- =
NUREGNA-0011

TRAC-PF1 MOD1 Post Test
Calculations of the OECD
LOFT Experiment LP-SB—-1

Prepared by
E. J. Allen

United Kingdom Atomic Energy Authority
Winfrith, Dorchester
Dorset, England

Office of Nuclear Regulatory Research
U.S. Nuclear Regulatory Commission
Washington, DC 20555

April 1990

Prepared as part of :

The Agreement on Research Particlpation and Technical Exchange
under the International Thermal-Hydraulic Code Assessment

and Application Program (ICAP)

Published by
U.S. Nuclear Regulatory Commission




NOTICE

This report was prepared under an international cooperative
agreement for the exchange of technical information. Neither
the United States Government nor any agency thereof, or any of
their employees, makes any warranty, expressed or implied, or
assumes any legal liability or responsibility for any third party’s
use, or the results of such use, of any information, apparatus pro-
duct or process disclosed in this report, or represents that its use
by such third party would not infringe privately owned rights.

Available from

Superintendent of Documents
U.S. Government Printing Office
P.O. Box 37082 -
Washington, D.C. 20013-7082

and

National Technical Information Service
Springfield, VA 22161



NUREGNA-0011

Intemmational
Agreement Report

TRAC-PF1 MOD1 Post Test
Calculations of the OECD
LOFT Experiment LP-SB-1

Prepared by
E. J. Allen

United Kingdom Atomic Energy Authority
Winfrith, Dorchester
Dorset, England

Office of Nuclear Regulatory Research
U.S. Nuclear Regulatory Commission
Washington, DC 20555

April 1990

Prepared as part of

The Agreement on Research Participation and Technical E hango
under the International Thermal-Hydraulic Code Assessm

and Application Program (ICAP)

Published by
U.S. Nuclear Regulatory Commission



NOTICE

This report is based on work performed under the sponsorship of the
United Kingdom Atomic Energy Authorlty. The information in this
report has been prov1ded to the USNRC under the terms of the
International Code Assessment and Application Program (ICAP)
between the United States and the United Kingdom (Administrative
Agreement - WH 36047 between the United States Nuclear Regulatory
Commission and the United K:mgdom Atomic Energy Authorlty Relating
to Collaboration in the Field of Modelling of Loss of Coolant
Accidents, Februafy 1985). ' The United Kingdom has consented to the
publication of this report as a USNRC document in order to allow
the widest possible circulation among the reactor safety community.
Neither the United States Government nor the United Kingdom or any
agency thereof, or any of their employees, makes any warranty,
expressed or implied, or assumes any legal 1liability of
responsibility for any third party's use, or the results of such
use, or any information, apparatus, product or process disclosed
in this report, or represents that its use by such third party
would not infringe privately owned rights. V |



SUMMARY

Analysis of the small, hot leg break, OECD LOFT Experiment
LP-SB-1 using the "best-estimate" computer code TRAC-PF1l/MODl is
presented.

Descriptions of the LOFT facility and the LP-SB-1 experiment are
given and development of the TRAC-PF1/MOD1l input model is
detailed. The calculations performed in achieving the

steady state conditions, from which the experiment was initiated,
and the specification of experimental boundary conditions are
outlined.

Results of a "Base Case" transient calculation are found to be
generally consistent with those reported by other members of the
OECD LOFT Program Review Group. The experimental trends with
respect to pressure histories and minimum system mass inventory
are reasonably well reproduced by the TRAC-PF1/MODl calculation.
However, the inability of TRAC-PF1/MOD1l to account for main-pipe
stratification in determining fluid conditions in a side branch
leads to significant discrepancies between the measured and
predicted break line and hot leg densities and is identified as
the main reason for the poorly predicted break mass flow rate.

Implementation, via the TRAC-PF1/MODl control system, of
correlations for determining side branch quality as a function of
main-pipe stratified liquid level are shown to be effective in
improving the predicted hot leg and break line densities and
break mass flow rate. The remaining differences between measured
and predicted data are considered to be due to deficiencies in
the TRAC-PF1/MODl critical flow model and the sensitivity of the
break flow to the hot leg liquid level behaviour.

It is recommended that some means of accounting for the effect of
main-pipe stratified liquid level, in determining fluid
conditions in a side branch, be implemented in the TRAC-PF1l/MOD1

code.

It is also suggested that a closer examination of the factors
influencing the draining of the steam generator tubes is required
to resolve the observed discrepancies in hot leg liquid level
behaviour. :
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COMMERCIAL IN CONFIDENCE

1. INTRODUCTION

This paper describes post-test calculations of the OECD LOFT
small, hot leg break experiment LP-SB-1 using the "best-estimate"
computer code TRAC-PF1/MODl. Sections 2, 3 and 4 describe the
LOFT facility, the LP-SB-1 experiment and the versions of
TRAC-PF1/MODl used, respectively. Development of the input model
is detailed in Section 5 and the calculations performed i.i
achieving the steady state conditions, from which the experiment
was initiated, are outlined in Section 6. The experimental
boundary conditions, and the way in which they are specified to
the code, are defined in Section 7. Section 8 describes the
"Base Case" transient calculation. The effects of implementing
correlations for predicting branch line quality as a function of
main branch stratified liquid level are examined in Sections 9
and 10. The effect of varying the choked flow multiplier is also
discussed in Section 10. The main conclusions and
recommendations from the analysis are summarised in Sections 11
and 12.

2. THE LOSS OF FLUID TEST (LOFT) FACILITY

The Loss of Fluid Test (LOFT) facility, at the Idaho National
Engineering Laboratory (INEL), is a 50 MW(t) Pressurised Water
Reactor (PWR) system designed to simulate the major components
and system responses of a commercial PWR during Loss-of-Coolant
Accidents (LOCAs) or operational transient accidents. The
experimental assembly is instrumented in order that system
variables can be measured and recorded during transients. The
facility is comprised of five major subsystems -~ the reactor
vessel, the operating (intact) loop, the "broken" loop, the
blowdown suppression system and the Emergency Core Cooling System
(ECCS). The configuration of the major LOFT components, for
experiment LP-SB-1, is shown in Figure 1.

The operating (intact) loop simulates three loops of a commercial
four-loop PWR and contains a steam generator (of vertical, U-tube
design), two primary coolant pumps (in parallel), a pressurizer,
a venturi flowmeter and connect1ng piping. The break location
for experiment LP-SB-1 was in ‘the hot’ leg of the intact loop
between the steam generator and the reactor vessel.

The broken loop consists of a hot leg and a cold'leg connected to
the reactor vessel and the blowdown suppression tank header.

Each leg contains a Quick-Opening Blowdown Valve (QOBV), a
recirculation line, an isolation valve and connecting piping.

The recirculation lines provide a small flow from the broken loop
to the intact loop and are used to maintain the broken loop fluid
temperature at approximately the core inlet temperature prior to
experiment initiation. During experiment LP-SB-1, the QOBVs and
the isolation valves remained closed (because the break was in
the operating loop). The broken loop spool pieces, with orifices
to simulate the steam generator and pump hydraulic resistances,
were not installed for experiment LP-SB-1. These were replaced
by a straight piping spool piece.

AEEW - R 2254 1



The LOFT reactor vessel has an annular downcomer, a lower plenun,
lower core support plates, a nuclear core (containing 1300 fuel
rods) and an upper plenum. The downcomer is connected to the
cold legs of the operating and broken loops, and the upper plenum
is connected to the hot legs of the operating and broken loops.

The LOFT ECCS consists of two accumulators, a High Pressure
Injection System (HPIS) and a Low Pressure Injection System
(LPIS). Each system is designed to inject scaled flows of
emergency core coolant directly into the primary coolant system.
The accumulators and LPIS were not used during experiment LP-SB-1
and scaled HPIS flow was directed into the Intact Loop Cold Leg
(ILCL). Volume scaling of the HPIS flow was based on the
assumption that only one of the three charging pumps and one of
the three HPIS pumps, in the reference plant, were available.

3. EXPERIMENT LP-SB-1.

Experiment LP-SB-1 was conducted on 23 June 1983 in the LOFT
facility at the Idaho National Engineering Laboratory. LP-SB-1
was the second in a series of experiments, sponsored by a
consortium of countries under the auspices of the Organisation
for Economic Cooperation ‘and Development (OECD), designed to
address small break issues raised as a result of the accident at
Three Mile Island in 1979.

The LP-SB-1l experiment simulated a 7.6 cm (3 inch) equivalent
diameter break in .a hot leg pipe of a commercial PWR. LP-SB-1
was one of a pair of experiments aimed at addressing the effects
of early and delayed pump trip on system behaviour. The primary
coolant pumps were tripped early in experiment LP-SB-1 and pump
trip was delayed in experiment LP-SB~-2. The following objectives
were defined for the two small break experiments (1):

i) Determine system transient response characteristics for
hot leg small break LOCAs with early and delayed pump
trip and break size of 7.62 cm (3 inch) equivalent
diameter. :

ii) Determine the system mass inventory, mass distribution,
: and core heat transfer characteristics when pumps are
shut off under high system void conditions (LP-SB-2).

. 1ii) Provide integral nuclear system data for assessing the
ability of computer codes to predict system response
during a small break LOCA. o _

iv) Obtain data which can be used to investigate emergency
core coolant distribution, thermal mixing and effect on
core coolant mass inventory. v :

v) Provide data for evaluating'the usefulness of accident

diagnosis techniques in identifying small hot leg break
LOCA characteristics. .

AEEW - R 2254 2



Experiment LP-SB-l was initiated, from operating conditions
representative of those in a commercial PWR, by opening a valve
in the Intact Loop Hot Leg (ILHL) break line. The primary side
pressure history and ‘the timings of significant events during the
experiment are shown on Figure 2. The primary coolant system
pressure decreased to the reactor scram and feedwater %rip
setpoint (14.57 MPa) in 1.4 seconds. The Main Steam Control
Valve (MSCV) was closed manually upon verification cf reactor
scram. The main feedwater was isolated at 3.8 seconds and the
MSCV was fully closed at 15.4 seconds. The primary coolant
system pressure decreased rapidly to the primary coolant pump
trip setpoint (11.12 MPa) at 24.6 seconds '‘and the. pressurizer
indicated zero liquid level at 34.6 seconds. The HPIS setpoint
signal of 8.24 MPa was reached at 41.4 seconds and the system
pressure had declined to fluid saturation. in the break line at
57.5 seconds. Auxiliary feedwater was manually initiated at 1.1
minutes and turned off at 3l.1 minutes. Following break uncovery
at 11.9 minutes, the high quality steam flow out of the break
caused a further acceleration in the primary coolant system
depressurisation rate. The primary system pressure fell below

- the steam generator secondary pressure at approximately 18
minutes. The minimum primary coolant system mass -inventory was
-reached after 37 minutes at which time the HPIS flow rate
exceeded the break flow rate and primary coolant system refill
began. The experiment was terminated, after one hour, when the
primary coolant system pressure had fallen to 2.5 MPa. The
liquid inventory in the reactor vessel remained at least 1.5 m
above the top of the core during the transient and sufficient
cooling was present to keep the fuel cladding temperatures close
to the saturation temperature of the fluid in the reactor
vessel.

4. TRAC-PF1/MOD1

TRAC (Transient Reactor Analysis Code) is an advanced "best-
estimate" computer code, developed at the Los Alamos National
Laboratory, for analysing transients in thermal hydraulic -
systems. Specifically, TRAC-PF1/MODl was developed for analysing
postulated accidents in PWRs. The versions of the code used for
the calculations described in this paper were Version B@2A and
Version B@2C which contain the LANL updates to TRAC-PFl/MODl

Version 12.7.

5. TRAC—PFl/MODl INPUT MODEL FOR LP-SB-l

The development of a TRAC-PFl/MODl input model for ana1y31s of
‘the LOFT.small break .experiment LP-SB-1° was based on a
TRAC-PF1/MODl large break deck for LP-FP-1. The FP-1 deck,
developed at AEEW, originated from the LANL input deck for
- experiment L2-3. Additional published data.on the LOFT facility

(2,3,4) were employed, where necessary, in producing the small
break deck. o : T

The required modlflcatlons to the large break deck are descr1bed
in References 5 and 6 and include:

AEEW - R 2254 3



i) Replacement of the three-dimensional vessel with a
one~-dimensional representation.

ii) Removal of the accumulator and the LPIS.

iii) Removal of the broken loop steam generator and pump
simulators. -

iv) Inclusion of the ILHL break.

v) Inclusion of the steam generator secondary side
auxiliary feedwater.

vi) Inclusion of the primary pump injection.

Additional modifications by Neill (7) - to the position of the
ECCS injection in the ILCL - and Pelayo. (8) - to the steam
generator recirculation ratio and nodalisation - were also
incorporated in the LP-SB-1 input deck.

Figures 3, 4 and 5 show the nodalisation diagrams for the primary
system, the reactor vessel and the steam generator secondary
side, respectively. A total of 36 components, 42 junctions and
147 cells were used in the model.

A microfiche listing of the TRAC-PF1/MODl1l input deck for LP-SB-1
(used for the steady state calculation) is contained in
Appendix I.

6. STEADY STATE CALCULATION

Version B@2A of the TRAC-PF1/MOD1 code - which incorporates the
updates contained in LANL Version 12.7 - was used for the steady
state calculations. Steady state mode calculations were run for
550 seconds and, in order to determine system conditions during
transient mode code operation, a short period (50 seconds) of
transient mode "steady state" (ie with no BREAK in the circuit)
was also run. In running the steady state calculation, a total
of 680 seconds of CPU time were used with an average time step
size of 0.12 seconds (see Figures 6 and 7). It was found that
the calculation converged to a steady state more readily when the
maximum allowable time step was reduced from 1.0 seconds to

0.1 seconds.

The calculations were performed with control systems governing
the behaviour of the steam generator secondary side steam and
feedwater mass flow rates and the speed of the primary coolant

pumps .

The initial conditions predicted by TRAC-PF1/MODl for experiment
LP-SB~1 are compared with the measured data in Table l. The
calculations produced stable initial conditions, within the
quoted experimental uncertainties (see Figures 8-23*), for all

* The steady decline in primary $¥stem Eressure and pressurizer
temperature, pressure and ligquid level, at 550 seconds (as
indicated jn Figures 9, 20, 21_and 2} reipectlvelyg ig due to
the differing t_eatmenﬁ, by TRAC~-PF1l/MODl, of the’ PRESSURIZER
component when in the transient mode, as opposed to the steady

state mode, of code operation.
AEEW - R 2254 4



significant parameters-with the exception of the steam volume and
the liquid level in the pressurizer. The figures predicted for
these quantities were outside the uncertainties of the
experimental data due, it is thought, to differences between the
experiment and the TRAC~PF1/MODl input deck in the interpretation
of the pressurizer geometry. The pressurizer volume implied by
the LP-SB-1 Experiment Analy51s and Summary Report (EASR) (9),
the TRAC-PF1/MOD1l large break input decks and the LOFV -
specification (2) differ as shown in Table 2. Efforts to resolve
the discrepancies were unsuccessful. The approach adopted, in
performing the steady state calculations, was to specify the
initial pressurizer liquid volume as quoted for the experiment,
but to allow the initial steam volume to be out51de the
uncertainties of the experimental data.

The magnitudes of the steady state pressure drops around the
primary circuit, the environmental heat losses from the system
and the core bypass flow rates, obtained from the TRAC-PF1l/MOD1
calculations, were in reasonable agreement with the available
LOFT data as shown in Tables 3, 4 and 5, respectively.
Achievement of these initial system conditions is discussed in
detail in References 5 and 6.

7. BOUNDARY CONDITIONS FOR TRANSIENT CALCULATIONS

7.1 Decay Heat Data

Following reactor scram, decay heat data were specified to the
TRAC-PF1/MOD1 transient calculation by means of a "power versus
time" table. In deriving the table, the approach adopted by Hall
and Brown (14) was followed and two sources of information were
used. During the first 250 seconds of the transient, when both
neutron and fission power were expected to be present, data were
taken from the RELAPS5/MOD1 input deck used for the pre-test
prediction of LP-SB-1 (15). When fission power only was present,
the data contained in Reference 16 were appropriate and these -
data were used from 250 seconds until the end of the transient.
The power table used in the TRAC PFl/MODl calculatlon of LP-SB—l
1s reproduced as Table 6. . _ -

7.2 Primary Pump Injection

During experiment LP-SB-1, the primary coolant pump injection
system was set up to deliver a total flow of 0.095 1s=! to the
' primary coolant pumps (9, 17). This was simulated in the
TRAC—PFl/MODl model by using "FILL" components to supply the
primary pump injection system with liquid at a constant rate of
1.2974 x 10-3 ms~l. The flow areas of the pump injection pipes
were 3.6613 x 10-2 m2 which implied an injection rate of 4.75 x
10-5 m3s-1, or 0.0475 1s~!, to each pump.
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7.3 Steam Generator Secondary Side Auxiliary Feedwater Flow

In experiment LP-SB-1l, the steam generator secondary side
auxiliary feedwater flow, of 0.5 1ls-! (17), was manually
initiated at 63.4 seconds and turned off at 1864.8 seconds (9).
This was simulated, ian “he TRAC-PF1/MODl calculation, by using a
"FILL" component to provide feedwater to the secondary side of
the steam generator at a flow rate of 0.061673 ms~! during the
required period. The flow area of the auxiliary feedwater system
pipework was 0.0081073 m? implying a flow rate of 5. x 10-% mig—!
or 0.5 1s=!. The "time versus velocity" table used is given in
Table 7. _

7.4 High-Pressure Injection Systém

The HPIS was initiated in experiment LP-SB-1l when the ILHL
pressure had fallen to 8.24 MPa (9). The table of HPIS flow rate
against Primary Coolant System (PCS) pressure, used in the
TRAC-PF1/MOD1l calculation, was derived from that given in the
Experiment Specification Document (17).and is reproduced in -
Table 8.

7.5 Operational Setpoints

The operational setpoints (for reactor scram, main feedwater shut
off, MSCV closure, primary pump trip, HPIS initiation and
auxiliary feedwater initiation) measured during the experiment,
and the way in which the setpoints were specified in the
TRAC-PF1/MOD1 calculation, are given in Table 9.

8. BASE CASE CALCULATION

8.1 Introduction

The initial transient calculation, termed the "Base Case _
Calculation", was restarted from the end of the transient-mode
"steady state" calculation. The FILL component, originally
attached to the break line, was replaced by a BREAK component in
order to initiate the transient. As for the steady state
calculations, Version B@2A of TRAC-PF1/MOD1l - which incorporates
the code updates contained in LANL Version 12.7 - was used for
the Base Case Calculation.

In this Section, the TRAC-PF1/MOD1 predictions are compared with
the experimental data and with the results presented - by members
of the OECD LOFT Program Review Group - in the LP-SB-1
"Comparison Report" -(18).

8.2 CPU Usage and Time Step Behaviour

Four thousand seconds of elapsed transient were calculated,
requiring 11,332 seconds of CRAY X-MP CPU time (see Figure 24).
This corresponds to a CPU/real time ratio of 2.8. The
user-specified minimum allowable time step throughout the
calculation was 105 seconds. The maximum time step was limited
to 0.5 seconds for the first 1500 seconds of the transient.
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Shortly after this time, the code attempted to reduce the time
step below the minimum allowable value. It was necessary to
reduce the maximum permitted time step to 0.1 seconds, for the
remainder of the transient, to enable the calculation to proceed
(see Figure 25). The average time step for the calculation
(problem time/total number of t1me steps) was 0.08 seconds. The
very small cell (7.238 x 10-5 m3) representing the leakage path
between the reactor vessel and the core barrel nuzzles (bypass
path 4 -~ component number 83) was the dominant component
responsible for limiting the time step size throughout the
transient.

8.3 Chronology of Events

A comparison of the measured and predicted timings of significant
events during the LP-SB-l transient is given in Table 10.

The experiment was initiated by opening the valve in the ILHL
break line. The primary coolant system pressure decreased
rapidly to the reactor scram and main feedwater trip set point of
14.57 MPa and, following a 2 second delay, closure of the main
steam control valve was initiated. 1Isolation of the main -
feedwater took 2.4 seconds. The timings of these initial events
were predicted, by the TRAC- PFl/MODl calculatlon, to within ~'1
second.

In the experiment, the main steam control valve was fully closed
at 15.4 seconds. Although not documented in the experiment
specification, the steam flow bypass valve was opened once -during
the experiment, at ~ 30 seconds, when the secondary side pressure
exceeded ~ 6.7 MPa. This was simulated, in the TRAC-PF1l/MOD1 .
calculation, by allowing the main steam control valve_to reopen.

The primary coolant system pressure continued to decrease rapidly
and reached the primary coolant pump trip set point (11.12 MPa)
after 24.6 seconds and the HPIS initiation set point (8.24 MPa)
after 41.4 seconds. The timings of both these trips were very
well predicted by the TRAC calculation. - ]

After 43 seconds, the primary coolant pumps had coasted down to
their flywheel uncoupling frequency (12.5 Hz). TRAC predicted
this to occur some 3 seconds later than in the experiment.

Fluid saturation in the break line, signalling the end of
subcooled blowdown, occurred at 57.5 seconds in the experiment.
This was predicted to occur some 7 seconds later in the
calculation. :

The auxiliary feedwater was initiated at 63.4 seconds and turned
off at 1864.8 seconds. Identical timings were used for the TRAC
calculation. _

A further acceleration in the experimental primary coolant system
depressurisation rate occurred when the break started to uncover
at 715 seconds. Prior to this time, and following the end of
subcooled blowdown, the break mass flow rate was under-predicted
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by TRAC and the start of break uncovery was not calculated until
~ 1200 seconds.

The time at which the primary coolant system pressure fell below
the secondary system pressure (1077 seconds in the experiment)
was over-=predicted by some 300 seconds.

Minimum primary system coolant mass inventory is estimated to-
have occurred at between 1800 seconds and 2200 seconds-in the
experiment. The predicted time of minimum primary system mass
inventory was ~ 1680 seconds (defined as the time at which the
HPIS plus pump injection mass flow rates exceeded the break mass
flow rate). :

"The experiment was terminated at 3668 seconds when the primary
coolant system pressure had fallen to the termination criterion
of 2.487 MPa. This was predlcted to occur over 400 seconds
earlier,'at 3227 seconds, in the TRAC calculation.

8.4 General Observations

8.4.1 Break Mass Flow Rate and Break Line Density

The measured and predicted break mass flow rates and break
upstream densities are shown in Figures 26 and 27, respectively.
(Subcooled and two-phase choked flow multipliers of ‘1.0 were used
throughout the calculation). It can be seen that, prior to the
time of measured break uncovery (~ 700 seconds), TRAC~PF1/MOD1

- under-predicted the break line density and the break mass flow
:rate. The time at which the break was prédicted to uncover
occurred some 500 seconds later than in the experiment. Figure
28 indicates that, with the exception of the GRS :

(W Germany - DRUFAN 02) results, all participants of the OECD

- LOFT Program Review Group (18) also under-predicted the break
mass flow rate during-the first ~ 700 seconds of the transient
and over-predicted the time of break uncovery.

8.4.2 Primary System Densities

A comparison of the measured and predicted ILHL densities is
shown  in Figure 29. I= ~~ntrast tn the experimental behaviour,
the TRAC-PF1/MOD1 calculation predicted that the ILHL emptied
completely at ~ 1500 seconds. A similar trend was observed by
part1c1pants -of the OECD LOFT Program Review Group (18), as shown
in Figure 30.,

A comparlson of the measured and predicted ILCL densities is
shown in Figure 31. 1In common with the results from the OECD
LOFT Program Review Group (18) (see Figure 32), the TRAC-PF1/MOD1
- calculation predicted that the ILCL started to empty several
hundred seconds later than in the experiment. The predicted rate
at which the ILCL emptled was more rapid than that observed
experimentally. :
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8.4.3 . Prlmary System Mass Inventory

TRAC-PF1/MOD1 predlctlons of the primary system mass 1nventory*
are compared with those of the OECD LOFT Program Review Group and
with the measured data in Figure 33. The predicted rate of
primary system mass depletion, prior to the time of experimental
break uncovery (~ 700 seconds), was lower than that measured.
Although not accurately known from the experimental data, minimum
primary system mass inventory was estimated to have occurred at
between 1800 and 2200 seconds (9). The time of minimum primary
system.mass inventory (defined as the time at which the HPIS plus
pump injection mass flow rates exceeded the break mass flow rate)
was predicted by TRAC-PF1/MODl to have occurred earlier, at

~ 1700 seconds. The calculated minimum primary system mass
inventory appeared to be in reasonable.agreement with the.
measured data. The core void fractions, calculated by
TRAC-PFl/MODl, and shown in Figure 34, indicate that, as observed
in the experiment, no core uncovery was predicted.

8.4.4 System Pressure’

A comparison of the measured and predicted primary system
pressure histories is shown in Figure 35. As indicated by the
correctly predicted timings of the primary coolant pump trip and
the HPIS initiation, the initial rapid subcooled depressurisation
was well represented. Following the end of subcooled blowdown,
and prior to the measured time of break uncovery, the slow rate
of depressurisation was reasonably well reproduced. The increase
in the rate of depressurisation, due to uncovery of the break,
was predicted to occur later (at ~ 1200 seconds) than in the
experiment.. This led to a slight over-prediction of primary side
pressure, for a while, following the measured time of break
uncovery. As shown in Figure 36, the calculations performed by
the participants of the OECD LOFT Program Review Group also
predicted the rate of subcooled depressurisation well. Following
the end of subcooled blowdown, and prior to the time of measured
break uncovery, all calculations predicted a lower than measured
pressure plateau. -Consistent with their late predictions of the
time of break uncovery, all calculations, with the exception of
GRS, over-predicted the t1m1ng of the increased rate of
depressurisation. :

The .overall secondary side pressure history is reasonably well-
predicted as shown in Figure 37 and compares favourably with the
calculations performed by participants of the OECD LOFT Program
Review Group (see Figure 38). Following "closure" of the MSCV,

* In calculating the predicted primary system mass inventory, all
flows into/out of the primary circuit during the transient- were
added to/subtracted from the initial primary system mass. The
initial primary system mass included all system components
except the secondary side of the steam generator component
(component numbers 20, 21, 22 and 27) and the steam line valve
(component number 23).
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its minimum flow area was restricted to 0.35% of its fully-opened
value to account for the steam leakage which occurred during the
experiment.

8.5 Detailed Discussion

8.5.1 Break Mass Flow Rate and Break Line Density

The ILHL void fraction calculated by TRAC-PF1/MODl is shown in
Figure 39; the time at which stratification in the hot leg is

. predicted to occur is also indicated. Figure 39 shows that when
single phase conditions were predicted in the hot leg, ie
subcooled liquid (< 60 seconds) or high quality steam

(> 1400 seconds), the mass flow rate in the break line was well
predicted. However, during stratified flow conditions,
TRAC-PF1/MODl1 takes no account of the hot leg liquid level in
determining the density of the fluid in the break line. The
density assumed, at the entrance to a branchline, is the volume
weighted density of the steam and liquid phases in the main pipe.
The break line density is therefore under-predicted when the
stratified level is above the break and over-predicted when the
level is below the break.

In order to gain an indication of the effects of TRAC-PF1/MODl's
inability to account for hot leg flow stratification on break
line density, relative to any deficiency in its critical flow
model, a TRAC-PF1/MODl calculation was performed on a
"stand-alone" model of the LP-SB-1 break line. The calculation,
in which the density of the fluid being fed to the break line was
altered, indicated that, in order for the TRAC critical flow
model to predict the measured break mass flow rate, the
calculated break line density would need to be similar to that
measured (see Table 1l1) ie at ~ 500 seconds, the reported break
flow was calculated by TRAC-PF1/MODl using a break line density
~ 4% greater than that measured experimentally. The break line
density and break mass flow rate predicted by the Base Case
Calculation, at 500 seconds, were ~ 20% less than those measured.
The tentative conclusion from this calculation was that the
"poorly predicted break mass flow rate, observed in the Base Case
Calculation, was mainly due to TRAC-PF1/MODl's inability to
account for the effects of hot leg flow stratification on break
line density, rather than deficiencies in its critical flow
model. (The RELAP5/MOD2 analysis of LP-SB-1 (14), in which the
difficulty in accounting for the effects of hot leg flow
stratification had been overcome, found the critical flow model
to be inadequate for low quality conditions).

In order to comprehensively assess the effects of TRAC-PF1/MOD1's
inability to account for hot leg flow stratification in
determining fluid conditions in the break line, correlations for
predicting branchline flow quality as a function of mainline '
stratified liquid level were implemented in the LP-SB-1 input
deck and the Base Case Calculation was re-run as described in
Sections 9 and 10.
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8.5.2 Running Speed

The dominant component responsible for limiting the time step
size throughout the Base Case Calculation was the very small cell
(7.238 x 10~% m3) used to represent the leakage path between the
reactor vessel and the core barrel nozzles (Bypass Pach 4 -
Component Number 83). This component was responsible for the
code crashlng" at ~ 1500 seconds (see Section 8.2). On ’
increasing the volume of this component, and decrea51ng that of
its neighbouring PLENUM component by ~ 3.5 x 10-3 m3,
significant improvements in the running speed of the code were
realised and it was no longer necessary to reduce the maximum
allowable time step in order for the code to continue running.
Increasing the volume of Bypass Path 4 reduced the CPU to problem
time ratio from 2.15 to 1.32 between 500 and 1500 seconds (see
Figure 40).

8.6 Summary

1) The following points summarise the general observations made
on the TRAC-PF1/MOD1 Base Case Calculation of LP-SB-1. The
findings tended to be consistent with those of the OECD LOFT
Program Review Group (18).

i) Prior to the time of measured break uncovery, the break
line density, break mass flow rate and rate of primary
side mass depletion were under-predicted.

ii) The time at which the break uncovered was
over-predicted.

iii) In contrast to the experimental behaviour, the ILHL was
predicted to empty.

iv) The time at which the ILCL started to empty was
predicted to occur later than in the experiment. The

predicted rate at which the cold leg emptied was more
rapid than that measured. I B

v) The minimum primary. system: mass inventory was in

o reasonable agreement with the measured data - as

observed in the experlment, no core uncovery was
predicted. i : -

vi) The overall trends in primary and secondary system
pressure histories were reasonably well reproduced.

2) The tentative conclusion from a TRAC~PF1/MODl calculation
- using a "stand-alone" model of the LP-SB-1 break line was
that the poorly predicted break mass flow rate was mainly a
consequence of TRAC-PF1/MODl's inability to account for the
effects of hot leg flow stratification on break line density
(rather than deficiencies in its critical flow model).

3) The dominant factor responsible for limiting the time step

size throughout the Base Case Calculation was the very small
volume (7.238 x 10~6 m3) of the cell representing the
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leakage path between the reactor vessel and the core barrel
nozzles. Increasing the size of this cell by ~ 3.5 x 10-3
-m3 led to an improvement in the CPU to problem time ratio of
~ 40% over a 1000 second period. , _ '

9. BASE CASE CALCULATION WITH EPRI CORRELATION

9.1 Introduction

In order to take account of the hot leg stratified liquid level
in determining the fluid conditions in the break line, EPRI
(Electric Power Research Institute, USA) correlations (19) for
predicting the liquid levels at which the onset of vapour pull
"through and liquid entrainment occur and the resulting branchline
flow quality were 1mp1emented in the LP-SB-1 input deck. The
correlations are described in Appendix II. The transient was
re-run using Version B@2C of the TRAC-PF1/MODl1 code which employs
a branch offtake quality mcdel for stratified flow.

9.2 General Observations

9.2.1 Break Mass Flow Rate and Break Line Density

As shown in Figure 41, implementation of the EPRI correlation
greatly improved the predicted break line density. for the initial
500 seconds of the transient. Although this led to an improved
break mass flow rate over this period, the break flow still
tended to be under-predicted, as shown in Figure 42. Break
uncovery occurred earlier than in the Base Case Calculation but
still significantly (~ 300 seconds) later than in the

experiment. The discrepancies between the measured and predicted
break line densities prior to ~ 150 seconds are a consequence of
the offtake model only operating when fluid conditions in the
main pipe are fully stratified. The divergence of the measured
and predicted break line density and break mass flow rate at

~ 500 seconds is- discussed in Section 9.3.

9.2.2 Primary System Densities

As shown in Figure 43, implementation of the EPRI correlation
greatly improved the predicted ILHL density behaviour. Contrary
to the Base Case Calculation, and in line with the experimental
measurements, no emptying of the ILHL was predicted by the
revised calculation.

Figure 44 indicates that although some 1mprovement to the time at
which the ILCL started to empty was achieved by the revised
calculation, -‘the rate.at which the cold leg emptied was still
more -rapid than that observed experimentally.

9.2.3 Primary System Mass Inventory

As shown in Flgure 45, the improvement (over the first
500 seconds) in the predicted break mass flow rate (on
implementing the EPRI correlation) caused the primary system mass
‘to deplete sllghtly more rapidly than in the Base Case
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. Calculation. However, because the ILHL did not empty in the
revised calculatlon, the minimum primary system mass inventory
remained ~ 200 kg hlgher than that predicted by the Base Case
Calculation.

9.2.4 System Pressure

The differences in the break mass flow rate predicted by the Base
Case and the EPRI Correlation Calculations are manifested in
slightly different primary and secondary pressure history trends,
as shown in Figures 46 and 47, respectively.

9.3 Detailed Discussion

9.3.1 ILHL Liquid Level Behaviour

The ILHL liquid level and the level at which the EPRI correlation
predicts the onset of vapour pull through to occur (hp) are shown
in Figure 48. When the ILHL liquid level falls below hP (ie
after ~ 500 seconds), vapour pull-through is invoked in” the EPRI
correlation and the quality in the break line increases. As was
seen in Figures 41 and 42, there follows a consequent decline in
break line density and break mass flow rate which clearly
represents a departure from the experimental behaviour.

The predicted ILHL liquid level is compared with that measured
during the experiment in Figure 49. Although well predicted
during the initial part of the transient, the calculated level
.fell by ~ 2 cm at ~ 500 seconds. . The experimental data show the
liquid level to have remained constant (at ~ 7 cm above the
centre line) from ~ 200 seconds until the decline to break,
uncovery started at ~ 700 seconds. This difference in ILHL
liquid level behaviour is significant because the EPRI
correlation predicts vapour pull-through to commence when the
liquid level is ~ 6 cm above the centre line. The difference,
between the calculatioq and the experiment, in the behaviour of
the ILHL llquld levels is thus responsible for the observed
dlscrepancles in break line density and for the predicted decline
in break mass flow rate at ~ 500 seconds.

9.3.2 Time of Break Uncovery

The likely effect, on the break line density (and the time at
which the break uncovers), of the ILHL liquid level (or the level
at which vapour pull through is predicted to occur) is shown in

. Figure 50a. The effect of the amount of system mass required to
be discharged, prior to break uncovery, is shown in Figure 50b.
For the current calculation, it seems likely that, had the liquid
level been correctly predicted (or the level at which vapour
pull-through is assumed to occur had been lower), the time at
which the break uncovered would still have been.over-predicted by
~ 200 seconds - see Figure 51 which shows the TRAC-PF1l/MOD1
predicted break line density when the EPRI correlation is

. modified to reduce hp.

AEEW - R 2254 13



Three factors have been identified which would contribute to the
time of break uncovery being over-predlcted°

i) prior to the time at which vapour pull through is
predicted to occur, the break mass flow rate is
under-predicted (by the TRAC-PF1/MODl critical flow
model) by ~ 0.5 kgs~*. After 700 seconds (the time at
which the break started to uncover in the experlment),
this would result in a system mass excess in the
calculation of ~ 350 kg and could account for the time
of break uncovery being over-predicted by
~ 120 seconds;

ii) the volume of the Reflood Assist Bypass Line, implied
by the TRAC-PF1/MOD1 input deck, was found, after
reference to the LOFT specification document (2), to be
too large by ~ 0.21 m3. This could account for the

" time of break uncovery being over-predicted by
~ 60 seconds:;

iii) the TRAC-PF1/MOD1 interphase drag model causes the

‘ density in the core to be underestimated by ~ 10% (20).
This could cause the time of break uncovery to be
"over-predicted by ~ 20 seconds (see Appendix III).

9.4 Summary

Accounting for the hot leg stratified liquid level in determining

the fluid conditions in the break line, by impleméntlng the EPRI

correlation for branchline flow quallty, resulted in the

follow1ng-v i

i) ‘the predicted break line density was greatly improved
' for the first 500 seconds of the tran51ent-

~ii) although the predicted break mass flow rate was
improved during the first 500 seconds of the tran51ent,
it still tended to be under-predlcted-

iii) although break uncovery was predicted to occur earlier
than for the Base Case Calculation, it was still
significantly (~ 300 seconds) later than in the
experiment;

iv) a difference, between the calculation and the
"~ experiment, in the behaviour of the ILHL liquid levels
was responsible for dlscrepanc1es in the break line
density and for a decline in the predicted break mass
flow rate at ~ 500 seconds;

v)  had the ILHL liquid level been correctly predicted and
~ no such decline in break mass flow rate occurred at
~ 500 seconds, the time at which the break uncovered
would still have been over-predicted by ~ 200 seconds.
The earlier under-prediction of break mass flow rate,
the volume of the Reflood Assist Bypass Line being too
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large and the core density being under-predicted by the
TRAC-PF1/MODl interphase drag model were identified as
factors contributing to the late prediction of break
uncovery;

vi) in line with the experimental measurements, and
contrary to the Base Case Calculation, no emptying of
the ILHL was predicted to occur;

vii) although there was some improvement to the time at
which the ILCL started to empty, the rate at which it
~emptied was still more rapid than that observed
experimentally.

10. BASE CASE CALCULATION WITH EPRI CORRELATION AND INPUT
MODEL MODIFICATIONS

10.1 Introduction

In Section 9, the difference in behaviour of the ILHL liquid
level, between the experiment and the TRAC-PF1/MOD1l calculation
employing the EPRI correlation, was identified as being
responsible for the observed discrepancies in the break line
density and for the decline in break mass flow rate at ~ 500
seconds. Had the liquid level been correctly predicted, however,
it was thought that the time at which the break uncovered would
still have been over-predicted by some 200 seconds. One of the
factors identified as contributing to this was the volume of the
Reflood Assist Bypass Line specified in the TRAC-PF1/MODl input
deck. This was found to be ~ 0.2 m3 too large and thought to
account for the time of break uncovery being over-predicted by ~
60 seconds.

Prior to investigating the behaviour of the ILHL liquid level in
more detail, it was decided to re-run the calculation with the

- volume of the Reflood Assist Bypass Line corrected. Two minor

~ errors, identified in the Base Case input model, were also
corrected at this stage, ie: _ A _— .

i) correction of GRAV terms in Lower Plenum;

ii) correction of effective cell lengths (and associated
FRICs) for PLENUM components.

Also, the volume of Bypass Path 4 - responsible for limiting the
time step size in the Base Case Calculation - was increased (and
the volume of its neighbouring PLENUM component decreased). All
modifications made to the Base Case input deck are detailed in
Appendix 1IV.

In this Section, the calculation employing the modified input
deck is used to investigate the behaviour of the ILHL stratified
liquid level. The influence, on the ILHL level, of the choice of
correlation used for determining the level at which vapour pull
through occurs is discussed and the effect of varying the choked
flow multiplier at the end of the break line is also examined.
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A series of pictures showing, at 200 second intervals, the
predicted void fraction distribution, the liquid and vapour
velocities and the occurrences of stratified flow conditions
throughout the system is shown in Appendix V. )

10.2 General Observationg

10.2.1 Break Mass Fiow Rate and Break Line Density

As expected, and as shown in Figure 52, decreasing the volume of
the Reflood Assist Bypass Line reduced the time taken for the
break to uncover. A similar "shift" - see Figure 53 - is
observed in the predicted break line density.

10.2.2 = Primary System Densities

The ILHL and ILCL densities, predicted using the modified input
deck, follow the same trend as in,the previous calculation. As
expected, however, the reduction in the size of the Reflood
Assist Bypass Line causes events to occur slightly earlier - see
Figures 54 and 55.

10.2.3 Primary System Mass Inventory

The primary system mass inventory, predicted using the modified
input deck, follows a similar trend to the previous calculation.
The effect of reducing the size of the Reflood Assist Bypass Line
. 1s observed as a constant deviation prior to the time of break
uncovery. The system empties to the same level in both '
calculations, however, and the size of the Reflood Assist Bypass
Line does not therefore influence the minimum primary system mass
inventory - see Figure 56.

10.2.4 System Pressure

As shown in Flgures 57 and 58, altering the size of the Reflood
Assist Bypass Line has very little effect on the primary and
secondary system pressure histories.

10.3 Detailed Discussion

10.3.1° - ILHL Liquid Level Behaviour

Figure 59 indicates that the predicted decrease in ILHL liquid
level (which now occurs just after 400 seconds) coincides with
the time at which natural circulation in the ILHL is calculated
‘to have ceased. -'In the experiment, natural circulation ended at
~ 500 seconds (9); however, the experimental hot leg liquid level
(calculated from the density measured by the middle beam of the
hot leg densitometer) showed no decline at this time (see

Figure 49). 1In line with the TRAC-PF1/MOD1 calculations, the
predictions of the OECD LOFT Program Review Group (18) show the
ILHL density and liquid level to be lower than that measured
between ~ 400 and ~ 700 seconds (see Figures 30 and 60). - Figure
61 indicates that between 550 seconds and 950 seconds, liquid is
predicted to flow back from the steam generator towards the

el
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break. Experimental measurements suggest (9) that there was some
flow from the steam generator to the break after .~ 400 seconds -
and this is considered responsible (9) for maintaining the hot
leg level at ~ 7 cm above the centre line until ~ 700 seconds.
The delay in the time at which liquid starts to drain back from
the steam generator following the end of natural circulation, in
the TRAC-PF1/MODl calculation, appears to be linked to the
difference in behaviour of the ILHL liquid levels.

A mass flow balance on the ILHL, taken from the TRAC-PF1l/MOD1
calculation is shown in Figure 62. It is clearly seen that the:
declines in the predicted ILHL liquid level (at ~ 400 seconds and
at ~ 800 seconds - see Figure 59) correspond to the periods
during which the break flow exceeded the sum of . the flow from the
vessel to the break and the flow from the steam generator to the
break. - S ) .

.Factors governing the flow between the steam generator andithe
break have not been fully investigated. The magnitude and
direction of this flow, however, are clearly significant in ,
detegmlnlng the ILHL llquld level behav1our (and hence the break
flow :

10.3.2 Choice of Correlation .

Although the experlments performed in the Two Phase Flow Loop
(TPFL) at INEL confirmed the forms of previously proposed
correlations for predicting the mainline liquid levels at which
vapour. pull-through and liquid entrainment occur, different
values for the constants used in the correlations were .
recommended (see Table 12). The TPFL experiments found the .
liquid level range, over which vapour pull through and liquid
entrainment occurred, to be greater than previously reported.-.

It is found that implementation of the CATHARE correlation

(c. = 0.62), in the TRAC-PF1/MOD1l input deck, improves the
ag?eement between the calculated and measured results, with
respect to break line density and break mass flow rate, as shown
in Figures 63 and 64. (Further improvement is realised .when a.
correlation with no vapour pull-through (hp = 0.142) is used).
The CATHARE correlation predicts the onset”of vapour pull through
to occur when the ILHL liquid level is ~ 1 cm below that.assumed
by the EPRI correlation (see Figure 65). For experiment LP-SB-1,
the discrepancies between the measured and predicted ILHL -liquid
levels become less significant, therefore, when the CATHARE, as
opposed to the EPRI, correlation (for the level at which vapour
pull-through commences) is used. Had the ILHL level been
correctly predicted, however, it appears that the EPRI
correlation would have performed satisfactorily.

The correlation for the level at which vapour pull-through occurs
- implemented in a modified version of RELAP5/MOD2 (24) - is of
the same form as the EPRI correlation, but a value of 0.75 is
chosen for the coefficient C Use of this coefficient would be
expected to produce vapour pgll through at a main pipe liquid
level between those predicted by the EPRI and CATHARE
correlations.
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The EPRI correlation for the branchline quality is found (19) to
over-predict the branchline void fraction for main-pipe liquid
levels just below the level at which vapour pull-through
commences. This is considered (19) to be due partly to the fact
that the correlation does not tend to zero as the vapour pull-
through level is approached. The correlation for the branchline
quality implemented in the modified version of RELAP5/MOD2 (24)
is different from that proposed by EPRI. It has the advantage of
tending to zero as the vapour pull-through level is approached
and is found (19) to provide a better fit to experimental
branchline void fraction data immediately after the onset of
vapour pull-through.

The likely effect, therefore, on the current calculation, of
implementing the correlations used in the modified version of
RELAP5/MOD2, rather than the EPRI correlations, would be to delay
the time at which vapour pull-through occurred and, for ILHL
liquid levels just below the vapour pull-~through level, to lessen
the reduction in the break line density, ie to provide a slightly
better fit to the experimental data.

10.3.3 Choice of Choked Flow Multiplier

Since it could be argued that, had the break mass flow rate been
correctly predicted during the initial part of the transient, the
observed discrepancy in ILHL ligquid level behaviour may not have
arisen, calculations were performed in which it was attempted to
reproduce the experimental break mass flow rate more accurately.
The break mass flow rates predicted by TRAC-PF1/MODl using
2-phase choked flow multipliers of 1.0 (Base Case with EPRI
Correlation and Input Modifications) and 1.2 are shown in Figure
66. Although the initial experimental break mass flow rate is
well reproduced using a choked flow multiplier of 1.2, the drop
in predicted break flow at ~ 400 seconds (characteristic of
previous calculations) is still noticeable, confirming that the
ILHL liquid level behaviour is not correctly reproduced despite
the initial break mass flow rate being well-represented.

10.4 Summary

1) As expected, reducing the volume of the Reflood Assist
Bypass Line improved the time at which the break uncovered.

2) Natural circulation in the ILHL and the time at which liquid
starts to drain back from the steam generator are important
factors in determining the behaviour of the ILHL liquid
level. The predicted delay between natural circulation
ceasing and liquid starting to drain back from the steam
generator (not observed in the experiment) is thought to
account for the difference in behaviour, between the
experiment and the calculation, of the ILHL liquid levels
and hence the discrepancies in break mass flow rate.
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3) The discrepancies between the measured and. predicted ILHL
liquid levels become less significant when the CATHARE, as
opposed to the EPRI, correlation for the level at which
vapour pull-through commences is used. Use of the CATHARE
correlation therefore improves the agreement between the
measured and predicted break mass flow rates. Had the ILHL
level been correctly predicted, however, it is thought that
the EPRI correlation would have performed satisfactorily.

4) Use of a 2-phase choked flow multiplier (at the end of the
break line) of 1.2 indicated that the ILHL liquid level
behaviour is not correctly predicted despite the initial
break mass flow rate being well represented.

1l1. CONCLUSIONS

The main flndlngs of the TRAC-PFl/MODl analy81s of the OECD LOFT
experiment LP-SB-1 were as follows:

1) Very small cells were identified as having a detrimental
- effect on the runnlng speed of the calculation. It was
demonstrated that increasing the volume of a particular cell
reduced the CPU to problem time ratio by ~ 40%.

2) The results of the TRAC-PF1/MODl Base Case Calculation of
LP-SB-1 tended to be consistent with those reported by
members of the OECD LOFT Program Review Group. The overall
trends with respect to pressure histories and minimum system
mass inventory were reasonably well represented ‘by the
TRAC-PF1/MOD1 calculation. The inability of TRAC-PF1/MOD1
to account for the main branch stratified liquid level in
determining fluid conditions in a side branch led to
discrepancies between the measured and predicted break line
and ILHL densities and was found to be the main reason for
the observed differences in break mass flow rate. .

3) Implementation of an EPRI correlatlon, for determining side
branch quality as a function of main-pipe stratified liquid
level, was effective in improving the predicted break line
density early in the transient. The break mass flow rate
was also improved, although it remained slightly .lower than
that measured.

4) A difference, between the TRAC-PF1/MODl1 calculation and the
experiment, in the time at which liquid started to drain
back from the steam generator was identified as a possible
cause for small discrepancies in the ILHL liquid level
behaviour. The effect of these discrepancies, on-the
break line density and break mass flow rate, became less
significant when the CATHARE correlation (for predicting the
level at which vapour pull through occurs) was implemented,
rather than the EPRI correlation.

AEEW - R 2254 19



12.°

"RECOMMENDATIONS

It is suggested that:

1)

2)

13.

A means of accounting for the effect of main pipe stratified
ligquid level in determining fluid conditions in a side
branch should be implemented in TRAC-PF1/MOD1.

A closer examination of the factors influencing the draining
of the steam generator tubes- is required to resolve the
observed discrepancies 1n intact loop hot leg llquld level
behaviour..
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TABLE 1

INITIAL CONDITIONS FOR EXPERIMENT LP-SB-1l

MEASURED (2)

TRAC PREDICTED

PRIMARY COOLANT SYSTEM

Core AT (K) .

Hot Leg Pressure (MPa)
Cold Leg Temperature (K)
Mass Flow Rate (kgs—!) .

REACTOR VESSEL

Power Level (MW)

Liquid Level (m)
Water Temperature (K)
Pressure (MPa)

Mass Flow Rate (kgs—!)

PRESSURIZER
Liquid Volume (m3)
Steam Volume (m?3)
Water Temperature (K)
Pressure (MPa)
Liquid Level (m)
BROKEN LOOP

Cold Leg Temperature (K)

STEAM GENERATOR SECONDARY SIDE

.18.5
15.00
557.2
- 483.1

48.8

- 3.12
535.2

5.53
25.79

0.625
0.377
615.8"
15.06
1.072

555.7

1+ )+ +

|+

[+ -+ +

I+

I+ -+l 1+

1.2

0.001
0.001
8.2
0.11
0.002

6.3

18.9
15.0
557.7
483.1

48.8

' 536.6

5.57
25.57

0.624
0.3082
615.2
14.98
1.3842

557.7

-

a These figures are not within the uncertainties of the experimental
data possibly due to a difference, between the experiment and the

TRAC input deck, in the interpretation of the pressurizer geometry.
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TABLE 2

PRESSURIZER VOLUME

REFERENCE

PRESSURIZER VOLUME (m3)

LP-SB-1 EASR (9) 1.002
‘ =
TRAC-PF1/MODL INPUT DECK 0.932
TABLE XXI 0.96
LOFT SPECIFICATION (2)
TABLE A=2 © 0.931
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TABLE 3

STEADY STATE PRESSURE DROPS

AVAILABLE
COMPONENT/ TRAC~PF1/MODl CALCULATED| TRAC PRESSURE
CELL PRESSURE DROP . -hpg DROP DATA
' : SCALED TO
PART OF REACTOR SYSTEM MASS FLOW
' ' RATE QF
FROM | TO (MPa) (xPa) 483.1 kgs—!
(xPa)
Cold Leg 6/2p 7/9 15.1742-15.1548 19.4 19.9(10)
Inlet Nozzle 7/9 86/1 15.1548-15.1191 35.7 42.1 48.4(11)
Filler Inlet Port :
Exit to Anulus
Circum. Flow to Downcomer
Downcomer 86/1 86/8 15.1191-15.1355 ~16.4 6.9 7.8(11)
Turn and Mix 86/8 89/1 15.1355-15.1059 29.6 29.6 30.8(11)
Lower Core Support '
Lower End Boxes 89/1 87/1 15.1059—15.0637 42.2 26.7 27.9(11)
Fuel Pins
Upper End Boxes
Upper Stack Region 87/1 1/4 15.0637-14.9922 71.5 58.8 53.7(10;11)
Core Barrel and Reactor Vesgssel Nozzles ' ‘
Hot Leg
Steam Generator 1/4 3/1s 14.9922-14.7650 227.0 224.7(10)
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TABLE 4

STEADY STATE ENVIRONMENTAL HEAT LOSSES

ENVIRONMENTAL HEAT LOSSES (kW)

ASSUMED FOR.

ESTIMATED FROM

MEASURED WITH

TRAC-PF1/MOD1

RELAP5 ANALYSES LOFT ALL FLUID IN PREDICTIONS
OF LOFT . EXPERIMENTS PRIMARY COOLANT
E EXPERIMENTS _L9-l AND L3-3 SYSTEM AT A
TEMPERATURE OF
555K
(12) (13) (13)
Primary Coolant 143
System
170
Reactor Pressure | 89
Vessgel ‘
Pressurizer © 6
Steam Generator 20 19
Secondary Side
TOTAL 196 200 + 100 248 257
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TABLE 5

STEADY STATE CORE BYPASS FLOW RATES

. o . TRAC-PF1/MOD1 Predictions Available
Component/Cell No - Data(ll)
.| Mass Flow Rate % Primary Mass| % Primary Mass
(kgs~1) ' Flow Rate Flow Rate
Paths ‘1, 2 and 3
Lower Core Support 89/1s 16.93 3.5 3.5
Structure, Lower End. :
Box and Gauge Hole
Bypasses
Path 4
1.28 - 3.54
Outlet Nozzle Gap 83/1 13.23 2.7
Path 5
Core Barrel 79/1 0.20 0.04 0.04
Alignment Key
Reflood Assist 31/3s 25.66 5.3 5.25

.Bypass Valve

(RABV)




TABLE 6

TRANSIENT CALCULATION - DECAY HEAT POWER TABLE

Power at Time t

Time After Scram (15) Power
(t, seconds) Initial Power (at time t)
(r) : - _
0.0 1.0 48.8000
0.15 0.88 42.9440
0.3 0.76 37.0880
0.6 0.58 - 28.3040
0.85 . 0.176 : 8.5888
1.0 0.122605 5.9831
1.3 0.1 YT 4.8800
2.0 0.087420. ... .. .4.2661
4.0 0.075788 3.6985
- 7.0 0.064 . .. 3,1232
10.0 0.060012 2.9286
25.0 0.046738 2.2808
65.0 0.035 1.7080
100.0 0.031546 1.5394
250.0 0.025210 1.2302

a Neutron and Fission Power

Time After Scram Power (16)
(Seconds) (Mw)
r‘

650.0 0.93047
1000.0 0.82223
1500.0 0.71837
3000.0 0.54527
5000.0 0.43385

1.0 E5 0.07566

AEEW - R 2254
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TABLE 7

TRANSIENT CALCULATION - STEAM GENERATOR
SECONDARY SIDE AUXILIARY FEEDWATER FLOW RATE TABLE

Transient Time
(Seconds) Liquid Velocity

- (Time After Reactor Scram (ms=1)
(1.4 Seconds) + 50 seconds)*

o

0.0
111.9
112.0

1913.4
1913.5
4000.0

1673 -
1673

a0

OC0O0OO00O0
000000

* Calculation was run in transient mode steady state
for 50 seconds.
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TABLE 8

TRANSIENT CALCULATION - HIGH PRESSURE INJECTION

SYSTEM (HP1S) FLOW RATE TABLE

PCS Pressure HPIS Flow Rate (17) HPIS Flow Rate for
(MPa) (2s—1) _ TRAC-PF1/MOD1
Calculation*
(ms=1)
8.70 0.3155 0.0527
8.36 0.3155 0.0527
7.67 0.3918 0.0654
6.98 0.4883 0.0815
5.60 0.6031 0.1007
4.22 0.7022 0.1178
3.53 0.7583 0.1266
2.15 0.8505 0.1420
0.08 0.9564 0.1597

* flow area of HPIS piping = 5.9892 x 10-3 m?

AEEW - R 2254




TAELE 9

OPERATIONAL SETPOINTS FOR EXPERIMENT LP-SB-1

Measured During Experiment (9)

Specified to TRAC-PF1/MODl Calculation

Valve Started to}

Close

Primary Goolant
Pumps Tripped

HPIS Flow
Initiated

{Auxiliary Feed-
water Initiated

Auxiliary Feed-
water Terminated

Experiment
Terminated

ITHL Pressure

Time After
Reactor
Scram

Time After
Initiation
of Auxil-
iary Feed-
water

IIHL, Pressure

Scram”

“4-11.12 MPa -

8.24+0.03 MPa

6210.2 secords

1801.4+0.8
secords

2.487+0.001MPa

Reactor Scram

'IICL (7/5) Pressure -

IIHL, (99/1) Pressure

Time After Reactor
Scram

Time After Initiation
of Auxiliary Feed-
water

IIHL, (99/1) Pressure

Action-
~Reference Setpoint Reference Setpoint
‘ (Component/cell no) '

Small-Break Valve | Time 0 Seconds Time 0 Seconds

mﬁ . . . . - - -
{Reactor Scrammed IIHL Pressure| 14.57:0.03 MPa| ILHL (99/1) Pressure | 14.57 MPa
Main Feedwater IIHL Pressure| 14.57+0.03 MPa| IIHL (99/1) Pressure v

Shut Off '
Main Steam Gontrol| "Upon Verification of Reactor| 2 seconds after 14.57 MPa

+ 2 seconds

11.12 MPa

8.24 Mpa

62 secords

1801.4 secords

2.487 Mpa

AEEW - R 2254




TABLE 10

1LP-5B-1 EASE TASE TRANSIENT CALOULATION — CHRONOLOGY OF EVENTS

TIME AFTER EXPEKIMENT
INITIATICN(s)
EVENT
MEASURED (9) 'TRAC PREDICTED
Small-break valve opened 0.0 0.0
Reactor scrammed : 1.4 * 0.0 0.5
Main feedwater shut off - : : : 1.4 * 0.2 0.5
Main steam control valve started to close 3.4 * 0.2 2.5
Main feedwater isolated 3.8 * 0.05 2.6
Main steam control valve fully closed 15.4 * 0.2 542
Primary coolant pumps tripped 24,6 = 0.2 25.7
Pressurizer 1iquid level below indicating range 3.6 * 0.4 53P
HPIS flow initiated 41.4 % 0.2 41.1
Primary coolant pump 1 coastdown campleted 42,6 * 0.2 46.4
Primary coolant pump 2 coastdown completed 43.0 * 0.2 46.4
Subcooled Jblowdown ended 57.5 & 0.2 65°
Auxiliary feedwater initiated 63.4 + 0.2 63.4
Break started to uncover 715 £ 3 ~ 1200
Primary system pressure became less than 1077 + 10 1380
secondary system pressure
Auxiliary feedwater shut off 1864.8 + 0.8 1864.8
HPIS flow rate exceeded break flow rate 1998.0 * 200 1820.0
HPIS + pump injection flow rate exceeded break - 1680.0
flow rate

Experiment termination criterion reached 3668 + 2.0 3227

The opening of the steam flow bypass valve during the transient was simulated using the
main steam control valve.

Defined as the time when a = 1.0 in bottom cell of pressuriser (level < 0.01 m after
~ 40 seconds).

Defined as the time when Tliq = Tsat in the break line.

AEEW - R 2254




TABLE 11

- RESULTS FROM  STAND-ALONE - BREAK LINE MODEL

LE-SB-1 |'Stand-~Alone'| Base Case
Experiment|{ Break Line Calculation

Model
Break Mass Flow 4,0 4.0 3.3
RateA(kgsfl) S .
Break Line Density | ~ 670 700 570

(xgm=3)

AEEW -~ R ‘2254



TABLE 12

COMPARISON‘OF COEFFICIENTS USED IN VAPOUR PULL
THROUGH AND LIQUID ENTRAINMENT CORRELATIONS

SMOGLIE (19)

EPRI (19) CATHARE (21){ZUBER (19)

Cq 0.62 0.69 0.62 | 0.687

Cp 0.82 0.75 0.62 0.687
02

h, 1 Co mg 0.2

— = - = : —]

D 2 D gpg (pge - pg)

h, 1 ¢ $f2, 0.2

2.l 2L ]

D 2 D gege (pg - pg)

where ’
he'= liquid levei at which 1iquid~entrainméﬁ£;begins (m)
hp = %i?uid level-gt.which ?épou; pul%fthrough-bggins
D é mainline»internal diameter*km)
C;n= coefficiéht;'as above
Cp = coefficient, as aoné
ﬁg = gas mass flow rate in bra?chléne.(kgs-l)

me = liquid mass flow rate in branchline (kgs—1)
acceleration due to gravity (ms~2)
= gas density (kgm~3)

pg = liquid density (kgm™3)
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FIGURE 2

LP-SB-1 PRIMARY SYSTEM PRESSURE AND TIMINGS
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OF SIGNIFICANT EVENTS

1 i - {
Break initiated (0 s) CL Press.(PE-"C-006)
. Reactor scram (1.4 s) Uncert = % 0.008 MPa 2000
Primary coolant pumps tripped (24.6 s)
1 Pressurizer emptied (34.6 s) %00
HPIS flow initiated (41.4 s)
- ! -1000
Subcooled blowdown ended (57.5 s)
1 ] | 1 ]
0 20 40 60 80 100
Time (s)
Primary system pressure (0 to 100 s).
EXPERIMENT LP-SB-1
i 1 ]
CL Press.(PE-PC-006) 2000
Uncert = + 0.088 MPa
_ 1500
Break uncovered (715 s)
Primary pressure less tﬁan_ -1000
secondary pressure (1077 's)
500
Experiment terminated (3668 s)
1 1 1 o
1000 2000 3000 4000
Time (s

Pressure (psla)

Pressure (psia)
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Component No Component Name Component No Component Name

99 ILHL & Break Pipe : 4 ’ Pump No 2 -
1 Intact Loop Hot Leg 61 Pump No 2 Injection Te
8 Pressurizer 5 Pump No 1
2 Steam Generator : : 63 Pump No 1 Injection Tee
3 Pump Suction C 6 Pump Discharge

7 Intact T.0oon Cold Leg

8 , | STEAM GENERATOR
PRESSURIZER ' vp1s
PUMP INJECTION

24 8 61 1
B P — | S— R | —
p2 Jr1]e P2 1] 2 II:2:3:4:SM:?:8:U

2 = 6 LLC.L
- 3
99 1 63

PUMP INJECTION

BREAKLINE

FIGURE 3a ' :
PRIMARY SYSTEM NODALISATION DIAGRAM FOR LP-SB-

(A} INTACT LOOP
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Component_No. ...Component Name

41 Broken Loop Cold Leg
31 Broken Loop Hot Leg
RABY
b4 g
f( L {\
i
| S _ 8
41 31 :
B EREAEE S EO N o RN
B.LC.L B.L.H.L. - g
FIGURE 3b 1

PRIMARY SYSTEM NODALISATION DIAGRAM FORELP-éB—l

T () BROKEN LOOP
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Vessel Representation for "System Mimic"
79 (See Appendix V)
80 81 80
i t 1
81 80
83
I — I
' 814 182
ILHL - 84 Efﬂ' ILE 82 82
N4 < o
87
Component No Component Name N B 2 V!
79 Bypass Path 5
87 80 Upper Plenum i 86 86 18>
= r-""""17 r°"°71 -’ : (D'comer) ) | 2 |2
| | 81 ~ Upper Plenum .(core)| 2
bad -4 & 82 - Plenum Component SRR EEETES e ——— e
, (D'comer) ) 5 .
® 86 85 83 - Bypass Path 4 s|? 85
-l - === =q == |- 84 Plenum Component RN REEREE SEEMGAREEEREEY EAEEE
88 (core) Al 4 4 4 |
IR B | _ 85 Downcomer Bypass N T NUT
] 86 Downcomer 5 3 s | -
R 87 Pipe Above Core 5_ RN TR T
o "7 7 88 ¢ Core ” ) s |s
89 Lower Plenum and - | 6} ¢ |} ° "
“““““ =1 7 Core Bypass . | 1
A 90 Lower Plenum 5 IO R
89 g | © 1 8 | o
901 : : I S
1 ] ' ‘ \\ é 90 :. J
\ J FIGURE 4 L -

TRAC-PF1/MOD1 REACTOR VESSEL NODALISATION DIAGRAM FOR LP-SB-1
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MAIN STEAM LINE

23

7 : P4 : % : ) ]
» 21 €——MAIN FEEDVATER
3 28 3
2/ o \% = 27 Cells Numbered Component No Component Name 1
2
iy AT, 20 14-19 20 Boiler ’
isf '\ 28,29,31 21 Steam Dome
1.1 [5Y 1-b3 ¢ AUX FEEDVATER 21-24,26 22 Downcomer
:.' '76 22 v 1-6 - 23 Steam Line Valve
A o ' 27 Main and Auxiliary
7 zp* ’ Feedwater Tee
FIGURE 5

TRAC-PF1/MOD1 STEAM GENERATOR SECONDARY SIDE NODALISATION DIAGRAM FOR LP-SB-1
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FIGURE 6 - CPU USAGE
LP-SB-1 STEADY STATE CALCULATION
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- THE FOLLOVING ARE PLOTTED AGAINST TIME
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APPENDIX 1

MICROFICHE LISTING OF THE TRAC-PFl/MODl1 INPUT DECK FOR
LP-SB- USED FOR THE STEADY STATE CALCULATION

(See inside back cover pocket for microfiche)

AEEW - R 2254






APPENDIX II

THE EPRI CORRELATION FOR BRANCHLINE FLOW QUALITY AS A

FUNCTION OF MAINLINE STRATIFIED LIQUID LEVEL .

Experiments performed in the Two-Phase Flow Loop (TPFL) at the
Idaho National Engineering Laboratory (INEL), during 1984,
investigated the liquid entrainment/vapour pull-through phenomena
of a tee with a large mainline to branchline diameter ratio and
the effect of these phenomena on the flow rate in the branchline
(19). As a result of the experimental work, correlations’
(recommended for use in codes) for predicting the liquid levels
for the onset of vapour pull-through and liquid entrainment and
the resulting branchline flow quality were derived as follows:

: 2
he _ 1 Ce [ Rg ]0.2
D 2 D gPg (pg - Pg)
h, 1 ¢ mg> 0.2
—=— +— | ]
D 2 D gpg (pg ~ pq)

X = 0 if h > h,

p
h - hg
X = exp [Cy (—m)] if hg <h < hy
hp - hg
X = 1 if h < h,
where h, = 1liquid level at which liquid entrainment begins
(m) '
hp = 1liquid level at which vapour pull-through begins
(m)
D = mainline internal diameter (m)
Ce = constant obtained from experimental data (0.62)
Cp = constant obtained from experimental data (0.82)
mg = gas mass flow rate in branchline (kg s—!)

meg = liquid mass flow rate in branchline (kg s~!)
g = acceleration due to gravity (ms=-?2)

AEEW - R 2254



-

gas dens1ty (kg m‘3)

Pg T A

bf_ = 11qu1d dens1ty (kg m'3)

X = branchllne flow quallty

FCxA = constant obtalned from experlmental data (— 3 4)

Implementing the correlation for branchline flow quality as a
function of stratified liquid level involved modifying the
LP-SB-1 input model as shown- 1n'P1gure AlI.l1. A VALVE component
was introduced in order to control the amount of steam entering
the -branchline and Version B@2C of the TRAC-PF1/MODl -code -
employing a branch offtake quality model for stratified flow -

was used.
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’ APPENDIX III r _ :
EFFECT OF DEFICIEﬁCIES IN THE TRAC-PFIZHODI INTERPHASE DRAG
_ MODEL ON THE PREDICTION OF THE CORE DERSITY FOR LP-SB-

An assessment of the interphase drag correlation used for
modelling vertical two-phase flows in TRAC-PF1/MODl is described
in Reference 20. The assessment compared void fractions
calculated by the code with those predicted by standard
correlations in order that an estimate might be made of the void
fraction errors likely to arise, in a particular application, due
to deficiencies in the code's modelling of interphase drag.

The plot of percentage error in the density predicted by the code
(when compared with that predicted by the Wilson-Rooney
correlation) as a function of void fraction (20) is reproduced in
Figure A.III.l1. (The Figure is applicable to zero liquid flow
rates - under which circumstances errors were found to be

largest).

In order to gain an indication of the likely magnitude, and
effect, of errors in the densities predicted by TRAC-PF1/MOD1l for
LP-SB-1, Figure A.III.l was applied at a particular point in the
transient. Figure A.II1I.2 shows the fluid conditions in the core
(component number 88) and the pipe above the core (component
number 87) at ~ 800 seconds as predicted by the "Base Case + EPRI
Correlation" calculation of LP-SB-1l.

In cell numbers 87/1, 87/2, 88/5 and 88/4, the fluid conditions
are such that the error in density (defined as (p, - p;)/p; x
100%, where p; = density calculated by Wilson Rooney correlation
and p, = density predicted by the code) is ~ - 10%, ie the
density in these cells is underestimated, by TRAC-PF1/MODl1, by

~ 10%. For the remaining cells (88/1, 88/2 and 88/3) the density
error is negligible. _

Had the density in parts of the core and the pipe above the core

not been underestimated, the additional gravitational head
available to balance the fluid in the downcomer would have been:

Y (hp) x g x 10%
(1.446x486+4+0.476x544+0.457x564+0.457x591) x 9.81 x 0.1

1461 kg m~1 s—2

This would be equivalent to increasing the density in the top

1461 . ,
kg m~3 ie 103 kg m~3.
9.81 x 1.446

Therefore, had the density not been underpredicted, additional
fluid of the order of

cell of the downcomer by

(0.46762%486+0.15393x544+8.0499%10-2x564+8.0499x10~2x591) x 0.1 +
0.19192 x 103*

= 60 kg

* § (Vol x Ap)
AEEW - R 2254



would have remained in the vessel. It would have been necessary
to expel less fluid from the break and break uncovery could be
expected to have occurred ~ 20 seconds earlier.

AEEW - R 2254



AEEW

ERROR IN DENSITY (/)

- R

FIGURE AIIT.1

ERRORS IN MEZAN TWO-PHASE MIXTURE DENSITY FOR jf. = 0

+ 100 ¢
(c) Dnh =0.01m

60 -

0 b S ' © Pz10MPg

20 P

-20

-40

-80

-80

P=iMPq KEY {=

—100 L RELAP §/ MOD 2
- S R S | —~—— TRAC —PF1/ MOD 1

2254



FLUID CONDITIONRS IN

FIGURE A.III.2

THE CORE AND THE PIPE ABOVE THE CORE

jg

(ag ug) ug
0.225 0.6054
l.446 m
0.14 0.3761 X
0.476 m
1 0.10 0.3512 X
0.457 m
0.09 0.3481 X
....0.457 m
0.08 0.3436 X
0.05 0.3457
0.02 0.3463
0.01 0.3467

Pressure ~ 6.3 MPa
Hydraulic diameter
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~ AT ~ 800 SECONDS

CELL
pm = 486 kgm~3

. = 0.372 87/2
VOL = 0.46762 m3

pm = 544 kgm-3

& = 0.2925 87/1
VoL = 0.15393 m3

pm = 564 kgm~3 .

«. = 0.265 ~ 88/s5
VoL = 8.0499 x 10-2 m3

pm = 591 kgm—3

¢, = 0.2275 88/4
vlL = 8.0499 x 10-2 m3

«. = 0.131 88/3
vlL = 4.0337 x 10-2 p3

. = 0.06781 88/2
v = 4.0161 x 10-2 p3

«. = 0.01798 88/1
VoL = 5.3724 x 10-2 p3

= 0.0122 m

i
uy (1—ag)u£
0.2583  0.16
0.1184  0.07
0.09877  0.07
0.09487 0.07
0.08604 0.07
0.08109 0.07
0.07751  0.07
0.07588  0.07



APPENDIX IV

MODIFICATIONS TO LP-SB-1 BASE CASE INPUT DECK FOR FINAL
TRANSIENT CALCULATION

1 Correction 0of GRAVs in Lower Plenum (Component Numkber 90)
GRAV -
Base Case : Final
- Calculation Calculation!

=

Main Branch —1'-0" 000' 100 "'1-0, -00182245, 1.0
Side Branch 0.0, 1.0 -0.0824089, 1.0

2 Correction of Effective Cell Lengths for Plenum Components
(Component Numbers 82 and 84) . )

EFFECTIVE PLENUM -SIDE  CELL -LENGTHS
Component
: Base Case -~ - Final -

N ~ Calculation- Calculation?
82 - ~0.142,0.0705,0.0705, 0.284,0.141,0.141,
0.142,0.142,0.0705 | 0.284,0.284,0.141
84 0.142,0.329,0.142, | 0.284,0.658,0.284,
: 0.142,0.329,0.329 ' 0,284,0.658,0.658

l data obtained by running TRAC- PFl/MODl wlth elevatlon data and
allowing the code to compute the GRAV terms.u C e Lo :

}2 the code expects the total helght (and w1dth) of the plenum and
not half the height (and half the- w1dth) as was spec1f1ed for
the Base Case Calculation. :
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'APPENDIX IV

MODIFICATIONS TO LP-SB-1 BASE CASE INPUT DECK FOR FINAL
TRANSIENT CALCULATION

1 Correction of GRAVs in Lower Plenum (Component Number 90)

GRAV
Base Case Final
Calculation . Calculation!

Main Branch | -1.0, 0.0, 1.0 | -1.0, -0.182245, 1.0
Side Branch |.0.0, 1.0 -0.0824089, 1.0

2 Correction of Effectlve Cell Lengths for Plenum Components
(Component Numbers 82 and 84)

- EFFECTIVE PLENUM SIDE CELL LENGTHS
Component
: : Base Case - : Final
Calculation ) Calculation?
82 . 0.142,0.0705,0.0705, 0.284,0.141,0.141,
0.142,0.142,0.0705 0.284,0.284,0.141
84 - 0.142,0.329,0.142,: 0,284,0.658,0.284,
-] 0.142,0.329,0.329 .. | .0.284,0.658,0.658

1 data obtained by running TRAC-PF1/MODl with elevation data and
allow1ng the code to compute the GRAV terms.

2 the .code expects the total height (and width).of the plenum and

not half the height (and half the width) as was specified for
the Base Case Calculation.
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6

Renodalisation of Reflood Assist Bypass Line®

(i) Broken Loop Hot leg (Component Number 31)

Base Case Final
Calculation Calculation
Side Branch RAD |0.10795 m 0.111 m
" " TH {0.02858 m 0.0255 m
" " DX {1.389 m,0.814 m, 1.687 m,0.726 m,
5.1044 m 1.849 m
" "  voL |0.054 m3§0.0314 m3, 0.0658 m3,0.0283 m3,
0.1986 m 0.0721 m3
" “ FA {R3 0.0388 m2, 0.02119 m?{R3 0.039 m2, 0.013 m?
" "  GRAV{0.0,0.2242,0.1912,0.0 0.0,1.0,0.0,0.0
" * HD {R3 0.2223 m,1.41E-3 m R3 0.2228 m,1.41E-3 m

(ii) Broken Loop Cold Leg (Component Number 41)

Base Case Final
Calculation Calculation
Side Branch RAD [0.10795 m 0.111 m

" " TH ]0.02858 m 0.0255 m

" " px |0.885 m,7.2834 m 2.129 m,3.27 m

" " VoL |0.03033 m3,0.2768 m3 0.0830 m3,0.1275 m3

" " FA |R2 0.0388 m?,0.02119 m? {R2 0.039 m?,0.013 m?

" "  GRAV{0.0,0.199,0.0 1.0,0.0,0.0

- * HD |R2 0.2223 m,1.41E-3 m  |R2 0.2228 m 1.41E-3 m

6 Size of Reflood Assist Bypass Line decreased (2).
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APPENDIX V = -

LP-SB-1 BASE CASE CALCULATIONS WITH EPRI CORRELATION AND
INPUT MODEL MODIFICATIONS - SERIES OF PICTURES SHOWING

PREDICTED SYSTEM CONDITIONS THROUGHOUT THE TRANSIENT )

The following series of pictures shows, at 200 second intervals,
the predicted void fraction distribution, the liquid and vapour
velocities and the occurrences of stratified flow conditions
throughout the system. The nodalisation may be compared with
that of Figures 3a, 3b, 4 and 5. The pictures were produced from
the final calculations - Base Case + EPRI Correlation + Input
Modifications - and include the break line quality control valve
(see Figure AII.l).
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