5.5 Programs and Manuals (continued)

5.5.9 Steam Generator (SG) Program

A Steam Generator (SG) Program shall be established and implemented to ensure that SG tube integrity is maintained. In addition, the Steam Generator Program shall include the following provisions:

- a. Provisions for condition monitoring assessments. Condition monitoring assessment means an evaluation of the "as found" condition of the tubing with respect to the performance criteria for structural integrity and accident induced leakage. The "as found" condition refers to the condition of the tubing during an SG inspection outage, as determined from the inservice inspection results or by other means, prior to the plugging of tubes. Condition monitoring assessments shall be conducted during each outage during which the SG tubes are inspected or plugged to confirm that the performance criteria are being met.
- b. Performance criteria for SG tube integrity. SG tube integrity shall be maintained by meeting the performance criteria for tube structural integrity, accident induced leakage, and operational LEAKAGE.
 - 1. Structural integrity performance criterion: All inservice SG tubes shall retain structural integrity over the full range of normal operating conditions (including startup, operation in the power range, hot standby, and cool down and all anticipated transients included in the design specification) and design basis accidents. This includes retaining a safety factor of 3.0 against burst under normal steady state full power operation primary-to-secondary pressure differential and a safety factor of 1.4 against burst applied to the design basis accident primary-to-secondary pressure differentials. Apart from the above requirements, additional loading conditions associated with the design basis accidents, or combination of accidents in accordance with the design and licensing basis, shall also be evaluated to determine if the associated loads contribute significantly to burst or collapse. In the assessment of tube integrity, those loads that do significantly affect burst or collapse shall be determined and assessed in combination with the loads due to pressure with a safety factor of 1.2 on the combined primary loads and 1.0 on axial secondary loads.
 - 2. Accident induced leakage performance criterion: The primary to secondary accident induced leakage rate for any design basis accident, other than a SG tube rupture.

(continued)

PALO VERDE UNITS 1.2.3

AMENDMENT NO. 120, 161

5.5 Programs and Manuals (continued)

5.5.16 Containment Leakage Rate Testing Program (continued)

- b. The peak calculated containment internal pressure for the design basis loss of coolant accident. P_a , is 52.0 psig for Unit 1 through operating cycle 12 and Unit 3 through operating cycle 13. and 58.0 psig for Unit 1 after operating cycle 12. Unit 2. and Unit 3 after operating cycle 13. The containment design pressure is 60 psig.
- c. The maximum allowable containment leakage rate. L_a , at P_a , shall be 0.1 % of containment air weight per day.
- d. Leakage Rate acceptance criteria are:
 - 1. Containment leakage rate acceptance criterion is $\leq 1.0 L_a$. During the first unit startup following testing in accordance with this program, the leakage rate acceptance are $< 0.60 L_a$ for the Type B and C tests and $\leq 0.75 L_a$ for Type A tests.
 - 2. Air lock testing acceptance criteria are:
 - a) Overall air lock leakage rate is $\leq 0.05 L_a$ when tested at $\geq P_a$.
 - b) For each door, leakage rate is $\leq 0.01 L_a$ when pressurized to ≥ 14.5 psig.
- e. The provisions of SR 3.0.2 do not apply to the test frequencies in the Containment Leakage Rate Testing Program.
- f. The provisions of SR 3.0.3 are applicable to the Containment Leakage Rate Testing Program.