Gamma Survey Data Evaluation Report

Rev 1

prepared for

WESTINGHOUSE ELECTRIC COMPANY Hematite, Missouri

prepared by

SCIENCE APPLICATIONS INTERNATIONAL CORPORATION St. Louis, Missouri

MAY 2004

TABLE OF CONTENTS

<u>SEC</u>	<u>PAGE</u>
1.0	INTRODUCTION1
	1.1 SURVEY PURPOSE1
	1.2 SURVEY SCOPE
2.0	SURVEY DESIGN AND METHODOLOGY4
3.0	SURVEY QUALITY CONTROL
	 3.2 INSTRUMENTATION QUALITY ASSURANCE
	3.3 SURVEY QUALITY ASSURANCE
	3.4 DATA MANAGEMENT 12
4.0	SURVEY RESULTS
	4.1 BACKGROUND VALUE DETERMINATION
	4.2 AREA A
	4.3 AREA B
	4.4 AREA C
	4.5 AREA D
	4.6 AREA E
	4.7 AREA F
	4.8 AREA G
5.0	CONCLUSIONS/RECOMMENDATIONS
6.0	REFERENCES
	ACHMENT 1 – SURVEY INSTRUMENTATION QA RECORDS ACHMENT 2 – CONTAMINATION SURVEY RECORD

ł

LIST OF TABLES

NUMBER

PAGE

Table 3-1	Data Quality Objectives	.9
Table 3-2	Instrument Background Comparison	
Table 4-1	Reference Area Measurements	

LIST OF FIGURES

NUMBER

ر ا

<u>PAGE</u>

1

Figure 1. – Westinghouse Property Map	3
Figure 2. – Initial Survey Plan	5
Figure 3. – Final Survey Map	7
Figure 4. – Westinghouse GWS (Soil Background 10001 – 12000 cpm)	. 15
Figure 5. – Westinghouse GWS (Soil Background 11001 – 13000 cpm)	. 16
Figure 6. – Westinghouse GWS (Soil Background 10001 – 13000 cpm)	. 17
Figure 7. – Westinghouse GWS (Two Color Illustration)	. 18
Figure 8. – Area 'A' GWS (Soil Background 10001 – 12000 cpm)	. 23
Figure 9. – Area 'A' GWS (Two Color Illustration)	. 24
Figure 10. – Area 'A' GWS (Modified Ranges)	. 25
Figure 11. – Area 'B' GWS (Soil Background 10001 – 12000 cpm)	. 27
Figure 12. – Area 'B' GWS (Two Color Illustration)	. 28
Figure 13. – Area 'C' GWS	. 31
Figure 14. – Area 'D' GWS	. 32
Figure 15. – Area 'D' Isolated Elevated Areas	. 33
Figure 16. – Area 'E' GWS	. 35
Figure 17. – Area 'F' GWS	. 37
Figure 18. – Area 'G' GWS	. 38

ACRONYMS			
⁹⁹ Tc	Technicium-99		
AOC	Area of concern		
ATV	All terrain vehicle		
CERCLA	Comprehensive Environmental Response, Compensation, and Liability Act		
Cm	Centimeter		
cpm	Counts per minute		
DQOs	Data quality objectives		
ft	Feet		
GIS	Geographic information system		
GPS	Global positioning system		
GWS	Gamma walkover survey		
HSA	Historical Site Assessment		
HEU	High enriched uranium		
HF	Hydrogen fluoride gas		
LEU	Low enriched uranium		
MARSSIM	Multi-Agency Radiation Survey and Site Investigation Manual		
MDNR	Missouri Department of Natural Resources		
QA	Quality assurance		
QC	Quality control		
RI	Remedial Investigation		
RI/FS	Remedial Investigation/Feasibility Study		
SAIC	Science Applications International Corporation		
UF ₆	Uranium hexafluoride		

1.0 INTRODUCTION

The Westinghouse Electric Corporation, LLC (Westinghouse) nuclear fuel manufacturing facility at Hematite, Missouri ceased operation in June 2001 after nearly 47 years under various owners and operators. Westinghouse now seeks to decommission the plant and release the property. The United States Nuclear Regulatory Commission (NRC) is the primary agency for the plant decommissioning. The Missouri Department of Natural Resources (MDNR) is the primary regulatory agency for the remedial investigation/feasibility study (RI/FS) that is being performed in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the National Oil and Hazardous Substances Pollution Contingency Plan (NCP). Both agencies are expected to provide critical roles in defining the regulatory path to decontamination and decommissioning, site assessment and remediation, and eventual release.

This gamma walkover survey was conducted as an initial phase of the RI/FS at the site and, as such, MDNR provided oversight for this work. MDNR representatives were on-site on a daily basis, attended the daily meetings, and observed work being performed. Typically there was only one representative present at a time and there were times when activities were occurring in more than one location.

The plant is located on approximately 228 acres of property (Property) that is currently owned by Westinghouse. The plant and production related activities are located on approximately 8 acres of the Property.

1.1 SURVEY PURPOSE

Science Applications International Corporation (SAIC) performed a Gamma Walkover Survey (GWS) at the Hematite Facility (Figure 1) during the period April 7-24, 2003 in accordance with the *Gamma Survey Plan for the Hematite Site* (Survey Plan (Rev 0)). The purpose of the GWS was to identify the presence of low level gamma radiation that could indicate the presence of uranium including natural uranium, low enriched uranium (LEU), high enriched uranium (HEU), and thorium 232 (Th-232) and progeny in surface soils. For the purposes of this report, surface soils are defined as the thickness of soil that can be measured using direct measurement or scanning techniques (MARSSIM). Typically, this layer is represented as the top 15cm (6 inches) of soil (40 CFR 192). This information will be used to aid in area classification and future characterization planning at the site.

The survey was conducted with the intent of maximizing the use of all data collected in future site evaluations, specifically the Remedial Investigation/Feasibility study (RI/FS). The GWS has been designed to follow the guidance for scoping surveys presented in Section 5.2 of the Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM). Although this survey was conducted to aid in classification of site areas as impacted or non-impacted, all available data must be evaluated prior to classification of the site. The GWS detection ability is limited to the gamma signature of site specific radionuclides and is typically limited to surface soils.

1.2 SURVEY SCOPE

The GWS data will assist Westinghouse in verifying the conclusions of previous Historical Site Assessments (HSA) and provide input for identifying potential sample locations as part of the Remedial Investigation (RI). Other uses of the survey data include:

- 1. Determining the magnitude of surface contamination in the soils immediately surrounding the plant area.
- 2. Determining the lateral extent of surface contamination extending out from the plant.

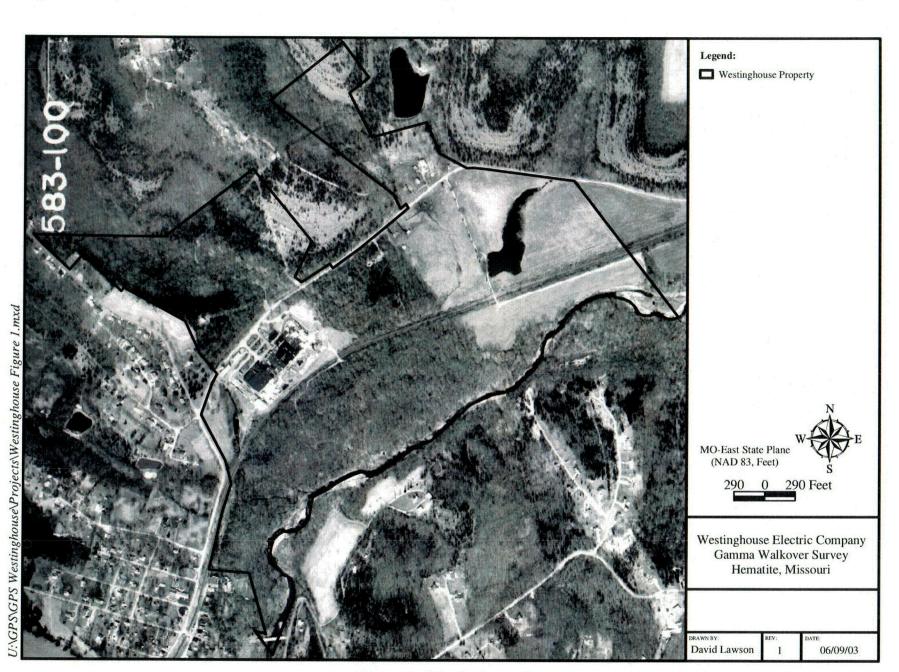


Figure 1. Westinghouse Property Map

- 3. Detecting, as is possible with surface gamma detectors, the presence of any burial pits and other areas of concern known or unknown to exist at this time.
- 4. Determining the extent, if any, of the spread of surface contamination by the existing natural migration pathways (ditches, streams, low points, surface water flow, etc.).
- 5. Identifying non-impacted areas that may be appropriate for obtaining reference areas samples to be used to estimate the background soil concentration for contaminants of concern at the site.
- 6. Providing input to future site evaluations to determine the risk posed by the uranium, and/or thorium contamination by locating areas and media impacted by the spread of contamination and determining the magnitude of the contamination present on the site.

2.0 SURVEY DESIGN AND METHODOLOGY

The survey was designed to cover 100% of the areas directly adjacent to the plant as shown on Figure 2, which includes the areas surrounding the buildings and other obstructions. It was expected that 70% of this area would be surveyed using a multi-pass conveyance and 30% by technician-conveyed global positioning system (GPS)/gamma detector assemblies. The multipass conveyance was planned for use over most of the grass-covered areas located outside the fence line. Technician-conveyed detectors were planned to survey the evaporation ponds, ditches, mounds, sedimentation pond, and drainages along or through the rail line, and in the densely wooded areas outside the fence line.

The survey was designed to cover approximately 10% of the remaining areas as shown on Figure 2. The survey was originally designed to be a roughly systematic survey of the remaining areas of the site. In densely wooded areas, the surveys were planned to maximize peak periods of satellite availability. The survey in the 10% coverage areas focused on locations with higher potential for detection of elevated gamma radiation levels, such as in drainage ditches, pond banks, and disturbed areas. It was expected that approximately 30% of these areas would be surveyed using a multi-pass conveyance and 70% by technician-conveyed GPS/gamma detector assemblies. The multi-pass conveyance was planned for use over the open farmland located on the eastern side of the site and the semi-open hilly site terrain located north of State Road P. The technician-conveyed GPS/gamma detector assemblies would be used to survey the remainder of these areas.

4

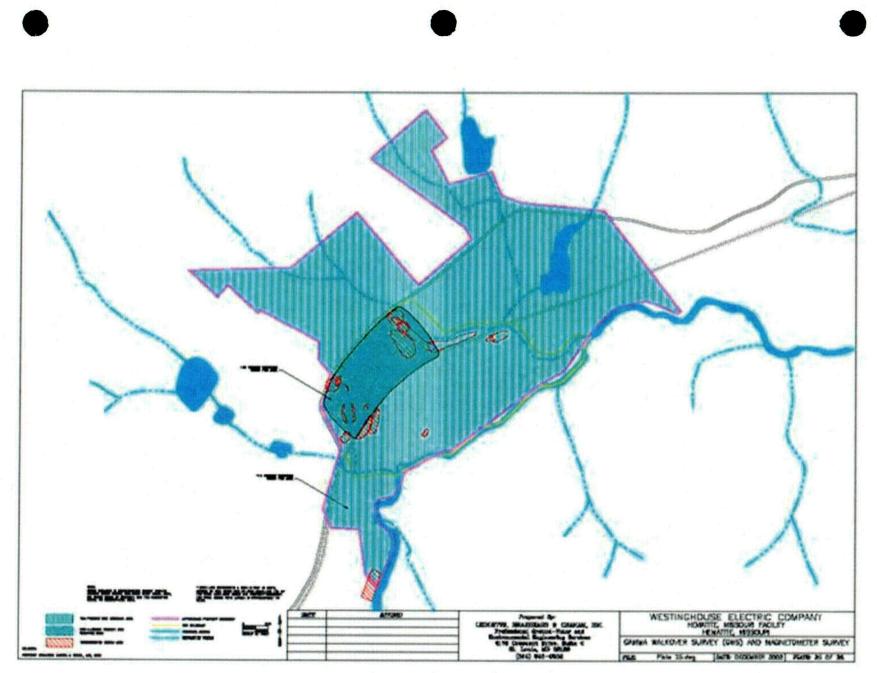


Figure 2. Initial Survey Plan

Uranium and its short-lived daughters (e.g., Th-234, Pa-234m, Th-231), as well as Thorium 232 (Th-232) short-lived daughters (e.g. Ac-228, Th-228) have associated gamma radiation. A sodium iodide scintillation detector (NaI $2"\times 2"$) was selected to detect the gamma radiation. The NaI 2"x2" was coupled to a rate meter, which transfers detector count-rate data to a Trimble XRS (or equivalent) global positioning system (GPS) data logger. In addition, the scaler/ratemeter combinations were upgraded with Ludlum's "one-second count microchip" to achieve a gamma count for every one-second GPS position location. The 2"x2" NaI detector was selected over other radiological instrumentation for the following reasons:

- It is a multi-purpose detector capable of low and high energy gamma ray detection with no appreciable loss of low level gamma ray detection ability;
- > It is rugged and durable and requires less instrument maintenance or surveyor downtime;
- It is a lighter detector resulting in less surveyor fatigue that would otherwise produce a less efficient survey;
- It can be equipped with Ludlum's "one-second count microchip" to achieve a gamma count for every one-second GPS position location;
- > It allows an increased ability to pin point the source of elevated gamma signal;
- > It is cost effective, less expensive to procure and maintain.

The 2"x2" NaI detector detects gamma levels from surface sources and indicates the presence of these levels in corresponding "cpm" (counts per minute) readings. The 2"x2" NaI detector has varying sensitivities to different gamma ray energies and does not distinguish the "cpm" readings for the various energies. The inability to discriminate between the different energies does not allow a direct correlation of "cpm" readings to activity in a mixed radionuclide field. Therefore, the results of the GWS are reported in "cpm".

Prior to site mobilization, Westinghouse and SAIC, with MDNR in attendance, conducted a kickoff meeting. The scope of the walkover was slightly modified as a result of the meeting in that the Property would be assessed as seven areas identified by surface water drainage boundaries or other physical features. The original 100% coverage area was slightly increased to provide coverage in areas that may have been affected by past activities at the plant. The 10% systematic coverage of the remaining portion of the Property was modified to allow for more investigational coverage. In those areas where plant related contamination was not expected, the area perimeter, disturbed areas, and any internal drainage ways were surveyed to provide data to verify the assumption that the areas were not impacted. In some areas, closer to the plant site, more systematic coverage was performed to provide data to assess potential impacts.

The modified survey areas are described below and are identified along with approximate property lines on Figure 3.

Area A -100% Inside Fence Area B -100% Outside Fence Area C -10% South of Southern Drainage Area D -10% South of Rail Area E -10% South State Road P Between Drainages Area F -10% East Farm Area Area G -10% North of State Road P

6

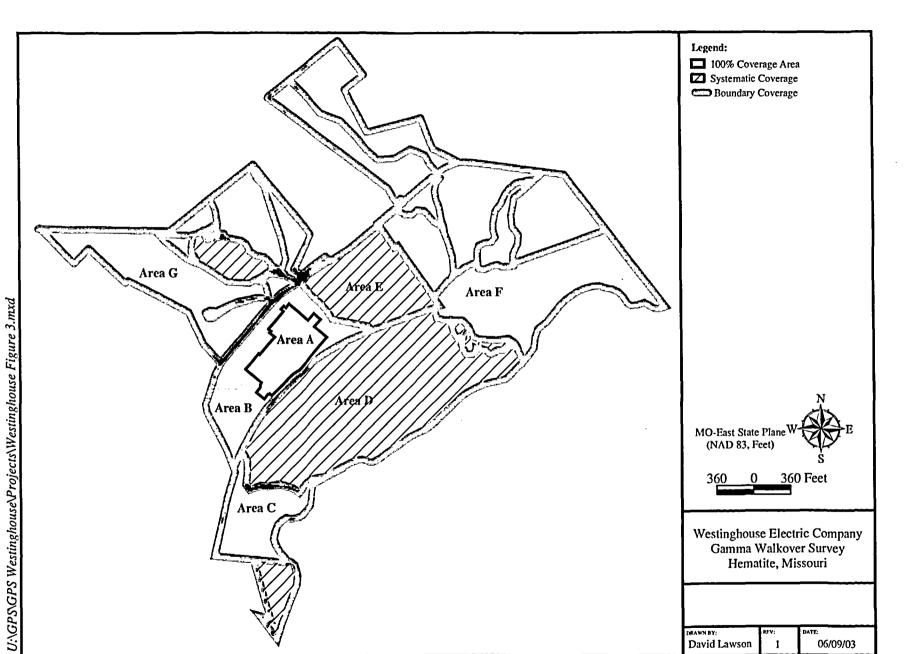


Figure 3. Final Survey Plan

- - -

During the kickoff meeting a decision was made to implement the survey by concentrating the technician-conveyed GPS/gamma detector assemblies in areas with pending overhead tree canopies. The survey team decided to conduct the technician-conveyed GPS/gamma detector survey in areas C, D, E, and G and, finally, A. This would concentrate most of the survey crew in densely wooded areas before the tree canopy developed. In addition, the survey was modified to concentrate the survey in the areas covered with the densest vegetation during times when the most satellites were available to minimize the need for manual recording of data. The all terrain vehicle- (ATV) mounted GPS/gamma detector assemblies would begin in Area B and the 100% coverage area outside the controlled area fence, followed by Areas F, G, and, finally, A.

The ATV-mounted GPS/gamma walkover was conducted by mounting three individual detectors with independent GPS assemblies to the front of the ATV. The detectors were mounted 10 centimeters (cm) from the surface, and 70 cm apart to allow for sufficient overlap of each detector's viewing window of 82 cm at the top of the detector crystal. The viewing window is defined as the area capable of contributing gamma levels to the detector in a specific geometry within acceptable scan minimum detectable concentrations. The viewing window of the 2"x2" NaI detector was based on a detector height of 10 cm, crystal dimension of 5 cm x 5 cm with the ability to accurately detect gamma radiation at a 70 degree angle to the source. The scan minimum detectable concentrations presented in the Survey Plan (Rev 0) were calculated on a postulated hotspot with a radius of 28 cm or diameter of 56 cm. If the postulated hotspot was located directly between any two detectors, each detector could detect or view the elevated gamma radiation. For the purposes of this report "hot spot" is defined as areas that have significantly different count rates than the surrounding area and require additional investigation. The data collected during this investigation will be reevaluated after a determination of the site specific radionuclide ratios. The collective gamma contributions from the site specific radionuclides will be evaluated, modeled and correlated to a site specific scan minimum detectable concentration (MDC). Once the scan MDC and gamma contributions from site specific radionuclides are known, a qualitative concentration to count rate comparison can be made. The ATV was driven at a speed that would roughly equate to 0.5 meter/second or less. The operator continuously monitored at least one of the instrument readouts with frequent monitoring/comparison of all instrument responses.

The technician-conveyed GPS/gamma walkover was conducted by the technician maintaining the detector approximately 10 cm from the surface progressing at a speed of 0.5 meters/second or less. The technicians moved the detectors in a slightly serpentine pattern, where possible, taking care to maintain the 10 cm distance from surface to detector. Frequently, the technicians substituted a controlled side-to-side pattern so the serpentine motion could maintain correct detector alignment with the survey surface. The technicians continuously monitored the audible instrument response.

Outside the 100% coverage area, the survey team was instructed on the general location of the required survey coverage and areas of interest. Technicians were instructed to use their experience to investigate the areas of highest contamination potential encountered in each area. The team used the Trimble mapping tool to maintain roughly parallel paths in areas requiring systematic coverage. Within the 100% coverage area, the survey team attempted to use the ATV-mounted GPS assemblies wherever possible. When technician-conveyed GPS assemblies were necessary, the survey team used constant communication and the Trimble mapping tool to ensure adequate survey coverage.

Daily tailgate safety/planning meetings were held. The previous day's events, issues, and progress were discussed, in addition to the areas to be surveyed that day. Each technician was assigned to a specific area with coverage instructions, expected progress, and relative background, with an associated investigation level (a scanning response which is detectable above the background level) depending on the area to be surveyed. Upon completion of the survey, the survey team and Westinghouse conducted a daily debrief meeting. The daily debrief consisted of the survey progress, anomalies, issues, concerns, and a discussion of survey progress and areas to be surveyed the following day.

3.0 SURVEY QUALITY CONTROL

3.1 DATA QUALITY OBJECTIVES

DQOs	DQO Attainment	
The initial mean background count-rate for each Nal 2"x 2" will be within 10% of the mean background count-rate (at the same location) for all instruments used for the survey.	All instruments used for the survey were within 10% of the mean background count-rate (at the same location). Instrumentation QA records are included in Attachment 1.	
All survey instruments will be calibrated at least annually using calibration sources traceable to the National Institute of Standards and Technology (NIST).	All instruments were calibrated at least annually in accordance with ANSI N323A, Radiation Protection Instrumentation Test and Calibration-Portable Survey Instruments (ANSI, 1997). Instrumentation QA records are included in Attachment 1.	
All survey instruments will be performance checked at the beginning of each survey day to determine the usability of data collected. The established acceptance criteria for background and source response will be $\pm 20\%$ of the mean value determined during the initial instrument setup procedure.	All radiological field instruments were performance checked at the beginning and end of each day. All acceptance criteria checks for all field instruments were met as required by the plan. Instrumentation QA records are included in Attachment 1.	

Table 3-1	Data Quality Objectives
-----------	-------------------------

3.2 INSTRUMENTATION QUALITY ASSURANCE

Each GPS instrument was paired with a survey meter/detector and assigned a pack number. This was accomplished by giving all the GPS packs a letter from A to G and doing the same for the radiological instruments. The GPS packs were then matched up with the radiological instrument that had the same letter. The exception was GPS Pack A. It was paired with Meter H.

3.2.1 Radiological Instrumentation Quality Assurance/Quality Control

Gamma walkover survey instrumentation was calibrated annually in accordance with ANSI N323A, *Radiation Protection Instrumentation Test and Calibration – Portable Survey Instruments* (ANSI, 1997) for the spectrum of radiation energies expected at the Hematite facility.

Gamma walkover survey instrumentation was operated by qualified personnel in accordance with SAIC's Health Physics Procedure HP-30, *Radiological Instrumentation*, and Health Physics Instruction HPI-001, *Performance of a GPS Gamma Walkover Survey*.

All instruments were initially processed to determine if the general area gamma radiation levels would interfere with the initial instrument setup and the acceptance criteria determined prior to arrival. All instruments were within tolerance of the acceptance range. All instruments were verified to meet the established site-specific background acceptance criteria with the exception of instrument "A". Instrument "A" exceeded the background and source values on the high end during the initial on-site instrument check in. This instrument was tagged out of service and removed from the site. No data was collected with Instrument "A".

Instrument	Mean Background cpm	
В	5,493	
С	5,135	
D	5,418	
Е	5,315	
F	5,263	
G	5,322	
Н	5,405	
Site Mean	5,343	
10% range	4,809-5,877	

Table 3-2Instrument Background Comparison

Daily performance checks were conducted on each instrument as defined in HP-30 and as summarized in the Survey Plan (Rev 0). Only data obtained using instruments that satisfied these performance requirements were accepted for use in this investigation.

3.2.2 Global Positioning System Quality Assurance/Quality Control

The daily QC check of the GPS units was performed and recorded for use post-survey. The accuracy of the GPS system is dependent on many factors, mainly the number of visible satellites, which will vary throughout the day. The manufacturer's stated accuracy is sub-meter; the actual accuracy or Position Dilution of Precision (PDOP) of the GPS units varies and is dependent on satellite visibility. Each data point collected has a PDOP value attached as a measurement of the coordinate accuracy. PDOP simply provides an indication of the expected accuracy of GPS positions based on the relative positions of the satellites. Lower PDOP values provide more accurate data. The accuracy of single data point can be determined by the PDOP value associated with the point.

The daily positions check on a known or identified location assists the project in determining if data files collected on a given day require post processing. The northern most monitoring well located just west of the Building 231 was used as the known location for this survey.

The data collected from each pack at the beginning and the end of each survey day is collected for use post-survey while the data is evaluated. The relative differences between the pre- and post-survey check, the drift during check, and the relative differences between GPS units are all evaluated. This evaluation helps to quantify the degree of confidence in the reported coordinates for each data point across the project. In addition, the check pinpoints suspect coordinate data associated with a particular GPS unit, a particular GPS unit on a given survey day, or all GPS units on a given survey day.

If one of the GPS units indicates a significant difference in reported locations when compared to known or other GPS units, all position data collected that day with that unit is suspect and is evaluated. The evaluation will inspect the position of all data points in relation to property boundaries, known areas covered that day, and in relation to data points collected on other packs in the general vicinity. In addition, the corresponding radiological count rate for a reported area will be compared to known or collected radiological count rates from other instruments in the same area. If the above data checks indicate an unreasonable amount of error in the reported coordinate data, the specific data files are post-processed to increase coordinate position accuracy.

3.3 SURVEY QUALITY ASSURANCE

The survey team performed numerous performance, operation, and continuity quality checks during implementation of the survey. Instrument response is continuously checked in the field by referencing adjacent meter responses. The technicians, constantly monitoring the instrument response, periodically verify abnormal (either relatively high or low count rates) by comparing their instrument output with other instruments in the general vicinity. This check occurred frequently as the observed "relative background" count rate decreased as the technicians moved from the plant site toward the Joachim Creek. The technicians also perform an additional instrument response check during data evaluation. Instruments within the same general proximity should have recorded relatively similar count rates. All data were checked for erroneous data patterns that would suggest a faulty instrument response.

Position accuracy is checked upon completion of each day's survey. The collected data is downloaded and the data plotted on the site map. The site map, which was based on a February 2003 aerial flight by Sanborn and included a State plane grid prepared by Metropolitan Engineering, was provided by Westinghouse. Each technician verified that all the data they collected were captured and that the data were in the correct general area. The position is further verified during data evaluation by comparing data collected by adjacent technicians and instruments. This check is easily accomplished for the data collected with the ATV-mounted GPS assemblies. The three data streams are plotted and the plots are evaluated for erroneous or out-of-place data points. This check is more difficult to quantify for the data collected by the technician-conveyed GPS assemblies. The check, in this case, is performed by having the technician who collected the data review a plot of all collected at the same time by other technicians. Technicians note the position to other data streams in relation to the adjacent data streams to determine if data is missing or erroneous coordinates have been recorded.

Data accuracy/reproducibility is checked during data evaluation. If relatively low or highcount rates that do not adhere to the surrounding data are identified in the data, additional investigation is warranted in these areas. These areas are identified during data evaluation and performance of an additional gamma walkover to verify the abnormality is conducted.

Survey accuracy is checked by evaluating the entire data set for gamma radiation trends and patterns. If the patterns or trends do not make sense considering the topography, known operating history, field observations, or experience of the field team, additional investigation is warranted. For instance, high gamma radiation levels adjacent to a drainage ditch should indicate a high potential for elevated gamma radiation levels within the ditch. Conversely, small areas of elevated gamma radiation levels surrounded by large areas of background or near background gamma radiation levels with no obvious transport mechanism are suspect and are further investigated.

3.4 DATA MANAGEMENT

Pre-Survey

• Prior to the start of the survey, the site was divided into seven survey areas with common geographic features, such as roads, railroads, creeks, and drainages, which provide easily recognized boundaries. The survey areas are described below and are shown on Figure 3.

A-Inside Fence B-100% Area Outside Fence C-South of Southern Drainage D-South of Rail E-South State Road P East of Drain F-East Farm Area G-North of State Road P

• Once the survey areas were designated and the equipment was labeled, the format for the file naming system was established. File names consisted of seven digits that included GPS pack letter (A-G), (W) for Westinghouse, Survey area letter (A-G), Media type letter, example (S) for soil and (G) for gravel, and a three-digit file number, example (001). An example of a filename follows:

BWDS002

B-GPS Pack 'B' W-Westinghouse D-Survey Area 'D' S-Soil 002-File number

Post-Survey

- At the end of each day of field activities, all gamma walkover data was downloaded from the TDC1 data collector flash memory card to a site computer via Pathfinder software.
- The Pathfinder software was also used to export the raw field data into Microsoft Access. Microsoft Access was used to convert the data into a format that can be imported into Arc View Geographic Information System (GIS) software.
- Once formatted, the survey data was placed into an Arc View project file, and a survey map was created to be presented in the daily post-survey briefing.

Following each day of surveying, the GWS survey files were backed up by copying the data to CD-R disks. After each week, the data was copied to SAIC's St. Louis office server.

4.0 SURVEY RESULTS

Due to various backgrounds, as described below, encountered across the site, it is difficult to provide an accurate visual display of all the data on one map. Figure 4 shows the survey coverage of the entire Property with the data color-coded at 2,000 counts per minute (cpm) increments, starting with 10,000 cpm for soil and 5,000 cpm for gravel and asphalt. This map provides the greatest amount of detail for examining trends and general gamma radiation levels across the Property. Figure 5 shows the survey coverage for the entire Property with the data color-coded at 2,000 cpm increments, starting with 11,000 cpm for soil and 6,000 cpm for gravel and asphalt. This figure, when used in conjunction with Figure 4, provides evidence of a gradual decrease in count rate from the railroad south to Joachim Creek. Figure 6 shows the survey coverage for the entire Property with data color-coded at 3,000 cpm increments, starting with 10,000 cpm for soil and 5,000 cpm. The reference area average was approximately 10,500 cpm. Figure 7 shows the survey coverage of the entire Property in two colors, with the discriminator at 16,000 cpm. This figure is designed to show the areas of the Property that are significantly above background.

4.1 BACKGROUND VALUE DETERMINATION

SAIC used three types of background values: instrument, reference, and relevant, to fulfill the objectives of the survey. SAIC evaluated all the collected data to determine the background value to be applied during data evaluation.

Individual instrument background values were determined to verify that the gamma detectors being used for the survey are responding similarly to low gamma flux levels. All individual instrument mean background values were within 10% of the mean for all detectors, ensuring all data collected could be evaluated and depicted on one color-coded map without data misrepresentations resulting from variations in detector response.

SAIC performed this background check by collecting individual instrument background values prior to mobilization to the site. The average or mean value of all the individual instrument values was calculated, in addition to the 10% range around the mean. All instruments

were checked upon arrival at the site to verify not only that the instruments were still within 10% of each other but also to verify that the "site" instrument background was not significantly different than initial instrument background calculation. The "site" background was not significantly different upon initial check and all instruments were well within the 10% range of the mean, with the exception of Instrument "A", which was removed from service. The individual instrument background values were on average 1.67% of the mean with the largest deviation individual instrument background being 3.89% below the mean. All of the instruments were determined to be responding similarly within tolerance to low level gamma flux radiation, and as such, were acceptable for use on this project.

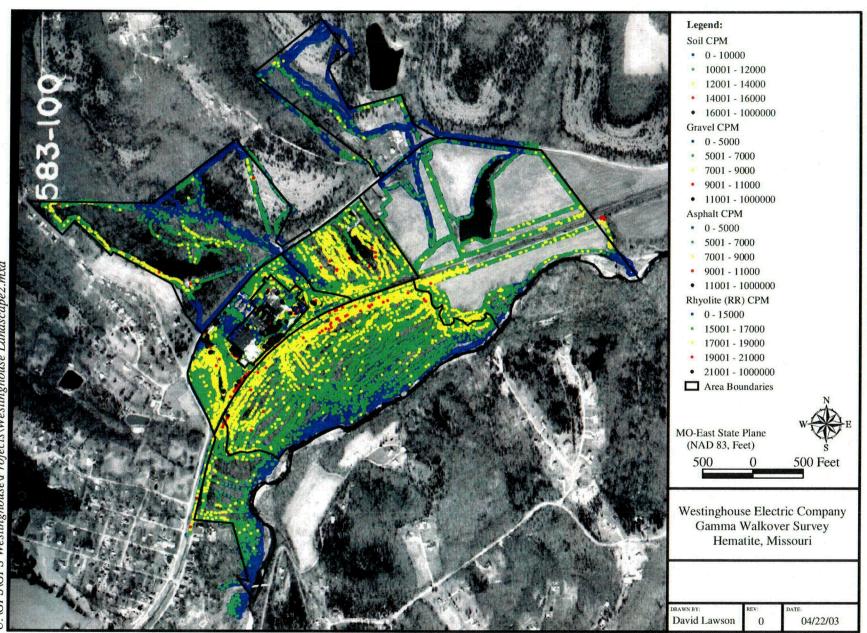


Figure 4. Westinghouse Gamma Walkover Survey (Soil Background 10001-12000 cpm)

U:\GPS\GPS Westinghouse\Projects\Westinghouse Landscape2.mxd

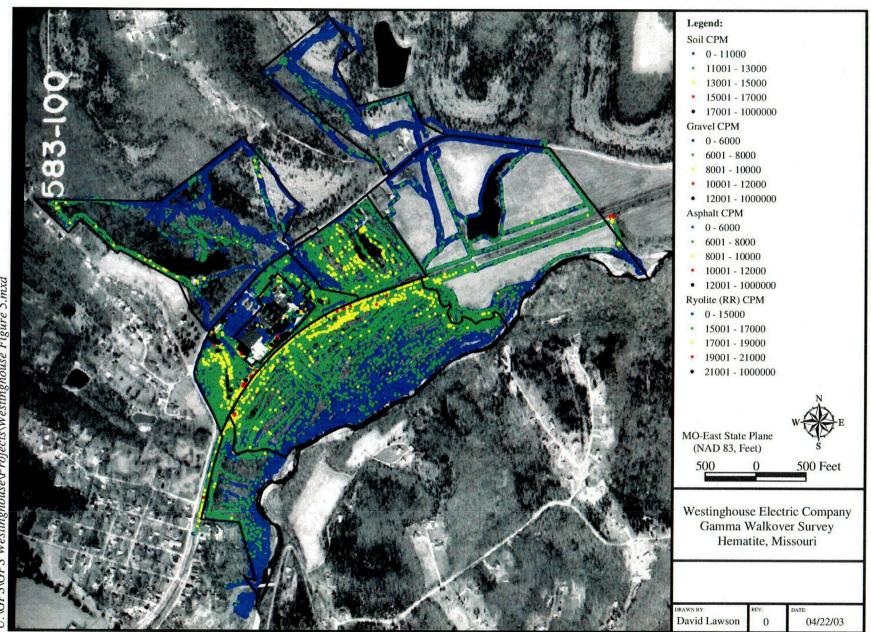


Figure 5. Westinghouse Gamma Walkover Survey (Soil Background 11001-13000 cpm)

U:\GPS\GPS Westinghouse\Projects\Westinghouse Figure 5.mxd

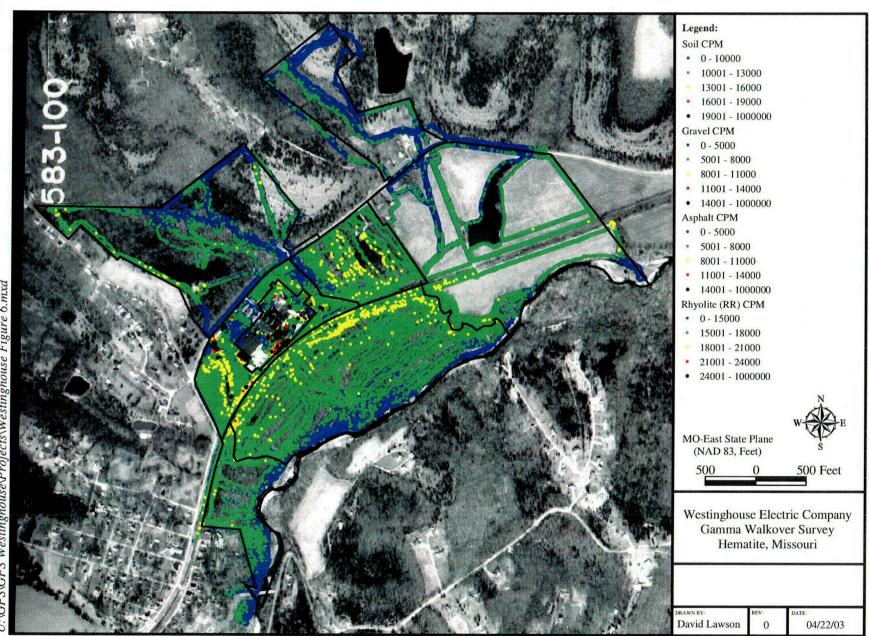


Figure 6. Westinghouse Gamma Walkover Survey (Soil Background 10001-13000 cpm)

U:\GPS\GPS Westinghouse\Projects\Westinghouse Figure 6.mxd

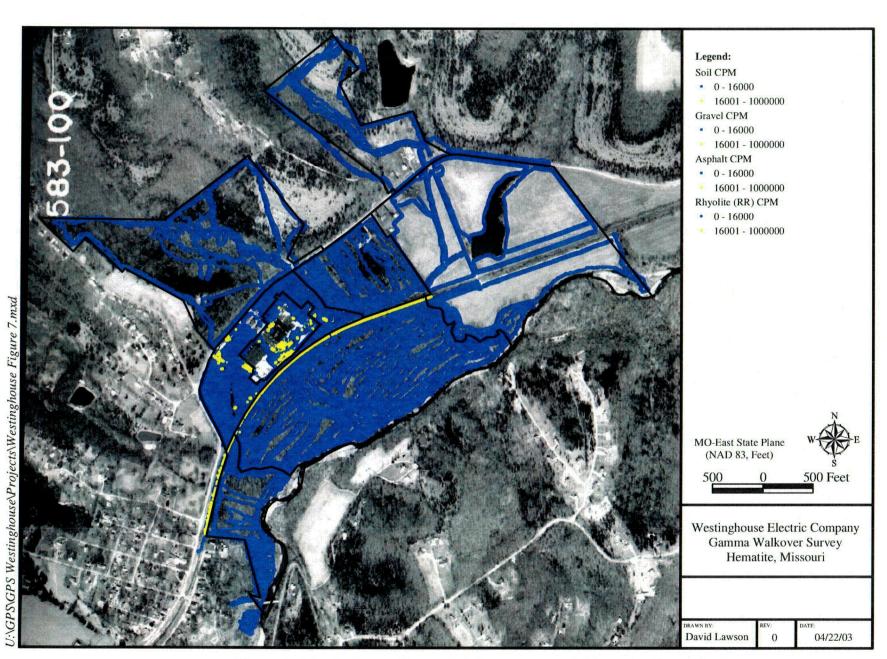


Figure 7. Westinghouse Gamma Walkover Survey (Two Color Illustration)

Reference background gamma count rates of soil and other media with similar physical and geological characteristics as the soil/material being investigated were collected in nonimpacted areas surrounding the site. The reference background count rate was used to determine which areas on the Property had gamma count rates in excess of the local background gamma levels. No reference area measurements were initially going to be obtained unless media or background count rate fluctuations indicated that multiple background populations were present on the Property. We determined on the first day of surveying that reference area measurements would be beneficial and should be collected as time allowed. It was apparent that the background gamma flux radiation levels for the railroad rock, the asphalt, the gravel, the grassy soil, and the soil background in the tree-covered areas were all significantly different. There was an obvious difference in the count rates between the different media types, with gravel/asphalt being on the low end and the railroad rock being on the high end. It was also noted that the general trend of gamma count rates tended to decrease as the survey progressed from the site or railroad, down the hill toward Joachim Creek. There may be different soil background count rates present on the site due to the varying soil types. The gamma count rate was relatively low near the creek in the presence of coarse-grained soils (i.e. sand and gravel); the gamma count rate had a tendency to decrease in direct proportion to the amount of visible sand-like material in the surveyed soil.

After discussion with the project team, it was decided to attempt to locate a suitable reference area south of the site, preferably south of State Road P. The need for quick access and the ability to obtain the numerous media and soil type backgrounds limited the potential sites. A limited amount of effort was expended to locate a suitable reference area that met the initial criteria. No suitable area was identified that met all the criteria. The closest reference area that met most of the criteria was the U.S. National Guard Armory Site, located east and north of the site near the junction of State Road P and State Road A.

Access was requested and granted. SAIC mobilized two individuals to the site for reference area measurements to obtain at least 100 measurements in each media type: asphalt, gravel, soil adjacent to railroad under trees, uncultivated grass covered soil, and rhyolite (non-native rock used to support railroad tracks).

After obtaining these measurements, SAIC also gathered additional measurements adjacent to Joachim Creek at the bridge on State Road A. These measurements were obtained on the east side of the creek, just upstream of the bridge. Table 4-1 summarizes the results of these measurements.

	Asphalt	Gravel	Grass Soil	Soil Adjacent to Railroad	Rhyolite Railroad Rock	Sandy Soil
# measurements	371	407	171	250	262	352
Mean	4,904	4,360	9,415	10,402	14,867	7,624
Std Dev	391	416	1,012	836	874	1,507

 Table 4-1
 Reference Area Measurements

Further evaluation of this reference may be necessary during later sire investigations to verify that it is an appropriate reference area based on soil classification of on-site surfaces soils conducted during the Remedial Investigation. The evaluation of the gamma walkover data was performed primarily using relevant background not reference area background. The use of relevant background allows the evaluator to determine which locations with in an area exhibit higher gamma levels when compared to surrounding soils. The reference data collected was only used to establish the baseline count rate expected with in a given area.

Report results primarily addressed areas that contain elevated activity significantly above background. Reference area measurements were taken to provide a basis for comparison with gamma survey readings collected on-site.

The basis for acceptance of the area selected for reference area measurements was based on accessibility, like terrain the presence of most of the media encountered on the site (gravel, asphalt, rhyolite, grass covered soil, tree covered soil, and sandy soil) and may require further evaluation based on actual classification of on-site surface soils conducted during the Remedial Investigation.

The reference data collected was only used to establish the base line count rate expected within a given area.

Other locations were investigated for inclusion as potential reference areas within several miles surrounding the site; however, no other area was located that provided all media types, open access or similar terrain as compared to the area selected for reference area gamma measurements.

Survey area relevant background was used for evaluation of specific areas within the site. Relevant background is the comparison of count rates to count rates in the surrounding immediate area of impacted locations on site. Relevant background is used during performance of the gamma survey to alert the technician to isolated "hot spot" areas that are different from the surrounding area and require additional investigation.

Relevant background was used during this survey, primarily in the 100% covered area and to a limited extent on the remainder of the Property. All the surveyors consistently monitored their instrument's audible and visible response. The technician noted any appreciable increase or decrease in count rate and additional data were collected in the area of concern to investigate the abnormality.

Not all instruments were continuously monitored during the use of the ATV; however, the operator did monitor at least one instrument and periodically compare the readings of the instrument to adjacent meters. The data collected by the ATV-mounted instruments were evaluated in comparison to data collected by the adjacent instruments to detect deviation in relevant background.

The technicians performing the survey in the heavily vegetated areas monitored the audible response of their instruments as conditions allowed. There were times that the thorny vegetation, briars, tree limbs, or other obstructions removed the headphones from the technicians' range of hearing and some portion of the survey continued until it was possible to replace the headphones to within hearing range.

Relevant background was used during the evaluation of the collected data. Data points that were either relatively high or low were scrutinized to determine the deviation in background. If evidence could not be produced to explain the deviation, a survey team was mobilized back to the location to investigate the deviation in relevant background.

For the purposes of data evaluation, SAIC assigned the following background values for the various media types:

Gravel	5,000 cpm
Asphalt	5,000 cpm
Soil	10,000 cpm
Rhyolite	15,000 cpm

It should be noted that applying a single soil background count rate could potentially lead to misrepresentation of the soil data due to the various apparent fluctuations in the soil media background count rate.

4.2 AREA A

The gamma walkover survey in this area was designed to provided 100% coverage of all accessible areas that were not beneath buildings or covered with asphalt or concrete. Other ground covering includes gravel, soil, and water. This area consisted of all accessible areas within the outer boundary fence or controlled area. There were numerous areas of concern within Area A, including the evaporation ponds, Deul's Mountain, the fenced-off restricted area, the area surrounding the spent limestone piles, and drainage ditches.

Approximately 50% of the surveying was performed by the use of an ATV with three front-mounted GPS/gamma detector assemblies. The remaining 50% of the area was performed by technician-conveyed GPS/gamma detector assemblies.

The spent limestone piles were not surveyed as part of this walkover effort, although no significant readings were found in the vicinity of these features. Small drainages in this area that led under the fence were noted and surveyed as well, with no significant readings observed at the surface. Also, no elevated readings were observed in the northeast corner of Area A.

As expected, there were many areas of elevated gamma radiation identified within Area A. Areas with elevated gamma readings were centered within the restricted areas, around the evaporation ponds, and near the foot of Deul's Mountain. Although, the portion of Deul's Mountain that was covered with plastic was excluded from the effort, the highest reading obtained within Area A was collected at the foot of Deul's Mountain where a piece of sheet plastic was found protruding from the soil. Readings at this location were as high as 874,000 cpm.

Figure 8 depicts the survey coverage of Area A with the standard 2,000 cpm increment. Figure 9 depicts the survey coverage of Area A with a two-color coding, separated at 18,000 cpm. The purpose of Figure 9 is to show the areas that clearly have elevated gamma levels above background, additional investigation will be required in the other areas to determine if radiological contamination above background is present. Due to the relatively high levels of gamma radiation detected within this area, Figure 10 depicts Area A survey data with 20,000 cpm increments.

4.3 AREA B

This area is bounded to the north and west by Highway P, to the south by the railroad, and to the east by a tributary that separates it from Area E. Area B does not include anything located within the facility security fence, as this is designated as Area A. The terrain of Area B is relatively level and covered primarily by grass. Other surface features include trees, brush, buildings, trailers, an asphalt parking area, gravel roads, a small pond, ditches, monitoring wells, and air sampling stations.

Complete coverage was provided in Area B. Most of the surveying was performed by the use of an ATV with three front-mounted GPS/gamma detector assemblies. In areas where the use of the ATV was not practical, manual surveying was performed by technicians.

No significant areas of elevated gamma radiation were identified in the large grassy area to the west of the pond and east of Highway P. In fact, only one small area of elevated readings west of the pond was identified toward the northern end of the area. This location was less than 0.5 m^2 in size and was found to be approximately 24,000 cpm above local background.

The area just north of the pond and west of the Tile Barn had several areas of elevated readings. This was especially true around the cistern burn pit area. Areas of elevated readings ranged in size from less than 0.5 m^2 to several square meters. Two very small areas north of the Tile Barn and west of the silo were also found to show elevated readings. Although the glazing material used on the Tile Barn bricks is suspected to contain uranium, this did not appear to

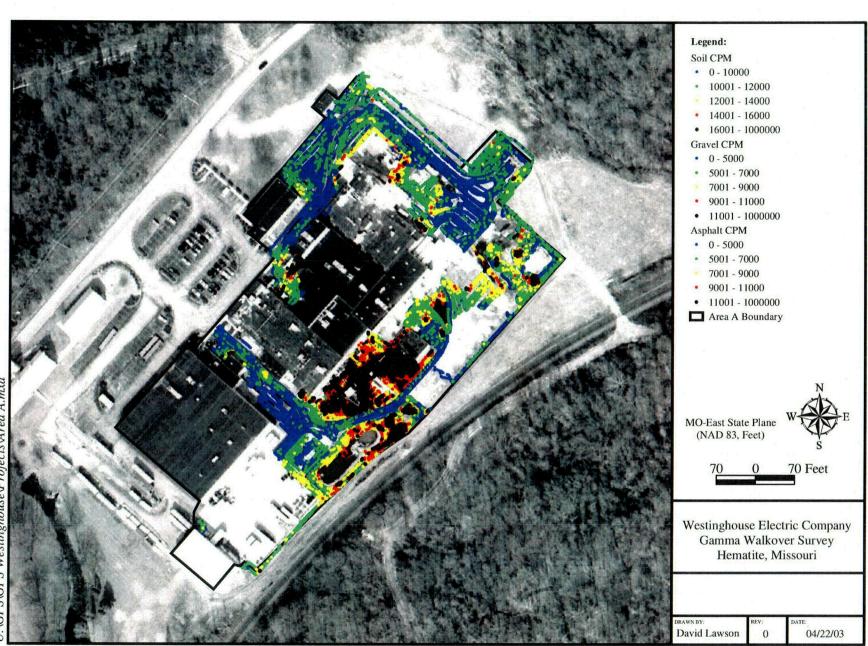


Figure 8. Area 'A' Gamma Walkover Survey (Soil Background 10001-12000 cpm)

U:\GPS\GPS Westinghouse\Projects\Area A.m

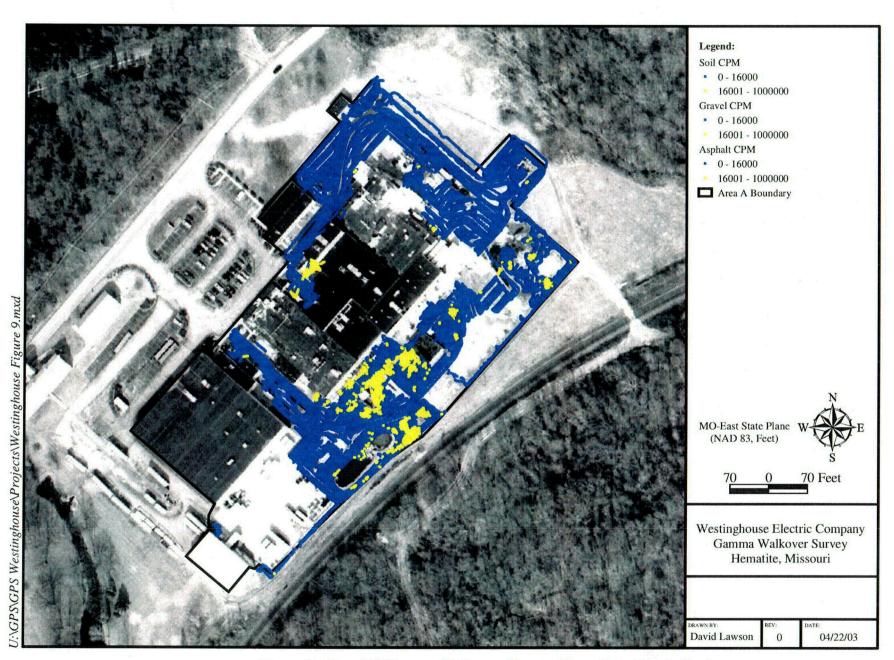


Figure 9. Area 'A' Gamma Walkover Survey (Two Color Illustration)

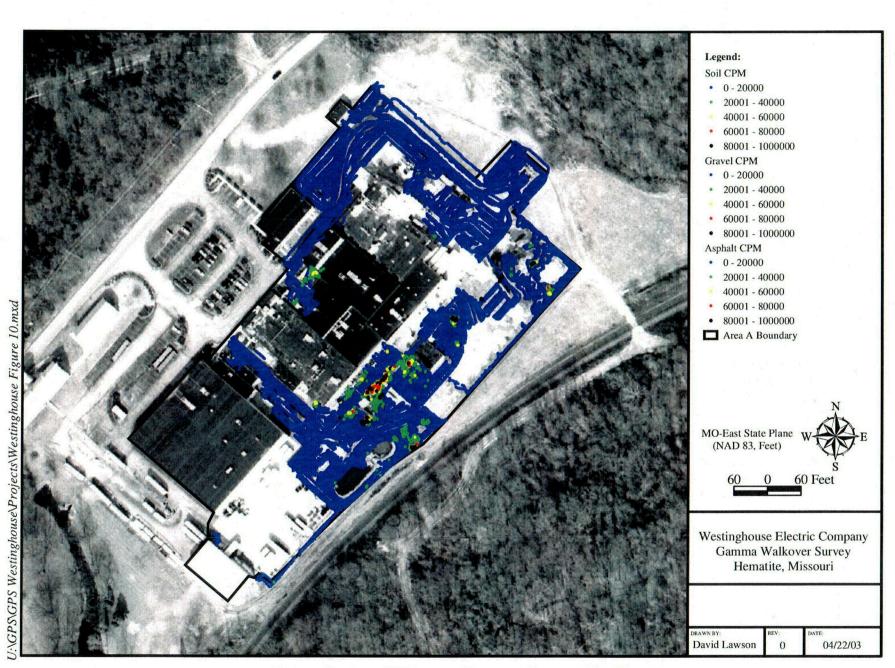


Figure 10. Area 'A' Gamma Walkover Survey (Modified Ranges)

increase background gamma radiation levels in the area immediately surrounding the barn at the plane where the gamma survey was conducted (10 cm above ground surface). A contact reading of the bricks was taken for informational purposes and only a slight increase of approximately 1,000 cpm was detected. Just a few inches away from the bricks the instrument readings returned to ambient levels of gamma radiation.

A grassy area between the barns was surveyed and found to contain several areas of elevated readings. This grassy area is surrounded to the east, south, and west by an asphalt walkway and to the north by a wooden fence. One small area less than 0.5 m^2 was identified just off the northeast corner of the east barn.

A ditch southwest of Building 231 and north of the rail line showed an increase in count rate at the bottom of the ditch. This ditch was surrounded in dense vegetation and the actual bottom was physically quite shallow; therefore, the increase in count rate is not expected to be caused by geometry issues between the detector and the soil surface. A section of old fencing ran along a portion of the north slope of this ditch. A small area less than 0.5 m² north of the fence was also identified.

An asphalt drive to the west of Building 230 was initially thought to have significantly elevated gamma radiation levels. Upon further investigation it was discovered that containers of radioactive material had been stored inside Building 230 in close proximity to the western wall. It cannot be determined, however, that these containers are the sole contributor to the increased gamma radiation levels outside of Building 230. Upon removal of the containers, additional investigation in this area is warranted to verify the actual gamma levels present.

A survey along the southern fence line of the facility revealed a narrow strip of elevated readings just east of the two evaporation ponds. A count rate of almost 200,000 cpm was noted in this area. Drainages originating from within the fenced area were noted along the southern fence line and also surveyed. No significant increase in gamma levels was noted in these drainages outside the fence.

In the area of the burial pits, east of the facility, several limited areas of elevated readings were identified as expected. Also, the wooded areas in the western portion of Area B contained several piles of debris such as concrete, wood, asphalt, and sheet plastic. A piece of metal protruding from the ground was found in this wooded area. The metal showed gamma radiation levels of approximately 24,000 cpm. This location was flagged for future reference and later Westinghouse employees retrieved this metal, which turned out to be what was left of a severely rusted metal bucket with soil residue. The bucket appeared to be painted white and showed no identifiable markings. Westinghouse performed a contamination survey of the bucket, which is included as Attachment 2. The area where the bucket was removed was resurveyed and found to contain residual gamma radiation levels of approximately 16,000 cpm.

Figure 11 depicts the survey data with the standard 2,000 cpm increment starting at 10,000 cpm for soil. Figure 12 depicts the survey data on a two-color map with the discriminator at 18,000 cpm. The purpose of this map is to show the areas that clearly have elevated gamma levels above background, additional investigation will be required in the other areas to determine if radiological contamination above background is present.

26

Figure 11. Area 'B' Gamma Walkover Survey (Soil Background 10001-12000 cpm)

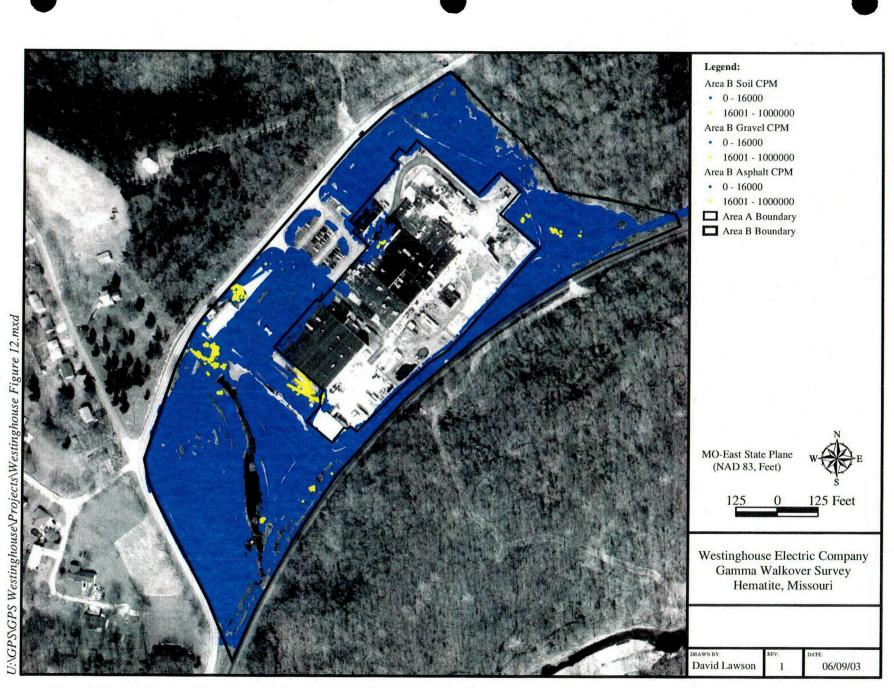


Figure 12. Area 'B' Gamma Walkover Survey (Two Color Illustration)

4.4 AREA C

This area is bounded to the north by a drainage ditch and to the east by Joachim Creek; the area extends south slightly past the bridge, then the Property boundary roughly follows a fence back north until it runs into a small drainage. The area boundary then turns at a right angle and heads due west to the railroad. The extreme western boundary of this area is the railroad. The terrain of Area C is generally wooded with limited underbrush; the brush, briars, and thickets tend to increase near the boundary in cleared areas, with some open areas located in the extreme southern part of Area C.

The gamma walkover of this area was designed to provide limited coverage in the areas of higher probability of contamination deposition. The survey was to provide coverage adjacent to all boundaries of the area with more concentrated coverage in the area near the bridge. Local citizens had reported that material might have been buried on or near the southwest portion of the property, in the vicinity of Joachim Creek bridge.

The survey was conducted initially by concentrating on the northern drainage. The team concentrated on benches, low areas of sedimentation deposits, erosion ditches, and potential areas for silt deposition during flooding. All areas of high probability were adequately covered in addition to varying distances (10-30 feet [ft]) from the drainage. An area surrounded by drainages and Joachim Creek was identified at the discharge of the northern drainage into Joachim Creek. This area was thought to have a high probability of contamination and was given thorough systematic coverage. The bank of Joachim Creek along the eastern boundary of this area is vertical in most places with a deep drop to the creek bottom. Limited coverage was used in this area, concentrating on the upper creek bank edge, drainage or erosion ditches going to Joachim Creek, and any areas of obvious flood deposition.

The exact site boundaries were not known to the survey team at the time of the survey, so a limited amount of coverage was conducted south of the bridge in potential dumping areas that are actually outside the Westinghouse property boundary. Concentrated systematic coverage was performed in the area just north of bridge in areas of obvious dumping. The concentrated coverage continued to the north until there was no further evidence of dumping that is, trash was not present. The survey continued along the perimeter fence, focusing the effort around a small drainage, once again concentrating on potential areas of contamination deposition as mentioned above. The survey team performed limited coverage adjacent to the railroad. This area is sparsely populated with mature trees and many briars, and follows the power lines. The extreme northern portion of Area C consists of a small triangle of land bounded on one side by the railroad and drainages on the other two sides. Gamma walkover coverage was concentrated in this area due to close proximity to the plant and relatively higher probability of contamination from flood deposition.

No significant areas of elevated gamma radiation were identified in Area C. The relative count rates did tend to decrease as the survey progressed east or downhill from the railroad to the creek. The decrease in count rate was noticeable but not significant during the transition. However, the count rate decrease was significant when comparing the relative count rates adjacent to the creek to the count rates adjacent to the railroad. The survey team verified the count rate decrease across the three meters and commented on the obvious decrease. The gradual decrease could be due to a number of various reasons, but is most likely due to a change in soil type. Figure 13 depicts the survey data with the standard 2,000 cpm increments starting at 10,000 cpm for soil.

4.5 AREA D

Area D is located directly south and east of the main site facility. This area is bounded by the railroad to the north, Joachim Creek to the south, and on the east and west by drainages. The farm is located east of this area and Area C is located to the west. The terrain in this area was very similar to Area C. The northern portion of Area D is a gradual hill that flattens nearing Joachim Creek. The area adjacent to the railroad was heavily covered with briars and underbrush. The underbrush gradually decreased as the survey moved south toward Joachim Creek, giving way to mature trees with limited underbrush.

The gamma walkover of this area was designed to provide roughly systematic coverage of the entire area. The survey initially concentrated on the boundaries, with an emphasis on areas that were more likely to be contaminated. After the boundaries were established, the rest of Area D was adequately covered by surveying with varying distances (10-30 ft) between surveyors.

In general, the count rates observed in Area D ranged from 6,000 cpm to 14,000 cpm. The highest count rates were observed in the northern portion adjacent to the railroad and decreased in a roughly uniform pattern as the survey progressed south and east toward Joachim Creek. The most abrupt or noticeable count rate deviation was observed at the foot of the small hill that lies adjacent to the railroad in the north portion of Area D. The roughly uniform deviation in count rates tends to indicate a gradually changing background or potentially systematic windblown contamination. However, if the area had been contaminated by windblown contamination, localized elevated readings in the low areas where water tends to collect and evaporate would be expected. We identified many low areas and identified no localized elevated count rates.

There were two isolated areas within Area D that require additional investigation. The first area is located in the northwest corner of Area D at the culvert outlet from the site pond. The culvert allows for flow of water from the site pond under the railroad. The increase in gamma activity in this area could be due to the presence of Rhyolite rock that had fallen from the railroad roadbed. Rhyolite was observed and an increase in count rate was detected in the presence of this material; however, additional increases were noted without visible Rhyolite. It is possible that the increases were due to the presence of Rhyolite slightly beneath the surface, but this could not be confirmed in all cases. The second location requiring additional investigation is slightly southwest of the first location near the convergence of the two drainages. The spot is roughly in the middle of converging ATV paths prior the stream crossing. A sustained count rate of 14,000-15,000 cpm was identified in this area. The relative background in this area ranged from 11,000-13,000 cpm. This area with elevated gamma radiation readings was fairly small: 1-2 square meters, and is only slightly elevated above relative background. Figure 14 depicts the entire Area D with the standard 2,000 cpm increment starting at 10,000 cpm. Figure 15 depicts an enlarged view of the two local isolated elevated readings.

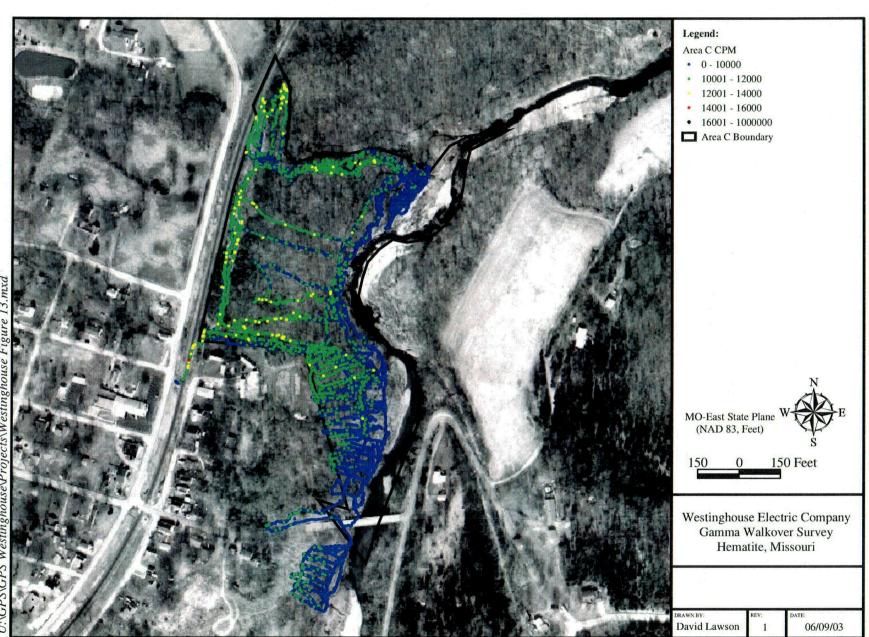


Figure 13. Area 'C' Gamma Walkover Survey

3

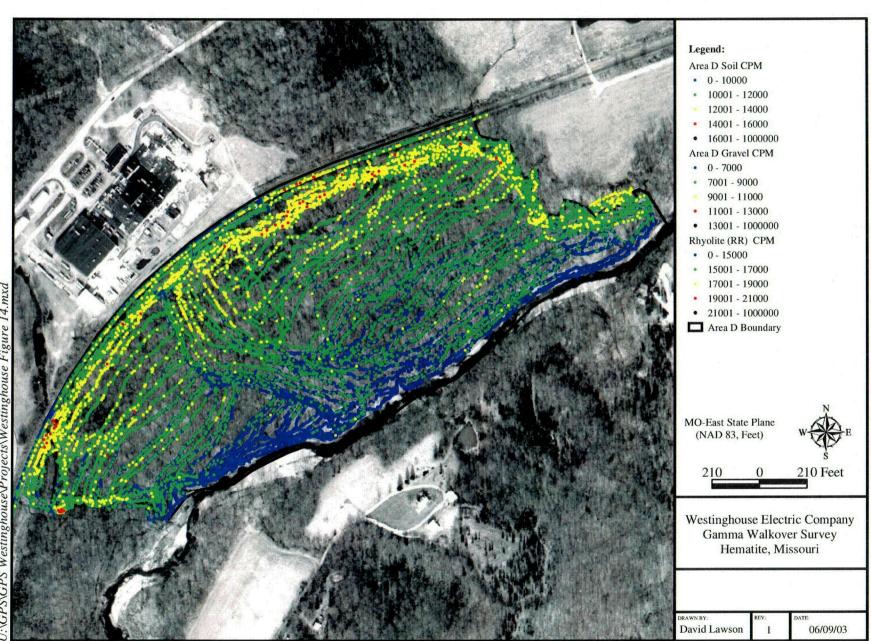


Figure 14. Area 'D' Gamma Walkover Survey

cts/Westinghouse op Prov U:\GPS\GPS Westingho

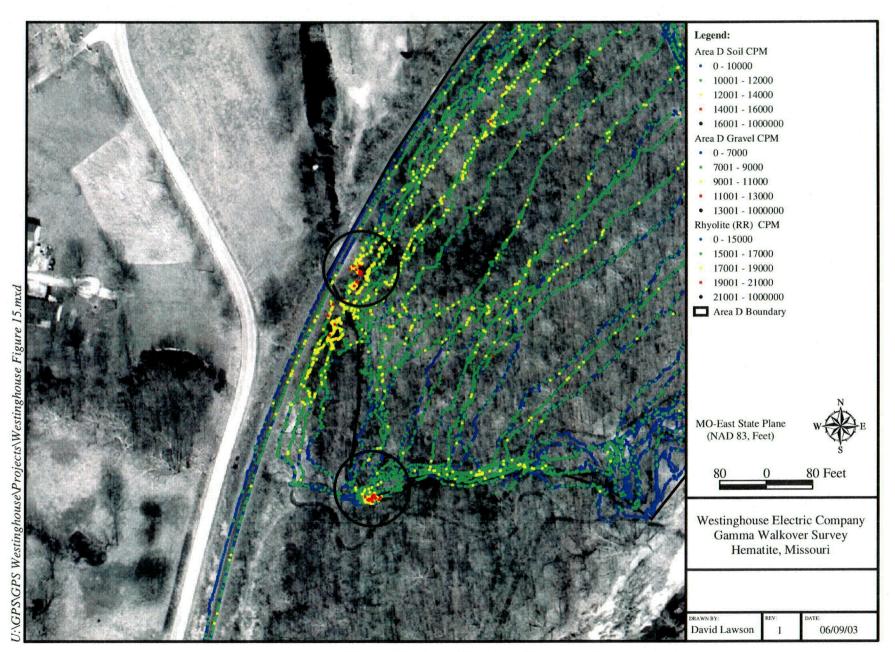


Figure 15. Area 'D' Isolated Elevated Areas

4.6 AREA E

Area E is the area located just east of the facility. Area E is bordered on the west and east by drainages, to the south by the railroad, and to the north by Hwy P. Area E was densely covered with trees, briars, and brush. This area was generally level, with intermittent ditches and drainages. The area did not appear to drain well, as evidenced by the presence of standing water in numerous locations and generally muddy terrain.

The gamma walkover of this area was designed to provide roughly systematic coverage of the entire area. The survey was conducted by initially concentrating on the boundaries, with an emphasis on areas that were more likely to be contaminated. After the boundaries were established, we attempted the survey of the remaining portion of Area E by surveying with varying distances (10-30 ft) between surveyors. Due to the very thick underbrush and briars, systematic coverage was difficult to obtain. The initial attempt failed to provide adequate coverage, the second attempt resulted in GPS cord damage, and the majority of the data from the walkover was not collected. If additional walkovers are to be conducted in this area, some limited amount of clearing and grubbing will be required.

In general, the gamma radiation levels in this area ranged from 8,000-14,000 cpm. The count rate was relatively lower adjacent to and around the western drainage. This was the area expected to have the highest probability of contamination due to its proximity to the site. Additional walkovers were performed adjacent to the drainage that verified the decreased count rate. One area, slightly south of the gravel-parking pad in the northeast portion of the area, indicated a single elevated data point. The count rate associated with this data point was not verified by the surrounding count rates of the surrounding data points. An additional gamma walkover was conducted in the vicinity of the original data point to verify the existence of elevated gamma radiation. No elevated gamma radiation was detected at the point or the area surrounding the original data point.

The map of this area indicates one isolated elevated reading adjacent to Area B along the bank of the west drainage of Area E. This location has been included in the Area B evaluation. It consists of the metal debris that was removed by Westinghouse.

Figure 16 depicts the data collected for Area E with the standard 2,000 cpm increment starting at 10,000 cpm.

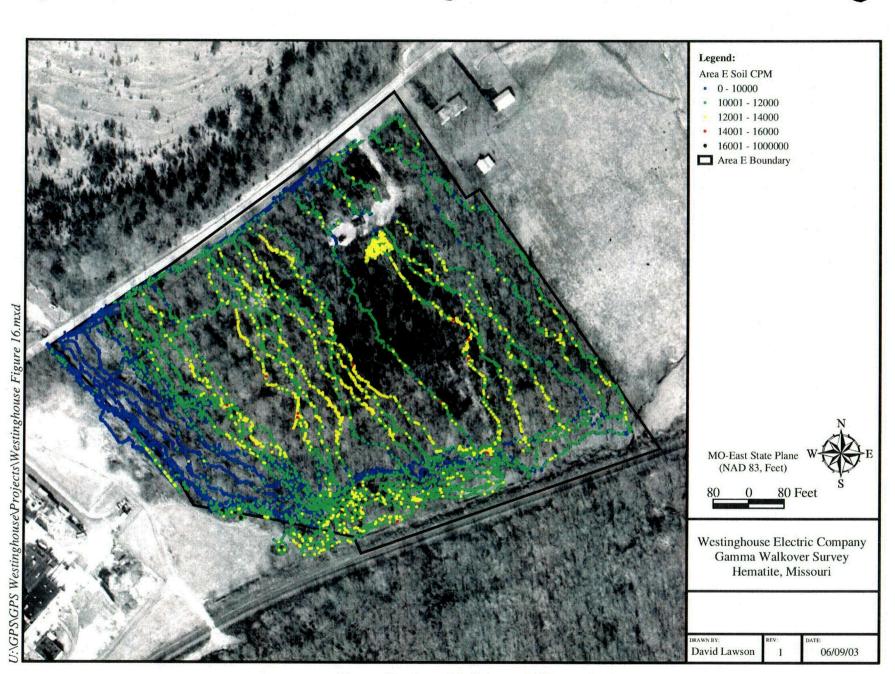


Figure 16. Area 'E' Gamma Walkover Survey

4.7 AREA F

Area F is comprised primarily of the farm that is to the east of Area E and the facility. Most of Area F consists of grassy grazing areas, a pond, and a small wooded area. The railroad splits this area in two. The area is bordered in the south by Joachim Creek. Hwy P is the boundary to the north. Area E and Area D make up the boundary to the west. Additional farmland, not part of the Property, is located to the east.

As in Area C and D, relative elevated count rates are identified just south of the railroad in areas covered with mature timber. A drainage ditch was identified during the survey on the far southeast portion of Area F. The survey of this ditch resulted in two areas of interest. The first area was further investigated and the increase in count rate was proved to be due to a change in the geometry of the survey. As the ditch deepened and sidewalls became closer to the detector, an increased count rate was observed. The survey identified elevated gamma radiation levels at the extreme northern portion of the same drainage. This apparent increase was investigated and determined to be due to the presence of Rhyolite.

Figure 17 depicts the data collected for Area F with the standard 2,000 cpm increment starting at 10,000 cpm.

4.8 AREA G

Area G is divided into two sections that are north of the facility. Both sections are mostly tree covered and are more elevated in topography than the rest of the areas.

The gamma walkover of this area was designed to provide limited coverage. The survey was to provide coverage adjacent to all boundaries, roads, and drainages within the area. Additional coverage was requested in the flat areas adjacent to the drainages in the western parcel.

In general, the survey of this area showed only a slight deviation in count rates. The largest deviation occurred due to changing media, switching between gravel, gravel/soil mixture, and soil. One area of interest was discovered on the power line road in the western parcel. This area exhibited count rates around 8,000 cpm with the relative background in this area ranging from 4,000-6,000 cpm. There was no logical explanation or recognized transport mechanism for contamination to have reached this location. The area was resurveyed and the original count rates were verified as accurate.

Figure 18 depicts the data collected for Area G with the standard 2,000 cpm increment starting at 10,000 cpm.

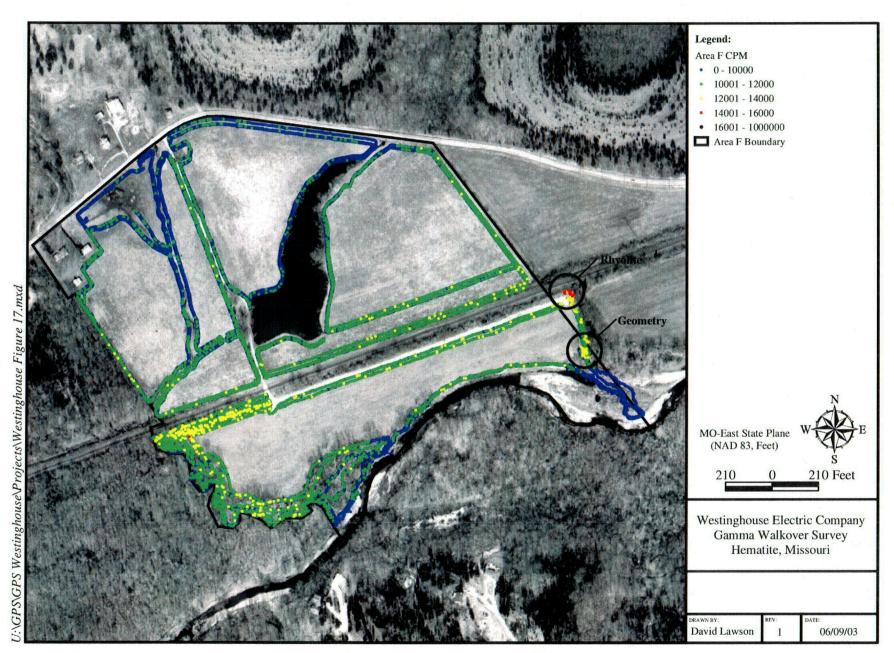


Figure 17. Area 'F' Gamma Walkover Survey

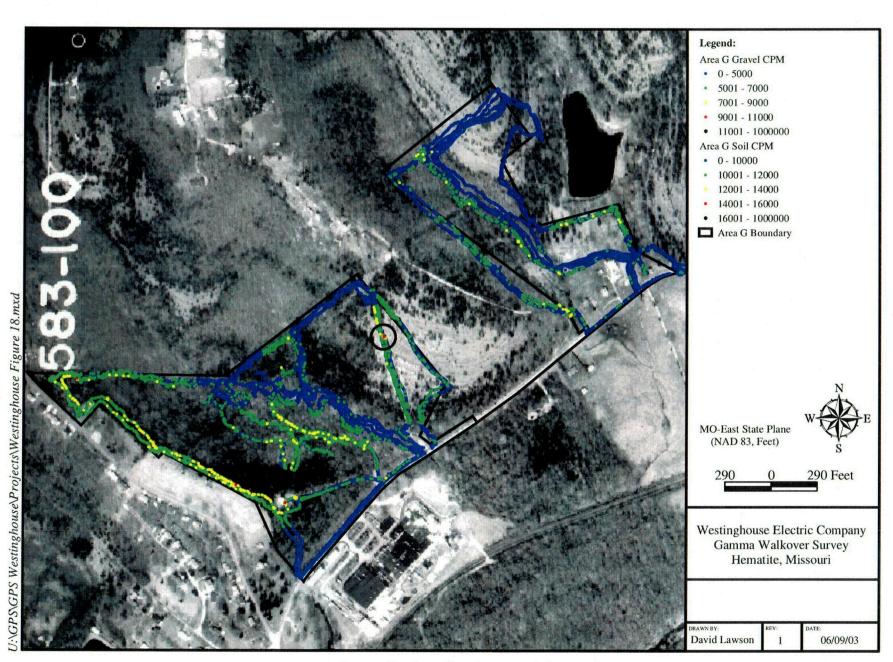


Figure 18. Area 'G' Gamma Walkover Survey

5.0 CONCLUSIONS/RECOMMENDATIONS

The survey progressed as planned with limited unexpected discoveries. The elevated gamma radiation identified within the 100% coverage area was not significantly greater in magnitude or extent than what was anticipated. Areas of interest or concern did in fact prove to have elevated levels of gamma radiation. The evaluation of the collected data did not reveal a significant amount of elevated gamma radiation beyond the anticipated area.

Areas of concern for the survey were identified in the plan and during the kickoff meeting. The areas of concern that were investigated follow:

Burial Pits

The burial pits were actively used from the late 1950s to 1970, and they are reportedly located to the east of the plant. Individual elevated count rates were identified and confirmed in the general vicinity of the area where the burial pits are expected to be located. Based on the equipment utilized for this survey, the burial pits cannot be confirmed to be present, but the locations of the elevated gamma radiation on the east side of the plant in Area B are potential starting points for the burial pits investigations.

Limestone Storage and Limestone Fill Areas

Limestone (calcium carbonate) was used to capture hydrogen fluoride gas (HF) from the uranium hexafluoride (UF₆) conversion facility. Spent limestone was generated from 1968 to 1998. Currently the spent limestone is stored in one pile within the fenced area of the plant. At least two other areas, one near the site spring and the other in the northeast section of the burial pits, may have been filled with the limestone. No indication of elevated gamma radiation was identified due to the existence of the spent limestone pile within the fenced area or in either location outside the fence. A gamma walkover survey was not specifically performed on the spent limestone pile within the fence, but only along the edges of the pile.

Outdoor and Shallow Surface Areas

Several areas around the site (soils within the fence line and soil adjacent to the barns) are known to have surface uranium contamination. Adjacent to the Tile Barn is an area that was used to store excess contaminated equipment. Several isolated areas of elevated gamma radiation were detected around the Tile Barn, adjacent to the fence line, and in drainage ditches located within Area B. The presence of these elevated gamma radiation measurements confirms the presence of gamma emitting radionuclides in excess of background values at these locations.

Railroad

The railroad easement that cuts through the site is not considered a potential AOC; however, a portion of the ballast used to construct the railroad is Rhyolite. The Rhyolite is known to have naturally occurring radioactivity. Increased gamma radiation levels were confirmed to be associated with the Rhyolite. The railroad easement that cuts through the site exhibited elevated count rates in the range of 14,000-16,000 cpm. In addition, the railroad adjacent to the United States National Guard Armory exhibited similar count rates. The

measurements from the Rhyolite in the vicinity of the site are consistent with those from the railroad adjacent to the armory.

Red Room Roof Burial Area/Cistern Burn Pit Area

The roof of the Red Room (Building 240) was reportedly buried in an area south of the Tile Barn. Elevated gamma radiation readings were identified south-southwest of the Tile Barn; however, we could not conclude that this was due to the presence of the Red Room roof burial. Additional investigation to determine the cause of the elevated gamma radiation is required to confirm or negate the presence of this burial. The elevated gamma radiation readings may be due to Cistern Burn Pit Area.

Deul's Mountain

During the construction of the Building 256 warehouse, a large area of potentially contaminated soil was removed and stored along the southeast corner of the fence line. No elevated gamma radiation levels were obtained during the walkover of part of Deul's Mountain; however, an area with elevated gamma radiation readings was identified at the foot of the mountain.

Joachim Creek Bridge

Citizens have reported that material may have been buried on or near the southwest portion of the property, in the vicinity of the Joachim Creek bridge. No abnormal or elevated gamma radiation levels were obtained during the investigation of this area.

Potential additional investigations that may be beneficial based on the results of this survey outside the 100% coverage area are to:

- Investigate the obvious difference in general gamma radiation levels south of the railroad tracks decreasing toward Joachim Creek. Although the "reference area" walkover did confirm a decrease in count rates with proximity to Joachim Creek, a few soil samples analyzed for gamma emitters would verify the actual gamma emitters present adjacent to the railroad. The analysis of these samples could confirm the gamma emitters as naturally occurring, or link them to potential contamination from site activities.
- Investigate the isolated spot identified in Area G on the power line road. This area should be sampled for gamma emitters. It may be prudent to obtain a soil sample in adjacent, lower reading areas to verify which gamma emitters are contributing to the difference between the two areas.
- Investigate and discover the cause of the elevated readings in the two isolated areas within Area D.
- Verify the area at the outlet of the culvert by physically removing all Rhyolite and performing an additional gamma survey, or obtaining a soil sample free of Rhyolite residue.

• Sample the area near the convergence of the drainages. The depth of the elevated gamma readings should be verified during the sampling to obviate subsequent field mobilizations.

Potential additional investigations that may be beneficial based on the results of this survey within the 100% coverage area are:

- Investigate a specific number of identified "hotspots" to determine magnitude and depth of contamination.
- Obtain soil samples at various "hotspot" locations with varying count rates. This sampling effort would attempt to quantify the range of contamination across the site, the deviation of the radionuclide ratio, and the resultant count rates associated with the various radionuclide ratios.
- Obtain samples at specific "hotspots" based on process knowledge to attempt to establish if the radionuclide ratios are significantly different between locations based on site historical uses.
- Use the information obtained from this survey with historical information to guide future subsurface investigation activities.
- Confirm that elevated gamma radiation readings adjacent to Building 230 are due to waste stored within the building. This could be accomplished by performing a gamma walkover survey upon removal of the waste.

In addition:

• A limited number of investigational samples may need to be obtained from the banks of the site evaporation ponds. All the soils surrounding the ponds tend to indicate slightly higher gamma radiation levels. This could be due to a number of reasons, but could be answered by obtaining soil samples in this area.

In general, contamination appears to be limited to the area in the vicinity of the plant site, which was investigated within the 100% coverage area. Contamination does not appear to have significantly migrated from the site by any of the normal transport modes (i.e. airborne release or migration with surface water). There is no general observable pattern of a decrease of gamma readings with distance from the plant. Joachim Creek does not indicate the presence of elevated gamma levels. With the exception of a few anomalies described herein, the survey data indicate that there is no obvious surficial contamination north of Hwy P, south of the railroad, in the farm area, or east of the first drainage.

6.0 REFERENCES

Westinghouse, 2003. Gamma Survey Plan for the Hematite Site Rev 0. St. Louis, MO, April 2003.

SAIC, 2002. Radiological Instrumentation HP-30 Rev 1. St. Louis, MO, December 2002.

UU

L

ATTACHMENT 1

SURVEY INSTRUMENT QA RECORDS

					i				ļ
		•							
		INSTRUMENT #	AVERAGE BKG	AVERA	GE SOURCE				
	Α	86306	5391		45052	•			
-	B	117336	5493		46025				
	Ē	154232	5135		45862				
, .	D	117652	5418		35118				
	E	117634	5315		40510				
	F	105934	5263		43012		:		
	G	127217	5322		46113				
	н	154196	5405		29385		•		
			52.42	1 4	41205				
		MEAN	5343		41385				!
		10% RANGE	4809 - 5877	12/24	6 - 155523				
	All	readings in cpm.	, s	.'					
			MILL				· •		
	I	Performed by:	MMasy		Date: 4/5/03				
			() I	• •					
	-		1 Ol	:	set and				
	J	Reviewed by:	J Cela-		Date:				
									1
		•			•				
					•				
								•	
						•			
			•						
									1

Environmental Restoration Group, Inc. 12809 Arroyo de Vista, NE Albuquerque, NM 87111 (505) 298-4224

. .

EQUIPMENT PACKING SLIP .

Company Name:	SAIC -				Order Number	167
Contact Name:	Bob Fre	nch			rence Number	
Contact Telephone	314-486		1			
-	:	4	· !			
Date Ordered:	4/1/200		:	Shipping Method:	Fedex Standa	rd Overnight
Date Shipped:	4/1/200	3	:	Shipping Number:	2458-3753-4	
Date of Delivery:	4/2/2003	3	:		·	
Ship To Information	n:	: ·		Billing Address:		
Bob French			\$:	SAIC	· ·	
9921 St. Charles Roo	ck Rd.		ł	Central Accounts Pa	yable	
St. Ann, MO 63074	4 :	·	-	10260 Campus Poin	Dr., MS E-2	
314-486-6908				San Diego, CA 921	21	
Equipment Enclosed	 d•	· · ·	1			
Lympinein Lincoser		· · · · · ·				
Instrument		Serial N	umber			
Ludium 2221r		86306			1.01 ···	
Ludlum 2221r		117336				
Ludlum 2221r		117652	•			
Ludlum 2221r		117634	•			
Ludlum 2221r	• .	105934			- -	
Ludlum 44-10		PR12262	8			
Ludlum 44-10		PR11898	6			
Ludlum 44-10	مل .	PR12261	3		•	
Ludlum 44-10		PR15461	5			
Ludlum 44-10		PR12261	2			
Ludlum 44-10	•	PR15064	2			
Ludlum 44-10		PR11284	0			
Ludlum 44-10		PR15078	!			
Eberline Cs-137	• .	4054-02	:			
•		•.				
Special Instructions	•					
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	•		•			
Order continued	1	• • • • • • • •				Page 1 of 2



Ratemeter / Scaler Certificate of Calibration

Environmental Restoration Group, Inc. 12909 Arroyo De Vista NE Albuquerque, NM 87111 (505) 298-4224

Manufacturer: Ludiun	n Model: 2221 ctronically; Ludhum Pulser Ger		6 30 G
Temp.: <u>70</u> °F Reset 🖾 Audio 🗹 Me High Voltage 500v 🗹	Rel. Humidity xhanical 🗹 Battery 🕑 Win	_% Bar. Pressure dow Operation	<u>30.1</u> in. of Hg
Reference Setting	Ratemeter	<u></u>	Instrument "As found reading"
400 Kcpm	400 KU	m	+1- 10%
100 Kcpm	100 Ku	PM	·
40 Kcpm	40 Ku	om	
10 Kcpm	10 KU	n .	
4 Kcpm	y KCA	M	
1 Kcpm	<u>  160</u>	m	· · · ·
400 cpm	400 4	M	
100 cpm	100 4	m	<u> </u>
Reference Setting	Integrated Counts (1-minute count)	Log Scale Count Rate	1
400 Kcpm	40035-8	400 KU	an +/- 10%
40 Kcpm	40004	<u>40 KU</u>	m
4 Ксрш	4001	<u>4 KU</u>	214
400 cpm	400	400 CP	m

Calibrated By: ______

Calibration Date: 4/1/03 Calibration Due: 4/1/04 Date: 4/1/03

Environmental Restoration Group, Inc. 12809 Arroyo De Vista Albuquerque, NM 87111 (505) - 298 - 4224

١

Manufacturer: <u>LODLO</u> All Ranges Calibrated Elec Temp.: <u>70</u> F Ro FUNCTION CHECKS: Reset <u>Audio</u> High Voltage 500v <u>Instrument found within to</u>	tronically; Ludlun al. Humidity Window Operat	ion	Bar. Press Mechanical	97743 ure <u>301</u> in. of Hg
COMMENTS:				• •
Reference Setting	Ratemet	er	Instrument	"As found reading"

400 Kcpm	400 KLPM	+1- 10%
100 Kcpm	100 KCPM	
40 Kcpm	40 KCP-4	
10 Kcpm	10 KUPM	
4 Kcpm	4 Kepm	
1 Kcpm	1 KCPM	
400 cpm	400 CPM	
100 cpm	100 cpm	

Reference Setting Digital Readout

Log Scale

Instrument Received

· 1	
40 Kin	<u> </u>
4 KUM	
400 cm	}
	<u>4 KCM</u>

Calibrated By: Charles P. Fan	Calibration Date: 4/1/03
-	Calibration Due: 4/1/04
Reviewed By: Kant C. Bake	

Environmental Restoration Group, Inc. 12809 Arroyo De Vista Albuquerque, NM 87111 (505) - 298 - 4224

Manufacturer: LUDLU			1		
All Ranges Calibrated Ele	•		1		
Temp.:F F	tel. Humidity / C	<u> </u>	ar. Press	ure_30.7 in. of Hg	•
FUNCTION CHECKS:					
Reset _ Audio _ X	Window Operation	n Mect	anical	Battery	
High Voltage 500v	_ 1000v <u>/</u> 150	0v		·	
Instrument found within to	olerance (+/• 10%)	YES 🖌 NO	,		
			1		:
COMMENTS:	AUDIO	NOT V	ERY	Loup	
			<b>.</b>		
					2
Reference Setting	Ratemeter	1	nstrumen	t "As found reading"	
400 Kcpm	400 KCP1	2_	+	1- 10 %	
100 Kcpm	100 KCP	5			
40 Kcpm	40 KCP	n			
10 Kcpm	10 KCP	3_			
4 Kcpm	4 KCPI	2	·		
1 Kcpm	1.KSM				
400 cpm	400 00	n.			
100 cpm	100 00.	17_		K	
Reference Setting	Digital Readout	Log Sci	ale	Instrument Received	
400 Kcpm	399362	400 K	pm	+1- 10%	
40 Kcpm	39908	40 KC	ph		
4 Kcpm	3990	4 K	em		
400 cpm		400 4	m		
		·		•	
Calibrated By:	ale f. Fm	Calibration D	ale: 4	1,/03	••
		Calibration D	ue _ 4	11/04	_
Reviewed By:	St Rock	Date: 4	1.10	7	

Environmental Restoration Group, Inc. 12809 Arroyo De Vista Albuquerque, NM 87111 (505) - 298 - 4224

			1		
Manufácturer: LUP	LumModel:	Se	rial No.:	117634	<u>/</u>
All Ranges Calibrated E	ectronically; Ludiur	n Pulser Genera	tor S.N	97743	
Temp.: <u></u> F	Rel. Humidity	<u>18</u> % E	ar. Pressi	ura_30.1_	in. of Hg
FUNCTION CHECKS:				•	
Reset 🖌 Audio	Window Operat	tion Mect	nanical	- Battery	/
High Voltage 500v	<u>~ 1000v ~ 1</u>	500v			
Instrument found within	tolerance (+/- 10%)				
COMMENTS:					•
: .					
				•	
Reference Setting	Rateme	ler 1	nstrument	*As found i	eading"
400 Kcpm	400 KC	r r n		+1-10%	· .
100 Kcpm	100 KC	PM			
40 Kcpm	40 K				_
10 Kcpm	10 10	cem.			_
4 Kcpm	<u>4 Ka</u>	pm	·		_
1 Kcpm	_1_KC	pm.			<b>-</b> .
400 cpm	400 4	pm			
100 cpm	100 0	om			<u> </u>
Reference Setting	Digital Readout	Log Sca	ate I	nstrument F	Received
400 Kcpm	400 745	400 K	com	+1-10	»%
40 Kcpm	39975	<u>40 K</u>	con		
4 Kcpm	3999	<u>4 K</u>	in		
400 cpm	400	400 9	pm		
Calibrated By:	nle. P. Far	Calibration Da	ate: 4	1,103	
	•	Calibration D	1		
Reviewed By:	at ABuh	Date:/	1/03		

Environmental Restoration Group, Inc. 12809 Arroyo De Vista Albuquerque, NM 87111 (505) - 298 - 4224

Manufacturer: <u>∠∪D</u> All Ranges Calibrated El Temp.: <u></u> ZO_F FUNCTION CHECKS: Reset_ ∠ Audio_ High Voltage 500v_ ∠	Pectronically; Ludlur Rel. Humidity Window Operators 1000v 1	n Pulser Gen / 8 % ion N 500v	erator S.N Bar, Press lechanical	97743 ure <u>30.1</u> in. of Hg
Instrument found within	(olerance (+/- 10%)	160 -		
COMMENTS:				
Reference Setting	Ratemet	er	Instrumen	t "As found reading"
400 Kcpm	400 KG	10		+1- 10%
100 Kcpm	100 KG			·
40 Kcpm	40 K			
10 Kcpm	_10_K	ph		
4 Kcpm	4 KU	m		
1 Kcpm	I_KU	om		
400 cpm	400 C	cm_		<u> </u>
<u>100 cpm</u>	<u>100 C</u>	<u>en</u>		¥
Reference Setting	Digital Readout	Log	Scale	Instrument Received
400 Kcpm	399320	400	KCOM	+1-10%
40 Kcpm	39935		KCPA	(
4 Kcpm	4001		Kipm	
400 cpm	401		com	
Calibrated By:	Me f. Jun			
		Calibratio	n Due <u>4</u> /	1/04
Reviewed By:	SRBah	Date:	11/03	>

Voltage Plateau Form

ERG Environmental Restoration Group, Inc. 12809 Arroyo De Vista NE Albuquerque, NM 87111 (505) 298-4224

Detector Mfg.:	Ludlum	Model:	44-10	Serial No.:	IR 150786	
Counter Mfg.:	Ludlum	Model:	2221	Serial No.:	86306	<u> </u>
Temp.: 70	°F Rel. Hu	nidity	18% Bar.	Pressure 3	0.1 in. of Hg	
Counter Thresho	kd Setting:	<u>10</u> mV	Geom	etry / Distance to :	source: 6-inches	
Source : 🗍 Tha	230@13,500 dpm sn:	4098-03	🗍 τα	9@18,100 dpm sn: 4	099-03	
Ecat	37 @ 8.5 μCi sn: 405	1-02	🗋 Oth	ler:		

Count Time: ____1 minute(s)

•

Higb Voltage	Gross Source Counts	Background Counts
600	47360	
700	·· 81460	
800	91596	
900	9870B	
1000	<u> </u>	; 
825	54269	11683
•	· ·	

Recommended Operating Voltage: 825 volts

Calibrated By: Charles P. Fun Reviewed By: Kant & Bal

4/1/03 Calibration Date:___ 4/1/04 Calibration Due:____ 4/1/07 Date:

Certificate of Calibration Voltage Plateau Form

ERG Environmental Restoration Group, Inc. 12809 Arroyo De Vista NE Albuquerque, NM 87111 (505) 298-4224

Detector Mfg.: Ludlum	Model:	44-10	_ Serial No.:	PRIIZ840	
Counter Mfg.: Ludlum	Model:	2221	_ Serial No.:	117336	<b></b>
Temp.: 70 °F Rel. Hun				30.1 in. of Hg source: 6-inches	
Counter Threshold Setting: Source : Th230 @ 13,500 dpm sn: ·			@ 18,100 dpm sn:		<del></del>
E: Cs137 @ 8.5 µCi sn: 4054	-02	Othe	r:		

Count Time: ____ minute(s)

		•
High Vohage	Gross Source Counts	Background Counts
600	26181	
700	56800	
800	79600	
900	87779	
1000	93711	
1100	94676	12154
1200	96013	· ·

Recommended Operating Voltage: //00 volts

Calibrated By: Charles P. Farre Reviewed By: Kennet Relation

Calibration Date: 4/1/03 Calibration Due: 4/1/04 Date: 4/1/07

of Calibration
of Calibration

Voltage Plateau Form

Environmental Restoration Group, Inc. 12809 Arroyo De Vista NE Albuquerque, NM 87111 (505) 298-4224

Detector Mfg.: Ludlum	Model: 44-10	Serial No.:	PR150642
Counter Mfg.: 1.udlum	Model: 2221	Serial No.:	149938
Temp.: 70 °F Rel. Humidi	y18% Bar.	Pressure 30	1 in. of Hg
Counter Threshold Setting: 10	mV Geom	etry / Distance to so	ource: 6-inches
Source : Th230 @ 13,500 dpm sn: 4098	-03 Tes	9@ 18,100 dpm an: 40	99-03
Cs137@ 8.5 µCi sn: 4054-02		ner:	
Count Time: 1 minute(s)			
. High Voltage	Gross Source Counts		Background Counts
600	23819	>	
700	56602		
පිතා	83456		
900	52685	,	

99617

95131

,

-

Recommended Operating Voltage: 950 volts

1000

950

Calibrated By: Charles G. Fun

Reviewed By: Kennet TC Baken

Calibration Date: 4/1/03 Calibration Due: 4/1/04 Date 4/1/07

11954

Voltage Plateau Form

ERG Environmental Restoration Group, Inc. 12809 Arroyo De Vista NE Albuquerque, NM 87111 (505) 298-4224

Detector Mfg.:	Ludium	Model:	44-10	Serial No.:	PR154615	•
Counter Mfg.:	Ludhum	Model:	2221	Serial No.:	149938	
Temp.: <u>70</u>	°F Rel. Hur	nidity	<u>18%</u> Bar	r. Pressure3(	).1 in. of Hg	
Counter Threshok	Setting:	<u>10</u> mV	Geou	netry / Distance to s	ource: 6-inches	
Source : 🗌 Th23	0 @ 13,500 dpm sn:	4098-03	🗌 τα	99 @ 18,100 dpm sn: 40	099-03	
Call	7@ 8.5 µCi sn: 4054	-02	. 🗆 o	ther:		

Count Time: ____1 ___minute(s)

J	
	-

High Gross Source Background Voltage Counts Counts 52245 600 700 84124 93013 11403 750 800 95218 100075 850 100 944 900

Recommended Operating Voltage: 750 volts

Calibrated By: Charle J. Fan Reviewed By: Kannot Bake

Calibration Date: 4/1/03 Calibration Due: 4/1/04 4/1/63 Date



## Certificate of Calibration Voltage Plateau Form

Environmental Restoration Group, Inc. 12809 Arroyo De Vista NE. Albuquerque, NM 87111 (505) 298-4224

Detector Mfg.: Ludlum Counter Mfg.: Ludlum	Model: Model:	44-10 2221	l.	PR 122613	
Temp.: 70°F Rel Humi Counter Threshold Setting:				<u>30.1</u> in. of Hg o source: <u>6-inches</u>	
Source : Th230 @ 13,500 dpm sn: 40			) 18,100 dpm sn		-
Cs137@ 8.5 µCi sn: 4054-0	2	. Dther:_			

Count Time: _____ minute(s)

High Voltage	Gross Source Counts	Background Counts
700	44689	
800	72978	
500	83968	
1000	90457	
1100	92956	
1200	94346	12 295
1300	94023	
1400	113123	
		<u>}</u>

Recommended Operating Voltage: /200_volts

Calibrated By: Charle P. Fan_____ Reviewed By: Kenneth Sah____

Calibration Date: 4/1/03 Calibration Due: 4/1/04 Date: 4/1/03

Voltage Plateau Form



12809 Arroyo De Vista NE Albuquerque, NM 87111 (505) 298-4224

Detector Mfg.	Ludlum	Model:	44-10	Serial	No.: F	PA 118 986
Counter Mfg.:	Ludlum	Model:	2221	Serial	No.:	117634
Temp.: 70				Bar. Pressure		_ in. of Hg
Counter Threshold Source : Th230				Geometry / Distan ] Te99 @ 18,100 dp	1	
Cs137	@ 8.5 µCi sn: 4054-	02		Other:		

Count Time: _____ minute(s)

High Voltage	Gross Source Counts	Background Counts
500	3281	· ·
600	49052	
700	79498	· .
800	88012	
700	94234	•
/000	94783	12579
1100	95491	
1200	97678	•
	-	

Calibrated By: Charle P. Far

Reviewed By: Kenneth R. Bohn

Calibration Date: 4/1/03 Calibration Due: <u>4/1/04</u> Date: 4/1/03

Voltage Plateau Form

Environmental Restoration Group, Inc. 12809 Arroyo De Vista NE Albuquerque, NM 87111 (505) 298-4224

Detector Mfg.:	Ludlum	Model:	44-10	Serial No.	PR122628
Counter Mfg.:	1.udhum	Model:	2221	Serial No	105934
Temp.: 70 Counter Threshold Source : Th230	Setting:1	<u>)</u> mV	Geometry		<u>30.1</u> in. of Hg o source: <u>6-inches</u>
	@ 8.5 µCi sn: 4054-02		Other:_		

Count Time: 1 minute(s)

High Voltage	Gross Source Counts	Background Counts
500	35818	
600	76338	
700	88480	
800	93538	
900	54449	12627
1000	<del>95749</del>	
		· · · · · · · · · · · · · · · · · · ·

Recommended Operating Voltage: 960 volts

Calibrated By: Charles p. 7.

4/1/03 Calibration Date:____ Calibration Due: 4/1/04 410/03 Date:

Instrument Model No.	2221 Instru	ment Serial I	No. 1542	32 Mis	c1 EDI		Misc2 MB
· · · · · · · · · · · · · · · · · · ·		lattery Check		!			
,	Test Range 100	Sca As Found 200	le Range 1 400	Testing 100	As Lett 200	400	
	1         100           10         1000           100         10000           1000         100000           10000         100000	200 2000 20000 200000	400 4000 40000 400000	100 1000 10000 100000	200 2000 20000 200000	400 4000 40000 400000	-
High V Test Point A 500 1000 1500 2000	Solution         As Left           507         507           1005         1005           1508         1508           2015         2015	Ram As Fo As Le	nge bund 4	rithmic M 1 10 100 4000 100 4000	100 42500	1000 400000 400000	Time TestsTest PointCount Results0.11000.22000.5499
Fur	nctional Tests	amic	Electro	nic Check As Fo Zero: 0		s Left	1         939           2         1999           5         4997
<ul> <li>✓ Lights</li> <li>✓ Zero Push</li> <li>✓ Count Push</li> <li>✓ Hold Push</li> </ul>	HV Push Bu		High Voltage Threshold 1 Threshold 2 Threshold 3	8.5 na	5 1 r	750 10 1a 1a	Time base testing default = 1000 CPM
Parts Replaced d	uring Calibration and or		Over Load				Audio Tests
							<ul> <li>Audio Volume</li> <li>Audio Alarm</li> <li>HeadPhone</li> </ul>

|

(

ĺ

APR-04-03 04:2	4 PM AEESINC
----------------	--------------

i

P.03

		165 Deer	Run Ridoa	Auto	Mater Kingsten						i		:85					•
					Cer	ific	ate		Ca	libra		Ditt			www.rad	probe ee	H-Com	
M	odel N	lumber;	_2221		Seria					)# 232			lient :		EDI		1	
	Pro	be No.:	NA				mber:						P0 #:		COLO	DNIE		Ì
	The e	tinct last																Г !
	and Te	ichnaioav	or to ac	cented y	prated to t values of r	ne indi urbural	CELEC 8	PECIACE Non-tra	nons us: sinte "Ti	ng stand Ja Anaus	ands tri and an	iccebic b diffue the	à the Ne Jacobia	tional in to meet	SULLE O	Standa followio	indes	:
	specifi	cations up	its n	turn to i	the submi	tter.	<b>Mi)</b>			ne instrug					in Spe		17 m	
					stem con		to the g							0-1-195	14 and M	II Sid 4	5662A	
	Election	ic films are ic	entified by	MOL SI	DATE PR	OBE MI	A PROE	E SN										: !
		-										1		]		]		$\ $
balle f	Yest	As Found			Variance	Celib.		}				1	ł	1	1			
ange i	Value 100	Value 100	0.1 Max 3	Value 1/20	0.1 Max.	Tal.		1	1	t l	۱,	1	1	ł	1	I	1	IJ
1	400	400	0.00	400	0.00 0.00	0.1 0.1		}				•						:
10	100	1000	0.00	1000	0.00	0.1												
10	400	4000	0.00	4000	0.00	0.1		1										:
100	100	9900	-0.01	9000	-0.01	0.1			Lõg	Test Point		As Found	Asian					•
100	400	40000	0.00	40000	0.00	0.1		1	•								:	:
1000	100	80800	-0.00	00948	-0.00	0.1		1	Xt	400		400	400					ı
1000	400	399000	-0.00	389000	-0.00	0.1			X10	4000		4000	4000					:
									X100	4000	•	40000	40000					ļ
									X1000	40000		400000	400000					•
		<u>NA</u> NA		····· <del>·</del> ···	1080 volts	NA								11-11-1		- Andrews	23	
						NA	) EXX	Votage I	Test	Beta	Vota	рс. 					d An Left	
		NA						Time		As Found	-	ALIN	Variance		500	300	500	Ť
							ERR	0.1	1000	100	0.00	100	0.00		1000	996	995	ļ
						NA		1	1000	898	-0.00	598	-0.00		1600	1495	1405	l
		NA						5	1000	4608	-0.00	. 4996	-0.00		2000	1995	1995	[
							ERR	10 35575 1	1000	2008	-0.00		-0.00		2300		<u> </u>	+-
		n Celbration			Com Port		No		c Tested.	V	·	EN.	Due Date.		MATE	\$N,	Due Det	
		t Circuita Tan		_	Receirs p			Thermo '		No					<u> </u>			+
	0 Nor				Response	_	Yes	Punction		Yes	MP-1	132	8-12-200	2	1			÷
106-60	0 Geatro	nic Testa			Speaker T		Yes	Timer Te	stad:	Ym	ESV	817231	2-18-200	3	Tempera	ture in De	g.F	Ţ
108.60	il Not I	Lequined			Battory La	vel:	Good	Alpha th	eshold	100					Pressure	In ANALY	L	1 7
_	C Not I	1			Flow Rate	(comin	NR '	Biets thre	shold	800		<u> </u>		r	Relative			1
		Bource	SN.	DPM	Cel Dete		1	Source	<u>SN</u>	DPM	Cel Dete		]	Source	SN.	DPM	Cal Deb	<b>.</b>
			NA											·				•••••••
ema	irks:	HV as	found	010	20 HV 2	is lef	t @10	)50 TI	resho					hresh				÷
											- 06 .		ha.	7	Not Leed	A		dia at

Provide the second s				
1	Thated Engine	ering & Electro		S www.medarabe-a
	Certificate	of Calibra		
		For		
Model Number: 2221	Raten Serial Number;	neter/Scalar	Туре	ent : EDI
Probe No.: NA	Serial Number:			D #: <u>CISS</u>
The exhibit instrument was anti-	mand in the lindersheet of			
The subject instrument was calibr and Technology or to accepted va		•		
specifications upon its return to th	e submitter.	Upon receipt the instru	ment was found:	Within Specs.
AEES Inc. calibrations control sys Electronic files are identified by MDL_EN			3-1997, ANSI/NCS	L 2540-1-1994 and M# Std /
Analog Cal Data				
_	Variance Calib			
Range Value Value 0.1 Max Value 1 1 100 . 100 0.00 100	0.1 Mar Tol 0.00 0.1			
1 400 400 000 400	0.00 0.1			
10 100 1000 0.00 01	0.0C 0.1			
10 400 4000 0.00 4000	0.00 0.1			
	0 00 0.1			
100 400 40000 0.00 40000 1000 100 100000 0.00 100000	10.00 0.1 10.00 0.1	1	•	
1000 400 400000 0.00 400000	DOC 0.1		2	
		Not Requir	ned	
		1		
Efficiency	••••••••••••••••••••••••••••••••••••••			
	· · · · · · · · · · · · · · · · · · ·			
-11				
NA				
NA	ERR	Voltage Increment 50	Vots Simple	
· · · · · · · · · · · · · · · · · · ·	ERR	Time Test Deta	Digital Cal	HV ANTO
NA 		Time Test Oeta Time Test Val As Foun	Constant Cel	HV As Fo stience 500 400
	ERR	Time Test Deta	i Digital Cal d Variance As Left Vi 0.00 100	HV ANTO
		Time Test Oeta Time Test Val As Foun 0 1 1000 100	Eligitat Cad d Variance As Left Vi 0.00 100 -0.00 997	HV As For stance 500 490 0.00 1000 1000
NA. NA	ERR	Time         Test         Deta           Time         Test Val         As Foun           0 1         1000         100           1         1000         987           5         1000         4999           10         1000         9998	Digital Cal           d Variance As Left           0.00         100           -0.00         997           -0.00         9990	HN As For Infance 500 4000 0 00 1000 1000 0 00 1500 1500 0 00 2000 1000 0 00 2500 NA
NA. NA PROS-100 Amplifier Celibrations	ERR ERR Procedurás	Time         Test         Oeta           Time         Test Val         As Foun           0 1         1000         100           1         1000         567           5         1000         4999           10         1000         9998	Digital Cal           d Variance As Left           0.00         100           -0.00         997           -0.00         9990	HN As For Infance 500 400 0 00 1000 1000 0.00 1500 1500 0.00 2000 1998
NA NA PROS-100 Amplifier Celibrations PROS-200 Counters Celibrations	ERR	Time         Test         Deta           Time         Test Val         As Foun           0 1         1000         100           1         1000         987           5         1000         4999           10         1000         9998	Digital Cal           d Variance As Left           0.00         100           -0.00         997           -0.00         9990	HN As For Infance 500 4000 0 00 1000 1000 0 00 1500 1500 0 00 2000 1000 0 00 2500 NA
NA N	ERR Proceduras Com Port tested. No	Time         Test         Oata           Time         Test Val         As Foun           0 1         1000         100           1         1000         967           5         1000         4969           10         1000         9685           Image: Cesting Cast of the state of	Digital Cal d Variance As Left Vi 0.00 100 -0.00 997 -0.00 9990 -0.00 9990 -0.00 9990 -1.00 9990 -1.00 9990 -1.00 9990	HN As For Infance 500 400 0 00 1000 1000 0.00 1500 1500 0.00 2000 1000 0 00 2500 NA
NA NA ROS-100 Amplifier Celibrations ROS-200 Counters Calibrations ROS-200 Support Circuits Tests ROS-200 Support Circuits Tests ROS-400 — Not Required ROS-500 Geotropic Tests	ERR Proceduras Com Portasted. No Repails performed. No Response Testa: Yea Speaker Testaer: Yea	Time         Test         Oeta           Time         Test Val         As Foun           0 1         1000         100           1         1000         987           5         1000         9998           10         1000         9998           10         1000         9998           10         1000         9998           10         1000         9998           10         1000         9998           10         1000         9998           10         1000         9998           10         1000         9998           10         1000         9998           10         1000         9998           10         1000         9998           10         1000         8998           10         1000         8998           10         1000         8998           10         1000         8998           10         1000         8998           10         1000         8998           10         1000         8998	Digital Cal d Variance As Left Vi 0.00 100 -0:00 997 -0:00 9990 -0:00 9990 -0:00 9990 -1:00 9990 -1:00 9990 -1:00 9990	HV As Fo utance 500 400 0 00 1000 1000 0 00 1500 1500 0 00 2000 1990 0 00 2500 NA e Data M&TE 3N 
NA NA NA NA NA NOS-100 Amplifier Calibrations NOS-200 Counters Calibrations NOS-200 Support Circuits Tests NOS-200 — Not Required NOS-500 Geotropic Tests NOS-500 Geotropic Tests NOS-500 — Not Required	ERR Procedurae Com Port tasted. No Repairs performed. No Response Testa: Yes Sceaker Testaet: Yes Bettery Leve: 7.3	Time         Test         Deta           Time         Test Val         As Foun           0 1         1000         100           1         1000         987           5         1000         9896           10         1000         9996           10         1000         9996           10         1000         9996           10         1000         9996           10         1000         9996           10         1000         9996           10         1000         9996           10         1000         9996           10         1000         9996           10         1000         9996           10         1000         9996           10         1000         9996           10         100         9996	Digital Cal           Ologital Cal           0.00         100           -0.00         999           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00 <td>HV         As For           urlance         500         400           0.00         1000         1000           0.00         1500         1500           0.00         2000         1990           0.00         2500         NA           e Data         M&amp;TE         BN          </td>	HV         As For           urlance         500         400           0.00         1000         1000           0.00         1500         1500           0.00         2000         1990           0.00         2500         NA           e Data         M&TE         BN
NA . NA . PROS-100 Amplifier Celibrations PROS-200 Counters Celibrations PROS-200 Counters Celibrations PROS-200 Counters Celibrations PROS-200 — Not Required PROS-200 — Not Required PROS-200 — Not Required PROS-200 — Not Required	ERR Procedures Com Port tested. No Response Testa: Yes Soesker Testaed: Yes Bettery Level: 7.3 Flow Rate [colmin] ina	Time         Test         Deta           Time         Test Val         As Foun           0 1         1000         100           1         1000         997           5         1000         997           10         1000         997           10         1000         9996           10         1000         9996           10         1000         9996           10         1000         9996           10         1000         9996           10         1000         9996           10         1000         9996           10         1000         9996           10         1000         9996           10         1000         9996           10         100         9996           10         100         9996           Stringer Testad:         Yes           Alpha threshold         100           Bels threshold         100	Digital Cal         Image: Cal           d Variance As Lift         Vir           0.00         100           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9900           -0.00         9900           -0.00         9900           -0.00         9900           -0.00         9900           -0.00	HV         As For           utance         500         400           0.00         1000         1000           0.00         1500         1500           0.00         2000         1990           0.00         2000         1990           0.00         2500         NA           a Data         M&TE         SN           B-2003         Temperature in firm           Relative Humidit         Relative Humidit
NA . NA . PROS-100 Amplifier Calibrations PROS-200 Counters Calibrations PROS-200 Counters Calibrations PROS-200 Counters Calibrations PROS-200 — Not Required PROS-200 Geotropic Testa PROS-200 — Not Required PROS-200 — Not Required PROS-200 — Not Required	ERR Procedurae Com Port tasted. No Repairs performed. No Response Testa: Yes Sceaker Testaet: Yes Bettery Leve: 7.3	Time         Test         Deta           Time         Test Val         As Foun           0 1         1000         100           1         1000         987           5         1000         9896           10         1000         9996           10         1000         9996           10         1000         9996           10         1000         9996           10         1000         9996           10         1000         9996           10         1000         9996           10         1000         9996           10         1000         9996           10         1000         9996           10         1000         9996           10         1000         9996           10         100         9996	Digital Cal           Ologital Cal           0.00         100           -0.00         999           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00 <td>HV         As For           urlance         500         400           0.00         1000         1000           0.00         1500         1500           0.00         2000         1990           0.00         2500         NA           e Data         M&amp;TE         BN          </td>	HV         As For           urlance         500         400           0.00         1000         1000           0.00         1500         1500           0.00         2000         1990           0.00         2500         NA           e Data         M&TE         BN
NA. NA PROS-100 Amplifier Catibrations PROS-200 Counters Calibrations PROS-200 Counters Calibrations PROS-200 Counters Calibrations PROS-200 Counters Calibrations PROS-200 — Not Required PROS-200 — Not Required PROS-200 — Not Required PROS-200 — Not Required	ERR Procedures Com Port tested. No Response Testa: Yes Soesker Testaed: Yes Bettery Level: 7.3 Flow Rate [colmin] ina	Time         Test         Deta           Time         Test Val         As Foun           0 1         1000         100           1         1000         997           5         1000         997           10         1000         997           10         1000         9996           10         1000         9996           10         1000         9996           10         1000         9996           10         1000         9996           10         1000         9996           10         1000         9996           10         1000         9996           10         1000         9996           10         1000         9996           10         100         9996           10         100         9996           Stringer Testad:         Yes           Alpha threshold         100           Bels threshold         100	Digital Cal         Image: Cal           d Variance As Lift         Vir           0.00         100           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9900           -0.00         9900           -0.00         9900           -0.00         9900           -0.00         9900           -0.00	HV         As For           utance         500         400           0.00         1000         1000           0.00         1500         1500           0.00         2000         1990           0.00         2000         1990           0.00         2500         NA           a Data         M&TE         SN           B-2003         Temperature in firm           Relative Humidit         Relative Humidit
NA. PROS-100 Amplifier Catibrations PROS-200 Counters Calibrations PROS-200 Counters Calibrations PROS-300 Support Circuits Tests PROS-300 — Not Required PROS-300 — Not Required PROS-300 — Not Required PROS-300 — Not Required Source SN DPM	ERR Procedures Com Port tested. No Response Testa: Yes Soesker Testaed: Yes Bettery Level: 7.3 Flow Rate [colmin] ina	Time         Test         Deta           Time         Test Val         As Foun           0 1         1000         100           1         1000         997           5         1000         997           10         1000         997           10         1000         9996           10         1000         9996           10         1000         9996           10         1000         9996           10         1000         9996           10         1000         9996           10         1000         9996           10         1000         9996           10         1000         9996           10         1000         9996           10         100         9996           10         100         9996           Stringer Testad:         Yes           Alpha threshold         100           Bels threshold         100	Digital Cal         Image: Cal           d Variance As Lift         Vir           0.00         100           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9900           -0.00         9900           -0.00         9900           -0.00         9900           -0.00         9900           -0.00	HV         As For           utance         500         400           0.00         1000         1000           0.00         1500         1500           0.00         2000         1990           0.00         2000         1990           0.00         2500         NA           a Data         M&TE         SN           B-2003         Temperature in firm           Relative Humidit         Relative Humidit
NA. NA PROS-100 Amplifier Calibrations PROS-200 Counters Calibrations PROS-200 Counters Calibrations PROS-200 Counters Calibrations PROS-200 — Not Required PROS-200 — Not Required PROS-200 — Not Required PROS-200 — Not Required Source SN DPM	Ene Proceduras Proceduras Com Port tested. No Reports performed. No Reports Testar: Yes Bettery Level: 7.3 Flow Rate [colmin] ta Cel Date	Time         Test         Deta           Time         Test Val         As Foun           0 1         1000         100           1         1000         997           5         1000         997           10         1000         997           10         1000         9996           10         1000         9996           10         1000         9996           10         1000         9996           10         1000         9996           10         1000         9996           10         1000         9996           10         1000         9996           10         1000         9996           10         1000         9996           10         100         9996           10         100         9996           Stringer Testad:         Yes           Alpha threshold         100           Bels threshold         100	Digital Cal         Image: Cal           d Variance As Lift         Vir           0.00         100           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9990           -0.00         9900           -0.00         9900           -0.00         9900           -0.00         9900           -0.00         9900           -0.00	HV         As For           utance         500         400           0.00         1000         1000           0.00         1500         1500           0.00         2000         1990           0.00         2000         1990           0.00         2500         NA           a Data         M&TE         SN           B-2003         Temperature in firm           Relative Humidit         Relative Humidit

1

-



## CERTIFICATE OF CALIBRATION

Gamma Standard

S.O.#<u>3951</u> P.O.#<u>N/A</u>_____

Description of Standard:

Model No	CS-7	7AS Seria	al No	4054	1-02	Isotop	e <u> </u>	37
The source -	of gamma	radiation is m	mounted on	a	2.54	cm	diameter_	PLASTIC
3195/	3	mm thick a	and sealed	in a	PLASTIC	RESIN		

#### asurement Method:

The gamma ray emission rate was compared with a similar standard, which was calibrated. IST S/N 2752-91 The comparison of relative gama ray emission rates was a mplished using a high resolution gamma-ray detector (nominal active volume 100 cm²) and a multichannel pulse height analyzer.

#### Measurement Result:

The gamma ray activity of the standard on <u>10-03-2002</u> was <u>8.5</u>  $\mu$ Ci. The uncertainty of the measurement is <u>5</u>%, which is the sum of the uncertainty assigned to the NIST reference (<u>2.2</u>%), random counting error at the 99% confidence level, and the estimated upper limit of systematic errors.

Calibrated by: ART REUST	Reviewed by: Malan
Palieration Technician: Atkeur	Q.A. Representative: <u>Anthony W. Not</u> h
Calibration Date: 10-03-2002	Reviewed Date: <u>/0-4-02</u>

Analytical Services 7021 Pan American Freeway NE

14

.

	<u>Initial 44-10 A</u>	Instrument Check In			
Meter Number	: 86306	Detector Number:	PR150786		
Meter Model	: 2221	Detector Model:	44-10		
Cal. Due	: 4/1/2004	Cal. Due:	4/1/2004		
	Source=Cs 137	Threshold =	10mV		
	S/N-4054-02	High Voltage =	825V		
		_			
Source GCPM	BKG CPM	Average Bkg. (CPM):	5391		
146277	5430	Average Source (GCPM):	145052		
144275	5321	Average Net Source (NCPM):	139661		
145516	5281	Source Range (GCPM):	116041	to	174062
					6460
145180	5420	Background Range (CPM):	4313	to	6469
145180 145093	5420 5221	Background Range (CPM):	4313	to	0409
		Background Range (CPM):	4313	to	0409
145093	5221		4313	to	0409
145093 145525	5221 5478	Background Range (CPM): Source Range +/- 20% Background Range +/- 20%	4313	to	0409
145093 145525 145118	5221 5478 5461	Source Range +/- 20%	4313	to	0409

Date:  $\frac{4|5|03}{503}$ Man Performed By:__ Reviewed By:

	Initial 44-10 E	3 Instrument Check In			
Meter Number:	117336	Detector Number:	PR112840		
Meter Model:	2221	Detector Model:	44-10		
Cal. Due:	4/1/2004	Cal. Due:	4/1/2004		
S	Source=Cs 137	Threshold =	10mV		
	S/N-4054-02	High Voltage =	1100V		
		••••••••••••••••••••••••••••••••••••••			
Source GCPM	BKG CPM	Average Bkg. (CPM):	5493		
Source GCPM 146655	<b>BKG CPM</b> 5440	Average Bkg. (CPM): Average Source (GCPM):	5493 146025		
	and the second sec		146025		
146655	5440	Average Source (GCPM):	146025	to	175230
146655 146217	5440 5412	Average Source (GCPM): Average Net Source (NCPM):	146025 140532	to to	17523( 6591
146655 146217 146755	5440 5412 5542	Average Source (GCPM): Average Net Source (NCPM): Source Range (GCPM):	146025 140532 116820		
146655 146217 146755 146289	5440 5412 5542 5416	Average Source (GCPM): Average Net Source (NCPM): Source Range (GCPM):	146025 140532 116820		
146655 146217 146755 146289 145407	5440 5412 5542 5416 5569	Average Source (GCPM): Average Net Source (NCPM): Source Range (GCPM): Background Range (CPM):	146025 140532 116820		
146655 146217 146755 146289 145407 146713	5440 5412 5542 5416 5569 5512	Average Source (GCPM): Average Net Source (NCPM): Source Range (GCPM):	146025 140532 116820		
146655 146217 146755 146289 145407 146713 145978	5440 5412 5542 5416 5569 5512 5494	Average Source (GCPM): Average Net Source (NCPM): Source Range (GCPM): Background Range (CPM): Source Range +/- 20%	146025 140532 116820		

___ Date: <u>4/5/03</u>___ ___ Date: <u>4/7/83</u>___ XMM as Performed By: Ő 0 Reviewed By: ľ

 $\bigcirc$ 

	Initial 44-10 C	Instrument Check In			
Meter Number:	154232	Detector Number:	PR150642		
Meter Model:	2221	Detector Model:	44-10		
Cal. Due:	4/2/2004	Cal. Due:	4/1/2004		
S	ource=Cs 137	Threshold =	10mV		
	S/N-4054-02	High Voltage =	750V		
Source GCPM	BKG CPM	Average Bkg. (CPM):	5135		
145727	5178	Average Source (GCPM):	145862		
145126	5193	Average Net Source (NCPM):	140728		
145614	5203	Source Range (GCPM):	116690	to	17503
145834	5147	Background Range (CPM):	4108	to	6161
146496	5135				
145830	5175	7			
146327	5121	Source Range +/- 20%			
	5037	Background Range +/- 20%			
145854					
<u>145854</u> 145861	5010				

Date: 4/5/03 Date: 4/7/03 Muras Performed By:_ Reviewed By: L

	Initial 44-10 D	Instrument Check In			
Meter Number:	117652	Detector Number:	PR122613		
Meter Model:	2221	Detector Model:	44-10		
Cal. Due:	4/1/2004	Cal. Due:	4/1/2004		
	Source=Cs 137	Threshold =	10mV		
	S/N-4054-02	High Voltage =	1200V		
Source GCPM	ВКС СРМ	Average Bkg. (CPM):	5418		
134929	5443	Average Source (GCPM):	135118		
134724	5476	Average Net Source (NCPM):	129700		
135007	5495	Source Range (GCPM):	108095	to	162142
135621	5317	Background Range (CPM):	4334	to	6501
135311	5458	1			
135739	5410	1			
133/39	÷	10			
135739	5403	Source Range +/- 20%			
	<u>5403</u> 5457	Background Range +/- 20%			
135221		1 <b>*</b>			

 $\cup$ 

All asay Performed By:____ D UBU 1 Reviewed By: U

·····	Initial 44-10 E	E Instrument Check In			
Meter Number:	117634	Detector Number:	PR118986		
Meter Model:	2221	Detector Model:	44-10		
Cal. Due:	4/1/2004	Cal. Due:	4/1/2004		
· · · · · ·	Source=Cs 137	Threshold =	10mV		
	S/N-4054-02	High Voltage =	1000V		
Source GCPM	BKG CPM	Average Bkg. (CPM):	5315		
139891	5484	Average Source (GCPM):	140510		
140502	5238	Average Net Source (NCPM):	135196		
140522	5349	Source Range (GCPM):	112408	to	168612
139748	5186	Background Range (CPM):	4252	to	6378
140562	5485	1			
141236	5314				
141288	5539	Source Range +/- 20%			
141016	5049	Background Range +/- 20%			
140205	5392	]			
140133	5110	7			

Date: 4/5/03 Date: 4/5/03 Date: 4/7/83 Performed By:_ Reviewed By:

	Initial 44-10 F	Instrument Check In			
Meter Number:	105934	Detector Number:	PR122628	3	
Meter Model:	2221	Detector Model:	44-10		•
Cal. Due:	4/1/2004	Cal. Due:	4/1/2004		
Ś	ource=Cs 137	Threshold =	10mV		
	S/N-4054-02	High Voltage =	900V		
Source GCPM	BKG CPM	Average Bkg. (CPM):	5263		
141240	5199	Average Source (GCPM):	143012		
140742	5381	Average Net Source (NCPM):	137748		
143372	5214	Source Range (GCPM):	114409	to	17161
143729	5407	Background Range (CPM):		to	6316
143413	5066				
143394	5293				
143679	5169	Source Range +/- 20%		۰.	
4 40000	5293	Background Range +/- 20%			
143269					
143209	5317				

i

asy Date: 4/5/03 MΝ Performed By: Date: 4/7/03 nd i 100 Reviewed By:



U

<u></u>	Initial 44-10 C	<b>B</b> Instrument Check In			
Meter Number:	127217	Detector Number:	PR154615		
Meter Model:	2221	Detector Model:	44-10		
Cal. Due:	5/6/2003	Cal. Due:	4/1/2004		
S	Source=Cs 137	Threshold =	10mV		
	S/N-4054-02	High Voltage =	1050V		
Source GCPM	BKG CPM	Average Bkg. (CPM):	5322		
144708	5247	Average Source (GCPM):	146113		
144713	5328	Average Net Source (NCPM):	140791		
144991	5536	Source Range (GCPM):	116890	to	17533
144434	5196	Background Range (CPM):	4257	to	6386
144733	5559				
144865	5375				
147546	5214	Source Range +/- 20%			
147775	5323	Background Range +/- 20%			
149591	5053				

Aler ____ Date: <u>4/5/03</u>____ ____ Date: <u>4/7/83</u>____ Performed By:_ ash latt Reviewed By

		Initial 44-10 H	Instrument Check In			
	Meter Number:	154196	Detector Number:	PR122612		
	Meter Model:	2221	Detector Model:	44-10		
	Cal. Due:	9/12/2003	Cal. Due:	4/1/2004		
	S	ource=Cs 137	Threshold =	10mV		
		S/N-4054-02	High Voltage =	900V		
Г	Source GCPM	BKG CPM	Average Bkg. (CPM):	5405		
Ť	129217	5354	Average Source (GCPM):	129385		
[	129351	5433	Average Net Source (NCPM):	123980		
ſ	128991	5493	Source Range (GCPM):	103508	to	15526
[	129534	5419	Background Range (CPM):	4324	to	6486
	129035	5436				
[	129555	5577				
[	129554	5401	Source Range +/- 20%			
[	129713	5442	Background Range +/- 20%	•	•	
ſ	129388	5105				
Г	129514	5390	<b>1</b> ·			

Date: 4/5/03 YVW Performed By: ass Date: 4/7/03 Reviewed By

;

.

· :omer:	SAIC					Order 1	10.	54	C071802	1		
ilg.:	Ludium		Model:	2360		- 010017		Serial No		168050	)	······
Cal. Interval:	1 yr.			Meterface:	202-8	355	<u> </u>	501101 110		00000		
					T.	70	۰F	RH	68	%		660 ASL
Instrument	Received:	🛛 Within Tol	er. +-10%	<b>[</b> ]10-20%		Out of Tc	į <b>1</b> .	Requ	uiring Re	pair	Other	-See comme
⊠Mechanica ]F/S Resp. c ⊠Audio ck.		⊠Meter Zı ⊠Reset ck ∏Alarm S	•	⊠Wind ⊠Batt. ⊠Calib	ow Ope Ck.	accordan		th SAIC	⊠Ge	otropi		ty calibration
	•	626 V	Inout Same	60 <b>m</b> m + 1 1		Dec 0			675	17		
trument Volt Sei HV readout (		Ref./Inst.	Input Sens.	comments		-	f./Ins	~	633	V_ at	/ 1960	comments
ny reauour (	z pomisj	Keizilist.				. Re	1.71112	<u> </u>		2000	7 1300	
							-					
RANGE/MU K 1000 K 1000 X 100	JLTIPLIER	400 100 40	EFERENCE CAL. POINT K cpm K cpm K cpm		INSTR	1	ING" 00 00 40	K cpm K cpm K cpm	) 	INST	READ 400 100 40	K cpm K cpm K cpm
x 1000 x 1000 x 100 x 100	JLTIPLIER	400 100 40 10	K cpm K cpm K cpm K cpm K cpm		INSTR	READ 4 1	ING" 00 00 40 10	K cpm K cpm K cpm K cpm	) 	INST	READ 400 100 40 10	ING" K cpm K cpm K cpm K cpm
x 1000 x 1000 x 100 x 100 x 100 x 10	JLTIPLIER		K cpm K cpm K cpm K cpm K cpm K cpm K cpm		INSTR	READ 4 1	ING* 00 40 10 40	K cpm K cpm K cpm K cpm K cpm		INST	READ 400 100 40 10 40	ING" K cpm K cpm K cpm K cpm K cpm
x 1000 x 1000 x 100 x 100 x 10 x 10 x 10		$ \begin{array}{r}                                     $	CAL. POINTK cpmK cpmK cpmK cpmK cpmK cpmK cpm		INSTR	READ 4 1	ING* 00 40 10 40 11	K cpm K cpm K cpm K cpm K cpm K cpm		INST	READ 400 100 40 10 40 10 4 1	ING" K cpm K cpm K cpm K cpm K cpm
x 1000 x 1000 x 100 x 100 x 100 x 10		$ \begin{array}{r}                                     $	K cpm K cpm K cpm K cpm K cpm K cpm K cpm		INSTR	READ 4 1	ING" 00 40 10 40 10 40	K cpm K cpm K cpm K cpm K cpm			READ 400 100 40 10 40	ING" K cpm K cpm K cpm K cpm K cpm K cpm cpm
X 1000 X 1000 X 100 X 100 X 10 X 10 X 10		$ \begin{array}{r}                                     $	K cpm         cpm			READ 4 1	ING" 00 40 10 40 11 00	K cpm K cpm K cpm K cpm K cpm K cpm cpm			READ 400 100 40 10 4 1 400 100	ING" K cpm K cpm K cpm K cpm K cpm K cpm cpm
x 1000 x 100 x 100 x 100 x 10 x 10 x 10 x 10 x 10 x 11 x 1 •Uncertainty v	within ± 10% C	$ \begin{array}{r}                                     $	K cpm         cpm	INSTRUMENT		READ: 4 1	ING" 00 40 10 40 11 00	K cpm K cpm K cpm K cpm K cpm K cpm cpm		mges(s)	READ 400 100 40 10 4 1 400 100	ING" K cpm K cpm K cpm K cpm K cpm cpm cpm
X 1000 X 1000 X 100 X 100 X 10 X 10 X 10	within ± 10% C	400 100 40 10 4 10 4 1 400 100 E.F. within ± 20%	K cpm         cpm	INSTRUMENT		READ: 4 1	ING" 00 40 10 40 11 00	K cpm K cpm K cpm K cpm K cpm K cpm cpm cpm		mges(s)	READ 400 100 40 10 4 1 400 100 100 Calibrated E	ING" K cpm K cpm K cpm K cpm K cpm cpm cpm
x 1000 1000 x 100 x 100 x 10 x 10 x 10 x 10 x 1 • Uncertainty v Digital	within ± 10% C REFEREN 400 K cpm 40 K cpm	400 100 40 10 4 10 4 1 400 100 E.F. within ± 20%	K cpm           Cpm           cpm           cpm           40034 (0)	INSTRUMENT		READ: 4 1	ING" 00 40 10 40 11 00	K cpm K cpm K cpm K cpm K cpm K cpm cpm cpm cpm	ALL R	mges(s)	READ 400 100 40 10 4 1 400 100 100 Calibrated E	ING" K cpm K cpm K cpm K cpm K cpm cpm cpm
x 1000 1000 x 100 x 100 x 10 x 10 x 10 x 10 x 1 • Uncertainty v Digital	within ± 10% C REFEREN <u>400 K cpm</u> <u>40 K cpm</u>	400 100 40 10 4 10 4 1 400 100 E.F. within ± 20%	AL. POINT           K cpm           Cpm           cpm           cpm           40034 (0)           401 (0)	INSTRUMENT		READ: 4 1	ING" 00 40 10 40 11 00	K cpm K cpm K cpm K cpm K cpm K cpm cpm cpm cpm cpm cpm cpm cpm cpm cpm	ALL R	mges(s)	READ 400 100 40 10 4 1 400 100 100 Calibrated E	ING" K cpm K cpm K cpm K cpm K cpm cpm cpm
x 1000 1000 x 100 x 100 x 10 x 10 x 10 x 10 x 1 • Uncertainty w	within ± 10% C REFEREN 400 K cpm 40 K cpm 40 cpm	400 100 40 10 4 10 4 1 400 100 E.F. within ± 20%	AL. POINT           K cpm           Cpm           cpm           cpm           cpm           40034 (0)           401 (0)	INSTRUMENT		READ: 4 1	ING" 00 40 10 40 11 00	K cpm K cpm K cpm K cpm K cpm K cpm cpm cpm cpm	ALL R	mges(s)	READ 400 100 40 10 4 1 400 100 100 Calibrated E	ING" K cpm K cpm K cpm K cpm K cpm cpm cpm
x 1000 1000 x 100 x 100 x 10 x 10 x 10 x 10 x 1 • Uncertainty w	within ± 10% C REFEREN <u>400 K cpm</u> <u>40 K cpm</u>	400 100 40 10 4 10 4 1 400 100 E.F. within ± 20%	AL. POINT           K cpm           Cpm           cpm           cpm           40034 (0)           401 (0)	INSTRUMENT		READ: 4 1	ING" 00 40 10 40 11 00	K cpm K cpm K cpm K cpm K cpm K cpm cpm cpm cpm cpm cpm cpm cpm cpm cpm	ALL R	mges(s)	READ 400 100 40 10 4 1 400 100 100 Calibrated E	ING" K cpm K cpm K cpm K cpm K cpm cpm cpm
x 1000 1000 x 100 x 100 x 10 x 10 x 10 x 10 x 1 • Uncertainty w	within ± 10% C REFEREN 400 K cpm 40 K cpm 40 cpm 400 cpm 400 cpm 40 cpm	CF. within ± 20%	AL. POINT           K cpm           Cpm           cpm           cpm           cpm           40034 (0)           401 (0)	INSTRUMENT		READ: 4 1 4 1 VED 00 S/N	ING [*] 00 00 10 10 10 00 11 10 00	K cpm K cpm K cpm K cpm K cpm K cpm cpm cpm cpm cpm cpm cpm cpm cpm cpm	ALL R	mges(s)	READ 400 100 40 10 4 1 400 100 100 Calibrated E	ING" K cpm K cpm K cpm K cpm K cpm cpm cpm
1000 1000 X 100 X 100 X 10 X 10 X 10 X 1	within ± 10% C REFEREN 400 K cpm 40 K cpm 40 cpm 400 cpm 400 cpm 40 cpm	CF. within ± 20%	AL. POINT           K cpm           Cpm           cpm           cpm           cpm           40034 (0)           401 (0)	INSTRUMENT	RECEIV	READ: 4 1 4 1 VED 00 S/N	ING [*] 00 00 10 10 10 00 11 10 00	K cpm K cpm K cpm K cpm K cpm K cpm cpm cpm cpm cpm cpm cpm cpm cpm cpm	ALL R	mges(s)	READ 400 100 40 10 4 1 400 100 100 Calibrated E	ING" K cpm K cpm K cpm K cpm K cpm cpm cpm
I 1000 I 1000 X 100 X 100 X 10 X 10 X 10 X 1 X 1 Concertainty of Digital Reading           • Uncertainty of Digital Reading	within ± 10% C REFEREN 400 K cpm 40 K cpm 40 cpm 400 cpm 400 cpm 40 cpm	CF. within ± 20%	AL. POINT           K cpm           Cpm           cpm           cpm           cpm           40034 (0)           401 (0)	INSTRUMENT	RECEIV	READ: 4 1 4 1 VED 00 S/N		K cpm K cpm K cpm K cpm K cpm K cpm cpm cpm cpm cpm cpm cpm cpm cpm cpm	ALL R	mges(s)	READ 400 100 40 10 4 1 400 100 100 Calibrated E	ING" K cpm K cpm K cpm K cpm K cpm cpm cpm

E FUSRAP De	etector Calibrati	on For	m			•	<u> </u>	Customer	: SAIC	
Section 1:	····	Gene	eral Info	rmatio	n					
Date: 7/18/02	Location:	Holtv	wick	Techn	ician: B. Fi	rench				
Manufacturer: Ludlu	m			Model	: 43-89 '/	V".	ŀ			
Serial #: 179856				Last C	alibrated:	6/29	01			
Reason for re-calibrati	on: X Due for C	alibrati	on		Repair			Other (Enter i	n remarks	5)
		•	Equipm	<u>ent use</u>	ed for Calib	ratio	<u> </u> :			
Туре			Iden	tificati	on			Date d	lue for ca	libration ,
Model 2360		1680	50			7/1	8/0	3		
				So	urces:					
Isotope:	Identificati	on:		Curre	nt Activity:			Assay Ac	tivity	Date of Assay:
Th-230	SAIC-0053		20300					20300		11/16/00
SrY-90	SAIC-0054		16059					16700		11/15/00
Section 2:	$\sim$	As	Found /	As Lef	t Data					· · ·
Physical Condition S	AT/UNSAT									
As Found BKG. Alpha	As Four	d BKG	. Beta		As Left BK	<u>G. A</u>	Iph	a	As Left	BKG. Beta
	As Found BKG. Alpha       As Four         5-       10       MIN. BKG. COUNTS $5-$ 1         1.       0.4       1.       1.         2.       0.7       Avg.       0.36       2.         3.       -       -       4.       -         5.       0.4       -       5.       -			2	1.     0.3       2.     0.1       3.     0.3       4.     0.5       5.     0.5	A		0.34	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	153 188 Avg. <u>167</u> 164 186 146 Source Beta
5- <u>1</u> MIN. Source C 1. <u>3374</u> 2. <u>3124</u>	Sounts     5-     .1       1     -4       2.76     3.       4.     -4	MIN. 5 1084 1124 1197 A 1115 1016			1. <u>347</u> 2. <u>338</u>	0 0 4 A1		e Counts <u>3430</u>	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	MIN. Source Counts 386 434 411 Avg. <u>4404</u> 379 408
Calculated Eff.: <u>16.14</u>	%% Calculat	ed Eff.:	<u>24.719</u>	<u>/</u> %	Calculated I	Eff.:	<u>16</u>	<u>.90%</u> %	Calculate	ed Eff.: <u>26.38%</u> %
Section 3: HV SET: 635V	,	p	emarks:	H.V.	SET W/PRC	BF	 47"	FACHED	<u></u>	
Alpha Threshold: 120m Beta Threshold: 3.5	nV mV mV	······································	ate Calibr			•				
Preformed by: Reviewed by:	1. ) French		e:7//		2					

SWEETWATER, TEXAS 79556, U.S.A.         SUSTOMER       SAC         ORDER NO.       28         Mig.       Lucilum Meanzements, Jac.       Model       2922       Serial NO.       28         Cal. Date				
of Scientific and Indu	•	OF CALIBRATION	501 OAK STREET	FAX NO. 915-235-4672
CUSTOMER SAIC		· · · ·	ORDER NO.	286250
Ludium Measuren	nents, Inc Model	2929	Serial No808	
Mig.	Model		Serial No	
Cal. Date6-Dec-	02 Cal Due Date	<u>6-Dec-03</u>	Cal. Interval <u>1 Year</u> Met	erface 202-014
Check mark 🗹 applies to applie	cable instr. and/or detector IAW	/ mfg. spec. T. <u>76</u>	_ °F RH23_%	Alt7 <u>10.8</u> mm Hg
		⊷10% 🔲 10-20% 🗍 Out of	Tol. 🔲 Requiring Repair 📋	Other-See comments
				4 .
	•			
				ev 02/07/97.
Instrument Volt Set 90D	V = 3.63 on High Volto	ge dial. High Voltage	set with detector connected.	
HV Readout (2 points)	Ref./inst500	/V Re	ef./inst2008/	V
COMMENTS:	· · · · · · · · · · · · · · · · · · ·			
Gamma Calibration: GM detectors positioned per	pendicular to source except for M 44-9 in which t	he front of probe faces source.		
Alpha Channel	REFERENCE CAL POINT	INSTRUMENT RECEIVED	INSTRUMENT METER REA	DING*
Digital Readout	400K cpm	·	400357	
	40K cpm		40039	
	4K.cpm	<u></u>	4005	_
	400 cpm		400	
	40 cpm		40	
Beta/Gamma Channel		INSTRUMENT RECEIVED	INSTRUMENT METER REA	DING*
	400K cpm		400296	
	40K cpm		40029	
	4K cpm		4002	
	400.cpm		400	
	40 cpm		40	
*Uncertainty within ± 10% C.F. within :			•	
lucium Measurements Inc. certifies that the	above instrument has been calibrated by s	tandards traceable to the National In	istitute of Standards and Technology, or t	o the calibration facilities of
The calibration system conforms to the require	ements of ANSI/NCSL 2540-1-1994 and ANSI	I N323-1978.	State of Texas Calibr	ation License No. LO-1963
			_	
				utron Am-241 Be S/N T-304
		1	Other	
500 S/N14124	4 Oscilloscope	s/N	Multimeter S/N	68160950
Collibrated Run	NITTY		when the Aline and	

Section 1:	tector Calibrat	General In	17 Same 19 19 19 19 19 19	1	- M. 52.87	The state and a state	* •	• • • • • • • • •	••••••
Date: 2/19/03		Holtwick		an: B. Frei	- i		<i></i>		
Manufacturer: Ludlu	m		Model:	43-10-1					
Serial #: 194703			Last Cal	ibrated: N	τEW			<u> </u>	
Reason for re-calibration				epair x		Other (Enter in			
1		Equip	ment used	for Calibra	tion:			and Base and	and the state
Туре			entification					libration	
Model 2929		180850			12/6/0	3 .			
				1				•	
•••••••••••••••••			Sour	Ces:			Antonio de Station	ويتعاديه مستند ويتسوه وموجو	
Isotope:	Identificat			Activity:		Assay Ac		Date of A	
Th-230	SAIC-0053	20300	)			20300		11/16/00	
SrY-90	SAIC-0054	1583:	3	<u></u>		16700		11/15/00	•
ection 2:		As Found	/As Left ]	Data			المواجعة (معادية) مواجعة (معادية)		
hysical Condition (S			·····						
s Found BKG. Alpha		nd BKG. Beta		s Left BKG.	Alph	a	As Left	BKG. Beta	
••••••••••••••••••••••••••••••••••••••						-			
- <u>N/A</u> MIN. BKG.	5- <u>N//</u>	MIN. BKG	. 5	- <u>10</u> MIN	I. BK	G. COUNTS	5- <u>1</u>	MIN. BKG. C	:OUN
OUNTS	COUNT	rs							
. N/A	1.	N/A	1	. 0			1.	42	
. <u>N/A</u> Avg. <u>N/</u>		<u>N/A</u> Avg. ]			Ayg.	0.12		41 Avg.	<u>41</u>
N/A N/A	1 -	<u>N/A</u> N/A	3		•			40 39	
N/A N/A		N/A	5		•		1	41	
s Found Source Alpha		id Source Beta		s Left Sourc	a A lai		Actor	Source Beta	
	ļ		1						
<u>N/A</u> MIN. Source ounts	5N/A Counts	A MIN. Sour	ce 5	• <u>1</u> MIN.	Sourc	e Counts	5- <u>1</u> ]	MIN. Source (	Count
N/A	1	N/A	1.	6925			1. 6	894	
N/A	~ I —	N/A	2.	7122			1	969	
<u>N/A</u> Avg. <u>N/</u>		<u>N/A</u> Avg. <u>1</u>	-		Avg.	<u>6977</u>		936 Avg. <u>(</u>	<u>5905</u>
<u>N/A</u> <u>N/A</u>		N/A N/A	4. 5.	<u>6970</u> 6900	:			836 889	
11/71				<u> </u>			·		
alculated Eff.: <u>N/A</u> %		ed Eff.: <u>N/A</u> 9		alculated Eff				ed Eff.: <u>43.3</u>	
ection 3:							Since and	and a state of the second	ية ويعامل
V SET: 675V		Remarks	: <u>- NEW</u>	INSTRUME	<u>NT R</u>	ECEIVED.			
pha Threshold: 175m ³ ta Threshold: 4m ³	- Warmen - W				:				
		· · ·			ł				
ta Window: 50n	۱V				1				





HP-30 Rev 1 Attachment 8 Page 2

•	APRIL	YR:	Daily Check-In of 2003	Gamma Scan Instru 44-10 "B		Sour	ce#:	4054-0	2	
, #: -	117336			ctor #: PR11284	· · · · · · · · · · · · · · · · · · ·		ce Type:	Cs-137		-
". #:	2221		Mode	a the specific design of the second se		—— HV:		1100 V		-
". 	4-1-04	<u> </u>	Cal.				shold:	10 mV		-
	4-1-04	······································	ູ ບໍ່ຝາ.				011010.			AND IND
	BKG RANGE	4394 - 6591	SOURCE RANGE	116820-175230	1		INITIALS	INITIALS	CONFIRM	
TIME	INTL-BKG CPM	POST BKG CPM	INTL SOURCE CPM	POST SOURCE CPM	BAT CHECK	HV CHECK	INTL CHECK	POST CHECK	Y/N	
0850	4703	6235	143095	138929	SAT	SAT	Jan	Jur	(YN	118
0647		4713	138292	137592	SAT	SAT	SCM	sin	O/N	1
0648		4557	138708	140781	SAT	SAT	sam	san	-CYN	1
0651		5022	138626	140 353	SAT	SAT	Jan	AZ	<b>M</b> N	]
0706		5324	138478	138551	SAT	SAT	2	R	(Y)N	
0650		4817	131749	137793	SAT	SAT	R	Sam	() N	
0700		5329	138379	137663	SAT	SAT	D.L.	D.L.	(YN	
0639	5319	5019	131252	131783	SAT	SAT	P	P	ØN	
								·	Y/N	
					<u> </u>		L	ļ	Y/N	
			•					<u> </u>	Y/N	
							ļ		Y/N	_
						<u></u>		·	Y/N	
				· .		<u> </u>	L		Y/N	
					<u> </u>	<u> </u>	<u> </u>	1	Y/N	1
					1			<u> </u>	Y/N	_
		·						ļ	Y/N	
								ļ	Y/N	
				· .					Y/N	

ved By:

AD JOIL

Date: <u>4/163</u>





HP-30 Rev 1 Attachment 8 Page 2 ·

. *

	APRIL	YR:	Daily Check-In of 2003	Gamma Scan Instru 44-10 "C		Sour	ce #:	4054-0	2
#:	154232		Dete	ctor #: PR15064	12	Sour	ce Type:	Cs-137	
¥: [–]	2221	·····	Mode	el #: 44-10		HV:		750 V	
ie: _	4-2-04		Cal. I	Due: 4-1-04		Three	shold:	10 mV	M
					7				A
	BKG RANGE	4108 - 6161	SOURCE RANGE	116690-175035			INITIALS	INITIALS	CONFIRM
TIME	INTL BKG CPM	POST ⁻ BKG CPM	INTL SOURCE CPM	POST SOURCE CPM	BAT CHECK	HV CHECK	INTL CHECK	POST CHECK	Y/N
0908	4429	4915	139437	141436	SAT	SAT	Sam	Sum	MN /
0653	4933	4323	140823	143544	SAT	SAT	m	san	(Y)N
0655	4782	4278	143218	144 106	SAT	SAT	san	Jam	<u>AN</u>
0653	4456	5+79 4378	142208	142562	SAT	SAT	Sam	Ky-	<b>N</b>
0700	4909	4385	142261	142343	SAT	SAT	Sam	A2	<b>O</b> N
0652	5214	4527	144764	142071	SAT	SAT	Sam	San	Ø/N
0710	4881	4121	143911	141759	SAT	SAT	P.L.	D.L.	Ø/N
0641	4412	0	141450	0	SAT	SAT	P		YN
					· · · · · · · · · · · · · · · · · · ·				Y/N
	·····	<u> </u>							Y/N
					<u> </u>				Y/N
			·		<u> </u>				Y/N
<del>_</del>					<u> </u>				Y/N
					ļ				Y/N
									Y/N
				·					Y/N
		ļ	<u>}</u>		<u> </u>		ļ		Y/N Y/N
		ļ							E
sed					<u> </u>	L		L.,	Y/N





•

.

HP-30 Rev 1 Attachment 8 Page 2

•	APRIL	YR:	Daily Check-In of 2003	Gamma Scan Instru 44-10 "D		Sour	ce #:	4054-0	2	
#:	117652			ctor #: PR12261			ce Type:	Cs-137		-
#: -	2221		Mode	the second s		— HV:		1200 V		-
	4-1-04		Cal. I	the second se		the second s	shold:	10 mV		
							•			11/0
	BKG RANGE	4334 - 6501	SOURCE RANGE	108095-162142			INITIALS	INITIALS	CONFIRM	
TIME	INTL-BKG CPM	POST BKG CPM	INTL-SOURCE CPM	POST SOURCE CPM	BAT CHECK	HV CHECK	CHECK	POST CHECK	Y/N	
0907		5392	131481	133689	SAT	SAT	San	1	(Q/N	MB
0650		5051	133278	134219	SAT	SAT	om	Sm	<b>MAN</b>	1
0643		4495	1:32765	132818	SAT	SAT	sam	m	Ø/N	1
0655	4903	4/145	132458	13(331	SAT	SAT	San	to	- ØN	]
0700	5185	4703	131983	134737	SAT	SAT	Sam	JOM	(YN	
0653	5602	4729	133133	132758	SAT	SAT	Jan	Jan	Ø/N	
0712	- 5109	4690	1332-81	135677	SAT	SAT	P.L.	P.L.	ØN	
0642	4893	0	133817	0	SAT	SAT	R	ļ <u></u>	Y/CD	_
									Y/N	<u>ا</u> .
•	· · · · · · · · · · · · · · · · · · ·								Y/N	1
·		· · · · · · · · · · · · · · · · · · ·	·			•			Y/N	4
								ļ	Y/N Y/N	4
ļ								ļ	Y/N Y/N	4
ļ									Y/N Y/N	4
									Y/N Y/N	4
ļ								ļ	1	4
			·						Y/N Y/N	-
<b> </b>										-
Ised			l		l				Y/N	]





HP-30 Rev 1 Attachment 8 Page 2.

.

	APRIL	YR:	Daily Check-In of 2003	Gamma C	44-10 "E		Sour	ce #:	4054-0	2	
-	117634		Dete	Detector #: PR118986			Sour	ce Type:	Cs-137		
ŧ: [–]	2221		Mode		44-10		—— HV:		1000 V	7	-
e: -	4-1-04		Cal.		4-1-04			shold:	10 mV		-
-											
	BKG RANGE	4252 - 6378	SOURCE RANGE	112408	8-168612			INITIALS	INITIALS	CONFIRM	7
TIME	INTL-BKG CPM	POST BKG CPM	INTL SOURCE CPM		SOURCE PM	BAT CHECK	HV CHECK	INTL CHECK	POST CHECK	Ÿ/N	
0850	4436	5191	136128	136	\$462	SAT	SAT	Sam	Jam	(Y/N	7
0650		4678	136890		207	SAT	SAT	san	Jam.	O/N	٦
0644			138:559	138	2882	SAT	SAT	san	san	(YN	٦
0654		4617	137423	13-	447	SAT	SAT	Sam	A	<b>O</b> YN	
0703	5227	439500	138456	13	8174	SAT	SAT	Jan	Sam	(YN	
0653		4740	138417		6815	SAT	SAT	Jam	Scn	ØN	
0714		5181	138975		0172	SAT	SAT	D.L.	D.L.	Ø/N	
0642	4873	Ø	137073	0		SAT	SAT	R		YN	
										Y/N	
								<u> </u>		Y/N	_
										Y/N	
										. Y/N	_
										Y/N	
							ļ		L	Y/N	_
							[		[	Y/N	
										Y/N	
										Y/N	
						<u> </u>			<b> </b>	Y/N	
										Y/N	

Date: <u>4/14/03</u>

ST. LOUIS	



HP-30 Rev 1 Attachment 8 Page 2

			Daily Check-In of 2003	Gamma Scan Ir 44-1		Sour	ce #:	4054-0	2	
. –	105934		Detector #: PR122628		Source Type:		Cs-137	,	-	
_	2221		Mode			HV:	••	900 V		-
	4-1-04		Cal.	Due: 4-1-0	4	Thre	shold:	10 mV	N	$\tilde{\wp}$
_							·			8/1
	BKG RANGE	4211 - 6316	SOURCE RANGE	114409-1716	14		INITIALS	INITIALS	CONFIRM	
TIME	INTL-BKG CPM	POST-BKG CPM	INTL SOURCE CPM	POST SOUR CPM	CE BAT CHECK	HV CHECK	INTL CHECK	POST CHECK	Y/N	
909	4163	4845	136875	141669	SAT	SAT	Sam	don	<b>W</b> N	7/
642	5384	5090	138470	138682	SAT	SAT	Jan	Jan	(YN	1
655	5275	4955	139509	138993		SAT	Jan	Jun	Q/N	
652	5366	5280	138905	140393		SAT	Jan	*	ON N	
707	5397	4987 :	179224	138638	SAT	SAT	P	Ż	<b>M</b> N	
650	5628	5355	138491	13935	7 SAT	SAT	Z	Sem	Ø/N	
707	5616	5482	1 40.399	143461	SAT	SAT	D.L.	D.L.	<u>(YN</u> )	
2641	4850	0	139809	0	SAT	SAT	Z		Y /N	
						ļ		·	Y/N	
						ļ		<u> </u>	Y/N	
								<u> </u>	Y/N	_
<u>.</u>						<u> </u>			Y/N	┛
	· ·						ļ	ļ	Y/N	4
		· · · · · · · · · · · · · · · · · · ·				ļ		ļ	Y/N	4
		·				<u> </u>	ļ	<u> </u>	Y/N	-
		ļ	ļ			<u> </u>	<u> </u>	ļ	Y/N	4
						. <u> </u>	<u> </u>		Y/N Y/N	-
-						ļ	ļ			-
sed						<u> </u>			Y/N	

21 of 29

-





HP-30 Rev 1 Attachment 8 Page 2.

	APRIL	YR:	Daily Check-In of 2003	Gamma Scan Instru 44-10 "G		Sour	rce #:	4054-0	2	
	127217			ctor #: PR15461			ce Type:	Cs-137		
	2221	<u></u>	Mode	the second se		HV:	16	1050 V		
	5-6-03		Cal.				shold:	10 mV		>
-		<u> </u>			······································		•	<u></u>		26
	BKG RANGE	4257 - 6386	SOURCE RANGE	116890-175336	]		INITIALS	INITIALS	CONFIRM	
TIME	INTL-BKG CPM	POST-BKG CPM	INTL SOURCE CPM	POST-SOURCE	BAT CHECK	HV CHECK	INTL CHECK	POST CHECK	Y/N	
0910	4872	5392	148790	150330	SAT	SAT	XM	1X		K
0654		4867	148549	150017	SAT	SAT	Jun	m	Ø/N	
0656								4-9.03	Y/N	
0656		5259	150061	150575	SAT	SAT	290	Sun	<b>WN</b>	
0652		5390	150614	153289	SAT	SAT	Jan	A2	ØDN	
0707	5814	5010	151010	150560	SAT	SAT	P	R	QON	
0651	5638	4884	151379	153028	SAT	SAT	Sam	san	Ø/N	
0702	5665	4901	149988	148977	SAT	SAT	D.L.	San	()/N	
0640	4994	5149	150620	151250	SAT	SAT	R	R_	10/N	
0647	5018	5125	150135	151241	SAT	SAT	L.Z	San	Ø/N	
				·					Y/N	
							<u> </u>	· · ·	Y/N	
					<u> </u>		<u> </u>	<u> </u>	Y/N	
									Y/N	
					ļ		ļ	ļ	Y/N	
					ļ			ļ	Y/N	
								<u> </u>	Y/N	
					<u> </u>			.	Y/N	
				<u> </u>	I		<u> </u>	I	Y/N	

ved By:

Ry J al

Date: <u>4/17/05</u>





HP-30 Rev 1 Attachment 8 Page 2

:	APRIL	YR:	Daily Check-In of 2003	Sour	rce #:	4054-02				
#:	154196		Dete	2612	Sour	rce Type:	Cs-137			
#: -	2221		Mode	el#: 44-10		HV:		900 V		-
le: [	9-12-03		Cal.	Due: 4-1-0	1	Threshold:		10 mV	NS	5
-								······	4/	<u>h/03</u>
	BKG RANGE	4324 - 6486	SOURCE RANGE	103508-1552	52		INITIALS	INITIALS	CONFIRM	
TIME	INTL BKG CPM	POST BKG CPM	INTL SOURCE CPM	POST SOURC	E BAT CHECK	HV CHECK	INTL CHECK	POST CHECK	Y/N	
0855	4637	5023	127604	125619	SAT	SAT	Xm	W/	Y/N	MB
0649		4631	126637	128797	SAT	SAT	sam		RIN	<b>-</b>
0658		4337	126411	128225		SAT	Jan	Sam	Ø/N	1
0652		4597	127240	13/225	SAT	SAT	say	An	<b>O</b> N	]
0708		4551	126182	128898	SAT	SAT	12	A-	<b>O</b> YN	]
0652	6170	4343	127 684	126253	SAT	SAT	Jam	John	Q/N	]
0704	5335	4725	128053	127049	SAT	SAT	D.L.	Jan	(YN	
0640	4773	5368	178511	129120	SAT	SAT	R	Z	ØN	
0647	7 4876	50.35	127589	128214	SAT	SAT	R	Som	<b>W</b> N	<b>_</b> ].
	·							ļ	Y/N	
	<u> </u>		<u></u>					ļ	Y/N.	
						<u> </u>			Y/N	
							<u> </u>		Y/N	
L	· · · · · · · · · · · · · · · · · · ·					1	<u> </u>		Y/N	
							<u> </u>		Y/N	
						<u> </u>		ļ	Y/N	_
L							<u> </u>		Y/N	
							<u> </u>		Y/N	
									Y/N	

ved By:

Roy J Clu

Date: <u>Virlos</u>

## Certificate of Calibration

Voltage Plateau Form

ERG Environmental Restoration Group, Inc. 12809 Arroyo De Vista NE Albuquerque, NM 87111 (505) 298-4224

Detector Mfg.:1.ud	lumModel:	44-10	_ Serial No.	PR122612	
Counter Mfg.: Lud	lumModel:	2221	Serial No.	149938	_
Temp.: 70°F	Rel. Humidity	<u>18</u> % Bar. F	Pressure	<u>30.1</u> in. of Hg	
Counter Threshold Settin	g: <u>10</u> mV	Geome	try / Distance t	o source: 6-inches	
Source : Th230@13.	500 dpm sn: 4098-03	. Тс99	@ 18,100 dpm sn	: 4099-03	
C:137@ 8.5	uCi sn: 4054-02	Othe	r		

Count Time: 1___minute(s)

Counts
· .
12916
<u> </u>

Recommended Operating Voltage: 1200 volts

Calibrated By: Charle P. Far

Calibration Date: 4/1/03 Calibration Due: 4/1/04 4/1/03 Date: .



ATTACHMENT 2

CONTAMINATION SURVEY RECORD

Survey Desc.:	SpecialBla	ick Can Per: C	. Horton	Log Number		0435 S 30417 WE					
Surveyed by:			Date:	4/17/03	Time:	13:03	Smear Area	~ 100 cm2	Batch #:	1454	Reviewed By:
Instrument	Serial Number	Calibration Due	Probe	Probe Area (cm2)	Alpha Bkgd	Alpha Efficiency	Alpha MDA	Beta Bkgd	Beta Eff.	Beta MDA	1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -
Tennelec LB	4	9/3/03	GFPC	2 in. dia.	0.8	26.38%	5.95	2.7	45.15%	8.6	~
ASP-2	527	8/17/03	HT-270	GM-Tube	N/A	N/A	N/A	N/A	N/A	N/A	
Lud 2224	125609	9/8/03	43-89	100	6.0	20.00%	70.53		0.00%	0.00	
Ludlum 3	171199	9/8/03	44-9	15	N/A	N/A	N/A	44.0	15.00%	223.82	

	Description	Loose	Alpha	Loose Beta		Fixed Alpha		Fixed Beta		βγ Dose Rate			
#		Net CPM	DPM / 100 cm ²	Net CPM	DPM / 100cm ²	Gross CPM	DPM/ 100cm ²	Gross CPM	DPM/ 100cm ²	Contact uRad/hr	3 Ft. uRad/hr	Gett	mit reded
1	Pc #1 Inside of can	4.13	15.6	13.73	30.4	40.0	170.0	1000.0	42488.9	40.0		42	φβ
2	Pc #1 Inside of can	13.06	49.5	29.41	65.1	40.0	170.0	1000.0	42488.9	40.0		42	φβ
3	Pc #1 Outside of can	3.18	12.1	1.87	4.1	6.0	ND	142	4355.6	19.0		4	φβ
4	Pc #1 Outside of can	10.14	38.4	10.84	24.0	6.0	ND	142	4355.6	19.0		4	φβ
5	Pc #2 Insid of can	46.86	177.6	72.38	160.3	30.0	120.0	2684	117333.3	30.0		117	φβ
6	Pc #2 Inside of can	16.09	61.0	20.95	46.4	30.0	120.0	2684	117333.3	30.0		117	φβ
7	Pc #2 Outside of can	9.15	34.7	7.99	17.7	6.0	ND	120	3377.8	20.0		3	φβ
8	Pc #2 Outside of can	21.13	80.1	14.20	31.5	6.0	ND	120	3377.8	20.0		3	φβ
9	Pc #3 Inside of can	10.15	38.5	9.84	21.8	12.0	30.0	686	28533.3	35.0		28	¢β
10	Pc #3 Outside of can	10.16	38.5	7.84	17.4	12.0	30.0	120	3377.8	22.0		3	¢β
11	Bottom of can inside	59.52	225.6	144.49	320.0	48.0	210.0	880	37155.6	105.0		37	¢β
12	Bottom of can inside	45.93	174.1	56.52	125.2	48.0	210.0	880	37155.6	105.0		37	¢β
13	Bottom of can outside (Rim)	10.13	38.4	13.84	30.7	22.0	80.0	4472	196800.0	240.0	E.	196	φβ
14	Bottom of can outside (Rim)	14.14	53.6	11.24	24.9	22.0	80.0	4472	196800.0	240.0		196	φß
													-
											-		

## Westinghouse FFCF Radiological Survey Form

Limit Exceeded: α indicates loose alpha β indicates loose beta, and a indicates fixed readings