
NUREGIJA-0179

International
Agreement Report

A Standardized Methodology, for
the Linkage of Computer Codes

Application to RELAP5/MOD3.2

Prepared by

R. H. Santos
Polytechnical University of Madrid
Nuclear Engineering Department
Jos6 Guti6rrez Abascal 2.
E-28006 MADRID
SPAIN

Office of Nuclear Regulatory Research
U.S. Nuclear Regulatory Commission
Washington, DC 20555-0001

March 2000

Prepared as part of
The Agreement on Research Participation and Technical Exchange
under the International Code Application and Maintenance Program (CAMP)

Published by
U.S. Nuclear Regulatory Commission

AVAILABILITY NOTICE

Availability of Reference Materials Cited in NRC Publications

NRC publications in the NUREG series, NRC regu-
lations, and Title 10, Energy, of the Code of Federal
Regulations, may be purchased from one of the fol-
lowing sources:

1. The Superintendent of Documents
U.S. Government Printing Office
PO. Box 37082
Washington, DC 20402-9328
<http://www.access.gpo.gov/su-docs>
202-512-1800

2. The National Technical Information Service
Springfield, VA 22161-0002
<http://www.ntis.gov>
1-800-553-6847 or locally 703-605-6000

The NUREG series comprises (1) brochures
(NUREG/BR-XXXX), (2) proceedings of confer-
ences (NUREG/CP-X)OOQ, (3) reports resulting
from international agreements (NUREG/IA-XXXX),
(4) technical and administrative reports and books
[(NUREG-)OOO(or (NUREG/CR-XXXX)], and (5)
compilations of legal decisions and orders of the
Commission and Atomic and Safety Licensing
Boards and of Office Directors' decisions under
Section 2.206 of NRC's regulations (NUREG-
XxxxO.

A single copy of each NRC draft report for com-
ment is available free, to the extent of supply, upon
written request as follows:

Address: Office of the Chief Information Officer
Reproduction and Distribution

Services Section
U.S. Nuclear Regulatory Commission
Washington, DC 20555-0001

E-mail: <DISTRIBUTION@nrc.gov>
Facsimile: 301-415-2289

A portion of NRC regulatory and technical informa-
tion is available at NRC's World Wide Web site:

<http://www.nrc.gov>

After January 1, 2000, the public may electronically
access NUREG-series publications and other NRC
records in NRC's Agencywide Document Access
and Management System (ADAMS), through the
Public Electronic Reading Room (PERR), link
<http://www.nrc.gov/NRC/ADAMS/index.html>.

Publicly released documents include, to name a
few, NUREG-series reports; Federal Register no-
tices; applicant, licensee, and vendor documents
and correspondence; NRC correspondence and
internal memoranda; bulletins and information no-
tices; inspection and investigation reports; licens-
ee event reports; and Commission papers and
their attachments.

Documents available from public and special tech-
nical libraries include all open literature items, such
as books, journal articles, and transactions, Feder-
al Register notices, Federal and State legislation,
and congressional reports. Such documents as
theses, dissertations, foreign reports and transla-
tions, and non-NRC conference proceedings may
be purchased from their sponsoring organization.

Copies of industry codes and standards used in a
substantive manner in the NRC regulatory process
are maintained at the NRC Library, Two White Flint
North, 11545 Rockville Pike, Rockville, MD
20852-2738. These standards are available in the
library for reference use by the public. Codes and
standards are usually copyrighted and may be
purchased from the originating organization or, if
they are American National Standards, from-

American National Standards Institute
11 West 42nd Street
New York, NY 10036-8002
<http://www.ansi.org >
212-642-4900

DISCLAIMER

This report was prepared under an international cooperative
agreement for the exchange of technical information. Neither
the United States Government nor any agency thereof, nor any
of their employees, makes any warranty, expressed or implied,
or assumes any legal liability or responsibility for any third

party's use, or the results of such use, of any information, appa-
ratus, product, or process disclosed in this report, or represents
that its use by such third party would not infringe privately
owned rights.

NUREG/]A-0179

International
Agreement Report

A Standardized Methodology for
the Linkage of Computer Codes

Application to RELAP5/MOD3.2

Prepared by

R. H. Santos
Polytechnical University of Madrid
Nuclear Engineering Department
Jos6 Gutifrrez Abascal 2.
E-28006 MADRID
SPAIN

Office of Nuclear Regulatory Research
U.S. Nuclear Regulatory Commission
Washington, DC 20555-0001

March 2000

Prepared as part of
The Agreement on Research Participation and Technical Exchange
under the international Code Application and Maintenance Program (CAMP)

Published by
U.S. Nuclear Regulatory Commission

Abstract

The School of Industrial Engineering of the Universidad Politecnica de Madrid (ETSD:-UPM), in
cooperation with the Spanish.Nuclear Safety Council, has developed a standardised methodology
to couple and parallelise scientific codes, by means of the modular general purpose simulation
language BABIECA and the Message Passing Paradigm, currently using the PVM library
routines. A template suggests how a code must be written to ease the connectivity with other
codes through BABIECA.

The connection scheme has been successfully applied to the RELAP5/MOD3.2 code.

i

/

Executive Summary

The modular simulation program BABIECA has been used as a general interface to co)uple
scientific codes, by means of the Message Passing Paradigm, currently implemented through
the Parallel Virtual Machine (PVM). with this approach, the connection is performed by defining
a block topology, i.e., what output signals of each code acts as boundary or initial conditions for
other codes.

The nature of the individual codes is irrelevant to the connection process. Thus, connectivity is
not restricted to the usual TH-neutronic codes. The linkage scheme also allows the user to
undertake coarse grain parallelization of the codes, if the particular problem defined through the
input deck so allows.

The proposed linkage scheme has been successfully applied to the RELAP5/MOD3.2 code. A
simple example problem has been run to demonstrate the capabilities of the modified version of
RELAP5 to be both parallelized and connected to other codes. Effective execution speed up is
obtained under certain circumstances.

The trend of the results suggests that the structure of any scientific code can be standardised top
ease the coupling with others, which is the main conclusion of the report. A proposal of such a
standard is enclosed.

iii

CONTENTS

A bstract ... i
Executive Sum m ary .. iii
C ontents ... v
List of Figures .. vii

1. Introduction ... I

2. Code Linkage ... 3
2.1 Introduction ... 3
2.2 Boundary conditions vs. initial conditions linkage 4
2.3 Non iterative vs. iterative linkage ... 5
2.4 Boundary conditions vs. initial conditions linkage 6
2.5 Time step control .. 8

3. Code parallelisation ... 9
3.1 Introduction .. 9
3.2 Parallelisation techniques ... 10

3.2.1 Introduction ... 10
3.2.2 Code driven - programmer driven - user driven parallelization 10
3.2.3 Source code level - problem level parallelization 11

4. A proposal of standard .. 13
4.1 Introduction ... 13
4.2 Main characteristics of BABIECA .. 14
4.3 Standard specifications relating the modular driver 16
4.4 Standard specifications relating the codes to be coupled 18
4.5 Linkage of the RELAP5 code ... 19

5. Application example .. 23
5.1 Problem setup .. 23
5.2 R esults ... 25
5.3 Run statistics .. 26

6. Conclusions .. 29

B ibliography 30

V

A File sndcode .. 34
A.1 Description of the module ... 34

A.1.1 Code sections .. 35
A. 1.2 Particular tasks .. 40
A.1.3 Standard message passage procedures 58
A 1.4 Ancillary algorithms ... 59
A. 1.5 Functions for initial and boundary conditions 60

B File rcvcode .. 63
B. 1 Description of the module ... 63

B. 1.1 Code sections ... 64
B.1.2 Ancillary algorithms .. 66
B .1.3 H eader files ... 71

C Remote code standard specifications 72
C. 1 Code linkage ... 72

C. 1.1 M ain program ... 73
C.1.2 calculoo routine 77

D BABIECA input file ... 87

vi

LIST OF FIGURES:

4.1 Example of block calculation in BABLECA 15

4.2 Parallelisation of a hydraulic circuit .. 17

5.1 Nodalization scheme of the three loop circuit 24

5.2 Parallelization through cross-flow junctions 25

5.3 Parallelization through single junctions 26

5.4 Velocity in main pipe .. 27

5.5 Velocity in loop I .. 27

5.6 Velocity in loop 2 ... 27

5.7 Velocity in loop 3 ... 27

vii

Chapter 1

Introduction

Simulationists that use particular purpose scientific codes for certain disci-
plines can reach their limits of scope, mainly because of the end of applicabil-
ity of the models capable of handling the scenarios they try to simulate. The
scope of application of the codes can be extended by building a full scope
code including detailed models for all the disciplines involved. Nevertheless,
the effort necessary to write such a code would exceed by far the benefits to
be yielded [28, 29].

A more feasible solution is to take advantage of already existing codes
and couple them, in such a way that the output variables of a given code act
as boundary or initial conditions for other codes.

Many examples of code coupling, most of them taken from the nu-
clear industry, can be found in the literature. For instance, the EUMOD
interface [28], which allows the connection of the RELAP5 code [%0] to
external models defined by the user. Reference [29] describes the con-
nections RELAP5-CONTAIN, RELAP5-COSBWR, RELAP5-PANBOX2,
RELAP5-HECHAN2, RELAP5-COCO, TRAC-BF1-NEM-3D, CATH ENA-
PACE, CATHENA-ELOCA and CANSIM. Reference [24] describes the con-
nection of RELAP5 to the TACCUM model. Another remarkable application
is ESTER [19], a code that links a set of codes, with the aim of simulating
severe accident scenarios in nuclear power plants.

References [8, 7, 3, 20] illustrate some of the last works on code coupling
applications in the Nuclear Safety field.

Special attention to the code connection issue has been paid in works.
such as [5, 31, 21, 26, 1] within the frame of the OECD/CSNI Workshop on
Transient Thermal-Hydraulic and Neutronic Requirements held at Annapolis
in 1996.

1

2 Chapter 1. Introduction

An important issue concerning the aforementioned connections is that
they have been implemented taking into account the peculiarities of each
individual code; no general rules are provided for code connection. Besides,
most of the connections, with the exceptions of the code systems CANSIM
and ESTER, link only two codes. Thus the scope of applicability is increased
in only one direction.

A number of drawbacks can be found in this linkage strategy:

" the new code that results from this type of linkage is closed, in the
sense that the executable file is always the same once the connection
has been established. If we want to enhance the available capabilities
a new code must be added and the system must be recompiled to
generate a new executable file;

" if the transients to be simulated require only the models implemented in
one of the codes, or a few of them, for some time, the system described
above forces to use the global system formed by all the codes that have
been linked.

Parallelisation of computer codes allows shorter execution times and
makes real time simulation more feasible. In most cases simulation codes
are parallelised taking into account only the source code, but not the input
file defined by the user, which may reflect in many cases an inherent parallel
structure of the physical problem to be solved. This last strategy of paral-
lelisation, that will be called problem level parallelisation, can lead to coarser
granularities and is seldom exploited in scientific computing.

In this report we describe a methodology that suggests how to write a
computer code for ease of both connectivity and problem level parallelisation,
using the same tools.

Chapter 2

Code linkage

2.1 Introduction

In order to anticipate the behavior of a certain physical problem, a computer
code solves a set of, in general, partial differential equations with given initial
and boundary conditions, which can be denoted by - and 9 respectively. The
components of vector " are independent from each other. Closely related to
the initial state vector, we can define the extended state vector as the rector
: that contains all the information in F plus additional non-independent
components, interrelated through algebraic equations solved by the code,
i.e. F(to) = 7-(F(to)). The set of partial differential equations is discretized
in space and time and solved by means of a numerical algorithm. Loosely
speaking, the algorithm consists in obtaining the extended state vector E
at a discrete time t + At, given both its value at time t and the vector of
boundary conditions 6t. With respect to the boundary conditions, if the
numerical method makes use of the values at time t + At it is said to be
implicit; if all conditions are taken at time t or prior it is said to be explicit.
In between there can exist methods with different degrees of implici.tness.
Those two schemes can be formally expressed as follows:

5(t + At) = "r (g(t), 2(t + At)) (2.1)

for an implicit method and

F(t + At) = -F (j(t), 2(t)) (2.2)

for a totally explicit method.

Once the extended state vector is known, output variables are computed

3

4 Chapter 2. Code linkage

by means of some ancillary function:

9(t + At) = g ((t + At), VZ) (2.3)

where the vector of boundary conditions U- can be defined at time t or t + At.
With this last calculation the time step is considered as finished.

The code must be fed with the vector of initial conditions Z-, and thus
the code must find the extended state vector 9(to) at the first time step
from F" and the algebraic equations to be solved in the code. Vector F avoids
recomputation of some variables in different time steps, that would be nec-
essary if just Twere used. The boundary conditions are specified by the user
by means of tables, with time as abscissae and the values to be input as
ordinates. These tables are usually linearly interpolated.

The main objective of code linkage is to provide a code with informa-
tion derived from the outputs of other codes, i.e. for the case of boundary
conditions,

W, t (V- W, (I7 (.) -- - • t) , - -... C t)) (2 .4)

while for initial conditions,

;Fi(to) = Ei (91(to),---, (to),- --, gm (to)) (2.5)

where the subindices denote different codes.

The linkage between codes can be established following different princi-
ples. The main issues concerning code connection are described hereafter.

2.2 Boundary conditions vs. initial condi-
tions linkage

The main purpose of code linkage is to calculate the boundary conditions of
a given code as a function of the output variables of other codes, as shown
in equation (2.4).

Nevertheless, the coupling of codes via initial conditions, as set in equa-
tion (2.5) may be highly interesting in the solution of certain problems. For
instance, many times a physical process is simulated with the help of a cer-
tain model. Some particular transients may drive the system into a region
out of the scope of applicability of the model (for instance, a code for the

2.3. Non iterative vs. iterative linkage 5

simulation of transients and accidents in nuclear power plants enters taýe se-
vere accident region), making it necessary the existence of a second model,
usually within a separate code, capable of handling this new situation. With-
out code linkage, an input deck for this particular initial conditions must be
made for running the special code. However, code linkage makes it possible
to deactivate the incorrect models when they are just going to leave il;s do-
main of applicability and transfer these initial conditions 'on the fly' to the
special code. It is very convenient to stop the calculation of the unwanted
models both to save CPU time and to prevent loss of stability of the mod-
els that are out of their domain of applicability. An undetermined number
of transitions between both models may happen during the whole simula-
tion run. A good example of coupling via initial conditions is the lakage
TIZONA-MAAP [27]. TIZONA [17] is a thermal-hydraulic code for *BWR
Nuclear power plants transient analysis. When certain variables reach prede-
fined values, which indicate the beginning of severe accident condition3, the
simulation is transferred to the MAAP code [10). In this case, the trarrnition
is made only once, since it is not feasible that the plant recovers the 'non
severe' conditions.

2.3 Non iterative vs. iterative linkage

The connection of codes often yields feedback loops. If the codes involved
in a feedback loop use an explicit algorithm the linkage may be established
without iterations, since all the information needed to advance the solution
one time step is available from the previous one. This fact can be reali2;ed in
the following equations, which represent the coupling of two explicit codes:

91 (t + At) = .Y1(:Fl(t), i4l(92 (t))) (2.6)

i 2 (t + At) = -2"(F 2 (t), 622 (71 (t))) (2.7)

If at least one of the codes in the feedback loop is explicit the coupling
can also be solved without iterations. We must ensure that the explicit codes
are solved in first place, to propagate forward the information available from
the previous time step. If code 1 is explicit and code 2 is implicit:

:F1(t + A0) = -F1 (F1 (t), Ul (92 (t))) (2.8)

92 (t + At) = -F2((t),U 2 (91(t + At))) (2-9)

6 Chapter 2. Code linkage

We can see that the first code only needs variables from the previous time
step. When the second code demands variables defined in the current time
step, i.e. g1 (t + At), this information is already available.

Most of the connections mentioned in chapter 1 have overlooked this
feature. The implicit code, which is usually the thermal-hydraulic one, is
solved in first place. The effect is that the output vector passed to equation
(2.9) is :VI(t) instead of gi(t + At). This misuse of the output vector may
distort the numerical -algorithm.

If all the codes in a feedback loop are solved by implicit methods the
information necessary to advance a time step is not available, as shown in
the following equations:

F1(t + At) = .Fl(Fi(t), i(92(t + At))) (2.10)

Z2(t+At) =-F(F2 (t),6 2 (1 (t + At))) (2.11)

The output vector g2(t + At) needed to calculate 91 (t + At) has not been
computed yet. The same comment applies to the calculation of :F2 (t + At).
The natural way to solve this deadlock is to use iterative methods. An
initial guess of g2 (t + At) is taken to evaluate : 1 (t + At) and subsequently
gi (t + At). Now we can compute :F2 (t + At) and g2 (t + At). If this last value
is coincident with the initial guess within a tolerance margin the solution
is considered valid. Otherwise, another iteration is executed. This way of
acting follows the Picard fixed point theorem, by which a sufficient condition
for convergence is that the vector function defining • 1(t+At) and F2(t+At)
in terms of itself be contractive.

The convergence of the loop can be accelerated by using traditional meth-
ods for finding roots of functions, such as the secant method, bisection
method, Aitken's A2 , etc.

2.4 Serial vs. parallel linkage

We say that a set of codes is coupled serially if the linkage gives raise to a
single executable file such that all the codes belong to the same computer
process when executed. This type of linkage must be accomplished by turn-
ing into sequentially called subroutines all the main programs of the codes to
be linked, with the exception of the code that will act as main program of the
integrated system and will manage the time step. The information exchange

2.4. Serial vs. parallel linkage 7

between the codes takes place through the arguments of the subroutines or
through a common block of memory. The exchange is performed once the
execution of each individual code has finished. These demands compel the
developer to maintain two versions of each source code: the original one and
that ready to be linked to the code system. The original executable file must
also be kept if we want to run simulations that only need models included
in that code. The EUMOD interface [28] for the RELAP5 code [30] ar.d the
program SIMTRAN [23] are good examples of serial linkage.

On the other hand, the codes are said to be coupled in parallel if they
behave as separated computer processes. Each code has an associated exe-
cutable file. There are as many main programs as codes linked. The con-
nection is established via low level utilities such as the UNIX sockets or
memory sharing or using the Message Passing paradigm, by means of hdgher
level interfaces such as PVM [12, 13] or MPI [15]. These tools provide flex-
ible, standardised methods for transferring information between processes.
The simulation starts in the code that manages the time step. Each code is
spawned when needed as an individual process and may be run on a different
processor of a parallel machine and even on a different machine (of the same
or of a different kind), depending on the hardware resources available and
the communication software. Some processes can run simultaneously if the
problem conditions so allow. However, we must remark that parallel linkage
does not imply always an actual parallelisation of the problem, whica will
not be possible if:

1. only one single processor machine is available, and thus only one com-
puter process can be executed at the same time,

2. the synchronisation imposed by the simulation time step does not allow
a process to advance on its own. Hence, only one code is executed at
a given time.

With parallel coupling only one version of the source code and one executable
file must be maintained per individual code, since the extra sections of code
needed to implement the linkage will be inserted as additions to the origi-
nal version and will only be entered when the code detects that it has been
spawned by other process of the global system. All these features make par-
allel coupling more versatile and recommendable than serial coupling, even
when the different processes do not run simultaneously. The connections
RELAP5-TACCUM [24] and RELAP5-PARCS [8], among many others, il-
lustrate this kind of linkage.

8 Chapter 2. Code linkage

2.5 Time step control by code vs. time step
control by a simulation driver

In the examples mentioned in chapter 1 the simulation time step is controlled
by one of the codes, generally the thermal-hydraulic one, embedded in the
code system. This scheme forces to use that code in every simulation, even
though it may not be necessary for certain transients. Moreover, it must be
solved in first place, even if it is implicit. As it has been shown in section
2.3, concerning iterative and non-iterative coupling, this is not a desirable
practice.

New code coupling applications following this approach are arising. For
instance, the general interface used in the RELAP5/PARCS coupling [8],
the TALINK interface [7] to couple RELAP5 to the 3D neutronics code
PANTHER and ISAS 1 [3], used to couple the TH code CATHARE to the
3D neutronics code CRONOS.

A different approach is to control the time step with a modular general
purpose simulation driver, which calls the codes to be linked as if they were
the blocks of a block diagram. The time step of the simulation driver must
be passed to the individual codes being part of the global system. The simu-
lation driver acts then as a synchronizer of the codes. With this scheme the
simulation is not centered in any particular code, as is the case in the pre-
vious scheme. The user can choose only the codes needed for the particular
transient and make provisions for code replacement upon exhaustion of the
models. The modular approach permits the substitution of one of the codes
by other code of the same type in order to make comparisons or to achieve
different degrees of detail. Moreover, growth of the full model by addition
of new codes may be accomplished more easily.

Chapter 3

Code parallelisation

3.1 Introduction

Parallelisation consists basically in the concurrent execution of a set of pro-
cesses that do not interchange information among them, and are part of a
larger computer task or program, on different microprocessors (belonging
to the same or to different machines). The information computed in each
concurrent process is then transferred to the main task, which runs cn an-
other microprocessor, at a certain point of the flow diagram usually called
synchronisation barrier. Once this point has been reached, the main task
can proceed further with the program running it serially or spawning new
concurrent tasks if the flow diagram so allows, until a new synchronisation
barrier is reached. If the concurrent tasks do not interchange information
during the execution of the whole program, i.e., there are no synchronisa-
tion barriers, the term distributed computing, instead of parallelisation, is
preferred.

In both cases, the concurrent execution of tasks tends to decrease the real
execution time of the whole program. On the other hand, the communication
between the different processes increases the real execution time, which is
the main shortcoming of parallelisation. Optimal performance is achdeved
when the three following issues are taken into account:

* the number of concurrent processes equals the number of available
processors. If the former is greater than the latter no decrease of the
real execution time is attained with respect to the optimal situation,
since the extra tasks must be queued until a microprocessor i's free.
Moreover, the execution time will be charged due to the extra commu-

9

10 Chapter 3. Code parallelisation

nication between processes.

" the heaviest tasks run on the most powerful microprocessors, i.e. the
parallel tasks are balanced,

" the number of synchronisation barriers is minimum, hence decreasing
the time spent in the communication between tasks.

With respect to this last item, we say that a parallel program with few
synchronisation barriers and large tasks running on each microprocessor has
a coarse granularity. On the other hand, a parallel program with many
barriers, and small tasks running on each microprocessor, is said to have fine
granularity. As a general rule for the programmer, the larger the granularity,
the better the program performance, i.e. the less the real computing time.

3.2 Parallelisation techniques

3.2.1 Introduction

Systematic classification of the parallelisation techniques is not an easy job.
It depends, of course, on the features we pay attention to. Many of the
categories that would result frome each feature overlap. Nevertheless, we
propose here a classification based on two features: the agent that performs
the parallelization and the level at which parallelization is applied, either the
code or the problem defined through the input level.

3.2.2 Code driven - programmer driven - user driven
parallelization

The agent that undertakes the parallelization process may be a first item to
set a classification. The degree of parallelism that can be achieved is different
for each agent.

The most single parallelisation techniques just try to identify parallel sec-
tions in a program originally written to be run on a serial machine. Paral-
lelization is performed by some ancillary tools usually called autoparallelisers
[11]. These tools look for loop based and functional parallelism, as defined
in [22]. With this strategy, that we shall call code driven, any chance of
parallelisation is achieved at compilation time.

3.2. Parallelisation techriiques 11

The use of parallel environments when developing a computer program is
another way to achieve parallelization [11]. The developer is responsible for
exploring the chances of parallelism when writing the program. This is the
reason why we call this strategy programmer driven parallelization. Another
form of programmer driven parallelization is the message passing paradigm,
in which the developer inserts in the source code library functions to Cpawn
other processes, and to send and receive data from them. PVM [2, 13, 12]
and MPI [15] are the most popular libraries for message passing.

An intermediate cathegory, just between the two previous ones, is the use
of parallelized library functions that performs typical algorithms in scientific
computing. The most spread library of this type is BLAS (Basic Linear
Algebra Subprograms) [11]. The developer that uses these library functions
only inserts them into the source code, but is not responsible for the embeded
parallelism.

A final cathegory is the so called user driven parallelization, in which the
program allows the user to specify trhough the input file the parallelization
strategy. This strategy is strongly dependent on the particular problem to
be solved. The parallelisation based on hydraulic loops in the CATHARE
code, described in [4], is a good example of user driven parallelisation.

3.2.3 Source code level - problem level parallelization

We define code level parallelization as the parallelization applied only to the
source code. This kind of parallelism shows some disadvantages:

* It usually leads to a medium-fine granularity.

" It can only identify the parallelism embedded in the source code, but
not the parallelism that could be eventually derived from the source
code plus the data specified through the input file.

" The capability of this technique to identify the parallel sections strongly
depends on the way the serial program has been written. This task
is much easier, as it is recognized in [22], if the developer takes into
account the different possibilities of parallelisation when writing the
source code and designing the computational algorithms.

" The parallel code, and hence the execution flow is highly machine-
dependent.

12 Chapter 3. Code parallelisation

As an alternative to the concept of source code level parallelisation, we
would like to introduce the concept of problem level parallelisation. Many
times the problem to be solved by a computer code, and defined through
the input file, shows intrinsic parallel characteristics. In the particular case
of a simulation program, the parallel paths of the block diagram describing
the simulated system suggest a way of parallelisation. Those loops derive
most times from physical parallelism. For instance, the loops in a hydraulic
system, the parallel branches in an electric circuit, etc.

This kind of parallelism can very hardly be attained by means of code
driven techniques. Only programmer driven and user driven techniques are
likely to succeed. As far as we know, only two applications have made
use of it, both based on the message passing paradigm. The first one is
the programmer driven parallelisation, in the terms defined in section 3.2.3,
of the thermal-hydraulic code TRAC-B by the Polytechnical University of
Valencia [16]. In this version of TRAC-B the code identifies, after reading the
input data, the hydraulic loops which are concurrently simulated. The time
steps define the natural synchronisation barriers. The second application is
the user driven parallelization of the CATHARE code [4], which has already
been referenced in the previous section.

It is easy to realise that problem level parallelisation techniques may lead
to a very coarse granularity, since it implies the concurrent simulation of large
physical systems. However, this way of parallelisation allows in most cases
to run only a few concurrent processes, very often less than the number of
microprocessors available. A combination of problem level and source code
level techniques seems to be a reasonable choice to optimize the available
computational resources.

Chapter 4

A proposal of standard for
connection and paralellisation
of computer codes

4.1 Introduction

In chapter 2 we have shown that code linking has to do with the interchange
of boundary and initial conditions between codes, but not with the particular
method used by each code to advance the solution. The advancement of the
solution, performed in equations (2.1) or (2.2), plus equation (2.3) is just
what makes one code different from another. This allows us to affirm that
the structure of any computer code based on the concept of time step c(an be
standardised for ease of coupling with other codes. Reference [6] points out
that standardization of scientific software is one of the most important issues
for the systematic growth of the capabilities of the codes. The standard does
not affect the advancement of the solution, and hence it does not impo;se any
constraint to models or numerical schemes. It has more to do with the flow
diagram of the code in each time step. If the standard is fulfilled, allo :ation
of the library routines for sending and receiving messages is straightforward.
Furthermore, the developers can insert the library routines in the appropriate
places yielding executable files ready to be coupled with other codes, without
releasing the source code.

The library used to implement the message passing between different pro-
cesses is PVM. This choice is justified because PVM can operate among nets
of computers with heterogeneous architectures. MPI shows better perfor-
mance when operating on computers of the same type, but only some :Lmple-

13

14 Chapter 4. A proposal of standard

mentations (e.g. [25]) can work with heterogeneous architectures. Since the
codes to be coupled may be eventually compiled in very different machines,
the highest priority has been given to interoperability. The University of
Tennessee and Oak Ridge National Laboratory are carrying out research
to merge the advantages of both PVM and MPI in a single product called
PVMPI [14, 9].

The standard also assumes that the linkage will be accomplished through
a general purpose modular simulation language acting as an intermedi-
ate driver that manages the time step, as described in section 2.5. With
the methodology introduced here, parallel iterative or non iterative linking,
through boundary and/or initial conditions can be attained.

The methodology also permits user driven, problem level parallelisation
of the codes, as explained section 3.2. This is possible because code linkage
through parallel interfaces and parallelisation both use the message passing
paradigm between different computer processes. Linkage and parallelisation
become then two sides of the same coin when performed through a modular
simulation language.

The BABIECA simulation language [18] will be used to illustrate the
standardised methodology, although any other program with similar features,
such as MATLAB or MATRIXx, would do the job.

With the approach proposed here users can use as many codes as needed
for the particular simulated transient, connecting them as if they were the
pieces of a wrecker, even substituting different models depending on the
course of the simulation.

4.2 Main characteristics of BABIECA

Here we describe the characteristics of BABIECA needed to. understand its
behavior as a simulation driver for linkage and parallelisation of different
codes.

BABIECA is the driver of the continuous, general purpose simulation
language integrated in the package CAMPEADOR [18]. The simulation
language is modular, which means that the problem to be solved is defined
as a block diagram. Each block may be considered as a multi input-multi
output relation between time-evolving variables, and represents a physical
system or a mathematical procedure. The input-output relation consists of
a set of differential equations plus a numerical solution algorithm (implicit).

4.2. Main characteristics of BABIECA 15
4.2. Main characteristics of BABIECA 15

Feedback Point
to Block 2

Figure 4.1: Example of block calculation in BABIECA.

There is no common solution algorithm for all the blocks, as it is the norm in
most simulation languages. Blocks are particular instances of computational
entities called modules. The set of private data of the block defines it, while
it is the connection among the blocks and the overall computation order
that constitute the global numerical scheme. Modules cover a broad range
of mathematical tools, physical models and special components, and are
mainly oriented, but not limited to the solution of large thermal-hydraulic
networks like those appearing in Nuclear Power Plants.

The driver routine of BABIECA manages the time step control and calls
the modules sequentially in a user-defined order. When all the blockts have
been successfully computed the time step is considered to be finished, and a
new time step calculation begins.

The calculation order may be broken by feedback loops. These arise
in situations when an output signal is needed and it is not yet calculated.
Feedback loops can be solved iteratively by defining feedback points. A feed-
back point checks if the values of a given output signal in two suc.:esive
iterations are coincident within a .tolerance margin. The convergence may
be accelerated by using numerical methods for fixed point or root finding.
The sequence of solution used by BABIECA is illustrated with the example
shown in figure 4.1.

Blocks 1, 2 and 3 are computed in sequence. If the output of block 3
does not agree with the initial guess value used as input of block 2 within
the specified tolerance margin, blocks 2 and 3 are computed again, after
resetting the extended state vector to the value at the beginning of the time
step. Once the convergence criterion has been met block 4 is called, finishing
the current time step.

One remarkable feature of BABIECA that allows the dynamic replace-
ment of blocks is that the execution of a block can be stopped, remaining in
a stand-by state, when a certain criterion has been reached. When the block
is restarted new initial conditions must be provided. This feature is crucial

16 Chapter 4. A proposal of standard

to the code linkage scheme via initial conditions.

4.3 Standard specifications relating the mod-
ular driver

The linkage of codes via the BABIECA simulation driver, or any other sim-
ilar, is accomplished by turning them into BABIECA modules. Despite the
very different nature of the codes to be linked it is possible to build a sin-
gle general module that constitutes the framework for the connection of any
code, covering the code-independent operations and allowing specific tasks
to be inserted appropriately. To be more precise two modules have been
written, one to spawn and send data to the code and other to receive data
from it. These modules are called sndcode and rcvcode respectively. They
are documented in appendices A and B. This apparently artificial splitting
into two modules is justified by parallelisation reasons, as it will be seen
later. These two modules work together as follows:

Although the documentation provides full explanation about the func-
tioning of those modules, we will point here some general guidelines. First
of all, the emission block spawns the remote code and sends the names of
those variables that will act as boundary conditions and those variables that
will act as initial conditions by using PVM library functions. The block
sends the code the current simulation time and the BABIECA time step.
Moreover, the block computes the boundary conditions from the block input
signals and sends them to the remote code. Allowance is made for the case
where the remote code was not active during the previous time step and
needs to be initialised. The initial conditions are computed from the block
input variables supplied for this purpose and sent to the remote code. No
more tasks are to be done by the emission block.

The reception block takes from its counterpart emission block the process
identification number of the remote code, necessary to receive the output
variables. In the time step in which the remote code is spawned the reception
block sends the remote code the names of the output variables demanded by
the user. At any time step, the reception block gets from the remote code
the values of those variables.

Since the remote code is still running even though the execution of the
emission block has been terminated for the current time step (or iteration),
parallelisation of problems can be easily achieved with the use of both mod-
ules. As it has already been explained in section 3.2, in many cases the

4.3. Standard specifications relating the modular driver 1L7

Figure 4.2: Parallelisation of a hydraulic circuit.

problem to be solved has intrinsic parallel characteristics, in the sense of in-
formation flow, due to physical parallelism. For instance, a thermal-hydraulic
circuit consisting of a number of loops and a central vessel where the flows
of all the loops are mixed, may be simulated with a single thermal-hydraulic
code. The input may be split into the parallel components of the circu.t, i.e.
the vessel plus the loops. If the loops are identical they may even sha'.e the
same input file. The vessel will act as the physical sincronisation barrier.
Figure 4.2 shows how the parallelisation of this system would be performed
with BABIECA.

The 1st block to be called is that which spawns the vessel simulhtion.
The outputs which act as input signals for the loops are received by the 2nd
block. The 3rd block is called and the process simulating the 1st loop is
spawned. The 4th and 5th blocks are also called, spawning respective].y the
2nd and 3rd loops. At this point the three loops are running simultaneously
in parallel, saving a considerable amount of time if each process runs on a
different processor or in a different machine. Blocks 6, 7 and 8 are then
called to receive the output data from the respective processes once they
have finished their computations. Feedback points could have been defined
between blocks 6, 7, 8 and block 1, if iterative coupling were desired. If
the code linkage were implemented in only one BABIECA module foi both
sending and receiving data, the processes could not run simultaneously and
hence true parallelisation of the problem would not be feasible.

The boundary conditions linkage proposed in this paper may be done
with any other modular simulation language, for instance, SIMULINK and
MATRIXx. The source code of the two modules would be almost the same
in any case. However, the coupling of codes via initial conditions cannot be

18 Chapter 4. A proposal of standard

done with these codes, since they are not capable of stopping the execution
of a given block. Additionally, this provides a method for overriding the
problems that arise when the physical models approach the end of their
applicability range. This is often the case when very different situations
arise in the course of the simulation, and very different models are needed.
One solution is to integrate all models needed in a single code, starting them
at its due time; however, this makes coding cumbersome and results in large
codes. In BABIECA, the model approaching the limit would deactivate itself
and a new code would be triggered with the appropriate model and initial
conditions.

4.4 Standard specifications relating the codes
to be coupled

Appendix C shows a documented template of a C-like program fulfilling the
proposed standard. The template does not develope the tasks relating the
input file reading, solution advancement and output management. We em-
phasize that these code dependent tasks do not disturb the code linkage,
which is just what makes standardization possible. If a program developer
desires to follow this standard, he just needs to add those tasks to the tem-
plate. The resulting code will be ready to be coupled to the BABIECA
program (or a similar one) without additional effort.

The template intends to be self-explanatory. Nevertheless, the main items
will be explained here.

After reading the input file, which is a code dependent task, the code
tries to enroll into PVM and to get the task identification number of the
parent process. If this identification number is zero, it means that the code
has been run stand-alone. The PVM functions used to couple the code with
BABIECA are enclosed into conditional statements that depend on wether
the code has a been spawned by a parent process or not. In the latter case
the conditional statements are skipped, and the code behaves as usually.

On the other hand, if the code has been spawned by a parent process, it
is assumed that it will be coupled with BABIECA. The code receives from
BABIECA, if it is so demanded, the names of the initial conditions that
will be overwritten. The names of the boundary conditions will be received
as well. The code must obtain then pointers to the memory allocations
of the variables represented by those names. The program developer must
report in the program documentation the nomenclature used to refer to those

4.5. Linkage of the RELAP5 code 19

variables. The values of the variables are received and put into the proper
allocations, as well as the initial time, overwriting the values obtained from
the input file. With these new boundary and initial conditions the code
computes the extended vector and the outputs in the initial time. The code
receives then from the BABIECA module rcvcode the names of the output
Variables that will be sent back. The memory allocation of those variables
is searched, yielding proper pointers. The data stored in those memory
allocations is sent to BABIECA.

In succesive solution advancements, the code receives from BABIECA
the current time step, which will overwrite the time step chosen in priaciple
by the code. A flag indicating whether the advancement of the solution is the
first attempt to solve the current time step, or on the other hand it is a. new
attempt to solve the same time step (i.e. an iteration), is also received. In
the former case, the extended state vector is that obtained in the previous
successful time step advancement. In the latter case, the extended state
vector is the same as in the previous iteration. This feature is crucial if
iterative coupling between codes is desired. The new values of the boundary
conditions are received as described before, shifting the old values. The
solution is advanced and the outputs are sent to the driver program. The
results of the remote code are written in the corresponding file only if the
iteration flag indicates that the previous attempt was successful. In thi3 case
the outputs from the previous time step are written. The outputs can niot be
written just after computation of the solution, since the remote code has no
means to know if the overall advancement will be successful. Only the driver
code is able to decide this. Of course, the emission and reception tashs are
perfectly synchronized with their counterparts in the sndcode and rcvcode
modules.

4.5 Linkage of the RELAP5 code

The RELAP5 code does not fulfill, of course, the standard proposed in this
report. However, proper inclusion of PVM message passing routines into
the original source code can make RELAP5 behave as if the standard were
fulfilled. Searching of the places where the PVM functions must be allocated
has been a cumbersome task that would had been avoided with standard-
ization. This section gives an overview on the job undertaken to couple
RELAP5 to the BABIECA driver.

The standard states that the code must received the names of the bound-
ary and initial conditions after reading the input file. This is accomplished

20 Chapter 4. A proposal of standard

in RELAP5 by inserting the following code at the end of subroutine inputd:

c relap5 gets the tid of the parent process through PVM.
call pvmfparent (partid)

c If pvmd is not running, the parent tid is set equal
c to "PvmNoParent".

if(partid .lt. 0) then
partid= PvmNoParent

endif
c If RELAP5 has been spawned by other process it will be
c coupled to other codes via PVM. RELAP5 gets the names
c of the variables that will act as boundary and initial
c conditions.

if (partid .ne. PvmNoParent) then
call pvmnames

endif

The routine pvmnames receives the names of the boundary conditions.
Coupling through initial conditions has not been implemented yet. By the
moment, only boundary conditions specified through time dependent vol-
umes or junctions can be modified by BABIECA. The name of each bound-
ary condition comprises two fields separated by a '-'. The first field refers to
a physical variable that can be specified through a time dependent volume
or junction, i,e. p, uf, ug, voidg, boron, tsatt, quale, sattemp, velfj,
velgj, mflowfj and mflowgj. Coupling through other boundary conditions
(general tables) has not been implemented yet. The second field specifies the
three digit number of the component that holds the boundary conditions to
be modified by BABIECA.

Just after calling the RELAP5 subroutine trnset, which makes RELAP5
be ready to run the transient, the new subroutine bndset is called. This
subroutine takes the previous variable names and component numbers and
gets the position of the corresponding tables in array f a. bndset checks
that each name of the physical variables is one of the variables specified in
cards ccc0200, through digit t in word 1 for a time dependent volume, and
through word 1 for a time dependent junction.

Subroutine bndset calls in turn subroutine rcvbound, which receives the
values of the boundary conditions used in initiallization phase and puts them
into the memory areas obtained by bndset with the help of the auxiliary
routine settdcmp. Moreover, rcvbound receives the flags that indicate if the
attempted advancement is a new time step or a new iteration of the same
time step and the time increment.

4.5. Linkage of the RBLAP5 code 21

Prior to the code lines

dthy = dtmax(i)
if (timehy + 1.ldO*dthy .ge. tspend(i)) then

dthy = tspend(i) - timehy
endif
dtht = dthy
dt = dthy
if (chngno(15)) dtxmdt = dthy

in subroutine dtstep, which is responsible of advancing the solution., the
following lines have been added:

if(partid.ne.PvmNoParent) then
call pvmlink

c if the parent process is going to finish, the variable tspend
c is modified to force termination of RELAP5 by end of time
c step cards. RELAP5 leaves PVM and the control is transferred
c to label 1125, where RELAP5 checks if the transient is going
c to finish.

dtmax(i) = timestep
if (iterflag.eq.3) then

tspend(filndx(2)) = timehy
call pvmfexit (info)
goto 1125

endif
endif

As usually, the piece of code is only executed if the RELAP5 piocess
has a parent. Routine pvmlink receives from module rcvcode the names
-of the output variables that will be sent to BABIECA, if this is the first
time pvmlink is called. These names also obey the scheme variable ncme -
component number. The component number has the well known structure
cccvv0000 for hydrodynamic components and cccgOnn -for the heat s;truc-
tures. In this last case, the previous field may be appended with digits 00 or
01 to obtain the values of variables relating to the radial nodalization. The
memory positions of the variables in array fa are obtained, and the recuired
outputs sent to the parent process. At the end of routine pvmlink, the rou-
tine rcvbound is called again, in order to receive the time step interval and
the boundary conditions for the following time advancement. Just after, the
RELAP5 requested time step dtmax(i) is overwritten with the time step

22 Chapter 4. A proposal of standard

timestep received from the parent process. If the parent process demands
termination of the simulation, the simulation time timespend is set to the
variable timehy to force termination of the RELAP5 process by the time
step cards.

Chapter 5

Application example

5.1 Problem setup

This chapter describes an example used to demonstrate the capability of
RELAP5 to be coupled to other codes via BABIECA. To be precise, the
example connects four copies of the RELAP5 code among them, solving a
consistent simulation problem. The example also illustrates, by the way, how
the proposed connection methodology may be used to parallelize simu[lation
problems. However, it must be remarked that this is a code connection ex-
ample rather than a parallelization one. The performance of the parallelised
problem may be even worse than that of the original problem. Particularly,
the parallelised problem is stabilized at the expense of decreasing thE time
step.

The example consists of a three loop hydraulic circuit. The flows from
the loops are collected in a central pipe. The flow in the system is maintained
by three pumps, each one located in a loop. The system has been simulated
with RELAP5/Mod3.2. The nodalization is shown in figure 5.1, where only
the central pipe and one of the loops have been represented. The central pipe
and the loops are attached through cross-flow junctions, indicated with a "xx"
in the figure. A heat structure with constant temperature as a boundary
condition has been added to the central pipe, to remove the heat supplied
by the pumps.

The following transient has been simulated: after 50 seconds at Eteady
conditions, the pump in loop 1 is triped yielding a coastdown. After 250
seconds of transient a second coastdown takes place as a result of the trip of
the pump in loop 2.

23

24 Chapter 5. Application example
24 Chapter 5. Application example

Figure 5.1: Nodalization scheme of the three loop circuit.

In order to check the capability of RELAP5 to be linked to other codes
through the BABIECA program, the original input file has been split into
four files, each one containing the central pipe and the loops respectively. In
each file, the rest of the circuit is substituted by proper boundary conditions,
input through time dependent volumes and junctions.

Two different splitting schemes will be checked. In the first one, depicted
in figure 5.2, the central pipe and the loops are dettached through the cross-
flow junction. In the second scheme, shown in figure 5.3, the RELAP5 file
that contains the central pipe also includes the first node of each loop. As a
consequence, the loops are dettached through single junctions.

The four RELAP5 input files will perform the overall simulation of the
circuit by linking the corresponding computer processes through the BA-
BIECA program. Appendix D shows the BABIECA input file necessary to
link the RELAP5 processes. BABIECA transfers the pressure in the first
node of the central pipe/loop to the time dependent volume at the outlet of
each loop/central pipe. The internal energy of the last node of the central
pipe/loop is transferred to the time dependent volume at the inlet of each
loop/central pipe. The outlet velocity in the central pipe/loop is sent through
BABIECA to the time dependent junction at the inlet of each loop/central
pipe. This information exchange is represented with dashed lines in figures
5.2 and 5.3. The exercise will demonstrate how RELAP5 can be connected
to other codes (in this example they are the RELAP5 code itself, but it does
not make any difference) with the scheme proposed in this report. Moreover,
it illustrates an example of problem level parallelization like that in figure
4.2, since the processes that simulate the loops will run concurrently.

5.2. Results 25
5.2. Results 25

-------- --- -p - - - - - - -

Foil ii

Figure 5.2: Parallelization through cross-flow junctions.

For each splitting scheme two cases will be run. In the first oný the
time dependent volumes are very short and with a very large cross-sectional
area, as recomended in the RELAP5 guidelines. In the second case, the time
dependent volumes have the same dimensions as the control volumes they
substitute in the counterpart files.

5.2 Results

Figures 5.4 to 5.7 show the velocity in the main pipe and loops 1, 2 and 3. The
symbol * represents the RELAP5 original case. The parallelization denoted
as 1, and represented by the symbol 4,, obeys the scheme in figure 5.2, with
short and broad time dependent volumes. Parallelization 2, represented by
the symbol *, obeys the scheme in figure 5.2, with time dependent volumes
equal to those they substitute. Parallelization 3, represented by the symbol
Q, obeys the scheme in figure 5.3, with short and broad time dependent
volumes. Finally, parallelization 4, represented by 4, obeys the scheme in
figure 5.3, with volumes equal to those they substitute.

It is easy to realize from the trend of the results that paralleli2 ation
scheme 4 yields the closest results to those obtained in the base case. Paral-
lelization 1 gives raise to particularly poor results. As a conclusion, splitting
through cross-flow junctions is not recomended at all. Usage of time de-
pendent volumes with the same dimensions as those they substitute is also

26 Chapter 5. Application example

p
r --- - -. ------------ - --- -----

L
U

Figure 5.3: Parallelization through single junctions.

recomended. Figures 5.5 and 5.6 also demonstrate that the RELAP5 flow
reversal capability is not affected by the linkage and parallelization scheme
proposed here.

5.3 Run statistics

The CPU time spent to run the base case has been 4968 seconds. The cor-
responding time for parallelization 4 has been 4571. Thus, no significative
execution acceleration has been attained. Since the coupling between the
four hydraulic components is non-iterative, the BABIECA input file can be
modified to force execution of all the emission blocks prior to the recep-
tion blocks. In this last case, all the four RELAP5 processes are executed
simultaneously. The CPU time is then 2859 seconds.

These results can be explained as follows: since the original circuit has
been split into four input files, each one with a similar computational load,
an acceleration with a factor of 4 is expected. However, the execution of
RELAP5 takes at least a certain time, independently from the number of
control volumes. This makes that the execution time of each partial input
file be one half of the full one, instead of one fourth. Moreover, the loops
are executed always after the central pipe. Hence, two serial processes, the
central pipe and the loops, are being executed. As a result, the execution
time of the parallelized version is comparable to that of the RELAP5 base

40 15

-4 1ELAP5 base case

0 . 10 -4-- Parallelization 1 .
-•- Parallelization 2

.- 4 . -'p ParalflilzAtion 3
5--.- Parallelization 4

2• 0
-RELAP5 base case 0

-46- Paral"elization 1

10 - raralelization 2
-Par•ie0izati•n 3 d 3

o•~~~.. C'+•Prallzto

-4- Parallelization 4

0 • Pa alleliation............

0a-a0
0 100 200 300 400 0 100 200 300 400

Time (s) Time (s)

Figure 5.4 Velocity in main pipe. Figure 5.5: Velocity in loop 1.

20 25
=;-- RELAP5 base case

15 -4-- Paraiielization 1
E! --0-- Parailelization 2

cq~~~c 20 -Parnlieiizntion3

10.................................- 4 Parallelization 4

5 -4- RELAP5 base case
-4- ParAileiiZAtIon 115

o --- Paraiieiization 2
G) 0 - PAralielization 3

--4- Paraileiizatioij 4

-5 . . 10
0 100 200 300 400 0 10-0 200 300 400

Figure 5.6: Velocity in loop 2. Figure 5.7: Velocity in ioop 3. -
-4

28 Chapter 5. Application example

case. An acceleration with an approximate factor of 2 is attained in the case
where the central pipes and the loops are executed concurrently.

The machine used for this work is a CONVEX SPP-2000, with 16 HP-
Ultrix processors. The operating system is HP-UX, release B.10.01, version
U. The PVM version is 3.3.11. The RELAP5 version is 3.2.

Chapter 6

Conclusions

Writing of scientific computer codes for simulation of transients, based on
the concept of time step, can be standardised for ease of coupling with other
codes (which also fulfill the standard). The coupling is achieved by ineans
of a general purpose simulation program such as BABIECA, which manages
the time step and transfers the relevant information among the different
codes, according to a given topology defined in the BABIECA input file. The
information transfer between the codes is performed by means of the de facto
standard for distributed computing, which is currently PVM. Migration to
other message passing routines can be easily done, if the standard for message
passing changes in the future. The same executable file of each code can be
used to be coupled to BABIECA or for stand-alone running, without using
any special option in the input file. The scheme proposed here leads to open
simulation models, in which new codes can be added at any time to enhance
the system capabilities and some codes already linked may not be used in
some cases.

The scheme can be also used to attain problem level, user driven paral-
lelisation of problems which show a sort of physical parallelism.

A single application example has been used to demonstrate how the RE-
LAP5 code can be coupled to other codes and how RELAP5 problems with
hydraulic loops can be parallelized.

29

Bibliography

[1] A. Baratta. Interface requirements for coupling a containment code to
a reactor system thermal hydraulic code. In OECD/CSNI Workshop on
Transient Thermal-Hydraulic and Neutronic Requirements. Annapolis.
November 1996.

[2] A. L. Beguelin et al. PVM-3.3: Parallel Virtual Machine System. Univ.
of Tennessee-Knoxville; Oak Ridge National Laboratory; Amory Uni-
versity, Atlanta, Georgia, 1992.

[3] A. Bengaouer and G. Geffraye. Three dimensional kinetics coupling
to thermal hydraulics. In OECD/CSNI Seminar on 'Best Estimate
Methods in Thermal-Hydraulics Safety Analysis', Ankara. June 1998.

[4] B. Brun. Current implementation and future plans on new code architec-
ture, programming language and user interface. In OECD/CSNI Work-
shop on Transient Thermal-Hydraulic and Neutronic Requirements. An-
napolis. November 1996.

[5] F. Camous, F. Jacq, P. Chatelard, and J. Flores. Interface require-
ments to couple thermal hydraulics codes to severe accident codes:
ICARE/CATHARE. In OECD/CSNI Workshop on Transient Thermal-
Hydraulic and Neutronic Requirements. Annapolis. November 1996.

[6] J. F. Cremer, R. S. Palmer, and R. E. Zippel. Creating scientific soft-
ware. Transactions of the Society for Computer Simulation, 14(1):37-
39, 1997.

[7] X. Delhaye, C. M., C. Schneidesch, P. Damas, and L. Vanhoenacker.
Coupling of the neutronics code PANTHER with RELAP5. The BEL-
GATOM approach to simulate the core response of non-symmetric re-
activity transients: In Spring 98 CAMP meeting. Ankara. 1998.

30

Bibliography 31
v - v

Bibliography 31

[8] T. Downar, B. Doug, V. Mousseau, D. Ebert, and J. M. Kelly. RE-
LAP5/PARCS. Generalized thermal-hydraulics/neutroinic interface. In
Spring 98 CAMP meeting. Ankara. 1998.

[9] G. E. Fagg, J. J. Dongarra, and A. Geist. Heterogeneous MPI appli-
cation interoperation and process management under PVMPI. In Euro
PVM-MPI conference, Cracow, Poland. November 1997.
http://www.netlib.org/utk/papers/pvmmpi97.ps.

[10] Fauske & Associates Inc. MAAP 3.OB, User's Manual, 1995.

[11] T. Freeman and C. Phillips. Parallel Numerical Algorithms. Interna-
tional Series in Computer Science. Prentice Hall, 1992.

[12] A. Geist et al. PVM, Parallel Virtual Machine. A User's Guide and
Tutorial for Networked Parallel Computing. The MIT press; Scientific
and Engineering Computation Series, 1994.
ftp://netlib2. cs.utk.edu/pvm3/book/pvm-book.ps.

[13] A. Geist et al. PVM3 Users Guide and Reference Manual. Oak Ridge
National Laboratory, September 1994.
ftp://netlib2. cs.utk.edu/pvm3/ug.ps.

[14] G. Geist, J. Kohl, and P. Papadopoulos. PVM and MPI: a comparison
of features. Calculateurs Parallels, 8(2), May 1996.
http ://www. epm. orni.gov/pvm/PVMvsMPI .ps.

[15] B. Gropp, R. Lusk, and A. Skjellum. Using MPI. MIT press, 19c4.

[16] V. Hernmndez, A. Vidal, I. Blanquer, J. Romin, F. S., G. Verdd', J. L.
Mufioz Cobo, A. Escriva, X. Sancho, J. Serra, and A. G6mez. Reducci6n
del tiempo de respuesta del c6digo de ana1isis de transitorios TRAC-
BF1 mediante computaci6n de altas prestaciones. In Proc. of the XXII
meeting of the Spanish Nuclear Society, Santander. October 1996.

[171 J. M. Izquierdo et al. Tizona: A computer code with an advanced two
phase thermal hydraulic package. In preparation, 1998.

[18] J. M. Izquierdo and M. Sinchez Perea. CAMPEADOR: An implicit sim-
ulation language for continuous sytems combined with discrete events
able to apply protection theory. In 1994 European Simulation Multi-
conference (ESM'94). Barcelona, Spain. June 1994.

32 Bibliography

[19] A. Jones et al. Experience from the development of the severe accident
code system ESTER. In Proc of the ANS Winter Meeting, Washington.
November 1994.

[20] Kyrki-Rajamdki. The need of coupled 3D neutronics in DBA and BDBA
analyses using conservative or best-estimate approach. In OECD/CSNI
Seminar on 'Best Estimate Methods in Thermal-Hydraulics Safety Anal-
ysis'. Ankara. June 1998.

[21] S. Langenbuch, H. Austregesilo, P. Fomitchenko, U. Rohde, and
K. Velkov. Interface requirements to couple thermal-hydraulic codes to
3D neutronic codes. In OECD/CSNI Workshop on Transient Thermal-
Hydraulic and Neutronic Requirements. Annapolis. November 1996.

[22] L. M. Liebrock. Parallelisation and automatic data distribution for nu-
clear reactor simulations. In Proc of the OECD/CSNI Workshop on
transient thermal-hydraulic and neutronic code requirements; Annapo-
lis. 5-8 November 1996.

[23] F. Merino, C. Ahnert, and J. M. Aragones. Development and validation
of the 3-D PWR core dynamics SIMTRAN code. In Joint Intl Conf on
math methods and supercomputing in nuclear applications, Karlsruhe.
April 1993.

[24] R. L. Moore, C. S. Miller, and C. D. Fletcher. Linking external models
with RELAP5 using PVM. Technical report, Idaho National Engineer-
ing Laboratory.

[25] Ohio Supercomputer Center. The Ohio State University. MPI Primer
/ Developing with LAM, November 1996.
http://www. itl. nist. gov/div895/sasg/LAM/lam6l .doc. ps.

[26] R. Page and J. Jones. Development of an integrated thermal-hydraulics
capability incorporating RELAP5 and PANTHER neutronics code. In
OECD/CSNI Workshop on Transient Thermal-Hydraulic and Neutronic
Requirements. Annapolis. November 1996.

[27] C. Queral and M. A. Garcfa Zamorano. Final report on the specific
agreement CSN-UPM for the development of accident management
guide evaluation tools. Technical report, Departamento de Sistemas
Energ~ticos, UPM, December 1997.

[28] T. Rothe. Linking external models to RELAP5: A new era of RELAP5
applications. In Proc. of the Intl. Conf. on New trends in Nuclear System
Thermohydraulics, Pisa. 1994.

Bibliography 33

[29] Z. Stosic. Enhancing the scope .of applications of standard thermal
hydraulic codes by linking with others. In Proc of the ASME Inter-
national Conference on Nuclear Engineering, New orleans, volume 1,
part. B. 1996.

[30] The RELAP5 Code Development Team. RELAP5/MOD3 code man-
ual, volume I: Code structure, system models and solution methods.
Technical report NUREG/CR-5535, INEL-95/0174, Idaho National En-
gineering Laboratory, June 1995.

[31] K. Trambauer. Interface requirements to couple thermal-hydraulic codes
to severe accident codes: ATHLET-CD. In OECD/CSNI Workshop on
Transient Thermal-Hydraulic and Neutronic Requirements. Anncpolis.
November 1996.

Appendix A

File sndcode

A.1 Description of the module

This module belongs to BABIECA, and is the responsible for sending its
inputs to the remote code. Initial and/or boundary conditions can be sent
depending on the input file spceifications. The file complies with the manda-
tory structure for a BABIECA module, namely

1 (Include files 0)
(Functions prototypes 89)
BABMODULE (sndcode_){

(Module variables 2);
switch (control[O]){
case BabRead:

{
(Input file reading 8);
break;

}
case BabCalc:

case BabSSCalc:
case BabFbck:
case BabSsFbck:
{

(Calculation mode 5);
break;

}case BabSave:

34

A.I. Description of the module 35

(Send save message to remote 15)
break;}

case BabRestore:{
(Send restore message to remote 16)

break;}
case BabLastp:

{
(Termination mode 13);

break;

}
default:

return errcode;

(Auxiliary functions 87):

¶ Variable errcode will carry the error code to be returned to the calling
routine. A zero value indicates no error, other values are set according to
the include baberr.h. ninputs and n are dummy index variables for later
use in for constructs.

2(Module variables 2)

int errcode;
int ninputs, n;

See also chunks 7, 22, 36, 37, 39, 46, 52, 67 and 77.

This code is used in chunk 1.

A.1.1 Code sections

A.1.1.1 Calculation mode

¶ In the calculation mode, the first input to the block is checked. If it
is equal to one, the block will be active during the current time step. The
remote code is started if this is the first time this occurs. Then, the code
is executed nsteps times, and the appropriate values are stored for later

36 Appendix A. File sndcode

retrieval. If the code has been executed, the driver is informed (by means
of control[2]) of the change in the execution mode, so that it can skip the
appropriate blocks. A copmplementary behaviour is done if the code is not
executed. Later, the ouput of the block is set.

5(Calculation mode 5) -=
if (1.0 - ent [0]) { /* Active during this time step ./

(Load variables for this time step 6);
if (0 -= rcspawn) {

/* If this is the first time the remote code has been active. ,/
(Start the remote code 34)

}
(Execute the remote code nsteps times 45)
vinvar[3] - (double) 1.0; /* This is prevexec ,/
control[2] = (int) vinflj[0];

/* The code requests a change in the executing mode ,/}
else { /* Not active in this time step ,/

vinvar[3] = (double) 0.0; /* prevexec ,/I
sal[O] = (double) rcodetid;
errcode = BabWAtt; /* No error occured ,/

This code is used in chunk 1.

¶ Sndcode_ retrieves stored variables:

1. Executable variables

2. Boundary conditions variables

3. INitial conditions variables

4. The tid of the remote code is stored in rcodetid.

5. The value of the execution flag in the previous time step is stored in
prevexec.

6. The flag that indicates if the remote code has already been spawned is
stored in rcspaurn.

A.1. Description of the module 37

6(Load variables for this time step 6) M
(Load executable variables 21) ;
(Load boundary conditions variables 65);
(Load initial conditions variables 50)
rcodetid = (hat) vinvar[O];
if (control[O] > 0) {

vinvar[1] = vinvar[3];
}
prevexec = (int) vinvar[1];
rcspawn = (int) vinvar[2];

See also chunk 44.

This code is cited in chunk 10.

This code is used in chunk 5.

¶ The following vaiables need to be declared.

7(Module variables 2) +=
hat prevexec = 0, rcspawn = 0;
int rcodetid;

A.1.1.2 Reading of the input file

8(Input file reading 8){
(Variables declarations for the input file reading section 9);
nument = control[3];
(Read execmode 31);
(Read the host name 25);
(Read the executable name and arguments 26);

(Read nulltrsteps 32) ;
(Read boundary conditions 69);

(Read initial conditions 54) ;
(Save values for the driver 10);

}
This code is used in chunk 1.

¶ Some variables need not be shared by the whole of Sndcode_, because
they are only used within the reading mode. These are declared here as; they
appear.

38 Appendix A. File sndcode

9(Variables declarations for the input file reading section 9)

iat nument;

See also chunks 29 and 33.

This code is used in chunk 8.

¶ The driver structure needs several parameters to be stored:

* vinfij values that will be restored in (Load variables for this time

step 6);

* The controlarray

Sndcode. also performs some basic error checking.

10(Save values for the driver 10) -
(Save executable information 20);
(Save boundary conditions information 64);
(Save initial conditions information 49);
(Check the number of inputs 11);
(Fill the control array 12);

This code is used in chunk 8.

¶ The number of inputs must be equal to the number of boundary condi-
tions plus the number of initial conditions plus the activation signal.

11(Check the number of inputs 11) -
if (nument 0 (nbound + ninit + 1)) {

errcode = -24;
return (errcode);

}

This code is used in chunk 10.

¶ Sndcode_ updates "control" array:

9 Return code, errcode, is set to 0, i.e., function has been executed cor-
rectly.

* Number of outputs, i.e., control[3], is set to 1.

A.1. Description of the module 39

" Size of vinfij array is saved in controlt[4], me, 15.

" Size of vinvar array is saved in control[5], i.e, 4.

* Size of stat array, i.e., 0, is saved in control [6]

12(Fill the control array 12)
errcode = 0;
control[3] = 1;
control[4] = 15;
control[5] = 4;
control[6] = 0;

This code is used in chunk 10.

A.1.1.3 Termination mode

The remote code is informed that it must exit.

13(Termination mode 13) -
rcodetid = (int) vinvar [0];
rcspawn = (int) vinvar[2];
if (rcspawn M 1) { /* The code was once started ,/

initflag = 0;
prevexec = 0; /* They will not be used in the remote code ,/
(Obtain a buffer 79);
(Pack control[O] 80);
(Pack initflag 84) ;
(Pack prevexec 83);
info = pvmysend (rcodetid, TSTEPVAR);
if (info < 0) return (babpvmerror_(info, "pvmyrsend"));
pvm.free (bufid);

This code is used in chunk 1.

A.1.1.4 Save and restart

15¶ (Send save message to remote 15) M /* Not yet done ,/

This code is used in chunk 1.

40 Appendix A. File sndcode

i6¶ (Send restore message to remote 16) /* Not yet done ,/

This code is used in chunk 1.

A.1.2 Particular tasks

A.1.2.1 Driving the remote code

A.1.2.1.1 Save/restore variables

¶ Sndcode_ saves

* The execution mode in vinfli [0].

9 The host name in vinfij [1].

* The pointer to the executable name in vinfij[2].

9 The pointer to the remote code arguments in vinfij [3].

* The number of time steps of the null transient to be run in steady-state
mode in vinfij[12].

20(Save executable information 20) M
vinfij[O] = (double) execmode;
vinfij[1] = (double) ((int) hostname);
vinfij[2] = (double) ((int) execname);
vinfij [3] = (double) ((int) argspt);
vinfij [12] = (double) nulltrsteps;

This code is used in chunk 10.

¶ The name of the remote code stored in execname is retrieved.

21(Load executable variables 21) _-
execname = (char *) ((int) vinfij[2]);

This code is used in chunk 6.

¶ execname is a string,

22(Module variables 2) +-
char *execname;

A.I. Description of the module 41

¶ Sndcode_ reads the hostname, the executable name, the command argu-
ments, the pointer to the names of the boundary conditions and the pointer
to the names of initial conditions.

23(Get the parameters needed for starting the remote code 23)

hostname = (char *) ((int) (vinfij[1]));
argspt = (char **) ((int) vinfij[31);
(Get the boundary conditions names 66);
(Get the initial conditions names 51)

This code is used in chunk 34.

A.1.2.1.2 Read host, name and arguments of the remote code

¶ Sndcode_ calls nextlin to read the string describing the host where the
remote code is installed. Memory is allocated and the name is read. String
msgl is written if an end-of-file is detected, and msg6 if the .memory allo-
cation fails.

25(Read the host name 25)
nextlin_(linea, 80, msgl , 80);
linecount = 1;
saltesp_((linea, &Ilinecount , 80);
(Obtain the pointers to the first and last non-blank characters delimiting

the string 86) ;
hostname = (char ,) malloc((strlen(wordpt) + 1) • sizeof (char));
if (A M hostname) {

errcode = -24;
strcpy (msg6, "Failutouallocate.memory. ");
errmsg_(&errcode, msg6; msg7, 80,80);
return (en-code);

}
strcpy (hostname, wordpt);

This code is used in chunk 8.

¶ The wxecutable name and its arguments must also be read from the
input file.

26(Read the executable name and arguments 26)
nextlin_(linea, 80, msgl , 80);
linecount = 1;

I

42 Appendix A. File sndcode

saltesp_((linea, &linecount , 80);
(Obtain the pointers to the first and last non-blank characters delimiting

the string 86) ;
execname = (char ,)malloc((strlen (wordpt) + 1) • sizeof (char));
if (A =- execname) {

errcode = -24;
Strcpy(msg6, "Failutouallocateumemory.);
errmsg_(&errcode, msg6, msgl, 80,80);
return (errcode);}

strcpy (execname, wordpt);
linecount += 2;

/, one to convert FORTRAN to C indices and another to skip the
null character that ends the previous word in string linea. ,/

info = linecount;
saltesp_(linea, &tinecount, 80);
argspt = (char **) malloc(sizeof (char ,));
for (nargs = 0; linecount > 0; nargs++) {

(Realloc argspt 28) ;
(Read an argument to the remote code 27);}

(Realloc argspt 28);
argspt [nargs] = A; /* Standard to end the array argspt ,/

This code is used in chunk 8.

¶ Only ine argument at a time.
27(Read an argument to the remote code 27) -

(Obtain the pointers to the first and last non-blank characters delimiting
the string 86) ;

argspt[nargs] = (char) malloc((strlen (wordpt) + 1) * (sizeof (char)));
if (A = argspt[nargs]) {

errcode = -24;
strcpy (msg6, "Failutouallocateumemory. ");
errmsg77_(&errcode, msg6, msg7, 80,80);
return (errcode);

}
strqcpy (argspt [nargs], wordpt);
linecount += 2;

/, one to convert C to FORTRAN indices and another to skip the
null character that ends the previous word in string linea. */

A.I. Description of.the module 43

info = linecount;
saltesp_(linea, & linecount , 80);

This code is used in chunk 26.

¶ Variable argspt ia a list of strings carying the arguments. It has to be
enlarged each time a new argument apperas, and once more for the last A
pointer.

28(Realloc argspt 28)
argspt = (char **) realloc(argspt, (nargs + 1) * (sizeof (char .)));
if (A -= argspt) {

errcode = -24;
strepy (msg6 , "Failutouallocateume mory. ");
errmsg_.(&errcode, msg6, msg7, 80,80);
return (errcode);

}

This code is used in chunk 26.

¶ We need to declare

" linecount is an integer to count the position read within a line

* wordpt is the actual pointer to the string line

" line is the line read by nextlin

" msgx are error messages

29(Variables declarations for the input file reading section 9) +=
int linecount;
char *wordpt, linea[80];
char msgl [80] = "SNDCODE.uERRORuREAD INGuINPUTuLINE.";
char msg6 [80];
char msg7[80] = "u";

A.1.2.1.3 Line by line integer parameters reading

¶ Sndcode_ calls nextlin, and reads the value for execmode.

44 Appendix A. File sndcode

31(Read execmode 31) -
nextlin_(linea, 80, msgl , 80);
linecount = 1;
execmode = leerint_(linea, & linecount , 80);

This code is used in chunk 8.

¶ Sndcode_ calls nextlin to read the number of time steps of the null tran-
sient that will be run in steady-state mode.

32(Read nulltrsteps 32) _=
nextlin_(linea, 80, msgl , 80);
linecount = 1;
nulltrsteps = leerint_(linea, &linecount, 80);

This code is used in chunk 8.

¶ The two variables read are int.

33 (Variables declarations for the input file reading section 9) +=
int nulltrsteps, execmode;

A.1.2.1.4 Procedure to start the remote code

34(Start the remote code 34) M
(Enroll PVM 35) ;
(Get the parameters needed for starting the remote code 23);

(Connect to the specified host 38)
(Spawn the remote code 40);
(Send the data for the remote code 41);

This code is used in chunk 5.

¶ Sndcode_ enrolls in PVM.

35(Enroll PVM 35) =
mytid = pvmmytid();
if (mytid < 0) return (babpvmerror_(mytid, "pvmn.mytid"));

This code is used in chunk 34.

A.1. Description of the module 45

¶ mytid takes the value of the task identification assigned to this code by
the pvm daemon.

36(Module variables 2) +-

int mytid;

¶ The following are the name of the host where the code will run and the
arguments array.

37(Module variables 2) +=
char *hostname, **argspt

¶ Sndcode. tries to connect to the host where the remote code will run. If
we want to run the remote code in the current host the connection is not
needed. In the latter case the hostname is changed from thishost to void
string, which is the word understood by PVM.

38(Connect to the specified host 38) M
if (0 strcmp(hostname, "thishost")) {

info = pvmraddhosts(&hostname, 1, &infos);
if (info < 0) return (Babpvmerror._(info, "pvm.addhosts"));}

else {
free (hostname);
*hostname = calloc (1, sizeof (char));

}

This code is used in chunk 34.

¶ For the first time, the variable info is used. It will be an int that takes
the error codes returned by PVM routines. Likewise, infos is also a repioting
variable. Below, bufild will also be used in this manner.

39(Module variables 2) +=

int info, infos, bufid;

¶ Sndcode_ spawns the remote code if this is the first time the block is
active. The remote process identification number is saved in vinvar[O].

46 Appendix A. File sndcode

40(Spawn the remote code 40) -
pvm.spawn(execname, argspt, 1, hostname, 1, &rcodetid);
if (rcodetid < 0) return (babpvmerror_(rcodetid, "pvm-spawu"));
vinvar[O = (double) rcodetid;

This code is used in chunk 34.

¶ Sndcode_ obtains a buffer to pack the data to be transferred to the remote
code, and packs

1. The boundary conditions.

2. The initial conditions.

3. The initial and target time.

Then, the packed data are sent, and the temporary memory used is
freed. For later use, since the block has been activated once at least, the flag
rcspawn is set to 1.

41(Send the data for the remote code 41)
(Obtain a buffer 79) ;
(Pack the boundary conditions names 73);
(Pack the intial conditions names 58);
info = pvmrsend (rcodetid, INBNDNAM);
ff (info < 0) return (babpvmerror_(info, "pvm..send"));
(Free used memory 42) ;
tinvar[2) = (double) 1.0; /* This is actually rcsspawn ,/

This code is used in chunk 34.

¶ The memory used by the host name, by the arguments, by the names.of
the initial and boundary conditions. Finally, the buffer provided by PVM is
freed.

42(Free used memory 42)
free (hostname);
for (nargs = 0; argspt Inargs] :A A; nargs.IH-) free (argspt [nargs]);
free (argspt [nargs]);
free (argspt);
for (ninputs = 0; ninputs < nbound; ninputs+--) {

A.I. Description of the module 47

for (nvars = 0; nvars < boundnumber[ninputs]; nvars++)
free (boundpt [ninputs] [nvars]);

free (boundpt [ninputs]);}
free (boundpt);
for (ninputs = 0; ninputs < ninit; ninputs-4+) {

for (nvars = 0; nvars < initnumberfninputs]; nvars-H-)
free (initpt [ninputs] [nvars]);

free (initpt [ninputs]);}
free (initpt);
pvm.freebuf (bufid);

This code is used in chunk 41.

A.1.2.1.5 Executing a transient in the remote code

¶ In case of steady-state calculation, BABIECA will demand the execution
of a number of time steps read from the input file and saved in vinfij [121. It
is given the name nsteps.

44(Load variables for this time step 6) +=
if (abs(control [0]) = BabSSCalc) {

nsteps = (int) vinflj[12];}
else {

nsteps = 1;}

¶ The execution of the remote code is demanded nsteps times.
45(Execute the remote code nsteps times 45) -

for (n = 0; n < nsteps; n+) {
(Obtain a buffer 79);
(Pack control[0] 80)
(Determine if initial conditions will be transferred and pack the

flag 60)
(Pack prevexec 83);
if (initflag) { /* If initial conditions given to the remote code ,/

(Compute initial conditions and pack them 61)
}

48 Appendix A. File sndcode

(Compute boundary conditions and pack them 75);
(Pack current time 82) ;
(Pack the flags for output reception 76);
info = pvmyrsend (rcodetid, TSTEPVAR);
if (info < 0) return (babpvmerror_.(info, "pvmyrsend"));
pvmjfreebuf (bufid);

This code is used in chunk 5.

¶ Variables needed here.

46(Module variables 2) +-
hit nsteps, initflag;
rnt nargs, nvars;

A.1.2.2 Initial coditions management

A.1.2.2.1 Save/restore initial conditions information

¶ Sndcode_ saves

" The pointer to the names of the input variables for initial conditions
in vinfij [8].

" In vinfli [9] the address of the array initnumber.

" The number of input signals from which the initial conditions will be
derived in vinfij[10].

" The total number of initial conditions that will be transferred to the
remote code in vinfij [11].

Memory is reclaimed for the array initto and the pointer to the area
requested saved in vinfij [14).

49(Save initial conditions information 49)
vinfij[8] = (double) ((int) initpt);
vinfij[9] = (double) ((int) initnumber);
vinfij[10] = (double) ninit;
for (ninputs = 0, totinit = 0; ninputs < ninit; ninputs-+) {

totinit += initnumber[ninputs];

A.1. Description of the module 49

vinfij[11] = (double) totinit;
initto = (double *) malloc(totbound * sizeof (double));
vinfij[14] = (double) ((int) initto);

This code is used in chunk 10.

¶ The variables previously saved are restored.

50(Load initial conditions variables 50) =
initnumber = (bit *) ((int) vinfi [9]);
ninit = (int) vinflj[10];
totinit = (int) vinfij[11];
initto = (double *) ((int) vinfi [14]);

This code is used in chunk 6.

¶ initpt takes the pointer to the memory assigned to the names of the
initial conditions.

51(Get the initial conditions names 51)
initpt = (char ***) ((int) vinfij[8]);

This code is used in chunk 23.

¶ Initial conditions variables needed

52(Module variables 2) +=
int *initnumber;
int ninit, totinit;
double *initto;
char ***initpt;

A.1.2.2.2 Initial conditions reading

¶ Sndcode_ calls nextlin to read the number of input signals that -gill be
used to compute the remote code initial conditions. String msgl is written
if an end-of-file is detected. The number of input signals is stored in ninit.
Two arrays are needed. One, initnumber, that stores the number of initial
conditions. Other, initpt, that stores an array of arrays of strings. These
string are the names of the variables that will act as initial conditions.

50 Appendlix A. File sndcode

54(Read initial conditions 54)
nextlin_(linea, 80, msgl , 80);
linecount = 1;
ninit = leerin_(linea, &linecount, 80);
initnumber = (int *) malloc (ninit * sizeof (int));
if (A = initnumber) {

errcode = -24;
strcpy(msg6 , "Failutouallocateumemory. ");
ern-msg_(&errcode, msg6, msg7, 80,80);
return (errcode);

}
initpt = (char ***) malloc((ninit + 1) * sizeof (char **));
if (A boundpt) {

errcode = -24;
strcpy (msg6, "Failutouallocateumemory. ");
errmsg_(&errcode, msg6, msg7, 80,80);
return (errcode);

}
initpt[ninit] = A;
for (ninputs = 0; ninputs < ninit; ninputs++) {

/* Fill the array initpt */
nextlin.(linea, 80, msgl , 80);
(Read a line of variables for initial conditions 55);

}
This code is used in chunk 8.

¶ In each line, a set of varibles for initial conditions is read. This needs
allocating memory for the variables.

55(Read a line of variables for initial conditions 55)
initpt[ninputs] = (char **) malloc (sizeof (char •));
if (A- initpt[ninputs]) {

errcode = -24;
strcpy(msg6, "Failutouallocateumemory. ");
errmsg_(&errcode, msg6, msg7, 80,80);
return (errcode);

}
linecount = 1; /* First word in the line */
saltesp_(linea, &linecount, 80); /* Skip blanks ,/
for (nvars = 0; linecount > 0; nvars-) {

/* Look for the names in this line ,/

A.I. Description of the module 51

(Read an initial conditions variable name 56);
}
initnumber[ninputs] = nvars;
initpt[ninputs] = (char **) realloc(initpt[ninputs],

(nvars + 1) • (sizeof (char ,)));
if (A - initpt [ninputs]) {

errcode = -24;
strcpy(msg6, "Failutouallocateumemory. ");
errmsg_(&errcode, msg6, msg7, 80,80);
return (enrcode);

initpt [ninputs] [nvars] = A;

This code is used in chunk 54.

¶ Reading avariable implies assigning more memory to the existing array
boundpt[ninputs], computing the pointer to the place in the line where the
variable is and reading and storing it.

56(Read an initial conditions variable name 56)
initpt[ninputs] = (char **) realloc(initpt[ninputs],

(nvars + 1) * (sizeof (char .)));
if (A =_ initpt [ninputs]) {

errcode = -24;
strcpy(msg6, "Failutouallocateumemory. ");
errmsg_(&errcode, msg6, msg7, 80,80);
return (errcode);

}
btainthepointer ...

initpt[ninputs][nvars] = (char .)
malloc ((strIlen (wordpt) + 1) • (sizeof (char)));

if (A.=- initpt[ninputs][nvars]) {
errcode = -24;
strcpy (msg6, "Failutouallocateurmemory. ");
er77rmsg_(&errcode, msg6, msg7, 80,80);
return (er-code);

}
strcpy (initpt[ninputs][nvars], wordpt);
linecount += 2;
info = linecount;
saltesp_(linea, &,linecount, 80); /* Prepare the next read ,/

52 Appendix A. File sndcode

This code is used in chunk 55.

A.1.2.2.3 Transfer the names of the initial conditions

58¶(Pack the intial conditions names 58)
info = pvmrpkint (&totinit, 1,1);
if (info .< 0) return (babpvmerror_(info, "pvm_pkint"));
for (ninputs = 0; ninputs < ninit; ninputs--) {

for (nvars = 0; nvars < initnumber[ninputs]; nvars-i-) {
#if 0 /* Deleted code */

wordlen = strlen (boundpt [ninputs][nvars]);
info = pvm.pkint (&wordlen, 1,1);
if (info < 0) return (babpvmerror_(info, "pvmpkint"));

#endif
info = pvmr-pkstr(initpt[ninputs][nvars]);
if (info < 0) return (babpvmerror_(info, "pvmpkstr"));

}
}

This code is used in chunk 41.

A.1.2.2.4 Transfer the initial conditions

¶ Sndcode_ computes a flag that indicates if initial conditions will be trans-
ferred to the remote code.

60(Determine if initial conditions will be transferred and pack the flag 60) -

initflag = (0 _- prevexec) A (control[O] :A BabSSCalc) A (0 M n);
(Pack initflag 84) ;

This code is used in chunk 45.

¶ The initial conditions are obtained from the input signals to the block.
The assignment of values is deferred to an ancillary routine.

61(Compute initial conditions and pack them 61)
if (A A strstr(execname, "relap5.x"))

relap5_init (&(ent [nbound + 1]), ninit , initnumber, initto);
if (A 0 strstr(execname, "pvmbis"))

relap5_init (&(ent [nbound + 1]), ninit, initnumber, initto);
info = pvm.pkdouble (initto, totinit, 1);
if (info < 0) return (babpvmerror_ (info, "pvmrpkdouble"));

A.1. Description of the module 53

This code is used in chunk 45.

A.1.2.3 Boundary conditions management

A.1.2.3.1 Save and restore variables

¶ Sndcode_ saves

" The pointer to the names of the input variables in vinfij[4].

" In vinfij[51 the address of the array boundnumber.

" The number of input signals from which the boundary conditions will
be derived in vinfij [6].

" The total number of boundary conditions that will be transferred to
the remote code in vinfij [7].

Memory is reclaimed for the array boundto and the pointer to thE area
requested saved in vinfij [13].

64(Save boundary conditions information 64) -

vinfij[4] = (double) ((int) boundpt);
vinfij[5] = (double) ((int) boundnumber);
vinfij[6] = (double) nbound;
for (ninputs = 0, totbound = 0; ninputs < nbound; ninputs++) {

totbound += boundnumber[ninputs];
}
vinfij[7] = (double) totbound;
boundto = (double *) malloc(totbound * sizeof (double));
vinfij[13] = (double) ((int) boundto);

This code is used in chunk 10.

¶

1. The pointer to the number of boundary conditions per input signal is
saved in boundnumber.

2. The number of input signals from which boundary conditions will be
derived is stored in nbound.

3. The total number of bondary conditions to the remote code is saved
in totbound.

54 Appendix A. File sndcode

65(Load boundary conditions variables 65)
boundnumber = (int *) ((int) vinfij[5]);
nbound = (iut) vinfl• [6];
totbound = (int) vinfij[7];
boundto = (double *) ((int) vinfij[13]);

This code is used in chunk 6.

¶ boundpt takes the pointer to the memory assigned to the names of the
initial conditions.

66(Get the boundary conditions names 66)
boundpt = (char ***) ((int) vinfij[4]);

This code is used in chunk 23.

¶ Boundary conditions variables needed

67(Module variables 2) ±-
int *boundnumber;
int nbound, totbound;
double *boundto;
char ***boundpt;

A.1.2.3.2 Boundary conditions reading

¶ Sndcode_ calls nextlin to read the number of input signals that will be
used to compute the remote code boundary conditions. String msgl is writ-
ten if an end-of-file is detected. The number of input signals is stored in
nbound. Two arrays are needed. One, boundnumber, that stores the num-
ber of boundary conditions. Other, boundpt, that stores an array of arrays
of strings. These strings are the names of the variables that will act as
boundary conditions.

69(Read boundary conditions 69)
nextlin_(linea, 80, msgl , 80);
linecount = 1;
nbound = leerint_(linea, &linecount, 80);
boundnumber = (int *) malloc(nbound * sizeof (int));
if (A boundnumber) {

errcode = -24;
strcpy (msg6, "Failutouallocateumemory. ");

A.1. Description of the module 55

errmnsg_(&errcode, msg6, msg7, 80,80);
return (errcode);

}
boundpt = (char ***) malloc((nbound + 1) * sizeof (char **));
if (A- boundpt) {

errcode = -24;
strcpy (msg6, "Failutouallocateume mory. ");
errmnsg_(&errcode, msg6, msg7, 80,80);
return (errcode);}

boundpt[nbound] = A;
for (ninputs = 0; ninputs < nbound; ninputs++) {

/* Fill the array boundpt ,/
nextlin_(linea, 80, msgl , 80);
(Read a line of variables for boundary conditions 70);

}
This code is used in chunk 8.

¶ In each line, a set of varibles for boundary conditions is read.* This needs
allocating memory for the variables.

70(Read a line of variables for boundary conditions 70) M
boundpt [ninputs] = (char **) malloc(sizeof (char ,));
if (A = boundpt[ninputs]) {

errcode = -24;
strcpy (msg6, "Failutouallocateumemory. ");
errnsg_(&errcodemsg6, msg7, 80,80);
return (errcode);}

linecount = 1; /* First word in the line ,/
saltesp_(lýinea, &linecount, 80); /* Skip blanks ,/
for (nvars = 0; linecount > 0; nvars-) {

/* Look for the names in this line ,/
(Read a boundary conditions variable name 71);

}
boundnumber[ninputs] = nvars;
boundpt [ninputs] = (char **) realloc(boundpt [ninputs],

(nvars + 1) * (sizeof (char ,)));
if (A = boundpt[ninputs]) {

errcode = -24;

56 Appendix A. File sndcode

strcpy (msg6, "Failutouallocateumemory. 1");

errrnsg_(&errcode, msg6, msg7, 80,80);
return (errcode);}

boundpt[ninputs][nvars] = A;

This code is used in chunk 69.

¶ Reading avariable implies assigning more memory to the existing array
boundpt[ninputs], computing the pointer to the place in the line where the
variable is and reading and storing it.

71(Read a boundary conditions variable name 71)
boundpt[ninputs] = (char **) realloc(boundpt[ninputs],

(nvars + 1) * (sizeof (char ,)));
if (A - boundpt [rninputs]) {

errcode = -24;
strcpy (msg6, "Failutouallocateumemory. ");
errmsg_(&errcode, msg6, msg7, 80,80);
return (errcode);

}
btainthepointer ...
boundpt•ninputsl[nvars] = (char ,)

malloc((strlen(wordpt) + 1) * (sizeof (char)));
if (A - boundpt [ninputs] [nvars]) {

errcode = -24;
strcpy (rmsg6, "Failutouallocateume mory. ");
errrnsg_(&errcode, msg6, msg7, 80,80);
return (errcode);}

Strcpy(bourdpt [ninputs][nvars], wordpt);
linecount += 2;
info = linecount;
saltesp_(linea, & linecount, 80); /* Prepare the next read ,/

This code is used in chunk 70.

A.1.2.3.3 Transfer the boundary conditions.names

73¶(Pack the boundary conditions names 73) =
info = pvmnpkint (&totbound, 1,1);

A.1. Description of the module 57

if (info < 0) return (babpvmerror_(info, "pvmwpkint"));
for (ninputs = 0; ninputs < nbound; ninputs-+-) {

for (nvars = 0; nvars < boundnumber[ninputs]; nvars---) {
#if 0 /* Deleted code. Why keep it? */

wordlen = strlen (boundpt [ninputs][nvars]);
info = pvm-pkint (&wordlen, 1, 1);
if (info < 0) return (babpvmerror_(info, "pvmwpkint"));

#endif
info = pvmnpkstr (boundpt [ninputs] [nvars]);
if (info < 0) return (babpvmerror_ (info, "pvmr.pkstr"));

}

This code is used in chunk 41.

A.1.2.3.4 Transfer of boundary conditions in execution

¶ Sndcode_ identifies the remote code and applies a different treatment
of the boundary conditions for each code. The boundary conditions are
obtained from the input signals to the block. The assignment of values is
deferred to an ancillary routine.

75(Compute boundary conditions and pack them 75)
if (A 0 strstr(execname, "relap5.x"))

relap5_bound (&(ent [1]), nbound, boundnumber, boundto);
if (A # strstr(execname, "pvmbbis"))

relap5_bound (& (ent [1]), nbound, boundnumber, boundto);
info = pvm.pkdouble (boundto, totbound , 1);
if (info < 0) return (babpvmerror_(info, "pvmr.pkdouble"));

This code is used in chunk 45.

A.1.2.3.5 Outputs

Sndcode_ sends the remote code a flag to warn it about the reception of the
names of the output variables. This flag is set to 1 if this is the last tiire the
"nsteps" loop is executed. A flag to indicate if the outputs must be sent by
the remote code is also packed.

76(Pack the flags for output reception 76)

rcvouts = (n = nsteps - 1);
info = pvm-pkint (&rcvouts, 1, 1);

58 Appendix A. File sndcode

if (info < 0) return (babpvmerror_(info, "pvm.pkint"));
#if 0 /* Deleted code */

sndoutnm = (-rcspawn) A rcvouts;
info = pvmnpkint (&sndoutnm, 1, 1);
if (info < 0) return (babpvmerror_(info, "pvm.pkint"));

#endif

This code is used in chunk 45.

77¶ (Module variables 2) +-
int rcvouts;

A.1.3 Standard message passage procedures

¶ Sndcode_ obtains a buffer to pack the variables, issuing a message and
returning an error code in case no buffer is avaliable.

79(Obtain a buffer 79) -
bufild = pvmrninitsend (PvmDataDefault);
if (bufild < 0) return (babpvmerror_(info, "pvm.initsend"));

This code is used in chunks 13, 41 and 45.

¶ Here you will find packaging of some variables that are sent to the remote
code. Since they are essentially equal to one another, they are presented in
a separate section. Sndcode_ packs control[0].

80(Pack control[O] 80) -
info = pvmnpkint (control, 1,1);
if (info < 0) return (babpvmerror_(info, "pvm..pkint"));

This code is used in chunks 13 and 45.

¶ Sndcode_ packs the time step.

81(Pack the time step 81) =
info = pvrnpkdouble(&incrtie, 1, 1);
if (info < 0) return (babpvmerror_(info, "pvm.pkdouble"));

A.I. Description of the module 59

¶ The remote code is informed of the current simulation time.

82(Pack current time 82) =
info = pvm..pkdoule (&tiempo, 1, 1);
if (info < 0) return (babpvmerror_.(info, "pvmpkdouble"));

This code is used in chunk 45.

¶ Sndcode_ packs prevexec, the flag indicating wether the code has been
executed during the last time step.

83(Pack prevexec 83) =-
info = pvm~npkint (&prevexec, 1, 1);
if (info < 0) return (babpvmerror_.(info, "pvm._pkint"));

This code is used in chunks 13 and 45.

¶ Sndcode_ packs initflag, the flag indicating wether initial conditions are
to be read

84(Pack initflag 84)
info = pvm.pkint (&initflag, 1,1);
if (info < 0) return (babpvmerror_.(info, I"pvrpkint"I));

This code is used in chunks 13 and 60.

A.1.4 Ancillary algorithms

¶ A provisional pointer wordpt points to the same address as pointer linea
+ linecount - 1. Linecount is decreased to convert FORTRAN to C indices.
Then, linea is increased until a non-blank character is found, and a termi-
nating ' \0' is appended .to the name, so that the name can be read.

86(Obtain the pointers to the first and last non-blank characters delimiting
the string 86) M

wordpt = linea + (-linecount);
for (; (-,isspace(linea[linecount])) A (linecount < 80); linecount++H-
linea[linecount] = '\0';

This code is used in chunks 25, 26 and 27.

60 Appendix A. File sndcode

A.1.5 Functions for initial and boundary conditions

87(Auxiliary functions 87) -
(.Initial conditions functions for RELAP5 90);
(Boundary conditions functions for RELAP5 88);

This code is used in chunk 1.

¶ The boundary conditions for RELAP5 need no preprocessing; the values
are directly passed to RELAP5

88(Boundary conditions functions for RELAP5 88)
#ifdef __STDC__

void relap5_bound (double * entpt, int nbound , int boundnumber[], double
*pt)

{
int i, j, count;

/- simply passes to relap5 the module input signals. ,/

count = 0;
for (i = 0; i < nbound; i+-) {

for (j = 0; j < boundnumber[i]; ji) {
pt[count] = entpt[count];
count -+;I

I
I

#else
void relap5_bound (entpt, nbound, boundnumber , pt)

double **entpt;
int nbound;
int boundnumber[];
double **pt;

{ /* - simply passes to relap5 the module input signals. ,/
*pt = * entpt;

}
#endif

This code is used in chunk 87.

89¶ (Functions prototypes 89)
#ifdef __STDC__

A.I. Description of the module 61

void relap5_bound (double ** entpt, mt nbound, iat * boundnumber,
double **pt);

#else
void relap5_bound(;

#endif

See also chunk 91.

This code is used in chunk 1.

¶ And the same for initial conditions

90(Initial conditions functions for RELAP5 90)
#ifdef __STDC_.

void relap5_init (double * entpt, hit ninit, bit initnumber [], double *pt){
iat i, j, count;

/, - simply passes to relap5 the module input signals. ,/

count = 0;
for (i = 0; i < ninit; i++) {

for (j = 0; j < initnumber[i]; j++) {
pt[count] = entpt[count];
count -- ;}

}
}

#else /* - Otherwise, functions must be defined as Kernigan-Ritchie
functions. */

void relap5.init (entpt, ninit, initnumber, pt)
double **entpt;
hit ninit;
hit initnumber[];
double **pt;

{ /* - simply passes to relap5 the module input signals. ,/
*pt = *entpt;

I
#endif

This code is used in chunk 87.

91¶ (Functions prototypes 89) +-=

62 Appendix A. File sndcode

#ifdef __STDC__
void relap5_init (double **entpt, int nbound, int *boundnumber, double

**pt);

#else
void relap5_init ();

#endif

¶

Appendix B

File rcvcode

B.1 Description of the module

This module belongs to BABIECA, and is the responsible for receiving a set
of set of variables from a remote code. The file complies with the mandatory
structure for a BABIECA module, namely

(Include files 37)
BABMODULE (rcvcode_)
{

(Module variables 6);.
switch (control[O]) {
case BabRead:

(Input file reading 9);
break;

}
case BabCalc:

case BabSSGalc:
case BabFbck:
case BabSsFbck:
{

(Calculation mode 3);
break;

}
default:

I
return BabNoError;

63

64 Appendix B. File rcvcode

B.I.1 Code sections

B.1.1.1 Calculation mode: Remote code active

If ent [01 is 1 the remote code is active during the current time step. rcvcode.
will receive the output signals.

3(Calculation mode 3) -
(Recall the number of outputs 16);
if (1.0 = ent[0]) {

(Recall variables for active code 21)

if (0-= rcspawn) {
(Transfer the names of the variables 5);
vinvar[0] = 1; /* Set rcspawn ,/

}
(Receive and unpack the variables from the remote code 7);}

else
(Assign dummy outputs 8);

}

This code is used in chunk 1.

B.1.1.1.1 The first contact

¶ If this is the first time the remote code is contacted, the names of the
variables needed must be sent. packs and sends the names.

5(Transfer the names of the variables 5)
(Recall the names of the variables 18);
(Obtain a buffer 24) ;
(Pack the number of output signals 27);
(Pack the names of the output signals 28) ;
(Send the names of the output signals 29) ;
(Free the PVM buffer 25)
(Free used memory 35) ;

This code is used in chunk 3.

B.1. Description of the module 65

¶ noutputs is a dummy variable for a loop

6(Module variables 6)
int noutputs;

See also chunks 17, 19 and 22.

This code is used in chunk 1.

B.1.1.1.2 Receive the outputs

In any case, the outputs are sent to the block outputs.

7(Receive and unpack the variables from the remote code 7)
(Receive the message 30) ;
(Unpack the data into sal 31);

This code is used in chunk 3.

B.1.1.1.3 Inactive remote code

If the block has not been activated, the outputs are those of the previous
time step.

8(Assign dummy outputs 8)
for (noutputs = 0; noutputs < numsal; noutputs ++)

sal[noutputs] = sal[noutputs + numsal];

This code -is used in chunk ý.

B.1.1.2 Reading the input file

The first line is the number of variables to be received from the remote
code, numsal and then the variables themselves are read. The protocol of
communication with the driver comes next.

9 (Input file reading 9) =
(Particular declarations for the input file reading section 13);
(Read numsal 10) ;
(Read the names of the variables 11);
(Save values for the driver 20)

This code is used in chunk 1.

66 Appendix B. File rcvcode

10¶(Read numsal 10) _
nextlin_(linea, 80, msgl , 80);
linecount = 1;
numsal = leerint_(Iinea, &linecount, 80);

This code is used in chunk 9.

11¶(Read the names of the variables 11)
(Reclaim memory for the names and setup the array 33);
for (noutputs = 0; noutputs < numsal; noutputs-+-) {

(Read one line containing the variable name 12);
}

This code is used in chunk 9.

12¶(Read one line containing the variable name 12)
nextlin_(linea, 80, msgl , 80);
linecount = 1;
saltesp_(linea, &linecount, 80); /* Find the first non-blank ./
(Obtain the pointers to the first and last non-blank characters delimiting

the string 36) ;
(Allocate memory for a variable name 34);
strcpy (outputpt [noutputs], wordpt);

This code is used in chunk 11.

13¶(Particular declarations for the input file reading section 13)
int wordlen, linecount;
char linea[80], *wordpt;
char msgl [80] = "RCVCODE. uERR0RuREAD INGuINIPUTuLINE. ";
char msg6 [80];
char msg7[80] = "u";

This code is used in chunk 9.

B.1.2 Ancillary algorithms

B.1.2.1 Load and restore

¶ The number of outputs is stored in numsal;

B.1. Description of the module 67

16(Recall the number of outputs 16)
numsal = (int) vinfij [0];

This code is used in chunk 3.

¶ Declaration of numsal
17(Module variables 6) ±-

int numsal;

¶ rcvcode_ obtains the pointer to the names of the output variables,

18(Recall the names of the variables 18) =
outputpt = (char **) ((int) vinfij[1]);

This code is used in chunk 5.

19¶ (Module variables 6) ±=
char **outputpt;

¶ rcvcode_ saves the number of output variables in vinfij[O], saves the
pointer to the names of output variables in vinfij[1]. The control array
is filled:

" The number of outputs, i.e., control[3], is set to numsal.

* The size of the vinfij array is saved in control[4], i.e, 2.

" The size of the vinvar array is saved in control [5], i.e, 1.

" The size of the stat array, i.e., 0, is saved in control [6].

20(Save values for the driver 20)
vinfij[Oj = (double) numsal;
vinfij[1] = (double) ((int) outputpt);
control[3] = numsal;
control[4] = 2;
control[5] = 1;
control[6] = 0;

This code is used in chunk 9.

68 Appendix B. File rcvcode

¶ rcspaum tells if the code was already started and rcodetid is the task
identification of the code in the PVM environment.

21(Recall variables for active code 21)
rcspaum = (int) vinvar[O];
rcodetid = (int) ent[1];

This code is used in chunk 3.

¶ Variables

22(Module variables 6) +-
int rcspawn, rcodetid = 0;

B.1.2.2 Standard message passing procedures

¶ rcvcode- obtains a buffer to pack the variables, issuing a message and
returning an error code in case no buffer is avaliable.

24(Obtain a buffer 24)
bufid = pvm.initsend (PvmDataDefault);
if (bufid < 0) return (babpvmerror..(info, "pvm-initsend"));

This code is used in chunk 5.

25¶(Free the PVM buffer 25)
info = pmrefree(bufid);
if (info < 0) return babpvmerror_(info, "pvm.freebuf");

This code is used in chunk 5.

¶ bufild is the identifier of the buffer. It also is the error code. info is the
error code returned by the PVM routines. iModule variables= int bufid,
info;

¶ rcvcode_ packs the number of output signals to receive from the remote
code.

27(Pack the number of output signals 27)
info = pvm.pkint (&numsal, 1,1);
if (info < 0) return (babpvmerror.(info, "pvm.pkint"));

This code is used in chunk 5.

B.1. Description of the module 69

¶ rcvcode_ packs the names of the output variables.

28(Pack the names of the output signals 28) =
for (noutputs = 0; noutputs < numsal; noutputs+--) {

info = pvm..pkstr(outputpt [noutputs]);
if (info < 0) return (babpvmerror-.(info, "pvm.pkstr"));}

This code is used in chunk 5.

¶ rcvcode_ sends the packed data to the remote code.

29(Send the names of the output signals 29)
info = pvm-send (rcodetid, OUTNAMES);
if (info < 0) return (babpvmerror_.(info, "pvm..send"));

This code is used in chunk 5.

¶ rcvcode. receives the output variables from the remote code.

30(Receive the message 30) -
info = pvm-recv (rcodetid , OUTPUTS);
if (info < 0) return (babpvmerror_(info, "pvm.recv"));

This code is used in chunk 7.

¶ rcvcode_ unpacks the data in the sal array.

31(Unpack the data into sal 31) -
info = pvmnupkdouble (sal, numsal, 1);
if (info < 0) return (babpvmerror_(info, "pvm.initsend"));

This code is used in chunk 7.

B.1.2.3 Memory management

¶ The array of names of output variables must end with a NULL pointer.

33(Reclaim memory for the names and setup the array 33) -=
outputpt = (char **) malloc((numsal + 1) * sizeof (char .));
if (A = outputpt) {

m = -24;
strcpy (msg6, "Failutouallocateumemory. ");

70 Appendix B. File rcvcode

errmsg_(&m, msg6, msg7, 80,80);
errcode -24;
return (errcode);}

outputpt [numsal] = A;

This code is used in chunk 11.

34¶ (Allocate memory for a variable name 34) M
outputpt[noutputs] = (char .) malloc((strlen(wordpt) + 1)*

(sizeof (char)));
if (A= outputpt [noutputs]) {

m = -24;
strqpy (msg6, "Failutouallocateume mory. ");
errmsg_(&m, msg6, msg7, 80,80);
errcode = -24;
return (errcode);}

This code is used in chunk 12.

¶ rcvcode_ frees up the memory occupied by the names of the output vari-
ables.

35 (Free used memory 35)
for (noutputs = 0; noutputs < numsal; noutputs-+-) {

free (outputpt [noutputs]);

}
free (outputpt);

This code is used in chunk 5.

B.1.2.4 Strings reading

A provisional pointer wordpt points to the same address as pointer linea +
linecount - 1. Linecount is decreased to convert FORTRAN to C indices.
Then, linea is increased until a non-blank character is found, and a termi-
nating ' \0' is appended to the name, so that the name can be read.

B.1. Description of the module 71

36(Obtain the pointers to the first and last non-blank characters delimiting
the string 36) --

wordpt = linea + (-linecount);
for (; (-'isspace(linea[linecount])) A (linecount < 80); linecount++)
linea[linecount] = '\01;

This code is used in chunk 12.

B.1.3 Header files

First the system header files. We need to use the memory allocation rou-
tines, so stdlib, h is needed. string. h for the string manipulation routines
together with the standard character handling from ctype.h. The pvu rou-
tines definition are taken from

37(Include files 37) --
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <pvm3. h>

See also chunks 38 and 39.

This code is used in chunk 1.

¶ Then, the BABIECA variables definition. Reading routines from le,:tu. h,
error handling from baberr.h, the time variables from tiempo.h ani the
module declarations and macros from modu., h

38(Include files 37) +=_
#include "utilidad/lectu. h"
#include "utilidad/baberr.h"
#include "common/tiempo.h"
#include "modulos/modul.h"

¶ Last, specific header files: the set of tags used for vm message pass Lng.

39(Include files 37) +-
#include "./pvmtags .h"

¶

Appendix C

Remote code standard
specifications

C.1 Code linkage

Existing simulation tools may be combined if their structure complies with a
common standard. The pseudocode presented here attempts to provide the
essentials of such a standard for code linkage. The code provided is suitable
for simple linkage as well as for tree-structured simulation. The additions
needed for the latter case will be presented in sectionC.1.2.2.2. The routines
referenced will have three kind of names

get-something when the internal structures are to be searched for the infor-

mation,

rcv.something when the information is to be received from some process

send-something when the information is to be sent to some process

This code is often referred to as the descendant code, and the process
that created it the parent process. This is a pseudo-code, and no care what-
soever has been taken in properly declaring variables. Rather, the functions'
arguments are solely a hint on the key parameters they will take.

2 ¶ The standard is structured in two routines, main() and calculoo,
and the main characteristics of both are presented. The later is the respon-
sible of driving the time advancement of the simulation.

72

C.1. Code linkage 73

2 (Main program -3)
(calculoo() routine 14)

0.1.1 Main program

The main program, as coded here, is responsible of the top level struct'ire of
the program, calling the routines for reading the input file(s), setting up the
tables for the management of the read data and call the calculo () ro.itine.
Then, two loops are set up. The outer loop keeps the process waiting for
a message from the parent process telling it to exit. The inner loop (used
for tree-structured simulation) restarts a caclulo() session when the pile of
restart points is still occupied. During the simulation, the parent process
will have requested some points to be saved in this private stack. In this
case, stack-occupied() will return a non-zero value. Note that in standalone
runs requests for restart saving will never arrive, and stack-occupied() will
always return a 0. (Receive finish message 12) will deal with the other loop
in case of no connections.

3(Main program 3)
int main()
{

(Parse command line 5);
(Setup the internal tables 6);
do {

do{
(Calculate transient mode 7);

} while (stack-occupied());
get-finish-message ();
(Receive finish message 12);

} while (-'finish-message);
(Results writing 8);
close-files (;
exit (0);

This code is used in chunk 2.

74 Appendix C. Remote code standard specifications

C.1.1.1 Standalone code

0.1.1.1.1 Starting

The command line parsing processes the command line and sets up the files
needed. It may also set the variable parent-process, that will be the flag
identifying an externally driven run.

5(Parse command line 5) =-
parse.command-line (input-file, flags, parent-process);
if (parserr) report-andLexit (parserr);

This code is used in chunk 3.

6 ¶ The input information has to be read from the named file. This may
direct the code to reading further files (e.g. if this is a restart case). The
absence of an input file means that the internal tables data are to be read
from some other process. This will occur when within a tree simulation.

6(Setup the internal tables 6)
if (input-file) {

open-file (input-file);
read-input-file (calc.type, physicaLsystem, initiaLconditions,boundary-conditions, initiaLtrips);

switch (calc.type) {
case 'new':

{
setup-internaLtables (;
get-boundary-conditions (;
get.state.vector (initiaLconditions);
break;}

case 'restart':{
read.internaLtables-and-state.vector (restart-file);
geLtboundary-conditions (;
break;

}
}

}
else {

(Initialisation for tree simulation 13)

C.1. Code linkage 75

(Receive startup messages 10)

This code is cited in chunk 17.

This code is used in chunk 3.

C.1.1.1.2 Transient calculation

The transient calculation is done in the calculo() routine. It will return an
error code in case of unsuccessful computation. Exit from the program :s not
needed, since there may be more simulations to be done. See section C.1.2
for the details of the routine.

7(Calculate transient mode 7)
calcerr = calculo ();
if (calcerr) report ("CALCULOuFUNCTIONuERROR.");

This code is cited in chunk 12.

This code is used in chunk 3.

C.1.1.1.3 Results writing

For the case of running stand alone, the results file is written.

8(Results writing 8)
graphicaLoutputs (;
statistics ();

This code is used in chunk 3.

C.1.1.2 Code for the linkage

C.1.1.2.1 Linkage to an external driver

In case the code is linked to an external driver, it will receive the same
kind of information that was got from the input files, overwriting tha;. To
enter this section, the code must have been started by other process. ':hen,
parent-process will be true.

The first messages to be received relate to the initialisation of the code
and of the transmission variables between the two tasks involved.

76 Appendix C. Remote code standard specifications

10(Receive startup messages 10) M
if (parent-process) {

rcv.in-trips-names (parent-process);
(Return if error 33) ;
rcv.boundary.conditions.names (parent-process);
(Return if error 33) ;
rcv-states-names (parent-process);
(Return if error 33) ;
rcv.initiaLconditions-names (parent-process);
(Return if error 33);

}

This code is used in chunk 6.

11 ¶ The trips received here are a sort of manual actuations over the
models of the code. They. represent discrete transitions induced from the
parent code, and directly set the actual variables in the descendant code. The
code in section C.1.2.1 clearly reflects this in that one of the requirements for
the advancement routine is that a trip triggering stops the advancement of
the continuous simulation to allow proper initialisation of the models in the
new situation (see (Advance until the next requested time 18)). The scheme
for the boundary conditions is somewhat different. The values received then
are introduced replacing the values in the interpolation tables and are used
as needed in the advancement scheme. A corollary from this discussion is
that the remote code must be aware of the trips occurring in the descendant
code and treat them properly and that when the results of the descendant
code imply a trip in the parent process, a procedure that parallels the code
in < dvance ... has to be implemented. this is done via an iteration-flag
(See < eceive additional ...). These trips we call out-trips, and their names
are received in (Receive the names of the output variables 24)

12 ¶ When all the stored points are computed, a finish message is received
from the parent process. If this finish message is not zero the processing will
return to (Calculate transient mode 7) . Recall that finish-message may
be set to 1 before entering this section (in get-finish-message()) so that the
code properly ends when it is not connected.

12(Receive finish message 12)
if (parent-process) {

transerr = rcv-finish-message (parent-process);

C.I. Code linkage 77

if (transerr) report-and-exit (transerr);

}
This code is cited in chunk 3.

This code is used in chunk 3.

C.1.1.2.2 Code for tree simulation

When the tree simulation is in progress, the code may be initialised from an
intermediate step of the simulation that has been computed by some other
process. The, it has to receive the identification of the task that will provide
the restart informations, after which the restart information is received from
this task. if the task is this very process, the restart information will be read
from the internal tables. A unique label identifying the run is also received
for bookkeeping purposes. The database identifier is received and, if this
proces is not a restart process (i.e. it is the first process), the outputs nLames
are sent.

13(Initialisation for tree simulation 13)
if (parent-process) {

database-id = rcv.database.id (parent-process);
(Return if error 33) ;
restart-process = rcv-restart-process (parent-process);
(Return if error 33);
if (restart-process)

rcv.restart-info (parent-process, remote.process);
(Return if error 33) ;
rcv.identifier.of -branch (parent-process);
(Return if error 33) ;
(Free used restart point 31);

else {
send.out-names (database.id);

}

This code is used in chunk 6.

C.1.2 calculo(routine

Is the responsible for the advance of the simulation until the final requ.ested
time. The numerical algorithm used is sent to another procedure, so tha.t this

78 Appendix C. Remote code standard specifications

one only holds the overall time management of the solution and of the links
with the parent code. The flag continue-simulation is used for controlling the
time advancement. It is set in (Get execution information from read files 16)
and may be modified by the external program. Since the user (or the remote

code) may want to stop the simulation after only the initialisation stage (the
first (Get trips and outputs 20)), a condition on this variable is set. Then
the code advances until the target-time. The reason for plotting the outputs
and managing the restart information at the beginning of the loop is that,
because of requirements of the parent process (i.e. iterations), the solutions
computed may be invalid even if the code has successfully computed the
advancement. It is only when the remote process validates the advancement
that the data are ready for use and plot-flag and save-restart-flag will be set
appropriately. This forces additional plots and restart saves at the end of
the function for the last point. With this mechanism, the first (initialisation)
point is also plotted.

14(calculo () routine 14)
int calculo (){

do{
(Receive values for initial conditions 23)
(Get execution information from read files 16);

(Receive execution information from parent 25)
(Get trips and outputs 20) ;
(Receive the names of the output variables 24);

(Send results 28) ;
if (continue-simulation) {

if (plot-flag) ploLoutputs (previous-time);
(Save restart 21) ;
previous-time = current-time;
(Advance until the next requested time 18);
(Get trips and outputs 20);
(Send results 28) ;

} /* if (continue-simulation) ,/
} while (continue-simulation);
if (plot-flag) plotoutputs(target-time);
(Save restart 21)}

This code is used in chunk 2.

C.1. Code linkage 79

C.1.2.1 Standalone running

The code presented here is what would be encountered in a generic simulation
code. The structure ensures that the code can be running by itself W.thout
a driving process.

C.1.2.1.1 Start the loop

The information concerning this run is usually retrieved from the file,3 that
were read in the main procedure. This information sets the initial requested
time and initialise the time variables.

16(Get execution information from read files 16)

previous-time - initial-time;
requested-time = get-requested-time ();

See also chunk 17.

This code is cited in chunk 14.

This code is used in chunk 14.

17 ¶ With this, both the requested time and the starting time are set.
In case the target time is 0, the run will continue until it is stopped by
some external procedure, such as a request from an internal module or
from the parent process; otherwise, the code will stop in function of the
continue-simulation flag (see below). The initial and final times are set in
(Setup the internal tables 6) , and may be overridden by the remote code.
To set the model for steady or transient simulation, an steady-state :fag is
also determined from the input files information, and can be modified by the
external program in (Receive execution information from parent 25) . The
same applies for the other flags. continue-simulation controls the end of the
simulation.

17(Get execution information from read files 16) --
steady-state-flag = get-steady-state-flag);
save-restart-flag = get-save-restart-flag ();
plot-flag = get-plot-flag(;
continue-simulation = get-continue-simulation (current.time, target.time);

80 Appendix C. Remote code standard specifications

C.1.2.1.2 Time advancement

The simulation will now be advanced. This is done by means of some numer-
ical scheme whose structure need not be discussed. The only requirement
to the advancement procedure is that it stops either because requested-time
has been reached or because a trip has been triggered. In the later case, the
trip triggering time will be considered a plotting time and the simulation
resumed thereafter.

18(Advance until the next requested time 18) -

timestep-state-vector = state-vector;
state-vector = advance-solution(steady-state-flag, timestep.state.vector);
(Handle unrecoverable error 19) ;
currenttime = advancemenLtime;

/* = Min (trip-time, requested-time) ,/

This code is cited in chunk 11.

This code is used in chunk 14.

19 ¶ In case the advancement procedure returned with an unrecoverable
error, some actions must be made to inform the to routine and to assure a
clean exit. Such error can be checked, for instance, if the last time reached
by advance-solution () is not the requested time and a trip has not occurred.

19(Handle unrecoverable error 19) -
if (advancement-time < requested-time A -,tripflag) {

check.error);
clean-up ();
report-and.return (req.timestep.error);

I
This code is used in chunk 18.

20 ¶ Once the state vector is obtained (either from the input files or from
the calculation of a time step), the trips and outputs vector can be obtained.

20(Get trips and outputs 20)
get-trips ();
get-outputs (state-vector, boundary-conditions, trips);

This code is cited in chunk 14.

This code is used in chunk 14.

C.I. Code linkage 81

C.1.2.1.3 Restarts save

The restart saving consists in two parts; one is saving the current point in
the stack if so requested by the external driver, deferred to (Manage restart
stack 29) ; the other is saving the point to a restart file.

21(Save restart 21) =
(Manage restart stack 29)
if (save.restart-flag) write-restart-to-fileo;

This code is used in chunk 14.

0.1.2.2 Code for the linkage

The following sections describe the additions needed to enable the commu-
nication capacity of the code. They are inserted in the program strewm so
that the information received form the remote driving process will oveiwrite
what would be normally done by the code. This section is broken up in
two, one for module-like (this code is part of a larger simulation system) and
for tree-like simulation (this code is driving the execution of a branch for a
dynamically generated tree of simulations). The code remains consistent if
the second part is not added.

C.1.2.2.1 Linkage to an external driver

If the code is to be linked for adding new models to an existing simulation, it
may be required that certain initialisation be performed from data supplied
by the parent process.

In this case some values will be received from the external program.
These will have to be processed to obtain the same information than in the
non-linked case. For tree simulation, the whole tables have to be received
prior to any other information. This section leaves the code in the same
conditions as if initialised from the input file.

23(Receive values for initial conditions 23) --

initiaLconditions.flag = rcv.initiaLconditions-flag ();
if (initiaLconditions-flag) {

rcv-initiaLtime (parent-process);
(Return if error 33) ;
rcviinitiaLconditions (parent-process);
(Return if error 33) ;

82 Appendix C. Remote code standard specifications

rcv-initiaLttrips (parent-process);
(Return if error 33) ;
rcvzinitiaLboundary.conditions (;
(Return if error 33);
get-boundary.conditions 0?;
get.state.vector (initiaL conditions);

This code is used in chunk 14.

24 ¶ The names of the outputs to be sent to the parent process are re-
ceived after the outputs themselves have been computed. This allows the
splitting of the parent code linkage routines in two: one for sending variables
and one for receiving outputs, allowing useful work to be done in the parent
process in parallel to the initialisation tasks of the descendant code.

24(Receive the names of the output variables 24)-
rcv.outpuLnames (parent-process);
(Return if error 33);
rcv.out.trips.names ();
(Return if error 33);

This code is cited in chunk 11.

This code is used in chunk 14.

25 ¶ After the initialisation tasks, the code enters in the time loop. Within
it, the parent process will send the information that will overwrite that of
the code itself. Each blocking signal is a barrier point for the descendant
code, so those must be avoided as much as possible. The linkage has to be
compatible for both module-like and tree-simulation linkage. The suitable
common flag to both modes of linkage is the restart flag, and it. will be re-
ceived in blocking mode. It is thus essential that the parent process sends
this flag as soon as possible. The rest of the flags will be needed only in
some cases. We have two kind of flags:

1. Flags that do not affect the following time step.

2. Flags that do.

For the first type, the reception can occur anywhere. The message to send
restart information to some other process within the tree simulation is of

C.1. Code linkage 83

this kind. The second is the specific information for the next time request
that is sent in mode-like connections. The messages are previously checked
for arrival and only when actually present are they received.

25(Receive execution information from parent 25)
if (parent-process) {

(Probe send-restart message 30)
(Receive restart flag 26) ;
arrived-message = probe (parent-process);
(Return if error 33);
if (arrivedmessage) {

(Receive additional information 27);
}

}

This code is cited in chunk 17.

This code is used in chunk 14.

26 ¶ The restart flag is the only flag that is received in blocking mode
independently of the driving code.

26(Receive restart flag 26) =-
save-restart-flag = rcv-save-restart-flag (parent-process);
(Return if error 33) ;

This code is used in chunk 25.

27 ¶ The information to be received is:

* flags driving the subsequent execution,

" the next requested time,

* the boundary conditions and trips values for the next simulation steps,
and

" iteration-flag.

The last flag tells the code to throw away the computation of the la;t ad-
vancement and restore the simulation to the last request form the parent pro-

84 Appendix C. Remote code standard specifications

cess. Because of the way it is coded, this is done restoring the old state-vector
which was saved in timestep.state.vector1.

27(Receive additional information 27) -
continue-simulation = rcv.continue-simulation (;
if (continue-simulation) {

rcv.requested-time (parent-process);
(Return if error 33)
rcv.boundary.conditions (parent-process);
(Return if error 33) ;
rcv.trips (parent-process);
(Return if error 33) ;
rcv.iteration-flag (parent-process);
(Return if error 33) ;.
if (iteration-flag) state-vector = timestep-state.vector;

}

This code is used in chunk 25.

28 ¶ The results requested by the parent process are sent as obtained
in the last time step. For the tree simulation, the code standard output
procedure cannot be used, since the tree may be built in a distributed en-
vironment. All the outputs from all branches of the tree will be sent to a
central database that will reconstruct the tree results.

28(Send results 28) -
if (parent-process) {

send-time (parent-process);
(Return if error 33) ;
send-outputs (parent-process);
(Return if error 33) ;
send-out-trips (parent-process);
(Return if error 33) ;
(Database messages 32);

}

This code is used in chunk 14.

'Note here that it is possible that more information has to be restored, especially the

time step value. Note also that a similar 'restart form the previous correct value' takes
place when a step calculation is rejected and a new one is tried with a smaller timestep.

C.1. Code linkage 85

C.1.2.2.2 Code for Tree Simulation

Restart information is to be saved into the private stack for later use. This
information may be sent to initialise other processes or this very process, if
the parent process sends the appropriate flag for entering < nitialisaticn for
tree simulation.

29(Manage restart stack 29)
if (save.restart-flag - UpdateRestart) {

int rcverror, restart-index;

restart-index = rcv-restart-index (parent-process);
(Return if error 33) ;
update-restart (restart-index);
(Return if error 33)

T
This code is cited in chunk 21.

This code is used in chunk 21.

30 ¶ Restart information is to be sent to a remote process. The send
routine will return an error if sending the tables to the process itself, s: this
section must be skipped by the sender process if the restart is from a point
saved in < Managerestart

30(Probe send-restart message 30) M
arrived.message = pvmnprobe (parent.process);
(Return if error 33)
if (arrived-message) {

branch-info = rcv.branch.info (parent.process);
(Return if error 33);
remote-process = rcv.remote-process (parent-process);
(Return if error 33);
if (remote-process) {

send-tables (branch-info, remote-process);
(Return if error 33);

((Free used restart point 31) ;
}

This code is used in chunk 25.

86 Appendix C. Remote code standard specifications

31 ¶ If the parent process so demands, the point just used is freed from
the private stack. The restart information has to be kept until all branches
stemming form a single point are started. The parent process manages this
via free-point.

31(Free used restart point 31)
free-point = rcv.free-point (parent-process); (Return if error 33)
if (free-point) {

remove-point-from-stack (free-point);
(Return if error 33);}

This code is used in chunks 13 and 30.

32 ¶ When 'running a tree simulation, the outputs must be sent to a
centralised database that collects the results of each individual simulation
step in the tree.

32(Database messages 32)
if (database.id) {

send-results (data base.id);
(Return if error 33);

}
This code is used in chunk 28.

33 ¶ 2 Error handling. In case the code returned by the receiving routines
is less than zero it means that an error occurred in the transmission. The
error code is returned to the main program.

33(Return if error 33) -
if (somerror < 0) report-and.return(somerror);

This code is used in chunks 10, 13, 23, 24, 25, 26, 27, 28, 29, 30, 31 and 32.

34 ¶

Appendix D

BABIECA input file

Test of modules SNDCODE and RCVCODE
400000 0.001 0.0
1

Activation flag
I
0
15

2
-10.0 1000.0

1.0 1.0

C**************C****C*****C*****C*C****************C

Mainpipe emission
100

1 511 611 711 512 612 712 513 613 713
* - -------- boundary conditions
* -------- activation flag

60

1
* ------- execution mode

spp2k
* - - remote host

relapS.x -i mainpipe.i -o mainpipe.o -r mainpipe.r
* ---- executable name

1

S - ------ null transient time steps
9

* ------- number of boundary conditions
velfj-206
velfj-306
velfj-406
tsatt-205
tsatt-305
tsatt-405
p-200
p- 3 0 0

p- 4 0 0

-------- name of the boundary conditions
0

87

88 Appendix D. BABIECA input file

* - - number of initial conditions

Mainpipe reception
111

1 100
*--------- remote code tid
*- -------- activation flag

61

6
*-- - -..----- number of output signals
* received from the remote code

velfj-600020000
velfj-600030000
velfj-600040000
tempf-600010000
p-500010000
velfj-100050000

*-- - -names of output variables

Loopi emission
200
.1 111 114 115

- ---------- boundary conditions
- - -activation flag

60

1

-.execution mode
spp2k

* - - remote host
relapS.x -i loopi.i -o loopl.o -r loopl.r

* ---- executable name

1
* ------- null transient time steps

3
* ------- number of boundary conditions

velfj-601
tsatt-600
p-500

------- name of the boundary conditions

0
*- ------- number of initial conditions

** ** *** * ** ************ ******** **** ***** ****** *

Loopi reception
511

1 200
*- -remote code tid
*- --------. activation flag

61 0 10.1409 600.639 1.52511e+07

3
* -------- number of output signals
* received from the remote code

velfj-501000000
tempf-205060000
p- 2 0 0 0 1 0 0 0 0

* ----- names of output variables

89

Loop2 emission
300

1 112 114 115
*- -boundary conditions
* --- activation flag

60

1
---- - execution mode

spp2k
- remote host

relapS.x -i loop2.i -o loop2.o -r loop2.r
----- executable name

1
*- ------- null transient time steps

3
*- ------- number of boundary conditions

velfj-601
tsatt-600
p-5 0 0

* ----- name of the boundary conditions

0
* ------ number of initial conditions

********* ******** *** *** ***** *** **** *** * sees

Loop2 reception
611
1 300

- -------- remote code tid
*- -------- activation flag

61 0 10.1409 600.639 1.52511e+07

3
-number of output signals

* received from the remote code
velfj-501000000
tempf-205060000
p-200010000

- names of output variables

Loop3 emission
400

1 113 114 115
* --------- boundary condition
* -------- activation flag

60

1
-execution mode

spp2k
* - - remote host
relapS.x -i loop3.i -o loop3.o -r loop3.r

* ---- executable name

1
* ------- null transient time steps

3
--------------- number of boundary conditions

velfj-601
tsatt-600
p- 5 0 0

90 Appendix D. BABIECA input file

* - - name of the boundary condition
0

*- -- - number of initial conditions

***************** ******* ******* *** **** *** * *

Loop3 reception
711

1 400
*-- - -remote code tid
* - -- activation flag

61 0 10.1409 600.639 1.52511e+07

3
* ------- number of output signals
* received from the remote code

velfj-501000000
tempf-205060000
p- 2 0 0 0 10000

* - - names of output variables

NRC FORM 335 US. NUCLEAR REGULATORY COMMISSION 1. REPORT NUMBER
(240) (Assigned b NRC. Add Vol, Supp, Rev.
NRCM 1102Z and Addend me Numbers, N OWy.)NoC. 1o2, BIBUOGRAPHIC DATA SHEET

(See kwirwomw On ft. fervew)

2. TITLE AND SUBTm.E NIJREG/IA'0179

A Standardized Methodology for the Unkage of Computer Codes 3. DATE REPORT PUBLSHED

Application to RELAP5/MOD3.2 MONTH YEAR

March 2000
4. FIN OR GR WIT NUMBER

5. AUTHOR(S) 6. TYPE OF F EPORT

R.H. Santos Technical
7. PERIOD COVERED (ncuM'.aeluD)

8. PERFORMING ORGANIZATION - NAME AND ADDRESS (NRC, provide Div Of'ice oRegfov U.S. Nuce*wRegulaWby CoAmim end mn" g eddusa; if conftac

provide anrmwrd nan adn•s.j

Polytechnical University of Madrid
Nuclear Engineering Department
Jose Gutierrez Abascal 2.
E-28006 MADRID SPAIN

9. SPONSORING ORGANIZATION - NAME AND ADDRESS (WNRC, ye "'Same a abovea ifconfracbr provide NRC Division, Office a Regko U.S. Nucke.'ReguabyCommission,
and maiftn address.)

Division of System Analysis and Regulatory Effectiveness
Office of Nuclear Regulatory Research
U.S. Nuclear Regulatory Commission
Washington, DC 20555-0001

10. SUPPLEMENTARY NOTES

11. ABSTRACT (200 wods rlIns)

The School of Industrial Engineering of the Universidad Portecnica de Madrid (ETSII-UPM), in cooperation with the Spanish
Nuclear Safety Council, has developed a standardised methodology to couple and parallelise scientific codes, be means of the
modular general purpose simulation language BABIECA and the Message Passing Paradigm, currently using 1he PVM library
routines. A template suggests how a code must be written to ease the connectivity with other codes through BABIECA. The
connection scheme has been successfully applied to the RELAP5/MOD3.2 code.

12. KEY WORDSIDESCRIPTORS (List weds orphsams •t•t wiN assist reseamhew in oca1ing t•e report) 13. I.VALABUITY STATEMENT

RELAP5/MOD3.2 unlimited

Linkage of Computer Codes 14. ý ECURITY CLASSIFCATION

unclassified
(Th, Report)

unclassified

15. UUMBER OF PAGES

16. 1 'RICE

NRC FORM 335 (2-84)

Federal Recycling Program

UNITED STATES
NUCLEAR REGULATORY COMMISSION

WASHINGTON, D.C. 20555-0001

SPECIAL STANDARD MAIL
POSTAGE AND FEES PAID

USNRC
PERMIT NO. G-67

