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SUMMARY:

RELAP5/110D2 is being used by Technology Division for the calculation of
certain small break loss-of coolant accidents (SfLOfCA) and pressurised
transients in the Sizewell 'B' PWR.

To assist in validating RELAP5/MOD2 for the above Application, the code
is being used to model a number of small LOCA ind pressurised fault
simulation experiments carried out in integrAl. test facilities. The
present report describes a RELAP5/MOD2 analysis of nn intermediate break
LOCA test in the LOFT facility. This test was designed to simulate the
rupture of a single 14 inch diameter accumiilator injection line in a
commercial PWR with a 25% break in the broken loop cold leg. Early in
the transient the pumps were tripped and tile TIPIS injection initiated;
towards the end of the transient, accumulator and 1,PtS injection began.

RELAP5/MOD2 gave reasonably accurate predictions ofT the system thermal
hydraulic behaviour but failed to accurately calctilate the core dryout
which occurred due to boil-off prior to acctimilator Iinjection. The error
is due to the failure to calculate the correct core void distribution
during this period of the transient. A separate calculction using the
RELPIN code using hydraulic data from the REI.AP5 analysis gave
significantly improved predictions of the core cdryout. However, the peak
clad t'emperature was underpredicted, it is believed thant the error is due
to the fact that the core liquid inventory in this boildown was
overpredicted in the RELAP5/MOD2 calculation.

A sensitivity calculation showed that when the core void distribution and
core inventory were well predicted, both REIJAP and REIPIN accurately
predict fuel clad temperatures.

The work in this report was carried out on behalf of PPG and HSD under
Agreement TSPBSW200l, PPG Task G212(22G).
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1. INTRODUCTION

The RELAP5/MOD2 code, Reference 1, is being used by Nuclear Electric
for the calculation of Small Break Loss of Coolant Accidents (SBLOCA)
and pressurised transient sequences in the Sizewell 'B' PWR. To
validate the code for this purpose, it has been used to model
experiments of this type of transient carried out in various integral
test facilities. A number of these studies hanve been for experiments
carried out in the LOFT experimental reactor, Reference 2, and are
described in References 3, 4, 5, 6 and 7.

To assist in assessing the capability of RELAP5/110D2, the LOFT test L5-1
has been selected for analysis. This test was designed to simulate the
rupture of a single 14 inch diameter accumulator injection line in a
commercial PWR, equivalent to a 25% area break in the broken loop cold
leg. Early in the transient the pumps were tripped and the HPIS
injection initiated; towards the end of the transient, accumulator and
LPIS injection began.. It should be noted that for Sizewell 'B' analyses
a 25% break is classified as Thqrge, whereas in this report, as in the
external literature, this break size is referred to as intermediate.

The work reported here was performed by Technology Division under ICA
TSPBW2001, PPG Task G212, Subtask 22G.

2. TEST DESCRIPTION

The sequence of events in the test L5-1 is given in Table 2. *A brief
description of the test is given below. A more complete description
may be found in Reference 2.

The test was initiated from a steady state condition by operating a
quick-opening blowdown valve in the co~ld leg. The primary pressure fell
quickly, with the reactor trip occurring at. 0.1.7s when the hot leg
pressure fell below 14.2MPa. Coincident with r&!actor trip, the main
feedwater pump was tripped and the main stenm control valve started to
close. HPIS injection was initiated when the hot leg pressure reached
lO.6MPa, accumulator" injection at 1.66HPa and LPIS at l.OBMPa. The
primary coolant pumps were manually tripped in the test at 4s and the
coastdown completed by 19s when the flywheels wpre decoupled.

3. DESCRIPTION OF THE CODE INPUT MODEL

The code version used for the calculations reported here was RELAP5/MOD2
cycle 36.05 version E05. The input model was based on that previously
used by Technology Division for the analysis of LOFT small break tests
LP-SB-O1, LP-SB-02 and LP-SB-03, loss of feed test LP-FW-01 and the
loss -of -offs ite-power anticipated transient without trip test L9-4
(References 3, 4, 5, 6 and 7). The noding diagram is shown in Figure
1. Changes to the basic input deck were as follows.

1. Steady state controls were set for the loop mass flow, SG
pressure and SG level. These were deleted before the transient
was run.
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2. The broken loop was modified with the addition of the quick
opening break valve and the deletion of the components associated
with the steam generator simulator. This simulator is located
in the broken loop and is used for some tests but was detached
'from the facility for L5-1. Subcooled and two phase discharge
coefficients for the break, Cdl and Cd2 were both set to 1.0.

3. Feedwater to the steam generator was ramped down at the
appropriate rate commencing at the time of reactor trip. The
main steam isolating valve was set to start closing at the
prescribed rate at the time of the reactor trip. Components
representing the auxiliary feedwater were removed from the deck.

4. The reactor trip was set to occur when the intact loop hot leg
pressure fell below 14.2MPa.

5. Because the primary circuit puimps are coupled to the electric
motors via fluid drives, the effective moment of inertia is
difficult to estimate. For this reason the pump speeds were
input from the data up to 67s when the PCP-l pump was allowed
to spin freely and the PCP-2 pump was locked.

6. An accumulator and LPIS components were added to the data. These
systems were connected to the HPIS injection flow path which
discharges into the intact loop col.d leg. Pressure setpoints
for the accumulator, LPIS and HPIS injection were checked against
the test conditions.

7. Core power up to and following trip was specified from data from
the test as in the calculation in Reference 8.

After a steady state had been successfutlly achieved, the deck was
processed by PYGMALION, Reference 9, to provide a full input dataset
in which all the initial conditions were set at: their converged steady
state values. A summary of the calculated stendy state is given in Table
1. The calculated steady state is in excellent agreement with the data
with the exception of the steam generator feed, and hence steam flow.
A calculated heat balance using the measurements suggest that,
neglecting heat losses, the steam flow shotild be. 23.3±+2.0kg/s.

4. COMPARISON OF RELAP5/MOD2 RESULTS WITH EXPERIMENT

Primary and secondary pressure histories are shown in Figure 2. Primary
pressure falls rapidly until the subcooled break flow ends at 10s. The
measured pressure then falls more slowly uintil the loop seal clears at
about 50s. Up to this time, the RELAP5 calcuilated pressure is in good
agreement with the data. However, in the calculantion the loop seal does
not clear until about 64s and the pressure continiies to be held up until
that time. After the loop seal has cleared, the calculated pressure
falls more quickly than in the experiment and at 180s there is again
good agreement with the data. The time of initiation of accumulator
injection is, therefore well predicted. The accumulator and LPIS flow
maintain the pressure until the end of the transient at 300s.

There is good agreement between the calculated and measured steam
generator pressure. The slight difference may be attributed to either
a small error in the calculated inventory or a slight mismatch in the
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timing of the closing of the feedwater valve and the steam control
valve.

The calculated break mass flow is compared with experiment in Figure
3. The period of subcooled discharge is predicted to end at 13s. There
is good agreement in the main, with the flow being slightly
overpredicted from 40 to 80s, evidently as a result of the slight
overprediction in pressure associated with the error in predicting the
timing of the loop seal clearance, noted above. The primary system mass
inventory is shown in Figure 4; there is a slight discrepancy in the
initial inventory which is probably the result of approximations in the
input data but is within the uncertainty of the measured value which
was reported as typically ± 300kg In previous tests (Reference 4). After
allowance for this offset, the calculated inventory follows the
measurements accurately for the first 50s, after which the calculated
break flow is evidently too high. From this point onwards, Figure 4
suggests that the break flow Is slightly overpredicted until accumulator
injection commences. It appears that the largest overprediction in the
breakf low occurs during the two-phase discharge period from 50 to 80s.

Figure 5 shows the calculated collapsed liquid level for the loop seal
upstream and downstream sides. There are no readily comparable data
other than differential pressure measuirements which are also shown in
Figure 5 and have been arbitrarily scaled. Althoiigh the data are noisy,
it appears that the loop seal begins to clear at about 25s and is
completely clear at about 45s. In contrast, the calculation predicts
loop seal clearance late, starting at about 50s and completing at 64s.

The collapsed liquid level in the reactor pressure vessel is shown in
Figure 6. Figure 7 shows the collapsed liquid level in the core region.
Conductivity probe measurements of the local. void fraction in the core
are reported in Reference 2. These data have been used to derive the
measured collapsed liquid level curves shown in Figure 7. The large
uncertainties in the calibration constants for the probes have been used
to deduce the uncertainty bands shown in Figure 7. However, comparison
of these data with the known elevation of the core dryout, deduced from
thermocouple data, suggests that even the lower bound curve nay
considerably overestimate the collapsed core liquiid level, implying that
these curves should be considered only indicative of trends (see below).
The measurements suggest that RELAP5 underestimates the liquid inventory
in the core after loop seal clearing. After loop seal clearing, the
data suggest a significant recovery in the core liquid level which is
not captured in the RELAP5 simulation. The rate of core boildown
appears well predicted prior to accumulator injection after which the
rate of refilling of the core is underpredicted.

Figure 8 shows the RELAP5 calculated void fraction in the core. Note
that from l0s the void fraction in the top core volume is lower than
the volume below it. This reverse profile is accentuated by reverse
flow through the core which is most significant from 35 to 60s (see
Figure 9). During this period, liquid draining from the hot leg flows
down through the core and up the downcomer where it augments the flow
arriving at the break from the intact loop cold leg. The void gradient
in the core slowly increases and the top most core volume is completely
dry at 169s. From 80s onwards the calculated void fraction in the lowest
core volume exceeds 0.4. This is because of significant steam
generation due to the heat transfer from the metalwork in the lower
plenum, and flashing due to depressurisation. According to the RELAPS
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analysis a void fraction of 1.0 occurs only in the top half of the core
and liquid quickly reappears at these levels when accumulator injection
commences at 189s.

In Figures 10 to 13 the calculated fuel clad surface temperatures are
compared with the measured values. RELAPS predicts only a brief dryout
of the top half of the core, for a period of about 30s, whereas the
measurements indicate dryout extending over the whole core for a period
up to l05s. The predicted peak clad temperature is 533K compared to
the measured value of 700K.

Figures 14 and 15 compare measured and calculated HNSI, LHSI and
accumulator injection flow rates. The 1111S1 f low rate is accurately
modelled. The LHSI flow is calculated to begin 3s later than in the
experiment. The flow steadily increases to 2.5kg/s from an initial
level of l.lkg/s: data indicate an initial peak of 1.75kg/s falling to
about 1.0kg/s. The error in LHSI flow rate is probably due to the
calculated primary system pressure being underpredicted by about
2.0 lO5Pa from 220s onwards. Accumulator injection (Figure 15) is
predicted to commence at 189s, compared with 185s seen in the test.
Comparison of the calculated accumulator flow rate with that deduced
from the accumulator level measurements indicates that the flow rate
is slightly underpredicted and the duration of the first period of
injection is also underestimated (24s compared to 40s). The accumulator
flow is predicted to cycle on and off whereas the measurements indicate
continuous injection.

5. CALCULATION OF FUEL TEMPERATURES DURING CORE UNCOVERY

It has been found in previous similar stuidios (References 10 and 11),
that owing to the coarse nodal representation of the core, RELAP5 is
generally unable to give an accurate representation of the core void
fraction distribution and core liquid level even when the core liquid
inventory is accurately calculated. Therefore, the RELPIN code
(Reference 12) has been developed. REI.PTN extracts core hydraulic data
from a RELAP5 calculation, calculates a new void fraction profile for
the core using a drift flux type model. Fuel clad temperatures are then
calculated assuming single phase steam cooling above the dryout front.
The RELPIN calculational route gives a more. conservative calculation
of fuel pin temperatures in the exposed par~t of the core than a
standalone RELAP5 analysis.

Fuel clad temperatures calculated using RETIPTN with core hydraulic data
from RELAPS are compared with the measuiremnnts in Figures 10 to 13.
Peak fuel clad temperature is now predicted to be 660K, compared with
the measured value of 700K. Dryout is predicted to commence at 133s
and the quench to be completed at 217s. The predicted heatup rat e is
in good agreement with the measurements, the slight differences are due
to the cell positions not coinciding exactly with the measurement
points. The calculated period of dryout is still slightly less than
the measurements indicate at all levels in the core, hence peak
temperatures are underpredicted. Figure 16 compares the dryout level
calculated by RELPIN with that deduced from thermocouple data and shows
quite clearly that the mixture level has been overpredicted.
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6. SENSITIVITY STUDIES

The RELAP5/MOD2 calculation, discussed above is felt to give a
reasonable simulation of the L5-1 test. However, two areas are evident
where the predictions may be usefully improved, these being the
calculated primary pressure and the calculated dryout level in the core.

Several sensitivity studies were carried out to investigate the
significance of uncertainties in key parameters. The base case
calculation described above was carried out on the Harwell Cray2
computer. The sensitivity calculations, along with a base case
calculation, were carried out on a SUN workstation using a slightly
different version of RELAP5/MOD2. It was established that the base case
calculations on the workstation and the Cray gave practically identical
results.

6.1 Break Flow

Although a number of factors influence the calculated rate of fall of
the primary pressure, the break flow rate is often found to be the key
parameter. Frequently measurements of the break flow show large
fluctuations and it is difficult to quantify accurately the primary
inventory at any time. RELAP5 calculations were carried out with a
range of assumed values for Cdi and Cd2 and the results showed that the
course of the L5-1 transient was relatively insensitive to this
parameter. Adoption of a value of 1.2 for Cd1 and Cd2 resulted in the
calculated primary pressure falling slightly more rapidly than in the
experiment after 70s and also resulted in the time of clearing of the
loop seal being advanced from 64s to 60s, n minor improvement. The
time of core uncovery was similarly advanced but there was no change
in the severity of the predicted uncovery. The more rapid calculated
depressurisation also resulted in the predicted time of accumulator
injection being brought forward to 158s, in worse agreement with
experiment than was achieved in the base case.

6.2 Core Bypass Flows

In the LOFT pressure vessel there are several flow paths that allow flow
to bypass the core. The four most significant paths are modelled in
the RELAP5 simulation. The bypass path throiigh the filler gap allows
the primary fluid to flow from the cold leg nozzle to the hot leg nozzle
(Figure 1). Similarly there i s a leakage path from the downcomer to
the hot leg nozzle. There are several. leakage paths from the lower
plenum to the upper plenum, which are luimped together as a single core
bypass in the RELAPS model (component 235). Finally, in the broken
loop, leakage between the hot leg and the cold leg through the ref lood
assist bypass valves is represented using junction 375.

In setting up the steady state calculation the flow resistances for the
four bypasses were adjusted to give flows agreeing approximately with
those quoted in Reference 13.

A sensitivity calculation was carried out in which all of the steam
leakage paths, i.e. all except the one designated "core bypass", were
closed. This brought the calculated time of loop seal clearing into
agreement with experiment. However, there was no improvement - in the
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predicted depressurisation rate after 40s, indicating that in the base
case calculations the late clearing of the loop seal was not solely
responsible for the errors in the depressuirisation rate. Although the
minimum elevation of the collapsed liquid level in the RPV during
boildown was predicted to be lower by only 50mm in the sensitivity
calculation, the peak clad temperature was higher by about 40K. This
sensitivity of peak clad temperature to the calculated core collapsed
liquid level highiights an inherent uncertainty in the RELAF5 predicted
peak clad temperatures in boildown transients of this type.

6.3 Core Filler Gap Inlet Loss Coefficients

In a previous analysis of LOFT test L5-1 using RELAPS/MOD2 carried out
at the Korea Nuclear Safety Centre (Reference 14), peak clad
temperatures were better predicted than in the present analysis.
Examination of the -KNSC input deck indicated a number of differences
from the deck used in the present analysis. Each difference has been.
systematically investigated and only one change has been identified
which improves the present predictions.

In the base case calculation the loss coefficients at the inlet at the
top of the filler gap (volume 223, Figure 1) Are set at 52.0 which is
the value used by the INEL originators of the deck. The KNSC calculation
used a value of 15.0. A sensitivity calculation was carried out in which
these loss coefficients were set to zero. Timings of the main events
are shown in Table 2. The predicted pressure, break flow and primary
inventory were similar to the base case. The collapsed liquid level
in the RPV, Figure 17, shows a slightly more severe iincovery than the
base case while the core void profile, Figure 18, shows that from 170s
until recovery the core is completely empty. Consequently, RELAP
predicts a core heat-up and peak clad temperatuires which are in much
better agreement with the data, Figures 19-22. A RELPIN calculation
is also shown which overpredicts peak clad temperatures. This is due
to the delay in predicting accumulator injection, Figure 23. This
Figure also suggests that the uncovery is overpredicted.

The significant difference between the base case calculation and this
sensitivity calculation was an increase i~n the. flow out of the top of
the filler gap from 40s onwards. This Increase in flow was drawn mainly
from the downcomer and reduces the steam flux from the lower plenum into
the core, and from 110s to 150s there was A liquitd flow out of the bottom
of the core (c.f. a steam flow into the core. during the same period of
the base case). The combined effect of the lower collapsed liquid level
and the reduction in the steam flow through the core, resulted in a more
severe core dryout.

Although it is likely that the overprediction of core uncovery could
be reduced by adjustment of the 'loss coefficients at the filler gap
inlet, this has not been attempted.
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7. DISCUSSION

The present base case analysis of the LOFT intermediate break test L5-1
used RELAP5/MOD2 cycle 36.05 version E05. The analysis gave a
satisfactory representation of the depressurisation rate and system mass
inventory but peak clad temperatures were about 150K lower than
measured. Previous analyses using RELAPS/MODI (References 8 and 13)
also successfully predicted the main features of the transient and gave
a better prediction of peak clad temperatures.

The present calculation showed a uniform core void fraction distribution
during the boildown period as seen in previous similar analyses with
RELAP5/MOD2 (Reference 10). This tends to confirm earlier conclusions
that RELAP5/MOD2 cannot be used to reliably calculate the core dryout
elevation, and core heatup above the dryout level, for core boildown
sequences using the current nodalisation. Failure to calculate the
correct void fraction distribution and dryout hehaviour is believed to
be largely due to numerical approximations in the implementation of
interphase drag modelling and as a consequence of representing the core
by a small number of nodes (Reference 10). Croxford (Reference 15)
showed a significant improvement in the predicted void profile in going
from 6 to 24 cells. Such fine noding would be impractical for plant
calculations and the RELPIN approach has been developed as an
alternative. The RELPIN calculation described above (using 12 cells)
provided a better prediction of the dryout and peak clad temperatures.
Peak clad temperatures were still underpredicted, but this is due to
an overestimate of the liquid inventory in the core during boildown in
the RELAP5 calculation.

A sensitivity calculation showed that the core void fraction was very
sensitive to the flow in the RPV filler gap. This is a feature unique
to the LOFT test facility and its complex geometry and an absence of
measurements prevent it being modelled accurately. In the sensitivity
calculation, in which the flow resistance of the filler gap was reduced,
the modified flow conditions in the filler gap resulted in the core
uncovery being slightly overpredicted. Note that in this case the
RELPIN predictions for the fuel clad temperatures were very good, the
overprediction of peak clad temperatures being due to the late
prediction of accumulator injection. In prnctice, the flow resistance
of the filler gap is not known with any confidence. Overestimation of
*this parameter may well be responsible for the underestimation of the
extent of the core uncovery in the base case cnlctilation.

8. CPU TIME

The base case calculation was performed uising RELAP5/MOD2 cycle 36.05,
UK version E05, on a Cray 2 computer. The calculation used 607s of CPU
time for the 300s of problem time. The repeat of the base case
calculation on a SUN Sparc workstation required a CPU time of 6640s, for
300s problem time.
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9. CONCLUSIONS

1. This report has described the resulIts of a RELAP5/MOD2
calculation of LOFT test L5-1, which simulated a 25% cold leg
break loss of coolant accident with operation of the high head
safety injection CHHSI), low head safety injection (LHSI) and
accumulator injection systems.

2. The calculation gives a reasonable simulation of the Loft L5-1
test. Depressurisation rate, break flow, primary coolant
inventory and emergency core cooling system injection flow rates
were all well predicted.

3. RELAP5/M0D2 did not give a realistic prediction of the liquid
distribution within the core during the boildown. Consequently
the fuel temperature excursion due to uncovery was not predicted
by the code. Failure to calculate the correct void fraction
distribution and dryout behaviour is believed to be due to
numerical approximations in the implementation of interphase drag
modelling and as a consequence of representing the core by a
small number of nodes.

4. A supplementary calculation using the RELPIN code using core
inventory data from RELAP5/MOD2 gave significantly improved
predictions of fuel clad temperatures. Residual underprediction
of peak clad temperatures is apparently due to an overprediction
of liquid inventory in the core during boildown in the
RELAP5/MOD2 calculation.

5. The predicted core uncovery was found to he sensitive to the flow
behaviour of the RPV filler gap. Since this feature is unique
to the LOFT test facility, it is unlikely that plant calculations
will exhibit similar behaviour. Errors i~n estimating the filler
gap resistance may be responsible for the underestimation of the
extent of the core uncovery in the REI,AP5/MOD2 calculation.
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Table 1 - Initial Steady State Conditions

Parameter Measured Value RELAP

Core power (MW) 45.9+±1.2 45.9
Hot leg pressure (MPa) 14.93+±0.08 14.92
Hot leg temperature (K) 579.1+ 0.9 579.4
Cold leg temperature (K) 552.3+±0.9 551.5
Mass flow rate (kg/s) 308.2+ 4.0 308.2
Pressuriser level (in) 1.13 +0.03 1.14
SG secondary temperature (K) 537.8+ 0.8 538.5
SG pressure (MPa) 5.05+±0.06 5.11
SG l~evel (in) 3.22+ 0.02 3.22
SG feed flow (kg/s) 25.3+ ±0.06 23.86

Table 2 - Sequence of Events

Event Measiirement Base case Sensitivity
(fill gap)

Time (s) Time (s) Time (s)

Cold leg QOBV opened 0.0 0.0 0.0
Reactor trip (14.2MPa) 0.17+0.01 0.05 0.10
HPIS trip (lO.2MPa) 0.4+0.1. 0.5 0.45
Subcooled break flow ended 10.5 +0.5 13.0 13.0
Pressuriser indicated empty 15.5 +0.5 11.0 11.0
Loop seal cleared 50.0 4-5 64.0 64.0
Primary pressure below secondary 53.0 ±E 1 .0 41.3 41.6
Clad temperature excursion started 108.4+ 1.0 169.0 141.0
Accumulator trip (l.66MPa) 185.8+0.5 1.89.0 199.0
LPIS flow initiated 201.0 + 0.5 204.0 212.8
Clad Quench complete 213.0 + 1.0 200.0 280
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