

International Agreement Report

Assessment of RELAP5/MOD2, Cycle 36.04 Against FIX–II Split Break Experiment No. 3051

Prepared by J. Eriksson

Swedish Nuclear Power Inspectorate S-61182 Nykoping, Sweden

Office of Nuclear Regulatory Research U.S. Nuclear Regulatory Commission Washington, DC 20555

October 1989

Prepared as part of The Agreement on Research Participation and Technical Exchange under the International Thermal-Hydraulic Code Assessment and Application Program (ICAP)

Published by U.S. Nuclear Regulatory Commission

NOTICE

This report was prepared under an international cooperative agreement for the exchange of technical information. Neither the United States Government nor any agency thereof, or any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for any third party's use, or the results of such use, of any information, apparatus product or process disclosed in this report, or represents that its use by such third party would not infringe privately owned rights.

Available from

Superintendent of Documents U.S. Government Printing Office P.O. Box 37082 Washington, D.C. 20013-7082

and

National Technical Information Service Springfield, VA 22161

NUREG/IA-0029

International Agreement Report

Assessment of RELAP5/MOD2, Cycle 36.04 Against FIX–II Split Break Experiment No. 3051

Prepared by J. Eriksson

Swedish Nuclear Power Inspectorate S-61182 Nykoping, Sweden

Office of Nuclear Regulatory Research U.S. Nuclear Regulatory Commission Washington, DC 20555

October 1989

Prepared as part of The Agreement on Research Participation and Technical Exchange under the International Thermal-Hydraulic Code Assessment

NOTICE

This report documents work performed under the sponsorship of the SKI/STUDSVIK of Sweden. The information in this report has been provided to the USNRC under the terms of an information exchange agreement between the United States and Sweden (Technical Exchange and Cooperation Arrangement Between the United States Nuclear Regulatory Commission and the Swedish Nuclear Power Inspectorate and Studsvik Enerigiteknik AB of Sweden in the field of reactor safety research and development, February 1985). Sweden has consented to the publication of this report as a USNRC document in order that it may receive the widest possible circulation among the reactor safety community. Neither the United States Government nor Sweden or any agency thereof, or any of their employees, makes any warranty, expressed or implied, or assumes any legal liability of responsibility for any third party's use, or the results of such use, or any information, apparatus, product or process disclosed in this report, or represents that its use by such third party would not infringe privately owned rights. John Eriksson

STUDSVIK/NP-86/108

1986-09-17

SKI Project 85026, 13.3-917/84

Swedish Nuclear Power Inspectorate

ICAP Assessment of RELAP5/MOD2, Cycle 36.04 Against FIX-II Split Break Experiment No. 3051

ABSTRACT

The FIX-II split break experiment No. 3051 has been analyzed using the RELAP5/MOD2 code. The code version used, Cycle 36.04, is the frozen version of the code.

Three calculations were carried out to study the sensitivity of various parameters to the change of break discharge and passive heat structures. The differences between the calculations and the experiment have been quantified over intervals in real time for a number of variables available from the measurements during the experiment.

Approved by Earc Cellohand

iii

. .

. .

LIST OF CONTENTS Page 1 INTRODUCTION 1 2 FACILITY AND TEST DESCRIPTION 3 2.1 Test facility 3 2.2 The experiment 5 Measurement uncertainty 7 2.3 3 CODE AND MODEL DESCRIPTION 8 3.1 The code features 8 3.2 The input model 9 4 THE BASE CASE CALCULATION 11 5 SENSITIVITY CALCULATIONS 16 6 RUN STATISTICS 18 7 CONCLUSIONS 19 20 REFERENCES FIGURES 21 TABLES 29

APPENDICES

- A Input listings
- B Data comparison plots
- C Calculation to experiment data uncertainties
- D Description for the accompaning data package

· · . . .

.

х.

1

1986-09-17

1 INTRODUCTION

There is a growing interest in modifying existing rules for reactor licensing and safety thermalhydraulic calculation away from those stated in Appendix K (Ref 1) towards procedures based on best estimate types of calculations. Although Appendix K furnishes a set of skillfully and simply phrased rules, its present conservatism on safety is regarded as being in growing contradiction to the increasing knowledge gained from experimental programs. The many advanced best estimate thermal-hydraulic reactor codes in existence today also demonstrate this.

When the simply formulated older calculation rules are replaced by best estimate type calculation procedures another measure of reliability has to be established to ensure conservatism. Plans for conducting code assessments for the purpose of determining the accuracy and the validity of advanced LWR system codes were proposed some years ago (Ref 2). Today the International Code Assessment Program (ICAP) with this goal is being carried out under the auspices of the USNRC (Ref 3).

These calculations are presented as a Swedish contribution to the ICAP. The contribution is funded by the Swedish Nuclear Power Inspectorate.

In the present study the RELAP5/MOD2 version 36.04 is assessed against LOCA experiment No. 3051 carried out in the FIX-II test facility at Studsvik. The experiment is one from the second test series.

Test No. 3051 is a split break simulation and had the smallest break area of all the FIX-II tests, see Table 1. The break area was 10 per cent of the scaled down area of a recirculation line in the reactor.

A description of the test facility and this particular test is provided in Chapter 2. A description of the input model is given in Chapter 3. The base case and sensitivity calculations are discussed in Chapters 4 and 5. Run statistics are given in Chapter 6. General conclusions are drawn in Chapter 7.

Appendix A contains the complete input lists. The data comparison plots are included in Appendix B. Results of the statistical analyses of differences between experiment and predictions for discrete time intervals are included in Appendix C. Finally Appendix D describes the data package on magnetic tape, prepared for use in the ICAP evaluation work.

2 FACILITY AND TEST DESCRIPTION

The FIX-II integral test facility was completed at the end of 1981. It has been run by Studsvik Energiteknik AB under contract with the Swedish Nuclear Power Inspectorate. The experimental program comprises investigations of the fuel-tocoolant heat transfer. Various blowdown and pump trip situations conceivable in Swedish BWR's are simulated.

2.1 Test facility

The test facility is shown in Figure 1. The volume scaling is 1:777 of the Oskarshamn-II reactor, which is of the ASEA-ATOM external recirculation pump design. An exhaustive description of the FIX-II test facility may be obtained from Ref (4), which also provides additional references where various problems pertaining to the construction period are discussed. Therefore, only some fundamental aspects of the facility will be presented here.

The core model involves a full length rod bundle, which in the geometry is closely related to a fuel element of the ASEA-ATOM design and which is electrically heated by DC. Here, however, there are only 6 x 6 rod simulators instead of the 8 x 8 rods in a fuel element. Figures 2 and 3a show details from the core simulator design. As seen, filler bodies are placed between the square-section fuel channel and the circular-section pressure vessel to reduce the water-filled volume, which otherwise may influence the test by the leakage of steam to the upper plenum during depressurization. The water surrounding the fillers is externally recirculated and cooled by 200 to 250 kW.

The upper part of the pressure vessel, Figure 3b, holds the steam separator and the steam condenser volume with its three sprinklers. During steady state power operation the steam outlet is closed. The turbine power is modelled by the partial circulation of water from the downcomer through an external 6 MW cooler with feedback to the sprinklers of the steam condenser and to the upper part of the downcomer. The flow rate in the two branches with cooled water is adjusted to control the pressure and the inlet subcooling. The remaining downcomer flow, representing the recirculation coolant flow in the reference reactor, splits at the lower downcomer end into two loops. One loop represents three of the intact recirculation lines of the reference reactor, while the other loop, representing a fourth recirculation line, incorporates the break devices. Both loops have its own recirculation pump. The intact loop pump speed is controlled according to a predetermined speed history.

The FIX-II has, as part of the core model, an external bypass simulator, Figure 30, through which about 12 % of the recirculation mass flow is diverted through a control valve. This bypass is heated separately to represent the channel wall heat transfer. At the lower end of the bypass there is a stagnant water volume to simulate the reference reactor space for the control rod guide tubes.

Since the FIX-II facility has been designed for blowdown experiments only, no emergency core cooling equipment is installed.

The data collection system is constructed around a signal processor controlling 192 measurement channels. The selection of measurements is made in a signal exchange terminal. A multipurpose minicomputer transfers the raw-data of measured parameters to a magnetic tape. From this tape, the final analysis at the central computer gives the desired tables and plots from an experiment. The data acquisition system includes measurements to obtain:

- pressures (PT)
- differential pressures (dPT)
- temperatures of fluids (TE)
- mass flows (dPT, PT, TE)
- electric currents (I) and voltages (U)
- pump speeds (nT)
- water level positions (CE)
- valve positions

at places shown in the instrumentation diagram, Figure 4.

For recording clad temperatures there were about 100 thermocouples engaged at 16 axial levels of the heated length in the 36-rod bundle.

2.2 The experiment

The preparation of the experiment is initiated several hours before the actual experiment. For the heat-up of the facility, a 200 kW preheater is involved for a period lasting about 5 h. The recirculation pumps are also running during this period. Initial conditions are then established by switching the power supplies to the bundle and

to the bypass with the 6 MW cooler and the condenser spray in operation. The preheater is now disconnected. For about 10 to 30 minutes, the electric power to the rod bundle and the bypass heating is gradually increased until the initial test conditions are reached. Necessary calibrations are made, and once the equilibrium conditions are approved, the sequence control equipment is activated for break opening, valve manoeuvres, power reduction, pump speed changes and so forth, according to a programmed scheme for the test. For the split break test No. 3051, the transient ends 137 s after opening of the break.

In the present FIX-II experiment, the speed of the pump in the intact recirculation line decreased from the break time to about 20 % of the initial speed at end of the transient. The speed of the broken recirculation line pump was not explicitly controlled.

The break flow escaping through the fast opening break valve, Figure 1, is discharged into the receiving tank, T2. Initially, the tank is partly filled with cold water for efficient pool condensation of the break flow.

The split break assembly consists of a T-piece on the line from pump P2 to the lower plenum. A break flow limiting orifice, downstream of the break isolation valve, consists of an exhangeable conical inlet part followed by a restriction pipe. In experiment No. 3051, the restriction pipe diameter was 6.8 mm corresponding to a 10 % area of one recirculation line.

IBMIRD EA

1

1986-09-17

Apart from the heat removal from the filler body space, see Chapter 2.1, some 100 kW are also lost by the non-perfect insulation encapsulating the recirculation lines and the pressure vessel. The magnitude of the steady state heat losses was one argument for not performing experiments with very small break areas at FIX-II.

The main measured parameters for the steady state before break are reproduced from Ref (5) in Table 4. The test performance chronology, related to the programming of the sequence control equipment, is given in Table 5.

Experimental raw data were collected for the whole period of the transient. However, internal flows were then only qualified until about 50 s due to uncertainties in the two-phase flow rate measurements.

A summary of the main results (including event times, maximum cladding temperatures and some peak mass flows) is given in Table 6.

2.3 Measurement uncertainty

To obtain estimates for the accuracy of the measured data, test procedures were adapted within the experimental program. Probable errors and errors corresponding to a 95 % confidence level as derived from these tests are summarized in Table 2a. The probable errors of derived quantities, mostly mass flows, are given in Table 2b. The pump speeds are measured using a tachometer of a 1 r/s accuracy. The pump characteristics were verified against the manufacturer's data for cold water single phase operation.

3 CODE AND MODEL DESCRIPTIONS

The assessment calculation for the FIX-II experiment No. 3051 was done using RELAP5/MOD2, Cycle 36.04. The code was implemented in June 1986 on a CDC computer at the Stockholm Comsource Centre where the calculations were carried through. The descriptive document available for this code at the time of preparing the calculation input was the rather detailed code manual (Ref 7) which also contained an input data manual. The code features are discussed in Chapter 3.1.

Existing FIX-II input for RELAP5/MOD2 (Ref 6) and a previous RELAP5/MOD2 calculation (Ref 8), formed the basis for the present RELAP5/MOD2 input. Details of the input are discussed in Chapter 3.2.

3.1 The Code Features

An extensive code description for the RELAP5/MOD2 is given in (Ref 7). The main characteristics of the code are summarized in Table 3.

Since the RELAP5/MOD2 code is primarily developed for PWR application, the question arises whether the code fails to predict some important features for a BWR-type application like the present FIX-II experiment.

Key questions are, for instance, the behaviour of droplets under top spray cooling, the effects of lower plenum and guide tube flashing on the water distribution in the system, dryout and post dryout phenomena. For experiment 3051 only the effects of mass distribution could be addressed since no dryout was observed in the experiment.

. IBMIRD EA

3.2 The Input Model

The model geometry used in the present calculations is closely related to geometries used in several previous calculations for FIX-II experiments using previous RELAP5/MOD1 code versions (Refs 6 and 8). The nodalization diagram for the geometric modelling used is shown in Figure 5. Figures 6 and 7 depict the modelling in the geometry of the test facility.

To reproduce fundamental measured steady state quantities, see Table 4, the input for the steady state search run got some additional components and control systems:

- I To obtain the steady state dome pressure, a time dependent volume outside of the opened steam relief valve was added. This volume had the experimentally measured dome pressure.
- II The speed of the pumps P1 and P2 was regulated using the RELAP5 control system to reproduce the measured mass flows.
- III To divert the correct mass flow into the core bypass, the junction from the lower plenum was modelled as a motor valve. By trip logic that valve was regulated to give the experimental bypass mass flow. When entering into the transient calculation, the valve setting was fixed.
- IV The measured steam separator collapsed level was satisfied by connecting an auxiliary time dependent volume to the top of the steam separator. The connecting junction was modelled to regulate the collapsed level by water exchange depending of the level offset.

Evidently, some non-zero flows (points I and IV) will remain at the junctions from the pressureand level regulating time dependent volumes. These flows are quite small and are influenced by the system heat balance.

The input for the steady state calculation is given in the Appendix A.

4

11

1986-09-17

THE BASE CACE CALCULATION

The transient calculation of the base case (called Case A) was continued from the restartplot file obtained from the steady state calculation. To verify the quality of the steady state, the opening of the break was delayed by 30 s.

The calculation of the transient itself was carried out without any particular problems. The smooth lapse of the CPU-time, Plot B.34 and of the computation mass error, Plot B.35 indicate that.

A set of results from the base case calculation and the sensitivity calculations were selected to satisfy the requirement on assessment parameters given in Table 3 of Ref 3. Those parameters are listed in the Table 8 and the corresponding plots reproduced in Appendix B. Since some of the parameters are not available from the measurements, only comparisons between the different calculations are shown in some of the plots. For the mass flow comparisons, it should be pointed out that the experimental data are not reliable after voiding has begun which for most measurements occur 40 to 50 s after break opening time.

The total mass inventory is dependent on the feed and spray water flow, the flow through the relief value and the break flow. The spray flow and the feed water values are closed about two seconds after the break. There is a good agreement between calculation and experiment of the mass flow rate through the steam relief value, Plot B.27. The break mass flow, Plot B.29, which in the experiment is derived from the increasing

content of a flow receiving tank, Plot B.30, was overpredicted in the base case calculation, particularly up to 45 s. The measured mass flow shows a pronounced peak during the very first seconds after the break. This peak is not realistic and is caused by steam replacing water in the tube leading from the break to the receiving tank. This results in an apparent volume increase equivalent to a water mass of about 37 kg from about 3 s until the end of the test. At the end of the test, the break valve is closed causing refill of the break line. Taking this into account the base case calculation overestimated the mass loss through the break by about 23 kg.

The thermal-hydraulic conditions in the system are also influenced by heat exchange with the core and other boundary structures. Plot B.3 shows the calculated heat exchange with all the passive wall structures in the loop except for the separate filler body space with a knwon cooling power of about 256 kW. The heat returning from the passive structures exceeds the core decay heat from about 50 s onwards. The structural wall material thickness of the components was generally modelled as 0.09 times the tube inner diameter.

The system pressure, Plots B.20, B.21 and B.33, was well predicted until 40 s. Afterwards the predictions decreased faster than in the experiment. The cycling of the steam relief valve dominates the behaviour of the system pressure.

Flow rates are measured at the bypass inlet, at the discharge sides of the two main pumps and also in the broken loop between break and vessel inlet; these flow rates are depicted in Plots B.22 through B.25. Two additional measurements of

IBMIRD EA

13

1986-09-17

in-loop mass flows are the differential pressures over the orifice in the steam separator, Plot B.17 and over the core inlet restriction, Plot B.2. The mass flows evaluated from the experiment, i.e. Plots B.22 through B.25, are not reliable after the formation of steam has started at the respective location. The times for the first steam formation range between 40 and 50 s and are indicated by increasing flow oscillations. Up to that time the predicted base case flow rates compare well with the measurements. The flows in the broken loop from the pump side and the lower plenum side, Plots B.24 and B.25, are in agreement with the break flow behaviuor.

Plots B.1, B.13 and B.28 show calculated fluid densities at the core bottom, at the reactor vessel bottom and upstream of the break. Fluid densities were not directly measured in the experiment.

At the downcomer bottom, Plot B.18, the first steam is formed at about 40 s when the steam relief valve is opened. The calculation predicts saturation before this point in time. Notice that the thermocouple response may have been affected by structural material. Shortly after 40 s the loop conditions are saturated and the fluid temperatures continue strongly coupled with the pressure.

The fluid inventories of the core, Plot B.12, the upper plenum, Plot B.16, the downcomer, Plot B.14, and of the lower plenum, Plot B.15, are compared as differential pressures which are directly measured in the experiment. The differential pressure over the core is generally

underpredicted which means that the mass of water in the core was larger than calculated. Underprediction of the friction losses could also have contributed to the discrepancy.

The differential pressure in the lower plenum, Plot B.15, is initially slightly high but is after opening of the steam relief valve reasonably well predicted.

The comparisons of the rod clad temperatures are done at the clad inner surface which is closest to the thermocouple positions of the heated rods in the experiment. The calculated temperatures, Plots B.4 through B.9, agree reasonably well at various levels of the core with the measurements in the experiment except for early and late in the transient. No dryout was ever measured or calculated and heat transfer coefficients typical for two phase cooling provided a strong link between the clad and fluid temperatures. The discrepancies late in the transient were therefore a result of the pressure (and fluid temperature) prediction.

During the steady state and early in the transient the clad temperatures in the experiment appear higher than the predicted temperatures by as much as 10 K. This disagreement is too large to be explained by the thermocouple location in the calculation model.

Heat transfer coefficients (HTC) evaluated from the measurements and calculated HTC are compared in Figure 8. The calculated HTC show a larger variation with time than those obtained from the

measurements. Since the temperature differences are small the measurement uncertainty could be significant. No definite explanation could be identified for the discrepancy.

5 SENSITIVITY CALCULATIONS

Although the results from the base case calculation (Case A) compared well with the experiment for many parameters an improved prediction quality could obviously be obtained by adequate input updates.

Case B

The modelling of the present 10 % split break had used a motor valve applying an opening time of 1.2 s known from the experiment. The junction characteristics of that break valve had been a choking model combined with and abrupt area change option. The default value of unity had been applied for the break discharge coefficient.

Case B was run with a break discharge coefficient of 0.76 for subcooled upstream conditions. This value was determined from several sensitivity studies. A discharge coefficient of unity was retained for saturated upstream conditions.

The overall results were generally improved by this change. In particular differential pressures over the core, Plot B.12, over the downcomer, Plot B.14, over the upper plenum, Plot B.16, and over the steam separator, Plot B.17, were in a better agreement with the experiment. Improvements in temperature predictions were also obtained as a consequence of a slightly lower depressurization rate.

Case C

Case C was devoted to modelling of heat exchange with the surroundings. Since this was the smallest break size ever tested in FIX-II it could be expected that the heat exchange could affect the results. Case C used the break discharge coefficients as in the Case B.

IBMIRD EA

17

1986-09-17

The previously used heat transfer had been determined from steady state conditions. It had been noted that the exact core inlet subcooling was difficult to reproduce. The offset was 2 to 3 K.

To obtain a cooler fluid entering the core the outer surface heat transfer coefficient was split into three coefficients in the ratios of 1:3:9 such that most structures had about the same heat transfer coefficient as earlier. Some structures in the flow path from the feed water inlet to the core inlet, like the pumps and the vessel bottom volume, got the high outer surface heat transfer coefficient. The low heat transfer coefficient was applied on the steam dome structures.

As it turned out this rather large change in the outer surface heat transfer coefficients had a very limited influence on the predicted core inlet subcooling. The steady state fluid temperature decrease down to the core inlet is consequently still not fully explained. The results were nearly identical to that of Case B.

6 RUN STATISTICS

The transient calculation model used with the base case RELAP5/MOD2 prediction for the FIX-II test No. 3051 was modelled by:

58	volumes		
60	junctions		
69	heat structures		

The volumes number includes two pump components and five time dependent volumes and among the junctions there are two valve components and four time dependent junctions.

The computer efficiency is summarized in Table 7 from the major edit printouts, see also Plot B.34. The table also gives the number of time step reductions from requested time steps forced by the current transport limit in the interval from the previous major edit.

The transient calculation needs were:

Computer time	CPU =	2113. s
Number of time steps	DT =	1278
Number of volumes	C =	58
Transient real time	RT =	145.s

A code efficiency factor of

$$\frac{CPU \times 10^3}{C \times DT} = 28.5$$

is obtained, compare Ref 3. The computer used was a Cyber 170-810.

7 CONCLUSIONS

The present calculation for the FIX-II test No. 3051, a 10 % split break, was the latest out of a series of RELAP5 calculations performed for experiments done with the FIX-II facility. That means that improvements on earlier calculation inputs were incorporated in the input used for the present calculations. The code version used was RELAP5/MOD2, Cycle 36.04.

As in the experiment the calculations showed no dryout during the transient. Comparison of clad temperatures are therefore less meaningful since these are linked to the fluid temperature by large heat transfer coefficients. The major cause for the temperature discrepancies is the slight underprediction of the pressure and thereby the fluid temperatures which are near saturation temperatures towards the end of the test.

The sensitivity studies addressed the discharge coefficient and heat exchange with the surroundings. Changing the discharge coefficient from unity to 0.76 for subcooled blowdown improved the prediction of mass inventory in the core, downcomer, and upper and lower plenum. The sensitivity of the heat exchange with the surroundings did not significantly affect the results.

The mass inventories in the core and downcomer were generally underpredicted in the calculations. The redistribution of mass caused by flashing in lower plenum and guide tubes were correctly predicted by the code.

IBMIRD EA

REFERENCES

- Acceptance Criteria for Emergency Core Cooling Systems for Light-Water Cooled Nuclear Power Reactors, 10 CFR, Part 50 (Appendix K), Fed Regist, 39(3). (January 1974).
- 2. FABIC S and ANDERSEN P S Plans for Assessment of Best Estimate LWR System Codes. U.S. Nuclear Regulatory Commission NUREG-0676.
- 3. ODAR, F and BESSETTE D E Guidelines and Procedures for the International Thermal-Hydraulic Code Assessment and Applications Program (Draft). U.S. Nuclear Regulatory Commission, 1985.
- 4. NILSSON, L and GUSTAFSSON, P-Å FIX-II LOCA Blowdown and Pump Trip Heat Transfer Experiments, Summary report for phase 2: Description of experimental equipment. STUDSVIK/NR-83/238, Parts 1, 2 and 3.
- 5. NILSSON, L et al FIX-II - LOCA Blowdown and Pump Trip Heat Transfer Experiments. Experimental results from LOCA test No. 3051. STUDSVIK/NR-84/486.
- 6. ROSDAHL, Ö and TANGEN, K Numerical simulation of the FIX-II test 3025 (ISP-15) split-break LOCA using RELAP5/MOD 1. Post-test analysis STUDSVIK/NR-83/330.
- 7. RANSOM, V H and WAGNER, R J RELAP5/MOD 2 Code Manual Volume 1: Code Structure Systems Models and Solution Methods. Volume 2: Users Guide and Input Requirements. EGG-SAAM-6377, EG & G Idaho, Inc. April 1984.
- 8. ERIKSSON, J Assessment of RELAP5/MOD2, Cycle 36, Against FIX-II Split, Break Experiment No 3027. STUDSVIK/NR-85/99.

Figure 1

View of the FIX-II facility, condition for split break experiments.

Figure 2a

Figure 2b

Cross section of pressure vessel Design of a and rod bundle

Design of a fuel rod simulator

Figure 4

Instrumentation diagram for FIX-II

Figure 5

The nodalization diagram for FIX-II

STUDSVIK ENERGITEKNIK AB

STUDSVIK/NP-86/108 1986-09-17

Figure 7

Nodalization of the main volumes of the FIX-II (compare Figure 3).

Figure 8

.

Comparison of heat transfer coefficents at the case model volume 4.05. Dotted line for prediction.
.

1

Test matrix of reported FIX-II LOCA tests

Break classification			Split breaks				Guillotine				
Type of simulation (see Figure 13)					A	<u></u>			B	c	
Relative break area	(\$)	10	3	91	48	100	150	200	155*	20	00
Breaks I.D.	(m)	6.8	1	2.0	15.0	21.6	26.4	30.5	16.0+ 21.6	21	L.6
Inital bundel power -hot channel -average	(HW)	2.35	2,35	3.35	3.35	2.35	2:35	2.35	2.35	2.35	3.35
LOCA test ident. No.		3051	3013	3024 3025 3026 3027	3031	3061	3071	3041	4011	5061	5051 5052

Break type A Split break

Break type C Guillotine break

Table 2.A

Evaluated measurement errors

Quantity	Probable error	Error corresponding to 95 % confidence level
Pressures	0.014 MPa	0.04 MPa
Fluid temperatures	1°C	2°C
Cladding temperatures	1.6°C	3.2°C
Small range differential pressures (5 to 7.5 kPa)	0.13 kPa	0.3 kPa
Medium range differential pressures (25 to 50 kPa)	0.22 kPa	0.5 kPa
High range differential pressures (100 to 700 kPa)	0.26 kPa	0.65 kPa

Table 2.B

Errors in derived quantities

Quantity	Probable error
Mass flow rate in orifice meter K1 (P1)	0.2 kg/s
Mass flow rate in orifice meter K2 (P2)	0.14 kg/s
Mass flow rate in orifice meter K6 (steam flow)	~10 % of actual value
Mass flow rate in orifice meter K7 (Bypass)	~10 % of actual value
Break mass flow rate	~10 % of actual value
Electric power to bundle and bypass heaters	1 % of max value

RELAP5/Mod 2 code features

COMPUTATION PROCESSING FEATURES

- Several problem type and execution control options as
 - a. steady state initialisation using fictitious structure heat capacities for faster convergence
 - b. transient calculation
 - c. strip type execution, to select requested parameters from a restart file
 - d. trip system, to decide on actions during calculation due to reaching specified conditions in calculation parameters.
 - e. ability to delete or add hydrodynamic components, structure components and control variables at a restart of calculation.

CLASSIFICATION OF HYDRODYNAMIC MODEL

- One-dimensional, with provisions for
 - a. choked flow model
 - b. abrupt area change model
 - c. cross flow junctions.
- Two-fluid, six equation, space-time numerical solution scheme.
- flow regime oriented field characteristics depending on mass flux and void fraction for
 - a. horizontal flow with bubbly, slug, mist and stratified fields
 - b. vertical flow with bubbly, slug, annular-mist (and stratified) fields
 - c. high mixing flow with bubbly and mist fields (for pumps).

Table 3 con't

HYDRODYNAMIC COMPONENENTS (Input systematics)

- Volume type components
 - a. single volume
 - b. pipe and annulus, for condensed input of several similar single volumes
 - c. time dependent volume, for defining a boundary source with a time dependent fluid state
 - d. branch, a volume capable of two or more connecting junctions at either end
 - e. pump, characterized by rated values for flow, head, torque, density and moment of inertia. The single phase homologous curve, two-phase multipliers and phase difference tables to model the dynamic pump behaviour
 - f. special system components for steam separator, jetmixer, turbine and accumulator.
- Junction type components
 - a. single junction
 - b. time dependent junction, for a time dependent junction flow whith a time dependent or controlled flow state
 - c. cross-flow junction, to model a small cross flow, a tee branch or a small leak flow
 - d. valve, various operation characteristics available for check valve, trip valve, inertial valve and relief valve.

INTERPHASE CONSTITUTIVE EQUATIONS

- ~ Interphase drag
 - a. steady drag due to viscous shear depending on flow regime. Semi-empirical mechanisms to describe flow regime transitions
 - b. dynamic drag due to virtual mass effect.
- Interphase mass and heat transfer depending on flow regime and the fluid fields to saturation temperature differences

Table 3 con't

FLUID TO WALL CONSTITUTIVE EQUATIONS

- Wall friction due to wall shear effects formulated for flow regimes and based on a two-phase multiplier approach.
- Wall heat transfer depending on flow characteristics defined ' for
 - a. single-phase forced convection (Dittus-Boelter)
 - b. saturated nucleate boiling (Chen)
 - c. subcooled nucleate boiling (modified Chen)
 - d. critical heat flux (Biasi or modified Zuber)
 - e. transition film boiling (Chen)
 - f. film boiling (Bromley-Pomeranz and Dougall-Rohsenow)
 - g. condensation (partly Dittus-Boelter).
- Interfacial mass transfer at the wall depending on wall, fluid and saturation temperatures for
 - a. subcooled and saturated boiling
 - b. transition film and film boiling
 - c. condensation.

HEAT STRUCTURES

These may be rectangular, cylindrical or spherical in shape. The structure position is defined through component numbers of left and right hand side hydraulic components. A structure is physically defined by the geometry and the temperature dependent conductivity and volumetric heat capacity data. The structure model is further specified by the number of internal mesh points in the direction of heat flow.

CONTROL COMPONENTS

By these new (control) variables are defined from calculated parameters using algebra, standard functions, trip type operands or integrals.

Initial conditions, for test No. 3051

		Measured		Predicted	
Quantity			Case	Case B	Case C
Pressure in the steam dome	(MPa)	6.99	6.99	6.99	6.99
Power to the 36-rod bundle (incl connections)	(MW)	2.38	2.38	2.38	2.38
Power to the bypass heaters	(kW)	61.1	61.1	61.1	61.1
Cooling power in the filler body space	(kW)	256.	255.	255.	255.
Mass flow rate through pump Pl	(kg/s)	4.85	4.85	4.85	4.90
Mass flow rate through pump P2	(kg/s)	1.59	1.59	1.59	1.62
Mass flow rate in the bypass	(kg/s)	.69	.69	.69	.71
Mass flow rate in the 36-rod bundle	(kg/s)	5.75	5.75	5.75	5.81
Mass flow rate in the spray line	(kg/s)	3.08	3.08	3.08	3.08
Mass flow rate in the feed water line	(kg/s)	1.95	1.95	1.95	1.95
Temperature of water at the bundle inlet	(C)	267.	268.	268.	268.
Temperature of feed and spray water	(C)	179.	179.	179.	179.
Water level in the spray condenser	(m)	.835	.836	.836	.834
Rotational speed of pump P1	(/=)	24.63	25.44	25.44	25.43
Rotational speed of pump P2	(/=)	31.64	33.39	33.39	33.36
Head of pump P1	(kPa)	118.6	123.5	123.5	123.3

Table 5

List of events in test No 3051

			Time (s)		
Event	Imposed System		Predicted		
	action	reaction	Case A	Case B	Case C
The break occurs (valve V120 starts to open)	.0		.0	.0	.0
Start of coast down of pump P1	.0		.0	.0	.0
Start of power decay (rod bundle and bypass)	.0		.0	.0	.0
The SRV starts to open	.5		.5	.5	.5
The SRV is fully open	1.1		1.1	1.1	1.1
The SRV starts to close	1.5		1.5	1.5	1.5
Minimum in steam dome pressure occurs		1.9	2.	2.	2.
The spray flow is closed	2.0		2.0	2.0	2.0
The feed water flow is closed	2.1		2.1	2.1	2.1
Valve V104 to the evaporation cooler is closed	2.2		2.2	2.2	2.2
The SRV is closed	2.8		2.8	2.8	2.8
Haximum of steam dome pressure		8.9	8.5	9.0	8.5
Flow reversal in the intact RCL		20.	18.5	19.5	19.5
The SRV starts to open	39.6		39.6	39.6	39.6
The SRV is fully open	40.3-137.	2	40.3	40.3	40.3
Cavitaion in the broken RCL pump P2		45.	44.	45.	46.
Flashing starts in the LP (at saturation)		45.	45.	45.	45.
Level swell (recovery) in the downcomer		45.	44.	45.	46.
Plashing starts in the bypass guide tubes volume		49.6	52.	53.	53
Peak in the bypass flow into the UP		51.	55.	55.	56.
fest stop signal	136.1		-	-	-

Abbrevations: LP = Lower plenum

UP = Upper plenum

RCL = Recirculation line SRV = Steam relief valve 34

Summary of the main results in test No 3051

		Measured		Predicted	
			Case A	Case B	Case C
Total time of transient (break discharg	ie) (s)	136.1	-	-	-
Initial dryout		None	-	- None -	-
Bundle uncovery		Not achieved	 N (ot achieve	d
Break mass flow 2 s after the break *	(kg/s)	2.7	2.	2.0	2.0
Max. brek flow rate from lower plenum	(kg/s)	<1.	.6	۲.۵	<.0
Max. break flow through pump P2	(kg/s)	2.7	2.5	2.5	2.5
Max. dome pressure after break time	(MPa)	7.10	7.14	7.17	7.18
Dome pressure at the end of test	(Mpa)	(2.04)	1.81	1.97	1.92
Max. rod temperature, end of blowdown	(C)	227.	229.	216.	219.
Integrated break mass flow	(kg)	110.	138.	119.	121.
Integrated steam relief mass flow	(kg)	52.	50.	52.	51.

* Approx. at the maximum break flow of the test

Table 7

Run statistics data (Case A)

Time (s)	Computer	No. of time	No. of time step		reduct	ions in int	erval
	CPU time (s)	steps	quality	extrap.	mass	propty.	Courant
-30.	-679.	-480	-	-	-	•	-
o.*	0.	0	0	0	0	0	0
10.	234.	160	0	0	0	0	0
30.	572.	393	1	0	1	0	0
60.	1182.	776	2	0	2	0	0
100.	1663.	1030	18	0	3	12	71
145.	2113.	1278	3	o .	5	0	65

* Time of break opening

35

Parameters plotted and used in the assessment comparison.

CONFORMENT	CONTINUES PARAMETER *	EXPERIMENT (IDENTIFIER)	PREDICTION (MINOR EDIT)	PLOT IDE EXP.	CALC.	PLOT NO.
*************	***************************************			********		
CORE	PLUID DENSITY, BOTTOM	•••	RHO 04.01		RH17	B. 1
	HASS FLOW RATE, INLET .	DPT 4	P 33.01 - P04.01	D 4	PD47	B. 2
	HEATING POWER	X 801	CHTRLVAR 57	X8 01	HP17	B. J
	CLAD TEXPERATURE, LEVEL 1	TE 191. TE 206. TE 211. TE 246	RTTEMP 4.0100	TC 1	HT1?	B. 4
	-*- , LEVEL 3	TE 108. TE183. TE 243. TE 248	HTTEMP 4.0300	TC 3	HT2?	B. 5
	-* LEVEL S	TE 202. TE 227. TE 232. TE 237. TE 252	NTTEMP 4.0400	TC 5	NT3?	B. 6
	LEVEL 9	TE 102. TE 137. TE 167. TE 172. TE 187. TE 197. TE 272	HTTER 4.0600	TC 9	HT4?	B. 7
	, LEVEL 12	TE 118. TE 123. TE 128. TE 148. TE 223	NTTEMP 4.0700	TC12	HT5?	B. 8
	LEVEL 15	TE 175. TE 190. TE 275	HTTEMP 4.1000	TC15	HT6?	B. 9
	INLET TEMPERATURE	TE 3	TEMPF 33.01	т 3	TF1 ?	B.10
	OUTLET TEMPERATURE	TE 14	TEMPF 51.01	T 24	TF2?	8.11
	CORE INVENTORY .	DPT 5 • DPT 6• DPT 7 • DPT 8• DPT 9 • DPT 10• DPT 11 • DPT 12	P 64.01- P 51.01 **	D CO	PDC?	8.12
VESSEL	PLUID DENSITY, BOTTOM	***	REG 31.01		RE2?	B.13
	DOMICONER MASS INVENTORY *	DPT 27 + DPT 28 + DPT 29 + DPT 30	P 71.03 - P 72.01 **	D DC	PDD?	B.14

DOMICONER MASS INVENTORY *	DPT 27 + DPT 28 + DPT 29 + DPT 30	P 71.03 - P 72.01 **	D DC	PDD?	B.14
LOWER PLENUM NASS INVENTORY *	DP 2 + DP3 - DP 1	P 31.01 - P 32.01 **	D 13	PDL?	B.15
UPPER PLIDIUM MASS INVENTORY *	DP 13 + DP 14	P 51.01 - P 52.01 **	DUP	PDUT	B.16
PRESSURE LOSS, S.S. ORIFICE	DP 56	P 52.01 - P 52.02	D 56	PDS?	B.17
DOWNCOMER TEXPERATURE, BOTTOM	TE 31	1007 71.08	T 31	TF3 7	B.18
UPPER PLONM TEXPERATURE	TE 15	TEMP \$2.01	T 15	TF 47	B.19
LOWER PLEAR PRESSURE	PT 3	P 31.01	73	P 17	B.20
UPPER PLENUN PRESSURE	PT 4	P 52.01	P 4	2 27	B.21
MASS FLOW RATE, BYPASS	X 602	MFLOWJ 117	X602	MF17	B.22

.

CONPONENT	CONTINUUS PARAMETER *	EXPERIMENT (IDENTIFIER)	PREDICTION (MINOR EDIT)	PLOT ID EXP.	ENTIF. CALC.	PLOT NO.
RECIRCULATION	NASS FLOW RATE, I. L. PUMP (ORIFICE R1)	X 603	NPLOWJ 201.02	X603	HT2?	B.23
	MASS FLOW RATE, B. L. PUNP (ORIFICE K2)	X 604	NFLONJ 202.02	X604	MF37	B.24
	NASS FLOW RATE, B. L. VESSEL Inlet (spool piece k10)	X 610	HFLOWJ 97.02	X610	M2*4 ?	B.25
SYSTEM	MASS INVENTORY	•••	774355		MAT?	B .26
	NASS FLOW RATE, STEAM RELIEF	X 607	MPLOWJ 404	X6 07	H P 5?	8.27
	HEAT LOSS. PASSIVES	•••	CNTRLVAR 53		HL1?	B. 3
BREAK	FLUID DENSITY	•••	RHO 96.01		RH3?	B.28
	MASS FLOW RATE	X 636	MPLONJ 152	X636	MF6?	B.29
	MASS FLOW RATE, INTEGRATED	X 661	CNTRLVAR 55	X 661	ML1?	B.30
	INLET TEXPERATURE	TE 34	TEPPF 96.01	Т 34	TF5?	B.31
	INLET SUBCOOLING	***	TEMPS 96.01 - TEMPS 96.01		TSU?	B.32
	INLET PRESSURE	PT 6	P 96.01	P 6	P 3?	B.33
RELAP5/MOD2	COMPUTATION CPU TIME	•••	CPUTIME		CPU?	B.34
	COMPUTATION MASS ERROR	•••	EMASS		MAET	R.35

 THE COMPARISON PARAMETERS ARE THOSE REPORTED AS DIRECTLY MEASURED OR AS COMPUTED RESULTS FROM THE EXPERIMENT.
 PRESSURE DIFFERENCE INSTEAD OF MASS FLOW RATE OR OF MASS INVENTORY.

** CORRECTIONS APPLIED TO RESUME THE CORRECT PRESSURE SENSOR LEVELS.

*** NO DATA AVAILABEL FROM THE EXPERIMENT.

.

ł.

.

.

Input base case, Case A

-

•	FIX-11 SPL	IT BAEAK STE	ADY-STATE	ETEST NO	30513	
•	10 K SPLI	BREAK				
	CON FILE P	1721221				
0000100	NEW STON					
0000101	NUN	-••				
0000105	10.	20.				
0000201	30. 1.08-	6 6,25E-2	00001	16 40	0 400	
•						
			-			•
0000101	1	032010000	***********	COME IN		4
0000112		004100000	*PRESSURF	CORF VO	i in	
0000315	.	051010000	*PRESSURE	UPPER P	LENUN	
0000316	•	011010000	<i>PRESSURE</i>	STEAM D	OME VOL11	
0000317	•	012010000	OPRESSURE	STEAH D	OME VOL12	-1
0000318		021040000	*PRESSURE	DC ANNU	LUS VOL4	-
0000370	VIVARCA	000000117	ALIGUID LI	EVEL 1	CC ANNOLU	3
0000111	VOIDS	004010000		E VOL 1	23 TWFF1	
0000117	VOIDG	004020000	EVOID COR	F VOL 7		
0000111	V0100	004030000	WOID CON	E VOL 3		
0000334	VOIDG	004040000	OVOID CON	E VOL 4		
0000335	VOIDG	004050000	WOID COR	EVOLS		
0000336	VOIDG	004060000	evold Con	E VOL 6		
0000337	V010G	004070000	evolo con	EVOLI		
0000118	VOIDQ	004080000	evolu con			
0000140	Voltog	004100000	avoin com			
0000341	VOIDO	0640 30000	WOID BY-	ASS OUT	1 FT	
0000342	VOIDG	052020000	eVOID RIS	ER TOP		
0000343	VOIDG	011010000	OVOID STE	M DOME	VOL11	
0000344	V010G	012010000	#V010 STE	NA DOME '	VOL12-1	
0000345	VOIDG	012020000	.VOID STE	MI DOME	VOL12-2	
0000346	POIDE	021010000	WOID DC	NHULUS	VOLI	
0000347	40100	021020000				
0000149	valoa	021040000	evolo DC			
0000350	VOIDG	064010000	VOID BYP	ASS VOLT		
0000351	VOIDG	062010000	evolo Gui	D TUBE V	OL.	
0000352	VOIDG	032010000	evoid Low	ER PLENU	M VOL2	
0000353	VOIDG	031010000	•V010 LOW	ER PLENU	W VOLI	
0000354	VOIDG	036010000	SADID BRE	NC VOLUM	Ε.	
0000355	VOIDO	073010000				
0000357	VOIDG	094010000	aVOID PLAN		TION LINE	
0000358	MFLOWJ	404000000	MASS FLO	STEAM	VALVE	
0000359	MFLOWJ	405000000	MASS FLO	I LEVEL	HOLD	
0000360	MFLOWJ	110000000	MASS FLO	R STEAM	RELIEF	
0000361	WF LOW J	103000000	MASS FLO	A CONE I	MLET	
0000362	MALCHE J	004020000	MASS FLO	COME J	UN 2	
0000364	MELOWA	004060000				
0000365	WFLOWJ	004080000	MASS FLO	CORF J		
0000366	MFLOWJ	104000000	MASS FLO	COAE O	TLET	
0000367	MFLOWJ	117000000	WASS FLO	BY-PAS	S INLET	
0000368	MFLOWJ	120000000	MASS FLO	# BY-PAS	S OUTLET	
0000369	MFLOWJ	106000000	MASS FLO	FROM R	ISER	
0000170	MELOW J	10/000000	MASS FLO	FROM S	TEAM DONE	VOL11
0000172	MELOW)	012010000	MASS FLO	T FROM S	TEAM DOME	VOL17-1
0000373	MFLOWJ	021010000	MASS FLO			VUL17-2
0000374	MFLOWJ	021020000	MASS FLO	DC ANN	JUS JUN 2	
0000375	MFLOWJ	021030000	MASS FLO	OC ANN	JUUS JUN S	

INPUT FOR RELAPS/MOD2. BASE CASE (CASE A)

 0000376
 MFLOWJ
 201020000
 MAXSS
 FLOW PLANPI
 OUTLET

 0000376
 MFLOWJ
 202020000
 MAXSS
 FLOW PLANPI
 OUTLET

 0000376
 MFLOWJ
 202020000
 MAXSS
 FLOW PLANP1
 OUTLET

 0000376
 MFLOWJ
 202020000
 MAXSS
 FLOW PLANP2
 OUTLET

 0000380
 CHTRLVAR
 33
 STRUCTURE
 MATLOSS
 OUTLET

 0000380
 CHTRLVAR
 34
 STRUCTURE
 MATLOSS
 INTEGRATED

 0000381
 CHTRLVAR
 54
 ONTLEGAT
 LOSS
 OUTLET

 0000381
 CHTRLVAR
 58
 ONTLEGAT
 LOSS
 OUTLET

 0000382
 CHTRLVAR
 59
 TOTL POWER
 OUTLET
 OUTLET

 0000382
 CHTRLVAR
 043
 +LOUID
 LEVEL
 N CORE

 0000382
 CHTRLVAR
 043
 +LOUID
 LEVEL
 N CORE

 0000382
 CHTRLVAR
 044
 +LOUID
 LEVEL
 N CORE

 00003835
 C ******* TRIPS REQULATED STEADY STATE GE MULL 0 25. L +STEADY STATE RUPTURE TRIPS TIMEOF SOI 5. N +TRAMSIENT STARI MULO 0. N TIMEOF SO4 .0 N +START OPEN VI2C TIMEOF SO4 .0 N +BYPASS POWER DE 0000504 TIME 0000505 TIME 0000506 TIME 0000506 TIME 0000 CE LE CE LOGICAL TRIPS
 0000601 -501 AND
 0000604 501 AND
 0000606 604 AND
 0000607 606 AND -501 504 506 507 オレレレ *STEADY STATE -----0310000 VOL31 BRANCH 0310001 0 0310101 0. 0.151 0.00743 0. 90. 0.151 0. 0.0573 **0**C ***** • 0320000 V0L32 BRANCH 0320001 0.0.325 0.01147 0.90.0.325 •••••••••••••••••• 0. 0.0567 oc • 0330000 V0L33 SHGLVOL 0330101 0. 0.271 0.01250 0. 90. 0.271 0. 0.0573 90 COLOROD VOL4 PIPE COLOROD VOL4 PIPE COLOROT 0.010 COLOROT 0.010 COLOROT 0.010 COLOROT 0.010 COLOROT 0.01044 10 COLOROT 0.000 0.00 3 COLOROT 0.000 0.000 8 COLOROT 0.0000 0.000 8 COLOROT 0.000 0.000 8 COLOROT 0.000 0.

0040902 0.65 0.65 9 0041001 00 10 0041101 1000 9 0510000 VOLSI BRANCH 0510001 0 051001 0 0510101 0. 0.159 0.00525 0. 90. 0.159 0. 0.0817 00 VOL52 PIPE 2.0 7 0.002734 1 0.525 1 0.953 2 0.00355 1 0.007485 2 90. 2 0.0 2 0.0 1.70 1 000 1 0520000 0110000 VOL11 AMULUS 0110001 0.0 1 011001 0.453 1 0110401 0.453 1 0110401 0.05970 1 0110501 0.0 1 0110501 0.0 1 e 0120000 0120001 0120101 0120301 0120401 0120601 0120601 0121001 VOL12 PIPE 2.00 1 0.130 2 0.43200 1 0.02410 2 90. 2 0. 0. 2 00 1 01 2 1000 1 0121101 ********************* 0130000 VOL13 SHELVOL 0130101 0. 3.854 0.01831 0. 0. .0 0. 0. 00 0210000 0210001 0210101 0210201 0210201 0210301 0210401 V0(21 AWU(US 4.0 4 0.0 4 0.0 1 0.035132 2 0. 3 0.004 0.549 2 0.286 3 0.146 4 0.07589 1 0.04285 2 0.01250 3 0.00527 4 -50 4 0.0.3960 1 0.0.2892 2 0.0.1518 3 0.0.1117 4 00 4 0.1 0.96 0.96 2 0. 0. 3 1000 3 0210601 0210601 0210901 0211001 0211001 ******************* 0710000 VOL71 P[PE 80.0 8 0.9987 3 0.8198 8 0710101

1986-09-17 TUDSVIK/NP-86/108 Appendix ≫

S

0710401	0.009146 3.0.007726 #	
0710601	0, 3 -90, 0	
0710801		
0711001	00 6	
0711101	1000 7	
*******	*********	
0720000	VOL72 BRANCH	•
0720001		0960000 VOL96 BRANCH
0720101		0960001 0
0730000	VOL73 SHCLVOL	•
0730101	B. 1.340 0.01179 0. 090, 00.130 0. 01 0.	0970000 VOL97 PIPE
•		
0740000	VOL74 PIPE	0970301 2.789 1 1.422
0740001	1 m ·	0970401 0.00530 1 0.00757
0740101	0 1 0.001385 2 0. 4	0970601 5.4 1 0. 2 -90. 3
0740301	0.553 1 1,117 2 2,874 3 1,580 4 0.215 5	0970701 0.261 1 0.
0740401	0.00360 1 0.00475 2 0.01225 3 0.00823 4 0.00226 5	0970901 1.43 1.43 1 1.00
0740601	90.1 0.4 -90.5	0971001 00 3
0740801	0.17 0 17 1 0.79 0.79 2 0.22 0.22 3 1.00 1.00 4	0971101 0000 1 0000 2
0741001	00 \$	*
0741101	1000 1 1000 2 1000 3 1000 4	•
		2010000 PUMP1 PUMP
0620000	VOLE2 SNGLVOL	2010101 0. 0.750 0.010
0620101	0. 1,221 0.03227 0901.221 0. 0. 00	2010109 074000000 0.000908 3.0
*******		2010201 1 4.85 0. 0.
		2010202 1 4.65 0. 0.
0640001	3	
0640101	0.0 3	2010303 0. 0. 0. 0. 0. 0.
0640301	1,467 1 1,333 2 1.308 3	. NYA HONOLOGA PUMPKURVOR, DATA KO
0640601	90. 3	TORQUE-KURVORNA SAKNAR BETYDELSE
0640801	0, 0,0690 1 0, 0,0672 2 0, 0,0679 3	2011100 1 1
0640901	0.00 0.00 2	2011101 0.00,1.181 0.27,1.180
0641101	1000 7	2011102 0.64,1.130 1.00,1.000
 BROKEN 	CIRCULATION LINE	2011202 0.38.0.92 0.59.0.962
	**********	2011300 1 2
0110000	VOL91 BRANCH	2011301 0.00.560 0.41,-0.16
0110001	0	2011400 7 2
0910101	0. 1.246 0.00570 0. 0. 0. 0. 0. 0.	2011401 0.01.16 0.5.0.00
	**********	2011500 1 3
0970000	VOL92 SHGLVOL	2011501 -1.00,2.00 -0.95,1.81
0920101	0. 1,339 0.00580 0. 0. 0. 0. 0. 0. 00	2011600 1 4
	*********	2011601 -1.00,2.00 -0.79,1.53
00000	VOL14 SHGEVOL	2011602 0.00.0.72
0940101	0, 1,188 0.00756 0, -45, -0.820 0, 0, 00	2011/00 2 3
*******	***********	2011702 -0.37,1.49 -0.22.1.19
	VOL95 BRANCH	2011800 2 4
0950001	0	2011801 -1.00,3.31 -0.79,7.78
0950101	0, 1,690 0.00336 0, 14.3 0.417 0, 0, 00	- TWO PHASE MILTIPLIER TABLES
*******	************	2013000 0
		2013001 0.0.0.0 0.1.0.0 0.15.0.0
		2013002 0.6.0.97 0.8.0.9 0.9.0.8

0. 0. 0. 0. 0. 00 0.215 3 2 -0.218 3 5042 3 1.08 2 0. 16.4 0.283 0.37 0000 3.00 0000 10 0 0 83 50. 81.7 1. 1000. MMER FRAN ASEA-ATOMS COBLIN-BER. I DETTA FALL OCH MAR DARFOR INTE DATA AR OKAND. 0.47,1.160 0.19.0.89 0.80,0.99 1.00,1.00 0.51,-0.05 0.76.0.48 0.69.0.38 1.00,1.00 -0.62,1.52 -0.50,1.39 -0.63,1.25 -0.30,0.93 -0.68.2.29 -0.55.1.95 -0.59,2.37 -0.41.2.04 S 0.24,0.8 0.3,0.96 0.4,0.98 2013100 0 2013101 0.0.0.0 0.1.0.0 0.15.0.05 0.24.0.8 0.3.0.96 0.4.0.98 2013102 0.6.0.97 0.6.0.9 0.5.0.8 0.96.0.5 1.0.0.0 9 THO PHASE DIFFERENCE FOR PURPHICAD (SHUSCALE) 2014100 0.1 1 2014101 0.0.0.0 0.1.0.83 0.2.1.09 0.5.1.07 0.7.1.01 0.9.0.94 1.0.1.0

2014200 1 0 0.0.0 0 0.1.0.04 0.2.0.0 0.3.0.1 0.4.0.21 0.0.0.67 2014201 0.0.0.0 1.0.1.0 2014201 0.1.0.4 1.0.1.0 2014201 0.0.0.4 0.1.0 1.0 2014201 1.0.7.16 0.9.1.24 -0.9.-1.77 -0.7.-2.36 -0.6.-2.79 2014302 -0.5.2.01 -0.4.-2.47 -0.15.-1.68 -0.1.-0.5 0.0.0.0 2014401 -1.0.-1.16 -0.9.-0.78 -0.8 -0.5 -0.7.-0.31 -0.6.-0.17 2014201 -1.0.5.-0.08 -0.35.0.0 -0.2.0.05 -0.1.0.08 0.0.0.17 2014201 -1.0.5.-0.9.2 0.35.0.0 0.0.2.0.05 -0.1.0.08 0.0.0.17 2014201 -1.0.5.-0.08 -0.35.0.0 0.0.2.0.05 -0.1.0.08 0.0.0.0 THAT FULLY DEGALORD TOROUGE 10 SIMCLE PHASE, WHICH MEANS THAT FULLY DEGALORD TOROUGE 10 SIMCLE PHASE, WHICH MEANS 2014501 3 0.0.0.84 0.09.0.87 0.90.059 1.00.1.00 2015000 2 3 2015001 2 3 3.0 -0.83.2.78 -0.88.7.78 -0.48.1.95 2015007 2 .0.11.6 0.5.0.00 0.680.0.38 1.00.1.00 2015007 2 .0.11.6 0.5.0.00 0.680.0.38 1.00.1.00 2015007 2 .0.11.6 0.5.2.78 -0.58.7.37 -0.41.2.04 2015207 -0.21.1.78 0.000.100 2015007 2 .0.11.78 0.000.100 2015007 2 .0.11.78 0.000.100 2015007 2 .0.11.78 0.000.100 2015007 2 .0.11.78 0.000.100 2015007 2 .0.11.78 0.000.100 2015007 2 .0.11.78 0.000.100 2015007 2 .0.11.78 0.000.1000 2015007 2 .0.11.78 0.0000 2015007 2 .0.11.78 0.0000 20500200 MASSDIFFI SUM 20500201 4.85 -1.0 201020000 0 ພະໄດ້ຫມ 20500300 SSMULI N 20500301 CHTRLVAR 1 20500302 CHTRLVAR 2 σ. 0 MULT ł. 20500400 INTEGRALI INTEGRAL SO. 20500401 CHTRLVAR 003 3 140. 180. 160. • 20500500 PISPTAB FUNCTION 1. 20500501 TIME 0 201 ο. 1 20500600 PIVEL M 20500601 CNTRLVAR 4 20500602 CNTRLVAR 5 ο. MULT 1. 1
 PLAP
 P1
 SPEED
 TABLE

 20220100
 HTC-T
 604
 1.
 1.
 8.
 1521
 15.
 .464

 20220101
 0.
 1.000
 4.
 .764
 8.
 .621
 15.
 .463

 20220102
 17.
 .326
 25.
 .275
 60.
 .183
 2000.
 .183

 PLAN
 D
 D
 D

 0:
 0.700
 0.00500
 0.72.0
 0.278

 0:3500000
 0.000380
 3.08
 0.35
 0000

 1
 1.35
 0.0
 0.000380
 3.08
 0000

 1
 1.35
 0.0
 0.000380
 3.08
 0.0000

 1
 1.35
 0.0
 0.000380
 3.08
 00000

 1
 0.35
 0.0
 0.0000
 0.0000
 0.0000
 0.0000

 1
 0.58
 0.01058
 25.
 13.2
 0.0000

 0.0000
 0.58
 0.01058
 25.
 13.2
 0.0000

 0.0000
 0.0000
 0.0000
 0.0000
 0.0000
 0.0000
 0.0000

 0.0000
 0.0000
 0.0000
 0.0000
 0.0000
 0.0000
 0.0000
 * 2020000 2020101 2020108 2020108 2020109 2020201 2020202 2020202 2020303 2021002 2021101 2021102 0 ۰. 1000.

7-6

2021200	1.1				
2021201	0.0 0.51	1.0 1.00			
2021300	1. 1				
2021301	0.0 -0.360	0.2 -0.385	0.4 -0.10	0.3	-0.033
2021302	0.6 0.145	0.8 0.565	1.0 1.00	0	
2021400	1.1				
2021401	0.0 -0.47	0.7 -0.71	0.4 0.07		
2021402	0.6 0.35	0.8 0.66	1.0 1.00		
2021500	1.3				
2021501	+1.00,2.00	-0.95,1.81	-0.57,1,57	-0.50,	1.39
2021502	0.00,1,136				
2021600	1 4				
2021601	-1.00,2.00	-0,79,1.53	+0.63,1,25	-0,30,	0.93
2021602	0.00,0,72				
2021200	7				
2021701	-1.00,3,31	-0.83,7.78	-0.68,7.79	-0.56,	1.95
2021702	0.37,1.49	-0.22,1.19	-0.10.0.99	0.00.	0.51
2021900	2.4			.	
2021001	-1.00,3,31	-0.79.2.78	-0.59,2.37	-0.41,	2.04
2021602	0.21,1,76	0.00,1.55			
5053000	a				
2023001	0.0 0.00 0.1	0.00 0.2 0.05	0.3 0.80	0.4 0.96	0.5 0.90
2023002	0.6 0.97 0.7	0,90 0.8 0.80	0.9 0,50	1.0 0.00	
2023100	Q				
2023101	0.0 0.00 0.1	0.10 0.7 0.15	0.3 0.24	0.4 0.30	0.5 0.40
2023102	0.6 0.60 0.7	0.80 0.8 0.90	0.9 0.96	1.0 1.00	
** PUMP2	REGULATOR			451	EADY STATE C.
2026100	0	RLVAR 019			
2026101	0. 0.	1000. 1000	J .		
es PUMPZ	CONTROL SYSTEM		-	-	
20500700	MASSOIFF2 SU	f	0.	0	
20500701	1.59 -1.0	MELON1	202020000		
•				-	
20500800	SSMULZ MU	LT 1.	0.	0	
20500801	CHTRLVAR 1				
20500802	CNTRLVAR 7				
•				.	
20500900	INTEGRALZ IN	TEGRAL 200.	200. 0	3 170.	230.
20500901	CHIRLVAR DOB				
•			-	-	
20501000	PZSPTAB FU	ACTION 1.	σ.	1	
20501001	TIME D	202			
•				-	
20501900	PZVEL MU	LT 1.	σ.	1	
20501901	CNTRLVAR 9				
20501902	CHIRLVAR 10				
•					
e PLAP	PZ SPEED TABLE				
20220200	HTC-T 604				
20220201	0. 1.000	20. 1.000 60	D. 1.016	200. 1.01	6
• •					
•					
1010000	JUN31-32 SHG	LJUN	_	_	
1010101	031010000 032	0000000	0.	0.	1100
1010201	1 6,4	4 O.	0.		

•					
1020000	JUN 32-33 SNG	LJUN			
1020101	032010000 033		0.	0.	1100
1020201	1 5.7	s o.	0.		
*******	************				
•					
1030000	JUN33-41 SHG	JUN			
1030101	033010000 0040	00000 0.000473	0.340	0.200	0000

1030201	1	5.75	0.	0.			
1040000 1040101 1040201	JUN41-51 : 004010000 1	SNGLJUN 051000000 4,675	0. 1.075	0.10 0.	0.10	0100	
1050000 1050101 1050201	JUN51-52 051010000 1	SNGLJUN 05200000 \$,365	0. 1.075	0. 0.	σ.	1100	2050330
1060000 1060101 1060201	JUN52-21 052010000 1	SNCLJUN 021000000 5.365	0.03318	¦ :	۱.	1020	2050330 2050340 2050340
1070000 1070101 1070201	JUN11-21 011000000 1	SNGLJUN 021000000 4,155	0.0 -1.075	0.0 0.	0.0	1000	1180000 1180101 1180201
1080000 1080101 1080201	JUN12-11 012000000	SNGLJUN 011010000 4,155	0. -1.075	0. 0.	0.	1000	1200000 1200101 1200201
1100000 1100101 1100201	JUN12-13 012010000 1	SNGLJUN 013000000 0.	0.001432 0.	0.95 0. 0.	95 1000	+STEADY ST	1220000 1220101 1220201
1110000 1110101 1110201	JUN21-71 021010000 1	SNGLJUN 071000000 11.47	o. o.	1.00 0.	1.00	1100	1230000 1230101 1230201
1120000 1120101 1120201	JUN71-72 071010000	SNGLJUN 072000000 11.47	°.	°.	o.	1000	1240000 1240101 1240201
1130000 1130101 1130201	JUN72-73 072010000 1	SNGLJUN 073000000 4.85	0.00 0.	0. 0.	0.	1000	1250000 1250101 1250201
1160000 1160101 1160201	JUN74-31 074010000 1	SNGLJUN C31010000 4.85	0. 0.	0.00 0.	0.00	1100	+126000 +126010 +126020
1170000 1170101 1170201 1170300	BY-PASS 032010000	VALVE 054000000 0.69 • MOTO	0.000501	D. O. By-pass in	O, LET	0000	1270000 1270101 1270201
1170301 1170400 1170401 1170402	34 1.0 34.2 .000 .000 .500 .195	0 .000 .125 5 .1955 1.	.0906 .09 00 .2037 .	06 .700 .1 2037	301 ,1301		1280000
20503201 20503201	89FLOWOFF 0.69	SUM -1. MFL	1. 0. Owj 117	000000			• COOLI •

-

20503300 20503301 20503302	SSMULBP CNTRLVAR CNTRLVAR	MULT 1 32	1.	0.	0			
20503400 20503401	INTEG8P CNTRLVAR	INTEGRAL 33	5	0.23	0	3	0. 1.	
********	*********							
1180000 1180101 1180201	JUN54-62 064000000	SNGL JUN 052000000 0.	0.004	74	8:		0.	1100
* 1200000 1200101 1200201	JUN64-51 064010000 1	SNGLJUN 051010000 0.69	9.001 0.	790	2.00 0.		2.00	0000
• 1220000 1220101 1220201	JUN72-91 072010000	SHGLJUN 091000000 1.59	8:		0.00 0.		0.00	0100
* 1230000 1230101 1230201	JUN91-94 091010000 1	SHGLJUN 094000000 1,59	e.		0.00 0.		0.00	0100
* 1240000 1240101 1240201	JUN91-97 0000101000 1	SHGLJUN 092000000	0. 0.		0.00 0.		0.00	0000
1250000 1250101 1250201	JUN95-97 095010000	SHGLJUN 097000000 1.59	19.0E	-4	12.5 0.	12	.\$ 000	8
•1260000 •1260101 •1260201	JUN951-90 09500000	SNGLJUN 0 9600000 0,	• <u></u> .		1.00	r	1.00	0100
1270000 1270101 1270201	JUN950-96 095010000 1	SNGLJUN 096000000	0 .		1.00 0.		1.00	0100
1280000 1280101 1280201	JUN97-31 097010000 1	SHCLJUN 031010000 1.59	8 .		0.00 0.		0.00	0100
 COOLING 	SYSTEM							
*********	********							
3010000 3010101 3010200 3010201	COOLING 0.003959 2 0.	1. 0. 6990000.	VOL 0.	0.	0.	o.	0.	10
4010000 4010101	COOLING 072000000	THOP 3010	JUN 000000		σ.			

•

4010200 1 564 4010201 0. 5.03 0. 0. 1.9 5.03 0. 0. 2.2 0. 0. 0. 3070000 SPRATFLOW THOPYOL 3070101 D.002525 1. 0. 0, 50. 1. 0, 0.02576 10 3070701 D. 7600000. 452.15 600000 SPRAYFLOW THOPJUN 600000 SPRAYFLOW THOPJUN 600000 012010000 0. 600000 1.604 400000 1.604 000001 0.3.00 0.0.1.7 3.00 0. 0. 7.0 0. 0. 535000 505000 506 3035000 50600051 1. 0. 0. 0. 0. 0. 0. 0. 3030101 0. 000531 1. 0. 0. 0. 0. 0. 0. 0. 3030201 0. 7500000. 457.15 ******************* 10 4030000 SUBCOOLTING THOPPLIN 4030101 303000000 021010000 0, 4030200 1 604 4030200 1 604 4030201 0. 1,9500 0, 0, 1,9 1,9500 0, 0. 7,1 0, STEM RELIEF 0040000 RELIEF THOPVOL 3040101 ,00434 1, 0, 0, 0, 0, 0, 0, 3040100 2 3040201 0, 100000, 1, 00 ******************* 040000 RELIEF TMOPJUN 4040101 013010000 304000000 4040200 1 0 CNTRLVAR 4040201 0. 0. 0. 0. 4040202 1.ES 0. 1.ES 0. .000094 • STEAM RELIEF FLOW MODEL 70509300 RHOP MULT 1. 0. 0 70509301 RHOG 013010000 P 013010000 20509400 SORT POWERR 1. 0, 0. 20509401 CNTRLVAR 93 .5 -20209300 20209301 20209302 20209303 NOMMARA 0. 0. .5 0. 1.1 1. 1.5 1. 2.8 0. 39.6 0. 40.3 1. 20509700 20509701 TRATIME TRIPUNIT 1. 0. 1 604 20509800 ALFTIME INTEGRAL 1. 0. 1 CHTRLVAR \$7 20509900 VLVAREA FUNCTION 1.034E-4 0. CNTRLVAR 98 93

0. 0.

20510000 MSSFLOW MULT .6636 D. 20510001 CNTRLVAR 39 CNTRLVAR 34 0 e DUMP VOLUMES ******* \$020000 DUMP3 THOPYOL \$020101 1.00 1.00 0. 0. 0. 0. 0. 0. 0. 00 \$020200 0. 100000, 1.0 • SPLIT RUPTURE IN CIRCULATION LINE 1320000 BARV120 VALVE 1320101 095010000 302000000 0.0000363 0. 0. 0100 1.00 1.00 +DJ. 1320201 0. 0. 0. 1320300 MTRALV 1320300 0000606 0000505 8.00 0.0 +OPENING TIME .20 SEC · CORE 4010 0 0 0 1 13.248 1 004020000 0 1 13.248 1 1 0.1030 0. 0. 1 1 7 2 1 0. 0 0.1072 0. 0. 1 0 1 4 0.005275 1 4 0.0 4 4010 0 0 14030400 0 1 13,248 1 004030000 0 1 1 13,248 1 0 .1138 0. 0, 1 0 .01742 0. 0, 1 1 7 2 1 0, 0 9 1 14030601 14030701 14030901 14040000 14040100 0 1 4 0.005375 1 4 0.0 4 4010 2 0.006125 -2 6 1.0 6 14040101 14040201 14040201 14040301 4010 0 0 1 13.248 004040000 0 1 1 13.248 1 0.1200 0. 0. 1 0 0.01742 0. 0. 1 1 7 2 1 0. 14040501 14040701
14040901
14050000

14050100	4040				
14050400	4010				
14050501	0			12.24	
14050601	004050000 0			13.240	•
14050901	0 0 01242	ŏ.	ň.		
14060000	1 7 2	ĭ.	ŏ.	•	
14060100	4030	•	-		
14060400	4010				
14060501	0 0	0	1	13.248	1
14060601	004060000 0	1	1	13.240	1
14060701	1 0.1133	<u>o</u> .	Q .	1	
14060901	0 0.01/02	· .	0 .	1	
14070000	1010		υ.		
14070400	4010				
14070501	0 0	ø		13.748	
14070601	004070000 0	- i	1	13.248	- t
14070701	1 0,1130	ο.	ο.	1	
14070901	0 0.01742	0.	o .	1	
14080000	1 7 2		0		
14080100	4070				
14080400		•		13 748	
14080501	004080000 D	ĭ	i	11:520	- i
14080701	1 0.1024	ċ.	ġ.	1	•
14080901	0 0.01742	ő.	ō.	1	
14090000	1 7 2	1	0.		
14090100	0 1				
14090101	4 0.004975	- 1	0.006	125	
14090701	1.1	-7	•	•	
14090301	4010	1.0	•		
14090501	0.0	0		13.248	1
14090601	004090000 Ö	ĩ	i	13.248	i
14090701	1 0.0077	ó.	ó.	1	
14090901	0 0.01742	0.	0.	1	
14100000	1 7 7	1	ο.		
14100100	0 1	•			
14100101	4 0.003075		u	123	
14100201	0 0 A	- í.a			
14100400	4010				
14100501	0 0	0		13.748	1
14100601	004100000 0	1	•	13.240	1
14100701	1 0.0514	o .	o.	1	
14100901	0 0.01742	ο.	ο.	1	
			•		
10640000			υ.		23
10640101	i 0.006125				
10640201	2 1				
10640301	1.0 1				
10640400	0				
10640401	570. 2				
10640501	VVV	ō		1.11	
10640601	044010000 0			2.87	
10640901	0 0.75	,		ŏ.	· '•
HYDE DI	A IN HEAT AND HY	on ši	RUCTU	RE THE SAN	εĊ
10650000	1 2 2	- 1 ⁻	0.		-
10650100	0640				
10650400	0640				
10650501	064020000	0		7.67	

1986-09-17 TUDSVIK/NP-86 801/ Appendix

> Þ 4

to

10650701 10650901 10660000	701	0.48 0.01 2	742	0. 1 ^{0.} 0	°.	',				
10660100	0	540 540								
10660501	0	54030000	8	1 1	2.67					
10660701	õ	0.27	742	ö.	°ċ.	',		13100100	• •	
:								13100101	0.005 1 0.015 2 0.08	3
14000000	10 10	COUNT FO	R MEA' I O	r Losse	5			13100301	.0.3	
14000100	°	0.002						13100501	31010000 0 1 0 .179	t
14000201	8.							13100701	0.0.0.0 t	
14000401	450.							13100801	0.0.01	
14000501	-401	0000 01		3400	8 0.1	5 10 5 10		13200000	1 4 2 1 ,132	
14000701	0	D. O. D. O.	o.	10				13200201	0.005 1 0.015 2 0.01	3
. GENERA	LTABLE	GIVING	HEAT	TRANSFE	R COEFF.	AT OUTSIDE	OF BOX WALL.	13200301	.0 3 560. 4	_
20240000	HTC-T							13200501	32010000 0 1 1 .325 -13 0 3014 1 .325 1	•
20240001	0.	2.3500E	3 + 1	HTC DET	ERMINED	TO GIVE HEA	T LOSS OF APPRO	X. 13200701	0 .0 .0 1 0 .0 .0 .0 1	
. GENERA	L TABLE	S GIVING	THE IS S	TEMPERA UPPOSED	TURES AT	THE OUTSID	E OF THE	13300000	1 4 2 1 .132	
+ AT INL	ET TO 4	93 K AT	OUTLE	r.				13300100	0 2 0.015 2 0.03	3
20240100	TEMP	407.5						13300201	3 3 .0 3	
20240200	TEMP							13300401 13300501	560. 4 33010000 0 1 1 .271	1
20240201	0.	416.5						13300601	-13 0 3014 1 .271 1 0 .0 .0 .0 1	
20240300	TEMP 0.	425.5						13300801	0.0.0.1	
20240400	TEMP							1\$100000	1 2 2 1 .132	
20240401	0.	434.5						15100101	2 .162 3 2	
20240500 20240501	TEMP 0.	443.5						15100301 15100401	560. 3	
20740600	TEMP							15100501	51010000 0 1 1 .179 -13 0 3014 1 .179 1	1
20240601	0.	452.5						15100701	0 .0 .0 1 0 .0 .0 1	
20240700	TEMP 0.	461.5						15210000	1 3 2 1 .063	
20240800	TEMP							15210100	2.065	
20240801	0.	470.5						15210201	3 2	
20240900	TEMP 0.	479.5						15210401	560. 3 52010000 0 1 1 .437	1
20241000	TEMP							15210601	0 0 0 1 .437 1 0 .0 .0 .0 1	
20241001	ο.	488.5						15210801	0.0.0.1	
13100000	1 4	1 1	0.0	,				15220000	1 3 2 1 .050 0 1	
								15220101	2 .052	
								15220301	.0 2 \$60. 3	
								15220501	570700C0 0 1 1 .953 1	1
								15220701	0.0.0.1 1 0.0.0	
								•		

-

•

.

11100000	1 4 2	· • •	250
11100100	0 7		
11100101	0.005 1	0.015	2 0.013 3
11100201	2 3		
11100301	.0 1		
11100401	560, 4		
11100501	11010000	0 1	1 .450 1
11100601	-13 0 3	014 1	.450 1
11100701	0.0	.0 .0	1
11100801	0.0	.0 .0	1
•			
11210000	1 4 2	1 .2	50
11210100	0 2		
11210101	0.005 1	0.015	2 0.033 3
11210201	3 3		
11210301	.0.3		
11210401	560. 4		
11210501	12010000	0 1	1 2.200 1
11210601	-13 0 3	014 1	2.200 1
11210701	0.0	.0 .0	1
11210801	0 .Ö	0.0	1
•		•- •-	-
11220000	1 4 1	1 0	.00
11220100	0 2		
11220101	0.005 1	0.015	2 0.013 3
11220201	3 3		
11220301	.o i		
11220401	560. 4		
11220501	12020000	0 1	0 .400 1
11220601	-13 0 1	ola ò	400 1
11220201	0 0	0 0	
11220801	ă 'ă	· · · · ·	
	• ••		•
12110000			560
12110000	1 4 2	۰.	150
12110000	1 4 2	1.	750 7 0.013 3
12110000	0.005 1	1 .: 0.015	250 2 0.033 3
2110000		1 .: 0.015	250 2 0.033 3
12110000 12110100 12110101 12110201 12110201 12110301	1 4 2 0.005 1 3 3 550 4	1 .: 0.015	250 2 0.033 3
12110000 12110100 12110101 12110201 12110301 12110401 12110501	1 4 2 0 2 0.005 1 3 3 .0 3 550 4 21010000	1 .: 0.015	250 2 0.033 3
12110000 12110100 12110101 12110201 12110301 12110401 12110501	1 4 2 0.005 1 3 3 .0 3 560. 4 21010000	1 .: 0.015	250 2 0.023 3
12110000 12110100 12110201 12110201 12110201 12110301 12110501 12110601 12110601	1 4 2 0.005 1 .0 3 580 4 21010000 -13 0 3	1 .: 0.015	2 0.033 3
12110000 12110100 12110100 12110201 12110201 12110301 12110401 12110601 12110601 12110601	1 4 2 0.005 1 3 3 .0 3 550, 4 21010000 -13 0 3	1 .3 0.015 0 1 014 1 .0 .0	250 2 0.033 3 1.404 1
12110000 12110101 12110201 12110201 12110301 12110401 12110601 12110601 12110801	1 4 2 0.005 1 3 3 560. 4 21010000 -13 0 0.0 0.0	1 .3 0.015 0 1 014 1 .0 .0	250 2 0.033 3 1 404 1 1
12110000 12110100 12110101 12110201 12110201 12110201 12110501 12110501 12110501 12110501	1 4 2 0.005 1 3 3 560 4 21010000 -13 0 3 0 .0 0 .0	1 .: 0.015	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
12110000 12110101 12110201 12110201 12110201 12110501 12110601 12110601 12110601 12110601 12110601 12110601 12110601	1 4 2 0.005 1 3 3 .0 3 560, 4 21010000 -13 0 3 0 .0 0 .0 0 .0 1 4 2	1 .3 0.015 014 1 .0 .0 .0 .0 1 .1	250 2 0.033 3 1 404 ⁴⁰⁴ 1 1 1
12110000 12110101 12110201 12110201 12110201 12110401 12110501 12110501 12110601 12110601 12120000 12120100	1 4 2 0.005 1 3 3 3 .0 3 550. 4 21010000 -13 0 3 0.0 0 .0 1 4 2 0.05 1	1 .; 0.015 0.4 1 .0 .0 .0 .0 1 .1	250 2 0.033 3 1 404 1 1 1 1 1 1 1 1 1 1 2 0.033 3 1 1 1 1 1 1 1 1 1 1 1 1 1
12110000 12110101 12110201 12110201 12110301 12110401 12110601 12110601 12110601 12110601 12120100 12120100 12120100	1 4 2 0.005 1 3.03 .03 .03 .03 .03 .03 .03 .04 .00 .00 .00 1 4 2 0.005 1	1 .3 0.015 0.4 1 .0 .0 1 .1 0.015	250 2 0.033 3 1 404 1 1 1 1 70 2 0.033 3
12110000 12110101 12110101 12110301 12110301 12110501 12110501 12110501 12110501 12110501 12110501 12110501 12110501 121201001 12120101 12120101	$\begin{array}{c} 1 & 4 & 2 \\ 0 & 2 & 3 \\ 0 & 0 & 5 \\ 0 & 0 & 5 \\ 0 & 0 & 3 \\ 0 & 0 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 &$	1 .; c.cis 0 1 14 1 :0 :0 1 .1 0.cis	250 2 0.033 3 1 404 ⁴⁰⁴ 1 170 2 0.033 3
12110000 12110101 12110201 12110201 12110201 12110201 12110201 12110201 12110201 12110201 12120100 12120100 12120100 12120100 12120100 12120100	1 4 2 0.005 1 3.03 550.4 21010000 -13 0 0.005 1 -13 0 0.005 1 1 4 2 0.005 1 -13 0 0.005 1 1 4 2 0.005 1 -13 0 0.005 1 -13 0 -13 0 -1 -13 0 -13 0 -10	1 .3 0.015 0 1 1 014 1 .0 .0 1 .1 0.015	250 2 0.033 3 1 404 1 1 1 1 1 1 2 0.033 3
12110000 12110101 12110201 12110201 12110201 12110401 12110401 12110401 12110401 12110401 12110401 12120101 12120101 12120101 12120101 12120101 12120101	1 4 2 0.005 1 3 3 2 1010000 -13 0 3 0 .00 1 1 4 2 0.005 1 3 3 0.005 1 3 3 550, 4 21010000	1 .3 0.015 0 1 14 1 0 .0 1 .1 0.015	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
12110000 12110100 12110101 12110201 12110201 12110201 12110201 12110201 12110201 12120100 12120100 12120100 12120100 12120101 12120101 12120101 12120101 12120101 12120101 12120101	1 4 2 0.005 1 3 3 0 3 2 1010000 -13 0 3 0 .005 1 3 0 3 0 3 560, 4 21070000	1 .3 0.015 014 1 .0 .0 1 .1 0.015	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1 1 1 0000 1 1 1 0100 1 1 0100 1 1 0100 1 1 000 1 1 0000 1 1 000 1 1 0000 1 1 0000 1 1 0000 1 1 0000 1 1 0000 1 1 000	1 4 2 0.005 1 3 3 2 1010000 -13 00 3 0 .00 1 1 4 2 0.005 1 3 3 0.005 1 3 3 0.005 1 3 3 560 4 21070000 -13 00 3	1 .; 0.015 0.4 1 .0 .0 1.0 .0 1.0 0.015	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
12110000 12110100 12110101 12110201 12110201 12110201 12110201 12110201 12110201 12120100 12120100 12120100 12120100 12120100 12120100 12120201 12120401 12120401 12120401 12120401 12120401 12120401	1 4 2 0.005 1 3 3 2 1010000 -13 0 2 0 .005 1 3 0 0 .005 1 3 0 0 3 560, 4 21070000 -13 0 2 0 .005 1 3 0 3 560, 4 21070000 -13 0 3 560, 4 21070000	1 .; 0.015 0.14 1 .0 .0 1 .1 0.015 0 1 .0 .0	250 2 0.023 3 1 404 ⁴⁰⁴ 1 1 170 2 0.033 3 1 549 ⁵⁴⁹ 1 1
1 1 1 0000 1 1 1 0100 1 1 0100 1 1 0100 1 1 0100 1 1 000 1 1 0000 1 1 0000 1 1 0000 1 1 0000 1 1 0000 1 1 000	-13 00 -13 00 -13 00 -13 00 -14 2 -13 00 -14 2 -13 00 -14 2 -13 00 -14 2 -14 2 -1	1 .: 0.015 0.4 1 0.4 1 0.015 1 .: 0.015 0.14 1 0.0 .: 0 .: 0 .: 0 .: 0 .: 0 .: 0 .: 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
2110000 12110100 12110100 12110100 12110201 12110201 12110201 12110201 12110201 12110201 12110201 12120100 12110100 12110100 12110100 12110100 12110100 12110100 12110100 12110100 12110100 12110100 121100000 121100000 121100000 121100000 121100000 121100000 121100000000	-1 4 2 0,005 1 560 4 210100000 -13 00 0 .005 1 0 .	1 .3 0.015 014 1 0.0 10 1 .1 0.015 0.015	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
2110000 12110100 12110100 12110100 12110201 12110201 12110201 12110201 12110201 12110201 12120100 12120100 12120100 12120100 12120100 12120100 12120100 12120401 121200000 12120000000000	1 4 2 0.005 1 .0 3 .0 3 .0 3 .0 3 .0 3 .0 0 .0 3 .0 4 .0 3 .0 4 .0 4 .0 4 .0 4 .0 4 .0 5 .0	1 .; 0.015 0.4 1 0.4 1 0.015 1 .1 0.015	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
2110000 12110100 12110100 12110100 12110201 12110201 12110201 12110201 12110201 12110201 12110201 12120100 12120100 12120100 12120101 121200000 121200000 121200000 121200000 121200000 121200000 121200000000	-1 4 2 0,003 1 560 4 210100000 -13 00 0 .00 1 20000 1 0 .00 1 20000 1 2000 1	1 .: 0.015 0.4 1 10.16 10 :0 1 .1 0.015 0.015	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
2110000 12110100 12110100 12110100 12110101 12110201 12110201 12110201 12110201 12110201 12120100 12120100 12120100 12120100 121204001 121200000 12120000000000	$\begin{array}{c} 1 & 4 & 2 \\ 0 & 005 & 1 \\ 0 & 005 & 1 \\ 0 & 007 & 1$	1 .; 0.015 014 1 .0 :0 1 .1 0.015 0 .0 1 .1 0.015	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
2110000 12110100 12110100 12110100 12110100 12110201 12110201 12110201 12110201 12120100 12120100 12120100 12120100 121200000 121200000 12120000 12100000 12100000 12100000 12100000 12100000 12100000 12100000 12100000 121000000 12100000000	1 4 2 0.003 1 0.003 1 0.000 1 0.003	1 .; 0.015 0.4 1 10.4 10 .0 10 .0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
2110000 12110100 12110100 12110100 12110000 12110000 12110000 12110000 12110000 12110000 121200000 12120000 121000000 121000000 121000000 12100000000	1 4 2 0.003 1 0.003 1 700 000 1 1 4 7 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0	1 0.015 0.4 1 .0 .0 1 0.015 0.4 1 .0 1 0.015	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
2110000 12110100 12110100 12110100 12110100 12110101 12110501 12110501 12110501 12110501 12110501 12120100 121200000 121200000 121200000 121200000 121200000 121200000 121200000 121200000 121200000 1212000000 1212000000 121200000000	1 4 2 0.005 1 .001 4 .1010000 0 .005 1 .000 4 .1010000 1 4 2 0.005 1 .005 1	1 .: 0.015 0.4 1 .:0 :0 1 .1 0.015 0.4 1 0.015	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
2110000 12110100 12110100 12110100 12110100 12110201 12110201 12110201 12110201 12110201 12120000 12120000 12120000 12120000 12120000 12120000 12130000 12130000 12130000 12130000 12130000 12130000 12130000	1 4 2 0.003 1 0.003 1 0.003 1 1.00000 0.003 1 0.003 1 0.000	1 .: 0.015 0.14 1 :0 :0 1 .1 0.015 0.14 1 :0 :0 1 .1 0.015	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
2110000 12110100 12110100 12110100 12110100 12110201 12110201 12110201 12110201 12110201 12110201 12120100 12120100 12120100 12120100 12120100 12120100 12120100 12120100 12120100 12120100 12120100 12130000 121300000 121300000 121300000 121300000 121300000 121300000 12130000000000	$\begin{array}{c} 1 & 4 & 2 \\ 0 & 005 & 1 \\ 0 & 005 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 &$	1 0.015 0.14 1 0.015 0.015 0.015	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
2110000 12110100 12110100 12110100 12110100 12110201 12110201 12110201 12110201 12110201 12120100 12120100 12120100 12120100 121200000 12120000 12100000 12100000 12100000 12100000 12100000 12100000 12100000 12100000 12100000 12100000 12100000 12100000 12100000 12100000 12100000 12100000 121000000 121000000 12100000000	1 4 2 0.003 1 0.003 1 0.000 1 0.000 1 0.003	1 0.015 0.4 1 0.015 0.015 0.015 0.015	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

1

1986-09-17	STUDSVIK/NP-86/108
	Appendix
	A.5

-

7140101 0.005 1 0.015 2 0.01 3
12140201 3 3
2140301 .0 3
17140401 Se0. 4
12140601 -13 0 3014 1 .146 1
12140701 0 .0 .0 .0 1
1 0. 0. 0. 0 1
17100101 2 .0707
17100201 3 2
17100301 .0 2
7100507 71040000 010000 1 1 0.820
17100601 -13 0 3014 1 0.998 3
11100607 -13 0 3014 1 0.820 #
17100701 0 .0 .0 .0 8
7100001 0 .0 .0 .0 0
7700000 1 3 2 1 .0548
17200100 0 1
17200101 2 .0707
17700201 3 2
17200301 .0 2
17200501 72010000 0 1 1 .300 1
17200601 -13 0 3014 1 .300 1
17200701 0 .0 .0 .0 1
17200401 0 .0 .0 .0 1
12100000 1 3 2 1 .0548
17300100 0 1
17300101 2 .0707
17300201 3 2
17300301 .0 2
17300501 73010000 0 1 1 .716 1
17300601 -13 0 3014 1 .716 1
17300701 0 .0 .0 .0 1
17300401 0 .0 .0 .0 1
17400000 A 3 2 5 .0369
17400100 0 1
17400101 2 .0445
17400201 3 2
17400301 .0 7
17400501 74010000 0 1 1 .573 1
17400502 74020000 0 1 1 1,117 2
17400503 74030000 0 1 1 2.874 3
17400504 74040000 0 1 1 1,580 4
17400601 +13 0 3014 1 .573 1
17400603 +13 0 3014 1 2.874 3
17400604 -13 0 3014 1 1,580 4
17400701 0 .0 .0 .0 4
17400801 0 .0 .0 .0 4
12450000 1 3 1 1 0.00

17450100 17450201 17450201 17450301 17450301 17450401 17450501 17450601 17450701 17450401	0 1 2 .003 3 2 540.3 74050000 0 1 0 .055 1 -13 0 3014 0 .055 1 0 .0 .0 .0 1 0 .0 .0 .0 1
16200000 16200100 16200101 16200201 16200301 16200301 16200501 16200501 16200501 16200501	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
16400000 16400100 16400101 16400201 16400301 16400301 16400502 16400502 16400503 16400602 16400602 16400603 16400701	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
• 19100000 19100100 19100101 19100201 19100201 19100501 19100501 19100801	0 .0 .0 .0 3 1 3 2 1 .0369 0 1 2 .0445 3 2 560.3 1 1 .246 1 -0 0 .0 .0 1 0 .0 .0 1
* 19200000 19200100 19200201 19200201 19200201 19200401 19200501 19200501 19200501	1 3 2 1 .0369 2 .0445 3 .0445 3 .0465 3 .0465 3 .0465 3 .0465 3 .0465 3 .0465 3 .0465 3 .0465 3 .0369 3 .0465 3 .0369 3 .0369 3 .0445 3 .0369 3 .0445 3 .0369 3 .036
* 19400000 19400100 19400101 19400201 19400301 19400301	1 3 2 1 .0245 0 1 2 .0301 3 2 .0 2 560 3 9401000 0 1 1 1.188 1

19400501	13 0 3014 1 1.188 1	
19400701	0 .0 .0 .0 1	
19400801	0 .0 .0 .0 1	
•		
19500000	1 3 2 1 .0246	
19500100	0 1	
19500101	2 .0301	
19500201	3_ 3	
19500301	.0 2	
19500401	560. 3	
19500501	95010000 0 1 1 1.603 1	
19500601	13 0 3014 1 1.003 1	
19500701		
19300001	0.0.0	
1040000	1 1 2 1 0369	
19600100	a 1	
19600101	2 0445	
19600201	1 2	
19600301	.0 2	
19600401	560.0 3	
19600501	96010000 0 1 1 1,475 1	
19600601	-13 0 3014 1 1,475 1	
19600701	0 0. 0. 0. 1	
19600801	0 0.0.0. 1	
•		
19710000	1 3 2 1 .0246	
19710100	0 1	
14/10/01	2 .0001	
19/10/01	J. (
19/10301	ite i	
19710401		
19710601	-13 0 2014 1 2 200 1	
19710701	0 .0 .0 .0 1	
19710801	ă .ă .ă .ă i	
•		
19720000	1 3 2 1 .0406	
19720100	0 1	
19720101	2 .050	
19720201	3 3	
19720301	.0 2	
19720401	560. 3	
19770501	97020000 0 1 1 1.420 1	
19720601	-13 0 3014 1 1.420 1	
19/20/01		
19120001		
19710000	1 3 1 1 0.00	
19730100	0 1	
19730101	2 .003	
19730201	3 2	
19730301	.0 2	
19730401	560. 3	
19730501	97030000 0 1 0 .055 1	
19730601	-13 0 3014 0 .055 1	
19730701	0.0.0	
19730801	0.0.0.1	
12010000	0 1 1 0.00	
12010101	2 020	
12010201	3 2	
12010301	.o 2	
12010401	560. 3	

12010501 201010000 0 1 0 0.50 12010501 -13 0 3014 0 0.50 1 12010701 0 .0 .0 .0 1 12010801 0 .0 .0 .0 1 12020000 1202000 12020100 12020101 12020201 12020301 12020301 12020501 0.30 0.30 0.300 1 12020601 12020801 3 6 2 1 U. 3 0.0045 2 0.0070 4 5 13110000 . COPPER ROOS 13110100 13110701 1 3 0.0 S 570. S 13110400 13110400 13110501 13110502 13110502 13110502 13110503 13110602 13110603 13110603 13110701 13110701 13110701 13110701 13110701 13110701 13110701 \$.40 11.70 \$.80 11.70 9.80 9.80 9.3
 370.
 6
 0
 1

 0
 0
 0
 1
 1

 031010000
 0
 1
 1
 1

 032010000
 0
 1
 1
 1

 031010000
 0
 0
 1
 1

 030100000
 0
 0
 0
 0

 00
 0,01742
 0
 0
 0

 1
 2
 1
 0
 0

 4
 0,004
 4
 4
 4
 3¹ 3² . COPPER CABLES 5110201 4 4 15110301 15110400 15110509 15110601 15110701 570. 5 570. 5 0 0 1 051010000 0 1 1 0 0.00 0 0. 0 0.01742 0. 0. 7,40 1 7,40 1 1 15110901 20100100 20100101 20100101 20100102 20100151 20100152 TBL/FCTN 1 -1 • MG 0 473. 5.50 573. 4.65 973. 2.75 973. 2.50 3300000. 3300000. 3378000. 3630000. 3713000. 33740000. 673. 3.75 1073. 7.30 3465000. • 20100200 TBL/FCTN 2 20100201 293, 1088, 20100251 293, 1088, 2 • INCONEL 600 10.974 0.0122 0.000002862 0. 0. 0. 0. 2665370. 4173.5 -1.7262 0. 0. 0. 0. 20100300 S-STEEL * 20100400 TBL/FCTN 20100401 390.0 20100451 3.486+06 t t + COPPER CORE POWER REDUCTION 20200100 POWER 604 20200101 0.00 1.000 0.25 0.955 2.00 0.758 5.00 0.479

.

 20308101
 HTTEMP
 401000105

 20308200
 CLADTEMP2
 402000105

 20308201
 HTTEMP
 402000105

 20308201
 HTTEMP
 402000105

 20308201
 HTTEMP
 402000105

 20308400
 CLADTEMP3
 MLT

 20308400
 CLADTEMP3
 MLT

 20308400
 HTTEMP
 40200105

 20308500
 CLADTEMP3
 MLT

 20308500
 HTTEMP
 405000105

 20308500
 HTTEMP
 405000105

 20308500
 CLADTEMP3
 MLT

 20308500
 HTTEMP
 405000105

 20308500
 HTTEMP
 405000105

 20308500
 CLADTEMP3
 MLT

 20308500
 HTTEMP
 405000105

 20305000
 CLADTEMP3
 MLT

 20307000
 CLADTEMP3 ABOD CLAODING INNER TEMP VOLT ADD CLADDING INNER TEMP VOLT TOD CLADDING INNER TEN VOLD THE CLADEING THER TEMP VOLA THE CLADEING INNER TEMP VOLS ADD CLADDING INNER TEMP VOLS AND CLADDING INNER TEMP VOLT 1. 0. 1 SHARER TEMP VOLS NOD CLADOING INNER TEMP VOLS ADD CLADDING MIDDLE TEMP VOL10
 Subart TRANSFER COEFF (HEAT AATE/(SURFACE TEMP-FLUID TEMP))

 0000101
 0

 20000101
 1

 0000101
 1

 000000
 HTCC

 0000101
 1

 00000101
 1

 00000101
 1

 00000101
 1
 1. D. 402000101 1 SUM 20508201 NTCOEF3 1. 0. 403000101 O. HTCOEF4 20508301 1. 1. 0. HTHTC 20508400 20504400 20504401 20504500 20508501 20508600 20508600 HTCOEFS 404000101 1. SUM 1. 0. HTHIC 405000101 1. SUM 1. 0. HTHTC 1. NTHTC . 406000101 O. HTCOEF7 1. SUM 1 20508700 407000101 1 SUM 20508201 O. HTCOEFE 1. 0. HTHTC 20508701 20508800 20508801 20508900 20508900 . 20508800 HTC0FF SLM 1. 0. 1 20508800 HTC0FF SLM 1. 0. 1 20508900 HTC0FF SLM 1. 0. 1 20509900 HTC0FF SLM 1. 0. 1 20509000 HTC0FF SLM 1. 0. 1 20509000 HTC0FF SLM 1. 0. 1 20509000 U. 1. HTHTC 410000101 0. 10010 LEVEL CONTROL SYSTEM FOR DC (STEADY STATE ONLY) 2050101 1. 1. 0. 0. 0. 0. 0. 0. 00 2050201 2. 1. 0. 0. 0. 0. 0. 0. 00 2050201 2. 1.0.00 408000101 2, 7,025 ... LEVETRIUM THOPJUN J05000000 021000000 0.2 1 0 CHIRLVAR 049 1 0, 0, 0, 4050000 4050101 4050201 4050202 20504800 LEVCTR SUM 1. 0. 0 CNTRLVAR 041 SSLEV MULT CHTRLVAR 40 CHTRLVAR 1 20504900 10. 0. 0 3 -2. 2. 20504901 20504902 3060000 3060101 3060200 3060201 RELIEF THC 0.00536 1. 7 0. 69900 THOPVOL 1. 0. 0. 90. 1. 0. 0. 00 +STEADY STATE C 6990000. 1.0 .REGULATED STEADY STATE

th

4060000 4060101 4060201 4060300 4060301	DOMECNTRL VALVE 013010000 30 1 0. 0. 0. TRPVLV 601	+\$1 6000000 +\$1E	EADY STATE	CARD D. CARD	0. 1000	•STEADY STATE	c						
20505000	STR-HTLOSS	SUM	t. o.	0			20505401	CHTRLVAR 50					
20505001	017900 H .26955 H	TRNR TRNR	310000100				20505500	BREAK-LOSS	INTEGRAL I	. o.	0		
20505004	:14846 H	TRNR	\$10000100				20505501	WF LOW J 1320	****	•	•		
20505006	.29939 8	TRNR	522000100				20505601	0150	HTRNR	4000001	ž		
20505008	3.45575	TRNR	121000100				20505603	.150	NTRNR	4000003	ŝ		
20505010	.63460 H	TRNR	211000100				20505605	.150	HTRNR	4000005	200		
20505012	23721	TRNA	213000100				20505606	.150	MTRNR	4000007	20		
20505014	.34363 H	TRNR	710000100				20505609	.150	NTRNA	4000009	20		
20505016	.34363 8	TRNR	710000300				20505610	.150		4000010	~ •	•	
20505018	.20234	TRNR	710000500				20505701	TIME 0	001	••	0.	v	
20505020	20234 H	TANR	710000700				20505800	BYPASS-POW	FUNCTION	۱.	0.	0	
20505101	020234 H	TRNR	710000800				8	TOT-DOM	6184 B		•		
20505103	.24653 H	TRNR	730000100				20505901	0. 1.	CHTRLVAR	57			
20505105	.25898 H	TRNA	740000200					••	Cut HE the				
20505107	.36632 H .05500 H	TRNR	740000400				·····	. INITIAL VALU	ES				
20505109	.67128 H .43972 H	TRNR TRNR	620000100 640000100				0310200	3 7091130.	541.94				
20505111	.40766 H .41621 H	TRNR TRNR	640000200 640000300				0330200	3 7087050.	542.03				
20505113	.28889 H .50000 H	TRNR TRNR	910000100 201000100				0130200	2 6990690.	1.0				
20505115	23751 H 51458 H	TRNR Trnr	311000101 311000201				0730200	3 7032340.	547.07 539.79				
20505117	43107 H 18599 H	TRNR Trnq	311000301 511000101				0910200	3 7029610.	541,95				
20505120	.30000 H .31045 H	TRNR TRNR	202000100 920000100				0940200 0950200	3 7032280. 3 7099000.	541.85				
20505200	STR-HTLOSS SU	M_1.	0. 0				2010200	3 7097830. 3 7095820.	536.87 542.09				
20505201	010363 M	TRNR	940000100				2020200	3 7085780. 3 7051360.	541.86 546.52 0	. o .	ο.	1	
20505204	.42959 H	TRNR	960000100				0041202	2 7047790. 2 7044310.	0.00697 0	: <u></u> .	8.	3	
20505206	.05500 H	TRNR	973000100				0041204	2 7041370.	0.03587 0	8. 8.	8:	\$	
20505301	0. T. CNTRLV	AR SO	U				0041206	2 7033630. 2 7079180.	0.07723 0	. <u>.</u>	8:	?	
20505303	T. CHTRLV	AR 52					0041208	2 7024360.	0.14343 0	. 0.	ö.	;	
20505400	STR-HTINT INTE	CRAL	1. 0. 0				0521201	7014540. 2 7012460.	0.14199 0	: ĝ:	ő.	1	
							0111201	2 6992480.	0.88179 0	. <u>.</u>		Í	
							0121202	2 6991420.	0.74924 0		ö.	2	
							0211202	2 6994130.	0.04125	i ğ.	ě.	į	
							0211204	3 6998030. 3 6998930	542.37 G		o.	4	

.

0741201	2 2	089710.	\$41.98	ę.	ę.	0. S		
0641201	37	038700.	545.56	ο.	0.	0. 1		
0641202	3 7	028290.	552.96	ο.	0.	0. 2		
0641203	3 7	018650.	556.62	Ó.	Ó.	0. 3		
0971201	3 7	088960.	541.54	Ó.	Ó.	Ó. Ĵ		
•								
 JUNC 	TION INI	TTAL VAL	UES					
0041300	0							
0041301	1.280	1.4	4 0.		1.425	1.669	α.	2
0041302	1.210	2 01	1 0	· •	2 1 16	2 611	ā.	
0041303	2.630	1.11	i č	- i	1.100	4 074	Ň.	- 2
0041304	1.499		ă ă.	÷	4 001	6 190	ě.	- 1
0041305	4 657				4.003	3.350	۰.	•
0521300	1.527		·• ··					
0631301		1 01						
0121300		1.04	· · ·					
0121301	-1 -2			•				
0111100		v	· ·.	•				
0111300		•						
0711301	1.52	υ.	U. 3					
0711300	1							
0711301		υ.	0. /					
0741300	1							
0741301	4.83	σ.	0. 4					
0641300	1	-						
0641301	0.69	σ.	0.2					
0971300	!	-						
0971301	1.59	ο.	v. 2					

INPUT FOR RELAPS/MOD FIX-II SPLIT BREAA S 10 S SPLIT BREAA (ON FILE FIXSIBI) 0000100 RESTART TRANSH 0000103 480 0000103 10. 20. 0000103 10. 10. 10. INPUT FOR RELAPS/MOD2, CASE B FIX-II SPLIT BREAK STEADY-STATE (TEST NO. 3051) IO & SPLIT BAEAK (ON FILE FIXSIBI) 00001 8 150 150 0000201 70. 1.0E-6 TRIPS 00000501 TIME 0 GE MULL 0 25. L +STEADY STATE • SPLIT RUPTURE IN CIRCULATION LINE 1520000 1520101 1520201 1520300 1520300 1520301 BRKV120 VALVE 096010000 502000000 0.0 1 0. 0. 0. MTRVLV 0000605 0000505 5.00 0.0000363 0. 0. 0100 .76 1.00 +DIA 6.8 MM 0.0 +OPENING TIME .20 SEC

-

.-

-

Input Case B

Input Case C

11210501 12010000 0 1 1 2.200 1 11210501 -13 0 3014 1 2.200 1 11210701 0 .0 .0 .0 1 11210701 0 .0 .0 .0 1
1220000 1 4 1 1 0.00 1220100 0 2 1220101 0.005 1 0.015 2 0.033 3 1220201 3 3 1220201 3 1220201 50 4 1220201 560 4 1220201 560 4 1220200 0 1 0400 1
11220601 -13 0 3014 0 .400 1 11220701 0 .0 .0 .0 1 11220101 0 .0 .0 .0 1 11220101 0 .0 .0 .0 1
12110100 0.005 1 0.015 2 0.033 3 12110201 3 3 12110201 0.005 1 0.015 2 0.033 3 12110201 0.0 3 12110401 550, 4
12110600 -13 0 3015 1 404 1 12110601 0 .0 .0 .0 1 12110801 0 .0 .0 .0 1 12110801 0 .0 .0 .0 1
12120100 0 2 12120101 0.005 1 0.015 2 0.033 3 12120201 3 3 12120301 .0 3 12120301 .6 3
12120501 21020000 0 1 1 .549 1 12120501 -13 0 3015 1 .549 1 12120701 0 .0 .0 .0 1 12120801 0 .0 .0 .0 1
12130000 1 4 2 1 .132 12130100 0 2 12130101 0.005 1 0.015 2 0.01 3 12130201 3 3 12130201 .0 3
12130501 21030000 0 1 1 .286 1 12130501 -13 0 3015 1 .286 1 12130601 0 .0 .0 .0 1 12130601 0 .0 .0 .0 1
12140000 1 4 2 1 .132 12140100 0 2 12140101 0.005 1 0.015 2 0.01 3 12140201 3 3 12140201 3 3
12140401 560. 4 12140501 -13 0 3015 1 .146 1 12140601 -13 0 3015 1 .146 1 12140701 0 .0 .0 .0 1
0 17100000 8 3 2 1 .0548 1710010 0 1 1710010 2 .0707 17100201 3 2 171010 0 2

•	IMPUT FOR RELAPS/MOD2, CASE C FIX-II SPLIT BREAK STEADY-STATE (TEST NO. 3051) 10 % SPLIT BREAK (OM FILE FIXSICI)	
0000100	NEW STDY-ST	
0000101 0000106 0000201	NUN 10. 20. 30. 1.0E-6 5.25E-2 00001 15 400 400	13200601 -13 0 3015 1 .325 1
0000307	P 037010000 «PRESSURE LOWER PLENUM VOL 2 P 004010000 «PRESSURE CORE VOL 1 P 004100000 «PRESSURE CORE VOL 10	13200701 0 .0 .0 .0 1 13200801 0 .0 .0 .0 1 13300000 1 4 2 1 .132
	• • • • • • • • • • • •	13300100 0 2 13300101 0.005 1 0.015 2 0.03 3 13300201 3 3
	•••	13300401 360, 4 13300501 33010000 0 1 1 271 1 13300601 -13 0 3016 1 .271 1 13300701 0 .0 .0 1
	• •	13300801 0 .0 .0 .0 1
	•••••••••	15100000 1 3 2 1 ,132 15100100 0 1 15100101 2 ,162 15100201 3 2
1520000 1520101 1520201	BREVI20 VALVE 076010000 \$22000000 0,0000363 0. 0. 0100 .76 .76 *DI.	15100301 .0 2 15100401 560, 3 15100501 51010000 0 1 1 .179 1 15100501 -130 0 0016 1 126 1
1520301	0000606 0000505 \$.00 0.0 +OPENING TIME .20 SEC	15100701 0 .0 .0 .0 1 15100801 0 .0 .0 .0 1
	••••	e 15210000 1 3 2 1 .063 15210100 0 1 15310101 2 065
	• •	15210201 3 2 15210301 0 2
	••••	15210401 560, 3 15210501 52010000 0 1 1 .437 1 15210501 0 0 0 1 .437 1 15210701 0 .0 .0 .0 1
	• • • • • • • • • • • •	15220000 1 3 2 1 .050
13100000 13100100 13100101 13100201	1 4 1 1 0.00 0.005 1 0.015 2 0.08 3 3_3	15220100 0 1 15220101 2 .052 15220201 3 2 15220201 .0 2
13100301 13100401 13100501 13100601 13100701	.0 3 560.4 31010000 0 1 0 .179 1 -13 0 3016 0 .179 1 9 .0 .0 1	15220401 560, 3 15220501 52020000 0 1 1 .953 1 15220601 0 0 0 1 .953 1 15220701 0 .0 .0 .0 1 15220801 0 .0 .0 .0 1
13200000	0 .0 .0 .0 1 1 4 7 1 .137 0 2	11100000 1 4 7 1 .250 11100100 0 2 11100101 0.005 1 0.015 2 0.033 3
13200101 13200201 13200301	0.005 1 0.015 2 0.01 3 3 3 3 .0 3 .	11100201 3 3 11100301 .0 3 11100401 560, 4
13200401 13200501	560, 4 37010000 0 1 1 .375 1	11100501 11010000 0 1 1 .458 1 11100501 -13 0 3014 1 .458 1 11100701 0 .0 .0 0 1 11100701 0 .0 .0 .0 1
		11210000 1 4 2 1 .250 11210100 0 2 11210101 0 005 1 0 015 2 0 017 3
		11210201 3 3 11210301 .0 3 11210401 560, 4

•

17100401 540, 3 17100501 17010000 0100000 1 0.998 17100502 71040000 0100000 1 0.820 17100502 71040000 0100000 1 0.820 17100502 71040000 01055 0.958 2 17100502 -13 0.3015 1 0.820 2 17100502 -13 0.3015 1 0.820 2 17100701 0 0 0 0 2 17100701 0 0 0 0 2 17100701 0 0 0 0 2	2
7700000 1 3 2 1 .0548 1700100 0 1 1700101 2 .0707 1700701 3 2 1700701 3 2 1700701 50. 3 1700701 50. 3 1 1 .500 1 1700701 -13 0 3016 1 .500 1	
7700000 0 0 0 0 1 7700000 1 3 2 1 0548 17300100 0 1 2 1 0548 17300100 1 2 1 0548 17300101 2 1 0707 17300101 3 2 1 17300101 3 2 1	
7300500 3010000 0 1 1 .716 1 1300500 -13 0 3015 1 .716 1 1300700 0 .0 .0 .0 .0 1 1300700 0 .0 .0 .0 1 1300700 0 1 2 1 .0359 1740000 0 1 2 0445	
17400101 2 0445 17400201 3 2 17400401 540,3 1 17400401 540,3 1 17400401 240100000 1 1,117 17400401 74010000 1 1,117 17400401 74010000 1 1,117 17400401 74010000 1 1,1560 17400401 -13 0 015 1 17400401 -13 0 015 1 1,17 17400401 -13 0 015 1 1,17 1 17400401 -13 0 015 1 1,17 1 17400401 -13 0 015 1 1,180 4 17400401 0 0 0 0 4 4 17400401 0 0 0 0 4 17400401 0 0 0 4	
77450000 1 3 1 0.00 77450100 2 .003 17450201 2 77450201 3 2 17450201 2 77450201 0 2 17450201 1 0 055 1 77450201 74050000 0 1 0 .055 1 77450201 0 0 0 0 0 1 0 77450201 0 0 0 0 0 1 0 .055 1 774502010 0 0 0 0 0 1 1 .055 1 774502010 0 0 0 0 1 1 .055 1	
62700000 1 3 2 1 .0875 18200100 0 1 18270101 2 0995 18270010 3 2 182700101 3 2 182700101 0 2 182700101 0 2 182700101 500 3 182700501 62010000 0 1 1 1.221 1	

.

5

16200601 +13 0 3015 1 1.221 1 16200701 0 .0 .0 .0 1 16200801 0 .0 .0 .0 1
6400000 3 2 1 .0485 6400100 7 0572 .0485 6400101 3 2 .0485 6400100 3 2 .0485 6400101 3 2 .0485 6400101 560 3 .0486 16400101 560 3 .0486 16400101 560 3 .0486 16400501 5400000 1 1 .335 2 16400502 6400000 1 1 .353 3 16400501 -13 0 015 1 .440 1 16400502 -13 0 015 1 .235 2 16400502 -13 0 015 1 .235 2 16400502 -13 0 015 1 .235 3 16400502 -13 0 015 1 .235 3 16400701 <td< td=""></td<>
100000 1 2 1 .0359 100000 0 1 .0445 19100101 2 .0445 19100201 2 1 19100301 0 2 19100201 3 2 19100401 540. 3 19100401 540. 3 19100501 91010000 1 1 19100501 -13 0 2015 1 19100501 -0 0 0.0 1 19100500 -0 0 0 1
19200000 1 3 2 1 .0359 19200100 0 1 19200101 2 .0445 19200301 32 19200301 .0 2 19200301 .0 2 19200401 550.3 19200501 92010000 0 1 1 1.339 1 19200501 -13 0 .015 1 1.339 1 19200701 0 0 .0 0. 1
9400000 1 3 2 1 .0245 19400100 0 1 19400101 2 .0301 19400201 3 2 19400201 540. 3 19400201 540. 3 19400401 540. 3 19400401 540. 3 19400501 94010000 0 1 1 1.188 1 19400501 -13 0 3015 1 1.188 1 19400501 0 .0 .0 1
19500000 1 3 7 1 .0246 19500100 0 1 3 2 1 .0246 19500101 2 .0301 19500101 3 2 19500301 3 2 19500301 50.3 19500301 50.0300 1 1 .603 1 19500501 0 .0 .0 .0 1 19500301 0 .0 .0 .0 1 19500301 0 .3 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0
19600100 0 1

-

· · •

19600101 2 .0445	
19600201 3 2	
19600301 .0 2	
19600401 560.0 1	
19600501 96010000 0 1 1 1.475	
19600601 -13 0 3016 1 1.475 1	- T
19600701 0 0, 0, 0	1
19600801 0 0. 0. 0.	1
•	
19710000 1 3 2 1 .0246	
19710100 0 1	
19710101 2 .0301	
19710201 3 2	
19710301 .0 2	
19710401 560. 3	
19717501 97010000 0 1 1 2,700 1	
19/10601 -13 0 3015 1 2.760 1	
1 0. 0. 0. 0 1	
18720000 1 3 3 4 0405	
19720100 0 1	
19720101 2 050	
19720201 3 3	
19720301 .0 2	
19720401 560 3	
19720501 9702000 0 1 1 1.420 1	
19720601 -13 0 3015 1 1.470 1	
19720701 0 .0 .0 1	
19720801 0 .0 .0 1	
•	
19730000 1 3 1 1 0.00	
19730100 0 1	
19730101 2 .003	
19730201 3 2	
19730301 .0 2	
19730401 560, 3	
19730501 97030000 0 1 0 .055 1	
19730601 -13 0 3015 0 .055 1	
19730701 0 .0 .0 1	
19/30001 0 .0 .0 1	
12010100 0 1 1 1 0,00	
12010101 2 030	
12010201 3 3	
12010101 0 2	
12010401 560 3	
12010501 201010000 0 1 0 0 50	
12010601 -13 0 3016 0 0.50 1	•
12010701 0 .0 .0 .0 1	
12010801 0 .0 .0 .0 1	
•	
12020000 1 3 1 1 0.00	
12020100 0 1	
12020101 2 .020	
12020201 3 2	
12020301 .0 2	
12020401 560. 3	
202010000 0 1 0 0.300 1	
1010001 -13 0 3016 0 0.30 1	
· · · · · · · · · · · · · · ·	

STUDSVIK ENERGITEKNIK AB

.

.

-

.

-

Data comparison plots

** 0**	1.0000	0111177					
m	IVENT.	Annual Tra		PLOT	10001.	Ameritit	
••••••			(MU.			
9. 1	RN17	PLUID DEMSITT. C	CORE BOTTOM (RHO 0401) CASE 7	8.19	T 15 TP47	FLUID TEMPERTUR	NE, UPPER PLENUM (TE 15) - EXMERIMENT NE, UPPER PLENUM (TEMPP 5201) CASE ?
8. 2	D 4	DIPP. PRESSURE,	CORE INLET RESTRICTION (DPT 4) - EXPERIMENT	B.20		PRESSURE, LOWER	L PLOWN (PT 3) - EXPERIMENT
	2047	DIFF PRESSURE. C	ORE INLEY RESTRICTION (P 3301 - P 401) CASE ?		P 11	PRESSURE LOVER	PLENUM (P 3101) CASE 7
B. 3	X801	ELECTRIC POWER,	CORE - EXPERIMENT	0.21	P 4	PRESSURE, UPPER	PLENN (PT 6) - EXPERIMENT
	NP17	CORR HEATING PON	ER (CHTRLVAR 57) CASE ?		P 27	PRESSURE, UPPER	PLENUM (P 5201) CASE 7
	NL17	NEAT LOSS PROM P	ASSIVES (CHTRLVAR 53) CASE ?				
	•			8.22	1602	MASS FLOW RATE,	STPASS - EXPERIMENT
	TC 1	MEAN CLAD TEMPEN	LEVEL I (IIVI IVOS IZII IZAS) + ELPENIMENT ATURE, LEVEL 1 (NTTEMP 401000105) CASE ?		PP17	MASS FLOW MATE.	BTPASE (AFLONJ 117) CASE ?
				8.23	3603	MASS FLOW RATE.	I.L. PUP - EXPERIMENT
8. 5	70 3	HEAH CLAD TEMP	LEVEL 3 (T108 T183 T243 T248) - EXPERIMENT		HP21	MASS FLOW RATE.	1.1. PURP (HPLONJ 20102) CASE ?
	NT27	HEAR CLAD TEMPER	ATURE, LEVEL 3 (KTTEMP 403000105) CASE ?				
				8.24	X604	MASS FLOW BATE,	S.L. PURP - EXPERIMENT
8. 6	TC S	HEAR CLAD TERP	LEVEL 5 (7202 7227 7232 7237 7252) - EXPERIMENT		MP31	MASS FLOW RATE.	B.L. PURP (HELOWJ 20203) CASE 7
	RIJT	HEAR CLAD TERMED	ATORE, LEVEL 5 (WITERP 404000105) CASE ?				
8.7	*** *	MEAN CEAN TEND		8.25	2010	WASS FLOW MATE,	B.L. VESSEL INCEY (SPOOL FIELE ALD) + ELPERIMENT
•••	HT47	HEAR CLAD TERPER	ATURE, LEVEL 9 (HTTERP 406000105) CASE 7		Par 4 r	HASS FLOW MALE,	VESSEL INCE! (MCOND \$702) CASE ?
				B.26			
8. 8	TC12	HEAN CLAD TEMP.,	LEVEL 12 (T110 T123 T120 T140 T223) - EXPERIMENT		HAT?	TOTAL MASS. IN	SYSTEM CASE ?
	WT57	MEAN CLAD TEMPER	ATURE, LEVEL 12 (HTTEMP 407000105) CASE 7				
				3.27	2607	MASS FLOW RATE.	STEAN RELIEF - EXPERIMENT
3. 9	TCIS	HEAN CLAD TEND.,	LEVEL 15 (T175 T190 T275) - EXPERIMENT		HP57	MASS FLOW RATE.	STEAM BELIEF (MFLONJ 404) CASE ?
	HT67	MEAN CLAD TEMPER	LATURE, LEVEL 15 (HTTENP 410000105) CASE ?				
				3.24		•••••	• • •
•	1 3		C, CORE INLET (TE 3) + ELPERIMENT		19(37	FLUID DENSITY.	BREAK (RHO 9601) CASE 7
		10010 10420010	a, one man (inter stor) car ?		T6 16		
9.11	T 14	PLUID TEMPERATUR	E. CORE OUTLET (TE 14) - EEPENIMENT		1047	HASS FLOW BATE.	BREAK (NFLOW) 152) CASE ?
	T727	FLUID TEMPERATUR	E. CORE OUTLET (TEMPF 5101) CASE ?				
				¥.30	2471	MASS LOSS, MREJ	AT PLOW RECIEVER - EXPERIMENT
9.12	D CO	DITT. PRESSURE,	CORE (DPT 5 + DPT 6 + + DPT 12) - EXPERIMENT		PK.17	BREAK TOTAL MAS	IS LOSS (CHTRLVAR 55) CASE 7
	POC7	DITT PRESSURE, (CORE (PROM P 401 - P 5101) CASE 7				
				8.31	T 34	PLUID TEMPERAT	WE, BREAR IMLET (TE 34) - EXPERIMENT
8.13					7757		RE, BREAR INLET (TEMPT 9601) CASE ?
	RH41	FLUID DEWSITT. V	ESSEE BOTTON (BBO 3101) CASE ?				
9.14	D DC			8.32			
	7007	DITT PRESSURE, D	CANCOUR (PT 27 0 0 PT 30) - EXTERNENT		1901	5050001MG, 5M	DR 18227 (18970 9101 - 1897 9101) CASE ?
				1.33	P 6	PRESSURE, BREAK	L SHLET (PT 4) - EXPERIMENT
B.15	D LP	DITT. PRESSURE,	LOWER PLENUM (DPT 2 + DPT 3 - DPT 1) - EXPERIMENT		P 31	PRESSURE, BREAD	INLET (P 9401) CASE 7
	POLY	DIFF PRESSURE, L	OWER PLENUN (PHON P 3101 - P 3301) CASE ?				
				B.34			• • •
3.16	D UP	DIFP. PRESSURE,	UPPER PLENUM (DPT 13 + DPT 14) + EXPERIMENT		CPUT	CPUTINE CASE 1	,
	PDU1	DIFF PRESSURE, U	PPER PLENUM (PROM - P 5101 - P 5201) CASE ?				
			•	9,35	****	• • • • • • •	• • •
8.17	D 54	DIFP. PRESSURE,	STEAN SEPARATOR ORIFICE (DPT 56) - EXPERIMENT		PAE?	MASS ERMOR CAS	
	1 201	DIFF PRESSURE. S	TEAM SEPARATOR ORIFICE (P 5201 + P 5202) CASE ?				
9.18	т 31	FLUID TERPERATUR	E, DOWN COMER BOTTOM (TE 31) - EXPERIMENT				

.

 T 31
 FLUID TEMPERATURE, DOWN COMER BOTTOM (TE 31) - EXPERIMENT

 TF37
 FLUID TEMPERATURE, DOWNCOMER BOTTOM (TEMP7 7100)

_

20

ò

20

40

60

80

TIME (S)

100

120

140

160

_

1986-09-17

•

ţ

 0
 FLUID TEMPERATURE. BREAK INLET (TE 34) - EXPERIMENT

 0
 FLUID TEMPERTURE. BREAK INLET (TEMPF \$601) CASE A

 4
 FLUID TEMPERTURE. BREAK INLET (TEMPF \$601) CASE B

 +
 FLUID TEMPERTURE. BREAK INLET (TEMPF \$601) CASE C

STUDSVIK/NR-86/108 Appendix B.19 1986-09-17

D MASS ERRCR CASE / D MASS ERRCR CASE B A MASS ERRCR CASE C

. .

.

.

. .

1986-09-17

Calculation to experiment data uncertainties

Case A

CALCULATION-TO-EXPERIMENT DATA UNCERTAINTY ANALYSIS FOR MRC/ICAP.

FIRST LINE : DIFFERENCE BETWEEN CALCULATED AND (AVERAGED) EXPERIMENTAL DATA AT END OF THE INTERVAL SECOND LINE : MEAN DIFFERENCE OVER THE INTERVAL THIRD LINE : MEAN SIGMA OVER THE INTERVAL (ROOT MEAN SQUARE OF THE DIFFERENCE)

- CODES -	XES TIME INTERVAL							
CALC. EXP.	0.0 - 8.000	- 12.00	- 20.00	- 30.00	- 45.00	- 65.00	- 95.00	- 135.0
P 1A - P 3	189E-01	.120E-02	.172E-01	.133E-01	119	227	333	446
	442E-01	~.208E-02	.545E-02	.199E-01	298E-01	198	274	374
	.576E-01	.756E-02	.760E-02	.263E-01	.493E-01	.201	.275	.407
P 2A - P 4	.295E-01	.453E-01	.561E-01	.\$28E-01	857E-01	205	304	420
	345E-02	.422E-01	.465E-01	.\$59E-01	.139E-01	166	249	365
	.360E-01	.426E-01	.467E-01	.\$61E-01	.423E-01	.170	.250	.367
P3A - P 6	1.02	.291E-01	.387E-01	.336E-01	101	207	305	433
	1.27	.722E-01	.316E-01	.372E-01	686E-02	175	257	378
	1.38	.206	.328E-01	.373E-01	.383E-01	.179	.258	.380
PD4A - D 4	959	241	1.69	1.73	1.33	1.56	163	.745E-02
	1.01	722	.411	1.73	1.74	2.23	.492	.270
	4.54	.777	.847	1.73	1.77	2.88	.642	.320
POLA - D LP	.315	.336	.348	.345	.484	-,488	.163E-01	.158E-01
	.282	.330	.357	.355	.378	-,130E-01	414	.154
	.289	.330	.357	.355	.379	,167	.462	.233
PDCA - D CO	-3.22	~2.96	-2.93	-8.02	-7.29	-1.48	-6.01	-10.2
	-1.95	~3.33	-2.59	-4.01	-8.59	-5.60	-3.44	-8.14
	2.82	3.34	2.61	4.04	8.98	7.02	3.60	8.29
POUA - D UP	352	415	343	-2.08	-1.66	-,473	501	559
	464	421	463	853	-2.78	-,664	387	585
	.491	.426	.466	.985	2.80	,734	.396	.590
PDDA - D DC	300E-02	.159	6.25	12.0	14.5	3.62	10.5	13.1
	423	.888E-01	4.06	8.76	15.0	4.31	9,14	11.6
	1.18	.139	4.52	8.92	15.1	5.68	9,33	11.6
PDSA - D 86	926	-2.27	-2.72	-4.57	-3.56	627	880	898
	.469	-1.72	-2.67	-3.73	-3.69	-1.29	852	921
	1.97	1.75	2.67	3.79	3.76	1.60	.867	.927
MF1A - X602	108	~.981E-01	.432E-01	192E-02	923E-01	-,196	218	-,198
	473E-01	~.110	794E-01	.106E-01	787E-01	-,196	152	-,193
	.782E-01	.110	.102	.158E-01	.933E-01	,318	.161	,196
MF2A - X603	425E-01	.228	755	-,156	295	.488	-,\$06	1.04
	295E-01	.4718-01	141	-,199	167	296	240	.332
	.124	.8176-01	.325	,228	.198	.590	,\$24	.530
MF3A - X604	168	~.206	297	226	902	.116	.423	211
	124	~.188	263	261	318	.234	.333	226
	.172	.188	.265	.262	.351	.\$55	.586	.322
MF5A - X607	.966E-01	.101	.930E-01	.923E-01	.139E-01	188E-01	238E-01	370E-01
	.112	.104	.986E-01	.948E-01	.801E-01	745E-02	200E-01	288E-01
	.132	.104	.987E-01	.949E-01	.962E-01	.126E-01	.203E-01	.290E-01
MF4A - X610	369	876	600	629	.829	.445	1.10	731
	436E-D2	452	606	610	311	.386	.627	.525
	.267	.456	.607	.611	.789	.762	.891	.646
MF6A - X636	233E-01	.631	.850	.590	298	.550E-01	.575E-01	850E-01
	-5.86	.305	.535	.573	.522	589E-01	.102	.108E-01
	6.87	.344	.839	.578	.638	.171	.116	.641E-01
TF1A - T 3	2.42	2.26	2.78	2.45	6.60	250	-2.50	-7.71
	1.82	2.26	2.82	2.77	6.14	.823	-1.27	-5.23
	1.85	2.28	2.84	2.81	6.38	1.37	1.46	5.44
TF2A - T 14	1.43	2.51	1.05	2.20	.760	-1.44	-6.09	-9.11
	1.36	1.88	1.71	2.14	1.43	738	-2.68	-6.61
	1.41	1.91	1.73	2.20	1.56	1.01	2.83	6.76
TF4A - T 15	2.64	3.46	1.67	1.83	350	-1.94	-4,69	-9.12
	1.38	3.25	2.25	1.81	1.19	-1.12	-3,01	-5.24
	1.56	3.27	2.36	1.81	1.38	1.27	3,18	7.62
TF3A - T 31	-5.66	7.15	5.48	7.55	1.10	-4.21	-5,59	-11.4
	.356	4.16	5.93	5.70	7.81	-3.06	-5,30	-8.91
	.660	4.82	6.01	5.80	8.20	3.33	5,36	9.01
TF5A - T 34	-,400	.310	1.35	1.16	-1.04	-3.68	-5.70	-10.9
	-2,54	231	1.65	1.04	1.95	-3.24	-4.75	-8.41
	3,31	.311	1.75	1.05	2.13	3.31	4.79	8.53
HTIA - TC 1	-2.61	.120	1.12	11.6	7.88	-4.61	-6.71	-11.1
	-5.08	~.676	.283	8.62	12.0	-2.49	-5.62	-9.04
	5.24	1.16	.800	8.82	12.2	3.85	5.65	9.13
HT2A - TC 3	-2.43	1,84	4.43	8.79	-1.23	-3.26	-8.20	-10.6
	-4.51	~,143	3.95	4.73	3.41	-1.43	-4.45	-8.04
	4.70	1,36	4.03	4.77	4.16	2.54	4.51	8.17
HT3A - TC B	-5.37	-3.20	300E-01	-1.05	-3.79	-5.11	-7.34	-12.1
	-6.43	-3.93	-1.65	338	-1.68	-4.23	-5.99	-9.61
	6.50	3.97	1.90	.511	1.84	4.30	6.03	9.70
HT4A - TC 8	-2.81	-1.66	190	360	-2.70	-3.72	-6.05	-10.4
	-3.07	-2.14	-1.13	.269E-01	913	-3.61	-4.68	-8.15
	3.13	2.18	1.24	.202	1.22	3.62	4.73	8.26
HT5A - TC12	-1.90	-1.26	710	430	-2.09	-3.50	-5.58	-10.6
	-1.54	-1.56	852	607	597	-3.22	-4.41	-8.06
	1.67	1.57	.916	.647	.891	3.26	4.47	8.18
HT6A - TC15	-1.43	-1.31	-1.28	850	-1.90	-3.42	-8.65	830
	-1.21	-1.20	-1.26	920	668	-3.07	-4.40	-7.14
	1.25	1.29	1.27	.951	.916	3.12	4.46	7.35
ML1A - X671	-348,	-347.	-342.	-336.	-328.	-330.	-327.	-326.
	-334,	-347.	-344.	-339.	-331.	-330.	-328.	-326.
	335,	348.	344.	339.	331.	330.	328.	326.
HP1A - X801	279E-01	.813E-02	551E-02	.324E-02	730E-03	168E-02	507E-02	960E-02
	273E-02	.230E-02	.602E-03	+.276E-03	.104E-02	182E-02	373E-02	756E-02
	.351E-01	.899E-02	.468E-02	.322E-02	.150E-02	.193E-02	.384E-02	.764E-02

Case B

CALCULATION-TO-EXPERIMENT DATA UNCERTAINTY ANALYSIS FOR NRC/ICAP.

FIRST LINE : DIFFERENCE BETWEEN CALCULATED AND (AVERAGED) EXPERIMENTAL DATA AT END OF THE INTERVAL SECOND LINE : MEAN DIFFERENCE OVER THE INTERVAL THIRD LINE : MEAN SIGMA OVER THE INTERVAL (ROOT MEAN SQUARE OF THE DIFFERENCE)

- CODES -				TIME INTERVAL				
CALC. EXP.	0.0 - 8.000	- 12.00	- 20.00	- 30.00	- 45.00	- 65.00	- 95.00	- 135.0
P 18 - P 3	100E-03	.457E-01	.721E-01	.109	.658E-01	821E-01	177	279
	300E-01	.276E-01	.\$85E-01	.921E-01	.117	544E-01	122	215
	.459E-01	.310E-01	.\$90E-01	.945E-01	.120	.714E-01	.125	.268
P 28 - P 4	.444E-01	.869E-01	.109	.144	.953E-01	614E-01	150	253
	.609E-02	.684E-01	.968E-01	.125	.154	251E-01	978E-01	207
	.356E-01	.696E-01	.971E-01	.126	.155	.\$44E-01	.101	.210
730-7 B	1.04	.750E-01	.953E-01	.131	.905E-01	607E-01	153	265
	1.28	.103	.862E-01	.111	.141	315E-01	106	219
	1.40	.217	.868E-01	.112	.143	.591E-01	.110	.222
P048 - D 4	1.71	1.35	2.10	1.96	2.39	1.84	.202	.342
	4.17	1.49	1.78	1.85	1.89	2.83	.647	.244
	6.12	1.51	1.82	1.88	1.90	3.04	.751	.272
POLB - D LP	.318 .285 .293	.338 .332 .333	.349 .361 .361	.356 .358 .358	.486 .391 .392	-,494 ,140E-01 ,216	332 447	153E-01 .173 .216
PDC8 - D C0	-1.88	-1.77	-1.07	-2.00	-5.58	145	-3.77	-9.82
	419	-2.04	-1.27	-1.69	-2.99	-4.70	-2.80	-6.84
	2.06	2.05	1.30	1.71	3.24	8.13	2.94	7.05
POUB + D UP	260	263	.130E-01	727E-01	286	277	495	-,544
	371	259	220	412E-01	349	474	379	-,485
	.417	.269	.254	.603E-01	.445	.504	.397	,488
P008 - D DC	200E-D1	134	1.94	2.85	\$.75	1.84	10.5	12.8
	-1.05	.164E-01	.864	2.13	5.56	2.15	8.63	11.5
	1.90	.127 .	1.06	2.15	\$.73	3.14	9.01	11.5
PD38 - D 56	414	-1.47	-1.73	-1.99	025	236	918	901
	1.02	-1.12	-1.92	-1.87	-1.78	577	808	934
	2.06	1.16	1.93	1.87	1.08	.790	.835	.940
MF18 - X602	548E-01	453E-01	.128	.662E-01	727E-01	-,184	188	233
	.684E-02	860E-01	.326E-01	.834E-01	.246E-01	-,163	144	205
	.653E-01	.562E-01	.107	.842E-01	.\$16E-01	,310	.149	.206
₩728 - X603	199	.216E-01	-,506	462E-01	274	.330	.148	.395
	189	122	-,964E-01	967E-01	179	215	.487E-01	.348
	.250	.132	.151	.143	.203	.532	.297	.407
MF38 - X604	234	261	305	240	409	.350	.118	211
	204	247	281	269	301	.427	.896E-01	237
	.222	.247	.281	.271	.306	.554	.181	.275
MF58 - X607	-966E-01	.101	.930E-01	.923E-01	.423E-01	.301E-02	940E-03	121E-01
	-118	.104	.986E-01	.948E-01	.887E-01	.146E-01	.314E-02	512E-02
	-184	.104	.987E-01	.849E-01	.101	.189E-01	.482E-02	.592E-02
MF48 - X610	.176	+.363E-01	106	219	1.16	.847	1.07	551
	.563	.982E-01	739E-01	167	780E-01	.724	.538	.519
	.649	.115	.786E-01	.170	.451	.811	.754	.627
MF68 - X636	634	.369E-01	.\$45E-01	.169	239	.785E-01	.757E-01	349E-01
	-6.81	304	115E-01	.127	.991E-01	353E-01	.122	.237E-01
	7.43	.345	.659E-01	.145	.319	.164	.133	.761E-01
TF18 - T 3	2.40	2.18	2.66	2.09	2.98	1,86	.\$50	-3.34
	1.83	2.21	2.71	2.73	2.93	2,38	1.29	-1.64
	1.85	2.24	2.73	2.77	2.98	2,44	1.38	2.01
TF28 - T 14	1.53	2.61	1.15	3.21	2.86	.660	-3.15	-4.75
	1.45	1.96	1.41	2.34	3.28	1.12	150	-3.02
	1.50	1.99	1.45	2,45	3.32	1.32	.710	3.21
TF48 - T 15	2.78	3.63	1.99	2.74	1.90	.150	-1.76	-4.77
	1.47	3.38	2.55	2.49	2.89	.737	483	-3.33
	1.64	3.40	2.65	2.49	2.96	.961	.996	3.51
TF38 - T 31	-5.83	5.60	4.79	8.43	3.29	-2.09	-2.65	-7.06
	.321	3.70	6.12	5.82	9.59	-1.16	-2.75	-5.31
	.656	4.37	5.22	5.99	9.84	1.81	2.80	5.41
TF58 - T 34	890	160	.100	.870	1.85	-1.66	-2.75	-6.51
	-3.16	613	.754	473E-01	2.39	-1.28	-2.23	-4.83
	3.74	.642	.881	.289	2.38	1.85	2.27	4.95
HTIB - TC S	-2.75	-1.01	-1.48	6.80	9.38	-2.67	-3.94	-8.95
	-5.16	-1.35	-1.57	3.30	9,56	827	-3.22	-8.58
	5.32	1.44	1.59	4.32	9.64	3.05	3.25	8.66
HT28 - TC 3	-2.45	1.94	4.10	6.70	.770	-1.31	-2.44	-6.39
	-4.56	163	3.60	5.26	4.79	.292	-2.05	-4.59
	4.77	1.37	3.66	5.34	\$.20	2.05	2.11	4.72
MT38 - TC 8	-5.35	-3.12	170	150	-1.75	-3.16	-4.58	-7.86
	-6.82	-3.90	-1.72	.208	251	-2.50	-3.58	-8.16
	6.60	3.96	1.84	.314	.563	2.60	3.62	6.25
HT48 - TC 9	-2.87	-1.51	110	.560	710	-1.82	-3.29	-6.19
	-3.24	-2.08	-1.04	.594	534	-1.88	-2.28	-4.72
	3.29	2.13	1.15	.639	773	1.92	2.32	4.83
HT58 - TC12	-1.99	-1.06	-,840	.500	130	-1.62	-2.81	-6.40
	-1.75	-1.51	-,892	142E-01	.834	-1.49	-2.01	-4.64
	1.85	1.55	,768	.355	.964	1.59	2.08	4.75
HT68 - TC15	-1.38	-1.02	-,990	.350	\$00E-01	-1.49	-2.84	-6.11
	-1.26	-1.14	-,964	333	.391	-1.30	-1.99	-4.43
	1.30	1.16	,974	.532	.474	1.42	2.05	4.55
ML18 - X671	-351.	-354.	-353.	-352.	-349.	-350.	-347.	-346.
	-336.	-353.	-353.	-353.	-350.	-350.	-348.	-345.
	336.	353.	353.	353.	350.	350.	348.	345.
HP18 - X801	279E-01	.813E-02	-,851E-02	.324E-02	730E-03	168E-02	507E-02	960E-02
	548E-02	.258E-02	,602E-03	276E-03	.104E-02	182E-02	373E-02	756E-02
	.396E-01	.908E-02	,468E-02	.322E-02	.150E-02	.193E-02	.384E-02	.764E-02

ł.

Case C

CALCULATION-TO-EXPERIMENT DATA UNCERTAINTY ANALYSIS FOR NRC/ICAP.

FIRST LINE : DIFFERENCE BETWEEN CALCULATED AND (AVERAGED) EXPERIMENTAL DATA AT END OF THE INTERVAL SECOND LINE : MEAN DIFFERENCE OVER THE INTERVAL THIRD LINE : MEAN SIGMA OVER THE INTERVAL (ROOT MEAN SQUARE OF THE DIFFERENCE)

- CODES -				TIME INTERVAL				
CALC. EXP.	0.0 - 6.000	- 12.00	- 20.00	- 30.00	- 45.00	- 55.00	- \$5.00	- 135.0
P 1C - P 3	.128E-01	.657E-01	.996E-01	.132	.\$58E-01	109	221	314
	228E-01	.441E-01	.829E-01	.118	.133	760E-01	155	259
	.416E-01	.470E-01	.834E-01	.120	.136	.908E-01	.159	.304
P 2C - P 4	.\$74E-01	.107	.136	.167	.865E-01	884E-01	195	~.289
	.142E-01	.851E-01	.121	.151	.170	473E-01	131	~.251
	.385E-01	.864E-01	.122	.162	.172	.706E-01	.135	.253
P 3C ~ P 6	1.05	.949E-01	.123	.184	.790E-01	874E-01	197	300
	1.29	.120	.110	.137	.156	523E-01	139	263
	1.40	.224	.111	.137	.159	.749E-01	.143	.265
PD4C - D 4	1.56	1.22	1.88	1.97	2.20	1.90	.215	.134
	4.36	1.34	1.63	1.85	1.79	3.24	.668	.263
	6.52	1.36	1.66	1.86	1.80	3.47	.806	.307
POLC - D LP	.321	.340	.353	.361	.514	310	.199	.184
	.287	.335	.363	.362	.398	.849E-01	240	.180
	.294	.335	.363	.362	.400	.186	.365	.270
POCC - D CO	-1.91	-1.74	-1.13	-2.11	-6.75	800E-02	-3.86	-8.93
	-1.58	-2.04	-1.27	-1.80	-3.27	-4.58	-2.41	-6.68
	1.83	2.05	1.29	1.81	3.59	4.99	2.64	6.96
POUC - D UP	253	255	.242E-01	894E-01	303	289	533	\$50
	406	249	204	452E-01	492	473	376	464
	.452	.258	.240	.685E-01	.625	.503	.414	. 469
PDDC - D DC	200E-01	118	2.21	3.52	8.43	1.87	10.4	12.0
	909	.183E-01	1.09	2.54	6.39	2.40	8.86	11.5
	1.79	.128	1.31	2.56	6.56	4.15	9.25	11.5
PDSC - D 56	494	-1.48	-1.73	-2.11	921	350	\$15	933
	.610	-1.16	-1.93	-1.91	-1.98	448	806	929
	1.76	1.19	1.93	1.92	2.08	.729	.834	.933
MF1C - X602	\$73E-01	467E-01	.109	.619E-01	198	132	241	179
	.120E-01	582E-01	.215E-01	.780E-01	.136E-01	131	139	192
	.735E-01	.584E-01	.928E-01	.788E-01	.611E-01	.263	.143	.195
MF2C - X603	193	.221E-01	603	860E-01	288	138	364	1,09
	156	121	131	140	186	282	.307E-01	.399
	.226	.130	.198	.180	.201	.582	.258	.454
MF3C - X604	232	261	307	242	434	.407	.817E-01	195
	190	247	283	272	293	.630	.126	239
	.213	.247	.283	.273	.298	.746	.212	.267
MF5C - X607	.966E-01	.101	.930E-01	.923E-01	.410E-01	+.118E-02	771E-02	183E-01
	.118	.104	.986E-01	.948E-01	.891E-01	.111E-01	204E-02	119E-01
	.184	.104	.987E-01	.949E-01	.101	.168E-01	.468E-02	.123E-01
MF4C - X610	.151	591E-01	133	252	1.16	.817	1.06	648
	.546	.741E-01	998E-01	198	142	.998	.550	.534
	.640	.950E-01	.104	.200	.462	1.06	.757	.642
WF6C - X636	606	.600E-01	.802E-01	.200	532	.887E-01	.839E-01	858E-01
	-6.48	279	.126E-01	.155	.242	322E-01	.130	.166E-01
	7.40	.323	.664E-01	.170	.329	.172	.140	.798E-01
TFIC - T 3	2.11	1.86	2.20	1.17	2.71	1.48	270	-4.25
	1.54	1.91	2.34	2.07	2.29	2.07	.741	-2.61
	1.58	1.84	2.36	2.15	2.43	2.14	.971	2.89
TF2C - T 14	1.63	2.76	1.38	3.42	2.76	.270	-3.98	~5.76
	1.52	2.08	1.57	2.59	3.47	.824	711	~3.99
	1.57	2.11	1.60	2.69	3.63	1.12	1.06	4.15
TF4C - T 15	2.87	3.79	2.23	2.97	1,80	230	-2.89	-5.75
	1.54	3.50	2.74	2.75	3,06	.445	-1.05	-4.28
	1.71	3.52	2.82	2.76	3,12	.812	1.42	4.43
TF3C - T 31	-\$.76	6.70	5.00	8.68	3.20	-2.48	-3.46	-8.06
	.365	3.79	5.28	6.05	9.70	-1.43	-3.32	-6.28
	.\$75	4.45	5.37	8.22	9.95	2.05	3.39	8.37
TF5C - T 34	-2.26 -5.45 \$.12	-1.09 -1.71 1.74	630 623E-01 .493	150 745 .797	1.81 1.51 1.75	-1.92 -1.49	-3.67 -2.77	-7.62 -5.81
NTIC - TC 1	-2.70	-1.17	-1.20	6.61	\$.67	-3.06	-4.73	-7.93
	-5.12	-1.42	-1.68	2.99	10.0	-1.09	-3.77	-6.54
	5.28	1.52	1.70	4.02	10.1	3.25	-3.41	6.61
HT2C - TC 3	-2.36	2.06	4.46	6.87	.790	-1.70	-3.25	-7.44
	-4.50	-,\$40E-01	3.74	5.55	4.97	.151E-01	-2.60	-5.54
	4.71	1.38	3.80	5.61	8.38	2.11	2.68	\$.66
HT3C - TC \$	-5.25	-2.98	.180	.500E-01	-1.74	-3.55	-8.38	-8.91
	-6.45	-3.78	-1.52	.495	747E-01	-2.78	-4.14	-7.11
	6.54	3.84	1.79	.558	.551	2.89	4.19	7.20
HT4C - TC B	-2.78	-1.35	.200	.780	740	-2.21	-4.08	-7.18
	-3.19	-1.95	826	.873	.703	-2.15	-2.83	-5.68
	3.24	2.01	.976	.900	.930	2.20	2.89	5.77
HT5C - TC12	-1.90	-,890	230.	.730	160	-2.01	-3.61	-7.40
	-1.69	-1,38	472	.261	1.00	-1.75	-2.57	-8.59
	1.79	1,42	.597	.426	1.13	1.88	2.64	5.70
HT6C - TC15.	-1.28	840	700	.\$70	600E-01	-1.86	-3.83	-7.12
	-1.18	-1.00	741	\$15E-01	.566	-1.57	-2.83	-5.40
	1.22	1.02	.754	.404	.635	1.70	2.60	5.50
ML1C - X871	-351.	-353.	-353.	-351.	-347.	-348.	-344.	-344.
	-336.	-352.	-353.	-352.	-349.	-349.	-346.	-343.
	336.	352.	353.	352.	349.	349.	346.	343.
HP1C ~ X801	279E-01	.813E-02	851E-02	.324E-02	730E-03	166E-02	507E-02	858E-02
	848E-02	.258E-02	.602E-03	276E-03	.104E-02	182E-02	373E-02	755E-02
	.396E-01	.908E-02	.468E-02	.322E-02	.150E-02	.193E-02	.384E-02	.764E-02

.

,

,

1

.

Description for the accompaning date package

STUDSVIK

THIS TAPE CONTAINS DATA FROM THE ICAP PREDICTION CALCULATION WITH THE RELAP5/MOD2/36.04 FOR THE FIX-II EXPERIMENT NO. 3051.

CONTENTS, FILE	1.	THIS DESCRIPTIVE TEXT				
	2.	INPUT CASE A. STEADY STATE				
	3.	"" B, "-"				
	4.	" - " C. STEADY STATE				
	5.	DATA, EXPERIMENT				
	6.	"-" , CASE A				
	7.	"-" . CASE B				
	8.	, CASE C				

9

I.	COMPUTER	
	NAME	CYBER 170-810
	WORD SIZE	60

II.	TAPE FORMAT			
	NUMBER OF TRACKS			
	DACKTHE DENETWY			

PACKING DENSITY	1600 BPI
RECORD SIZE	80
BLOCKING FACTOR	64
CODED	EBCDIC
CONTROL WORDS	NO

III. DATA FORMAT, FOR EACH OF THE FILES 5 THROUGH 8

TITLE RECORD(S). (FORMAT 15.A75) FIELD 1. THE NUMBER OF DATA CHANNELS ON THE FILE FIELD 2. PROBLEM IDENTIFICATION UP TO FIVE ADDITIONAL IDENTIFICATION RECORDS MAY BE ADDED BY 'C' IN COLUMN 1 OF FIELD 1

DATA SET RECORD 1. (FORMAT 215,A60)

FIELD 1. NUMBER OF DATA POINTS

FIELD 2. THE ENGINEERING UNIT CODE (EUC) FOR THE VARIABLE

FIELD 3. IDENTIFYING TEXT OF THE DATA REMAINING DATA SET RECORDS FORMAT 5(E16.9)

EACH DATA CHANNEL SUBMITTED IS GIVEN THROUGH TWO DATA SETS. THE FIRST OF WHICH IS THE TIME DATA SET. THE TWO SETS HAVE THE SAME NUMBER OF DATA POINTS. THE TIME DATA SET IS IDENTIFIED BY EUC-77 (FIELD 2) AND THE IDENTIFYING TEXT 'TIME' (FIELD 3).

. . .

.

NRC FORM 335 U.S. NUCLEAR REGULATORY COMMISSION BIBLIOGRAPHIC DATA SHEET (See instructions on the reverse) 2. TITLE AND SUBTITLE Assessment of RELAP5/MOD2, Cycle 36.04 Against FIX-II Split Break Experiment No. 3051 5. AUTHOR(S) John Eriksson	1. REPORT NUMBER (Assigned by NRC, Add Vol., Supp., Rev., and Addendum Numbers, If any.) NUREG/IA-0029 STUDSVIK/NP-86/108 3. DATE REPORT PUBLISHED MONTH YEAR October 1989 4. FIN OR GRANT NUMBER 6. TYPE OF REPORT
	7. PERIOD COVERED (Inclusive Dates)
B. PERFORMING ORGANIZATION - NAME AND ADDRESS III NRC, provide Division, Office or Region, U.S. Nuclear Regulatory Comname and mailing address.) Swedish Nuclear Power Inspectorate S-61182 Nykoping, Sweden D. SPONSOBING ORGANIZATION - NAME AND ADDRESS (IMARG and "Generator provide NRC Division Office)	mission, and mailing address; If contractor, provide
Office of Nuclear Regulatory Research U. S. Nuclear Regulatory Commission Washington, DC 20555	
10. SUPPLEMENTARY NOTES	
11. ABSTRACT (200 words or less) The FIX-II split break experiment No. 3051 has been analyzed usin code. The code version used, Cycle 36.04, is the frozen version Three calculations were carried out to study the sensitivity of the change of break discharge and passive heat structures. The the calculations and the experiment have been quantified over in for a number of variables available from the measurements during	ng the RELAP5/MOD2 of the code. various parameters to differences between tervals in real time the experiment.
12. KEY WORDS/DESCRIPTORS (List words or phrases that will assist researchers in locating the report.) RELAP, ICAP Program, Split Break	13. AVAILABILITY STATEMENT Unlimited 14. SECURITY CLASSIFICATION (This Page) Unclassified (This Report) Unclassified 15. NUMBER OF PAGES 16. PRICE

ł

. I . *.*

.

UNITED STATES NUCLEAR REGULATORY COMMISSION WASHINGTON, D.C. 20555

OFFICIAL BUSINESS PENALTY FOR PRIVATE USE, \$300

.

÷