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VERIFICATION OF RELAP5/MOD3
WITH THEORETICAL AND NUMERICAL STABILITY RESULTS

on single-phase, natural circulation in a simple loop

ABSTRACT

The theoretical results given by Pierre Welander [1] are used to test the capability
of the RELAP5 series of codes to predict instabilities in single-phase flow. These
results are related to the natural circulation in a loop formed by two parallel
adiabatic tubes with a point heat sink at the top and a point heat source at the
bottom. A stability curve may be defined for laminar flow and was extended to
consider turbulent flow. By a suitable selection of the ratio of the total buoyancy
force in the loop to the friction resistance, the flow may show instabilities. The
solution was useful to test two basic numerical properties of the RELAP5 code,
namely: a) convergence to steady state flow-rate using a "lumped parameter"
approximation to both the heat source and sink and, b) the effect of nodalization to
numerically damp the instabilities. It was shown that, using a single volume to
lump the heat source and sink, it was not possible to reach convergence to steady
state flow rate when the heated (cooled) length was diminished and the heat
transfer coefficient increased to keep constant the total heat transferred to (and
removed from) the fluid. An algebraic justification of these results is presented,
showing that it is a limitation inherent to the numerical scheme adopted.
Concerning the effect of nodalization on the damping of instabilities, it was shown
that a "reasonably fine" discretization led, as expected, to the damping of the
solution. However, the search for convergence of numerical and theoretical results
was successful, showing the expected nearly chaotic behavior. This search lead to
very refined nodalizations. The results obtained have also been verified by the use
of simple, ad hoc codes. A procedure to a issess the effects of nodalizations on the
prediction of instabilities threshold is outlined in this report. It is based on the
experience gained with the aforementioned simpler codes.
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EXECUTIVE SUMMARY

Theoretical results dealing with natural circulation in single-phase in a loop
formed by two parallel adiabatic tubes with a point heat sink at the top and a point
heat source at the bottom are considered. They are used to test the capability of
the RELAP5 series of codes to predict instabilities in these flows.

The solution was useful to test two basic numerical properties of the
RELAP5 code, namely:

a) Convergence to steady state flow-rate using a "lumped parameter"'
approximation to both the heat source and sink

b) The effect of nodalization to numerically damp the instabilities.

It was shown that, using a single volume to lump the heat source and sink,
it was not possible to reach convergence to steady state flow rate when the
heated (cooled) length was diminished simultaneously keeping constant the total
heat transferred to (and removed from) the fluid. This is due to the numerical
properties of the finite-differences scheme used.

Concerning the effect of nodalization on the damping of instabilities, it was
shown that "reasonably fine" nodalizations led, as expected, to the damping of the
solution. However, the search for convergence of numerical and theoretical results
was successful, showing the nearly chaotic behavior of the system. This search
led to refined nodalizations. The results obtained have also been verified by the
use of simple, ad hoc codes.

A procedure to assess the effects of nodalizations on the prediction of
instabilities threshold using RELAP5/MOD3.x is proposed. This procedure is
based on the experience gained with simpler codes used and is outlined in this
report.
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Isobaric expansion coefficient
Friction parameter in dimensionless
momentum equation
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reference or initial value

[kgl(ins)]
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1-1

Value at time level n
Value at time level n+1
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1. INTRODUCTION

The assessment of best estimate, nuclear safety codes is a very important
stage in. their development, including several steps. These steps are embedded in
some accepted procedures like the U.S. NRC Code Scaling, Applicability and
Uncertainty verification methodology [2] or the UP Uncertainty Methodology based
on Accuracy Extrapolation [3]. Both specify the verification of the influence of the
numerical methods implemented in such codes on the results obtained as a part
of the applicability step. Then, defining suitable analytic tests and using them to
set the conditions to satisfy in order to get meaningful results, is an important part
of the verification stage.

The interest of the present work deals with the RELAP5IMOD3.x [4] series
of codes. An important contribution to this subject has been contributed by Wuliff
et al. [5]. It is one of the rare examples of reports dealing with the effects of
discretization errors in the response of thermal-hydraulic system codes in plant
behavior analysis. In a more limited context and despite of its restrictions, the
problem of natural circulation in single-phase flows is quite common in many
situations of interest in the nuclear industry. The removal of decay heat in intact
loops after pump shutdown is only one example of the possible scenarios.

In this report the results of Welander [1] are revisited. These results deal
with the natural circulation in a very simple situation, namely: flow driven by
buoyancy in a loop constructed with parallel, adiabatic, vertical tubes. The loop
has a point heat source in its bottom and a point heat sink in its top. The mode of
heat transfer is such that the product of the heat transfer coefficient in the heated
length times the heated length is kept constant when the heated length tends to
zero. This defines the heating rate. The same concept is applied in the heat sink.
In this way, the physically finite heat source (sink) becomes a point.

Welander [1] performed his analysis only for laminar flow. However, his
results may be generalized to consider turbulent flow. Chen [6], among many
other authors, performed such analysis for a more general loop considering
heated (cooled) horizontal tubes of finite length. In this report the analysis in [1] is
generalized in order to keep strictly the same hypotheses of the original derivation.
The analysis is included as APPENDIX A to this report. The results of such
analysis are applied to verify whether or not the RELAP5 results may converge
when the lengths of the source and sink are varied accordingly to the above-
mentioned criterion. APPENDIX B to this report gives an algebraic justification for
non-convergence of the upwind space approximation for the heat transfer. Having
defined the theoretical stability map, an unstable flow condition is defined to check
the effect of the nodalization on the appearance of oscillations. In this way it is
possible to define the limits of applicability of a coarse nodalization. It is important
to point out from the very beginning that it is possible to get convergence of the
predicted results to the expected oscillatory analytical results. However, a
nodalization much more detailed than the usually accepted for stable flows must
be used.

These aspects may be also analyzed far more easily using ad hoc codes of
similar numerical properties. Then some results are shown using in-house



developed codes. These results serve to illustrate a procedure that could be
implemented using the RELAP5 numerical approximation. This may be of
importance to quantify the effects of the nodalization in the damping of
perturbations in unstable (or marginally stable) systems.

In what follows the geometry of the loop and the equations that specify the
theoretical problem are briefly discussed. They include their generalization to
consider turbulent flow and the analysis of the lumped parameter approximation
for the point heat source and sink. The theoretical implications of the latter, from
the numerical point of view, are discussed. Then, results obtained using the
RELAP5/MOD3 and comparisons with RELAP5/MOD2 are presented, confirming
the theoretical hypotheses. The discussion of the results and the conclusions
close the report.

II. THEORETICAL ANALYSIS

Figure la,b shows the geometry of this simple hydraulic system, adapted
from [1]. It is a schematic representation of the loop, appropriate for its
discretization following the RELAP5 code specifications. These are shown in
Figure lc,d. The vertical legs are adiabatic, smooth, circular tubes of length U/2
and diameter D. The length of both the heat source and the heat sink is S. The
cross section of the tubes is A. When S tends to zero, the heat transfer f rom/to the
heat source/sink (shaded in Figure lc,d) is increased to keep constant the total
heat transferred. The role of the volume denoted as TDV (a time dependent
volume) will be clarified later. This element, of course, is not present in the
analysis in reference [1].

To deduce the governing equations, the validity of the Boussinesq
expansion of the fluid density in terms of temperature will be assumed. The friction
will be computed from the Poiseuille law for laminar flow and from the Blasius law
for turbulent flow.

Then, the governing equations are:

i) The momentum equation integrated along the loop:

dq ~a-R( D 1e 2-0 JgA f(J)2 (1)

dt 16 (v .A) _L 0

In Eq. (1), the anti-symmetry of the system has been considered.
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Hi) The energy equation, expressed in terms of temperature:

C [.DT+q DT] {DSH(TF-T) (2)

In equation (2), the first equality holds at the source/sink, and the second indicates
the adiabatic walls of the tubes.

iii) The heat balance at the point heat source/sink:

In the previous equations, written in dimensional form, q is the volumetric
flow-rate, T is the fluid temperature, H is the heat transfer coefficient, v is the fluid
kinematic viscosity, 0 is a coefficient equal to 1 for laminar flow and to 1/4 for
turbulent flow (the exponent in the Blasius friction law), a is the coefficient in the
friction law: it equals 16 for laminar flow and 0.079 for turbulent flow, P3 is the
volumetric expansion coefficient of the fluid and g is the acceleration of the gravity.
The sub-index SI means a condition. evaluated at the input of the source, sub-
index S means a condition prevailing at the source and sub-index F indicates a
temperature evaluated at the source wall. In Eq. (1) there is a derived coefficient R
and, in Eq. (3), it is y. Their definitions are:

R=32 v and: iD 4

The definition of R takes into account the total frictional force that must exist in the
loop to make the results in [1] coincident with those given -considering the
Poiseullie law. The effect of the assumptions regarding the friction law will be
discussed later.

Setting the temperature at the heat source wall at AT degrees above the
average loop temperature and considering steady state, then, using Equations (1-
3), the flow-rate may be obtained from the following implicit equation:

25-q 2- = &T+B.q 2- .[i1e{ s] (5)

where 8 is defined by:

2a(D 1 4vL

IPgAL

The solution of Eq. (5) must be iterated if the flow-rate does not coincide
with the postulated flow regime. This is not the case when the Reynolds number is
adopted as the dependent variable, instead of flow rate. In non-dimensional terms,
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Eq. (5) specifies the relation between flow-rate and steady state temperature in
the loop, namely:

2. Q2-0
S= 1.- e-"0OS (6)

SS

where:

Q=q E)T a= gATL K= 7tDH

(KS)A ' AT' = 2(KS)2 
' C-A

a (DKS )1-8 RL C
F, 6 -v 2I S and 5-we= a (DKS)'-

When 0=1 and a=16 the previous equations reduce to the ones in [1]. The
linearized analysis of the stability of the steady state equations may be performed
in similar terms as in [1]. Now, c shows the influence of the Reynolds number in
the system through the friction law coefficients.

Let us now consider a "lumped parameter" approach to model the heat
transfer from the heat source toward the fluid. Note that the anti-symnmetrical
situation must be considered for the sink. Details of the derivation may be found in
APPENDIX B. The steady state energy equation, evaluated at the source, gives
the value of the temperature in the fluid. For this purpose the steady state energy
equation and an upwind approximation are used.

Then, the value for the fluid steady state temperature at the source is:

E) 1 (7)SS l+2Qss

Note that Qss is only a function of the quotient Wse that is a non-dimensional
parameter depending on the physical parameters of the system and on the
product (KS) that must be kept constant, it may be concluded that the results
obtained applying the r.h.s. of Eq. (2) as it stands will not change using a smaller
node length. For example: if Ws=e-2 and 0=1 (laminar flow), then Qss=O.958 and
e55s=o.479 from the theory. The value, as computed from Eq. (7) is 9ss=0.342.
There is only one way to obtain the correct steady state value of ess, it is to get
the *analytical solution of Eq. (3) averaging over the length S. Following this
procedure and using the upwind approximation for the advective term, the
expression for ess is:

2F
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The value of ess computed with this expression is coincident with the theoretical
value.
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Ill. NUMERICAL RESULTS

Three versions of RELAP5 [4] have been applied in the present work,
namely: MOD2, MOD3.O, and MOD3.1. Due to the simplicity of the physical
problem considered (single-phase flow, constant wall temperature and heat
transfer coefficient), no relevant differences in the behavior of the different
versions was noted in relation to the capabilities in predicting the stability
threshold. Then, the results obtained will be reported specifying the code version
just for the sake of completeness. The tests involving the MOD2 version have
been also considered to check alternative, more detailed nodalizations to the
heat/sink volumes in the early stages of this work.

The basic nodalization adopted in the analysis is reported in Figure 1 d. It
consists of two BRANCH components (100 and 130) introduced to simulate the
lower heating and the upper cooling devices. A very thin structure is connected to
each of them, with imposed external temperature, in order to simulate the actual
boundary conditions consisting in an imposed internal wall temperature. The two
BRANCH components are joined with two PIPE components (110 and 120),
simulating respectively the ascending and the descending legs. A SNGLJUN (300)
and a TMDPVOL (400) have been included to compensate for the expansion or
contraction of the fluid volume 'inside the system. However, specific calculation
tests have shown that the dynamic behavior of the system is negligibly affected by
the presence of these components.

The application of the system code to Welander's problem was concerned
with a physical system having the following main characteristics (see other details
in Table 1):

" pipe inner diameter: 0.1 m;
* length of the legs: 10 m;
" length of the heating and cooling sections: 0.1 mn to 1 m;
* overall loop length: 20 m + 2 x heating section length;
* heating surface temperature: 30 00;
* cooling surface temperature: 20 OC;
* heating and cooling surface heat transfer coefficient: 20000 W/(m2K);
* system pressure: 105 Pa;
" pipe surface roughness: 10-7 M.

Appendix C reports the list of the calculation cases considered, together
with the plots of the related results. Most of the cases where run with a time step
of 0.5 s. Various heating lengths and number of nodes were used to test the
convergence of RELAP5/MOD3.x to the theoretical solution.

The topics of main interest were:
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1 . the treatment of the source and the sink, which in the upwind scheme adopted
by the code cannot be correctly simulated using a single node, since the
exponential trend of the fluid temperature inside the heating and the cooling
sections cannot be adequately accounted for, and

2. the effect of truncation error related to the discretization of the legs by a finite
number of nodes: this is known to introduce spurious dissipative effects that
result in damping the oscillations.

3. the effect of Courant number on scheme numerical phase lags, which may
lead to over prediction of instability for a given nodalization.

The flow was started at very low flow-rate and began to grow as time
elapsed. In damped calculations, the temperature in the loop increased up to the
point in which it reached the average value as given by their theoretical value, the
latter depending on the adopted criteria for the source/sink lumping.

The main conclusions coming from the analysis of the obtained results
were the following:
" The steady-state conditions predicted by Welander cannot be achieved, unless

an appropriate source heat transfer multiplier is included in the code.
" For a given time-step, it is possible to predict both stable and unstable

conditions, depending on the number of nodes adopted to discretize the legs.

The analysis to follow applies to the first conclusion. For these calculations
the following spatial discretization have been considered: 10 nodes in each leg
(Ax = 1 m) and S = 1.0, 0.5 and 0.1 m (correspondingly, the values for H were:
2000, 4000 and 20000 W/ M2 X). It must be pointed out that the flow was unstable
with these parameters. The code was RELA5IMOD3.O. As expected, the value of
the steady state temperature was almost the same, with small differences that
were due to the different total friction in the loop. The effect of the TDV volume
was not important as will be discussed later. Naturally, oscillations in the transition
to steady state were present. The behavior of the system may be observed in
Figure 2 for the fluid temperature at both the heat source and sink. The results
obtained confirmed the results predicted by the theoretical analysis. Then, to
improve convergence toward theoretical values, an average, lumped heat source
must be used, as suggested previously.

Let us now consider the problem of convergence of the code results to the
expected unstable results. To do this, let as suppose that we do not know that the
flow is unstable and proceed as CSAU, UMAE (and engineering judgment)
indicate: look for convergence of computed results. For this purpose the
nodalization considering S = 0.1 m and 20000 W/ M2 X was used. The number of
nodes in each leg was varied accordingly up to the point in which the expected
chaotic behavior was obtained. The latter made its first appearance when the
number of nodes per leg was increased from 25 to 50. Nearly neutral oscillations
in flow-rate were observed for 37 nodes per leg.
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Figure 3 shows the time variation of flow-rate using 90 nodes per leg and
0.001 Kg/s of starting flow-rate. As may be observed the flow is oscillatory,
switching from positive to negative values after some cycles of oscillation. Fluid
temperature varies correspondingly.

The system behavior may be observed more clearly when the temperature
in the sink is plotted versus flow-rate in the loop. Figure 4 is a clear indication of
the chaotic behavior of the system.

Figure 5 presents results of the calculations, performed with 40 and 60
volumes per leg, still1 using the semi-implicit numerical method of the code. They
were started~close to steady-state conditions. The values of a and F_ corresponding
to the considered physical problem are around 339 and 2.3 respectively,
identifying a physically unstable system (see Figure A.3), and it may be found that
the time-step adopted in the calculation, At = 0.05 s, roughly corresponds to a
dimensionless time-step At=1 0- It can be noted that, with the two numbers of
nodes adopted, stable and unstable conditions are predicted, owing to the
different damping introduced by truncation error.

Simply closing the connecting junction in the middle of an unstable
transient controlled the effect of the TDV. The effect of this action on the flow
variables was negligible and could not be recorded. Also, the same results have
been obtained running the same cases with RELAP5/MOD2. The results were
also verified running a small, ad hoc code using an integrated equation approach
for the momentum equation and a fully up-wind, explicit approximation for the
energy equation. The equivalent, length-averaged heat source/sink approach was
used for lumping, what allowed obtaining of the exact steady state flow-rate value
when possible. The same numerical behavior was observed.

In what follows, a more detailed numerical analysis will be outlined, mak 'ing
reference to the FTUS approximation. This numerical scheme is quite similar to
the one used in RELAP5. Then the algebraic equations expressing the energy
balance are the following:

=r (1 _ C) on + C on,(=,..N

Gn+i 1 C 1- cAŽ-Fn (Qn)Qon +Con1  At n
N ~ As n )N N1A o

1= (8)

q q40

O1 =(1 + C)~ E- (i=2,. ,N-1)

Gn11+C A _t FdQn nCn+At nd()
A&s ) 1 2AS~ (9)
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0 n1 _0 n+1

where C is the Courant number:

C Qn -At (10)
As

and

N-i

with N being the number of nodes. The function Fnod(q) is a source-sink heat
transfer multiplier, similar to the one adopted for the nodal expansion, introduced
in order to calculate the steady-state conditions in coincidence with the exact
solution.

The momentum equation is discretized in time as follows:

Qfll ýl+._eIo_ - F (Qn)2-e ~ (12)

The steady-state conditions calculated by the method are:

=9S1 = 1 ... = E)SS,N.1 = -(ESSN = OSS,leg

eSe 'Ffl(QSS) (13)
SSIg2Q ss + Fn~(Q s)

where:
Fd (QSS) =QSS (1-e-1/Qss) /e-11ass (14)

Thus, the result is:

a 1 - e-"0  2 N-2 (15)
QS2v q i/OSS 1 + e-1 /c N-i1

It can be easily shown that for N - othe above equation becomes
coincident with the exact expression given by Equation (5).

The assessment of the effects of nodalizations on the onset of instabilities
will be performed using the previous expressions. However, a's will be mentioned
later, some other methodologies have been also considered. This approach can
be considered the numerical analogue of the classical linear stability analysis of
PDEs. The main reasoning behind the methodology is shortly summarized in what
follows. A finite-difference numerical method for a time-marching problem can
been written as an algebraic fl-vector equation relating the n7 values of the
unknown function at the n-Th. and (n+1)-Th. time level (yfl and yfl+l), grid
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parameters (in the present case, As and At) and physical parameters (a, s). This
algebraic equation represents the discretized form of the original PIDEs together
with the related boundary conditions. In our specific case for the above-described
numerical methods it is:

F(yn' yn', At, As, a, C) = 0 (16)

It will be now shown that:
" Studying stability of steady-state solutions of a mathematical problem is

capable of clearly pointing out the effect of truncation error brought about by
the nodalization.

* Care must be taken in avoiding numerical instabilities or in recognising them in
the obtained stability maps.

The vector function F is generally non-linear. Therefore, determining the
steady state conditions (i.e., the fixed points) may require the iterative solution of
the equation:

E(yn = ySS Yn1 _ ptysac (17)

Once the fixed points have been determined, their stability can be studied
through linearization by perturbation. Then, considering small deviations from the
selected fixed point:

yn =yS +(5y)fl yfl+l y S + (8y)f+l (18)

Substituting into Equation (16), second order terms can be neglected and
Equation (17) can be used to reach the following relationship between
perturbations at the n-Th. and at the (n+1)-Th. time levels:

(By) n+1 = ... (Jf+l) - .l .J *(By) n (19)

where jnand J"' denote the Jacobian matrices of F with respect to yfl and yfl+l

respectively, calculated at the selected fixed point. It is cleariy understood that the
inverse of Jn+1 must exist for any meaningful time-marching numerical scheme; in

particular, Jn+' can be made equal to the identity matrix for explicit numerical
methods and boundary conditions. It is then argued that stability can be discussed
considering the eigenvalues of the matrix:

A = _(Jf+l)-l .jf (20)
As results assuming exponential growth or decay of perturbation vectors. In
particular, given the spectral radius of the matrix, p(A), it is useful to consider the
quantity:

AP = P(A-1 (21)
quantifying the margin in excess to neutral stab ility, which takes negative values
for stable conditions and positive values for unstable ones. This quantity can be
therefore used to find neutral stability conditions and to set up stability maps.
Then, it is here preferred to calculate Ap throughout a selected a-e rectangular
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domain, thus identifying with the aid of contour plots regions with a different
degree of stability. This method is easier to implement in computer programs and
has the advantage to provide a greater deal of information, at the price of a
reasonable increase in computing effort.

Figure 6 reports the results obtained for the FTUS method with 30, 40, 50
and 100 nodes and At=10 It can be noted that a very small unstable region is
found within the addressed domain with 30 nodes, whereas increasing the detail
of discretization unstable conditions are predicted for lower and lower values of cc.
This clearly explains the above-discussed behavior and shows the dramatic
quantitative impact of truncation error on the prediction of stability.

Figure 7 illustrates the map for 100 nodes. It is interesting to compare the results
obtained for the explicit upwind method with the results of a modal solution' with a
second order term simulating numerical diffusion. With this aim, the diffusion
coefficient is defined as:

S(Q) 1 IQ As J ( AI1t) (22)

as resulting from the analysis of truncation error for the FTUS method. Figure 8
shows the predicted flow rate variation with time. The diffusion coefficient was the
one corresponding to 1000 nodes under the FTUS approximation. The number of
modes considered in the modal expansion was 500. As may be observed, both
approximations behave similarly. Exact coincidence is precluded by the non-
linearity of the system and the approximate values given by expression (6). The
latter fact is due to the use of the nominal, steady state value of Q used for its
calculation. It may be shown that the predicted stability conditions are very similar
for the nodal and the modal solution with equivalent dissipative effects and the
agreement is improved by increasing the number of nodes. This confirms the
overwhelming importance of the second order term alone in determining the
overall truncation error effect on stability predictions.. Figure 6 also shows the
linear stability curve obtained by the modal solution with no diffusion (B(Q)=0). It
shows, as expected, its close agreement with the stability curve obtained by the
conventional linear stability analysis shown in APPENDIX A.

Finally, Figure 9 shows the stability maps for various 1st and 2nd order
methods obtained with At=1 0'4. It is clearly visible that 2nd order methods provide
relatively very accurate predictions of the stability boundary. The changes
observed in the maps increasing the number of nodes up to 100 are minimal,
supporting the conclusion that in the present case the effect of truncation error on
stability prediction is due almost exclusively to the second order dissipative term.
The low Courant number used makes the FTUS results almost as diffusive as the
ITUS ones.

This consists in a modal expansion of the governing equations and boundary conditions (1-3) in
terms of Fourier series of sinus and cosinus. Then, a coupled system of ODEs is obtained, which is
free of spatial discretization error. Considering a reasonably high number of modes, a reference
solution may be obtained. Then, the energy conservation equation may be generalized to consider
a diffusive term, with diffusion depending on flow rate.
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The analysis of the stability maps obtained with the FTUS method
and 0=0.8 or with second order methods and At = 10-3, pointed out the
appearance of regions of instability larger than those predicted by the reference
modal solution. The possible reasons for this behavior were mainly two:

* An effect of truncation error at large time steps on the velocity of propagation
of perturbations along the legs, related to the dispersive effects brought about
by odd-order derivatives;

" The effect of the use of a large time step in momentum equation, giving rise to
a general tendency to instability due to delayed feedback.

In what follows it will be shown that, although the first effect cannot be
excluded, the second is the leading one, being responsible for the observed
overprediction in the extent of the unstable region.

In all the cases considered (FTUS and 2nd order methods), the
adopted discretization for the momentum equation implied that both the
temperature integral along the loop and the friction term have been evaluated
making use of old-time-level quantities. The results obtained making use of this
form are shown in the Figures 15 and 16 below for both the FTUS method. It can
be noted that in the case of FTUS with C=0.8, the overprediction of the extent of
the stability region is remarkable. In the case of the MacCormack method with At=
10-3, a slight discrepancy with the modal solution was also found.

The following approach was used to discriminate among the possible
causes of this convergence "coming from outside" to the neutral curve:

" Considering a fully implicit linearized approximation of the friction term in the
momentum equation: this approach did not lead to any improvement in the
results. On the contrary, the degree of overprediction was larger, showing a
more pronounced dependence on C.

" Evaluating the friction term and the temperature integral term on the basis of
(rn-i)-Th time level values (it did not increase too much the computational
effort):

Therefore, the following form of momentum equation results:

Qfl1Qf~~a e,~ + '(Qfl)leflt
W 2

Making use of this momentum equation in the FTUS scheme, the stability
maps reported in Figures 17 and 18 were obtained. It can be noted that now no
overestimate of the unstable region was obtained, showing the usual diffusive
behavior.
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The analysis above clearly demonstrates that of the two above envisaged
reasons for overestimating instability, that related to the time discretization of the
momentum equation is certainly dominant.
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IV. CONCLUSIONS

The aforementioned calculations allowed arriving to the following
conclusions:

i) The analytical results given in [1] are very useful to verify how large predictive
codes, like the RELAP5 series of codes, treat lumped heat transfer structures.
This may also be the case with other codes. Its proper understanding is very
important when the lumping of heat exchanging structures is imperative. Imposing
an appropriate criterion for the lumping avoid convergence errors in these cases.

ii) The effect of numerical diffusion may damp oscillations in a system, even under
unstable flow conditions. Appropriate nodalization permits to recover the correct
physical behavior. Looking for convergence of computed results is always
rewarding in these situations.

iii) The methodology adopted in this work for setting up stability maps shows that a
linear stability analysis based on numerical methods is effective in pointing, out the
effect of truncation error. Furthermore, if the appropriate nodalization detail and/or
higher order schemes are adopted, it can even result as reliable as the usual
frequency-domain techniques.

As shown by the obtained results, the methodology adopted in the present
work is useful to quantify the effects of nodalization and time step choice (i.e.
discretization errors) for system codes like RELAP5. This will be the subject of
further research.
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PARAMETER

L
LU2
S
A
D

TAV
AT

Tw (at source)
Tw (at sink)

p

H
power to the source
ss mass flow rate
ss vol. flow rate

Reynolds number
ss (T-TAV)
D.K.S/v

U
a

Ewei

qss

VALUE
SI Units
20.00
10.00
0.10

0.00785
0.10

25.00
5.00
30.00
20.0

0.000255
997.00
4177.

0.000864
8 .6660d-07

20000.
2813.31

0.717
.71 93.d-03

10568.
0.522
2216.7

0.09158
338.94
1.4436
2.3027
4.7674
0.1045

TABLE 1 Specification of a test problem
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FIGURE 1la,b A schematic view of the natural circulation loop, adapted from [1 ]
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Figure 1c. The loop geometry in a RELAP5 like definition.
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Figure 1 d - RELAP5 code nodalization for the analysis of Welander's problem
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Figure 5 - RELAP5/MOD3 results for the dynamic behavior of a single-phase
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Figure 6 The effect of the number of nodes on the
Neutral stability curve using the FTUS scheme.
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Figure 7 Stability map for the FTUS scheme, 100 nodes and At=1 0 -
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Figure 8 The flow rate for the FTUS scheme using 1000 nodes and its simulation
using a modal expansion of 500 modes and expression (22)
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NEUTRAL CURVES USING 100 NODES
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Figure 9 Comparison of the neutral curves obtained with different approximations
(ITUS: implicit-time, Upwind-Space, MOCOR: Mac Cormack)
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APPENDIX A

THEORETICAL STABILITY ANALYSIS FOR TURBULENT
NATURAL CIRCULATION IN A SIMPLE LOOP

In this APPENDIX, the analysis in [1] is generalized to consider turbulent
flow, keeping strictly the same hypotheses of the original derivation. The results
emerging from this analysis have been used in the main text to setup an unstable
problem in such a way that a "reasonably" detailed discretization using the
RELAP5 MOD 3.x [4] codes completely masked the physical situation, giving false
stable solutions.

In what follows the geometry of the loop and the equations that specify the
theoretical problem are briefly discussed.. They include their generalization to
consider turbulent flow. The neutral stability curves are obtained as a function -of a
new parameter, allowing the definition of a theoretical stability map.

The solution of equation (6) (see main text) must be iterated if the flow-rate
does not coincide with the postulated flow regime. In non-dimensional terms
equation (6) specifies the relation between flow-rate and steady-state temperature
in the loop, namely:

T. uniform in the leg
(A. 1-a)

2Ts, ( s -Yl

(A. 1-b)

(A. 1-c)

where the variables have the same meaning than in the main text and, again, sub-
index ss means a condition evaluated at flow steady-state conditions.

The linear analysis of the stability of the steady state equations may be
performed in similar terms as in [1 ]. To this end we first introduce a perturbation to
steady-state flow conditions in the form:
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q= qs, + q'
T= T + T'

(A.2)

Introducing these definitions into the non-dimensional form of equations
(A. 1-A.2) we get:

dt SS 0 'd
(A.3)

a~' q a T'=0

(A.4)
and:

T'0+mT'l+nq = 0
(A.5)

where:
M = 1 -TS

n= TS

(A.6)
0, 1and the sub-indexes 0 and

respectively.
1 means temperatures evaluated at s =

In order to study the growth of perturbations, an exponential form in terms
of time is adopted. Then:

q'= q .er.t

To= T er~t
(A.7)

In the A.7, r is a complex and T is the non-disturbed value of T.

Then:

,aT

T'o + m-T1i-n q= 0
(A.8)

(A.9)
and:

27



I+ me" + n a qss (1 e- 0rq~
r c,+s qý'O) ] e 0

82-= (2-0) c

(A. 10)
where:

The neutral stability curves may be found putting:

r = iwo

Then, inserting this definition in (A. 10), it is found:

1+ m-eiWIqqq + n a qs
1(0 ~i)+E, q('-) ]

(1 - e- ko/q$) = 0

(A.1 1)

Let us introduce the following definitions:

a = n a / qr

c = F- / qs
(A. 12)

Then, equation (17) becomes:

ei- -1I
a

ro (koc + u Eq1&)
= 0

(A. 13)
Where:

(0)a [ DKS 1i~[6 J
(A. 14)

Imposing that the imaginary part of (A.13) must equal 0, it results:

-2 2 2(0) -

(C u qSSO + co)(1m - 2a = 0

Furthermore, from equation (1-b):

(A.15 )

1 - - Ln - S

(A. 16)
Then,
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(A. 17)

Now, equation (A. 15) may be written as:

-2
-2 Ct)
E + u 2 (qss)2(1 -0 A c 0

(A. 18)
where:

(A. 19)
Finally, equation (A. 18) is written as the equation of an ellipse, then:

[ A J2 + -2 [A~
2 (uqss)('bo)=

(A.20)

Furthermore, setting the real part of equation (A.13) equal to zero and using
(A. 18), it is found that:

- 1 1 -CL
- i-e CO -cot g(-T S 2

(A.21)
_ E~quations (A.20) and (A.21) are solved by iteration to find the values of

a and F_ Fixing a value for Tss, what implies a definition for qss, performs it. After
these values are found, the corresponding values of a and F-, as well as the values
of all other variables of interest may also be found.
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RESULTS AND DISCUSSION

Results have been obtained taking a base case, as specified in Table 1. At
first glance it is not essential to set a physically Sound situation, because the
results may be also interpreted in non-dimensional terms. However, as mentioned
before, the use of the present results to set a test, benchmark problem for a large
thermal-hydraulic system code, led our studies. This approach was useful, so it
was decided to keep the same philosophy. The dimensions of the loop may be
considered typical of a real experimental rig. Results have been obtained keeping
the same geometry and changing the heat flow (as measured by HTC) at both the
source and the sink. The range adopted for the variation of HTC was such that the
flow changed from fully laminar to fully turbulent.

Figure A.1 shows the neutral stability curve obtained by solving equations
(A.20) and (A.21) and considering turbulent flow. Figure A.2 is a stability map,
obtained by solving equations (1 -3) by a modal decomposition method, using 100
and perturbing the resulting ODES according to a standard linear stability analysis
technique. It may be considered a reference solution for the differential problem
and the borderline separating the stable and unstable zones must be coincident
with the one in Figure A.1. In Figure A.3 the results of Figure A.1 have been re-
plotted and are compared with the values obtained from Figure A.2. As may be
observed the values coincide fairly well. The conspicuous point in the middle of
the unstable zone corresponds to the data of Table 1.

'Figure A.4 shows two neutral curves: a) one for laminar flow, obtained by
setting HTC=1 000 and b) one for turbulent flow, obtained by setting HTC=20000
in correspondence with the parameters given in Table 1. Once again, the isolated
point in the unstable zone corresponds to the system working as given by Table 1.

Figure A.5 shows, in terms of Ewel (The parameter in Welander's paper [1])
and qss the neutral stability curves as a function of HTC. In this figure there are
three differentiated types of curves: a) one corresponding to laminar flow
(HTC=1 000), b) one corresponding to a transitional flow (HTC=5000) and c) those
for fully turbulent flow (HTO=1 0000, 20000 and 50000). The curve corresponding
to laminar flow (HTC=1 000) is coincident with the first part of the transitional curve
(5000 L-T). At Reynolds number 2300 the friction law changes, imposing a
discontinuity in the neutral curve that follows the turbulent pattemn. This situation
can not arise in nature and is a consequence of the standard friction law transition
adopted. Figure A.6 shows a more detailed plot of this situation, considering the
additional case HTC=3000. It is important to point out that the friction crisis exists,
then, intermediate values can not be defined;* except by using a suitable
interpolation (as RELAP5 and every predictive code do). This problem does not
arise when the Reynolds number is used as the dependent variable. What is more
questionable is, perhaps, using a standard steady state law of friction for this
analysis. However, this is usually the standard practice.
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CONCLUSIONS

The analysis of Reference [1 ] was extended to consider turbulent flow. This
allowed analyzing the behavior of a simple system and to specify a problem used
as a benchmark for a large-scale system thermal-hydraulic code. In this way, the
effects of numerical damping on unstable flows were quantified. While obtaining
the results shown, the influence of the laminar to turbulent flow transition became
evident. Then, considering smooth flow transition criteria and the effects of time
variation on the friction law may be of importance for the complete definition of the
problem.

31



6 6I i I I I I I I I

5 ý-

STABLE REGION
4

3L
E

UNSTABLE REGION

1

0 I- I - I I I I I I I

0 50 100 150 200 250 300 350 400 450 500

(X
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APPENDIX B

MEMORANDUM

Date: July 1991

SUBJECT: LIMITATIONS OF THE USE OF A "HEAT EXCHANGER"
.APPROXIMATION FOR A POINT HEAT SOURCE

Produced by: G.M. Grandi and J.C. Ferreri

Sector: Divisi6n Modelos Fisicos y Numd~ricos, Ger. Seg. Rad. y Nuclear, CNEA,
Av. del Libertador 8250, 1429 Buenos Aires, Argentina

The objective of the following analysis is showing why a one cell
approximation (loosely speaking a lumped parameter approximation) of a heat
exchanger can not be used to get the correct value of the steady state
temperature jump. This elementary condition holds for any representation using a
first order upwind approximation. A correction factor is derived to deal with this
situation. The working hypotheses of Welander's [1]i original formulation are
adopted in order to define a theoretical benchmark.

Let us consider the equation for the temperature approximation in the
tubes:

DT q T k T. () T)(B.1)

where, accordingly with Welander's [1] nomenclature, q is the volumetric flow rate,
T is the fluid temperature (assumed as uniform over each tube cross section),
To(s) is the temperature at the source wall, A is the tube cross section area, k is a
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proportionality coefficient (assumed as constant) for the heat transfer, t is the time
and s is the space co-ordinate measured along the tube length.

For steady-state (ss) it is:

USS DT = k -(To (s) - T) (B.2)

where:
Uss = qss / A (B.3)

To is set as To ± AT in the source/sink. The rest of the tubes are adiabatic. Then,
dividing the previous equation by To and letting G -it is:

USS.~ k-(1-0) (BA4)

Expression (4) is valid in the source.

Let us consider a cell piecewise continuous variation of T along the source,

then, under an upwind approximation (Figure B.1), it is:

But: Ow =-0p, then:
Op= 1 1

1_+___s 1+2-V(B6
k-As

where V is the non-dimensional velocity.'

If the approximation for the temperature in the cell is defined as the mean
of ep and Gw, then:

The following table shows the values obtained with both approximations as a
function of acc/.
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a/c V G (Welander) E)- 1 Op=1
___ ___ _ _ __ ___ __ ___ __1+2-V 2-V

0.1 0.1 0.999 0.833 5.0
1.0 0.648 '0.648 0.436 0.772
2.0 0.958 0.479 0.343 0.52

10.0 2.222 0.222 0.184 0.227
0.01 0.01 1.00 0.98 50.0
0.5 0.417 0.834 0.545 2.398

50.0 4.98 0.0096 0.0912 0.010

TABLE B.1: Values of Op computed using different approximations for the
source temperature.

As may be observed from Table B.1, expression (B.7) is a better
approximation for higher flow-rates. The inverse happens with expression (B.6).

Now, let's pose the following question:

Which is the expression to be used for the heat generated
at the source, under a FTUS approximation, to recover the
exact value (i.e. Welander's theoretical value) of Op?

The answer comes considering the following analysis. Referring once again
to Figure BA1 and integrating (B.2), it comes:

T T ASk

where As is the heated length, then:

T = To +(T - TO) -exp(-1 /V)

where V = Uss!/ (k.As).

The mean value of an equivalent heat source on As is:.

(k -(T -To)) = -s (T. - T) - [1 -exp('-1/ V)] (B.8)

Let us verify if this expression gives correct values for the fluid temperature (i.e.
coincident with the values given by Welander's analysis) at the source, when the
latter is computed via an upwind approximation. Using a FTUS discretization, the
previous expression leads to:

Tp-Tw =(TO -Tw).F .(B.9)
where:
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F =1 -exp(-1 /V)

If we consider that Tp -Tw and introducing non-dimensional variables, then,
replacing in (B.8):

2F

This expression gives values coincident with the ones of Welander's analysis.

In conclusion, using a definition for AT that may be obtained from (13.8)
allows obtaining correct values for the steady state temperature jump at the
source. This applies to a discrete upwind approximation. This, in turn, brings
correct values for the steady state flow rate.

p
~TwJ

-4- & ______________ ______________

Figure 1 A sketch of the node definitions for simple upwinding
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APPENDIX C

RESULTS FROM THE APPLICATION OF RELAP5IMOD3.x CODE

0

S

LIST OF CASES CONSIDERED AND THEIR NODALIZATIONS
PLOTS OF SELECTED RESULTS

in Figures CA to C.10

Fluid Pressure

100010000
130010000

*

*
lower plenum
upper plenum

Fluid Temperatures

100010000
110010000
110050000
110100000
130010000
120100000
120050000
120010000

*

*

*

*

*

*

*

*

lower plenum or source
ascending leg 1
ascending leg 5
ascending leg 10
upper plenum or sink
descending leg 10
descending leg 5
descending leg 1

Mass Flow Rates

100010000
100020000
300000000

*

*

*

lower plenum to ascending leg
lower plenum to descending leg
upper plenum to TDV
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Test No. 1 (code RELAP5IMOD3.O)

Cross section of components 100, 110, 120, 130 = 7.854x1 o-3 m2

Hydraulic diameter of components 100, 110, 120, 130 =0.1 m
Length of components 100 and 130 = 1 m
No. of nodes in the legs (110 and 120) = 10
Roughness parameter = 10-7 m
Pressure in components 400 = 105 Pa
Initial fluid temperature 293.15 K

Geometry of heat structures :cylindrical
Heat transfer area = 0.628 m2 (internal diameter = 0.2 m, length =1 m)
Thickness = 10~-4 m
Thermal conductivity = 100 W/(m2K)
Volumetric heat capacity = 10~5 j/(m3K)

Initial lower and upper structure temperature =293.15 k
Final upper structure surface temperature = 293.15 K
Final lower structure outer surface temperature = 303.15 K (after 0.1 s)
Imposed heat transfer coeff icient at lower and upper structures = 1000 W/(m2K)

Time step =0.5 s
Initial loop flow rate = 0.1 kg/s

Test No. 2 (code RELAP5IMOD3.0)
As Test No. 1 with:
Length of components 100 and 130 = 0.5 m
Structure heat transfer area = 0.314 m2 (internal diameter = 0.2 m,
length = 0.5 m)
Imposed heat transfer coefficient at lower and upper structures = 2000 W/(m2K)
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Test No. 3 (code RELAP5IMOD3.O)
As Test No. 1 with:
Length of components 100 and 130 = 0. 1 m
Structure heat transfer area = 0.0628 m2 (internal diameter = 0.2 m,
length= =0.1 m)
Imposed heat transfer coefficient at lower and upper structures =10000 W/(m2K)

Test No. 4 (code RELAP5IMOD3.O)
As Test No. 3 with:
No. of nodes in the legs (110 and 120) = 25

Test No. 5 (code RELAP5/MOD3.O)
As Test No. 3 with:
No. of nodes in the legs (110 and 120) = 50

Test No. 6 (code RELAP5IMOD3.O)
As Test No. 3 with:
No. of nodes in the legs (110 and 120) = 90

Test No. 7 (code RELAP5IMOD3.O)
*As Test No. 6 with:
Initial loop flow rate = 0.001 kg/s

Test No. 8 (code RELAP5IMOD3.O)
As Test No. 7 with:
No. of nodes in the legs (110 and 120) = 40 (searching for neutral stability)

Test No. 9 (code RELAP5/MOD3.O)
As Test No. 7 with:
No. of nodes in the legs (110 and 120) = 38 (searching for neutral stability)

Test No. 10 (code RELAP5/MOD3.O)
As Test No. 7 with:
No. of nodes in the legs (110 and 120) = 36 (searching for neutral stability)

Test No. 11 (code RELAP5/MOD3.O)
As Test No. 7 with:
No. of nodes in the legs (110 and 120) = 34 (searching for neutral stability)

Test No. 12 (code RELAP5IMOD3.1)
As Test No. 8

Test No. 13 (code RELAP5IMOD3.1)
As Test No. 6
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Test No. 14 (code RELAP5IMOD3.O)
As Test No. 7 with:
No. of nodes in the legs (110 and 120) =37 (searching for neutral stability)

Test No. 15 (code RELAP5/MOD3.O)
As Test No. 14 with:
Time step = 1.0Os

Test No. 16 (code RELAP5IMOD3.O)
As Test No. 14 with:
Time step = 0.25 s

Test No. 19 (code RELAP5IMOD3.O)
As Test No. 9 with:
Pressure control junction 300 closed after 3000 s

ADDITIONAL CASE SERIES

Test No. X1 (code RELAP5IMOD3.O)
As Test No. 1 with:
Structure heat transfer area = 0.0314 m2 (internal diameter =0.1 m,
length = 0.1 m)

Test No. X2 (code RELAP5IMOD3.O)
As Test No. 2 with:
Structure heat transfer area = 0.0314 m2 (internal diameter =0.1 m,
length = 0.1 m)

Test No. X6 (code RELAP5IMOD3.O)
As Test No. 6 with:
Structure heat transfer area = 0.0314 m2 (internal diameter =0.1 m,
length = 0.1 m)

Test No. X14 (code RELAP5/MOD3.O)
As Test No. 14 with:
Structure heat transfer area = 0.0314 m2 (internal diameter = 0.1 m,
length = 0.1 m)
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Tests performed using RELAP5IMOD2 for the
Benchmark Calculation

Nodalization
400

115

113

110

Test No. F2

Cross section of loop components = 1 .26x1 0 -3m2

Hydraulic diameter of loop components = 0.04 m
Overall length of components 100-102-104 and 120-122-124 =0.5 m
Length of components 100, 104, 120, 124 = 0. 1 m
Length of nodes in pipes 102 and 122 = 0.08 m, 0.05 m 0.04 m, 0.05 m, 0.08 m
Length of pipes 110, 115, 130, 135 =5mr
No. of nodes in components 110, 115, 130, 135 =50
R oughness parameter = 10 m r

P ressure in component 400 = 10 5Pa
Initial fluid temperature 293.15 K

Geometry of heat structures: cylindrical
Length of structures = 0.04 m
Thickness = 5x1 0 5m

Thermal conductivity = 100 W/(m 2K)

Volumetric heat capacity = 105 j/(rn K)

47



Initial lower and upper structure temperature = 293.15 K
Final upper structure surface temperature = 293.15 K
Final lower structure outer surface temperature = 303.15 K (after 100 s) 2
Imposed heat transfer coefficient at lower and upper structures = 2500 W/(m K)

Time step = 0.5 s
Initial loop flow rate = 0.1 kg/s
Steady-State Period = 10 s

Test No. F3

Cross section of loop components = 3.1416x1 0 -4m2

Hydraulic diameter of loop components = 0.02 m
Overall length of components 100-102-104 and 120-122-124 = 0.5 m
Length of components 100, 104, 120, 124 = 0.1 m
Length of nodes in pipes 102 and 122 = 0.08 m, 0.05 m 0.04 m, 0.05 m, 0.08 m
Length of pipes 110, 115, 130, 135 =5 m
No. of nodes in components 110, 115, 130, 135 =50
Roughness parameter = 10 7m5
Pressure in component 400 = 10~ Pa
Initial fluid temperature 293.15 K

Geometry of heat structures :cylindrical
Length of structures = 0.02 m
Thickness = 5x10 5m

Thermal conductivity = 100 W/(m 2K)

Volumetric heat capacity = 1 05 J/(m 3K)

Initial lower and upper structure temperature =293.15 K
Final upper structure surface temperature = 293.15 K
Final lower structure outer surface temperature = 303.15 K (after 100 s)
Imposed heat transfer coefficient at lower and upper structures = 2500 W/(m 2K)

Time step = 0.5 s
Initial loop flow rate = 0.2 kg/s
Steady-State Period = 10 s

Test No. F4

Cross section of loop components = 3.1416x1 0 m2

Hydraulic diameter of loop components = 0.02 m
Overall length of components 100-102-104 and 120-122-124 = 0.5 m
Length of components 100, 104, 120, 124 = 0.1 m
Length of nodes in pipes 102 and 122 = 0.08 m, 0.05 m 0.04 m, 0.05 m, 0.08 m
Length of pipes 110, 115, 130, 135 =5 m
No. of nodes in components 110, 115, 130, 135 = 50
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-7
Roughness parameter = 10 mn
Pressure in component 400 = 10 Pa
Initial fluid temperature 293.15 K

Geometry of heat structures :cylindrical
Length of structures = 0.04 mn
Thickness = 5x1 0 5m

2
Thermal conductivity = 100 W/(m K)3
Volumetric heat capacity = 105 J/(m K)

-Initial lower and upper structure temperature =293.15 K
Final upper structure surface temperature = 293.15 K
Final lower structure outer surface temperature = 303.15 K (after 100 s) 2
Imposed heat transfer coefficient at lower and upper structures = 2500 W/(m K)

Time step = 0.5 s
Initial loop flow rate = 0.5 kg/s
Steady-State Period = 10 s

Test No. F5
As Test No. F2 with:
Only 10 nodes in the legs (in place of 100 nodes as in test F2)
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Figure C.la TEST #1 Base Case using RELAP5/MOD3.O
Mass Flow Rates in Legs and TDV junction, 10 nodes per leg,
(Length of Components = 1im, Heated Length =i1m,
Initial Mass Flow Rate=O.1 Kg/s)
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Figure C.1lb TEST #1 Base Case
Fluid Temperatures at Source, Ascending Leg Cell 5,
Sink and Descending Leg Cell 5, conditions as in Figure CAla.
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Figure C.2a TEST #2 Sensitivity of results to heated length and RELAP5IMOD3.O
Mass Flow Rates in Legs and TDV junction, 10 nodes per leg,
(Length of Components = 1im, Heated Length = 0.5m,
Initial Mass Flow Rate=0.1 Kg/s)
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Figure C.2b TEST #2 Sensitivity of results to heated length
Fluid Temperatures at Source, Ascending Leg Cell 5,
Sink and Descending Leg Cell 5, conditions as in Figure C.2a.
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TEST #3 Sensitivity of results to heated length and RELAP5/MOD3.O
Mass Flow Rates in Legs and TDV junction, 10 nodes per leg,
(Length of Components = 1im, Heated Length = 0.1m,
Initial Mass Flow Rate=O. 1 Kg/s)
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TEST #3 Sensitivity of results to heated length
Fluid Temperatures at Source, Ascending Leg Cell 5,
Sink and Descending Leg Cell 5, conditions as in Figure C.3a.
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Figure C.4a TEST #4 Sensitivity of results to nodes number and RELAP5/MOD3.O
Mass Flow Rates in Legs and TDV junction, 25 nodes per leg,
(Length of Components = 0.4m, Heated Length = 0.1lm,
Initial Mass Flow Rate=O.1 Kg/s)
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Figure C.4b TEST #4 Sensitivity of results to nodes number
Fluid Temperatures at Source, Ascending Leg Cell 5,
Sink and Descending Leg Cell 5, conditions as in Figure C.4a.
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TEST #5 Sensitivity of results to nodes number and RELAP5IMOD3.O
Mass Flow Rates in Legs and TDV junction, 50 nodes per leg,
(Length of Components = 0.2m, Heated Length = 0. 1 m,
Initial Mass Flow Rate=0.1 Kg/s)
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Figure C.5b TEST #5 Sensitivity of results to nodes number
Fluid Temperatures at Source, Ascending Leg Cell 5,
Sink and Descending Leg Cell 5, conditions as in Figure C.5a.
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TEST #6 The recovery of unstable behavior and RELAP5IMOD3.O
Mass Flow Rates in Legs and TDV junction, 90 nodes per leg,
(Length of Components =0.l11m, Heated Length = 0.1lm,
Initial Mass Flow Rate=0. 1 Kg/s)
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TEST #6 The recovery of unstable behavior
Fluid Temperatures at Source, Ascending Leg Cell 5,
Sink and Descending Leg Cell 5, conditions as in Figure C.6a.
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TEST #6 The recovery of unstable behavior
Source Fluid Temperature vs. Mass Flow Rate,
Conditions as in Figure C.6a.
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Figure C.6d TEST #6 The recovery of unstable behavior
Sink Fluid Temperature vs. Mass Flow Rate,
Conditions as in Figure C.6a.
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TEST #7 The recovery of unstable behavior starting from (almost) rest
and RELAP5IMOD3.O
Mass Flow Rates in Legs and TDV junction, 90 nodes per leg,
(Length of Components =0.1 1 m, Heated Length = 0.1 m,
Initial Mass Flow Rate = 0.001 Kg/s)
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Figure C.7b TEST #7 The recovery of unstable behavior starting from
Mass Flow Rate in Ascending Leg, 90 nodes per leg,
(Length of Components =0.l11m, Heated Length = 0.1lm,
Initial Mass Flow Rate = 0.001 Kg/s)
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Figure C.7c TEST #7 The recovery of unstable behavior starting from (almost) rest
Fluid Temperatures at Source, Ascending Leg Cell 5, Sink and
Descending Leg Cell 5, conditions as in Figure C.7a.
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Figure C.7d TEST #7 The recovery of unstable behavior starting from (almost) rest.
Fluid Temperatures at Source and Sink, conditions as in Figure C.7a.
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Figure C.7e TEST #7 The recovery of unstable behavior starting from (almost) rest
Source Fluid Temperature vs; Mass Flow Rate,
Conditions as in Figure C.7a.
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Figure C.7f TEST #7 The recovery of unstable behavior starting from (almost) rest
Sink Fluid Temperature vs. Mass Flow Rate, conditions as in Figure C.7a.
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TEST #14 Search for Neutral Stability and RELAP51MOD3.O
Conditions as in TEST #7
Mass Flow Rates in Ascending Leg and toward TDV, 37 nodes per leg,
(Length of Components =0.1l1m, Heated Length = 0.1lm,
Initial Mass Flow Rate = 0.001 Kg/s)
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TEST #14 Search for Neutral Stability
Fluid Temperatures at Source and Sink conditions as in Figure C.8a.

Figure C.8b
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TEST #14 Search for Neutral Stability
Source Fluid Temperature vs. Mass Flow Rate,
Conditions as in Figure C.8a.
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Figure C.8d TEST #14 Search for Neutral Stability.
Sink Fluid Temperature vs. Mass Flow Rate, conditions as in Figure C.8a.
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Figure C.9b TEST #19 Sensitivity of results of TDV isolation at 3000s
Flow rates to/from TDV, Test #9 With valve left open up to 9000s
Conditions as in Figure C9.a
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Figure C.9c TEST #19 Sensitivity of results of TDV isolation at 3000s
Flow rates in Ascending Leg, Comparison of Tests #9 and #19
Conditions as in Figure C9.a
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Figure C.10 TEST #14 Search for Neutral Stability, conditions as in TEST #7
Mass Flow Rates in Ascending Leg using RELAP5/MOD3.O and MOD2,
37 nodes per leg, Length of Components =0.1llm, Heated Length = 0.1lm,
Initial Mass Flow Rate = 0.00 1 Kg/s
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APPENDIX D

INPUT DECK FOR WELANDER'S PROBLEM
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*Natural Circulation Input deck for Welander's Problem

* Case: alpha = 338.94-epsilon =2.3 90 Nodes per Leg

100 new transnt

*time steps
*mint maxt mie mae

201 200. 1.e-7 5.e-2 07003 500 5000 5000
202 1000. 1.e-7 5.6-2 07003 500 5000 5000
203 l.e6 1.e-7 S.e-2 07003 500 5000 5000

* minor edit requests

*pressure

;0 0000 *lwrpeu

301 p 100010000 * lower plenum

: fluid temperatures
303 tempf 100010000 * lower plenum
304 tempf 110010000 * ascending leg 1
305 tempf 110050000 * ascending leg 5
306 tempf 110100000 * ascending leg 10
310 tempf 130010000 * upper plenum
307 tempf 120100000 * descending leg 10
308 tempf 120050000 * descending leg 5
309 tempf 120010000 * descending leg 1

*mass flow rates

31 foj 10100 *lwe lnmt sedn o

311 mflowi 100010000 * lower plenum to aescending leg

----------------------------------------------------

* trips
----------------------------------------------------

*pressure control

527 time 0 ge null 0 -1. 1 *
528 time 0 ge null 0 1.e06 I1*
603 527 xcr 528 n *

*heater temperature table
513 time 0 ge null 0 -1.e06 1 * start of heat, and cool.

: cooler temperature table
514 time 0 go null 0 -l.e06 1 * start of beat, and cool.

*heater htc table
515 time 0 ge null 0 -1.e06 1 * constant htc

*cooler htc table
516 time 0 ge null 0 -l.e06 1 * constant htc

*end trip signal
512 time 0 ge null 0 10000;. 1 * end of problem
600 512 * end of problem
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*_ hydraulic components
-- - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - ---

*lower plenum
1000000 low.ple branch
1000001 2 1
1000101 7.854e-03 0.1000 0. 0.
1000200 000 1.00e5 0.10465.6
1001101 100010000 110000000 0.
1002101 100000000 120000000 0.
1001201 0.99 0. 0.
1002201 -0.99 0. 0.

0. 0.0000 1.e-7 0.100 00000
2.675e6 0.
0. 0. 000000
0. 0. 000000

* ascending leg
1100000 asc.leg pipe
1100001 90
1100101 7.854e-03 90
1100301 0.111111111111 90
1100401 0. 90
1100601 90.0 90
1100801 1.Oe-7 0.0 90
1101001 00000 90
1101101 000000 89
1101201 000 1.0005 0.106743e6 2.675e6 0.0
1101300 1
1101301 0.99 0.000 0. 89

: descending leg
1200000 desc.leg pipe
1200001 90
1200101 7.854e-03 90
1200301 0.111111111111 90
1200401 0. 90
1200601 90.0 90
1200801 1.0.-7 0.0 90
1201001 00000 90
1201101 000000 89
1201201 000 1.00.5 0.102557e6 2.675e6 0.0
1201300 1
1201301 -0.99 0. 0. 89

0. 90

0. 90

*upper plenum
1300000 upp.ple branch
.1300001 2 1
1300101 7.854e-03 0.1000 0. 0.
1300200 000 1.O0eS 0.10465.6
1301101 110010000 130000000 0.
1302101 120010000 130010000 0.
1301201 0.99 0. 0.
1302201 -0.99 0. 0.

0. 0.0000 1.e-7 0.100 00000
2.675e6 0.
0. 0. 000000
0. 0. 000000

* pressure control for steady state
3000000 pc.vlv valve
3000101 130010000 400000000 7.85de-03 0.1 0.1 000100 1. 1. 1.
3000201 1 0. 0. 0.
3000300 mtrvlv
3000301 603 528 0.25 1.

* pressure control volume
4000000 pc.vol tmdpvol
4000101 0. 0.5 10. 0. 0. 0. 4.e-5 0. 00000
4000200 000
4000201 0. 1.0e5 0.084e6 2.675e6 0.
4000202 1. 1.0eS 0.084e6 2.675e6 0.
4000203 1.e6 1.0.5 0.084e6 2.675e6 0.
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* tructures
------------------------

*lover plenum beaters and upper plenum coolers
11001000 2 11 2 1 0.05
11001100 0 1
11001101 10 0.0501
11001201 1 10
11001301 0. 10
11001400 0
11001401 293.15 11
11001501 -900 0 1900 1 0.10
11001502 -901 0 1901 1 0.10 2
11001601 100010000 00000 3902 1 0.10
11001602 130010000 00000 3903 1 0.10 2
11001701 0 0.00 0.0 0.0 1
11001702 0 0.00 0.0 0.0 2
11001901 0. 100. 100. 0. 0. 0. 0. 1. 2

----------------------------------------------------

*material tables
----------------------------------------------------

20100100 tbl/fctn 1 1
----------------------------------------------------

b eat structure conductivity
----------------------------------------------------

20100101 1.0 100.
20100102 5000.0 100.

----------------------------------------------------

b eat structure volumetric heat capacity
----------------------------------------------------

20100151 1.0 1.e5
20100152 5000.0 1.eS

----------------------------------------------------

*general tables
----------------------------------------------------

*heater temperature
20290000 tem 513
20290001 -1.0 293.15
20290002 0. 293.15
20290003 0.1 303.15
20290004 1.e6 303.15

*cooler temerature
20290100 te= 514
20290101 -1.0 293.15
20290102 0. 293.15
20290103 100.1 293.15
20290104 1.e6 293.15

: heater htc
20290200 htc-t 515
20290201 -1.0 20000.
20290202 0. 20000.
20290203 0.1 20000.
20290204 10.0 20000.
20290205 1.e6 20000.
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*cooler htc
20290300 khtc-t 516
20290301 -1.0 20000.
20290302 0. 20000.
20290303 0.1 20000.
20290304 10.0 20000.
20290305 l.e6 20000.

----------------------------------------------------

*control variables
----------------------------------------------------

*none
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