-LOFT experiment LP-02-6.
This experiment was the third of the high power LOFT large break
experiments (L2-3 and L2=-5 being the previous two experiments)
and although it was performed at the beginning of the OECD-LOFT
project, the boundary conditions for the experiment were
specified by the USNRC. The primary boundary conditions that
distinguish this experiment from the previous experiments L2-3
and L2-5 were the increased power, ie 47 MW and the fact that the
primary coolant pumps were tripped but not decoupled from their
flywheel systems at the start of the transient. This resulted in
a positive (bottom-up) core flow during the blowdown period, ie
at about 5 secs, but the magnitude of this flow was less than
that observed in the earlier experiment L2-3 where the pumps
where kept running, such that the fuel rod external thermocouples
quenched immediately only in the bottom 2/3 rds of the central
fuel assembly. The remainder of the core (ie the top 1/3 rd)

- quenched subseauently during the top=-down flow period after about

12 secs.

A descrlption of the LP-02-6 experiment can be found in the Quick
Look Report, Ref 1.

2  TRAC INPUT MODEL AND NODALISATION

Diagrams showing the LOFT facility and instrument locations are
given in 'Figs 1 and 2 while noding diagrams of the TRAC

_representation of the LOFT facility are shown in Figs 3, 4, 5 and

6 for all the calculations presented in this report, all of which
uged the same nodal representation. The noding scheme and input
model is based upon the original TRAC-PD2 model which was
modified for TRAC-PF1/MOD1 at LANL for the analysis of L2=-3 and
at AEEW for the analysis of LP-LB-1 (Ref 2). However subsequent
to the analysis of LP-LB-l1 the input deck was modified (Ref 3) to
improve the modelling in the areas of:-

(i) Primary coolant ioop'and vessel flow resistance.
(ii) Renodalisation of the ECCS injection line (Ref 4).

(iii) Revisiocn of the fluid volumes and flow areas within the
reactor vessel.

(iv) Inclusion of core bypass paths in the reactor vessel (lower
plenum and core to upper plenum and downcomer to upper
plenum).

(v) Revision of the vessel metal=-work heat structures (Ref 5).
(vi) A revision and inclusion of ambient heat losses.
All of the above are likély to have an influence on the

calculated results when compared to those calculated for
experiment LP-LB-1 and in fact some of the revisions, eg (i),

AEEW - M 2464 -1



(ii) and (v) were a result of recogn1sed inadequacies of that

analysis (see Pefs 2 and 3).

The results of the renodalisation of the ECCS line can be seen in

Fig 3, and the inclusion of the lower plenum and core to upper

plenum bypass in Fig 6i. Also shown in Figs 3 and 4 is the
~location of the experimental measurement rakes in the intact and

broken loop hot and cold legs.

3 TRAC CALCULATIONS

As stated above, this report contains the results of four
TRAC-PF1/MOD1 calculations, these were performed sequentially and
the results of the calculations are presented in three groups
each containing a pair of calculations together with the
experimental data where appropriate. This report therefore
provides both the results of a limited sensitivity study together
with a comparison of the TRAC calculatlons with the experimental
.data.

The four TRAC calculatiens, identified by their differences, are
as follows:~ :

(1) A calculation using the 'Standard' Winfrith version of
TRAC-PF1/MOD1l, Version 12.2 (ie code version UK reference
X26). This calculation used the "as manufactured" fuel-
clad gap of 100 i#on, on the figures this calculation is
%abelled "JON'S" and is the subject of a separate report
Ref 6

(2) The above calculation was repeated using the Winfrith
version of TRAC~-PF1/MOD1 Version 13.0 (ie code version UK
Reference BO3). This calculation is labelled "ORIGINAL" on
the figures. :

(3) Calculation (2) was repeated but with the "fuel-clad" gap
reduced to zero to reduce the steady state fuel stored
energy and hence the peak cladding temperatures during
blowdown. This calculation ‘is labelled "ZERO-GAP" on the
figures.

(4) Finally calculation (3) was repeated but with the

TRAC~-PF1/MOD1 core interface sharpener logic removed. The

- core interface sharpener logic is a facility for
overwriting the axial mass flux in the core calculated from
the constitutive relations with an externally imposed model
to produce a. “sharp" core liguid level. The interface
sharpener restricts the axial flow of liquid in the core by..
limiting the core cell exit void fraction to be greater
than 90% irrespective of that calculated by the
constitutive relations. The operation of the interface
sharpener has been seen to produce unphysical behaviour
during blowdown when applied to reactor calculations and to
produce too sharp a liquid vapour interface during reflood
(Ref 7). 1Its use is therefore not currently recommended.
This calculation is labelled "ISHARP" in the figures.

AEEW - M 2464 2



A review of the four calculations is given in Table 1.

4 INITIAL CONDITIONS

The initial conditions for experiment LP-02-6 and the calculated
transients are given in Table 2. The data for the experiment was
taken from the Experiment Quick LooK Report (Ref 1) and the
Experiment Specification Document (Ref 8). The data for the TRAC
calculations was taken from the "ZERO-GAP" calculation which was
the calculation used as the submission to the OECD-LOFT LP-02-6
experiment comparison exercise (Ref 9). There are no significant
differences between the initial conditions of the four
calculations and in fact transient calculations 3 and 4 used the
same steady-state calculation.

One major difference between this series of calculations and all
previous TRAC calculations, ie PD2 L2-3 and L2-5 (Ref 10) and
PF1/MOD1 LP-LB-1 (Ref 2) and LP-02-6 (Ref 1l1) calculations is the
improvement in the bypass modelling. As we see from Table 2, for
example, the total calculated bypass of ~ 10% is divided into a
lower plenum to upper plenum bypass .of 2.6%, a downcomer to upper
plenum bypass of 2.26% with the remainder, 5.25%, flowing through
the Reflood Assist Bypass Valves (RABV). Previously only the
flow through the RABVs was represented. '

The power was increased in experiment LP-02-6 from the 36 MW used
in L2-3 and L2~5, to 47 MW, an increase of ~ 1.3. However the
flow rate was only increased by ~ 25% from 200 kg/sec to 250
kg/sec, producing therefore a slightly increased temperature rise
across the core. The contrasts with experiment LP-LB-l where the
loop flow rate was increased to ~ 300 kg/sec for a small (49
compared to 47 MW) increase in core power, producing a
significantly smaller core /AT,

The relative hagnitude of loop flow and core power is likely to
influence the vessel hydraulic behaviour during blowdown, as is
the bypass representation for the calculated transients.

The total accumulator liquid available in experiment LP-02-6 wag
~ 1.69 m’ which i§ lower than that for experiments L2-5 (1.96 m
and L2-3 (2.166 m’), but higher than that of experiment LP-LB-1
(1.18 m®) (Ref 12). Thege numbers should be compared with the
vessel volumes of 0.68 m”® for the lower plenum, 1.017 m’ for the
downcomsr {(this number was significantly increased from that. of
0.672 m° used in previous TRAC analyses of LOFT) and 0.272 m”> for
the core.

As will be seen from Table 2 the accumulator gas volume used in
the calculatiog is significantly s?aller than the experimental
value (0.642 m”® compared to 0.95 m This difference was
introduced into the input deck to_compensate for the fact that
the TRAC code places a lower limit on the Nitrogen gas
temperature of 273 k (0°C) ie the freezing point of water, and
that the gas temperature will fall well below this value during
the emptying of the accumulators.
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Apart from the above accumulator gas volume difference, Table 2
shows that the TRAC calculated initial conditions for the primary
circuit are within the uncertalnty levels of the correspondlng
measured quantities. There is however a small difference in the
pressur;ser volumes used in the calculations (liquid 0.555, steam
0.376 m>) compared to those for the experiment (liguid 0.607,
steam O. 39/m ).

5 ANALYSIS OF LP-02-6 TRANSIENT

5(1) Sequence of Events

The sequence of the significant events for LOFT experiment
LP-02-6 are listed in Table 3, where the times of occurrence are
compared with the times predicted by the "ZERO-GAP" TRAC
calculation. This is the same calculation as that for which the
initial conditions were presented in Table 2.

Experiment LP-02-6 was initiated (0.0 secs) by the opening of the
quick-opening blowdown valves in the broken loops. The reactor
was scrammed on low hot leg pressure at 0.1 secs and the pumps
were tripped at 0.8 secs. (The pumps were not immediately
decoupled from their flywheels as in experiment L2-5, but allowed
to coast down naturally). The pumps coasted down until 16.5 secs,
when their rotational speed fell below the trip point and ‘they
were decoupled from their flywheels. Following the opening of
the blowdown valves the system pressure falls rapidly to the
saturation pressure of the hot leg fluid and voids form in the
upper plenum, core and hot leg. The flow into the core quickly
reverses as a result of the large subcooled critical flow out of
the broken loop cold leg. The core therefore rapidly voids such
that the fuel rods begin to dryout in the centre of the core at
about 0.9 secs. The fuel rod cladding temperatures (recorded by
the thermocouples located on the outside of the cladding) rise as
the energy stored within the UO; is equalised radially across the
whole of .the fuel rod. The fuel rod cladding temperatures
continue. to rise until approximately 5 secs when a positive flow
through the core was re-established. This flow through the core
at about 5 secsg, occurs as the flow into the vessel downcomer
from the intact loop, which remains almost constant as a result
of the high pump inertia and single-phase nature of the cold leg
£luid, exceeds the falling flow out of the vessel downcomer
through the broken loop cold leg. The broken loop cold leg flow
falls as the system pressure falls from hot leg saturation
pressure to the cold leg saturation pressure.’ The flow through
the core at 5 secs is enhanced by the flashing of the cold leg
fluid in the vessel lower plenum and downcomer and the intact
loop cold leg. The positive flow through the core cools the core
and produces a rapid quench of the cladding (external)
thermocouples in the lower ~ 2/3 rds of the central fuel
assembly. After the system pressure falls below the cold leg
saturation pressure the flow of liquid into the downcomer
decreases as the intact loop cold leg voids, so that this flow
quickly falls below that out of the broken loop cold leg, and the
core once again empties. After ~ 10 secs therefore the fuel rods
in the core begin to heat up again. A partial top-down quench is
initiated at about 15 secs
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and lasts until ~ 18.5 secs as liquid flowing out of the
pressuriser and along the hot leg into the upper plenum flows
down into the core.

.
The system pressure falls below the accumulator trip point at

~ 17.5 secs and the ECCS liquid begins to flow into the primary
circuit, the EPIS and LPIS began at 21.8 and. 34.8 secs
respectively. The flow out of the broken loop continues to fall
as the primary system pressure falls with no obvious direct
bypass of liguid (ie subcooled liquid in the broken loop cold
leg), except for one slug of liquid between 30 and 32.5 secs.

The lower plenum was  estimated to have f£illed at 30.7 secs

(Ref 1) which is the time that the lowest core thermocouple (ie
at a 2 inch elevation) is observed to quench. This is well in
advance of the time that the accumulator empties. The
accumulator tank for example empties at about 4R secs, while an
additional ~ 7 secs is required to clear the ECCS line, so that
the ECCS accumulator ligquid flow into the intact loop cold leg is
not complete until about 55 secs. Following this the effect of
the accumulator nitrogen flow into the primary circuit is seen as
part of the slug of subcooled liquid, resident in the intact loop
cold leg, is swept out of the broken loop cold leg.

Following the cooling of the fuel rods during the blowdown
periocd, once the cladding thermocouples dry out they heat up
rapidly in the centre of the core to a temperature of about

800 K, which is close to the corresponding fuel temperature. The
cladding "temperatures then increase slowly as a result of the
fuel decay heat until the bottom of the core begins to quench at
about 31 secs as outlined above. Following this, liquid flows
into the bottom of the core and begins to cool the lower parts of
the fuel rods while the fuel rod quench progresses intermittently
up the bottom part of the core reaching the 21 inch elevation at
about 48 .secs. Above the peak power elevation ie at a height of
greater than about 30 inches, the fuel rods do not begin to cool
until about 42 secs at which time the cladding temperatures range
from ~ 750 K at 31 inches to ~ 500 K at 62 inches. The quench
time of the fuel rods at these elevations corresponds to the end

. of the accumulator liquid flow, with for example times of 54.5
secs at 31 inches, 56 secs at 43.8 inches and 49 inches and 54.5 .
secs again at 62 inches. (The end of the accumulator liquid flow |
into the primary circuit is estimated to occur at about 55 secs -
gee above). It is postulated therefore that the flow of
accumulator nitrogen into the intact loop cold leg initates the
flow of a slug of liquid into the core as well as one out of the
broken loop cold leg as described above. The mechanism that
leads to this is described in Ref 13 for example. .The flow of
liquid into the core at the time is able to quench the upper
parts of the fuel rods as the majority of the cladding is at a
temperature below the minimum £film boiling point of ~ 650 K. The
guench of the core therefore was complete by 56 secs and occurs
as a direct result of the flow of a slug of liquid into the
bottom of the core driven by the system pressurisation as the
flow into the primary circuit from the accumulator changes from
water to nitrogen.
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5(ii) TRAC Calculations

In the following three Sections of the report we present the
results of the four TRAC calculations of experiment LP-02~6
described in Section 3 and-Table 1. The results of the four
calculations are presented in the following three groups of
Figures together with the experimental measurements where
appropriate.
- GROUP 1, Figure 7 to 77
Calculations (see Section 3 and Table 1)
- "JON'S", "ORIGINAL"

and the experimental data.

GROUP 2, Figures 78 to 148
Calculations; “ORIGINAL“, fZERO-GAP“

and the experimental data.

GROUP 3, Figures 149 to 219 :
Calculations; "ZERO-GAF", "ISHARP"
and the experimental data.

The results from each of the above groups is described in turn in
the following Sections. 1In the first Section a detailed
description of the experimental measurements together with a -
comparison with the general results of the TRAC calculations is
provided. in addition to comments on the differences between the
two calculations. The subsequent Sections just review the
differences between the calculatioris and how these influence the
main elements of the calculated transient.

5(iii) “"JONS" and "ORIGINAL" Calculations

LOOP BEHAVIOUR

These two calculations of the LOFT large break transient
experiment LP-02-6 are identical in the sense that they used
exactly the same input deck. The difference between the two
calculations being that the "JON'S" calculation was performed
using code version X26 (UK version of LANL code version 12.2) and
the "ORIGINAL" calculation was performed using code version BO3
(UK version of LANL code version 13.0). There are obviously
likely to be many differences between the two code versions - in
spite of the fact that the code from version 12.1 was formally a
frozen code, however it is thought that none of these changes,

- except for one, are likely to have a significant influence on the
behaviour of a large break calculated transient. We consider
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that this observation is confirmed by the results presented in
Figures 7 to 77. The one area in which there is a known
difference between the two code versions that is likely to
influence large break-calculations are the changes made the
post-dryout heat.transfer. This accounts for the difference in
the calculated cladding temperatures which occur primarily during
the reflood period. 1In code version X26 the "error" in the
Forslund-Rohsenow dispersed flow heat transfer coefficient (ie
the use of the .liquid thermal conductivity instead of the vapour
conductivity) had been corrected by the UK. In version BO3 the
Forslund-Rohsenow relation had been changed by LANL in such away
as to correct the "error" in the value of the thermal
conductivity used but to also increase the numerical coefficient
in order to preserve the resultant value of the heat transfer
coefficient. This revised value of -the Forslund-Rohsenow
dispersed flow heat transfer coefficient introduced by LANL in
version 13.0 was kept in the equivalent UK version B0O3. The
result of this change can be seen as a more rapid cooling of. the
c¢cladding temperatures during reflood with the revised form of the
heat transfer term in the "ORIGINAL" ie BO3 calculation.

The first observation from the results of these two calculations
is that their behaviour particularly that reflected by the global
parameters is very similar especially during the blowdown period
{({ie 0.0 to 20:0 secs), where the results of the two calculations
are almost indistinguishable. The calculated and experimental
pressure decay, shown for example in Fig 7 for the broken loop
cold leg and Fig 30 for the intact loop hot leg shows a very good
comparison betweén the two calculations and the experiment, and a
significant improvement over that calculated for LOFT experiment
LP-LB-1 (Ref 2). For experiment LP-LB-1 the TRAC calculation
underestimated the primary system pressure after approximately

13 secs. The improvement in the calculation for LP-02-6 is
ascribed to the revised vessel metal heat structures contained
within the LP-02-6 input deck as these produce a significant
increase in the heat released from the vessel metal-work to the
fluid (see Fig 51). There is a small difference in the
calculated system pressure between about 26 and 33 secs, with the
"JON'S" calculation providing a better comparison with the
experimental data. It is-thought that this difference is
possibly due to different condensation rates in the intact loop
cold leg and Fig 20 for example shows that during the approximate
same time period in the "JON'S" calculation a liquid slug forms
upstream of the ECCS injection point whereas one is not formed in
the "ORIGINAL" calculation. Previous experience of large break
TRAC calculations has shown that the details of the intact loop
cold leg behaviour during the accumulator flow period is both
difficult to predict and very sensitive to the details of the
loop and ECCS flows. This of course is always likely to be the
situation when large changes in condensation rates are involved.

The broken loop cold leg density and mass flow shown in Figs 8
and 9 show that although the density is well calculated during
the blowdown period the calculated mass flow is overestimated

both during the subcooled period and during the saturated flow
period when the calculations are approximately 20 kg/sec higher
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than the experimental value. This is a consistent feature of all
of the calculated transients, but is different to that of the
LP-LB-1 comparison (Ref 2), however that probably just reflects
the difference in the calculated primary system pressures for
LP-LB-1 and LP-02-6 (see above). The calculated mass flow during
the saturated blowdown period is high in spite of the fact that

a critical flow multiplier of 0.84 is used, a value of 1.0 is
used during the subcooled blowdown. (These numbers were
inherited from LANL and have not been the subject of a study in
the UK, however it would not be possible to justify a number of
less than 0.84 for the saturated flow period). As observed in -
Section 5(i), neither of the calculated transients shows any
direct ECCS bypass, until the accumulator empties at about 53
secs, whereas the experiment shows the flow of two distinct slugs
of subcooled water through the broken loop cold leg (Figs 8, 9,
10) the first betwen 29 and 33 secs and the second bhetween 49.5
and 51.5 secs. Both the calculations and the experiment show the
flow of a slug of subcoocled liquid coincident with nitrogen
entering the intact loop cold leg from the accumulator,. however,
the calculated flow is much more extensive than that observed in
the experiment.

Rather surprisingly both of the calculations show some reverse
flow at the measurement location in the broken loop cold leg,
during the bypass phase of the transient. The "JON'S"
calculation shows some reverse flow at ~ 43 gecs while the
"ORIGINAL" calculation shows reverse flow at ~ 42.5 secs and
46.5 secs, whereas none is observed in the experiment. Given the
good agreement between the calculated and experimental primary
system pressure during this period it is possible that the
reverse flow results from an error in the break pressure used in
the calculation to simulate the presure in the blowdown
suppression tank. ) -

The calculated and experimental intact loop cold leg behaviour is
shown in Figs 20 to 26, the first point to note is the different
pump behaviour as shown in Fig 25. The "ORIGINAL" calculation
used the INEL specified pump inertia and so produces a long coast
down such that the pump is not calculated to decouple from its
flywheel system (ie at a velocity of 75 rads/sec) until after

70 secs, this is consistent with other calculations of the pump
behaviour, see for example Ref 11, Fig 79. The experimental
curve shows a much faster initial rundown of the pump such that
the pump decouples from its flywheel at ~ 16.5 secs, because of
the subsequent reduced inertia the pump velocity increases during
the bypass phase of the transient as a result of the ECCS related
condensation induced pressure drop across the intact loop. The
main feature of the pump velocity curve for the "JON'S"
calculation is that the pumps-were tripped to decouple from their
flywheels at the experimental time of 16.5 secs. In spite of the
. different pump behaviour seen in the two calculations there is
almost no observable difference in the intact loop cold leg flow,
see for example Fig 21 which shows the cold leg mass flow.

The intact loop cold leg calculated and experimental fluid
densities show very good agreement up to ~ 12.5 secs, both
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showing for example the start of the voiding in the cold leg at
~ 6 secs. Between 12.5 and 20 secs the calculated densities are
slightly higher than the average experimental value, but well
within the range of the experimental error. The calculated
velocity and hence mass flow are however lower than the
experimental values (by about’ 25 kg/sec in the case of the mass
flow) during the first 6 secs when the flow is single-phase
ligquid. Following this the experimental £fluid velocity and
therefore mass flow falls rather more abruptly than the
calculated values. .

Following the initiation ‘of the flow of liquid from the
accumulators into the intact loop cold leg at ~ 17.5 secs, the
formation of oscillating slugs of subcooled liquid immediately
upstream of the ECCS injection point are observed starting at
about 21 secs. The oscillatory nature of the liquid slugs can be
seen in the measurements of fluid density, mass flow, fluid
velocity and temperature. These observations are consistent with
the behaviour of all of the other LOFT large break experiments,
although as was mentioned in the analysis of experiment LP-LB-1
(Ref 2) a detailed analysis of the individual density and
momentum flux measurements (not shown here) shows that the fluid
flow is unlikely to be one of a simple 1-D slug moving back and
forth along the cold leg pipe. The calculated behaviour is not
one of an oscillatory slug although the calculated fluid
densities, Fig 20, show that in the case of the "JON'S"
calculation there is some intermittent slug flow upstream of the
ECCS injection point but almost none in the case of the
"ORIGINAL" calculation. It is not possible currently to offer an
explanantion for the different behaviours. Both calculations
produce a stable liquid slug downstream of ECCS injection
location. .

The broken and intact loop hot leg comparisons are shown in

Figs 14 to 19 and 26 to 32 respectively. The differences in the
behaviour of the two calculations in both the broken loop and
intact loop hot legs is almost negligable. However both
calculations underestimate the broken loop hot leg fluid density
and mass flow after the first few seconds, although the errors on
both measurements are quite large.

The flow in the intact loop hot leg remains in a positive
direction for approximately the first 9 secs as a result of the
pressure drop provided by the slow rundown of the pumps. (This
is in contrast to a positive flow period of approximately -

4.5 secs for experiment LP-LB-l where the pumps were decoupled
from their flywheels at the start of the transient). After

9 gsecs the flow reverses and two peaks in the mass flow are
observed, the first at ~ 12 secs occurs as liquid flows out of
the pressuriser and back along the hot leg to the upper plenum
and the second at ~ 16.5 secs when liquid from the upside of the
steam generator tubes flows back along the hot leg. In both of
these instances Fig 27 shows that the magnitude of the reverse
flow peaks is much greater in the calculation than in the
experiment. During the initial (0 to 9 secs) positive flow
period an increase in fiow is observed, ie at about 6.5 secs in
the experiment but not in the calculations this attributed
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(Ref 1) to be a consequence of the bottom-up flow through the
core at this time. However no significant hot leg flow is
calculated even when the core interface sharpner is turned off -
see Section 5(v). As the hot leg side of the reactor drains the
hot leg mass flow falls, and the flow becomes positive again at
about 30 secs. However in the experiment a surge in the hot leg
flow is seen at about 26.5 secs, and several peaks in the flow
are observed between 42 and 51 secs. These later ones presumably
occur as a result of liguid carry over from the core as the lower
part of the core quenches during the pericd. An increase in the
hot leg flow is seen at ~ 54 secs in both the experiment and the
calculations coincident with the surge of liquid into the core
following the initial injection of accumulator nitrogen into the
intact loop cold leg.

The depressurisation and water level of the pressuriser is shown
in Figs 31 and 32, the calculated depressurisation rate is
slightly faster than the experimental value as a result of the
underestimation of the initial pressuriser liquid level.

The accumulator level and pressure is shown in Figs 33 and 34,
the agreement between the calculations and the experimental
values is now very good following the renodalisaticn of the ECCS
line (Ref 3). However no explanation can be found for the
discrepancy between the calculated and measured accumulator
pressure during the period when nitrogen flows from the tank.

VESSEL HYDRAULIC AND THERMAL BEHAVIOUR

The vessel hydraulic and thermal behaviour is shown in Figs 35 to
52, while the fuel rod cladding temperatures are shown in Figs 53
to 77. The global vessel behaviour, ie vessel mass, lower plenum
liquid volume fraction etc is shown in Figs 43 to 48, for the two
calculations, there is of course no direct experimental :
equivalent data. The results from the two calculations are
virtually identical during the first 20 secs, while after this
there is a slight delay in the £filling of the vessel in the
"JON'S" calculation as the ECCS ligquid accumulates as a slug in
the intact loop cold leg extending upstream of the injection
point. :

The calculated behaviour of the vessel during blowdown shows that
the core, lower plenum and downcomer void during the first 3 to

4 secs as subcooled liquid flows out of the broken loop cold leg.
The core rapidly empties while the lower plenum and downcomer
ligquid volume fractions fall to about 0.7. As the flow of
subcooled liquid out of the broken loop cold leg falls it is
exceeded by the flow of liquid into the vessel from the intact
loop cold leg so that the liquid volume fractions of the lower
plenum and downcomer increase. These then fall again after about
6 secs when the flow of liquid into the vessel decreases as the
fluid in the intact loop cold leg flashes. The increase in the
flow of liquid into the vessel produces a flow of liquid into the
bottom of the core beginning at about 4 secs. The flow through
the core is enhanced by the flashing of the liquid in the lower
plenun and downcomer at about 6 secs and then falls to zero again
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between about 9 and 10 secs as the lower plenum and downcomer
void. (See Fig 35). In addition to the above flow of liquid
into the bottom of the core a flow of ligquid from the upper
plenum down through the core is observed to occur between about
16 and 22 secs. This is shown as a reverse. £low in the core
outlet mass flow, Fig 44. -

As stated above, the calculations show that, following the
initiation of the accumulator flow at about 17 secs, the
accunmulator liquid flows into and down the vessel downcomer to
£il1l the vessel lower plenum, and there is no observed direct
bypass of the accumulator liquid out of the broken loop cold leg.
Although of course fluid continues to flow out of the broken loop
cold leg this fluid is saturated and is provided by the flashing
of the liquid in the lower plenum as the pressure falls. The
flow of accumulator liquid into the lower plenum produces an
increase in the liquid volume fraction beginning at about

25 secs. Almost immediately some small quantity of liquid enters
the bottom of the core and its influence can be seen on the

~cladding temperature (thermocouples) located at the bottom of the

core. Initially all the accumulator liquid flows down the
downcomer into the lower plenum so that the liquid volume
fraction rises to ~ 0.75 at about 33 secs. Following this the
liquid flow into the core increases and some liquid begins to
accumulate in the downcomer. At about 40 secs in both
calculations the lower plenum is liquid full and the core liquid
volume fraction is ~ 0.2. (Note this is still some ~ 15 secs
before the end of accumulator injection). After 40 secs when the
lower plenum is full the accumulator liquid continues to flow
into the downcomer which therefore rapidly £fills, with the
downcomer in the version 13.0 (ie "ORIGINAL") calculation £filling
somewhat faster than in the version 12.2 (ie "JON'S")
calculation. The downcomer continues to f£ill in the calculation
well above the level of the nozzles as a consequence of the fact
that the primary system pressure falls below the boundary
pressure used to model that in the blowdown suppression tank.

The downcomer begins to empty at about 52 to 53 secs which is
coincident with the end of the accumulator liquid flow as the
primary system pressure once more exceeds that at the break.
Following this there is a rapid increase in the liquid content of
the core.

As stated above theré is no detectable difference in the vessel

" behaviour between the two calculations during the blowdown

period, and although there are some differences in detail between
the two calculations following the initiation of the accumulator
liquid the global behaviour is the same. The differences in
behaviour almost certainly arise from the extreme sensitivity of
the 1-D condensation model which as we have seen produces an
upstream liquid plug in one instance but not in the other, rather
than a specific difference between the two code versions.

As has been stated in relation to the analysis of other LOFT
large break experiments (see Ref 2), the level and interpretation
of the LOFT vessel instrumentation is both limited and difficult.
However the lower plenum velocity and mommentum flux measurements
(Figs 36 and 42) do confirm the bottom up flow of liquid observed
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during blowdown, ie between about 4.5 and 9 secs. Also it is
possible to estimate that the peak velocity and mass flux of the

flow was » 1 m/sec and between 500 and 1000 kg/m‘ sec

respectively. The downcomer fluid temperature measurements,

located on the broken loop side, also confirm the broken loop o
cold leg measurements in that there was only a small amount of 7
direct subcooled liquid bypass. Fig 38 for example shows liquid
subcooling only, between 31 and 33 secs and between 50 and 53

secs, prior to the end of the accumulator liguid injection.

CORE - THERMAL RESPONSE

Central Bundle

The fuel rod cladding temperatures for the "JON'S" and "ORIGINAL"
calculations together with the experiment are shown if Figs 53 to
63 for the central fuel assembly (ie LOFT assembly 5) and in

Figs 64 to 67 for the instrumented peripheral fuel bundles (ie
LOFT fuel assemblies 2, 4 and 6). In addition Table 4 shows the
axial location of the calculational fine mesh together with the
relative power density at the coarse mesh boundaries.

T™wo features of the calculated temperature transients are
immediately obvious, (1) is the fact that during blowdown (and
therefore for the remainder of the transient) the calculated peak
clad temperatures are more than 100K too high and (2) the fact
that the "ORIGINAL" calculation (version 13.0) cools faster than
the “JON'S" calculation (version 12.2).

The peak clad temperature of a fuel rod during the initial
blowdown period of a large break transient is determined
primarily by the transfer of heat from the centre of the fuel to
the cladding as the cladding to fluid heat transfer falls
following dryout and as the heat generated within the core falls
to the decay heat level. This means that the peak cladding
temperature is particularly sensitive to the fuel rod pre-
transient (steady state) stored energy, ie fuel rod centre
temperature. The only unknown parameter of any significance in
the calculation of i... -teady state fuel stored energy is the
fuel to cladding heat transfer, ie the fuel-clad gap conductance.
In the TRAC code this is determined from the input value of the
fuel-clad gap width, and in both of these calculations this was
set to the "as manufactured" value of ~ 100 Kons. Because of the
obvious error in the resultant peak clad temperatures
particularly at the bottom of the fuel rods, the influence of
changing the fuel clad gap to fully closed, ie no gap, is
evaluated as part of this sensitivity study (see Section 5.iv).
Calculations of the initial cladding temperature response over
the whole core is made more difficult because of the limitations
of the TRAC fuel pin model, for example there is only a single
fuel pin representation for the whole of the core and for this
pin only a single set of radial dimensions can be input. So that
changes in the pin dimensions both axially and between pins
cannot be modelled. Also changes in the fuel clad gap width and
the fuel and clad dimensions generally, due to mechanical
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effects, cannot be modelled, only changes due to thermal effects
are considered.

From Figs 53 and 54 we see that the fuel rod cladding
temperatures during blowdown of the two calculations are -
"identical and although there are some small differences in,the
cladding temperatures during the refill period the largest and
most consistent difference is the fact that during reflood the
"ORIGINAL" calculation (version 13.0) cools faster than the
"JON'S" calculation (version 12.2). The major identifiable
difference between the two code versions as was reviewed in
Section 3, is that the dispersed flow (ie void fraction ? 0.5)
heat transfer coefficients in the UK version of 13.0 were
significantly higher than those in the UK version of 12.2. (For
the reasons mentioned in Section 3 the LANL version of both codes
would have given the higher of the two heat transfer
coefficients). The higher heat transfer for the "ORIGINAL", ie
v13.0 calculation would of course produce the observed earlier
cooling of the cladding for identical core fluid conditions.
Although as we see from Fig 48 for example, there are some small
differences in the core liquid mass during reflood, but these on
their own are not enough to be responsible for the different
cladding behaviour.

The experimental cladding temperatures in LOF™ are those recorded
by thermocouples attached to the surface of the cladding. This
has lead to intense speculation both to whether they truly
reflect the temperature of the cladding particularly during the
very rapid guench periods and to whether the thermocouples
themselves induce additional cooling that would not be present on
uninstrumented fuel rods. Both of these questions have been
subject to separate effects experimental investigations at both
high and low pressures (Ref 14 and 15) and a review of this
information is currently takirig place at AEEW (Ref 16).

The general response of the calculated and experimental cladding
temperatures during the transient just reflects the vessel
hydraulic behaviour described above. The cladding temperatures
rise rapidly after about 1 sec as the fuel rods in the central
asgembly begin to dry out, increasing to over 1000K after about
3 secs in the experiment at the peak power location. The
calculated peak temperatures are higher by up to 100K, because of
the too large a value of the steady state stored energy, as ‘
explained above. After approximately 5 secs the surge of liquid
into the bottom of the core produces a rapid cool down (quench)
of the experimentally observed temperatures at all elevations up
to and including the 39 inch level, but not at elevations above
this. 1In the calculation the cladding is cooled by more than
200K at the 24 and 27 inch elevations, but of course this is not
sufficient to produce a quench. More significant is that in the
calculation the cooling extends all the way to the top of the
fuel assembly so that at the 62 inch elevation for example, where
the temperatures are low because of the lower power, a guench
occurs in the calculation but not in the experiment.
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Following the rapid cool down (guench) of the thermocouple-
cladding in the experiment, dryout occurs again at the centre of
the core after about 1l secs, and the temperature across the the
fuel rod is once again re-equalised as the cbserved temperatures
rise rapidly to about 800K. This behaviour is confirmed by the
limited fuel rod centre line temperature measurements which show
the centre of the fuel at the 27 inch elevation (Fig 63) to cool
slowly to ~ 800K at about 15 secs. In the calculated transients
following the blowdown cooling of the fuel rods the cladding
temperatures rise to ~ 1000K, ie some 200K higher than the
experimental values.

At the higher elevations in the central fuel assembly for the
experiment the influence of the top .down flow of liquid from the
upper plenum is seen as the fuel rods quench from the top
downwards between about 15 and 19 seconds. Although a small
downflow of liquid is observed in the calculations (Fig 44)
between 16 and 22 secs. This does not appear to have a major
influence on the cladding temperatures except at the highest

(62 inch) elevation (Fig 62).

Following the blowdown cooling and the re-equalisation of the
fuel rod temperatures, ie after ~ 15 secs, the cladding
temperatures rise slowly as the core is steam cooled and the
vessel fills with water from the accumulator. This continues
until the first sign of reflood cooling occurs at about 30 secs
which is well before the accumulator empty time of ~ 54 secs.

The temperature rise turns over at about the same time in both
the experiment and the calculations (particularly the "ORIGINAL"
v13.0 calculation) especially towards the bottom of the core, ie
below ~ 21 inches. Above this, ie up to 31 inch level the
cooling effect of the core flows is seen in the experiment, but
not in the calculation until ~ 40 secs, when as Fig 48 shows
there is an increase in the flow of water into the core. Above
the 31 inch elevation both the experiment and calculations:show a
cooling of the fuel rods after 40 secs. The cooling of the
cladding particularly in the experiment is distinctly oscillatory
in nature, indicating an oscillating flow at the core inlet, this
is likely to arise both as a result of increases in the core
pressure as steam is produced and as a reduction in the pressure
in the intact loop cold leg. as steam condenses on the subcooled
accumulator liquid.

The fuel rod cladding in the central fuel assembly continues to
cool and subsequently quenche, such that, except at the very
bottom of the core, the quench takes place coherently over
significant lengths of the core. The following for example shows
the quench times at the various elevations in the central
assembly, and we see that
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Elevation Quench Time

2" ' 31 secs
11" ) 46.7 secs
21" 46.7 secs
24" 54.2 secs
27" 54.2 secs
31" 55.8 secs
43.8" 55.8 secs
49" ) 55.8 secs
62" 54.6 secs

the core quenches at the 11 and 21 inch elevation at ~ 47 secs
while the remainder of the core, ie 24 to 62 inches quenches
between 54 and 56 secs. The final core quench (ie between 54 and
56 secs) occurs at the same time as the termination of the
accumulator liquid flow and the initiation of the accumulator
nitrogen flow, and as is explained in Refs 13 and 17 and above
this produces a surge of liquid both out of the broken loop cold
leg and into the core. The coherency of the final quenches
indicate that for this experiment, and for LOFT in general, the
quench process is’ dictated by the fluid conditions, rather than
thermal conditions within the fuel rod. In this sense it is
different from the propagating quench fronts observed in slow
forced reflood experiments. The experimental quench temperatures
in this experiment are by and large determined by the fuel rod
temperatures at the time of the "end of accumulator" inflow of
liquid into the core, but are typically less than 700K even at
the peak power elevation. As explained above the relation of the
observed quench temperatures in LOFT to a minimum in the boiling
"Tmin" has been the subject of several separate effects studies,
some of which (Ref 15) have shown that at reflood pressures
(typically ~ 3 bars) the presence of the external thermocouples
can promote quenches at temperatures higher that "Tmin". The
fuel centre line temperatures (Fig 63) show that in line with the
separate effects studies (Ref 15) that the quench of the external
thermocouples quickly promotes cooling radially across the fuel.

In the calculations the surge of liquid into the core at

~ 54 gecs (Fig 48) which results from the termination in the
accumulator liquid flow, produces an increase in the cooling of
the cladding; but because the temperatures are typically 200K too
high at this time and no account of the influence of the external
thermocouples on the gquench process is allowed for, the final
calculated guench is delayed by some 40 to 50 secs.

Peripheral Bundles °

The fuel rod cladding temperatures for the three LOFT peripheral
instrumented bundles 2, 4 and 6 are shown in Figs 64 to 77.

Fuel assembly 4 is located between the intact loop hot leg and
the broken loop cold leg, fuel assembly 2, between the broken
loop cold leg and the broken loop hot leg and fuel assembly 6 .
between the broken loop hot leg and the intact loop cold leg,
this arrangement is shown in Fig 6ii. All of the instrumented
rods except one, 4G08-21 (Fig 70), are located on the side of the
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peripheral bundles adjacent to the central bundle, whereas rod
4G08 is located towards the middle of assembly 4.

The thermal behaviour of the peripheral bundles, particularly
that of 2 and 6, for the most part just mirrors the behaviour of
the central bundle, except that the temperatures are lower as the
result of the lower power level. The fuel rods dryout as the
core voids during blowdown, reaching a peak temperature of ~ 900K
at the peak power elevation in all 3 bundles. The bottom-up core
liquid flow produces a rapid cooldown (quench) of all of the
instrumented rods, even at the highest elevation of 49 inches,
between 6 and 8 secs. In bundle 6 the fuel rods dryout again
after about 12 secs rising rapidly to a temperature of ~ 650K to
700K then more slowly to a peak reflood temperature of ~ 750K
(Fig 75, rod 6H12-026). 1In bundle 2 the fuel rods dryout at
about 12 secs, but are then "quenched" again at all but the
bottom elevation from the top-downwards between 14.5 and 18 secs.
These rods then dryout between 18 and 21 secs rising to a peak
temperature of ~ 700K (rod 2614-011, Fig 64). 1In fuel assembly
4, Figs 69 to 72, we see that following the blowdown "quenching"
the fuel rods do not immediately dryout again, so that the
resultant reflood peak temperatures are significantly lower, ie
less than 600K. From the instrumented rod.located in the middle
of assembly 4 (ie rod 4G08, Fig 70), we see that at this location
the fuel rods do not dryout during the blowdown period. The
lowest elevation on assembly 4 dryout at about 18 secs in line
with the fuel rods in assembly 2, while the higher elevations do
not dryout until about 29 to 30 secs.

Cooling of the rods during reflood begins at about 29 to 30 secs
at the 11 inch elevation (Figs 64, 73) in bundles 2 and 6 and
this is consistent with the temperature measurements for the
central bundle (see previous Section). Following this the
thermocouples show an oscillatory behaviour similar to that
observed in the cetral bundle, and again provide a confirmation
of the likely oscillatory flow conditions at the core inlet. The
cladding temperatures for bundles 2 and 6, during this reflood
period lie between ~ 600K (2H13~049, Fig 68) and 750K (6H15-026,
Fig 75) and these therefore are the temperatures from which the
fuel rods quench. The quench times for assemblies 2 and 6 are
given below; these as with the quench of the central fuel
assembly show that the quench (of the thermocouples) is
determined by the £fluid conditions rather than the thermal
behaviour of the fuel rods. For example the quenches occur
coherently and are most likely coincident with the flow of liquid
into the bottom of the core. In addition the final quench at the
top of the peripheral fuel rod bundles occurs at ~ 55 secs, vwhich
again is in line with the data from the central fuel assembly,
and
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Height ASSEMBLY 2 ' ASSEMBLY 6

11 inch 46.7 secs 40.8 secs
21 inch 43.3 secs -

26 inch - 47 secs
30 inch 49 secs 49 secs
39 inch 54.6 secs 54.6 secs
45 inch T - 54.6 secs
49 inch : 52.5 secs -

results from the surge of liquid into the core foliowing'the
change of fluid flow, from the accumulator into the intact loop
cold leg from that of water to nitrogen.

The calculated cladding temperatures for the peripheral bundles
just reflect the general behaviour of those for the central
bundle, ie (1) the blowdown peaks are too high because of the
"high" initial fuel stored energy and (2) the "ORIGINAL" (ie
v13.0) calculation cools quicker during reflood than the "JON'S"
(vi2.2) calculation. In addition to these, the first of the
above leads to an overestimation of the cladding temperatures for
bundle 6 during reflood of between 100 and 200K (eg Figs 74 to
77). Finally in bundles 2 and particularly 4 where in addition
to the experimental bottom-up blowdown quench the fuel rods are
subsequently quenched from the top downwards, the calculated
temperatures which do not show this asymmetric top-down cooling
are some 300K too high.

5(iv) ‘ "ORIGINAL" and "ZERO-GAP" Calculations

The "ZERO-GAP" calculation was the second in the series of TRAC
sensitivities performed as part of the comparison with LOFT
experiment .LP-02-6. This calculation was performed because of
the obvious overestimation of the steady-state fuel stored energy
calculated in the first two calculations when the “as
manufactured" fuel clad gap was used. In the "ZERO-GAP"
calculation the fuel clad gap was set to zero, while in all other
ways the calculation was identical to the "ORIGINAL" calculation
(ie it used code version B03, the UK version of LANL code version
13.0). As would be expected the major effect of the above change
is to the calculated core cladding temperatures, however it might
be anticipated that this change could influence the heat
transferred to the fluid and hence the hydraulic behaviour.

The improvement in the calculated cladding temperatures during

blowdown for the "ZERO-GAP" calculation can be easily seen in |
Figs 124 etc for the central fuel bundle, and Figs 136 etc for |
the peripheral bundles. However one consequence of reducing the
fuel clad gap over the whole length of the fuel rod, as is
required by the TRAC simplified fuel rod model, is that the peak
temperature during blowdown at the top of the core is now
underestimated. This can be seen particularly in the central
fuel bundle at all elevations above about 40 inches.

Note Comparisons of the TRAC calculations with the experimental
results for the peripheral bundles is made difficult in
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some instances because of an error in the TRAC (v13.0) heat .
transfer logic that artificially quenches some rods duriag
the blowdown period (Ref 18), see for example Fig 146.

An improved fit to the overall blowdown temperatures could
obviocusly be made by adjusting the fuel clad gap along the length
of the fuel rods, ie a closed up gap at the bottom and a
partially open one at the top. However for this to be more than
just a "fitting" exercise additional information ought to be
available either from fuel PIE or a fuels code.

In the centre of the core, eg Figs 127, 128, where the "ZERO-GAP®
blowdown peak temperatures are now well-represented, the
calculated temperatures fall to ~ 800K as a result of the bottom-
up core cocoling, and subsequently rise to about 850K as the
cooling diminishes and the temperatures across the fuel rod
equalise out. In the experiment the recorded temperatures on the
.external thermocouples cool down rapidly to the saturation
~ temperature as a consequence of the bottom-up liquid flow, but
then rise to ~ 800K as the cooling diminishes and the
temperatures across the rod re-equalise. The average rod _
temperature therefore after the blowdown cooling is only some S0K
higher in the "ZERO-GAP" calculation than in the experiment.
This shows therefore that at this elevation the net heat transfer
from the cladding to the coolant is only marginally smaller in
the case of TRAC compared to the experiment. The difference in
the net cooldown of the fuel rod could therefore be well-
accommodated within the uncertainty of the inlet £fluid
conditions, without requiring major changes to the TRAC heat
transfer package. The above observations also apply in generzl
to the lower core elevations, although the difference between the
TRAC "ZERO-GAP" and experiment clad temperatures after the end of
the blowdown cooling are in some instances somewhat higher.

In the upper part of the central fuel bundle and generally actoss
the peripheral bundles, differences between the calculated and
experimental fluid conditions make comparisons more difficult.,

At the 43.8 inch elevation (Fig 131) for example, we see that

(1) The calculated cladding temperature shows dryout well in
advance of the experiment.

(2) - As mentioned above the "ZERO-GAP" calculated peak clad
temperature is lower than the measured value (assumed to bes
due to a partially open gap towards the top of the core).

(3) In the experiment the bottom-up liquid flow is limited .
that the temperature of thermocouple does not £fall to
saturation, whereas in the calculation more extensive
cooling is observed, and finally:

(4) The rod thermocouple cools to saturation at ~ 19 secs due
to the top-down flow of liquid from the upper plenum and
this is not predicted in either calculation except at the
highest elevation (ie at 62 inches, see Fig 133).
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As stated above differences 1, 3 and 4 arise because of
inaccuracies in the calculated core blowdown fluid.conditions and
the sensitivity of the thermal response to them, and for this
reason it is not easy to see how to improve the accuracy of the
calculation. However it does go to show that an accurate
calculation of the core blowdown hydraulics is a pre-requisit to
the calculation of the core blowdown cooling.

As a full review of the loop and vessel behaviour is contained in
the previous Section we cnly comment here on the observed
differences between the two calculations and their relation to
the experimental data. As might be expected there are only minor
differences in both the loop and vessel hydraulic conditions
between the "ORIGINAL" and "ZERO-GAP" calculations. In line with
the comments in the previous Section we see that neither
calculation produces any direct bypass of subcooled ECCS liquid,
whereas the experiment shows subcooled bypass at ~ 31 secs,
estimated to be between 80 and 130 kg. The calculated broken
loop mass flow (Fig 80) also shows that there is no reverse flow,
ie flow from the BST to the reactor vessel in the "ZERO-GAP"
calculation, as there is in the "ORIGINAL" calculation between

~ 42 and 48 secs. This results from the fact that the system
pressure is fractionally higher in the "ZERO-GAP" calculation due
to the increased heat transfer from the core fuel rods to the
coolant.

.The calculated intact loop cold leg behaviour during refill, as
explained in the previous Section, is very sensitive to the
details of the calculated transient particularly through the
condensation model and this can then feed back and influence the
vessel refill and early core reflood behaviour. Figs 91 and 92
which show the intact loop cold leg density and mass flow,
upstream of the ECCS injection point, show that there is a
difference in the behaviour of the two calculations during the
refill (accumulator flow) period, with the "ZERO-GAP" calculation
producing some rapid liquid slugs after ~ 38 secs. This movement
and accumulation of the.ECCS liquid in the intact loop cold leg,
through the behaviour of the condensation model, then modifies
the subsequent core reflood. An additional consequence of the
different intact loop cold leg behaviour is that the pump in the
"ZERO-GAP" calculation runs down slightly quicker after

"~ 45 secs, (Fig 96).

One interesting feature of both the calculation and the
experiment observed in the intact loop cold leg is that following
the exhaustion of the nitrogen from the accumulators, the liquid
begins to accumulate, producing an increase in the intact loop
cold leg density, (Fig 91), at about 85 secs.

Finally the other observable difference between the two
calculations, is that following the end of the accumulator liquid
flow, the pressure drop from the reactor vessel to the BST
produced by the flow of nitrogen steam and water is smaller in
the "ZERO-GAP" calculation than in the "ORIGINAL" calculation.’

So that after 55 secs the system pressure (see Fig 114 for
example) is lower in the "ZERO-GAP" calculation. Fig 114 however
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also shows that it is now closer to the experimental value. The
difference in this pressure rise results from the different mass
flow and densities calculated along the broken loop cold leg
(Figs 80 and 79) after 55 secs, and thege differences result from
the way iiquid has accumulated in the intact and broken loop cold
legs and a2long the top of the downcomer prior to this time.

5(v) “"ZERO-GAP" and "ISHARP" Calculations

The fourth TRAC~PF1/MOD1 calculation ("ISHARP") of experiment
LP-02-6 performed was a repeat of the previous "ZERO-GAP" )
calculation (code version UK BO3, LANL 13.0) except that the core
interface sharpener logic was bypassed. The reason for carrying
out this calculation was to examine the effect of bypassing this
logic in an integral calculation. Previous analysis of separate
effects reflood experiments (Ref 7) had recommended bypassing
this logic as the best way of mcdelling the core void fraction
above the quench front and previous plant studies had also shown
that the interface sharpener logic could produce unphysical
liquid holdup in the core during blowdown. As the differences
between the "ZERO-GAP" and "ISHARP" calculations relate to the
core hydraulics, one would expect to sce differences primarily in
the core flows and from these differences in the fuel rod
cladding temperatures, and pessibly via the heat input ‘to the
fluid from the fuel rods, differences in the loop behaviour.

The results from the two calculations together with the
experimental data, where appropriate are shown in Figs 149 to
219. The most striking feature of the comparisgson taken as a
whole is that the difference between the two calculations is
relatively small. The resultant cladding temperatures for
example (Figs 195 to 219) are very similar, this just amplifies
the fact that for large break transients performed in LOFT
(primarily because of the size and location of the core) the
cooling of the fuel rods during both blowdown and reflood is
dictated by the system hydraulics in the lcops and the vessel
dovncomer. .

It should bes noted, that as for the previocus calculations
performed with code verison 13.0, the "ISHARP" calculated
cladding temperatures are subject to the error in the heat
transfer logic (Ref 18) described in the previous Section. (See
for example Figs 195, 206, 207, 212, 213 and 217).

The core inlet and outlet flows together with the core liquid
mass (Figs 185, 186 and 189), show for the ISHARP calculation, as.
would be expected, that during blowdotm more of the liquid
flowing into the bottom of the core flow ocut of the top and so.
less accumulates in the core. After the flow into the core
during blowdown, liquid re-enters the core just after 30 secs in
both calculations, as the lower plenum fills. After ~ 40 secs
the core flow oscillations for the "ISHARP" calculation increase
in magnitude with the liquid fraction (Fig 190) oscillating
between ~ 0.2 and zero, this is also reflected in the behaviour
of the downcomer and lower plenum volume fractions (Figs 189 and
188), so that the average quantity of liquid in the core after
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40 secs is slightly less for the "ISHARP" calculation. Following
the end of the accumulator liquid flow at ~ 54 secs the surge of
liquid into the core occurs in both calculations, only the
absence of the interface sharpener logic in the "ISHARP"
calculation allows more of the liquid to flow out of the top of
the core and so the mass of liquid retained in the core is
~ slightly less. Also the subseguent oscillations in the core
liquid content that result from the fuel rods quenching are
greater in magnitude for the "ISHARP" calculation. :

As stated above, the above differences in the core hydraulics
produce only small changes to the cladding temperatures. At the
peak power elevation of the central fuel assembly, Figs 197 to
200, we see that during blowdown the "ISHARP" transient cools
somewhat quicker following the bottom-up flow of liquid as liquid
flows through the core rather than being retained at the bottom.
However the period of cooling is slightly shorter so that the net
heat loss from the fuel rod to the coolant is about the same. So
that following the blowdown cooling the calculated cladding
temperatures in the centre of the core rise to about thé same
value, ie ~ 50K higher than those in the experiment. If anything
the "ISHARP" calculated blowdown temperature transient is in
close agreement with the experimental data.

At these elevations (ie 20 to 30 inches) reflood cooling in the
calculations begins just prior to 40 secs and although the
cladding temperatures level off they do not fall (in the "ISFARP"
calculation) until after the "post accumulator” flow of liquid
into the core at ~ 54 secs. This just reflects the slightly
lower average core liquid content in the "ISHARP" calculation
during this period. However following 54 secs the cooling is
such that both calculations have near identical quench times.

At the bottom of the central fuel assembly (Figs 195 and 196) the
initial dryout of the "ISHARP" calculated fuel rod is delayed,
due in part to the heat transfer error described above, so that
the resultant cladding temperatures during blowdown are lower
than both the "ZERO-GAP" calculation and the experiment. Towards
the top of the core (Figs 201 to 204) the overcooling and
resultant gquenching of the fuel rods due to the bottom-up flow of
liquid is even more exaggerated for the "ISHARP" calculation (see
Fig 203) and although some influence of the top-down flow of
liquid is seen this is not enough to extend the area of quenching -
below that resulting from the bottom-up liquid flow.

A comparison between the two calculated cladding temperature
transients for the peripheral fuel bundles is made almost
impossible because of the error in the heat transfer logic
described above and in Ref 18. The spurious cooling produced by
this error which is restricted to high void fractions is more
prevalent in the "ISHARP" calculation than in the other 13.0
calculations because of the changed core hydraulic conditions.

The changes in the loop flows produced by the change in the core
hydraulic modelling are very small. As a result of the slightly
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lower quantity of heat transferred from the core to the coolant
during the early part of reflood the system pressure falls just
below that used to represent the BST, so that liquid flows back
along the broken loop cold leg at ~ 48 secs. As a consequence of
the increased flow out of the top of the core during blowdown for
/the ""ISHARP" calculation one might expect to see a change in the
intact and broken loop hot leg flows, and although a small
increase in the broken loop hot leg flow 13 seen (Fig 158) at

~ 9.5 secs the change is very small.

As might be expected there are some changes to the intact loop
cold leg behaviour during reflood (Figs 162, 163) but again these
are small and the flow of liquid up-stream of the ECCS injection
point is limited to a short period of between ~ 38 to 48 secs for
both the "ISHARP" and  "ZERO-GAP" calculations. These cold leg
flow oscillations occur either in part or whole as a conseguence
of the pressure induced oscillations in the core flow rather than
being induced by changes in the cold leg condensation. This
contrasts with the experimentally observed intact loop cold leg
flow oscillations which extend for most of the accumulator flow
period, ie from ~ 21 to 54.5 secs, and must arise at least
initially from the condensation of the intact loop steam f£low by
the subcooled FCCS liquid.

6 SUMMARY AND CONCLUSIONS

This report compares the results of .four. TRAC-PF1l/MOD1
calculations with the experimental data for the LOFT large break
experiment LP-02-6. The four calculations compare changes to:;
code version, ie versions 12.2 and 13.0, fuel pin modelling, ie
"as manufactured" and zero steady state fuel clad gap and to core
hydraulic modelling, ie with and without the core interface
sharpener logic.

The features that distinguish the LOFT LP-02-6 experiment from
the previous 200% double-ended cold leg break experiments L2-3
and L2-5 and the subsequent experiment LP-LB-~l1 were the fact that
it was performed at near full power (ie 47 MW) with a relatively
low loop flow (248 kg/sec) and therefore a high core AT and the
fact that the pumps were tripped and allowed to coast down
naturally at the start of the transient. This contrasts with
L2-3 where the pumps were kept running and L2-5 and LP-LB-l where
the pumps were decoupled from their flywheels at the start of the
transxent.

The transient was initiated at time zero by the opening of the
quick acting blowdown refief valves, and the upper plenum and
core rapidly void as subcooled liquid flows out of the broken
locop cold leg. As the core voids the reactor power falls and the
fuel rods dry out. The cladding temperatures rise as the stored
energy in the fuel equalises out across the fuel pin. The
subsequent behaviour of the fuel rods during blowdown in LP-02-6
is dictated by the core hydraulics as for the other LOFT large
break experiments. The balance of liquid flow into the vessel
downcomer i3 such that after ~ 4 secs there is a net inflow as
the broken loop cold leg flow falls, as the system pressure falls
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to the 'cold leg' saturation pressure, and the inertia of the
pumps produce a flow of liquid along the intact loop cold leg
close to the steady state value. The net inflow into the vessel
produces a small bottom-up core flow which is enhanced by the
flashing of the cold liquid in lower plenum and downcomer. The
core flow primarily cools the lower 2/3 rds of the fuel rods - to
the extent that the recorded temperatures on the external
thermocouples fall to saturation. However in addition to the
bottom-up flow there is a significant downflow at about 15 secs,
as liquid flowing back along the intact loop hot leg from the
pressuriser and the up (hot) side of the steam generator tubes
accumulates in the upper plenum. This downflow is sufficient to
cool the external thermocouples to saturation at all elevations
from the top of the core down to about 30 inches. Therefore the
whole of the core is subjected to blowdown cooling either from
the bottom-up flow or the top-down flow and the central region
from ~ 30 to 40 inches experiences both. This "double" cooling
is unique to experiment LP-02-6 and reduces significantly the
core stored energy. :

There has been considerable speculation as to whether the
observed LOFT fuel rod behaviour is indicative of what is
happening on the unistrumented fuel rods, and this is currently
the subject of a separate investigation. However an indication
of the heat removed from the instrumented fuel rods can be
obtained from the thermocouple temperatures flowing the blowdown
cooling, when the fuel rod temperatures are once again
re-equalised. At the peak power elevations, ie between about 24
and 30 inches the cladding temperature rises to ~ 800K.

The primary system pressure falls to the accumulator trip point
of 42 bars (600 psi) at about 17.5 secs and accumulator liquid
begins to flow into the intact loop cold leg. In line with all
the other LOFT large break experiments the measurement rake
immediately upstream of the ECCS injection location indicates an
oscillatory flow of subcooled liquid along the intact loop cold
leg starting at about 21 secs. This flow continues until the
flow of accumulator liquid into the intact loop cold leg
terminates at ~ 54 secs. The accumulator liquid flows into and
down the downcomer filling the lower plenum. The broken loop
cold leg measurements supported by the downcomer measurements
located on the broken loop side show that there is no continuous
bypass of subcooled liquid. However a slug of subcooled liquid
is‘observed to flow along the broken loop cold leg between ~ 29
and 32 secs, the total mass of this slug is estimated to be very
roughlx about 100 kg; compared to the total accumulator volume of
1.69 m ie ~ 1,690 kg. AaAn additional slug of subcooled liquid
flows along the broken loop cold leg at ~ 50 secs, again with a
total mass of roughly 100 to 150 kg. Because of the small scale
of the LOFT facility and therefore the relatively high metal-work
heat flux the primary system pressure never falls below that in
the BST. So that in addition to the flow of the two slugs of
subcooled liquid along the broken loop cold leg there is a flow
of two-phase saturated fluid as the liquid in the lower plenum
continues to flash and steam and entrained liquid flow from the
vessel to the BST.
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The lower plenum £fills rapidly with ECCS liquid so that the
bottom of the core begins to cool again at ~ 31 secs. Following
this time cooling is observed progressively up the core with a
turnover, in the cladding temperature rise above 30 inches
occurring at about 40 secs. The most noticeable effect observed
by the cladding -thermocouples once reflood cooling starts is that
they behave in an oscillatory manner. This is attributed to an
oscillatory core flow which is likely to occur as a result of a
combination of core-steam generation oscillations and intact loop
cold leg condensation induced oscillations. Just ‘as the core
inlet hydraulics determines the fuel rod cooling it also
determines the fuel rod quench. Fxcept at the very bottom of the
core a significant degree of ccherency is seen in the fuel rod
quench, for example in the central fuel assembly the 11 inch and
21 inch thermocouples and some of the 15 inch thermocouples all
quench at ~ 46.7 secs, and above 24 inches the final quench
occurs between 54 and 56 secs. The final quench coincides with
the termination of the accumulator liquid flow, and results from
a surge of liquid into the core as the reduction in condensation
and the presence of the accumulator nitrogen causes the intact
loop cold leg pressure to rise. The rise in the intact loop cold
leg pressure also causes some of the ECCS liquid located in the
intact loop cold leg and at the top of the downcomer to flow out
of the broken loop cold leg to the BST. Because of the blowdown °
cooling of the core the maximum cladding temperature at ~ 54 secs
when the surge of liquid into the core occurs is only ~ 700K, so
that the whole of the core in experiment LP-02-6 is cooled and
quenched by the liquid from the accumulator.

The results from the four TRAC-PF1/MODl calculations bear a large
degree of similarity particulary in their hydraulic behaviour.
They all theresfore, in the main, produce the same global
transient and suffer from the same modelling deficiencies. Those
sensitivities performed for a specific reason, eg reducing the
steady state fuel clad gap obviously produced the desired result
of lower cladding temperatures.

In spite of the fact that the calculated transients overestimate
the observed subcooled flow in the broken loop cold leg, flow
into the core after ~ 4 secs extends to the top of the core and
quenches the 62 inch elevation whereas in the experiment the
"quench" only reaches the 45 inch level. However whereas in the
experiment the subsequent top-down liquid flow "quenches" the top
of the core particulary in the peripheral fuel bundles no such
cooling is observed in the calculations. Therefore particularly
towards the top and the bottom of the core the calculated fuel
rod temperatures after blowdown are higher than the experimental
values. In the centre of the core however (ie ~ 24 to 27 inches)
for the “ZERO-GAP" calculations the calculated cladding
temperatures are only about 50K too high showing that the net
heat loss from the fuel rod for the calculations is only slightly
lower than in the experiment.

In all four calculations there is no direct bypass of the ECCS

subcooled liquid so that, as in the experiment, the lower plenum
fills up rapidly with some liquid first entering the bottom of
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the core at ~ 28 secs. The subsequent core inlet flow is
oscillatory as a result of steam production in the core, and the
fuel rods begin to cool at ~ 32 secs at 1l inches and at ~

39 secs at 21 inches.

One region where there is a difference in the behaviour of the
four calculations is in the intact loop cold leg during the
accumulator liquid flow period. In some cases liquid slugs form .
upstream of the ECCS injection point and in other cases not.
These differences are attributed to the sensitivity of the TRAC
condensation model to small changes in the steam and liquid flows
rather than to any specific modelling changes between the four
calculations. 1In none of the calculations however was the
calculated flow similar to the experimental observations, and
because no bypass was calculated the differences in the
calculated intact loop cold leg behaviour only had a very minor
effect on the vessel refill and subsequent core reflood.

In all of the calculations a surge of liquid into the core occurs
as a result of the pressurisation of the intact loop cold leg as
the flow from the accumulator changes from subcooled water to
nitrogen. This liquid surge effectively fills the small LOFT
core and so the fuel rods cool. The final- quench is delayed
because the cladding temperatures are at least 80 to 100K higher
than the equivalent experimental values and no modelling of the
influence of the external thermocouples on the quench process is
included in the calculations.

One may donclude therefore that although small variations were
observed in the hydraulic behaviour of the four calculations,
because no changes were made to the following sensitive areas the
general behaviour of all the calculations was the same; ie the
nature of a LOFT transient is determined by:

- the blowdown cooling, in which the calculations show too
-much bottcom-up flow and not enought top-down.

- ECCS bypass, none is calculated and only small slugs of
direct bypass are observed in the experiment.

- the slug of liquid forced into the core following the
termination of the accumulator ligquid flow, which is
sufficient to cool/quench the whole of the "short" LOFT

core.

The thermal response of the core to the above hydraulics is of
course different for the different calculations, with those
calculations with the reduced fuel stored energy {(ie zero fuel
clad gap) producing results closest to the experiment. However
the very limited fuel pin model available in TRAC restricts the
modelling ability to better simulate the observed thermocouple

behaviour.
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TABLE 1

TRAC CALCULATIONS

P

CODE VERSION

LANL
12.2
13.0
13.0

13.0

29

UK

X26

BO3

BO3

BO3

FUEL CLAD

INTERFACE
GAP WIDTH SHARPENER
LOGIC
100 #on Yes
100 #on Yes
0.0 Yes
0.0 No



oo e -

< TABLE 2

INITIAL CONDITICNS FOR

EXPERIMENT LP-02-6

Parameter

Primary Coolant System
Temperature across core (K)

" Hot Lég pressure {(MPa)
Cold ieg temperature (K)
Mass flow rate (Kg/s)

Primary coolant pump injection
(both pumps) (%/s) .

Core bypass pipe flow (kg/s)

-

' Hot leg nozzles bypass flow (Kg/s) 5.6

Reflood assist valve flow
rate (Kg/s)

Total core bypass flow (Kg/s)

Reactor Vessel
Power level (MW)

Maximum linear heat generation
rate (KW/ft)

Steam generator secondary side
Pressure (MPa)

Steam generator feedwater flow
rate (Kg/s)

Pressuriser
Liquid volume (ma)

Steam volume (ma)
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TRAC -
Calculatéd “Experimental
vValue value
34.5 33.1%1.4
15.04 15.09%0.08
556.7 555.9%1.1
248.1 248.7%2.6
0.0 0.092%0.003
6.5 i
J
| Not.
} measured
13.1 j directly .
{
) I
25.2 s
47.0 46.0%1,.2
15.07 14.9%1.1
(Av rods) .
16.20
(Peak rods)
5-62 -
2.53 -
0.555 0.607%0.02
0.376 0.39%0.02



" TABLE 2 (Continued)

Water temperature (K)
Pressure (MPa)

Liquid level {m)

Broken Loop

Cold leg temperature (K)

oW

Hot leg temperature (K)

= Reflood assist valve leak flow
s rate (Kg/s)

Suppression Tank

Pressure (gas space) (KPa)

Emergency Core Cooling System
Accumulator liquid level (m)

Accumulator liquid volume (m3)

Accumulator gas volume (m3)

Accumulator pressure (MPa)

 615.4

_.15.03
1.26

556.7
556.1
13.1

15.04

1.05
1.315
(tank)
0.36
(line)
0.642

4.11

Accumulator liquid temperature (K) 302.0

¥ " Figh pressure injection flow’
rate (4/s)

High pressure injection liquid
temperature (K)

Low pressure injectioh flow
Rate (x)

Low pressure injection liquid
temperature (K)
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1.50

302.1

5.5

302.9

615.6*5.8
15.320.11
1.04%0.04

553%6
560%6

1.2360
0.4559

0.9506
4.11%0.06
302%6.1

1.04*0.04

3057

305%7



TABLE 3

CHRONOLOGY OF EVENTS FOR EXPERIMENT LP-02-6

Event TRAC
Calculated Experimental
Value value
Blowdown valves opened 0.0 ' 0
End of sub-cooled blowdown 0.05 0.05%0.05
Reactor scrammed } - 0.1%0.01
Primary coolant pumps tripped 0.8 - 0.8%0.01
Cladding temperatures initially 0.32 0.9%0.01
deviated from saturation
End of sub-cooled break flow 4.9 4.0%0.5
Maximum cladding temperature 4.6 4.9%0.2
(1061 K @ 24 in) reached ‘
(rlowdown)
Bottom-up core rewet initiated 4.2 5.2%0.2
Bottom~up core rewet complete ‘ 13.1 9.1%0.2
Partial core top-down quench 14.8%0.02
initiated
Pressuriser emptied - 13.6 15.5%0.5
Primary coolant pumps disconnected - 16.5%0.01
from flywheels
Accumulator injection initiated 16.6 17.5%0.5 .
Partial core top-down quench complete 18.6%0.2
High pressure injection initiated 22.0 21.8%0.01
Lower plenum refill complete 36.5 to 48.2]
(from void) i
: §
Lower plenum refill complete 28.7 ! 30.7%0.2

(thermocouple)

Low pressure injection initiated 35.1 34.8%0.01
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TABLE 3 (Continued)

Maximum cladding temperature 40.5 .- 41%0.2
(929.7 K @ 24 in) reached (reflood) PR
Accumulator empty _ 48.0.
Accumulator injection complete 53.0 57¢52
.~ Core quench complete o1.1 560.2

v

2 Ref 1 calculates the accumulator injection complete time by

extrapolating from the time the accumulator is empty to the
o time the connecting piping is empty assuming a constant mass
o flow
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CORE AXIAIL FINE MESH ELEVATIONS AND RELATIVE POWER

DENSITY
Fine " Height Power Density
Mesh .
Metres Inches
* 1 0.0 0.0 0.59415
2 0.07625 3.0
3 0.1525 ’ 6.0
4 "0.22875 9.0
* 5 0.305 . 12.0 1.35550
) 0.362 14.25
7 0.419 16.50
8 0.476 ’ 18.75
* 9 0.533 ees 21500 1.54060
10 0.59025 23.25 .
11 ‘ 0.6475 ] 25.50
12 0.70475 27.75
* 13 0:.762 30.00 - 1.47230
14 0.87625 34.5
15 0.9905 39.0
16 1.10475 43.5 - )
* 17 ©1.219 48.0 0.78851
18 1.33325 52.5
19 1.4475 57.0
20 1.56175 6l1.5
* 21

1.676 66.0 0.029708

Fluid aynamic cell boundaries

*»
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CORE BYPASS COMPONENTS

The top of level 3, third radial ring, is linked for each of
the four azimuthal sectors to the bottom of level 1l (rings 2
and 3) by four TEE components. The horizontal side arms of
the TEEs are connected to the outer surface (ring 3) of level
8.

The arrangement is such that Bypass TEE Components 10l and
103 are connected to r = 3, 8 =1 (3) at levels 3 and 11,
while Bypass TEE Components 102 and 104 are connected to
r = 3, 8 = 2 (4) at level 3 and r = 2, 8 = 2, (4) at
level 11. (This is to allow for the Upper Plenum Hot Leg
connections in radial ring 3 azimuthal  sectors 2, 4 at
level 11). :
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FIGURE 168

INTACT LOOP HOT LEG - EXPERIMENTAL LOCATION PC-2
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THE FOLLOVING ARE PLOTTED AGAINST REACTOR TIHE

MASS FLOV RATE ,FR-PC-201 ,FR-PC-205
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FIGURE 189 INF 1 [SHARP, INF 2 ZEROGAP, INF 3 EXP
: INTACT LOOP HOT LEG - EXPERIMENTAL LOCATION PC-2
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THE FOLLOVING ARE PLOTTED AGAINST REACTOR TINE
LIOUID TEHPERATURE , TE-PC-002A
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FIGURE 170 INF 1 ISHARP, INF 2 ZEROGAP, INF 3 EXP
INTACT LOOP HOT LEG - EXPERIMENTAL LOCATION PC-2
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THE FOLLOVING ARE PLOTTED AGAINST REACTOR T{ME

FIGURE 171 INF 1 ISHARP, INF 2 ZERGGAP, INF 3 EXP

INTACT LOOP HOT LEG - EXPERIMENTAL LOCATION PC-2
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THE FOLLOVING ARE PLOTTED AGAINST REACTOR TIHE

PRESSURE
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THE FOLLOVING ARE PLOTTED AGMNSi’ REACTOR TIHE

PRESSURE ,PT-P139-05-1
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FIGURE 173 INF | ISHARP, INF 2 ZEROGAP, INF 3 EXP
INTACT LOOP HOT LEG - PRESSURIZER
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THE FOLLOVING ARE PLOTTED AGAINST REACTOR TIHME
VATER LEVEL
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- FIGURE 174 INF | ISHARP, INF 2 ZERQGAP, INF 3 EXP
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FIGURE 175 INF 1 ISHARP, INF 2 ZEROGAP, INF 3 EXP
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* THE FOLLOVING ARE PLOTTED AGAINST REACTOR TIME

FIGURE 176 INF 1 ISHARP, INF 2 ZEROGAP, INF 3 EXP
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THE FOLLOVING ARE PLOTTED AGAINST REACTOR TIHE
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FIGURE 177 INF 1 ISHARP, INF 2 ZEROGAP, INF 3 EXP
UPPER PLENUM PRESSURE
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FIGURE 178 INF 1 ISHARP, INF 2 ZEROGAP, INF 3 EXP
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FIGURE 180

THE FOLLOVING ARE PLOTIED AGAINST REACTOR TIME

LICUID TEMPERATURE ,TE-1ST-001
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FIGURE 182 INF 1 ISHARP, INF 2 ZERGGAP, INF 3 EXP

DOWNCOHER LIQUID TEMPERATURE AT 2.4 METRES
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FIGURE 183 INF 1 ISHARP, INF 2 ZEROGAP, INF 3 EXP
DOWNCOHER LIQUID TEMPERATURE AT 0.3 METRES

Winfrich




oze

yobZ W - MIIV

KEY

SYH

aon UNITS

NAME

—— L PLENUM NOH/FLUX  ,KG/NSeed

—— L PLENUM HONM/ZFLUX  ,KG/MSee2

— — L PLENUM HOH/FLUX  ,KG/HSwe2

THE FOLLOVING ARE PLOTTED AGAINST
L PLENUM MOM/FLUX

REACTOR TIHE

wn
[=]
[=]
T
——— —='=-='=-.-'--——_—-

KG/MSuu2
h S
=
5 d
}
'

~-3000 1

40
REACTOR TIHE

a 20

| SECONDS
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FIGURE 185 INF 1 ISHARP, INF 2 ZEROGAP

VESSEL GLOBALS
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THE FOLLOVING ARE PLOTTED AGAINST REACTOR TIHE Winfrith
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FIGURE 186 [INF | ISHARP, INF 2 ZEROGAP
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'THE FOLLOVING ARE PLOTTED AGAINST REACTOR TINE _
CORE LIGUID MASS
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FIGURE 187 INF 1 [SHARP, INF 2 ZEROGAP
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FIGURE 189 INF 1 ISHARP, INF 2 ZEROGAP
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FIGURE 190 INF 1 ISHARP, INF 2 ZEROGAP
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THE FOLLOVING ARE PLOTTED AGAINST REACTOR TINE .
VESSEL LIOUID MASS
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THE FOLLOVING ARE PLOTTED AGAINST

TOT ROD HEAT FLUX
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THE FOLLOVING ARE PLOTTED AGAINST REACTOR TINE
TOT SLAB HEAT FLUX
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FIGURE 193 [INF 1 ISHARP, INF 2 ZEROGAP :

VESSEL GLOBALS

100




0ee

y9¥e W - MIZIV

KEY

SYH
B N UNITS

~— L PLENUH AVG LIO TEM,DEG.K
LOC= S0/ 0/ 1 HNEM=THLP INF=1

— L PLENUM AVG LIQ TEH,DEG.K
LOC= S0/ O/ 1 HNEH=THLP [NF=2

560

THE FOLLOVING ARE PLOYTED AGAINST REACTOR TIME
L PLENUM AVG LIO TEM

540
520
500

480

DEG. K

460

440 VA

420

400

380

]
0 20 40 60 80 100
REACTOR TINE ¢ SECONDS
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THE FOLLOVING ARE PLOTTED AGAINST REACTOR TIME
CLADDING TEWP -FINE, TE-SH05-002

750 1 1 L T { ¥
'700-{
|
650}
i
!
{
}
RHIE
| W
E; }
] !
|
1
{
{
S00}- :
|
|
|
450} 1
\A/—\\i‘\l\’wﬂ-
1000 1 N 2 [} S t
0 20 40 60 80 100 120
REACTOR TIHE ., SECONDS

FIGURE 195 INF 1 [SHARP, INF 2 ZEROGAP, INF 3 EXP
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THE FOLLOVING ARE PLOTTED AGAINST REACTOR TIME

CLADDING TEMP -FINE, TE-SG04-011
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THE FOLLOWING ARE PLOTTED AGAINST REACTOR TINE
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