

Tennessee Valley Authority, Post Office Box 2000, Soddy-Daisy, Tennessee 37384-2000

August 30, 2006

TVA-SQN-TS-05-09

10 CFR 50.90

U.S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, D. C. 20555-0001

Gentlemen:

In the Matter of) Docket No. 50-328 Tennessee Valley Authority)

SEQUOYAH NUCLEAR PLANT (SQN) - UNIT 2 - SUPPLEMENT TO TECHNICAL SPECIFICATION (TS) CHANGE 05-09 - APPLICATION FOR TECHNICAL SPECIFICATION IMPROVEMENT REGARDING STEAM GENERATOR TUBE INTEGRITY AND DELETION OF LICENSE CONDITION

- References: 1. NRC letter to TVA dated June 06, 2006, "Sequoyah Nuclear Plant, Unit 2 - Request for Additional Information Regarding Steam Generator Tube Integrity (TSTF-449) (TAC No. MD0145)"
 - 2. TVA letter to NRC dated August 7, 2006, "Sequoyah Nuclear Plant (SQN) - Response to Request for Additional Information (RAI) Regarding Steam Tube Integrity (TSTF-449) (TAC No. MD0145)"

By Reference 1, NRC staff requested additional information to support staff review of SQN TS Change 05-09. TVA submitted the requested information by Reference 2 and has enclosed new TS and TS Bases markups to supplement the information provided by Reference 2. The Reference 1 letter suggested several changes to TVA's TS Change 05-09 that were discussed during a telephone conference on June 6, 2006. To provide for ease of staff review, the enclosed markups replace, in their entirety, the markups previously provided by TVA's February 15, 2006, submittal. U.S. Nuclear Regulatory Commission Page 2 August 30, 2006

Enclosure 1 provides a summary of the changes. Enclosure 2 provides a new set of TS markups. Enclosure 3 provides a new set of TS Bases markups.

TVA's schedule for implementing TS Change 05-09 continues to be during the Unit 2 Cycle 14 refueling outage (outage scheduled to begin in November 2006). Accordingly, TVA requests NRC approval by mid-October to allow for TS implementation during the Unit 2 outage.

TVA has determined that the enclosed changes do not affect the original evaluation of proposed changes and TVA's review for the no significant hazards considerations provided in TVA's original February 15, 2006, submittal.

Additionally, in accordance with 10 CFR 50.91(b)(1), TVA is sending a copy of this letter and enclosures to the Tennessee State Department of Public Health.

There are no commitments contained in this submittal.

If you have any questions about this change, please contact Jim Smith at 843-6672.

I declare under penalty of perjury that the foregoing is true and correct. Executed on this 30th day of <u>August, 2006</u>.

Sincerely,

P. L. Pace Manager, Site Licensing and Industry Affairs

Enclosures:

1. Summary of Changes

2. New Technical Specification Page Markups

3. New Technical Specification Bases Page Markups

cc: See page 3

U.S. Nuclear Regulatory Commission Page 3 August 30, 2006

1-----

Enclosures cc (Enclosures): Mr. Lawrence E. Nanney, Director Division of Radiological Health Third Floor L&C Annex 401 Church Street Nashville, Tennessee 37243-1532 Mr. Douglas V. Pickett, Senior Project Manager U.S. Nuclear Regulatory Commission

U.S. Nuclear Regulatory Commission Mail Stop 08G-9a One White Flint North 11555 Rockville Pike Rockville, Maryland 20852-2739

ENCLOSURE 1

R. - - - T

TENNESSEE VALLEY AUTHORITY (TVA) SEQUOYAH NUCLEAR PLANT (SQN) SUPPLEMENT TO SQN UNIT 2 TECHNICAL SPECIFICATION (TS) CHANGE 05-09

SUMMARY

By letter dated February 15, 2006, TVA submitted TS Change 05-09 that proposed changes to SQN Unit 2 TSs related to steam generator (SG) tube integrity. TS Change 05-09 is based on Technical Specification Task Force (TSTF) Standard Technical Specification Change Traveler, TSTF-449, "Steam Generator Tube Integrity," Revision 4, and is approved for use by NRC's Consolidated Line Item Improvement Process (CLIIP).

By letter dated June 6, 2006, NRC requested additional information to support ongoing staff review of TS Change 05-09. By letter dated August 7, 2006, TVA provided responses to the staff's request for additional information. The additional information supports NRC technical staff's suggestions for several refinements to TS Change 05-09. The enclosed TS change markups for TS Change 05-09 are the result of discussions with the staff during a telephone conference on June 6, 2006. Note that for ease of staff review, TVA is submitting new TS and Bases markups, in their entirety, to replace the markups previously provided in TVA's TS Change 05-09 submittal dated February 15, 2006.

Enclosure 2 provides the new TS markups for SQN TS Change 05-09. The TS markups reflect changes that are within the Administrative Section of SQN Unit 2 TSs. The most notable change is the addition of a 90-day reporting requirement that is described in NRC Generic Letter (GL) 95-05 for application of voltage-based alternate tube plugging criteria. Because NRC GL 95-05 voltage based criteria is applicable to SQN Unit 2 and the Unit 2 SG tube inspection program, it is necessary to include this in the TSs (i.e., SG program) for Unit 2. Other refinements to the TS SG program for Unit 2 are for clarification and format and do not affect the associated TS limiting condition for operation (LCO). In addition, Enclosure 3 provides new TS Bases markups that correspond to changes made within the Administrative Section. These Bases changes also reflect the staff's recommendations stemming from their RAI letter dated June 06, 2006.

ENCLOSURE 2

TENNESSEE VALLEY AUTHORITY SEQUOYAH NUCLEAR PLANT (SQN) UNIT 2

New TS Page Markups for TS Change 05-09

E2-1

/

- d. Failure to complete any tests included in the described program (planned or scheduled) for power levels up to the authorized power level.
- (4) Monitoring Settlement Markers (SER/SSER Section 2.6.3)

TVA shall continue to monitor the settlement markers along the ERCW conduit for the new ERCW intake structure for a period not less than three years from the date of this license. Any settlement greater than 0.5 inches that occurs during this period will be evaluated by TVA and a report on this matter will be submitted to the NRC.

(5) Tornado Missiles (Section 3.5)

ĩ

Prior to startup after the first refueling of the facility, TVA shall reconfirm to the satisfaction of the NRC that adequate tornado protection is provided for the 480 V transformer ventilation systems.

(6) <u>Design of Seismic Category Structures (Section 3.8)</u>

Prior to startup following the first refueling, TVA shall evaluate all seismic Category I masonry walls to final NRC criteria and implement NRC required modifications that are indicated by that evaluation.

(7) Low Temperature Overpressure Protection (Section 5.2.2)

Prior to startup after the first refueling, TVA shall install an overpressure mitigation system which meets NRC requirements.

- (8) <u>Steam Generator Inspection (Section 5.3.1)</u>
 - (a) Prior to start-up after the first refueling, TVA shall install inspection ports in each steam generator or have an alternative for inspection that is acceptable to the NRC.
 - (b) By May 20, 1997. TVA shall establish a steam generator inspection program that is in accordance with the commitments listed in Enclosure 2 to the TVA letter to the Commission on this subject dated March 12, 1997, as modified by TVA letter dated March 17, 1997.
- (9) Containment Isolation Systems (Section 6.2.4)

Prior to startup after the first refueling, TVA shall modify to the satisfaction of the NRC the one-inch chemical feed lines to the main and auxiliary feedwater lines for compliance with GDC 57.

- (10) Environmental Qualification (Section 7.2.2)
 - a. No later than June 30, 1982, TVA shall be in compliance with the requirements of NUREG-0588, "Interim Staff Position on Environmental Qualification of Safety-Related Electrical Equipment," for safety-related equipment exposed to a harsh environment.

April 9, 1997 Amendment No. 2, 213

DEFINITIONS

IDENTIFIED LEAKAGE

- 1.16 IDENTIFIED LEAKAGE shall be:
 - a. Leakage, such as that from pump seals or valve packing (except reactor coolant pump seal injection or leakoff) that is captured and conducted to collection systems or a sump or collecting tank, or
 - b. Leakage into the containment atmosphere from sources that are both specifically located and known either not to interfere with the operation of leakage detection systems or not to be PRESSURE BOUNDARY LEAKAGE, or
 - c. Reactor coolant system leakage through a steam generator to the secondary system.

MEMBER(S) OF THE PUBLIC

(primary to secondary)

1.17 DELETED

OFFSITE DOSE CALCULATION MANUAL

1.18 The OFFSITE DOSE CALCULATION MANUAL (ODCM) shall contain the methodology and parameters used in the calculation of offsite doses resulting from radioactive gaseous and liquid effluents, in the calculation of gaseous and liquid effluent monitoring alarm/trip setpoints, and in the conduct of the Radiological Environmental Monitoring Program. The ODCM shall also contain (1) the Radioactive Effluent Controls and Radiological Environmental Monitoring Programs required by Section 6.8.4 and (2) descriptions of the information that should be included in the Annual Radiological Environmental Operating and Annual Radioactive Effluent Release Reports required by Specifications 6.9.1.6 and 6.9.1.8.

OPERABLE - OPERABILITY

1.19 A system, subsystem, train, or component or device shall be OPERABLE or have OPERABILITY when it is capable of performing its specified function(s), and when all necessary attendant instrumentation, controls, a normal and an emergency electrical power source, cooling or seal water, lubrication or other auxiliary equipment that are required for the system, subsystem, train, component or device to perform its function(s) are also capable of performing their related support function(s).

SEQUOYAH - UNIT 2

February 11, 2003 Amendment Nos. 63, 134, 146, 159, 165, 169, 250, 272

DEFINITIONS

OPERATIONAL MODE - MODE

1.20 An OPERATIONAL MODE (i.e., MODE) shall correspond to any one inclusive combination of core reactivity condition, power level and average reactor coolant temperature specified in Table 1.1.

PHYSICS TESTS

1.21 PHYSICS TESTS shall be those tests performed to measure the fundamental nuclear characteristics of the reactor core and related instrumentation and 1) described in Chapter 14.0 of the FSAR, 2) authorized under the provisions of 10 CFR 50.59, or 3) otherwise approved by the Commission.

primary to secondary

PRESSURE BOUNDARY LEAKAGE

1.22 PRESSURE BOUNDARY LEAKAGE shall be leakage (except steam generator tube leakage) through a non-isolable fault in a Reactor Coolant System component body, pipe wall or vessel wall.

PRESSURE AND TEMPERATURE LIMITS REPORT (PTLR)

1.23 The PTLR is the unit specific document that provides the reactor vessel pressure and temperature limits, including heatup and cooldown rates and the LTOP arming temperature, for the current reactor vessel fluence period. These pressure and temperature limits shall be determined for each fluence period in accordance with Specification 6.9.1.15.

PROCESS CONTROL PROGRAM (PCP)

1.24 DELETED

PURGE - PURGING

1.25 PURGE or PURGING is the controlled process of discharging air or gas from a confinement to maintain temperature, pressure, humidity, concentration or other operating condition, in such a manner that replacement air or gas is required to purify the confinement.

QUADRANT POWER TILT RATIO

1.26 QUADRANT POWER TILT RATIO shall be the ratio of the maximum upper excore detector calibrated output to the average of the upper excore detector calibrated outputs, or the ratio of the maximum lower excore detector calibrated output to the average of the lower excore detector calibrated outputs, which-ever is greater.

SEQUOYAH - UNIT 2

1-5

September 15, 2004 Amendment No. 63, 134, 146, 191, 223, 284

1

REACTOR COOLANT SYSTEM

3/4.4.5 STEAM GENERATORS

LIMITING CONDITION FOR OPERATION

3.4.5 Each steam generator shall be OPERABLE.

APPLICABILITY, MODES 1, 2, 3 and 4.

ACTION:

With one or more steam generators inoperable, restore the inoperable generator(s) to OPERABLE status prior to increasing T_{avg} above 200°F.

SURVEILLANCE REQUIREMENTS

4.4.5.0 Each steam generator shall be demonstrated OPERABLE by performance of the following augmented inservice inspection program and the requirements of Specification 4.0.5.

4.4.5.1 <u>Steam Generator Sample Selection and Inspection</u> - Each steam generator shall be determined OPERABLE during shutdown by selecting and inspecting at least the minimum number of steam generators specified in Table 4.4-1.

4.4.5.2 <u>Steam Generator Tube Sample Selection and Inspection</u> - The steam generator tube minimum sample size, inspection result classification, and the corresponding action required shall be as specified in Table 4.4-2. The inservice inspection of steam generator tubes shall be performed at the frequencies specified in Specification 4.4.5.3 and the inspected tubes shall be verified acceptable per the acceptance criteria of Specification 4.4.5.4. The tubes selected for each inservice inspection shall include at least 3% of the total number of tubes in all steam generators; the tubes selected for these inspections shall be selected on a random basis except:

- a. Where experience in similar plants with similar water chemistry indicates critical areas to be inspected, then at least 50% of the tubes inspected shall be from these critical areas.
- b. The first sample of tubes selected for each inservice inspection (subsequent to the preservice inspection) of each steam generator shall include:

SEQUOYAH - UNIT 2

3/4 4-10

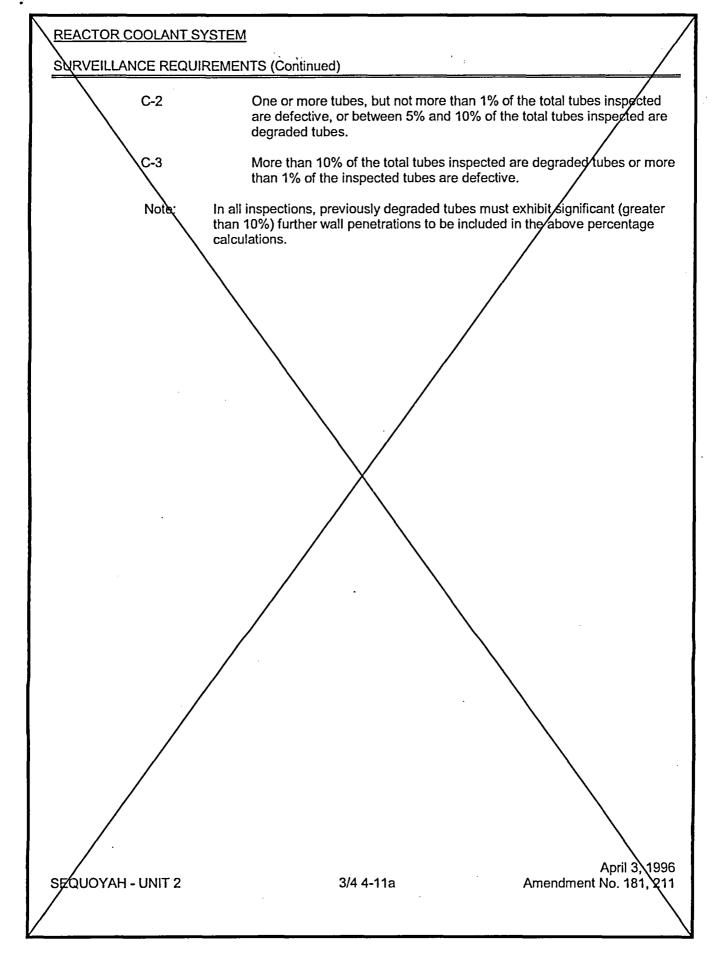
SURVEILLANCE REQUIREMENTS (Continued)

- 1. All nonplugged tubes that previously had detectable wall penetrations (greater than 20%).
- 2. Tubes in those areas where experience has indicated potential problems.
- 3. A tube inspection (pursuant to Specification 4.4.5.4.a.8) shall be performed on each selected tube. If any selected tube does not permit the passage of the eddy current probe for a tube inspection, this shall be recorded and an adjacent tube shall be selected and subjected to a tube inspection.
- 4. Indications left in service as a result of application of the tube support plate voltage-based repair criteria shall be respected by bobbin coil probe during all future refueling outages.
- c. The tubes selected as the second and third samples (if required by Table 4.4-2) during each inservice inspection may be subjected to a partial tube inspection provided:
 - 1. The tubes selected for these samples include the tubes from those areas of the tube sheet array where tubes with imperfections were previously found.
 - 2. The inspections include those portions of the tubes whole imperfections were previously found.
 - Note: Tube degradation identified in the portion of the tube that is not a reactor coolant pressure boundary (tube end up to the start of the tube-to-tubesheet weld) is excluded from the Result and Action Required in Table 4.4-2.
- d Implementation of the steam generator tube/tube support plate repair criteria requires a 100 percent bobbin coil inspection for hot-leg and cold-leg tube support plate intersections down to the lowest cold-

leg tube support plate with known outside diameter stress corrosion cracking (ODSCC) indications. The determination of the lowest cold-leg tube support plate intersections having ODSCC indications shall be based on the performance of at least a 20 percent random sampling of tubes inspected over their full length.

e Implementation of the steam generator WEXTEX expanded region inspection methodology (W*) . requires a 100 percent rotating cell probe inspection of the hot leg typesheet W* distance.

The results of each sample inspection shall be classified into one of the following three categories:


C-1 Less than 5% of t of the inspected t SEQUOYAH - Unit 2 3/4

Inspection Results

Less than 5% of the total tubes inspected are degraded tubes and none of the inspected tubes are defective.

3/4 4-11

May 3, 200 Amendment No. 181, 211, 213, 243, 291

SUR EILLANCE REQUIREMENTS (Continued)

4.4.5.3 <u>Inspection Frequencies</u> - The above required inservice inspections of steam generator tubes shall be performed at the following frequencies:

1.1.1

- a. The first inservice inspection shall be performed after 6 Effective Full Power Months but within 24 calendar months of initial criticality. Subsequent inservice inspections shall be performed at intervals of not less than 12 nor more than 24 calendar months after the previous inspection. If two consecutive inspections following service under AVT conditions, not including the preservice inspection, result in all inspection results falling into the C-1 category or if two consecutive inspections demonstrate that previously observed degradation has not cortinued and no additional degradation has occurred, the inspection interval may be extended to a maximum of once per 40 months.
- b. If the results of the inservice inspection of a steam generator conducted in accordance with Table 4.4-2 at 40 month intervals fall in Category C-3, the inspection frequency shall be increased to at least once per 20 months. The increase in inspection frequency shall apply until the subsequent inspections satisfy the criteria of Specification 4.4.5.3.a; the interval may then be extended to a maximum of once per 40 months.
- c. Additional, unscheduled inservice inspections shall be performed on each steam generator in accordance with the first sample inspection specified in Table 4.4-2 during the shutdown subsequent to any of the following conditions:
 - 1. Primary-to-secondary tubes leaks (not including leaks originating from tube-to-tube sheet welds) in excess of the limits of Specification 3.4.6.2.
 - 2. A seismic occurrence greater than the Operating Basis Earthquake.
 - 3. A loss-of-coolant accident requiring actuation of the engineered safeguards.
 - 4. A main steam line or feedwater line break.

SEQUOYAH - UNIT 2

3/4 4-12

SURVEILLANCE REQUIREMENTS (Continued)

 $\{1,1\}$

4.4.5.4 Acceptance Criteria

- As used in this Specification: a.
 - Imperfection means an exception to the dimensions, finish or contour of a tube from that 1. required by fabrication drawings or specifications. Eddy-current testing indications below 20% of the nominal tube wall thickness, if detectable, may be considered as imperfections.
 - 2. Degradation means a service-induced cracking, wastage, wear or general corrosion occurring on either inside or outside of a tube.
 - 3. Degraded Tube means a tube containing imperfections greater than or equal to 20% of the nominal wall thickness caused by degradation.
 - % Degradation means the percentage of the tube wall thickness affected or removed by 4. degradation.
 - Defect means an imperfection of such severify that it exceeds the plugging limit. A tube 5. containing a defect is defective.
 - Plugging Limit means the imperfection depth at or beyond which the tube shall be 6. removed from service and is equal to 40% of the nominal tube wall thickness. Plugging limit does not apply to that portion at the tube that is not within the pressure boundary of the reactor coolant system (tube end up to the start of the tube-to-tubesheet weld). This definition does not apply to tube support plate intersections if the voltage-based repair criteria are being applied. Refer to 4.4.5 4.a.10 for the repair limit applicable to these intersections. This definition does not apply to service induced degradation identified in the W* distance. Service induced degradation identified in the W* distance below the topof-tube sheet (TTS), shall be plugged on detection.
 - Unserviceable describes the condition of a tube if it leaks or contains a defect large 7. enough to affect its structural integrity in the event of an Operating Basis Earthquake, a loss-of-coolant accident, or a steam line or feedwater line break as specified in 4.4.5.3.c. above.
 - 8. Tube Inspection means an inspection of the steam generator tube from the point of entry (hot leg side) completely around the U-bend to the top support of the cold leg excluding the portion of the tube within the tubesheet below the W* distance, the tube to tubesheet weld and the tube end extension.
 - 9. Preservice Inspection means an inspection of the full length of each type in each steam generator performed by eddy current techniques prior to service to establish a baseline condition of the tubing. This inspection shall be performed prior to initial ROWER OPERATION using the equipment and techniques expected to be used during subsequent inservice inspections.

SEQUOYAH - UNIT 2

3/4 4-13

May 3, 2005 Amendment No. 181, 211, 213, 243, 266, 294

REACTOR COOLANT SYSTEM SURVEILLANCE REQUIREMENTS (Continued) Sec. 10. Tube Support Plate Plugging Limit is used for the disposition of an alloy 600 steam. generator tube for continued service that is experiencing predominately axially orighted outside diameter stress corrosion cracking confined within the thickness of the tube support plates. At tube support plate intersections, the plugging (repair) limit is based on maintaining steam generator tube serviceability as described below: Steam generator tubes, whose degradation is attributed to outside diameter stress a. corrosion cracking within the bounds of the tube support plate with bobbin voltages less than or equal to the lower voltage repair limit (Note 1), will be allowed to remain in service. b. Steam generator tubes, whose degradation is attributed to outside diameter stress corrosion cracking within the bounds of the tube support plate with a bobbin voltage greater than the lower voltage repair limit (Note 1), will be repaired or plugged, except as noted in 4.4.5.4.a.10.c below. Steam generator tubes, with indications of potential degradation attributed to outside C. diameter stress corrosion-cracking within the bounds of the tube support plate with a bobbin voltage greater than the lower voltage repair limit (Note 1), but less than or equal to upper voltage repair limit (Note 2), may remain in service if a rotating pancake coil inspection does not detect degradation. Steam generator tubes, with indications of outside diameter stress corrosion-cracking degradation with a bobbin coil voltage greater than the upper voltage repair limit (Note 2) will be plugged or repaired. d. Not applicable to SQN. If an unscheduled mid-cycle inspection is performed, the following mid-cycle repair e. limits apply instead of the limits identified in 4.4.5.4.a.10.a, 4.4.5.4.a.10.b, and 4.4.5.4.a.10.c. The mid-cycle repair limits are determined from the following equations: $V_{MURL} = \frac{V_{SL}}{1.0 + NDE + Gr \frac{(CL - \Delta t)}{CL}}$ $V_{MLRL} = V_{MURL} - (V_{URL} - V_{LRL}) \frac{(CL - \Delta t)}{CL}$ 1997 April 9, Amendment No. 28, 211, 213 QUOYAH - UNIT 2 3/4 4-14

E2-10

SURVEILLANCE REQUIREMENTS (Continued)

where:				
	=	upper voltage repair limit		
V_{LRL}	_ ≈	lower voltage repair limit		
	. È	mid-cycle upper voltage repair limit based on time into cycle		
V _{MLRL}	= \	mid-cycle lower voltage repair limit based on V_{MURL} and time into cycle		
∆t	=	length of time since last scheduled inspection during which V_{URL} and V_{LRL} were implemented		
CL	=	cycle length (the time between two scheduled steam generator inspections)		
V _{SL}	=	structural vimit voltage		
Gr	=	average growth rate per cycle length		
NDE	=	95-percent cumulative probability allowance for nondestructive examination uncertainty (i.e., a value of 20-percent has been approved by NRC)		
		se mid-cycle repair limits should follow the same approach as in TS 4.4.5.4.a.10.a, 4.5.4.a.10.c.		
ote 1:	The lowe diameter	er voltage repair limit is 1.0 volt for 3/4-inch diameter tubing or 2.0 volts for 7/8-inch tubing.		
ote 2:	The upper voltage repair limit is calculated according to the methodology in GL 95-05 as supplemented. V_{URL} may differ at the TSPs and flow distribution baffle.			
11.	tul	ottom of WEXTEX / ransition (BWT) is the highest point of contact between the be and tubesheet at, or below the top-of-tubesheet, as determined by eddy current sting.		
	top bo the	he W* distance is the larger of the following two distances as measured from the p-of-the-tubesheet (TTS): (a) 8 inches below the TTS or (b) 7 inches below the ottom of the WEXTEX transition plus the uncertainty associated with determining e distance below the bottom of the WEXTEX transition as defined by CAP-14797, Revision 2.		
	B' ma wh	Length is the length of tubing below the bottom of the WEXTEX transition WT), which must be demonstrated to be non-degraded in order for the tube to aintain structural and leakage integrity. For the hot leg, the W* length is 7.0 inches nich represents the most conservative hot-leg length defined in WCAP-14797, evision 2.		
b. /	actions (p	m generator shall be determined OPERABLE after completing the corresponding olug all tubes exceeding the plugging limit and all tubes containing through-wall equired by Table 4.4-2.		
	cracks) re			

REACTOR		LANT SYSTEM
		REQUIREMENTS (Continued)
4.4.5.5	Rer	ports
a.		owing each inservice inspection of steam generator tubes, the number of tubes plugged each steam generator shall be reported to the Commission within 15 days.
b.	the	complete results of the steam generator tube inservice inspection shall be submitted to Commission in a Special Report pursuant to Specification 6.9.2 within 12 months owing the completion of the inspection. This Special Report shall include:
	1.	Number and extent of tubes inspected.
	2.	Location and percent of wall-thickness penetration for each indication of an imperfection
	3.	Identification of tubes plugged.
c.	a de writ dete	sults of steam generator tube inspections which fall into Category C-3 shall be reported as egraded condition pursuant to 10 CFR 50.73 prior to resumption of plant operation. The ten followup of this report shall provide a description of investigations conducted to ermine cause of the tube degradation and corrective measures taken to prevent urrence.
d.	noti	implementation of the voltage-based repair criteria to tube support plate intersections, fy the staff prior to returning the stearn generators to service should any of the following ditions arise:
	1.	Leakage is estimated based on the projected end-of-cycle (or if not practical using the actual measured end-of-cycle) voltage distribution. This leakage shall be combined with the postulated leakage resulting from the implementation of the W* criteria to tubesheet inspection depth. If the total projected end-of-cycle accident induced leakage from all sources exceeds the leakage limit (determined from the licensing basis dose calculation for the postulated main steam line break) for the next operating cycle, the staff shall be notified.
	2.	If circumferential crack-like indications are detected at the tube support plate intersections.
	3.	If indications are identified that extend beyond the confines of the tube support plate.
	4.	If indications are identified at the tube support plate elevations that are attributable to primary water stress corrosion cracking.
/	5.	If the calculated conditional burst probability based on the projected end-of-cycle (or if not practical, using the actual measured end-of-cycle) voltage distribution exceeds 1 X 10^{-2} , notify the NRC and provide an assessment of the safety significance of the occurrence.
SEQUOYAH	4 - UN	May 3, 2005 NIT 2 3/4 4-14b Amendment No. 28, 211, 213, 267, 29

ъ

SURVEILLANCE REQUIREMENTS (Continued)

e. The calculated steam line break leakage from the application of tube support plate alternate repair criteria and W* inspection methodology shall be submitted in a Special Report in accordance with 10 CFR 50.4 within 90 days following return of the steam generators to service (MODE 4). The report will include the number of indications within the tubesheet region, the location of the indications (relative to the bottom of the WEXTEX transition (BWT) and TTS), the orientation (axial, circumferential, skewed, volumetric), the severity of each indication (e.g., near through wall or not through-wall), the side of the tube from which the indication initiated (inside or outside diameter), and an assessment of whether the results were consistent with expectations with respect to the number of flaws and flaw severity (and if not consistent, a description of the proposed corrective action).

SEQUOYAH - UNIT 2

May 3, 2005 Amendment No. 243, 291

	TABI	.E 4.4-1	•	•			7
MINIMUM NUMBER INSPECTED DL	R OF ST	FEAM GE			BE .	/	
Preservice Inspection		No			Yes	7	
No. of Steam Generators per Unit	Two	Three	Four	Тwo	Three	Four	
First Inservice Inspection		All	·	One	Two	Two	
Second & Subsequent Inservice Inspections		One ¹		One ¹	Øne ²	One ³	
<u>Table Notation</u> : 1. The inservice inspection may b	o limito	d to one i				ashadula	
 The inservice inspection may be encompassing 3 N % of the tub if the results of the first or previ performing in a like manner. No in one or more steam generato generators. Under such circum the most severe conditions. 	oes (who ous ins ote that rs may	ere N is ti pections i under so be found	he numb indicate me circu to be me	er of stea that all ste mstances ore severe	m generato am genera , the operat e than those	rs in the p tors are ing conditi e in other s	ons team
2. The other steam generator not inspected. The third and subset 1 above.	inspect quent ir	ed during hspection	the first s should	t inservice follow the	inspection instruction	shall be s describe	d in
3. Each of the other two steam ge shall be inspected during the se inspections shall follow the inst	ecønd a	ind third i	nspectio	ns. The f			
SEQUOYAH - UNIT 2	3/4	4-15					

ê

\backslash				TUBE INSPECTION	•	
	SAMPLE	INSPECTION	2 ND SA		3 ^R IN	D SAMPLE
Sample Result Size		Action Required	Result	Action Required	Result	Action Required
A minimum of S Tubes	C-1	None	N/A	N/A	N/A	N/A
per S.G.	C-2	Plug defective tubes and inspect additional 2S tubes in this S.G.	<u> </u>	None Plug defective tubes and inspect additional 4S tubes in this S.G.	N/A C-1	N/A None
					C-2 C-3	Plug defective tubes Perform action for C-3 result of first sample
			C-3	Perform action for C-3 result of first sample	N/A	N/A
	C-3	Inspect all tubes in this S.G. plug defective tubes and inspect 2S	All other S.G ate C-1	None	N/A	N/A
		tubes in each other S.G.	Some S/Gs/C-2 but/no additional S.G. are C-3	Perform action for C-2 result of second sample	€ N/A	N/A
				Inspect all tubes in eac S.G. and plug defective tubes.	h N/A	N/A
$S = 3\frac{N}{m}$	gene	ere N is the number of ste		\		May 24, 2002
SEQU	DYAH - U	NIT 2	3/4 4	-16	Amendme	May 24, 2002 ent No. 28, 26X

÷

INSERT A

REACTOR COOLANT SYSTEM

3/4.4.5 STEAM GENERATOR (SG) TUBE INTEGRITY

LIMITING CONDITION FOR OPERATION

3.4.5 SG tube integrity shall be maintained.

<u>AND</u>

All SG tubes satisfying the tube repair criteria shall be plugged in accordance with the Steam Generator Program.

APPLICABILITY: MODES 1, 2, 3, and 4.

ACTIONS*:

a. With one or more SG tubes satisfying the tube repair criteria and not plugged in accordance with the Steam Generator Program, within 7 days verify tube integrity of the affected tube(s) is maintained until the next refueling outage or SG tube inspection, or be in HOT STANDBY within 6 hours and in COLD SHUTDOWN within the next 30 hours.

AND

b. Plug the affected tube(s) in accordance with the Steam Generator Program prior to startup following the next refueling outage or SG tube inspection.

SURVEILLANCE REQUIREMENTS

4.4.5.0 Verify steam generator tube integrity in accordance with the Steam Generator Program.

4.4.5.1 Verify that each inspected SG tube that satisfies the tube repair criteria is plugged in accordance with the Steam Generator Program prior to startup following a SG tube inspection.

* Separate Action entry is allowed for each SG tube.

OPERATIONAL LEAKAGE

LIMITING CONDITION FOR OPERATION

3.4.6.2 Reactor Coolant System leakage shall be limited to:

- a. No PRESSURE BOUNDARY LEAKAGE,
- b. 1 GPM UNIDENTIFIED LEAKAGE,
- c. 150 gallons per day of primary-to-secondary leakage through any one steam generator, and
- d. 10 GPM IDENTIFIED LEAKAGE from the Reactor Coolant System.

APPLICABILITY: MODES 1, 2, 3 and 4		or with primary-to-secondary leakage not within limits,		
ACTION:				
a.	With any PRESSURE BOUNDAI and in COLD SHUTDOWN within	RY LEAKAGE, be in at least HOT STANDBY within 6 hours		

b. With any Reactor Coolant System leakage greater than any one of the above limits, excluding PRESSURE BOUNDARY LEAKAGE, reduce the leakage rate to within limits within 4 hours or be in at least HOT STANDBY within the next 6 hours and in COLD SHUTDOWN within the following 30 hours.

or primary-to-secondary

SURVEILLANCE REQUIREMENTS

Verify

4.4.6.2. Reactor Coolant System leakages shall be verified to be within each of the above limits by performance of a Reactor Coolant System water inventory balance at least once per 72 hours.*

is within

The provision of Specification 4.0.4 are not applicable for entry into MODE 3 or 4.

4.4.6.2.2 Verify steam generator tube integrity is in accordance with the requirements of Technical Specification 3/4.4.5, "Steam Generators."

Verify primary-to-secondary leakage is \leq 150 gallons per day through any one steam generator at least once per 72 hours.*

The above surveillance requirement is not applicable

* Not required to be performed until 12 hours after establishment of steady state operation.

SEQUOYAH - UNIT 2

3/4 4-18

August 4, 2000 Amendment No. 211, 213, 250

ADMINISTRATIVE CONTROLS

- b. Air lock testing acceptance criteria are:
 - 1) Overall air lock leakage rate is $\leq 0.05 L_a$ when tested at $\geq P_a$.

1.11

 For each door, leakage rate is ≤ 0.01 L_a when pressurized to ≥ 6 psig for at least two minutes.

The provisions of SR 4.0.2 do not apply to the test frequencies specified in the Containment Leakage Rate Testing Program.

The provisions of SR 4.0.3 are applicable to the Containment Leakage Rate Testing Program.

i. Configuration Risk Management Program (DELETED)

j. Technical Specification (TS) Bases Control Program

This program provides a means for processing changes to the Bases of these TSs.

- a. Changes to the Bases of the TS shall be made under appropriate administrative controls and reviews.
- b. Licensees may make changes to Bases without prior NRC approval provided the changes do not require either of the following:
 - 1. A change in the TS incorporated in the license or
 - 2. A change to the updated FSAR or Bases that requires NRC approval pursuant to 10 CFR 50.59.
- c. The Bases Control Program shall contain provisions to ensure that the Bases are maintained consistent with the FSAR.
- Proposed changes that meet the criteria of Specification 6.8.4.j.b above shall be reviewed and approved by the NRC prior to implementation. Changes to the Bases implemented without prior NRC approval shall be provided to the NRC on a frequency consistent with 10 CFR 50.71(e).

6.9_REPORTING REQUIREMENTS

ROUTINE REPORTS

6.9.1 In addition to the applicable reporting requirements of Title 10, Code of Federal Regulations, the following reports shall be submitted in accordance with 10 CFR 50.4.

STARTUP REPORT

6.9.1.1 DELETED

6.9.1.2 DELETED

6.9.1.3 DELETED

SEQUOYAH - UNIT 2

February 11, 2003 Amendment No. 28, 50, 64, 66, 134, 207, 223, 231, 271, 272

INSERT B

k. Steam Generator (SG) Program

from all sources, excluding the leakage attributed to the degradation described in 6.8.4.k.c.1 and .2,

A Steam Generator Program shall be established and implemented to ensure that SG tube integrity is maintained. In addition, the Steam Generator Program shall include the following provisions:

a. Provisions for Condition Monitoring Assessments.

Condition monitoring assessment means an evaluation of the "as found" condition of the tubing with respect to the performance criteria for structural integrity and accident induced leakage. The "as found" condition refers to the condition of the tubing during an SG inspection outage, as determined from the inservice inspection results or by other means, prior to the plugging of tubes. Condition monitoring assessments shall be conducted during each outage during which the SG tubes are inspected and/or plugged, to confirm that the performance criteria are being met.

b. Provisions for Performance Criteria for SG Tube Integrity.

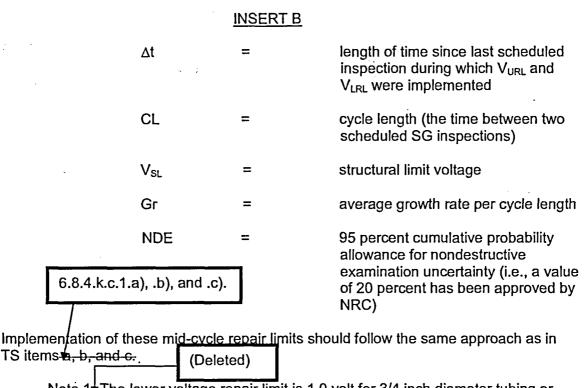
except as permitted through application of the alternate repair criteria discussed in TS 6.8.4.k.c.1,

SG tube integrity shall be maintained by meeting the performance criteria for tube structural integrity, accident induced leakage, and operational leakage.

For predominantly axially oriented ODSCC at the TSP elevations, (refer to 6.8.4.k.c.1) the probability of burst (POB) of one or more indications given a steam line break shall be less than 1 x 10.²

1.

Structural integrity performance criterion: All in-service SG tubes shall retain / structural integrity over the full range of normal operating conditions (including startup, operation in the power range, hot standby, cooldown, and all anticipated transients included in the design specification) and design basis accidents/(DBAs). This includes retaining a safety factor of 3.0 against burst under normal steady state full power operation primary-to-secondary pressure differential and a safety factor of 1.4 against burst applied to the DBA primary-to-secondary pressure differentials. Apart from the above requirements, additional loading conditions associated with the DBAs, or combination of accidents in accordance with the design and licensing basis, shall also be evaluated to determine if the associated loads contribute significantly to burst or collapse. In the assessment of tube integrity, those loads that do significantly affect burst or collapse shall be determined and assessed in combination with the loads due to pressure with a safety factor of 1.2 on the combined primary loads and 1.0 on axial secondary loads.


- Accident induced leakage performance criterion: The accident induced leakage is not to exceed 1.0 gpm for the faulted SG, except for outside diameter stress corrosion crack (ODSCC) and W* indications that have an approved limit of 3.7-gallons per minute (gpm). The primary-to-secondary accident induced leakage rate for any DBA, other than a SG tube rupture, shall not exceed the leakage rate assumed in the accident analysis in terms of total leakage rate for all SGs and leakage rate for an individual SG.
- 3. The operational leakage performance criterion is specified in Limiting Condition of Operation (LCO) 3.4.6.2, "Reactor Coolant System, Operational Leakage."
- c. Provisions for SG Tube Repair Criteria.

Tubes found by inservice inspection to contain flaws with a depth equal to or exceeding 40% of the nominal tube wall thickness shall be plugged.

INSERT B

.

			<u>into Entra</u>	<u> </u>
1.		llowing alternate tube repa epth based criteria:	air criteria (Al	RC) may be applied as an alternative to the
	· ·	GL <u>95-05 Voltage-Based A</u>	RC (Tube Si	integrity as described below:
	A vo for o con	oltage-based TSP plugging continued service that is e fined within the thickness plugging (repair) limit is ba	g limit is use xperiencing of the tube s	d for the disposition of an alloy 600 SG tube predominately axially oriented ODSCC upport plates (TSPs). At TSP intersections, itaining SG tube cerviceability as described 2.0 volts
	a)	SG tubes, whose degra TSP with bobbin voltag (Note-1), will be allowed	es less than	ibuted to ODSCC within the bounds of the or equal to the lower voltage repair limit a service.
6.8.4.k.c.1.c)	b)	TSP with a bobbin volta	age greater th	ibuted to ODSOC within the bounds of the nan the lower voltage repair limit (Note 1), is noted in Item & pelow.
d)	c)	the bounds of the TSP repair limit (Note 1), but may remain in service it degradation. SG tubes	with a bobbir t less than or f a rotating pa with indicatio	al degradation attributed to ODSCC within a voltage greater than the lower voltage equal to upper voltage repair limit (Note 2), ancake coil inspection does not detect ons of ODSCC degradation with a bobbin oltage repair limit (Note 2) will be plugged or comparable technology
	* e)	repair limits apply instea	ad of the limi	on is performed, the following mid-cycle is identified in Items a, b, and c. mined from the following equations:
		$V_{MURL} = \frac{1}{1.0 + \text{NDE} + 1}$		6.8.4.k.c.1.a), .b), and .c).
		$V_{MLRL} = V_{MURL} - (V)$ where:	$V_{URL} - V_{LRL} \Big) \frac{(C)}{C}$	$\frac{L-\Delta t}{CL}$
		V _{URL}	Ξ	upper voltage repair limit
		V _{LRL}	=	lower voltage repair limit
		V _{MURL}	=	mid-cycle upper voltage repair limit based on time into cycle
		V _{MLRL}	=	mid-cycle lower voltage repair limit based on V_{MURL} and time into cycle
			E2-20	

Note 1 The lower voltage repair limit is 1.0 volt for 3/4 inch diameter tubing or 2.0 volts for 7/8 inch diameter tubing.

Note 2: The upper voltage repair limit is calculated according to the methodology in GL 95-05 as supplemented. V_{URL} may differ at the TSPs and flow distribution baffle.

The accident leakage limit approved for ODSCC ARC and for W* calculated leakage is 3.7 gallons per-minute in the faulted SG.

W* Methodology

The inspection of SG tubes is from the point of entry (hot-leg side) completely around the U-bend to the cold leg tube outlet end. excluding the portion of the tube within the hot-lea tubesheet below the W* distance, the tube-totubesheet weld. and the tube outlet end extension.

2.

Implementation of the SG WEXTEX expanded region inspection methodology (W*) requires a 100 percent rotating coil probe inspection of the hot-leg tubesheet W* distance. The implementation of W* does not apply to service induced degradation identified in the W* distance. Service induced degradation identified in the W* distance. Service induced degradation identified in the W* distance below the top-of-tubesheet (TTS) shall be plugged on detection. The inspection of SG-tubes is from the point of entry (hot-leg side) completely around the U-bend to the top support of the cold leg-excluding the portion of the tube within the tubesheet below the W* distance, the tube-to-tubesheet weld and the tube end extension.

The following terms/definitions apply to the W*.

- a) Bottom of WEXTEX Transition (BWT) is the highest point of contact between the tube and tubesheet at, or below the TTS, as determined by eddy current testing.
- b) W* Distance is the larger of the following two distances as measured from the TTS: (a) 8 inches below the TTS or (b) 7 inches below the bottom of the WEXTEX transition plus the uncertainty associated with determining the distance below the bottom of the WEXTEX transition as defined by WCAP-14797, Revision 2.

c) W* Length is the length of tubing below the bottom of the BWT which must be demonstrated to be non-degraded in order for the tube to maintain structural and leakage integrity. For the hot leg, the W* length is 7.0 inches which represents the most conservative hot leg length defined in WCAP-14797, Revision 2.

and d.4

The postulated leakage resulting from the implementation of the voltage-based repair criteria to TSP intersections shall be combined with the postulated leakage resulting from the implementation of W* criteria to tubesheet inspection depth.

d. Provisions for SG Tube Inspections.

Periodic SG tube inspections shall be performed. The number and portions of the tubes inspected and methods of inspection shall be performed with the objective of detecting flaws of any type (e.g., volumetric flaws, axial and circumferential cracks) that may be present along the length of the tube, from the tube-to-tubesheet weld at the tube inlet to the tube-to-tubesheet weld at the tube outlet, and that may satisfy the applicable tube repair criteria. The tube-to-tubesheet weld is not part of the tube. In addition to meeting the requirements of d.1, d.2, and d.3, below, the inspection scope, inspection methods, and inspection intervals shall be such as to ensure that SG tube integrity is maintained until the next SG inspection. An assessment of degradation shall be performed to determine the type and location of flaws to which the tubes may be susceptible and, based on this assessment, to determine which inspection methods need to be employed and at what locations.

- 1. Inspect 100% of the tubes in each SG during the first refueling outage following SG replacement.
- 2. Inspect 100% of the tubes at sequential periods of 60 effective full power months. The first sequential period shall be considered to begin after the first inservice inspection of the SGs. No SGs shall operate for more than 24 effective full power months or one refueling outage (whichever is less) without being inspected.
- 3. If crack indications are found in any SG tube, then the next inspection for each SG for the degradation mechanism that caused the crack indication shall not exceed 24 effective full power months or one refueling outage (whichever is less). If definitive information, such as from examination of a pulled tube, diagnostic non-destructive testing, or engineering evaluation indicates that a crack-like indication is not associated with a crack(s), then the indication need not be treated as a crack.

GL 95-05 Voltage-Based ARC for TSP

Indications left in service as a result of application of the TSP voltage-based repair criteria shall be inspected by bobbin coil probe during all future refueling outages.

Implementation of the SG tube/TSP repair criteria requires a 100 percent bobbin coil inspection for hot-leg and cold-leg TSP intersections down to the lowest cold-leg TSP with known ODSCC indications. The determination of the lowest cold-leg TSP intersections having ODSCC indications shall be based on the performance of at least a 20 percent random sampling of tubes inspected over their full length.

INSERT B

W* METHODOLOGY IS MOVED TO
REPAIR CRITERIA SECTION (c) ABOVE

Implementation of the SG WEXTEX expanded region inspection methodology (W*) requires a 100 percent rotating coil probe inspection of the hot-leg tubesheet W* distance. The implementation of W* does not apply to service induced degradation identified in the W* distance. Service induced degradation identified in the W* distance. Service induced degradation identified in the W* distance below the top-of-tubesheet (TTS) shall be plugged on detection. The inspection of SG tubes is from the point of entry (hot-leg side) completely around the U-bend to the top support of the cold leg excluding the portion of the tube within the tubesheet below the W* distance, the tube-to-tubesheet weld and the tube outlet end extension.

The following terms/definitions apply to the W

W* Methodology

- d) Bottom of WEXTEX Transition (BWT) is the highest point of contact between the tube and tubesheet at, or below the TTS, as determined by eddy current testing.
- e) W* Distance is the larger of the following two distances as measured from the TTS: (a) 8 inches below the TTS or (b) 7 inches below the bottom of the WEXTEX transition plus the uncertainty associated with determining the distance below the bottom of the WEXTEX transition as defined by WCAP-14797, Revision 2.

f) W* Length is the length of tubing below the bottom of the BWT which must be demonstrated to be non-degraded in order for the tube to maintain structural and leakage integrity. For the hot leg, the W* length is 7.0 inches which represents the most conservative hot leg length defined in WCAP-14797, Revision 2.

e. Provisions for Monitoring Operational Primary-to-Secondary Leakage.

ADMINISTRATIVE CONTROLS

CORE OPERATING LIMITS REPORT (continued)

- 6. WCAP-10054-P-A, Westinghouse Small Break ECCS Evaluation Model Using the NOTRUMP Code, August 1985, (<u>W</u> Proprietary) (Methodology for Specification 3/4.2.2 - Heat Flux Hot Channel Factor)
- WCAP-10266-P-A, Rev. 2, "THE 1981 REVISION OF WESTINGHOUSE EVALUATION MODEL USING BASH CODE", March 1987, (W Proprietary). (Methodology for Specification 3.2.2 - Heat Flux Hot Channel Factor).
- 8. BAW-10227P-A, "Evaluation of Advance Cladding and Structural Material (M5) in PWR Reactor Fuel," February 2000, (FCF Proprietary) (Methodology for Specification 3/4.2.2 - Heat Flux Hot Channel Factor)

6.9.1.14.b The core operating limits shall be determined so that all applicable limits (e.g., fuel thermal-mechanical limits, core thermal-hydraulic limits, ECCS limits, nuclear limits such as shutdown margin, and transient and accident analysis limits) of the safety analysis are met.

6.9.1.14.c THE CORE OPERATING LIMITS REPORT shall be provided within 30 days after cycle start-up (Mode 2) for each reload cycle or within 30 days of issuance of any midcycle revision of the NRC Document Control Desk with copies to the Regional Administrator and Resident Inspector.

REACTOR COOLANT SYSTEM (RCS) PRESSURE AND TEMPERATURE LIMITS (PTLR) REPORT

6.9.1.15 RCS pressure and temperature limits for heatup, cooldown, low temperature operation, criticality, and hydrostatic testing, LTOP arming, and PORV lift settings as well as heatup and cooldown rates shall be established and documented in the PTLR for the following:

Specification 3.4.9.1, "RCS Pressure and Temperature (P/T) Limits"

Specification 3.4.12, "Low Temperature Over Pressure Protection (LTOP) System"

6.9.1.15.a The analytical methods used to determine the RCS pressure and temperature limits shall be those previously reviewed and approved by the NRC, specifically those described in the following documents:

- 1. Westinghouse Topical Report WCAP-14040-NP-A, "Methodology used to Develop Cold Overpressure Mitigating System Setpoints and RCS Heatup and Cooldown Limit Curves."
- 2. Westinghouse Topical Report WCAP-15321, "Sequoyah Unit 2 Heatup and Cooldown Limit Curves for Normal Operation and PTLR Support Documentation."
- 3. Westinghouse Topical Report WCAP-15984, "Reactor Vessel Closure Head/Vessel Flange Requirements Evaluation for Sequoyah Units 1 and 2."

6.9.1.15.b The PTLR shall be provided to the NRC within 30 days of issuance of any revision or supplement thereto.

SPECIAL REPORTS

INSERT C

6.9.2.1 Special reports shall be submitted within the time period specified for each report, in accordance with 10 CFR 50.4.

6-14

6.9.2.2 This specification has been deleted.

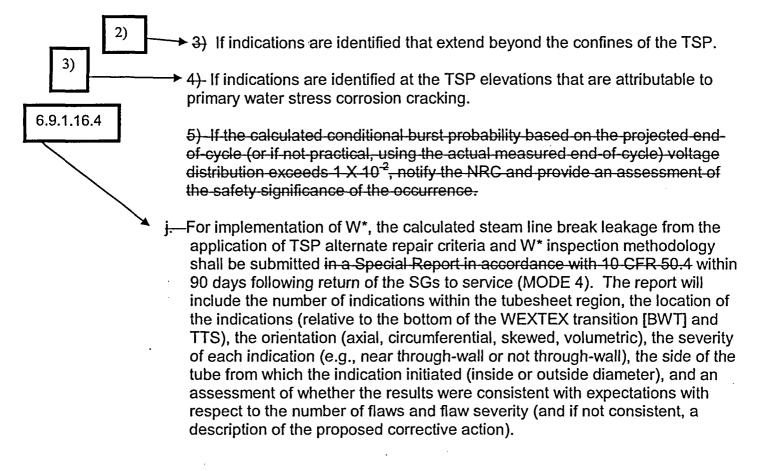
SEQUOYAH - UNIT 2

September 15, 2004 Amendment Nos. 44, 50, 64, 66, 107, 134, 146, 206, 214, 231, 249, 284

INSERT C

STEAM GENERATOR (SG) TUBE INSPECTION REPORT

- 6.9.1.16.1 A report shall be submitted within 180 days after the initial entry into MODE 4 following completion of an inspection performed in accordance with Specification 6.8.4.k, "Steam Generator (SG) Program." The report shall include:
 - a. The scope of inspections performed on each SG,
 - b. Active degradation mechanisms found,
 - c. Nondestructive examination techniques utilized for each degradation mechanism,
 - d. Location, orientation (if linear), and measured sizes (if available) of service induced indications,
 - e. Number of tubes plugged during the inspection outage for each active degradation mechanism,
 - f. Total number and percentage of tubes plugged to date,
 - g. The results of condition monitoring, including the results of tube pulls and insitu testing, and
 - h. The effective plugging percentage for all plugging in each SG.
- 6.9.1.16.2 A report shall be submitted within 90 days after the initial entry into MODE 4 following completion of an inspection performed in accordance with the steam generator program (6.8.4.k) and voltage based alternate repair criteria is applied. The report shll include information described in Section 6.b of Attachment 1 to NRC Generic Letter 95-05, "Voltage-Based Repair Criteria for Westinghouse Steam Generator Tubes Affected by Outside Diameter Stress Corrosion Cracking."
 - i. For implementation of the voltage-based repair criteria for tube support plate (TSP) intersections, notify the staff prior to returning the SGs to service should any of the following conditions arise:


6.9.1.16.3

1)

1) Leakage is estimated based on the projected end-of-cycle (or if not practical using the actual measured end-of-cycle) voltage distribution. This leakage shall be combined with the postulated leakage resulting from the implementation of the W* criteria to tubesheet inspection depth.—If the total projected end-of-cycle accident induced leakage from all sources exceeds the leakage limit (determined from the licensing basis dose calculation for the postulated main steam line break) for the next operating cycle, the staff shall be notified.

2)- If circumferential crack-like indications are detected at the TSP intersections.

INSERT C

ENCLOSURE 3

TENNESSEE VALLEY AUTHORITY SEQUOYAH NUCLEAR PLANT (SQN) UNIT 2

New TS Bases Page Markups for TS Change 05-09

		INSERT D	
REACTOR COOLANT	SYSTEM		
BASES	۰		
	÷ +ر:)		·: .

3/4.4.5 STEAM GENERATORS

The Surveillance Requirements for inspection of the steam generator tubes ensure that the structural integrity of this portion of the RCS will be maintained. The program for inservice inspection of steam generator tubes is based on a modification of Regulatory Guide 1.83, Revision 1. Inservice inspection of steam generator tubing is essential in order to maintain surveillance of the conditions of the tubes in the event that there is evidence of mechanical damage or progressive degradation due to design, manufacturing errors, or inservice conditions that lead to corrosion. Inservice inspection of steam generator tubing also provides a means of characterizing the nature and cause of any tube degradation so that corrective measures can be taken.

The plant is expected to be operated in a manner such that the secondary coolant will be maintained within those chemistry limits found to result in negligible corrosion of the steam generator tubes. If the secondary coolant chemistry is not maintained within these limits, localized corrosion may likely result in stress corrosion cracking. The extent of cracking during plant operation would be limited by the limitation of steam generator tube leakage between the primary coolant system and the secondary coolant system (primary-to-secondary leakage = 150 gallons per day per steam generator). Cracks having a primary-to-secondary leakage less than this limit during operation will have an adequate margin of safety to withstand the loads imposed during normal operation and by postulated accidents. Sequoyah has demonstrated that primary-to-secondary leakage of 150 gallons per day per steam generator can readily be detected by radiation monitors of steam generator blowdown or condenser off-gas. Leakage in excess of this limit will require plant shutdown and an unscheduled inspection, during which the leaking tubes will be located and plugged.

The voltage-based repair limits of SR 4.4.5 implement the guidance in GL 95-05 and are applicable only to Westinghouse-designed steam generators (S/Gs) with outside diameter stress corrosion cracking (ODSCC) located at the tube-to-tube support plate intersections. The voltage-based repair limits are not applicable to other forms of S/G tube degradation nor are they applicable to ODSCC that occurs at other locations within the S/G. Additionally, the repair criteria apply only to indications where the degradation mechanism is dominantly axial ODSCC with no significant cracks extending outside the thickness of the support plate. Refer to GL 95-05 for additional description of the degradation morphology.

Implementation of SR 4.4.5 requires a derivation of the voltage structural limit from the burst versus voltage empirical correlation and then the subsequent derivation of the voltage repair limit from the structural limit (which is then implemented by this surveillance).

The voltage structural limit is the voltage from the burst pressure/bobbin voltage correlation, at the 95 percent prediction interval curve reduced to account for the lower 95/95 percent tolerance bound for tubing material properties at 650°F (i.e., the 95 percent LTL curve). The voltage structural limit must be adjusted downward to account for potential flaw growth during an operating interval and to account for NDE uncertainty. The upper voltage repair limit; V_{URL}, is determined from the structural voltage limit by applying the following equation:

$$V_{URL} = V_{SL} - V_{GR} - V_{NDE}$$

SEQUOYAH - UNIT 2

April 9, 1997 Amendment No. 181, 211, 213

BASES

where V_{GR} represents the allowance for flaw growth between inspections and V_{NDE} represents the allowance for potential sources of error in the measurement of the bobbin coil voltage. Further discussion of the assumptions necessary to determine the voltage repair limit are discussed in GL 95-05.

1. St. 19

The mid-cycle equation of SR 4.4.5.4.a.10.e should only be used during unplanned inspection in which eddy current data is acquired for indications at the tube support plates.

记得

SR 4.4.5 5 implements several reporting requirements recommended by GL 95-05 for situations which NRC wants to be notified prior to returning the S/Gs to service. For SR 4.4.5.5.d., Items 3 and 4, indications are applicable only where alternate plugging criteria is being applied. For the purposes of this reporting requirement, leakage and conditional burst probability can be calculated based on the as-found voltage distribution rather than the projected end-of-cycle voltage distribution (refer to GL 95-05 for more information) when it is not practical to complete these calculations using the projected EOC voltage distributions prior to returning the S/Gs to service. Note that if leakage and conditional burst probability were calculated using the measured EOC voltage distribution for the purposes of addressing GL Sections 6 a.1 and 6.a.3 reporting criteria, then the results of the projected EOC voltage distribution should be provided per GL Section 6.b(c) criteria.

Wastage-type defects are unlikely with proper chemistry treatment of the secondary coolant. However, even if a defect should develop in service, it will be found during scheduled inservice steam generator tube examinations. Plugging will be required for all tubes with imperfections exceeding the repair limit defined in Surveillance Requirement 4.4.5.4.a. The portion of the tube that the plugging limit does not apply to is the portion of the tube that is not within the RCS pressure boundary tube end up to the start of the tube-to-tubesheet weld). The tube end to tube-to-tubesheet weld portion of the tube does not affect structural integrity of the steam generator tubes and therefore indications found in this portion of the tube will be excluded from the Result and Action Required for tube inspections. It is expected that any indications that extend from this region will be detected during the scheduled tube inspections. Steam generator tube inspections of operating plants have demonstrated the capability to reliably detect degradation that has penetrated 20% of the original tube wall thickness.

Tubes experiencing outside diameter stress corrosion cracking within the thickness of the tube support plate are plugged or repaired by the criteria of 4.4.5.4.a.10.

The W* criteria incorporate the guidance provided in WCAP-1479X Revision 2, "Generic W* Tube Plugging Criteria for 51 Series Steam Generator Tubesheet Region WEXTEX Expansions." W* length is the length of tubing into the tubesheet below the bottom of the WEXTEX transition (BWT) that precludes tube pullout in the event of a complete circumferential separation of the tube below the W* length. W* distance is the distance from the top of the tubesheet to the bottom of the W* length including the distance from the top of the tubesheet to the BWT and measurement uncertainties.

Indications detected within the W* distance below the top-of-tube sheet (TTS), will be plugged upon detection. Tubes to which WCAP-14797 is applied can experience through-wall degradation up to the limits defined in Revision 2 without increasing the probability of a tube rupture or large leakage event. Tube degradation of any type or extent below W* distance, including a complete circumferential separation of the tube, is acceptable. As applied at Sequoyah Nuclear Plant Unit 2, the W* methodology is used to define the required tube inspection depth into the hot-leg tubesheet, and is not used to permit degradation in the W* distance to remain in service. Thus while primary to secondary leakage in the W* distance need not be postulated, primary to secondary leakage from potential degradation below the W* distance will be assumed for every inservice tube in the bounding steam generator.

SEQUOYAH - UNIT 2

May 3, 2005 B 3/4 4-3a Amendment No. 181, 211, 213, 243, 291

BASES

The postulated leakage during a steam line break shall be equal to the following equation:

11.11

Postulated SLB Leakage = ARC _{GL 95-05} + Assumed Leakage _{0'-8' <TTS} + Assumed Leakage _{>12' <TTS}

Where: ARC GL 95-05 is the normal SLB leakage derived from alternate repair criteria methods and the steam generator tube inspections.

Assumed Leakage or arrs is the postulated leakage for undetected indications in steam generator tubes left in service between 0 and 8 inches below the top of the tubesheet.

Assumed Leakage ₈₋₁₂ _{<TTS} is the conservatively assumed leakage from the total of identified and postulated unidentified indications in steam generator tubes left in service between 8 and 12 inches below the top of the tubesheet. This is 0.0045 gpm multiplied by the number of indications. Postulated unidentified indications will be conservatively assumed to be in one steam generator. The highest number of identified indications left in service between 8 and 12 inches below TTS in any one steam generator will be included in this term.

Assumed Leakage >12' <TTS is the conservatively assumed leakage for the bounding steam generator tubes left in service below 12 inches below the top of the tubesheet. This is 0.00009 gpm multiplied by the number of tubes left in service in the least plugged steam generator.

The aggregate calculated SLB leakage from the application of all alternate repair criteria and the above assumed leakage shall be reported to the NRC in accordance with applicable Technical Specifications. The combined calculated leak rate from all alternate repair criteria must be less than the maximum allowable steam line break leak rate limit in any one steam generator in order to maintain doses within 10 CFR 100 guideline values and within GDC-19 values during a postulated steam line break event.

SEQUOYAH - UNIT 2

B 3/4 4-3b

May 3, 2005 Amendment No. 213, 243, 267, 291

B 3.4 REACTOR COOLANT SYSTEM

B 3/4.4.5 Steam Generator (SG) Tube Integrity

No. 13

BASES

BACKGROUND

Steam generator (SG) tubes are small diameter, thin walled tubes that carry primary coolant through the primary to secondary heat exchangers. The SG tubes have a number of important safety functions. Steam generator tubes are an integral part of the reactor coolant pressure boundary (RCPB) and, as such, are relied on to maintain the primary system's pressure and inventory. The SG tubes isolate the radioactive fission products in the primary coolant from the secondary system. In addition, as part of the RCPB, the SG tubes are unique in that they act as the heat transfer surface between the primary and secondary systems to remove heat from the primary system. This specification addresses only the RCPB integrity function of the SG. The SG heat removal function is addressed by Limiting Condition of Operation (LCO) 3.4.1.1, "Startup and Power Operation," LCO 3.4.1.2, "Hot Standby," LCO 3.4.1.3, "Shutdown," and LCO 3.4.1.4, "Cold Shutdown."

SG tube integrity means that the tubes are capable of performing their intended RCPB safety function consistent with the licensing basis, including applicable regulatory requirements.

Steam generator tubing is subject to a variety of degradation mechanisms. Steam generator tubes may experience tube degradation related to corrosion phenomena, such as wastage, pitting, intergranular attack, and stress corrosion cracking, along with other mechanically induced phenomena such as denting and wear. These degradation mechanisms can impair tube integrity if they are not managed effectively. The SG performance criteria are used to manage SG tube degradation.

Specification 6.8.4.k, "Steam Generator (SG) Program," requires that a program be established and implemented to ensure that SG tube integrity is maintained. Pursuant to Specification 6.8.4.k, tube integrity is maintained when the SG performance criteria are met. There are three SG performance criteria: structural integrity, accident induced leakage, and operational leakage. The SG performance criteria are described in Specification 6.8.4.k. Meeting the SG performance criteria provides reasonable assurance of maintaining tube integrity at normal and accident conditions.

The processes used to meet the SG performance criteria are defined by the Steam Generator Program Guidelines (Ref. 1).

BASES	,or the NRC approved licensing basis.
APPLICABLE SAFETY ANALYSES	The steam generator tube rupture (SGTR) accident is the limiting design basis event for SG tubes and avoiding an SGTR is the basis for this specification. The analysis of an SGTR event assumes a bounding primary to secondary leakage rate equal to the operational leakage rate limits in LCO 3.4.6.2 "Operational Leakage," plus the leakage rate associated with a double-ended rupture of a single tube. The accident analysis for a SGTR assumes the contaminated secondary fluid is released to the atmosphere via safety valves. The main condenser isolates based on an assumed concurrent loss of off-site power.
	The analysis for design basis accidents and transients other than a SGTR assume the SG tubes retain their structural integrity (i.e., they are assumed not to rupture). In these analyses, the steam discharge to the atmosphere is based on a primary to secondary leakage of 0.1 gallons per minute (gpm) for the non-faulted SGs and 3.7 gpm for the faulted SG. This limit is approved for use for alternate repair criteria (ARC) and W* leakage calculations. For non-ARC applications, the accident induced leakage in the faulted SG is limited to 1.0 gpm, which is bounded by the maximum leakage established by the plant safety analysis. For accidents that do not involve fuel damage, the primary coolant activity level of DOSE EQUIVALENT I-131 is assumed to be equal to the LCO 3.4.8, "Specific Activity," limits. For accidents that assume fuel damage, the primary coolant activity is a function of the amount of activity released from the damaged fuel. The dose consequences of these events are within the limits of GDC 19 (Ref. 2), 10 CFR 100 (Ref. 3),
INSERT E	Steam generator tube integrity satisfies Criterion 2 of 10 CFR
LCO	The LCO requires that SG tube integrity be maintained. The LCO also requires that all SG tubes that satisfy the repair criteria be plugged in accordance with the Steam Generator Program.
	During an SG inspection, any inspected tube that satisfies the Steam Generator Program repair criteria is removed from service by plugging. If a tube was determined to satisfy the repair criteria but was not plugged, the tube may still have tube integrity.
	In the context of this specification, a SG tube is defined as the entire length of the tube, including the tube wall, between the tube-to-tubesheet weld at the tube inlet and the tube-to-tubesheet weld at the tube outlet. The tube-to-tubesheet weld is not considered part of the tube.

新山縣 化合同分子

LCO (continued)

A SG tube has tube integrity when it satisfies the SG performance criteria. The SG performance criteria are defined in Specification 6.8.4.k, "Steam Generator Program," and describe acceptable SG tube performance. The Steam Generator Program also provides the evaluation process for determining conformance with the SG performance criteria.

There are three SG performance criteria: structural integrity, accident induced leakage, and operational leakage. Failure to meet any one of these criteria is considered failure to meet the LCO.

The structural integrity performance criterion provides a margin of safety against tube burst or collapse under normal and accident conditions, and ensures structural integrity of the SG tubes under all anticipated transients included in the design specification. Tube burst is defined as, "The gross structural failure of the tube wall. The condition typically corresponds to an unstable opening displacement (e.g., opening area increased in response to constant pressure) accompanied by ductile (plastic) tearing of the tube material at the ends of the degradation." Tube collapse is defined as, "For the load displacement curve for a given structure, collapse occurs at the top of the load versus displacement curve where the slope of the curve becomes zero." The structural integrity performance criterion provides guidance on assessing loads that have a significant effect on burst or collapse. In that context, the term "significant" is defined as "An accident loading condition other than differential pressure is considered significant when the addition of such loads in the assessment of the structural integrity performance criterion could cause a lower structural limit or limiting burst/collapse condition to be established." For tube integrity evaluations, except for circumferential degradation, axial thermal loads are classified as secondary loads. For circumferential degradation, the classification of axial thermal loads as primary or secondary loads will be evaluated on a case-bycase basis. The division between primary and secondary classifications will be based on detailed analysis and/or testing.

Structural integrity requires that the primary membrane stress intensity in a tube not exceed the yield strength for all American Society of Mechanical Engineers (ASME) Code, Section III, Service Level A (normal operating conditions), and Service Level B (upset or abnormal conditions) transients included in the design specification. This includes safety factors and applicable design basis loads based on ASME Code, Section III, Subsection NB (Ref. 4) and Draft Regulatory Guide 1.121 (Ref. 5).

SEQUOYAH - UNIT 2

LCO (continued)	The accident induced leakage performance criterion ensures that the primary to secondary leakage caused by a design basis accident, other than a SGTR, is within the accident analysis assumptions. In the main steam line break (MSLB) analysis for ARC, SG leakage is assumed to be 3.7 gpm for the faulted SG and 0.1 gpm for the non-faulted SGs. Limiting the allowable leakage in the faulted SG to 1.0 gpm for non-ARC applications ensures that the MSLB analysis remains conservative and bounding. The accident induced leakage rate includes any primary to secondary leakage existing prior to the accident in addition to primary to secondary leakage induced during the accident. The 3.7 gpm is approved for use in ARC applications where the cracks are limited to locations within the tubesheet or within a drilled tube support plate.
	The operational leakage performance criterion provides an observable indication of SG tube conditions during plant operation. The limit on operational leakage is contained in LCO 3.4.6.2, "Operational Leakage," and limits primary to secondary leakage through any one SG to 150 gallons per day. This limit is based on the assumption that a single crack leaking this amount would not propagate to a SGTR under the stress conditions of a loss-of-coolant accident (LOCA) or a MSLB. If this amount of leakage is due to more than one crack, the cracks are very small, and the above assumption is conservative.
APPLICABILITY	Steam generator tube integrity is challenged when the pressure differential across the tubes is large. Large differential pressures across SG tubes can only be experienced in MODES 1, 2, 3, or 4.
	Reactor coolant system (RCS) conditions are far less challenging in MODES 5 and 6 than during MODES 1, 2, 3, and 4. In MODES 5 and 6, primary to secondary differential pressure is low, resulting in lower stresses and reduced potential for leakage.
ACTIONS	The ACTIONs are modified by a clarifying footnote that Action (a) may be entered independently for each SG tube. This is acceptable because the actions provide appropriate compensatory measures for each affected SG tube. Complying with the actions may allow for continued operation, and subsequent affected SG tubes are governed by subsequent action entry, and application of associated actions.

ACTIONS (continued)

Actions (a) and (b)

Action (a) applies if it is discovered that one or more SG tubes examined in an inservice inspection satisfy the tube repair criteria but were not plugged in accordance with the Steam Generator Program as required by SR 4.4.5.1. An evaluation of SG tube integrity of the affected tube(s) must be made. Steam generator tube integrity is based on meeting the SG performance criteria described in the Steam Generator Program. The SG repair criteria define limits on SG tube degradation that allow for flaw growth between inspections while still providing assurance that the SG performance criteria will continue to be met. In order to determine if a SG tube that should have been plugged has tube integrity, an evaluation must be completed that demonstrates that the SG performance criteria will continue to be met until the next refueling outage or SG tube inspection. The tube integrity determination is based on the estimated condition of the tube at the time the situation is discovered and the estimated growth of the degradation prior to the next SG tube inspection. If it is determined that tube integrity is not being maintained until the next SG inspection, Action (a) requires unit shutdown and Action (b) requires the affected tube(s) be plugged.

3 L

refueling outage or

However, the affected tube(s) must be plugged prior to startup following the next refueling outage or SG inspection.

at any time, evaluation determines

An allowed time of 7 days is sufficient to complete the evaluation while minimizing the risk of plant operation with a SG tube that may not have tube integrity.

If the evaluation determines that the affected tube(s) have tube integrity, Action (a) allows plant operation to continue until the next refueling outage or SG inspection provided the inspection interval continues to be supported by an operational assessment that reflects the affected tubes. This allowed time is acceptable since operation until the next inspection is supported by the operational assessment.

If SG tube integrity is not being maintained, the reactor-must be brought to HOT STANDBY within 6 hours and COLD SHUTDOWN within the next 30 hours and the affected tube(s) plugged prior to restart following the next refueling outage or SG inspection.

(Mode 4).

The action times are reasonable, based on operating experience, to reach the desired plant condition from full power in an orderly manner and without challenging plant systems.

SURVEILLANCE REQUIREMENTS

<u>SR 4.4.5.0</u>

During shutdown periods the SGs are inspected as required by this SR and the Steam Generator Program. NEI 97-06, Steam Generator Program Guidelines (Ref. 1), and its referenced EPRI Guidelines, establish the content of the Steam Generator Program. Use of the Steam Generator Program ensures that the inspection is appropriate and consistent with accepted industry practices.

During SG inspections a condition monitoring assessment of the SG tubes is performed. The condition monitoring assessment determines the "as found" condition of the SG tubes. The purpose of the condition monitoring assessment is to ensure that the SG performance criteria have been met for the previous operating period.

The Steam Generator Program determines the scope of the inspection and the methods used to determine whether the tubes contain flaws satisfying the tube repair criteria. Inspection scope (i.e., which tubes or areas of tubing within the SG are to be inspected) is a function of existing and potential degradation locations. The Steam Generator Program also specifies the inspection methods to be used to find potential degradation. Inspection methods are a function of degradation morphology, nondestructive examination (NDE) technique capabilities, and inspection locations.

The Steam Generator Program defines the frequency of SR 4.4.5.0. The frequency is determined by the operational assessment and other limits in the SG examination guidelines (Ref. 6). The Steam Generator Program uses information on existing degradations and growth rates to determine an inspection frequency that provides reasonable assurance that the tubing will meet the SG performance criteria at the next scheduled inspection. In addition, Specification 6.8.4.k contains prescriptive requirements concerning inspection intervals to provide added assurance that the SG performance criteria will be met between scheduled inspections.

SEQUOYAH - UNIT 2

SURVEILLANCE REQUIREMENTS (continued)

<u>SR 4.4.5.1</u>

During an SG inspection, any inspected tube that satisfies the Steam Generator Program repair criteria is removed from service by plugging. The tube repair criteria delineated in Specification 6.8.4.k are intended to ensure that tubes accepted for continued service satisfy the SG performance criteria with allowance for error in the flaw size measurement and for future flaw growth. In addition, the tube repair criteria, in conjunction with other elements of the Steam Generator Program, ensure that the SG performance criteria will continue to be met until the next inspection of the subject tube(s). Reference 1 provides guidance for performing operational assessments to verify that the tubes remaining in service will continue to meet the SG performance criteria.

4.4

The frequency of this surveillance ensures that the surveillance has been completed and all tubes meeting the repair criteria are plugged prior to subjecting the SG tubes to significant primary to secondary pressure differential.

(i.e., prior to HOT SHUTDOWN following a SG tube inspection)

REFERENCES

- 1. NEI 97-06, "Steam Generator Program Guidelines."
 - 2. 10 CFR 50 Appendix A, GDC 19.
 - 3. 10 CFR 100.
 - 4. ASME Boiler and Pressure Vessel Code, Section III, Subsection NB.
 - 5. Draft Regulatory Guide 1.121, "Basis for Plugging Degraded Steam Generator Tubes," August 1976.
 - 6. EPRI, "Pressurized Water Reactor Steam Generator Examination Guidelines."

INSERT F

SEQUOYAH - UNIT 2

INSERT E

Voltage-Based Alternate Repair Criteria (ARC) and W* Methodology

a) Voltage-Based ARC

2 and 3

The voltage-based repair limits implement the guidance in Generic Letter (GL) 95-05 and are applicable only to Westinghouse-designed steam generators (SGs) with outside diameter stress corrosion cracking (ODSCC) located at the tube-to-tube support plate intersections. The voltage-based repair limits are not applicable to other forms of SG tube degradation nor are they applicable to ODSCC that occurs at other locations within the SG. Additionally, the repair criteria apply only to indications where the degradation mechanism is dominantly axial ODSCC with no significant cracks extending outside the thickness of the support plate. Refer to GL 95-05 for additional description of the degradation morphology.

Implementation of voltage-based repair limits require a derivation of the voltage structural limit from the burst versus voltage empirical correlation and then the subsequent derivation of the voltage repair limit from the structural limit (which is then implemented by this surveillance).

The voltage structural limit is the voltage from the burst pressure/bobbin voltage correlation, at the 95 percent prediction interval curve reduced to account for the lower 95/95 percent tolerance bound for tubing material properties at 650°F (i.e., the 95 percent lower tolerance limit curve). The voltage structural limit must be adjusted downward to account for potential flaw growth during an operating interval and to account for NDE uncertainty. The upper voltage repair limit; V_{URL}, is determined from the structural voltage limit by applying the following equation:

 $V_{URL} = V_{SL} - V_{GR} - V_{NDE}$

where V_{GR} represents the allowance for flaw growth between inspections and V_{NDE} represents the allowance for potential sources of error in the measurement of the bobbin coil voltage. Further discussion of the assumptions necessary to determine the voltage repair limit are discussed in GL 95-05.

The mid-cycle equation of TS 6.8.4.k.c.1.c should only be used during unplanned inspection in 6.9.1.16.3 which eddy current data is acquired for indications at the tube support plates.

Specification 6.9.1.16 implements several reporting requirements recommended by GL 95-05 for situations which NRC wants to be notified prior to returning the SGs to service. For 6.9.1.16.i, Items 3 and 4, indications are applicable only where alternate plugging criteria is being applied. For the purposes of this reporting requirement, leakage and conditional burst probability can be calculated based on the as-found voltage distribution rather than the projected end-of-cycle (EOC) voltage distribution (refer to GL 95-05 for more information) when it is not practical to complete these calculations using the projected EOC voltage distributions prior to returning the SGs to service. Note that if leakage and conditional burst probability were calculated using the measured EOC voltage distribution for the purposes of addressing GL Sections 6.a.1 and 6.a.3 reporting criteria, then the results of the projected EOC voltage distribution should be provided per GL Section 6.b(c) criteria.

Wastage-type defects are unlikely with proper chemistry treatment of the secondary coolant. However, even if a defect should develop in service, it will be found during scheduled inservice SG tube examinations. Plugging will be required for all tubes with imperfections exceeding the

INSERT E (Continued)

repair limit defined in Specification 6.8.4.k.c. The portion of the tube that the plugging limit does not apply to is the portion of the tube that is not within the RCS pressure boundary (tube end up to the start of the tube-to-tubesheet weld). The tube end tube-to-tubesheet weld portion of the tube does not affect structural integrity of the SG tubes and therefore indications found in this portion of the tube will be excluded from the "Result and Action Required" for tube inspections. It is expected that any indications that extend from this region will be detected during the scheduled tube inspections. SG tube inspections of operating plants have demonstrated the capability to reliably detect degradation that has penetrated 20% of the original tube wall thickness.

Tubes experiencing ODSCC within the thickness of the tube support plate are plugged or repaired by the criteria of 6.8.4.k.c.1.

b) <u>W* Methodology</u>

The W* criteria incorporates the guidance provided in WCAP-14797, Revision 2, "Generic W* Tube Plugging Criteria for 51 Series Steam Generator Tubesheet Region WEXTEX Expansions." W* length is the length of tubing into the tubesheet below the bottom of the WEXTEX transition (BWT) that precludes tube pullout in the event of a complete circumferential separation of the tube below the W* length. W* distance is the distance from the top-of-tube sheet (TTS) to the bottom of the W* length including the distance from the TTS to the BWT and measurement uncertainties.

Indications detected within the W* distance below the TTS, will be plugged upon detection. Tubes to which WCAP-14797 is applied can experience through-wall degradation up to the limits defined in Revision 2 without increasing the probability of a tube rupture or large leakage event. Tube degradation of any type or extent below W* distance, including a complete circumferential separation of the tube, is acceptable. As applied at Sequoyah Nuclear Plant Unit 2, the W* methodology is used to define the required tube inspection depth into the hotleg tubesheet, and is not used to permit degradation in the W* distance to remain in service. Thus while primary to secondary leakage in the W* distance need not be postulated, primary to secondary leakage from potential degradation below the W* distance will be assumed for every inservice tube in the bounding SG.

c) Calculation of Accident Leakage

The postulated leakage during a steam line break (SLB) shall be equal to the following equation:

Postulated SLB Leakage = ARC _{GL 95-05} + Assumed Leakage _{0⁻-8⁻ <TTS} + Assumed Leakage _{8⁻-12⁻} <TTS + Assumed Leakage _{>12⁻ <TTS}

Where: ARC _{GL 95-05} is the normal SLB leakage derived from ARC methods and the SG tube inspections.

Assumed Leakage 0-8 <TTS is the postulated leakage for undetected indications in SG tubes left in service between 0 and 8 inches below the TTS.

Assumed Leakage -8-12" <TTS is the conservatively assumed leakage from the total of identified and postulated unidentified indications in SG tubes left in service between 8 and 12 inches

INSERT E (Continued)

below the TTS. This is 0.0045 gpm multiplied by the number of indications. Postulated unidentified indications will be conservatively assumed to be in one SG. The highest number of identified indications left in service between 8 and 12 inches below TTS in any one SG will be included in this term.

Assumed Leakage >12' <TTS is the conservatively assumed leakage for the bounding SG tubes left in service below 12 inches below the TTS. This is 0.00009 gpm multiplied by the number of tubes left in service in the least plugged SG.

The aggregate calculated SLB leakage from the application of all ARC and the above assumed leakage shall be reported to the NRC in accordance with applicable technical specifications. The combined calculated leak rate from all ARC must be less than the maximum allowable SLB leak rate limit in any one SG in order to maintain doses within 10 CFR 100 guideline values and within GDC-19 values during a postulated SLB event.

INSERT F

- 7. NRC Generic Letter 95-05, Voltage Based Repair Criteria for Westinghouse Steam Generator Tubes Affected by Outside Diameter Stress Corrosion Cracking
- 8. NRC letter to TVA dated April 9, 1997, Issuance of Technical Specification Amendments for the Sequoyah Nuclear Plant, Units 1 and 2 (TAC Nos. M96998 and M96999) (TS 96-05)
- 9. NRC letter to TVA dated May 3, 2005, Sequoyah Nuclear Plant, Unit 2 Issuance of Amendment Regarding Changes to the Inspection Scope for the Steam Generator Tubes (TAC No. MC5212) (TS-03-06)

BASES

3/4.4.6.2 OPERATIONAL LEAKAGE

BACKGROUND Components that contain or transport the coolant to or from the reactor core make up the reactor coolant system (RCS). Component joints are made by welding, bolting, rolling, or pressure loading, and valves isolate connecting systems from the RCS.

During plant life, the joint and valve interfaces can produce varying amounts of reactor coolant leakage, through either normal operational wear or mechanical deterioration. The purpose of the RCS Operational leakage LCO is to limit system operation in the presence of leakage from these sources to amounts that do not compromise safety. This LCO specifies the types and amounts of leakage.

11 200

10 CFR 50, Appendix A, GDC 30 (Ref. 1), requires means for detecting and, to the extent practical, identifying the source of reactor coolant leakage. Regulatory Guide 1.45 (Ref. 2) describes acceptable methods for selecting leakage detection systems.

The safety significance of RCS LEAKAGE varies widely depending on its source, rate, and duration. Therefore, detecting and monitoring reactor coolant leakage into the containment area is necessary. Quickly separating the identified LEAKAGE from the unidentified leakage is necessary to provide quantitative information to the operators, allowing them to take corrective action should a leak occur that is detrimental to the safety of the facility and the public.

A limited amount of leakage inside containment is expected from auxiliary systems that cannot be made 100% leaktight. Leakage from these systems should be detected, located, and isolated from the containment atmosphere, if possible, to not interfere with RCS leakage detection.

This LCO deals with protection of the reactor coolant pressure boundary (RCPB) from degradation and the core from inadequate cooling, in addition to preventing the accident analyses radiation release assumptions from being exceeded. The consequences of violating this LCO include the possibility of a loss of coolant accident (LOCA).

APPLICABLE Except for primary-to-secondary leakage, the safety analyses events SAFETY ANALYSES do not address operational leakage. However, other operational leakage is related to the safety analyses for LOCA; the amount of leakage can affect the probability of such an event. The safety analysis for-an event resulting in steam discharge to the atmosphere assumes a 1-gpm primary to secondary leakage as the initial condition.

account for a maximum normal operational leakage of 0.4 gpm (0.1 gpm per steam generator or the equivalent of 150 gallons per day per steam generator).

SEQUOYAH - UNIT 2

B 3/4 4-4e

BASES	steam generator tube rupture or a	
a maximum 3.7	Primary to secondary leakage is a factor in the dose releases outside containment resulting from a steam line break (SLB) accident. To a lesser extent, other accidents or transients involve secondary steam release to the atmosphere, such as a steam generator tube rupture (SGTR). The leakage contaminates the secondary fluid. If rom all four SGs 0.4 gpm operational The FSAR (Ref. 3) analysis for SGTR assumes the contaminated secondary luid is released via safety valves for up to 30 minutes. Operator action is taker to isolate the affected steam generator within this time period. The 1 gpm orimary to secondary leakage is relatively inconsequential. Ithrough the a SLB accident assumes 1 gpm primary to secondary leakage in one generator well within the limits defined in 10 CFR 100 or the staff approved licensing basi i.e., a small fraction of these limits). Based on the NDE uncertainties, bobbin coll voltage distribution and crack growth rate from the previous inspection, the expected leak rate following a steam line rupture is limited to below 8.24 gpm a throspheric conditions and 70°F in the faulted loop, which will limit the accident distribution of crack indications results in primary-to- econdary leakage greater than 8.24 gpm in the faulted loop during a postulate team line break event, additional tubes must be removed from service in order to reduce the postulated primary-to-secondary steam line break leakage to below to reduce the postulated primary-to-secondary steam line break leakage to below to reduce the postulated primary-to-secondary steam line break leakage to below to reduce the postulated primary-to-secondary steam line break leakage to below to reduce the postulated primary-to-secondary steam line break leakage to below to reduce the postulated primary-to-secondary steam line break leakage to below to reduce the postulated primary-to-secondary steam line break leakage to below to reduce the postulated primary-to-secondary steam line break leakage to below to reduce the postulated primary-to-seconda	ARC ARC ARC ARC ARC ARC ARC ARC ARC ARC
LCO	 RCS operational leakage shall be limited to: <u>PRESSURE BOUNDARY LEAKAGE</u> No PRESSURE BOUNDARY LEAKAGE is allowed, being indicative of material deterioration. Leakage of this type is unacceptable as the leak itself could cause further deterioration, resulting in higher leakage. Viola of this LCO could result in continued degradation of the RCPB. Leakag past seals and gaskets is not PRESSURE BOUNDARY LEAKAGE. <u>UNIDENTIFIED LEAKAGE</u> 	ation

مادد المحجد وبالراجي وتيم وتم مريد الهاور ما الح

y 14 %

ļ

.

i

BASES

sump level monitoring equipment can collectively detect within a reasonable time period. Violation of this LCO could result in continued degradation of the RCPB, if the leakage is from the pressure boundary.

C.

INSERT G

Primary to Secondary Leakage through Any One Steam Generator (SG)

The 150 gallons per day limit on one SG is based on the assumption that a single stack leaking this amount would not propagate to a SGTR under the stress conditions of a LOCA or a main steam line rupture. If leaked through many cracks, the stacks are very small, and the above assumption is conservative.

The 150-gallons per day limit incorporated into Surveillance 4.4.6.2.1 is more restrictive than the standard operating leakage limit and is intended to provide an additional margin to accommodate a crack which might grow at a greater than expected rate or unexpectedly extend outside the thickness of the tube support plate. Hence, the reduced leakage limit, when combined with an effective leak rate monitoring program, provides additional assurance that, should a significant leak be experienced, it will be detected, and the plant shut down in a timely manner.

d. IDENTIFIED LEAKAGE

Up to 10 gpm of IDENTIFIED LEAKAGE is considered allowable because leakage is from known sources that do not interfere with detection of UNIDENTIFIED LEAKAGE and is well within the capability of the RCS Makeup System. IDENTIFIED LEAKAGE includes leakage to the containment from specifically known and located sources, but does not include PRESSURE BOUNDARY LEAKAGE or controlled reactor coolant pump (RCP) seal leakoff (a normal function not considered leakage). Violation of this LCO could result in continued degradation of a component or system.

APPLICABILITY In MODES 1, 2, 3, and 4, the potential for reactor coolant PRESSURE BOUNDARY LEAKAGE is greatest when the RCS is pressurized.

In MODES 5 and 6, leakage limits are not required because the reactor coolant pressure is far lower, resulting in lower stresses and reduced potentials for leakage.

SEQUOYAH - UNIT 2

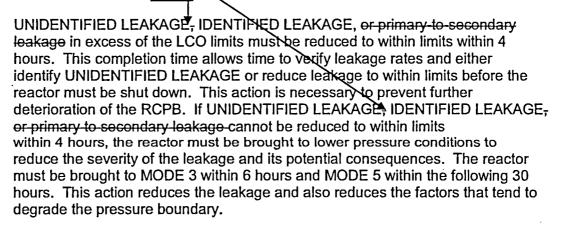
B 3/4 4-4g

May 17, 2002 Amendment No. 211, 213, 227, 250

BASES

LCO 3/4.4.6.3, "RCS Pressure Isolation Valve (PIV) Leakage," measures leakage through each individual PIV and can impact this LCO. Of the two PIVs in series in each isolated line, leakage measured through one PIV does not result in RCS leakage when the other is leak tight. If both valves leak and result in a loss of mass from the RCS, the loss must be included in the allowable IDENTIFIED LEAKAGE.

ACTIONS


Action a:

or with primary to secondary leakage not within limits,

If any PRESSURE BOUNDARY LEAKAGE exists, the reactor must be brought to lower pressure conditions to reduce the severity of the leakage and its potential consequences. It should be noted that leakage past seals and gaskets is not PRESSURE BOUNDARY LEAKAGE. The reactor must be brought to MODE 3 within 6 hours and MODE 5 within the following 30 hours. This action reduces the leakage and also reduces the factors that tend to degrade the pressure boundary.

The allowed completion times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems. In MODE 5, the pressure stresses acting on the RCPB are much lower, and further deterioration is much less likely.

Action b:

The allowed completion times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems. In MODE 5, the pressure stresses acting on the RCPB are much lower, and further deterioration is much less likely.

SEQUOYAH - UNIT 2

B 3/4 4-4h

or

BASES

SURVEILLANCE Surveillance 4.4.6.2.1 REQUIREMENTS

The

Verifying RCS leakage to be within the LCO limits ensures the integrity of the RCPB is maintained. PRESSURE BOUNDARY LEAKAGE would at first appear as UNIDENTIFIED LEAKAGE and can only be positively identified by inspection. It should be noted that leakage past seals and gaskets is not PRESSURE BOUNDARY LEAKAGE. UNIDENTIFIED LEAKAGE and IDENTIFIED LEAKAGE are determined by performance of an RCS water inventory balance. Primary-to-secondary leakage is also measured by performance of an RCS-water inventory balance in conjunction with effluent monitoring within the secondary steam and foodwater systems.

The surveillance is modified by a footnote. The RCS water inventory balance must be met with the reactor at steady state operating conditions (stable pressure, temperature, power level, pressurizer and makeup tank levels, makeup, letdown, and RCP seal injection and return flows). Therefore, afootnote is added allowing that this SR is not required to be performed until 12 hours after establishing steady state operation. The 12-hour allowance provides sufficient time to collect and process all necessary data after stable plant conditions are established. Performance of this surveillance within the 12-hour allowance is required to maintain compliance with the provisions of Specification 4.0.3.

Steady state operation is required to perform a proper inventory balance since calculations during maneuvering are not useful. For RCS operational leakage determination by water inventory balance, steady state is defined as stable RCS pressure, temperature, power level, pressurizer and makeup tank levels, makeup and letdown, and RCP seal injection and return flows.

An early warning of PRESSURE BOUNDARY LEAKAGE or UNIDENTIFIED LEAKAGE is provided by the automatic systems that monitor the containment atmosphere radioactivity and the containment pocket sump level. It should be noted that leakage past seals and gaskets is not PRESSURE BOUNDARY LEAKAGE. These leakage detection systems are specified in LCO 3/4.4.6.1, "Leakage Detection Instrumentation."

INSERT H

The 72 hour frequency is a reasonable interval to trend leakage and recognizes the importance of early leakage detection in the prevention of accidents.

Surveillance 4.4.6.2.2

INSERT I

This surveillance provides the means necessary to determine SG OPERABILITY in an operational MODE. The requirement to demonstrate SG tube integrity in accordance with the Steam Generator Tube Surveillance Program emphasizes the importance of SG tube integrity, even though this surveillance cannot be performed at normal operating conditions.

SEQUOYAH - UNIT 2

B 3/4 4-4i

BASES

REFERENCES 1. 10 CFR 50, Appendix A, GDC 30.

2. Regulatory Guide 1.45, May 1973.

3. FSAR, Section 15.4.3.

4. NEI 97-06, "Steam Generator Program Guidelines."

5. EPRI, "Pressurized Water Reactor Primary-to-Secondary Leak Guidelines."

SEQUOYAH - UNIT 2

INSERT G

The limit of 150 gallons per day per SG is based on the operational leakage performance criterion in NEI 97-06, Steam Generator Program Guidelines (Ref. 4). The Steam Generator Program operational leakage performance criterion in NEI 97-06 states, "The RCS operational primary to secondary leakage through any one SG shall be limited to 150 gallons per day." The limit is based on operating experience with SG tube degradation mechanisms that result in tube leakage. The operational leakage rate criterion, in conjunction with the implementation of the Steam Generator Program, is an effective measure for minimizing the frequency of SG tube ruptures.

INSERT H

Notation associated with this SR states that this SR is not applicable to primary to secondary leakage because leakage of 150 gallons per day cannot be measured accurately by an RCS water inventory balance.

INSERT I

This SR verifies that primary to secondary leakage is less than or equal to 150 gallons per day through any one SG. Satisfying the primary to secondary leakage limit ensures that the operational leakage performance criterion in the Steam Generator Program is met. If this SR is not met, compliance with LCO 3.4.5, "Steam Generator Tube Integrity," should be evaluated. The 150 gallons per day limit is measured at 70 degrees Fahrenheit (Reference 5). The operational leakage rate limit applies to leakage through any one SG. If it is not practical to assign the leakage to an individual SG, all the primary-to-secondary leakage should be conservatively assumed to be from one SG.

The surveillance is modified by a note which states that the surveillance is not required to be performed until 12 hours after establishment of steady state operation. For RCS primary-to-secondary leakage determination, steady state is defined as stable RCS pressure, temperature, power level, pressurizer and makeup tank levels, makeup and letdown, and RCP seal injection and return flows.

The surveillance frequency of 72 hours is a reasonable interval to trend primary-to-secondary leakage and recognizes the importance of early leakage detection in the prevention of accidents. The primary-to-secondary leakage is determined using continuous process radiation monitors or radiochemical grab sampling in accordance with the EPRI guidelines (Ref. 5).