An Overview of the Risk-Informed Pressurized Thermal Shock Re-evaluation Project

Terry Dickson Computational Science and Engineering Division Oak Ridge National Laboratory

> OECD - Nuclear Energy Agency Workshop Lyon, France September 25 –27, 2006

Oak Ridge National Laboratory U.S. Department of Energy The submitted manuscript has been authored by a contractor of the U.S. Government under contract DE-AC05-00OR22725. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes.

Scope of Analysis Performed in PTS Re-evaluation Analysis

All PWR manufacturers 1 Westinghouse 1 CE 1 B & W

2 plants very close to the current PTS screening criteria

At 60 Operational Years, Maximum Estimated Mean Through-Wall Crack Frequency (TWCF) for the Three Plants is ~1.6e-08 (for Palisades)

			Mean FCI	Mean TWCF
Reactor	EFPY ⁽¹⁾	$RT_{NDT}^{(2)}$ (°F)	(cracked RPVs per reactor operating year)	(failed RPVS per reactor operating year)
	32	175	1.29e-10	2.30e-11
	60	193	1.02e-09	6.47e-11
Oconee ⁽³⁾	Ext-Oa	251	1.01e-07	1.30e-09
	Ext-Ob	281	5.42e-07	1.16e-08
	32	243	1.32e-07	8.89e-10
Beaver	60	272	5.19e-07	4.84e-09
Valley ⁽⁴⁾	Ext-Ba	301	1.71e-06	2.02e-08
	Ext-Bb	354	8.87e-6	3.00e-07
	32	212	5.22e-08	4.90e-09
	60	230	1.23e-07	1.55e-08
Palisades ⁽⁵⁾	Ext-Pa	277	7.46e-07	1.99e-07
	Ext-Pb	333	4.47e-06	1.26e-06

RT_{NDT} = 290 F corresponds to 1e-6 CRACK INITIATIONS per reactor operating year RT_{NDT} = 320 F corresponds to 1e-6 FAILED vessels per reactor operating year (Consistent with PTS Rulemaking Plan {NRC ADAMS# ML060530653})

The "bottom line" of an analysis performed by FAVOR is a statistical distribution of the through-wall crack frequency

UT-BATTELLE

PTS Re-evaluation Project Conclusions

The analyses performed during the *PTS Re-evaluation Project* indicate that the degree of PTS challenge for currently anticipated lifetimes and operating conditions is low.

The US domestic commercial operating fleet of 68 PWRs is in little danger of exceeding either the limit on TWCF of 5e-6/yr expressed by current PTS regulations or the proposed new value of 1e-6/yr. (Consistent with the PTS Rulemaking Plan {NRC ADAMS# ML060530653})

The results provide a technical basis to support a relaxation of the current PTS regulations while continuing to provide reasonable assurance of adequate protection to public health and safety.

The PTS Re-evaluation Project Integrated Advancements Across a Range of Technical Disciplines Relevant to PTS Assessement Methodologies

Updated Technologies were Implemented into the FAVOR Code to Perform Integrated Re-Evaluation of Current PTS Rule

There has been an ongoing collaborative effort to validate FAVOR solutions

Generated ORNL letter report, i.e.,

Verification and Validation of the FAVOR Code – Deterministic Load Variables,

that compared FAVOR and ABAQUS finite element solutions for temperature, stress, and K_I (embedded and surfacebreaking flaws) for complex transients

- ORNL Coordinated efforts with other laboratories / industry:
- INEEL V & V of probabilistic (sampling) protocols used by FAVOR
- PNNL V & V of FAVOR processing of flaw-characterization data
- Westinghouse V & V for processing of embrittlement related correlations
- EPRI V & V of overall FAVOR PFM methodology

A more fundamental aspect of the ongoing validation of FAVOR is demonstration that it can be used to successfully predict the results of large-scale fracture experiments (2004 ASME PVP Paper – Dickson, EricksonKirk)

IIT-RATTELLE

The current FAVOR (version 05.1) documentation consists of a Theory Manual and a User's Manual

NUREG/CR-6855 ORNL/TM-2004/245

Fracture Analysis of Vessels – Oak Ridge FAVOR, v04.1, Computer Code: User's Guide

Prepared by T. L. Dickson, P. T. Williams, and S. Yin

Oak Ridge National Laboratory

NUREG/CR-6854 ORNL/TM-2004/244

Fracture Analysis of Vessels – Oak Ridge FAVOR, v04.1, Computer Code: Theory and Implementation of Algorithms, Methods, and Correlations

Prepared by P. T. Williams, T. L. Dickson, and S. Yin

Oak Ridge National Laboratory

Prepared for U.S. Nuclear Regulatory Commission

Prepared for U.S. Nuclear Regulatory Commission

Three Models (Shown in Blue Squares) Provide Essential Elements of the Integrated PTS Assessment

FAVOR Fracture Mechanics Code has a Modular Structure

The structure of FAVOR PFM Module is based on Monte Carlo Technique

The FAVPFM model has four primary nested loops RPV trial loop (2) Flaw loop (3) Transient loop (4) time loop

The basic element of the PFM analysis is the interaction of the driving force (applied K_{μ}) with the finite-probability space defined by a 3-parameter Weibull K_{Ic} statistical distribution

Flaw models in FAVOR include infinite length and finite-length semielliptical surface breaking flaw and fully elliptical embedded flaws

FAVPFM allows the RPV beltline to be discretized into major regions (plates, axial welds, circ. welds) which have unique chemistries

The major regions may be further discretized to accommodate detailed neutron fluence maps

TYPICAL VESSEL BELTLINE ROLLOUT

FAVOR flaw model assumes:

Different flaw depth distributions for plate and weld material

- (1) embedded flaws in axial welds are axially oriented
- (2) embedded flaws in circ welds are circ oriented
- (3) embedded flaws in plates 50% are axial and 50% are circ

Risk Dominance was Qualitatively Classified in Terms of Transient Classes and Characteristics

Transient severity and likelihood combine to control TWCF contribution of transients. For the range of transients considered: minimum temperature is most important parameter, then cooling rate, then pressure

Transient Class		Transient Severity			Tropolont	ТИСС
		Cooling Rate	Minimum Temperature	Pressure	Likelihood	Contribution
Primary Side Pipe Breaks	Large Diameter	Fast	Low	Low	Moderate	Large
	Medium Diameter	Moderate	Low	Low	Moderate	Large
	Small Diameter	Slow	High	Moderate	High	~0
Primary Stuck- Open Valves	Valve Recloses	Slow	Moderate	High	Moderate	Large
	Valve Remains Open	Slow	Moderate	Low	Moderate	~0
Main Steam Line Break		Fast	Moderate	High	Low	Small
Stuck Open Valve(s), Seconday Side		Moderate	High	High	Low	~0
Feed and Bleed		Slow	Low	Low	Low	~0
Steam Generator Tube Rupture		Slow	High	Moderate	Low	~0
Mixed Primary & Secondary Initiators		Slow	Mixed		Very Low	~0

Oconee: most limiting (highest RT_{NDT}) region is circ weld; most initiations predicted to occur in circ welds; all failures occur in axial welds

Palisades: most limiting region is axial weld; most initiations and failures predicted to occur in axial weld

Beaver Valley: most limiting region is plate; most initiations are predicted to occur in circumferential weld; most failures predicted to occur in plates

	EFPY ⁽¹⁾	RT _{NDT} ⁽²⁾	Allocation to originating flaw population					
Reactor			FCI			TWCF		
		(°F)	axial	circ	plates	axial	circ	plates
			welds	welds		welds	welds	
	32	175	34%	66%	0%	100%	0%	0%
	60	193	19%	81%	0%	100%	0%	0%
Oconee ⁽³⁾	Ext-Oa	251	9%	91%	0%	100%	0%	0%
	Ext-Ob	281	9%	91%	1%	100%	0%	0%
	32	243	2%	96%	2%	69%	0%	31%
Beaver	60	272	3%	94%	3%	39%	1%	60%
Valley ⁽⁴⁾	Ext-Ba	301	3%	93%	4%	16%	2%	83%
	Ext-Bb	354	2%	91%	7%	9%	6%	85%
	32	212	94%	6%	0%	100%	0%	0%
	60	230	93%	7%	0%	100%	0%	0%
Palisades ⁽⁵⁾	Ext-Pa	277	84%	15%	0%	100%	0%	0%
	Ext-Pb	333	60%	39%	1%	99%	0%	1%

Axial flaws are much more likely to propagate through-wall to failure than circumferential flaws because the applied driving-force to fracture increases continuously with increasing crack depth for an axial flaw whereas circumferentially oriented flaws experience a driving force peak mid-wall, providing a natural crack arrest mechanism.

Several PFM Sensitivity Studies Were Performed to Provide confidence that the analysis results from the three plants can be generalized to apply to all PWRS

Since many of the input parameters cannot be known precisely, PFM sensitivity analyses have been performed to investigate the impact that credible variations in input parameters could have on the base-line analysis results.

The results of these sensitivity analyses provides a rational basis to assess the impact of credible perturbations of the input parameters on the base-line solutions.

This provides a perspective on the appropriateness of using the base-line analysis results as a technical basis that can be generalized to all domestic PWRs.

PTS Re-evaluation Project Conclusions

The analyses performed during the *PTS Re-evaluation Project* indicate that the degree of PTS challenge for currently anticipated lifetimes and operating conditions is low.

The US domestic commercial operating fleet of 68 PWRs is in little danger of exceeding either the limit on TWCF of 5e-6/yr expressed by current PTS regulations or the proposed new value of 1e-6/yr. (Consistent with the NRC PTS Rulemaking Plan {ADAMS# ML060530653})

The results provide a technical basis to support a relaxation of the current PTS regulations while continuing to provide reasonable assurance of adequate protection to public health and safety.

