

Donna Jacobs Vice President Nuclear Services Diablo Canyon Power Plant P. O. Box 56 Avila Beach, CA 93424

805.545.4600 Fax: 805.545.4234

August 21, 2006

PG&E Letter DCL-06-100

U.S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, DC 20555

Docket No. 50-323, OL-DPR-82 Diablo Canyon Unit 2 <u>Special Report 06-02 - Results of Steam Generator (SG) Tube Inspections for</u> Diablo Canyon Power Plant Unit 2 Thirteenth Refueling Outage

Dear Commissioners and Staff:

In accordance with Technical Specifications (TS) 5.6.10.e and TS 5.6.10.f, Enclosure 1 provides the 90-day reporting of results of the Unit 2 steam generator (SG) Wstar (W*) alternate repair criteria (ARC) tubesheet inspections and calculated steam line break leakage from application of all ARC and non-ARC.

In accordance with TS 5.6.10.h, Enclosure 2 provides the 120-day reporting of results of the Unit 2 SG primary water stress corrosion cracking ARC inspections at dented tube support plate (TSP) intersections.

In accordance with Pacific Gas and Electric Company's (PG&E) commitment to Generic Letter 95-05, "Voltage-Based Repair Criteria for Westinghouse Steam Generator Tubes Affected by Outside Diameter Stress Corrosion Cracking (ODSCC)," Enclosure 3 provides the 90-day reporting of results of Unit 2 SG voltage-based ARC inspections for TSP ODSCC, prepared by Areva for PG&E. As concluded in Section 5.3 of Enclosure 3, reporting to the NRC in accordance with TS 5.6.10.i is not required. There are no new or revised regulatory commitments as defined by the Nuclear Energy Institute 99-04, "Guidelines for Managing NRC Commitment changes," dated July 1999, in this report.

If you have any questions, please contact John Arhar at (805) 545-4629.

Sincerely,

Donna Jacobs

A member of the STARS (Strategic Teaming and Resource Sharing) Alliance Callaway • Comanche Peak • Diablo Canyon • Palo Verde • South Texas Project • Wolf Creek

ADOI

PG&E Letter DCL-06-100

Document Control Desk August 21, 2006 Page 2

> ddm1/469/R0272302 Enclosures

Alan B. Wang, Project Manager NRR cc: Diablo Distribution Terry W. Jackson, NRC Senior Resident cc/enc: Bruce S. Mallett, NRC Region IV State of California, Pressure Vessel Unit

ENCLOSURE 1 SPECIAL REPORT 06-02

W* ALTERNATE REPAIR CRITERIA 90-DAY REPORT

DIABLO CANYON POWER PLANT UNIT 2 THIRTEENTH REFUELING OUTAGE

This report implements the Diablo Canyon Power Plant (DCPP) Technical Specification (TS) 5.6.10.e and 5.6.10.f steam generator (SG) tube inspection reporting criteria.

Wstar (W*) Alternate Repair Criteria (ARC) was implemented for the fifth time in DCPP Unit 2 during the Unit 2 Thirtéenth Refueling Outage (2R13) SG inspections and repairs that were completed in May 2006. This was the first Unit 2 inspection applying the revised W* ARC approved in NRC letter dated October 28, 2005.

One hundred percent of the SG tubes were inspected by bobbin from tube end to tube end, except for Row 1 and 2 U-bends. One hundred percent of the hot leg top of tubesheet (TTS) WEXTEX region was inspected by Plus Point in each SG. Cold leg TTS Plus Point inspections were not required.

Technical Specification 5.6.10.e Reporting Requirements

DCPP TS 5.6.10.e requires that the results of the inspection of W* tubes be reported to the Commission pursuant to 10 CFR 50.4 within 90 days following return to service of the SGs. This enclosure provides the specific TS reporting requirements, and Pacific Gas and Electric Company's (PG&E) description of compliance.

A comprehensive list of axial primary water stress corrosion cracking (PWSCC) indications detected in the hot leg WEXTEX region during 2R13 Plus Point inspections are provided in Table 1 for SG 2-1 and SG 2-2, Table 2 for SG 2-3, and Table 3 for SG 2-4. The following discussions provide references to columns in these tables where appropriate information is contained.

• Identification of W* tube indications and indications that do not meet W* requirements and were plugged or repaired.

The Table 1 column labeled "W* Cand" identifies 65 tubes (containing 70 single axial PWSCC indications ["SAI"] in the W* length) that are categorized as W* candidates (W* tubes) and left in service under W* ARC. No Table 1 indications were plugged because of failure to meet W* ARC.

Table 6 of Enclosure 2 lists one small circumferential outside diameter stress corrosion cracking (ODSCC) indication in SG 2-2 R22C24 that was detected at 0.05 inches below the hot leg top of tubesheet. This indication was plugged because it

did not meet W* requirements; that is, circumferential indications within the flexible W* distance must be repaired.

Not included in Table 2 are multiple Plus Point confirmed PWSCC repeat indications in W* tube SG 2-3 R32C55 in the plug expansion zone (PEZ) near the tube end. PWSCC indications in the PEZ region of this tube were previously reported in the Unit 2 Twelfth Refueling Outage (2R12) 90-day report, PG&E Letter DCL-05-024. This tube was previously deplugged in the Unit 2 Ninth Refueling Outage (2R9) and returned to service at that time. In 2R13, this tube was inspected with Plus Point the full length of the hot leg tubesheet because of bobbin distorted tubesheet indications (DTS) located near the tube end, even though Plus Point inspection of DTS indications located below the flexible W* length is not required. Plus Point confirmed the presence of multiple SAIs located near the tube end, in the PEZ region. The indications are located below the shop hard roll transition, as in 2R12. Because the indications are located below the flexible W* length, they were returned to service under W* ARC. As discussed in PG&E Letter DCL-05-017, "Reply to Request for Additional Information Regarding: Special Report 04-02 - Results of Steam Generator Inspections for Diablo Canyon Power Plant Unit 1 Twelfth Refueling Outage," primary-to-secondary leakage from PEZ indications is very unlikely. Therefore, no steam line break (SLB) leakage is attributed to these 2R13 indications for condition monitoring (CM). For operational assessment, potential leakage from these indications is accounted for by use of the tube sever model, which is discussed later.

 Number of indications and location of the indications (relative to below the W* transition [BWT] and top of tubesheet [TTS]).

For each of the 70 indications, the lower crack tip ("LCT") and upper crack tip ("UCT") columns provide the elevation (inch) relative to the TTS. The "Dist UCT to TTS" column provides the distance (inch) between the upper crack tip and the TTS, accounting for nondestructive examination (NDE) uncertainty on locating the crack tip relative to the TTS. The "Dist UCT to BWT" column provides the distance (inch) between the upper crack tip and the BWT, accounting for NDE uncertainty on locating the crack tip relative to the BWT.

• Orientation (axial, circumferential, volumetric, inclined).

The "Ind" column provides the orientation of the indication. All indications are SAIs. No indications are circumferential or volumetric. One indication was inclined in SG 2-3 R21C38, as discussed below.

• Angle of inclination of clearly skewed axial cracks (if applicable).

SG 2-3 R21C38 repeat axial PWSCC indication in the W* length was identified to be inclined based on a review of the Plus Point data. Per W* ARC requirements, the

inclination angle was measured as 32 degrees based on 0.080 inch pancake coil. The NDE uncertainty on measurement of the crack angle is 6.8 degrees for 0.080 inch pancake coil. Therefore, the total inclination angle is 38.8 degrees, less than the 45-degree plugging limit defined for W* ARC inclined indications. In addition, the total length of the indication was 0.50 inch, and after applying a growth rate of 0.119 inch/effective full power year (EFPY) over the next cycle (1.62 EFPY), the projected end of cycle (EOC) 14 crack length is 0.69 inch. This projected crack length is less than the 2.0 inches plugging limit defined for W* ARC inclined indications. Therefore, based on the shallow inclination angle and projected short length, the indication was left in service under W* ARC.

• Radial position of the tube within the tubesheet.

The "Tube Radial Position" column provides the radial position of the tube within the tubesheet.

• *W*^{*} Zone of the tube.

The "W*ZONE" column provides the W* zone of each indication.

• Severity of each indication (estimated depth).

The "MD-adj" column provides the estimated maximum depth (MD) (percent through-wall) of each indication. The depth is the adjusted depth using the same techniques as PWSCC ARC depth sizing.

• Side of the tube in which the indication initiated (inside or outside diameter [ID/OD]).

All indications are ID initiated (i.e., PWSCC).

• W* inspection distance measured with respect to the BWT or TTS (whichever is lower).

For the one hundred percent Plus Point hot leg TTS exam, the inspection extent relative to the TTS was specified as plus +2/-8 inches. Assuming no degradation in the W* length, 8 inches below the TTS constitutes the W* inspection distance. If degradation is detected in the W* region, the inspection extent must bound the calculated flexible W* length. The "W* Insp Ext wrt BWT" column lists the W* inspection distances measured with respect to BWT for tubes in which axial PWSCC was detected. The distances are with respect to BWT because, in all cases, the BWT elevation was located lower than the TTS elevation. In all cases, the W* inspection distance was greater than or equal to the flexible W* length, as indicated by "Yes" in the "Insp Ext Satisfied" column.

• Length of axial indications.

The "Crack Length" column provides the crack length of each axial indication. For tubes with multiple cracks, the "Total Length" column provides the total (summed) length of individual cracks within the flexible W* length.

• Updated 95 percent growth rate for use in operational assessment.

Of the seventy axial PWSCC indications in the hot leg WEXTEX region that were detected in 2R13, four were new indications and sixty-six were repeat W* indications that had been left in service in the prior inspection (2R12). The four new indications were detectable in the prior inspection based on lookup reviews. One repeat indication (SG 2-4 R5C37) was identified as two SAIs in the prior inspection, and one SAI in the current inspection (the two indications merged in cycle 13), such that the growth data for this indication was excluded. As a result, 69 additional length growth rate data points were available for evaluation. The average growth rate was 0.03 inch per EFPY at T_{hot} of 604 degrees, indicating negligible growth. After addition of these 69 data points, the updated W* growth rate distribution now consists of 350 data points from DCPP Units 1 and 2 over 11 cycles. The updated growth rate at 95 percent cumulative probability is 0.104 inch per EFPY at 604 degrees. The W* methodology requires that, if the new growth data and deletion of the oldest cycle(s) of growth data results in a minimum of 200 data points, then the oldest cycle(s) of data is excluded. There are 210 data points combined from the most recent Unit 2 cycles 11, 12, and 13. Therefore, data from all other cycles is excluded. The 95 percent cumulative probability growth rate of the 210 data points is 0.119 inch per EFPY, and this growth rate value was used for the final operational assessment (OA).

In support of growth rate evaluations and W* calculations, the actual length of Unit 2 Cycle 13 was 1.31 EFPY, and the projected length of Unit 2 Cycle 14 is 1.62 EFPY.

• Cumulative number of indications detected in the tubesheet region as a function of elevation within the tubesheet.

Table 4 provides the cumulative number of indications detected in the tubesheet region as a function of elevation within the tubesheet. The table includes the distribution of Unit 2 indications before 2R13, the distribution of new 2R13 indications, updated Unit 2 distribution after 2R13, and the Unit 2 cumulative distribution and cumulative frequency after 2R13. In 2R13, four new indications were detected: one at 5.91 inch below the TTS (included in the minus 5 inch bin), one at 3.27 inch below the TTS (included in the minus 3 inch bin), one at 0.48 inch below the TTS (included in the 0 inch bin), and one at 0.28 inch below the TTS (included in the 0 inch bin).

 Condition monitoring and operational assessment main steamline break leak rate for each indication and each SG in accordance with the leak rate methodology described in PG&E Letter DCL-05-018, dated March 11, 2005, as supplemented by PG&E Letter DCL-05-090 dated August 25, 2005.

Condition Monitoring SLB Leak Rate for Indications within Flexible W* Length

CM leak rate for axial PWSCC indications detected within the flexible W* length is determined using the DENTFLO leak model in accordance with WCAP-14797-P, Revision 2. (Note: As discussed in DCL-05-090, the constrained crack leak model is not applicable for EOC 13 condition monitoring.) The 95 percent leak rates for each indication, as well as each SG, are provided in column "DENTFLO CM Leak Rate." The total SG leak rates are repeated in Table 5.

For information only, applying the constrained crack leak model, the 95 percent prediction bound leak rates for each indication, as well as each SG, are provided under column "Constrained Crack Model CM Leak Rate."

Operational Assessment SLB Leak Rate for Indications within 12 inches from TTS

The OA leak rate for axial PWSCC indications detected within 12 inches from the TTS is determined by using the constrained crack leak model. The 95 percent prediction bound leak rates for each indication, as well as each SG, are provided under column "Constrained Crack Model OA Leak Rate." The total SG leak rates are repeated in Table 6.

The OA leak rate for undetected indications between 8 and 12 inches below the TTS is determined by multiplying the number of projected undetected indications between 8 and 12 inches below the TTS at the next inspection by a factor of 0.0033 gallons per minute (gpm). The leak rate value of 0.0033 gpm is the 95 percent prediction bound leak rate, applying the constrained crack model with a Zone B1 contact pressure at a depth of 8 inches below the TTS. Twelve undetected indications are projected between 8 and 12 inches below the TTS based on the more conservative of the 2 methods described below. Therefore, the OA leak rate for undetected indications between 8 and 12 inches below the TTS is 0.0396 gpm for each SG. These SG leak rates are repeated in Table 6.

Historical data projection method. The number of undetected PWSCC indications between 8 and 12 inches below the TTS would not be expected to be much greater than the number reported between 4 and 8 inches below the TTS, due to the trend of decreasing number of indications with distance below TTS. Of the 162 cumulative PWSCC indications detected to date in DCPP Unit 2, 5 percent were between 4 to 8 inches below the TTS, and 2 percent were between 8 to 12 inches below the TTS. Two percent of the total historical plus EOC projected indication count will be assumed to be undetected between 8 and 12 inches below the TTS.

Figure 1 illustrates the cumulative number of PWSCC indications versus EFPY in DCPP Unit 2. A linear regression analysis using only data from the last 5 outages shows that about 168 cumulative indications are projected at EOC-14, of which 4 (2 percent of 168) are assumed to be undetected between 8 and 12 inches below the TTS.

Ninety percent probability prediction method. Figure 2 presents a plot of the binned PWSCC elevation data for all DCPP Unit 2 historical indications located greater than 2 inches below the TTS. Excluding the expansion transition indications above 2 inches for Unit 2 would be expected to provide the best dataset for estimating indications at deeper depths. Figure 2 provides a best-fit regression of this data, an upper 90 percent probability prediction bound, and an upper 90 percent probability cumulative prediction bound. The number of indications that could be present in the range of 8 to 12 inches below the top of tubesheet is obtained by summing the upper 90 percent probability prediction bound individual values at 8, 9, 10, and 11 inches (approximately 3 in each bin), for a total of about 12 indications. As a result, twelve indications will be applied for OA because it is greater than four indications from the historical data projection method.

Operational Assessment SLB Leak Rate for Indications Below 12 inches from TTS

The OA leak rate for indications located below 12 inches from the TTS is determined by the severed tube model. This model assumes all in-service tubes contain a 360° tube sever located 12 inches below the TTS and assigns a leak rate of 0.00009 gpm per tube. This value is the 90 percent prediction bound leak rate at 2560 pounds per square inch differential for a contact pressure representative of the 3 inch nominal crevice test specimen from the drilled hole crevice leak rate test data in WCAP-14797-P, Revision 2. The resulting leak rates for each SG are listed in Table 6, and are approximately 0.3 gpm for each SG.

 Verification that the upper crack tip of W* indications returned to service in the prior cycle remain below the BWT by at least the 95 percent confidence NDE uncertainty on locating the crack tip relative to the BWT.

As stated in DCL-05-090, for 2R13 90-day reporting, this reporting requirement is not applicable because the new, more conservative, W* repair criteria was not in effect in the prior inspections. Therefore, for 2R13 90-day reporting, PG&E applies the prior cycle requirement, that is, verification that the upper crack tip of W* indications returned to service in the prior cycle remain below the TTS by at least the 95 percent confidence NDE uncertainty on locating the crack tip relative to the TTS.

The "Dist UCT to TTS" column provides the as-found elevation of the upper crack tip relative to the top of tubesheet, accounting for NDE uncertainty in locating the crack relative to the top of tubesheet. In all cases, the as-found upper crack tip for

indications returned to service in the prior cycle is below the top of tubesheet, as indicated by "Yes" in the column "UCT below TTS?" Therefore, the performance criterion was satisfied for condition monitoring at EOC 13.

- Assessment of whether the results were consistent with expectations and, if not consistent, a description of the proposed corrective action.
- The CM leak rates were consistent with expectations. The column "Prior OA Leak Rate" provides the prior cycle predicted operational assessment leak rates for each repeat indication using the DENTFLO model. This leak rate is compared to the asfound condition monitoring leak rate under column "DENTFLO CM Leak Rate." The prior cycle OA leak rates predicted for each SG are greater (more conservative) than the as-found CM leak rates, as reported in the "OA Underprediction" column. The number of new PWSCC indications (four) is consistent with expectations, because it was less than the six new indications expected in 2R13 based on a linear regression analysis using data from the four prior inspections. Also, comparison of the pre-2R13 and post-2R14 cumulative distribution frequencies in Table 4 shows no significant changes; therefore, the elevations of the new indications are consistent with expectations.

Technical Specification 5.6.10.f Reporting Requirements

DCPP TS 5.6.10.f requires that the aggregate calculated steam line break leakage from application of all ARC and non-ARC be reported to the Commission pursuant to 10 CFR 50.4 within 90 days following return to service of the SGs.

Table 7 (for CM) and Table 8 (for OA) reports the calculated SLB leakage from application of each ARC in each SG, that is, W* ARC, Generic Letter 95-05 voltage-based ARC, and PWSCC ARC. SLB leakage from non-ARC degradation is also provided in these tables. The ARC and non-ARC leak rates are then summed to arrive at an aggregate SLB leakage for each SG.

No in-situ leak testing of indications was performed in 2R13, so there is no SLB leakage contribution from in-situ testing.

In order to meet the accident-induced leakage performance criteria (AILPC), the aggregate calculated steam line break leakage from application of all ARC and non-ARC must not exceed 10.5 gpm (at room temperature) in the faulted SG for condition monitoring and operational assessment. The 10.5 gpm limit was approved by the NRC in License Amendment (LA) 156/156. The aggregate calculated condition monitoring SLB leakage at EOC 13 is 1.193 gpm for the limiting SG (SG 2-4) as shown in Table 7. The aggregate calculated operational assessment SLB leakage at EOC 14 is 5.695 gpm for the limiting SG (SG 2-4) as shown in Table 8. In both assessments, SLB leakage is less than the allowable limit. Therefore, the AILPC has been satisfied for condition monitoring at EOC 13 and operational assessment at EOC 14.

 Table 1

 2R13 SG 2-1 and SG 2-2 PWSCC Indications in Hot Leg WEXTEX Tubesheet Region

SG	Count	Row	Col	Tube Radial Position	Ind	Volts	Crack #	CAL	LCT	UCT	Crack Length	Total Length	MD-adj	Dist UCT to TTS	UCT below TTS	W*ZONE	₩• Length	BWT	Dist UCT to BWT	UCT Below W* ?	UCT Below BWT?	Dist EOC (N+1) UCT to TTS	Dist EOC (N+1) UCT to BWT	EOC (N+1) UCT Below BWT?	W*Cand
21	1	6	77	38.76	SAI	0.80	1	29	-1.46	-1.29	0.17	0.17	59	1.07	Yes	B4	7.12	-0.40	0.61	No	Yes	. 0.88	0.42	Yes	Yes
21	2	7	24	31.69	SAI	0.20	1	29	-2.01	-1.89	0.12	0.12	44	1.67	Yes	B3	7.12	-0.37	1.24	No	Yes	1.48	1.05	Yes	Yes
21	3	7	62	21.04	SAI	4.91	1	29	-2.36	-1.44	0.92	0.92	100	1.22	Yes	B2	7.12	-1.06	0.10	No	Yes	1.03	-0.09	No	No
21	4	8	32	22.78	SAI	0.74	1	29	-2.02	-1.88	0.14	0.14	59	1.66	Yes	B2	7.12	-0.39	1.21	No	Yes	1.47	1.02	Yes	Yes
21	5	9	49	12.58	SAI	1.15	1	29	-2.14	-1.81	0.33	0.33	62	1.59	Yes	B1	7.12	-0.36	1.17	No	Yes	1.40	0.98	Yes	Yes
21	6	10	49	13.85	SAI	0.17	1	29	-1.24	-1.09	0.15	0.15	38	0.87	Yes	B1	7.12	-0.30	0.51	No	Yes	0.68	0.32	Yes	Yes
21	7	11	37	20,15	SAI	0.48	1	29	-7.95	-7.84	0.11	0.62	24	7.62	Yes	B2	7.12	-0.41	7.15	Yes	Yes	7.43	6.96	Yes	Yes
21	8	11	37	20.15	SAI	0.68	2	29	-7.06	-6.86	0.20	0.62	47	6.64	Yes	B2	7.12	-0.41	6.17	No	Yes	6.45	5.98	Yes	Yes
21	9	11	37	20.15	SAI	0.60	3	29	-2.16	-1.85	0.31	0.62	53	1.63	Yes	B2	7.12	-0.41	1.16	No	Yes	1.44	0.97	Yes	Yes
21	10	11	39	18.54	SAI	1.43	1	29	-1.82	-1.6	0.22	0.22	77	1.38	Yes	B1	7.12	-0.42	0.90	No	Yes	1.19	0.71	Yes	Yes
21	11	11	40	17.81	SAI	0.33	1	29	-0.97	-0.82	0.15	0.15	41	0.60	Yes	B1	7.12	-0.34	0.20	No	Yes	0.41	0.01	Yes	Yes
21	12	11	48	15.01	SAI	3.20	1	29	-5.25	-4.76	0.49	0.49	84	4.54	Yes	B1	7.12	-0.42	4.06	No	Yes	4.35	3.87	Yes	Yes
21	13	13	49	17.67	SAI	0.39	1	29	-1.82	-1.68	0.14	0.14	62	1.46	Yes	B1	7.12	-0.66	0.74	No	Yes	1.27	0.55	Yes	Yes
21	14	16	79	45.68	SAI	0.28	1	62	-6.06	-5.91	0.15	0.15	40	5.69	Yes	Α	5.32	-0.44	5.19	No	Yes	5.50	5.00	Yes	Yes
21	15	23	67	39.33	SAI	0.18	1	64	-3.38	-3.27	0.11	0.11	54	3.05	Yes	Α	5.32	-0.34	2.65	No	Yes	2.86	2.46	Yes	Yes
21	16	23	70	41.88	SAI	1.46	1	29	-1.67	-1.22	0.45	0.45	62	1.00	Yes	А	5.32	-0.22	0.72	No	Yes	0.81	0.53	Yes	Yes
21	17	30	59	42.01	SAI	3.73	1	29	-11.36	-10.72	0.64	0.64	80	10.50	Yes	B4	7.12	-0.15	10.29	Yes	Yes	10.31	10.10	Yes	Yes
22	1	5	18	38.50	SAI	1.32	1	22	-1.25	-0.83	0.42	0.42	83	0.61	Yes	B4	7.12	-0.24	0.31	No	Yes	0.42	0.12	Yes	Yes
22	2	10	48	13.73	SAI	0.42	1	22	-3.23	-3.12	0.11	0.11	36	2.90	Yes	B1	7.12	-0.09	2.75	No	Yes	2.71	2.56	Yes	Yes
22	3	10	56	17.52	SAL	0.65	1	22	-1.10	-0.95	0.15	0.15	48	0.73	Yes	B1	7.12	-0.35	0.32	No	Yes	0.54	0.13	Yes	Yes
22	4	13	43	18.48	SAL	0.35	1	22	-1.61	-1.45	0.16	0.16	48	1.23	Yes	B1	7.12	-0.45	0.72	No	Yes	1.04	0.53	Yes	Yes
22	5	31	25	49.81	SAL	4 80	1	22	-2 43	-1.62	0.81	0.81	100	1.40	Yes	 A	5.32	-0.55	0.79	No	Yes	1.21	0.60	Yes	Yes
⊨ ≞						4.50	•		-2.40										=	=					

٠,

SG	Count	Row	Col	Inspect Extent	W* Insp Ext wrt BWT	Flex W* Length	Insp Ext Satisfied ?	DentFlo CM Leak Rate	Prior OA Leak Rate	OA Under Prediction	Constrained Crack Model CM Leak rate	Constrained Crack Model OA Leak Rate	PREVW* Tube	Deplugged?	Tube Plugged
21	1	6	77	-9.03	8.54	7.34	Yes	0.024	0.027	No	0.043	0.047	Yes	Yes	
21	2	7	24	-9.23	8.77	7.29	Yes	0.015	0.016	No	0.058	0.064	Yes	Yes	
21	3	7	62	-12.70	11.55	8.09	Yes	0.042	0.045	No	0.152	0.000	Yes	Yes	Yes
21	4	8	32	-9.06	8.58	7.31	Yes	0.016	0.017	No	0.104	0.118	Yes		
21	5	9	49	-9.11	8.66	7.50	Yes	0.017	0.016	Yes	0.174	0.198	Yes		
21	6	10	49	-8.97	8.58	7.32	Yes	0.027	0.031	No	0.271	0.310	Yes		
21	7	11	37	-12.82	12.32	7.12	Yes	0.000	0.001	No	0.004	0.004	Yes		
21	8	11	37	-12.82	12.32	7.85	Yes	0.001	0.001	No	0.006	0.007	Yes		
21	· 9	11	37	-12.82	12.32	7.90	Yes	0.017	0.018	No	0.123	0.139	Yes		
21	10	11	39	-9.30	8.79	7.39	Yes	0.020	0.022	No	0.156	0.177	Yes	Yes	
21	11	11	40	-9.10	8.67	7.32	Yes	0.038	0.043	No	0.271	0.308	Yes		
21	12	11	48	-10.17	9.66	7.66	Yes	0.005	0.005	No	0.024	0.027	Yes		
21	13	13	49	-8.89	8.14	7.31	Yes	0.022	0.024	No	0.154	0.175	Yes		
21	14	16	79	-9.01	8.48	5.52	Yes	0.000	NA	NA	0.004	0.004	No		
21	15	23	67	-8.60	8.17	5.48	Yes	0.003	NA	NA	0.017	0.018	No		
21	16	23	70	-9.42	9.11	5.82	Yes	0.020	0.021	No	0.033	0.036	Yes	Yes	
21	17	30	59	-12.74	12.50	7.12	Yes	0.000	0.000	No	0.001	0.001	Yes		
								0.265	0.286		1.593	1.632			
22	1	5	18	-9.77	9.44	7.59	Yes	0.033	0.037	No	0.055	0.060	Yes		
22	2	10	48	-9.75	9.57	7.28	Yes	0.008	0.008	No	0.070	0.079	Yes		
22	3	10	56	-9.56	9.12	7.32	Yes	0.033	0.040	No	0.252	0.287	Yes	Yes	
22	4	13	43	-9.43	8.89	7.33	Yes	0.023	0.028	No	0.172	0.196	Yes	Yes	
22	5	31	25	-9.76	9.12	6.18	Yes	0.017	0.022	No	0.012	0.013	Yes	Yes	
								0.113	0.135		0.561	0.635			

 Table 1 (continued)

 2R13 SG 2-1 and SG 2-2 PWSCC Indications in Hot Leg WEXTEX Tubesheet Region

1-9

 Table 2

 2R13 SG 2-3 PWSCC Indications in Hot Leg WEXTEX Tubesheet Region

55.84 27.95 54.78 8.58 12.07 38.76 11.43	SAI SAI SAI SAI SAI SAI SAI SAI	0.99 ID 2.13 ID 0.90 ID 0.53 ID 1.99 ID 0.22 ID 4.97 ID	1 1 1 1 1 1	26 26 26 26 26	-1.04 -1.30 -1.20 -2.27	-0.60 -0.82 -0.93 -2.13	0.44 0.48 0.27	0.44 0.48	63 79	0.38	Yes	A	5.32	-0.12	0.20	No	Yes	0.19	0.01	Yes	Yes
27.95 54.78 8.58 12.07 38.76 11.43	SAI SAI SAI SAI SAI SAI	2.13 ID 0.90 ID 0.53 ID 1.99 ID 0.22 ID 4.97 ID	1 1 1 1	26 26 26 26	-1.30 -1.20 -2.27	-0.82 -0.93 -2.13	0.48 0.27	0.48	79	A 60											
54.78 8.58 12.07 38.76 11.43	SAI SAI SAI SAI SAI	0.90 ID 0.53 ID 1.99 ID 0.22 ID 4.97 ID	1 1 1 1	26 26 26	-1.20 -2.27	-0.93 -2.13	0.27			0.60	Yes	B2	7.12	-0.34	0.20	No	Yes	0.41	0.01	Yes	Yes
8.58 12.07 38.76 11.43	SAI SAI SAI SAI	0.53 ID 1.99 ID 0.22 ID 4.97 ID	1 1 1	26 26	-2.27	-2.13		0.27	50	0.71	Yes	Α	5.32	-0.19	0.46	No	Yes	0.52	0.27	Yes	Yes
12.07 38.76 11.43	SAI SAI SAI	1.99 ID 0.22 ID 4.97 ID	1 1	26			0.14	0.14	63	1.91	Yes	B1	7.12	-0.24	1.61	No	Yes	1.72	1.42	Yes	Yes
38.76 11.43	SAI SAI SAI	0.22 ID 4.97 ID	1		-2.40	-1.99	0.41	0.41	86	1.77	Yes	B1	7.12	-0.19	1.52	No	Yes	1.58	1.33	Yes	Yes
11.43	SAI	4.97 ID		26	-1.93	-1.84	0.09	0.09	20	1.62	Yes	B4	7.12	-0.42	1.14	No	Yes	1.43	0.95	Yes	Yes
47.74	SAL		1	26	-1.56	-0.76	0.80	0.80	100	0.54	Yes	B1	7.12	-0.28	0.20	No	Yes	0.35	0.01	Yes	Yes
17.74	0/11	1.81 ID	1	26	-1.91	-1.43	0.48	0.48	89	1.21	Yes	B1	7.12	-0.31	0.84	No	Yes	1.02	0.65	Yes	Yes
57.86	SAI	1.24 ID	1	26	-1.17	-0.75	0.42	0.42	53	0.53	Yes	Α	5.32	-0.24	0.23	No	Yes	0.34	0.04	Yes	Yes
59.35	SAI	1.31 ID	1	26	-0.93	-0.60	0.33	0.33	44	0.38	Yes	Α	5.32	-0.12	0.20	No	Yes	0.19	0.01	Yes	Yes
23.43	SAI	0.44 ID	1	26	-1.34	-1.19	0.15	0.15	39	0.97	Yes	B2	7.12	-0.38	0.53	No	Yes	0.78	0.34	Yes	Yes
16.29	SAI	0.21 ID	1	26	-2.28	-2.20	0.08	0.08	44	1.98	Yes	B1	7.12	-0.29	1.63	No	Yes	1.79	1.44	Yes	Yes
35.52	SAI	0.40 ID	1	26	-2.02	-1.84	0.18	0.18	28	1.62	Yes	B4	7.12	-0.16	1.40	No	Yes	1.43	1.21	Yes	Yes
36.94	SAI	0.34 ID	1	26	-1.43	-1.32	0.11	0.11	53	1.10	Yes	B4	7.12	-0.16	0.88	No	Yes	0.91	0.69	Yes	Yes
39.29	SAI	1.01 ID	1	26	-2.19	-1.87	0.32	0.32	53	1.65	Yes	Α	5.32	-0.38	1.21	No	Yes	1.46	1.02	Yes	Yes
30.36	SAI	0.93 ID	1	26	-1.66	-1.16	0.50	0.50	93	0.94	Yes	B3	7.12	-0.33	0.55	No	Yes	0.75	0.36	Yes	Yes
53.31	SAI	0.72 ID	1	26	-1.16	-0.90	0.26	0.26	47	0.68	Yes	Α	5.32	-0.31	0.31	No	Yes	0.49	0.12	Yes	Yes
35.58	SAI	1.29 ID	1	26	-1.41	-1.06	0.35	0.35	72	0.84	Yes	B4	7.12	-0.31	0.47	No	Yes	0.65	0.28	Yes	Yes
	SAI	1.80 ID	1	26	-1.30	-0.86	0.44	0.44	72	0.64	Yes	Α	5.32	-0.37	0.21	No	Yes	0.45	0.02	Yes	Yes
42.99	SAI	1.47 ID	1	26	-1.68	-1.32	0.36	0.36	60	1.10	Yes	A	5.32	-0.28	0.76	No	Yes	0.91	0.57	Yes	Yes
53 35	3.31 5.58 2.99 0.09	3.31 SAI 5.58 SAI 2.99 SAI 0.09 SAI	3.31 SAI 0.72 ID 5.58 SAI 1.29 ID 2.99 SAI 1.80 ID 0.09 SAI 1.47 ID	3.31 SAI 0.72 ID 1 5.58 SAI 1.29 ID 1 2.99 SAI 1.80 ID 1 0.09 SAI 1.47 ID 1	3.31 SAI 0.72 ID 1 26 5.58 SAI 1.29 ID 1 26 2.99 SAI 1.80 ID 1 26 0.09 SAI 1.47 ID 1 26	3.31 SAI 0.72 ID 1 26 -1.16 5.58 SAI 1.29 ID 1 26 -1.41 2.99 SAI 1.80 ID 1 26 -1.30 0.09 SAI 1.47 ID 1 26 -1.68	3.31 SAI 0.72 ID 1 26 -1.16 -0.90 5.58 SAI 1.29 ID 1 26 -1.41 -1.06 2.99 SAI 1.80 ID 1 26 -1.30 -0.86 0.09 SAI 1.47 ID 1 26 -1.68 -1.32	3.31 SAI 0.72 ID 1 26 -1.16 -0.90 0.26 5.58 SAI 1.29 ID 1 26 -1.41 -1.06 0.35 2.99 SAI 1.80 ID 1 26 -1.30 -0.86 0.44 0.09 SAI 1.47 ID 1 26 -1.68 -1.32 0.36	3.31 SAI 0.72 ID 1 26 -1.16 -0.90 0.26 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.36 0.44 0.44 0.44 0.44 0.44 0.44 0.36<	3.31 SAI 0.72 ID 1 26 -1.16 -0.90 0.26 0.26 47 5.58 SAI 1.29 ID 1 26 -1.41 -1.06 0.35 0.35 72 2.99 SAI 1.80 ID 1 26 -1.30 -0.86 0.44 0.44 72 0.09 SAI 1.47 ID 1 26 -1.68 -1.32 0.36 0.36 60	3.31 SAI 0.72 ID 1 26 -1.16 -0.90 0.26 0.26 47 0.68 5.58 SAI 1.29 ID 1 26 -1.41 -1.06 0.35 0.35 72 0.84 2.99 SAI 1.80 ID 1 26 -1.30 -0.86 0.44 0.44 72 0.64 0.09 SAI 1.47 ID 1 26 -1.68 -1.32 0.36 0.36 60 1.10	3.31 SAI 0.72 ID 1 26 -1.16 -0.90 0.26 0.26 47 0.68 Yes 5.58 SAI 1.29 ID 1 26 -1.41 -1.06 0.35 0.35 72 0.84 Yes 2.99 SAI 1.80 ID 1 26 -1.30 -0.86 0.44 0.44 72 0.64 Yes 0.09 SAI 1.47 ID 1 26 -1.68 -1.32 0.36 0.36 60 1.10 Yes	3.31 SAI 0.72 ID 1 26 -1.16 -0.90 0.26 0.26 47 0.68 Yes A 5.58 SAI 1.29 ID 1 26 -1.41 -1.06 0.35 0.35 72 0.84 Yes B4 2.99 SAI 1.80 ID 1 26 -1.30 -0.86 0.44 0.44 72 0.64 Yes A 0.09 SAI 1.47 ID 1 26 -1.68 -1.32 0.36 0.36 60 1.10 Yes A	3.31 SAI 0.72 ID 1 26 -1.16 -0.90 0.26 0.26 47 0.68 Yes A 5.32 5.58 SAI 1.29 ID 1 26 -1.41 -1.06 0.35 0.35 72 0.84 Yes B4 7.12 2.99 SAI 1.80 ID 1 26 -1.30 -0.86 0.44 0.44 72 0.64 Yes A 5.32 0.09 SAI 1.47 ID 1 26 -1.68 -1.32 0.36 0.36 60 1.10 Yes A 5.32	3.31 SAI 0.72 ID 1 26 -1.16 -0.90 0.26 0.26 47 0.68 Yes A 5.32 -0.31 5.58 SAI 1.29 ID 1 26 -1.41 -1.06 0.35 0.35 72 0.84 Yes B4 7.12 -0.31 2.99 SAI 1.80 ID 1 26 -1.30 -0.86 0.44 0.44 72 0.64 Yes A 5.32 -0.37 0.09 SAI 1.47 ID 1 26 -1.32 0.36 0.36 60 1.10 Yes A 5.32 -0.28	3.31 SAI 0.72 ID 1 26 -1.16 -0.90 0.26 0.26 47 0.68 Yes A 5.32 -0.31 0.31 5.58 SAI 1.29 ID 1 26 -1.41 -1.06 0.35 0.35 72 0.84 Yes B4 7.12 -0.31 0.47 2.99 SAI 1.80 ID 1 26 -1.30 -0.86 0.44 0.44 72 0.64 Yes A 5.32 -0.37 0.21 0.09 SAI 1.47 ID 1 26 -1.68 -1.32 0.36 0.36 60 1.10 Yes A 5.32 -0.28 0.76	3.31 SAI 0.72 ID 1 26 -1.16 -0.90 0.26 0.26 47 0.68 Yes A 5.32 -0.31 0.31 No 5.58 SAI 1.29 ID 1 26 -1.41 -1.06 0.35 0.35 72 0.84 Yes B4 7.12 -0.31 0.47 No 2.99 SAI 1.80 ID 1 26 -1.30 -0.86 0.44 0.44 72 0.64 Yes A 5.32 -0.37 0.21 No 0.09 SAI 1.47 ID 1 26 -1.68 -1.32 0.36 60 1.10 Yes A 5.32 -0.28 0.76 No	3.31 SAI 0.72 ID 1 26 -1.16 -0.90 0.26 0.26 47 0.68 Yes A 5.32 -0.31 0.31 No Yes 5.58 SAI 1.29 ID 1 26 -1.41 -1.06 0.35 0.35 72 0.84 Yes B4 7.12 -0.31 0.47 No Yes 2.99 SAI 1.80 ID 1 26 -1.30 -0.86 0.44 0.44 72 0.64 Yes A 5.32 -0.37 0.21 No Yes 0.09 SAI 1.47 ID 1 26 -1.32 0.36 0.36 60 1.10 Yes A 5.32 -0.28 0.76 No Yes 0.09 SAI 1.47 ID 1 26 -1.68 -1.32 0.36 60 1.10 Yes A 5.32 -0.28 0.76 No Yes	3.31 SAI 0.72 ID 1 26 -1.16 -0.90 0.26 0.26 47 0.68 Yes A 5.32 -0.31 0.31 No Yes 0.49 5.58 SAI 1.29 ID 1 26 -1.41 -1.06 0.35 0.35 72 0.84 Yes B4 7.12 -0.31 0.47 No Yes 0.65 2.99 SAI 1.80 ID 1 26 -1.30 -0.86 0.44 0.44 72 0.64 Yes A 5.32 -0.37 0.21 No Yes 0.45 0.09 SAI 1.47 ID 1 26 -1.32 0.36 0.36 60 1.10 Yes A 5.32 -0.28 0.76 No Yes 0.91	3.31 SAI 0.72 ID 1 26 -1.16 -0.90 0.26 0.26 47 0.68 Yes A 5.32 -0.31 0.31 No Yes 0.49 0.12 5.58 SAI 1.29 ID 1 26 -1.41 -1.06 0.35 0.35 72 0.84 Yes B4 7.12 -0.31 0.47 No Yes 0.65 0.28 2.99 SAI 1.80 ID 1 26 -1.30 -0.86 0.44 72 0.64 Yes A 5.32 -0.31 0.47 No Yes 0.45 0.02 0.09 SAI 1.47 ID 1 26 -1.32 0.36 0.36 60 1.10 Yes A 5.32 -0.28 0.76 No Yes 0.45 0.02 0.09 SAI 1.47 ID 1 26 -1.68 -0.36 0.36 60 1.10 Yes A 5.32 -0.28 0.76 No Yes 0.91	3.31 SAI 0.72 ID 1 26 -1.16 -0.90 0.26 0.26 47 0.68 Yes A 5.32 -0.31 0.31 No Yes 0.49 0.12 Yes 5.58 SAI 1.29 ID 1 26 -1.41 -1.06 0.35 0.35 72 0.84 Yes B4 7.12 -0.31 0.47 No Yes 0.65 0.28 Yes 2.99 SAI 1.80 ID 1 26 -1.30 -0.86 0.44 72 0.64 Yes A 5.32 -0.37 0.21 No Yes 0.45 0.02 Yes 0.09 SAI 1.47 ID 1 26 -1.68 -1.32 0.36 60 1.10 Yes A 5.32 -0.28 0.76 No Yes 0.91 0.57 Yes 0.09 SAI 1.47 ID 1 26 -1.68 -0.36 60 1.10 Yes A 5.32 -0.28 0.76

SG	Count	Row	Col	Inspect Extent	W* Insp Ext wrt BWT	Flex W* Length	Insp Ext Satisfied ?	DentFlo CM Leak Rate	Prior OA Leak Rate	OA Under Prediction	Constrained Crack Model CM Leak rate	Constrained Crack Model OA Leak Rate	PREVW* Tube	Deplugged?	Tube Plugged
23	1	2	91	-10.04	9.83	5.81	Yes ·	0.038	0.045	No	0.008	0.008	Yes	Yes	
23	2	3	69	-9.93	9.50	7.65	Yes	0.038	0.045	No	0.140	0.157	Yes		
23	3	4	90	-10.06	9.78	5.64	Yes	0.029	0.034	No	0.008	0.009	Yes		
23	4	5	51	-10.04	9.71	7.31	Yes	0.012	0.015	No	0.157	0.179	Yes	Yes	
23	5	5	55	-9.76	9.48	7.58	Yes	0.013	0.015	No	0.156	0.178	Yes		
23	6	6	77	-9.87	9.36	7.26	Yes	0.012	0.017	No	0.033	0.036	Yes	Yes	
23	7	7	52	-10.09	9.72	7.97	Yes	0.038	0.045	No	0.375	0.430	Yes	Yes	
23	8	7	59	-9.98	9.58	7.65	Yes	0.021	0.025	No	0.181	0.206	Yes	Yes	
23	9	7	92	-9.93	9.60	5.79	Yes	0.036	0.042	No	0.006	0.006	Yes	Yes	
23	10	8	93	-10.42	10.21	5.70	Yes	0.038	0.045	No	0.005	0.005	Yes	Yes	
23	11	9	63	-10.00	9.53	7.32	Yes	0.027	0.033	No	0.154	0.173	Yes		
23	12	12	48	-10.40	10.02	7.25	Yes	0.012	0.015	No	0.117	0.132	Yes	Yes	
23	13	14	24	-10.11	9.86	7.35	Yes	0.009	0.013	No	0.044	0.048	Yes	Yes	
23	14	16	24	-10.29	10.04	7.28	Yes	0.017	0.027	No	0.050	0.055	Yes	Yes	
23	15	19	71	-9.79	9.32	5.69	Yes	0.008	0.009	No	0.031	0.034	Yes	Yes	
23	16	21	38	-10.06	9.64	7.67	Yes	0.026	0.037	No	0.096	0.106	Yes	Yes	
23	17	21	83	-9.80	9.40	5.63	Yes	0.033	0.040	No	0.010	0.011	Yes	Yes	
23	18	25	37	-9.84	9.44	7.52	Yes	0.028	0.034	No	0.065	0.071	Yes	Yes	
23	19	32	55	-10.07	9.61	5.81	Yes	0.037	0.042	No	0.034	0.037	Yes	Yes	
23	20	45	37	-10.07	9.70	5.73	Yes	0.018	0.027	No	0.004	0.004	Yes	Yes	
								0.489	0.604		1.674	1.888			

 Table 2 (continued)

 2R13 SG 2-3 PWSCC Indications in Hot Leg WEXTEX Tubesheet Region

 Table 3

 2R13 SG 2-4 PWSCC Indications in Hot Leg WEXTEX Tubesheet Region

sg	Count	Row	Col	Tube Radial Position	Ind	Volts	ID/OD	Crack #	CAL	LCT	UCT	Crack Length	Total Length	MD-adj	Dist UCT to TTS	UCT below TTS	W*ZONE	W⁺ Length	BWT	Dist UCT to BWT	UCT Below W* ?	UCT Below BWT?	Dist EOC (N+1) UCT to TTS	Dist EOC (N+1) UCT to BWT	EOC (N+1) UCT Below BWT?	W*Cand
24	1	2	10	48.17	SAI	0.36	ID	1	18	-1.67	-1.52	0.15	0.15	43	1.30	Yes	A	5.32	-0.20	1.04	No	Yes	1.11	0.85	Yes	Yes
24	2	3	5	54.66	SAI	2.81	ID	1	18	-2.05	-0.77	1.28	1.28	100	0.55	Yes	Α	5.32	-0.29	0.20	No	Yes	0.36	0.01	Yes	Yes
24	3	3	12	45.73	SAI	0.45	ID	1	18	-3.08	-2.90	0.18	0.45	66	2.68	Yes	Α	5.32	-0.28	2.34	No	Yes	2.49	2.15	Yes	Yes
24	4	3	12	45.73	SAI	0.90	ID	2	18	-2.72	-2.45	0.27	0.45	81	2.23	Yes	Α	5.32	-0.28	1.89	No	Yes	2.04	1.70	Yes	Yes
24	5	3	17	39.36	SAI	0.68	ID	1	18	-4.22	-3.98	0.24	0.24	69	3.76	Yes	B4	7.12	-0.06	3.64	No	Yes	3.57	3.45	Yes	Yes
24	6	4	6	53.51	SAI	0.53	١D	1	30	-0.52	-0.28	0.24	0.24	84	0.06	Yes	Α	5.32	-0.29	-0.29	No	No	0.13	-0.48	No	No
24	7	4	24	30.71	SAI	0.45	١D	1	22	-0.63	-0.48	0.15	0.15	64	0.26	Yes	B3	7.12	-0.19	0.01	No	No	0.07	-0.37	No	No
24	8	4	35	17.11	SAI	1.28	ID	1	18	-1.82	-1.53	0.29	0.29	75	1.31	Yes	Bt	7.12	-0.25	1.00	No	Yes	1.12	0.81	Yes	Yes
24	9	5	31	22.37	SAI	0.96	1D	1	18	-1.38	-0.99	0.39	0.39	72	0.77	Yes	B2	7.12	-0.33	0.38	No	Yes	0.58	0.19	Yes	Yes
24	10	5	36	16.45	SAI	0.62	ID	1	18	-2.08	-1.89	0.19	0.19	81	1.67	Yes	Bt	7.12	-0.14	1.47	No	Yes	1.48	1.28	Yes	Yes
24	11	5	37	15.31	SAI	2.46	D	1	18	-4.61	-3.93	0.68	0.68	99	3.71	Yes	B1	7.12	-0.28	3.37	No	Yes	3.52	3.18	Yes	Yes
24	12	5	53	10.16	SAI	1.94	D	1	18	-2.00	-1.73	0.27	0.27	78	1.51	Yes	B1	7.12	-0.26	1.19	No	Yes	1.32	1.00	Yes	Yes
24	13	5	61	18.78	SAI	0.44	ID	1	18	-10.41	-10.24	0.17	0.17	69	10.02	Yes	B1	7.12	-0.22	9.74	Yes	Yes	9.83	9.55	Yes	Yes
24	14	6	33	20.47	SAI	1.55	ID	1	18	-3.13	-2.77	0.36	0.36	84	2.55	Yes	B2	7.12	-0.16	2.33	No	Yes	2.36	2.14	Yes	Yes
24	15	7	4	56.60	SAI	0.75	ID	1	18	-1.32	-1.14	0.18	0.18	63	0.92	Yes	Α	5.32	-0.21	0.65	No	Yes	0.73	0.46	Yes	Yes
24	16	7	38	15.67	SAI	2.05	ID	1	18	- 7.26	-6.95	0.31	1.02	84	6.73	Yes	B1	7.12	-0.25	6.42	No	Yes	6.54	6.23	Yes	Yes
24	17	7	38	15.67	SAI	2.74	ID	2	18	-4.84	-4.13	0.71	1.02	87	3.91	Yes	B1	7.12	-0.25	3.60	No	Yes	3.72	3.41	Yes	Yes
24	18	7	53	12.13	SAI	0.30	ID	1	18	-2.87	-2.73	0.14	0.14	66	2.51	Yes	B1	7.12	-0.34	2.11	No	Yes	2.32	1.92	Yes	Yes
24	19	13	4	58.43	SAI	0.38	ID	1	18	-1.46	-1.32	0.14	0.14	66	1.10	Yes	Α	5.32	-0.23	0.81	No	Yes	0.91	0.62	Yes	Yes
24	20	13	40	20.02	SAI	3.54	ID	1	18	-2.17	-1.58	0.59	0.59	100	1.36	Yes	B2	7.12	-0.21	1.09	No	Yes	1.17	0.90	Yes	Yes
24	21	15	10	52.09	SAI	0.40	ID	1	18	-1.18	-0.82	0.36	0.36	45	0.60	Yes	Α	5.32	-0.21	0.33	No	Yes	0.41	0.14	Yes	Yes
24	22	16	10	52.60	SAI	2.95	ID	1	18	-2.53	-2.08	0.45	0.45	81	1.86	Yes	А	5.32	-0.29	1.51	No	Yes	1.67	1.32	Yes	Yes
24	23	20	47	26.54	SAI	2.71	ID	1	18	-2.02	-1.49	0.53	0.53	81	1.27	Yes	B2	7.12	-0.25	0.96	No	Yes	1.08	0.77	Yes	Yes
24	24	24	26	41.96	SAI	3.44	ID	1	18	-2.25	-1.73	0.52	0.68	99	1.51	Yes	Α	5.32	-0.32	1.13	No	Yes	1.32	0.94	Yes	Yes
24	25	24	26	41.96	SAI	0.75	ID	2	18	-1.64	-1.48	0.16	0.68	63	1.26	Yes	Α	5.32	-0.32	0.88	No	Yes	1.07	0.69	Yes	Yes
24	26	25	64	39.14	SAI	1.90	ID	1	18	-1.52	-1.17	0.35	0.35	72	0.95	Yes	B4	7.12	-0.35	0.54	No	Yes	0.76	0.35	Yes	Yes
24	27	26	45	34.37	SAI	2.10	ID	1	18	-4.14	-3.77	0.37	0.37	75	3.55	Yes	B4	7.12	-0.23	3.26	No	Yes	3.36	3.07	Yes	Yes
24	28	26	64	40.22	SAI	0.75	ID	1	18	-1.14	-0.84	0.30	0.30	54	0.62	Yes	B4	7.12	-0.36	0.20	No	Yes	0.43	0.01	Yes	Yes
											_															

_ _ _ .

.....

SG	Count	Row	Col	Inspect Extent	W* Insp Ext wrt BWT	Flex W* Length	Insp Ext Satisfied ?	DentFlo CM Leak Rate	Prior OA Leak Rate	OA Under Prediction	Constrained Crack Model CM Leak rate	Constrained Crack Model OA Leak Rate	PREVW* Tube	Deplugged?	Tube Plugged
24	1	2	10	-9.43	9.14	5.52	Yes	0.009	0.018	No	0.015	0.016	Yes	Yes	
24	2	3	5	-10.26	9.88	6.65	Yes	0.038	0.042	No	0.009	0.009	Yes	Yes	1
24	3	3	12	-9.99	9.62	5.82	Yes	0.003	0.004	No	0.012	0.012	Yes	Yes	
24	4	3	12	-9.99	9.62	5.88	Yes	0.005	0.006	No	0.014	0.015	Yes	Yes	
24	5	3	17	-9.71	9.56	7.41	Yes	0.002	0.003	No	0.012	0.013	Yes		
24	6	4	6	-9.14	8.76	5.61	Yes	NA	NA	NA	0.012	0.000	No		Yes
24	7	4	24	-9.99	9.52	7.32	Yes	0.045	NA	NA	0.136	0.000	No		Yes
24	8	4	35	-9.47	9.13	7.46	Yes	0.018	0.020	No	0.175	0.199	Yes	Yes	
24	9	5	31	-9.64	9.22	7.56	Yes	0.031	0.039	No	0.186	0.211	Yes		
24	10	5	36	-9.88	9.65	7.36	Yes	0.014	0.015	No	0.142	0.161	Yes		
24	11	5	37	-9.61	9.24	7.85	Yes	0.006	0.006	No	0.040	0.045	Yes	Yes	
24	12	5	53	-9.93	9.58	7.44	Yes	0.016	0.020	No	0.199	0.227	Yes	Yes	
24	13	5	61	-13.10	12.79	7.12	Yes	0.000	0.000	No	0.001	0.001	Yes		
24	14	6	33	-9.33	9.08	7.53	Yes	0.008	0.008	No	0.068	0.076	Yes		
24	15	7	4	-10.05	9.75	5.55	Yes	0.023	0.030	No	0.006	0.007	Yes	Yes	
24	16	7	38	-10.28	9.94	8.19	Yes	0.001	0.001	No	0.006	0.007	Yes	Yes	
24	17	7	38	-10.28	9.94	8.25	Yes	0.006	0.006	No	0.035	0.039	Yes	Yes	
24	18	7	53	-10.08	9.65	7.31	Yes	0.009	0.011	No	0.095	0.108	Yes		
24	19	13	4	-9.65	9.33	5.51	Yes	0.016	0.027	No	0.005	0.005	Yes		
24	20	13	40	-9.91	9.61	7.76	Yes	0.017	0.023	No	0.147	0.166	Yes	Yes	
24	21	15	10	-10.21	9.91	5.73	Yes	0.032	0.039	No	0.012	0.013	Yes	Yes	
24	22	16	10	-10.38	10.00	5.82	Yes	0.006	0.009	No	0.008	0.008	Yes	Yes	
24	23	20	47	-9.83	9.49	7.70	Yes	0.019	0.023	No	0.105	0.117	Yes	Yes	
24	24	24	26	-10.89	10.48	6.05	Yes	0.008	0.020	No	0.026	0.028	Yes		
24	25	24	26	-10.89	10.48	6.11	Yes	0.014	0.027	No	0.029	0.031	Yes		
24	26	25	64	-9.60	9.16	7.52	Yes	0.026	0.033	No	0.044	0.048	Yes	Yes	
24	27	26	45	-10.22	9.90	7.54	Yes	0.002	0.003	No	0.018	0.020	Yes		
24	28	26	64	-9.55	9.10	7.47	Yes	0.038	0.045	No	0.046	0.050	Yes		
								0.413	0.479		1.600	1.633			

Table 3 (continued) 2R13 SG 2-4 PWSCC Indications in Hot Leg WEXTEX Tubesheet Region

1-13

Column – Tables 1, 2, 3	Legend and Notes for Tables 1, 2 and 3
SG	Steam generator
Count	Indication count per SG
Row	Tube Row
Col	Tube Column
Tube Radial Position	Tube radial position, inch.
Ind	Orientation of indication of degradation. SAI means single axial indication.
Volts	Peak voltage from Plus Point coil, as adjusted using the same techniques as PWSCC ARC sizing.
Crack #	Crack number
CAL	Plus Point calibration group number
LCT	Elevation (inch) of lower crack tip (LCT), relative to the top of tubesheet (TTS).
UCT	Elevation (inch) of upper crack tip (UCT), relative to the TTS.
Crack Length	Length of crack (inch)
Total Length	Total length of all cracks (inch).
MD-adj	Maximum depth (% through-wall) from Plus Point coil. The depth is the adjusted depth using the same techniques as PWSCC ARC depth sizing.
Dist UCT to TTS	Distance (inch) between the UCT and TTS, including ΔNDECT.TTS (Plus Point NDE uncertainty on locating the crack tip relative to the TTS).
UCT below TTS?	If the UCT (including NDE uncertainty) is located below TTS (i.e., a positive number in the "Dist UCT to TTS" column), then PC is satisfied for repeat indications.
W* ZONE	W* tubesheet zone based on crack location.
W* Length	W* length is 7.12 inch for hot leg Zone B and 5.32 inch for hot leg Zone A, and includes ΔNDE _w (NDE uncertainty in measuring the W* depth).
BWT	Elevation of the bottom of the WEXTEX transition (BWT), inch, measured by bobbin relative to the TTS.
Dist UCT to BWT	Distance (inch) between the UCT and BWT, including ΔNDE_{CT-BWT} (Plus Point NDE uncertainty on locating the crack tip relative to the BWT).
UCT Below W*?	If the UCT is located below the W* length, then the tube is a W* tube. Any type of degradation below the W* length is acceptable.
UCT Below BWT?	If the UCT is located below BWT, then the tube is a W* candidate.
Dist EOC (N+1) UCT to TTS	Distance (inch) between the UCT and TTS at the end of the next cycle including ΔNDE_{CT-TTS} , based on growing the UCT at 0.119 inch/EFPY.
Dist EOC (N+1) UCT to BWT	Distance (inch) between the UCT and BWT at the end of the next cycle including ΔNDE_{CT-BWT} , based on growing the UCT at 0.119 inch/EFPY.
EOC (N+1) UCT below	If the UCT (including NDE uncertainty) is located below BWT at the end of the next cycle (i.e., a positive number in the "Dist UCT (n+1) UCT to BWT" column), the tube is
BWT?	a W* candidate.
W* Cand?	W* candidate, also referred to as W* tube. A tube is a W* candidate (or W* tube) if the UCT is below BWT and the EOC (n+1) UCT is below BWT.
Inspect Extent	Elevation of Plus Point inspection relative to TTS (inch)
W* Insp Ext wrt BWT	W* inspection extent with respect to BWT, also referred to as the W* inspection distance (inch). This is the Plus Point inspection extent relative to BWT. The W* inspection distance below BWT is equal to the Plus Point inspection extent below TTS, plus measured distance from BWT to TTS, plus bobbin NDE uncertainty in locating BWT relative to TTS.
Flex W* Length	Flexible W* length relative to BWT (inch), equal to W* Length + ΣC_{I} (total axial crack length) + N _{CL} * Δ NDE _{CL} (number of indications times Plus Point NDE uncertainty with measuring length of axial cracks) + N _{CL} * Δ CG (number of indications times crack growth, 0.119 inch/EFPY)
Insp Ext Satisfied?	If the W* inspection distance is greater than or equal to the flexible W* length, then the inspection extent is satisfied.
DENTFLO CM Leak Rate	Condition monitoring (CM) SLB leak rate, gpm at room temperature, using DENTFLO leak model, based on distance of UCT to BWT, using Figure 6.4-3 of WCAP-14797- P Rev 2. No SLB leak rate is assigned to indications with UCT below W* length.
Prior OA Leak Rate	Prior cycle projected operational assessment (OA) leak rate, gpm at room temperature, using DENTFLO leak model.
OA Underprediction?	If the DENTFLO CM leak rate is greater than the prior cycle DENTFLO OA projected leak rate, then the OA would be underpredicted.
Constrained Crack Model CM	Condition monitoring (CM) SLB leak rate, gpm at room temperature, using Constrained Crack leak model, based on distance of UCT to TTS. No SLB leak rate is assigned
Leak Rate	to indications with UCT located below TTS minus 12 inches. Note: For 1R13, this leak rate is for information only and is not the CM leak rate of record.
Constrained Crack Model OA	Operational assessment (OA) SLB leak rate, gpm at room temperature, using Constrained Crack leak model, based on distance of EOC (n+1) UCT to TTS. No SLB leak
Leak Rate	rate is assigned to indications with EOC (n+1) UCT located below TTS minus 12 inches.
PREVW* Tube?	Previous W* Tube. If the indication was left in service in the prior cycle, it is classified as a previous W* tube (i.e., a repeat indication). Otherwise, the indication is new.
Deplugged?	If tube was de-plugged during a previous outage, then "yes" is indicated.
Tube Plugged?	If tube was plugged during the current outage, then "yes" is indicated.

Table 4

Cumulative Number of Unit 2 PWSCC Indications Detected in the Tubesheet Region as a Function of Tubesheet Elevation

Distance (inch) relative to TTS	Distribution Pre-2R13	Cumulative Frequency Pre-2R13	Distribution of New Indications in 2R13	Distribution Post-2R13	Cumulative Distribution Post-2R13	Cumulative Frequency Post-2R13
-12	0	0.00		0	0	0.00
-11	2	0.01	_	2	2	0.01
-10	2	0.03		2	4	0.02
-9	0	0.03		0	4	0.02
-8	0	0.03		0	4	0.02
-7	1	0.03		1	5	0.03
-6	2	0.04		2	7	0.04
-5	0	0.04	1	1	8	0.05
-4	4	0.07		4	12	0.07
-3	5	0.10	1	6	18	0.11
-2	19	0.22		19	37	0.23
-1	53	0.56		53	90	0.56
0	68	0.99	2	70	160	0.99
1	2	1.00		2	162	1.00
Total	158		4	162	162	

Table 5

DCPP Unit 2 Condition Monitoring Steam Line Break Leak Rates for W* Alternate Repair Criteria

EOC 13 Condition Monitoring Leak Rate (gpm at room temperature)	SG 2-1	SG 2-2	SG 2-3	SG 2-4
Axial PWSCC within flexible W* length (DENTFLO model)	0.265	0.113	0.489	0.413

Table 6

DCPP Unit 2 Operational Assessment Steam Line Break Leak Rates for W* Alternate Repair Criteria

EOC 14 Operational Assessment Leak Rate (gpm at room temperature)	SG 2-1	SG 2-2	SG 2-3	SG 2-4
Detected indications within TTS minus 12 inches	1.632	0.635	1.888	1.633
Undetected indications within 8 to 12 inches below TTS	0.0396	0.0396	0.0396	0.0396
Undetected indications below TTS minus 12 inches (Note 1)	0.294	0.281	0.293	0.272
Total	1.966	0.956	2.221	1.945

Note 1: Leak rates are based on 0.00009 gpm multiplied by the number of inservice tubes in Cycle 14 (3263, 3120, 3258, and 3021 tubes for SGs 2-1, 2-2, 2-3, and 2-4, respectively.)

Table 7
DCPP Unit 2 Aggregate Condition Monitoring Steam Line Break Leak Rates

SG 2-1	SG 2-2	SG 2-3	SG 2-4
0.265	0.113	0.489	0.413
0.11	0.07	0.09	0.78
0	0	0	0
0	0	0	0
0.375	0.183	0.579	1.193
	SG 2-1 0.265 0.11 0 0 0.375	SG 2-1 SG 2-2 0.265 0.113 0.11 0.07 0 0 0 0 0.375 0.183	SG 2-1 SG 2-2 SG 2-3 0.265 0.113 0.489 0.11 0.07 0.09 0 0 0 0 0 0 0.375 0.183 0.579

Note 1: Voltage-based ARC leak rates are described in Enclosure 3.

Note 2: PWSCC ARC leak rates are described in Enclosure 2.

 Table 8

 DCPP Unit 2 Aggregate Operational Assessment Steam Line Break Leak Rates

EOC 14 Operational Assessment Leak Rate (gpm at room temperature)	SG 2-1	SG 2-2	SG 2-3	SG 2-4
W* ARC	1.966	0.956	2.221	1.945
Voltage-Based ARC (Note 1)	1.16	0.61	0.53	3.75
PWSCC ARC (Note 2)	0	0	0	0
Non-ARC degradation	0	0	0	0
Aggregate	3.126	1.566	2.751	5.695

Note 1: Voltage-based ARC leak rates are described in Enclosure 3.

Note 2: PWSCC ARC leak rates are described in Enclosure 2.

Figure 1

Figure 2

ENCLOSURE 2 SPECIAL REPORT 06-02

TSP PWSCC ALTERNATE REPAIR CRITERIA 120-DAY REPORT

DIABLO CANYON POWER PLANT UNIT 1 THIRTEENTH REFUELING OUTAGE

NRC Reporting Requirements

Primary water stress corrosion cracking (PWSCC) alternate repair criteria (ARC) for axial PWSCC at dented tube support plates (TSP) was implemented for the third time in Diablo Canyon Power Plant (DCPP) Unit 2 during Unit 2 Thirteenth Refueling Outage (2R13). 2R13 steam generator (SG) inspections and repairs were completed in May 2006.

For implementation of ARC for axial PWSCC at dented TSPs, DCPP Technical Specification (TS) 5.6.10.h requires that the results of the condition monitoring and operational assessments be reported to the NRC within 120 days following completion of the inspection. This report implements the DCPP TS reporting criteria. To satisfy the TS, this report includes the following:

- Tabulations of indications found in the inspection, tubes repaired, and tubes left in service under the ARC.
- Growth rate distributions for indications found in the inspection and growth rate distributions used to establish the tube repair limits.
- Plus Point confirmation rates for bobbin detected indications when bobbin is relied upon for detection of axial PWSCC in less than or equal to 2 volt dents.
- For condition monitoring, an evaluation of any indications that satisfy burst margin requirements based on the Westinghouse burst pressure model, but do not satisfy burst margin requirements based on the combined Argonne National Laboratory (ANL) ligament tearing and EPRI through-wall (ANL/TW) burst pressure model.
- Performance evaluation of the operational assessment methodology for prediction of flaw distributions as a function of flaw size.
- Evaluation results of number and size of previously reported versus new PWSCC indications found in the inspection, and the potential need to account for new indications in the operational assessment burst evaluation.
- Identification of mixed mode (axial PWSCC and circumferential) indications found in the inspection and an evaluation of the mixed mode indications for potential impact on the axial indication burst pressures or leakage. In addition, as committed in Pacific Gas and Electric Company (PG&E) Letter DCL-02-045, "Response to Final NRC Request for Additional Information Regarding Supplement 3 to License Amendment Request 00-06, 'Alternate Repair Criteria for Axial PWSCC at Dented Intersections in Steam Generator Tubing'," performance of a trending analysis to assess the potential for increasing mixed mode affects over time.

• Any corrective actions found necessary in the event that condition monitoring requirements are not met.

Background: Dented TSP Plus Point Inspection Scope

The 2R13 Plus Point dent inspection scope for greater than 2 volt dents was based on greater than 2 volt dents called in the prior Unit 2 Twelfth Refueling Outage (2R12). The minimum scope for greater than 2 volt dents inspected by Plus Point in 2R13 is provided in Table 1.

The dented TSP inspection criteria and expansion plan criteria described below are based on PG&E Letter DCL-01-036, "Revision of Dent Inspection Program Requirements," to the NRC dated April 16, 2001, and WCAP-15573, Revision 1, "Depth-Based SG Tube Repair Criteria for Axial PWSCC at Dented TSP Intersections – Alternate Burst Pressure Calculation."

Plus Point inspection criteria for axial PWSCC left in service

Plus Point inspections shall be conducted on 100 percent of axial PWSCC indications at dented TSP intersections that were left in service in Unit 2 Cycle 13. Fifty three axial PWSCC indications had been left in service in Cycle 13 under PWSCC ARC.

Plus Point inspection criteria for greater than or equal to (\geq) 5 volt dented intersections

For Unit 2, in each SG, Plus Point inspections shall be conducted on 100 percent of \geq 5 volt dented intersections, both hot leg and cold leg.

Plus Point inspection criteria for greater than 2 and less than 5 volt dented intersections

On a SG-specific basis, Plus Point inspections shall be conducted on 100 percent of greater than (>) 2 and less than (<) 5 volt dented intersections up to and including the coldest TSP elevation where PWSCC (at any size dent), circumferential indications (at any size dent), or ≥ 2 inferred volt axial ODSCC not detected by bobbin (AONDB) (at > 2 and < 5 volt dent) have been previously detected in that SG in the prior two outages, or current outage (implies expansion requirement), plus 20 percent of > 2 and < 5 volt dent at the next colder TSP elevation. If a SG is free from PWSCC (at any size dent), circumferential indications (at any size dent) and ≥ 2 inferred volt AONDB (at > 2 and < 5 volt dent), then Plus Point inspections shall be conducted on 20 percent of > 2 and < 5 volt dents at 1H. For any 20 percent sample, a minimum of 50 > 2 and < 5 volt dents shall be inspected. If the population of > 2 and < 5 volt dents at that TSP elevation is less than 50, then 100 percent of the > 2 and < 5 volt dents at that TSP shall be inspected.

The coldest TSP where PWSCC, AONDB with \geq 5 volt dent, or circumferential indications have been found in the prior two outages (Unit 2 Eleventh Refueling Outage [2R11] and 2R12) was 5H for SG 2-2, 3H for SG 2-3, and 3H for SG 2-4. In SG 2-1, no PWSCC, AONDB with \geq 5 volt dent, or circumferential indications have been detected. In addition, all inferred bobbin voltages for AONDB indications have been less than 2 volts, so AONDB indications do not factor into the inspection scope.

Plus Point inspection criteria for detection of circumferential indications at dents

On a SG-specific basis, if a circumferential indication or ≥ 2 inferred volt AONDB is detected in a dent of "x" volts in the prior two outages, or current outage (implies expansion requirement), then Plus Point inspections shall be conducted on 100 percent of dents greater than "x - 0.3" volts up to the affected TSP, plus 20 percent of dents greater than "x - 0.3" volts at the next higher TSP. "X" is defined as the lowest dent voltage where a circumferential crack or ≥ 2 inferred volt AONDB was detected in that SG. For any 20 percent sample, a minimum of 50 "x - 0.3" volt dents shall be inspected. If the population of "x - 0.3" volt dents at that TSP elevation is less than 50, then 100 percent of the "x - 0.3" volt dents at that TSP shall be inspected.

The smallest dent in which a circumferential crack has been detected in the prior two outages (2R11 and 2R12) was 6.74 volts (in SG 2-2). Thus, the affected population for potential circumferential cracking is dents greater than greater than 6.44 volts (i.e., 6.74 -0.3 = 6.44). The existing 2 volt dent cutoff for 2R13 Plus Point inspections is much less than the 6.44 volt threshold for circumferential cracking, and was therefore sufficient. Therefore, less than 2 volt dent Plus Point inspections were not required in the inspection plans. In addition, all inferred bobbin voltages for AONDB indications have been less than 2 volts, so AONDB indications do not factor into the inspection scope for detection of circumferential indications.

Summary of Plus Point inspection plan of dented TSPs

Based on the Plus Point inspection criteria listed above, the following Plus Point dent inspection criteria were implemented. The numbers of dent inspections is summarized in Table 1.

\geq 5 volt dents

• 100 percent in all SGs, both hot leg and cold leg

>2 and < 5 volt dents

- SG 2-1: 20 percent at 1H
- SG 2-2: 100 percent from 1H to 5H, 20 percent at 6H
- SG 2-3: 100 percent from 1H to 3H, 20 percent at 4H
- SG 2-4: 100 percent from 1H to 3H, 20 percent at 4H

• All 20 percent samples shall contain a minimum of 50 dents. If the population of dents at the TSP elevation is less than 50, then inspect 100 percent of the dents at the TSP.

Plus Point inspection of bobbin distorted indications at less than or equal to 2 volt dents

One hundred percent of the tubes were inspected full length by bobbin coil (except for Rows 1 and 2 U-bends), and the bobbin coil was relied upon for detection of axial PWSCC in \leq 2 volt dents. If the bobbin coil detected a distorted ID support signal (DIS) at a dented TSP intersection, then Plus Point inspection was performed.

Summary of Inspection Results

Table 5 provides a list of all TSP axial PWSCC indications detected in 2R13. Table 6 provides a list of all TSP circumferential indications detected in 2R13.

No expansion of the Plus Point dent inspection program was required in 2R13, based on the following inspection results:

- No axial PWSCC or circumferential indications were detected in SG 2-1.
- No axial PWSCC or circumferential indications were detected above 5H in SG 2-2.
- No axial PWSCC or circumferential indications were detected above 3H in SG 2-3.
- No axial PWSCC or circumferential indications were detected above 3H in SG 2-4.
- All inferred bobbin voltages for AONDB indications were less than 2 volts.
- The dent voltages associated with TSP circumferential indications were greater than 0.3 volts above the 2.0 volt dent threshold for potential expansion. The smallest 2R13 dent voltage coincident with a circumferential indication was 4.03 volts.

Tabulations of indications found in the inspection, tubes repaired, and tubes left in service under the ARC.

Fifty nine axial PWSCC indications at dented TSP intersections were detected in 2R13. Table 5 provides a tabulation of indications, including the following information:

- SG, row, column, TSP, crack number, calibration group number
- Identifies the indication as repeat or new.
- For indications that were plugged in 2R13, the reason for plugging
- Adjusted nondestructive examination (NDE) measurements (length, maximum depth, and average depth), voltage, and adjusted NDE crack location relative to the TSP centerline.
- Burst pressures (free span and total length). For the operational assessment, the pressures are calculated using the ANL/TW burst model. For the condition monitoring assessment, the pressures are calculated using the Westinghouse burst model. A burst pressure of 6100 pounds per square inch (psi) represents a

predicted burst pressure \geq 6100 psi since all pressures predicted to exceed 6100 psi are grouped at 6100 psi to reduce computer storage requirements in the analysis.

• Steam line break (SLB) leak rates (free span and total length) using the ANL ligament tearing model, for condition monitoring and operational assessment.

The PWSCC ARC allows axial PWSCC indications to remain in service at dented TSP intersections if the following PWSCC ARC conditions are satisfied for each indication:

- Operational Assessment (OA) free span burst pressure (based on the ANL/TW model) exceeds 3 times the normal operating differential pressure (3dPNO). The 3dPNO burst pressure is equal to 4419 psi.
- OA total length burst pressure (based on the ANL/TW model) exceeds 1.4 times the SLB differential pressures (1.4dPSLB). The 1.4dPSLB burst pressure is equal to 3367 psi, based on a dPSLB of 2405 psi (pressurizer power operated relief valve (PORV) setpoint plus uncertainty).
- OA free span leak rate, when combined with free span leak rates from other degradation mechanisms, is less than 1 gpm (0.72 gpm at room temperature) in a faulted SG.
- OA total length leak rate, when combined with leak rates from other degradation mechanisms, is less than 10.5 gallons per minute (gpm) (room temperature) in a faulted SG.
- The indication is less than 40 percent through-wall outside the TSP crevice.

In addition to the above PWSCC ARC conditions, axial PWSCC indications must satisfy the following exclusion criteria in order to remain in service:

- The indication is not located at a TSP intersection located in the wedge region or 7H/7C high bending stress region.
- The indication is not located at a TSP intersection that contains cracked or missing TSP ligaments.
- The indication is not located at a TSP intersection that contains a different degradation mechanism.
- The indication is not located in a tube that contains another repairable indication.

Fifty three axial PWSCC indications at dented TSPs had been left in service following 2R12 under PWSCC ARC. Following 2R13 Plus Point inspection, sizing, and application of PWSCC ARC requirements, 6 of the repeat axial PWSCC indications were plugged, as described below:

- Two due to the axial PWSCC indication being greater than or equal to 40 percent depth outside the tube support plate (SG 2-2 R11C30 crack 2, SG 2-2 R23C14 crack 1). In addition, SG 2-2 R11C30 cracks 1 and 3 were plugged because crack 2 was plugged.
- Two due to the axial PWSCC indication being located at a TSP where

circumferential cracking was also detected (SG 2-2 R2C40 crack 1, SG 2-2 R10C30 crack 1). This combined degradation is termed PWSCC mixed mode.

In 2R13, six new axial PWSCC indications at dented TSPs were detected, sized by Plus Point, and applied to PWSCC ARC requirements. Two of these were plugged due to combined axial ID/OD degradation (SG 2-4 R22C21 crack 1, SG 2-4 R23C52 crack 1), and all others were allowed to remain in service under PWSCC ARC.

The indications that were located outside the TSP region were reviewed to determine the need for in-situ pressure testing in accordance with the criteria in WCAP-15573, Revision 1. Namely, if condition monitoring for axial PWSCC at dented TSPs predicts free span leakage or free span burst pressures less than 3dPNO, then in-situ pressure testing is required. These conditions were not predicted by condition monitoring, and therefore no in-situ pressure testing of axial PWSCC at dents was required nor performed.

Fifty one axial PWSCC indications at dented TSPs were returned to service in 2R13: forty seven repeat indications and four new indications.

Growth rate distributions for indications used to establish the tube repair limits and for indications found in the inspection

The growth rate distribution used to establish the tube repair limits was based on prior outage growth data. The methodology for establishing the growth rate was established in WCAP-15573, Revision 1, as further explained in PG&E Letters DCL-02-023, "Response to NRC Request for Additional Information Regarding Supplement 3 to License Amendment Request 00-06, 'Alternate Repair Criteria for Axial PWSCC at Dented Intersections in Steam Generator Tubing'," and DCL-02-045. The methodology is summarized below:

- If there are at least two hundred points in each of the last two cycles on the unit being inspected, the most conservative growth distribution from the last two cycles shall be used.
- If there are at least two hundred points over the last two cycles on the unit being inspected, the growth distribution to be used is the more conservative of the combined data or either of the two cycles.
- If there are less than two hundred points over the last two cycles on the unit being inspected, the growth distribution to be used shall contain data from both units over the last two (or three if necessary) cycles of each unit until 200 data points are obtained. The data from each cycle is compared for consistency in growth magnitude. If a given cycle has lower growth rates than other cycles, it is not included in the growth distribution.

In preparation for 2R13, the third bullet applied. As shown in Table 3, over the prior two Unit 2 inspections (2R11 and 2R12), there are only 107 data points, less than the

ł

200 points required for a Unit 2 specific growth rate distribution. Therefore, the 2R11 and 2R12 data were supplemented by data from 1R12 and 1R13, resulting in a total of 548 data points over the last two cycles from each unit: 2R11 (49), 2R12 (58), 1R12 (215), and 1R13 (226). The oldest growth data from 1R8, 2R8, 1R9, 2R9, 1R10, 2R10, and 1R11, does not require evaluation and is excluded per the above methodology because over 200 data points are already available from the more recent inspections.

Per the ARC methodology, the four data sets to be included for evaluation are to be examined for potential exclusion of data points. To bound the ARC method, for the preliminary Cycle 14 operational assessment, PG&E chose to conservatively use the lower bound Cumulative Probability Distribution (CPD) growth rates between each of the four data sets. The lower bound growth rate CPD is provided in Table 2 and was used in the Monte Carlo preliminary cycle 14 OA calculations for determining the need for tube repair.

In accordance with WCAP-15573, Revision 1, Unit 1 Cycle 13 growth rates that could impact the upper tail of the preliminary OA growth distribution were evaluated during 2R13. The methodology requires that if new growth data causes the growth distribution above 90 percent probability to be more conservative, the new data should be added to the growth distribution for the final OA.

57 additional growth rate data points from Cycle 13 were established, 53 from repeat indications and 4 from new indications. The CPD of the growth data is provided in Table 2.

During 2R13, the Cycle 13 growth rates were compared to the 90 percentile growth rates established from the preliminary Cycle 14 OA growth distribution in Table 2 (0.069 inch, 9.65 percent maximum depth [MD], 7.10 percent average depth [AD]). Several Cycle 13 growth rates exceeded these values, and the WCAP methodology required that these Cycle 13 data points be added to the growth distribution for the final OA. To bound the WCAP methodology, PG&E developed a conservative growth distribution based on the lower bound of the CPD from the combined Cycle 13 data set and the preliminary OA data set. This lower bound growth distribution was separately developed for growth in length, maximum depth, and average depth. The lower bound growth rate CPD is provided in Table 2 and was used in the Monte Carlo final Cycle 14 OA calculations for determining the need for tube repair in 2R13. When comparing the final OA and preliminary OA growth distributions, the final OA was more conservative for maximum depth and length, and unchanged for average depth. For information, Table 3 compares the 90 percentile growth values per EFPY at 604 degrees for the recent inspections that were evaluated.

Plus Point confirmation rates for bobbin detected indications when bobbin is relied upon for detection of axial PWSCC in less than or equal to 2 volt dents.

In 2R13, the bobbin coil was relied upon for detection of axial PWSCC in less than or

equal to 2 volt dents. As identified in Table 4, there were 193 DIS indications detected by bobbin at less than or equal to 2 volt dented TSP intersections with non-repeat PWSCC indications. Tracking of Plus Point confirmation rates for repeat PWSCC indications is not required because these known flaws are inspected by Plus Point regardless of the bobbin call.

All DIS indications were inspected by Plus Point. None of the DIS indications were confirmed as PWSCC by Plus Point, for a Plus Point confirmation rate of 0 percent, or a 100 percent bobbin overcall rate. The high bobbin overcall rate is greater than the approximately 90 percent overall rate generated during the bobbin coil performance test documented in WCAP-15573, Revision 1. The high bobbin overcall rate establishes a very high probability of detecting significant axial PWSCC indications in less than or equal to 2 volt dents.

For condition monitoring, an evaluation of any indications that satisfy burst margin requirements based on the Westinghouse burst pressure model, but do not satisfy burst margin requirements based on the combined ANL ligament tearing and through-wall burst pressure model.

This item is not applicable. All indications satisfied condition monitoring (CM) burst margin requirements based on the combined ANL ligament tearing and EPRI through-wall (ANL/TW) burst pressure model, as well as the Westinghouse (WEC) burst pressure model. The CM Westinghouse model burst pressures are shown in Table 5 for both free span and total length. The ANL/TW model burst pressures for total length are shown in Table 6. The total length CM burst requirement was 3367 psi at 1.4dPSLB. The free span length CM burst requirement was 4419 psi at 3dPNO.

Performance evaluation of the operational assessment methodology for prediction of flaw distributions as a function of flaw size.

PG&E evaluated the performance of the PWSCC ARC OA methodology for prediction of flaw distributions as a function of flaw size. WCAP-15573, Revision 1, provides guidance for determining when corrective actions are needed when a single indication OA prediction significantly underestimates the burst pressure or leak rate when compared to the CM results. When comparing single indication projected leak and burst data with that obtained for the same indication from the inspection results, additional evaluations are to be performed and included in the 120-day report if: (1) the CM single indication burst pressure is < 5600 psi and more than 500 psi less than the projection obtained using the same burst model; or (2) the CM single indication leak rate is more than 0.2 gpm larger than the projected SLB leak rate.

Performance Evaluation of Single Indication SLB Leak Rates

Regarding CM single indication total length SLB leak rates, no CM single indication leakage was calculated in any SG, either from total length or free span. From the prior

cycle OA, no CM single indication leakage was calculated in any SG, either from total length or free span. Therefore, the single indication OA leak rate methodology using the ANL ligament tearing model is determined to be adequately conservative, and no corrective actions are required.

Performance Evaluation of Single Indication Burst Pressures

A benchmarking assessment (CM versus prior cycle OA projections) was performed for the repeat indications that had been left in service in Unit 2 Cycle 13 under PWSCC ARC. As required by the PWSCC ARC, the OA burst pressures are 95/95 values, and the CM burst pressures are 95/50 values.

With one exception, all prior cycle projected EOC 13 burst pressures exceeded the default free span and total length burst pressures of 6100 psi, using the ANL/TW model (the exception was 2R12 indication in SG 2-2 R8C36 with a projected total length burst pressure of 5784 psi using the ANL/TW model). The as-found free span and total length burst pressures for all indications exceeded the default value of 6100 psi for the CM assessment, using both burst models.

Based on this performance evaluation via benchmarking, the OA burst pressure methodology is determined to be adequately conservative.

Performance Evaluation of Total SG Monte Carlo SLB Leakage

Page 7-12 of WCAP-15573, Revision 1, requires the following: "If the results of the single indication analyses show leakage for condition monitoring or operational assessment for either free span or total length, then a total SG leak rate Monte Carlo operational assessment is required for each SG that shows leakage. A conservative probability of detection (POD) of 0.6 is used in the SG analysis."

The results of the 2R13 single indication analysis did not show CMOA leakage for free span and total length analyses and, as such, a total SG leak rate Monte Carlo OA was not required for any SG per the WCAP requirements. However, as committed in DCL-06-029 dated February 24, 2006, PG&E requires that total SG Monte Carlo analyses be performed in each SG with axial PWSCC indications for CM and OA, regardless of the result of the single indication analyses. Therefore, total SG leak rate analyses were performed for CM (using a POD of 1.0) and OA (using a POD of 0.6) for SGs 2-2, 2-3, and 2-4. The results of the total SG leak rate analyses show that no SG had any CMOA leakage.

Evaluation results of number and size of previously reported versus new PWSCC indications found in the inspection, and the potential need to account for new indications in the operational assessment burst evaluation.

As discussed above, there were 59 axial PWSCC indications detected in 2R13: 6 new indications and 53 repeat indications. The number of new indications continues to be a small fraction of the total number of indications. Of the 5 new indications with prior Plus Point inspection (1 had no prior Plus Point inspection), 4 were detectable in 2R12 based on a lookup review, indicating a small growth rate progression. All of the new indications had CM and OA burst pressures in excess of 6100 psi using both the Westinghouse model and the ANL/TW model. Therefore, because the numbers of new flaws are relatively small, exhibited slow growth rates, and have CMOA burst pressures well in excess of burst margin requirements, there is no need to account for new indications in the OA burst evaluation.

Identification of mixed mode (axial PWSCC and circumferential) indications found in the inspection and an evaluation of the mixed mode indications for potential impact on the axial indication burst pressures or leakage. In addition, performance of a trending analysis to assess the potential for increasing mixed mode affects (e.g., circumferential crack depths, burst pressure reductions, increased leakage rates) over time.

For PWSCC ARC, a mixed mode indication is defined as an axial PWSCC indication and a circumferential indication (either outside diameter stress corrosion cracking (ODSCC) or PWSCC) occurring at the same dented TSP intersection. The indications are termed PWSCC mixed mode. Per the WCAP-15573 Revision 1 methodology, a separation distance of 0.25 inch is adequate to reduce mixed mode effects on axial burst pressures to acceptable levels, except for the case when both the axial and circumferential indications are throughwall (in which case a separate mixed mode evaluation is required for any separation distance). Per WCAP-15573 Revision 1, the required 0.25 inch separation distance can also be confirmed by the presence of at least 0.075 inch and 0.050 inch null point spacing for circumferential ODSCC indications and circumferential PWSCC indications, respectively. The WCAP methodology recommends that the return to null separation be determined using the 600 kHz 0.080 inch pancake coil instead of the Plus Point coil, due to the potential that the Plus Point coil could provide a false null for closely spaced axial PWSCC indications (which rotate up) and circumferential PWSCC indications (which rotate down) of significant depth.

There were two TSP intersections that contained PWSCC mixed mode indications in 2R13, as described below. Detailed NDE measurements are provided in Table 5 for axial indications and Table 6 for circumferential indications.

SG 2-2 R10C30 1H, with dent of 11.84 volts, had one circumferential ODSCC indication, one circumferential PWSCC indication, and one axial PWSCC indication. The axial indication was a repeat indication from the prior cycle. Figure 4 provides a simplified sketch of the 3 indications, the axial and circumferential separation distances between the axial and circumferential indications, and the lengths and depths of the indications. The separation distance between the axial indication and circumferential PWSCC indication is 0.31 inch. The separation distance between the axial indication and circumferential ODSCC indication is 0.37 inch applying the square root of the sum of the squares (SRSS) of the axial and circumferential separation distances. Because these separation distances are greater than the 0.25 inch threshold value for potential interaction, and because none of the indications are 100 percent throughwall at any point, with allowances for NDE uncertainty, the indications are treated as noninteracting for PWSCC ARC. Therefore, a detailed mixed mode evaluation is not required because there is no potential impact on the axial indication burst pressure or leakage based on PWSCC ARC WCAP-15573 Revision 1 methodology. The required 0.25 inch separation distance between the axial indication and the circumferential PWSCC indication was confirmed by the presence of 8 null points (about 0.264 inch null point spacing) using both the 600 kHz 0.080 inch pancake coil and the 300 kHz Plus Point coil. The required 0.25 inch separation distance between the axial indication and the circumferential ODSCC indication was confirmed by the presence of 4 null points (about 0.132 inch null point spacing) using the 300 kHz Plus Point coil. The ODSCC indication could not be detected using the 600 kHz 0.080 inch pancake coil because the depth was very shallow, so null points observed using this coil cannot be applied. The rotating probe coil spacing is 0.033 inch.

SG 2-2 R2C40 1H, with dent of 22.92 volts, had two circumferential ODSCC indications and one axial PWSCC indication. The axial indication was a repeat indication from the prior cycle. Figure 5 provides a simplified sketch of the 3 indications, the axial and circumferential separation distances between the axial and circumferential indications, and the lengths and depths of the indications. The resultant separation distances between the axial indication and circumferential ODSCC indications number 1 and number 2 are 0.81 inch and 0.89 inch respectively, applying the SRSS of the axial and circumferential separation distances. Because these separation distances are greater than the 0.25 inch threshold value for potential interaction, and because none of the indications are 100 percent throughwall at any point, with allowances for NDE uncertainty, the indications are treated as noninteracting for PWSCC ARC. The required 0.25 inch separation distance between the axial indication and circumferential ODSCC indication number 1 and number 2 was confirmed by the presence of 4 null points (about 0.132 inch null point spacing) and 6 null points (about 0.198 inch null point spacing), respectively, using the 300 Khz Plus Point coil. The ODSCC indications could not be detected using the 600 Khz 0.080 inch pancake coil because the depths were very shallow, so null points observed using this coil cannot be applied. The rotating probe coil spacing is 0.033 inch.

Based on the above mixed mode evaluations, a detailed mixed mode evaluation is not required because there is no potential impact on the axial indication burst pressure or leakage based on PWSCC ARC WCAP-15573 Revision 1 methodology. Even if the indications are assumed to be interacting, there is no potential impact on the axial indication burst pressure or leakage because (1) the axial and circumferential indications are not throughwall, (2) the axial indications are short and shallow such that their burst pressures exceed 6100 psi, and (3) the average depths of the circumferential indications are less than the 80 percent threshold value after accounting for 95 percent NDE uncertainty for mixed mode affects.

In response to NRC request for additional information, PG&E Letter DCL-02-045 dated April 18, 2002, committed to perform a trending analysis in the 120-day report to assess the potential for increasing mixed mode affects (e.g., circumferential crack depths, burst pressure reductions, increased leakage rates) over time. Since no burst pressure reductions or leakage rate multipliers have been required, there is no data to trend for these parameters. Trending of circumferential depths and number of circumferential indications is provided in Figures 1, 2, and 3.

Figure 1 provides all DCPP Unit 2 TSP PWSCC and ODSCC circumferential indication measured adjusted average depths versus year detected. The adjustments do not include NDE uncertainty. The mean trend line shows a slight increase in average depths, attributed to the three short indications noted above with larger average depths but low amplitudes (i.e., less than or equal to 0.21 volt). The frequency of larger depths tends to show an oscillating up and down pattern between outages, which may be a result of conservative sizing of low amplitude flaws.

Figure 2 data is a subset of Figure 1, showing the PWSCC mixed mode circumferential indication average depths versus year detected. A total of nine Unit 2 circumferential indications have been associated with PWSCC mixed mode indications, including the four circumferential indications detected in 2R13. The mean trend line shows a slight increase in average depths of these nine circumferential indications, attributed to the two largest depth indications detected in 2R13.

Figure 3 provides the number of DCPP Unit 2 TSP PWSCC and ODSCC circumferential indications detected over time. Even though there was an increase in the number of circumferential indications in 2R13 compared to recent outages, the overall mean trend line shows a slight decrease due to the large number of indications detected in 1996.

Even though Unit 2 shows increasing recent trends in the number of circumferential indications, circumferential average depths, and mixed mode indications, there is not a significant potential for increasing mixed mode affects over time based on the small Plus Point voltages associated with these circumferential indications (indicating shallow depths), and low probability of interacting mixed mode indications. Of the nine Unit 2 TSP intersections with mixed mode indications, none were determined to be interacting

based on the WCAP-15573 Revision 1 methodology.

Conditions Requiring Evaluation to Determine Need for Corrective Actions

There are several conditions related to mixed mode indications and circumferential indications that require evaluation to determine the need for corrective actions. These are discussed below:

• If an interacting PWSCC mixed-mode indication is found to have led to a reduction in the axial indication burst pressure by more than 10 percent and to less than 4000 psi, or to have caused an indication to not satisfy burst margin requirements, the burst margin requirements for implementation in the OA at the next and subsequent outages must be increased by the percentage reduction in the burst pressure found for the mixed mode indication.

As discussed earlier, there are no interacting mixed mode indications, so no corrective actions are necessary.

If an interacting PWSCC mixed-mode indication is found, and the axial indication condition monitoring predicts SLB leakage at 95/50, and the circumferential indication has > 50 percent average depth including NDE uncertainty, then the CM leak rate for the axial indication must be increased by a leakage factor. In addition, the OA SLB leak rate for each SG must be increased by a leakage factor.

As discussed earlier, there are no interacting mixed mode indications, so no corrective actions are necessary.

 If a previously Plus Point-inspected TSP intersection is found to have a circumferential indication with average depth > 80 percent after accounting for NDE uncertainty, then the OA SLB leak rate for each SG must be increased by a leakage factor.

There were 16 TSP circumferential indications detected in 2R13. All of the TSPs with circumferential indications detected in 2R13 were previously Plus Point inspected in 2R12. The deepest 2R13 circumferential indications had average depths of 75 percent, 71.5 percent and 71.3 percent, including 95 percent NDE uncertainty, less than the 80 percent average depth threshold. The maximum Plus Point amplitude for these flaws were very small (0.21, 0.15, 0.16 volts, respectively), and it is expected that the flaws were very conservatively sized. Therefore, no corrective actions are needed to adjust the OA SLB leak rates.

Any corrective actions found necessary in the event that condition monitoring requirements are not met.

This item is not applicable, because all indications satisfied condition monitoring burst margin requirements and leakage margin requirements.

All CM burst pressures, evaluated at 95 percent probability and 50 percent confidence (95/50), exceeded the 3367 psi total length SLB burst margin requirement and the 4419 psi free span burst margin requirement, using both the Westinghouse model and the ANL/TW model.

CM single indication SLB leak rates were evaluated at 95 percent probability and 50 percent confidence (95/50), using the ANL ligament tearing model. No free span leakage was calculated, and no total length leakage was calculated. In addition, total SG leak rate Monte Carlo analyses were performed for each SG with indications, and no free span or total length leakage was calculated at 95/50 confidence levels using a POD of 1.0.

Table 12R13 Minimum Scope for Plus Point Inspection of Dented TSP Intersections

. . .

TSP	SG 2-1	SG 2-2	SG 2-3	SG 2-4	TOTAL			
1H	2	85	6	1	94			
2H		23	4	4	31			
3H		2	8	23	33			
4H		38	2	3	43			
5H		2			2			
6H								
7H								
TOTAL	2	150	20	31	203			

≥ 5 Volt Dents

TSP	SG 2-1	SG 2-2	SG 2-3	SG 2-4	TOTAL	
1H	0	303	1	0	304	
2H	0	6	0	0	6	
3H	0	1	1	26	28	
4H	0	84	0	1	85	
5H	2	0	0	0	2	
6H	0	0	0	0	0	
7H	0	0	1	4	5	
7C	0	0	1	0	1	
6C	0	0	0	0	0	
5C	0	0	0	0	0	
4C	0	0	3	0	3	
3C	0	0	0	0	0	
2C	0	0	0	0	0	
1C	0	0	0	1	1	
TOTAL	2	394	7	32	435	

2R13 Plus Point dent inspection criteria:

- 100% of ≥ 5 volt dents
- SG 2-1: 20% of > 2 and <5 volt dents at 1H
- SG 2-2: 100% of > 2 and <5 volt dents from 1H to 5H (critical area), 20% at 6H
- SG 2-3: 100% of > 2 and <5 volt dents from 1H to 3H (critical area), 20% at 4H
- SG 2-4: 100% of > 2 and <5 volt dents from 1H to 3H (critical area), 20% at 4H
- All 20% samples shall contain a minimum of 50 dents. If the population of >2 and <5 volt dents at the TSP elevation is less than 50, then inspect 100% of >2 and <5 volt dents at the TSP.

Table 2 - Axial PWSCC Cumulative Probability Distribution (CPD) Growth Rates per EFPY at 604F												
	2R11	data	1R12	data	2R12	data	1R13 data		Prelim OA	2R13	3 data	Final OA
Length Bin (inch)	Freq	CPD	Freq	CPD	Freq	CPD	Freq	CPD	Lower Bound CPD from 4 prior cycles	Freq	CPD	Lower Bound CPD from 5 prior cycles
0	19	0.388	78	0.363	22	0.379	58	0.257	0.257	11	0.193	0.193
0.01	4	0.469	24	0.474	7	0.500	27	0.376	0.376	4	0.263	0.263
0.02	13	0.735	45	0.684	13	0.724	24	0.482	0.482	8	0.404	0.404
0.03	3	0.796	17	0.763	7	0.845	34	0.633	0.633	6	0.509	0.509
0.04	2	0.837	19	0.851	3	0.897	19	0.717	0.717	8	0.649	0.649
0.05	2	0.878	14	0.916	1	0.914	14	0.779	0.779	5	0.737	0.737
0.06	4	0.959	7	0.949	1	0.931	21	0.872	0.872	5	0.825	0.825
0.07	0	0.959	5	0.972	1	0.948	7	0.903	0.903	4	0.895	0.895
0.08	0	0.959	1	0.977	2	0.983	3	0.916	0.916	0	0.895	0.895
0.09	2	1.000	4	0.995	1	1.000	4	0.934	0.934	0	0.895	0.895
0.1	0	1.000	1	1.000	0	1.000	4	0.951	0.951	1	0.912	0.912
0.11	0	1.000	0	1.000	0	1.000	1	0.956	0.956	2	0.947	0.947
0.12	0	1.000	0	1.000	0	1.000	2	0.965	0.965	0	0.947	0.947
0.13	0	1.000	0	1.000	0	1.000	1	0.969	0.969	3	1.000	0.969
0.14	0	1.000	0	1.000	0	1.000	0	0.969	0.969	0	1.000	0.969
0.15	0	1.000	0	1.000	0	1.000	6	0.996	0.996	0	1.000	0.996
0.16	0	1.000	0	1.000	0	1.000	0	0.996	0.996	0	1.000	0.996
0.17	0	1.000	0	1.000	0	1.000	0	0.996	0.996	0	1.000	0.996
0.18	0	1.000	0	1.000	0	1.000	1	1.000	1.000	0	1.000	1.000
Total	49		215		58		226			57		
Table	2 - Axia	I PWS	CC Cumi	ulative	Probabi	lity Dis	tributior	n (CPD)	Growth Ra	tes pe	r EFPY	at 604F
-----------------------------	----------	-------	---------	---------	---------	----------	-----------	---------	--	--------	--------	--
	2R11	data	1R12	data	2R12	data	1R13	data	Prelim OA	2R13	3 data	Final OA
MD Bin (%TW fraction)	Freq	CPD	Freq	CPD	Freq	CPD	Freq	CPD	Lower Bound CPD from 4 prior cycles	Freq	CPD	Lower Bound CPD from 5 prior cycles
0	30	0.612	63	0.293	20	0.345	141	0.624	0.293	35	0.614	0.293
0.01	1	0.633	8	0.330	0	0.345	14	0.686	0.330	0	0.614	0.330
0.02	2	0.673	20	0.423	6	0.448	9	0.726	0.423	4	0.684	0.423
0.03	0	0.673	16	0.498	2	0.483	17	0.801	0.483	1	0.702	0.483
0.04	2	0.714	19	0.586	8	0.621	5 ·	0.823	0.586	3	0.754	0.586
0.05	3	0.776	28	0.716	1	0.638	13	0.881	0.638	1	0.772	0.638
0.06	3	0.837	7	0.749	7	0.759	7	0.912	0.749	4	0.842	0.749
0.07	3	0.898	11	0.800	3	0.810	4	0.929	0.800	2	0.877	0.800
0.08	1	0.918	7	0.833	2	0.845	1	0.934	0.833	2	0.912	0.833
0.09	2	0.959	9	0.874	4	0.914	5	0.956	0.874	2	0.947	0.874
0.1	0	0.959	10	0.921	0	0.914	3	0.969	0.914	0	0.947	0.914
0.11	2	1.000	2	0.930	1	0.931	0	0.969	0.930	1	0.965	0.930
0.12	0	1.000	7	0.963	2	0.966	2	0.978	0.963	0	0.965	0.963
0.13	0	1.000	1	0.967	1	0.983	0	0.978	0.967	1	0.982	0.967
0.14	0	1.000	1	0.972	0	0.983	1	0.982	0.972	0	0.982	0.972
0.15	0	1.000	2	0.981	0	0.983	1	0.987	0.981	0	0.982	0.981
0.16	0	1.000	2	0.991	1	1.000	0	0.987	0.987	1	1.000	0.987
0.17	0	1.000	0	0.991	0	1.000	0	0.987	0.987	0	1.000	0.987
0.18	0	1.000	0	0.991	0	1.000	1	0.991	0.991	0	1.000	0.991
0.19	0	1.000	0	0.991	0	1.000	0	0.991	0.991	0	1.000	0.991
0.2	0	1.000	2	1.000	0	1.000	0	0.991	0.991	0	1.000	0.991
0.21	0	1.000	0	1.000	0	1.000	1	0.996	0.996	0	1.000	0.996
0.22	0	1.000	0	1.000	0	1.000	0	0.996	0.996	0	1.000	0.996
0.23	0	1.000	0	1.000	0	1.000	1	1.000	1.000	0	1.000	1.000
Total	49		215		58		226			57		

.

Table	Table 2 - Axial PWSCC Cumulative Probability Distribution (CPD) Growth Rates per EFPY at 604F 2811 data 1812 data 1813 data Prelim OA 2813 data Final OA													
	2R11	data	1R12	data	2R12	data	1R13	data	Prelim OA	2R13	3 data	Final OA		
AD Bin (%TW fraction)	Freq	CPD	Freq	CPD	Freq	CPD	Freq	CPD	Lower Bound CPD from 4 prior cycles	Freq	CPD	Lower Bound CPD from 5 prior cycles		
0	27	0.551	53	0.247	14	0.241	112	0.496	0.241	28	0.491	0.241		
0.01	5	0.653	25	5 0.363		0.345	33	0.642	0.345	7	0.614	0.345		
0.02	6	0.776	76 24 0.474		6	0.448	19	0.726	0.448	4	0.684	0.448		
0.03	2	0.816	17	0.553	4	0.517	23	0.827	0.517	4	0.754	0.517		
0.04	0	0.816	23	0.660	3	0.569	12	0.881	0.569	2	0.789	0.569		
0.05	4	0.898	23	0.767	7	0.690	10	0.925	0.690	4	0.860	0.690		
0.06	0	0.898	18	0.851	0.851 7 0		7	0.956	0.810	2	0.895	0.810		
0.07	0	0.898	12	0.907	5	0.897	3	0.969	0.897	0	0.895	0.895		
0.08	2	0.939	6	0.935	2	0.931	2	0.978	0.931	3	0.947	0.931		
0.09	1	0.959	2	0.944	1	0.948	0	0.978	0.944	0	0.947	0.944		
0.1	1	0.980	4	0.963	0	0.948	1	0.982	0.948	2	0.982	0.948		
0.11	1	1.000	1	0.967	0	0.948	1	0.987	0.948	1	1.000	0.948		
0.12	0	1.000	2	0.977	2	0.983	1	0.991	0.977	0	1.000	0.977		
0.13	0	1.000	2	0.986	0	0.983	0	0.991	0.983	0	1.000	0.983		
0.14	0	1.000	3	1.000	0	0.983	2	1.000	0.983	0	1.000	0.983		
0.15	0	1.000	0	1.000	0	0.983	0	1.000	0.983	0	1.000	0.983		
0.16	0	1.000	0	1.000	0	0.983	0	1.000	0.983	0	1.000	0.983		
0.17	0	1.000	0	1.000	1	1.000	0	1.000	1.000	0	1.000	1.000		
0.18	0	1.000	0	1.000	0	1.000	0	1.000	1.000	0	1.000	1.000		
0.19	0	1.000	0	1.000	0	1.000	0	1.000	1.000	0	1.000	1.000		
0.2	0	1.000	0	1.000	0	1.000	0	1.000	1.000	0	1.000	1.000		
Total	49		215		58		226			57				

.

Table 3Recent Inspection Growth Rates per EFPY at 604F

		90 Perce	entile Growth	per EFPY
Cuelo	Data	Length	Max	Average
Cycle	Points	inch	Depth %	Depth %
2R11	49	0.051	7.01	5.37
1R12	215	0.050	9.69	6.88
2R12	58	0.041	8.55	6.92
1R13	226	0.067	5.78	4.40
2R13	57	0.076	7.63	6.30

Table 4DIS Confirmation Rates

	SG 2-1	SG 2-2	SG 2-3	SG 2-4	Total
Number of bobbin DIS in less than or equal to 2 volt dented TSP intersections (excludes repeat PWSCC indications)	39	53	72	29	193
Number of new PWSCC indications confirmed by Plus Point	0	0	0	0	0
Plus Point confirmation rate	0%	0%	0%	0%	0%
Bobbin DIS overcall rate	100%	100%	100%	100%	100%

	Table 5 – 2R13 PWSCC ARC Summary of Results																				
									2	R13 Ad	justed ND	E			2R13 CM (WEC Mod	el)	2	R13 OA (AI	NL/TW Mo	del)
SG	R	с	TSP	Crack	Cal	Plug Reason	Ind Cat	Length (in.)	MD (%)	AD (%)	Max Volt	From	То	FS Burst Press psi	FS Leakage gpm	Total Length Burst Press psi	Total Length Leakage gpm	FS Burst Press psi	FS Leakage gpm	Total Length Burst Press psi	Total Length Leakage gpm
2	2	40	01H	1	22	Mix Mode	Repeat	0.10	25.0	15.4	0.38	-0.63	-0.53	6100	0.000	6100	0.000	6100	0.000	6100	0.000
2	2	41	01H	1	22		Repeat	0.34	36.0	25.7	0.84	0.39	0.73	6100	0.000	6100	0.000	6100	0.000	6100	0.000
2	2	41	01H	2	22		New	0.10	20.0	12.4	0.34	-0.72	-0.62	6100	0.000	6100	0.000	6100	0.000	6100	0.000
2	4	28	01H	1	22		Repeat	0.24	30.5	20.1	0.85	0.03	0.27	6100	0.000	6100	0.000	6100	0.000	6100	0.000
2	4	34	04H	1	22		Repeat	0.17	20.0	9.5	0.31	0.02	0.19	6100	0.000	6100	0.000	6100	0.000	6100	0.000
2	5	3	01H	1	22		Repeat	0.28	25.0	15.3	0.57	-0.19	0.09	6100	0.000	6100	0.000	6100	0.000	6100	0.000
2	5	26	01H	1	22_		Repeat	0.20	36.0	19.5	0.76	-0.33	-0.13	6100	0.000	6100	0.000	6100	0.000	6100	0.000
2	6	24	01H	1	22		Repeat	0.26	33.0	16.8	0.73	-0.36	-0.10	6100	0.000	6100	0.000	6100	0.000	6100	0.000
2	6	31	01H	1	22		Repeat	0.25	60.0	42.4	1.36	-0.40	-0.15	6100	0.000	6100	0.000	6100	0.000	5428	0.000
2	6	31	01H	2	22		Repeat	0.15	28.0	18.8	0.44	-0.15	0.00	6100	0.000	6100	0.000	6100	0.000	6100	0.000
2	6	36	01H	1	22	h	Repeat	0.24	30.0	18.6	0.58	-0.29	-0.05	6100	0.000	6100	0.000	6100	0.000	6100	0.000
2	6	49	01H	1	22		Repeat	0.12	48.0	34.5	0.42	-0.32	-0.20	6100	0.000	6100	0.000	6100	0.000	6100	0.000
2	7	5	01H	1	22		Repeat	0.15	39.0	26.8	0.39	-0.06	0.09	6100	0.000	6100	0.000	6100	0.000	6100	0.000
2	7	27	01H	1	22		Repeat	0.17	30.0	15.7	0.61	0.13	0.30	6100	0.000	6100	0.000	6100	0.000	6100	0.000
2	7	32	01H	1	22		Repeat	0.22	33.0	23.8	0.94	-0.37	-0.15	6100	0.000	6100	0.000	6100	0.000	6100	0.000
2	8	36	01H	1	22		Repeat	0.49	36.0	28.5	0.94	-0.26	0.23	6100	0.000	6100	0.000	6100	0.000	5758	0.000
2	8	43	04H	1	22		Repeat	0.23	39.0	28.1	0.92	-0.12	0.11	6100	0.000	6100	0.000	6100	0.000	6100	0.000
2	9	32	01H	1	22		Repeat	0.30	28.0	13.3	0.71	-0.22	0.08	6100	0.000	6100	0.000	6100	0.000	6100	0.000
2	10	14	01H	1	25		New	0.12	39.0	25.0	0.30	0.48	0.60	6100	0.000	6100	0.000	6100	0.000	6100	0.000
2	10	14	01H	2	25		New	0.07	33.0	16.5	0.49	0.66	0.73	6100	0.000	6100	0.000	6100	0.000	6100	0.000
2	10	21	_04H	1	22		Repeat	0.23	22.0	7.8	0.45	-0.03	0.20	6100	0.000	6100	0.000	6100	0.000	6100	0.000
2	10	30	01H	1	22	Mix Mode	Repeat	0.13	48.0	28.7	0.47	-0.30	-0.17	6100	0.000	6100	0.000	6100	0.000	6100	0.000
2	10	32	01H	1	22		Repeat	0.09	20.0	12.3	0.23	0.44	0.53	6100	0.000	6100	0.000	6100	0.000	6100	0.000
2	11	17	01H	1	22		Repeat	0.15	36.0	21.8	0.47	-0.50	-0.35	6100	0.000	6100	0.000	6100	0.000	6100	0.000
2	11	30	01H	1	22	due to crack 2	Repeat	0.19	39.0	22.7	0.72	-0.28	-0.09	6100	0.000	6100	0.000	6100	0.000	6100	0.000
2	11	30	01H	2	22	>40% DOP	Repeat	0.24	54.0	34.3	1.30	-0.52	-0.28	6100	0.000	6100	0.000	6100	0.000	6100	0.000
2	11	30	01H	3	22	due to crack 2	Repeat	0.12	39.0	26.8	0.60	0.51	0.63	6100	0.000	6100	0.000	6100	0.000	6100	0.000

.

								Table	5 – 2	R13 P	wscc /	ARC Su	mmary	of Res	sults						
									2	R13 Ad	justed ND	E			2R13 CM (WEC Mod	el)		2R13 OA (AI	NL/TW Mo	dei)
SG	R	с	TSP	Crack	Cal	Plug Reason	Ind Cat	Length (in.)	MD (%)	AD (%)	Max Volt	From	То	FS Burst Press psi	FS Leakage gpm	Total Length Burst Press psi	Total Length Leakage gpm	FS Burst Press psi	FS Leakage gpm	Total Length Burst Press psi	Total Length Leakage gpm
2	12	39	01H	1	22		Repeat	0.11	28.0	18.3	0.76	-0.18	-0.07	6100	0.000	6100	0.000	6100	0.000	6100	0.000
2	13	25	03H	1	22		Repeat	0.30	42.0	34.4	0.82	-0.19	0.11	6100	0.000	6100	0.000	6100	0.000	5834	0.000
2	13	41	01H	1	22		Repeat	0.27	36.0	26.6	0.74	-0.23	0.04	6100	0.000	6100	0.000	6100	0.000	6100	0.000
2	14	45	01H	1	22		Repeat	0.15	20.0	11.4	0.43	-0.08	0.07	6100	0.000	6100	0.000	6100	0.000	6100	0.000
2	15	22	01H	1	22		Repeat	0.20	33.0	20.9	0.58	-0.11	0.09	6100	0.000	6100	0.000	6100	0.000	6100	0.000
2	15	42	01H	1	22		Repeat	0.27	30.0	13.2	0.49	-0.12	0.15	6100	0.000	6100	0.000	6100	0.000	6100	0.000
2	15	51	01H	1	22		Repeat	0.18	22.5	15.6	0.41	-0.27	-0.09	6100	0.000	6100	0.000	6100	0.000	6100	0.000
2	16	49	01H	1	22		Repeat	0.22	30.0	23.3	0.97	-0.18	0.04	6100	0.000	6100	0.000	6100	0.000	6100	0.000
2	17	12	01H	1	22		Repeat	0.23	28.0	18.7	0.69	0.08	0.31	6100	0.000	6100	0.000	6100	0.000	6100	0.000
2	17	12	01H	2	22		Repeat	0.24	36.0	24.6	0.48	-0.19	0.05	6100	0.000	6100	0.000	6100	0.000	6100	0.000
2	17	12	01H	3	22		Repeat	0.09	20.0	10.4	0.31	-0.46	-0.37	6100	0.000	6100	0.000	6100	0.000	6100	0.000
2	18	10	01H	1	22	· ·	Repeat	0.14	28.0	13.6	0.48	-0.35	-0.21	6100	0.000	6100	0.000	6100	0.000	6100	0.000
2	19	15	01H	1	22		Repeat	0.14	20.0	10.6	0.48	-0.06	0.08	6100	0.000	6100	0.000	6100	0.000	6100	0.000
2	21	35	02H	1	22		Repeat	0.37	28.0	14.1	0.47	-0.22	0.15	6100	0.000	6100	0.000	6100	0.000	6100	0.000
2	21	40	01H	1	22		Repeat	0.20	33.0	19.3	0.62	-0.31	-0.11	6100	0.000	6100	0.000	6100	0.000	6100	0.000
2	21	41	01H	1	22		Repeat	0.23	30.0	20.3	0.70	0.14	0.37	6100	0.000	6100	0.000	6100	0.000	6100	0.000
2	22	44	04H	1	22		Repeat	0.18	22.0	13.4	0.40	-0.36	-0.18	6100	0.000	6100	0.000	6100	0.000	6100	0.000
2	22	55	01H	1	22		Repeat	0.18	30.0	21.5	0.50	0.08	0.26	6100	0.000	6100	0.000	6100	0.000	6100	0.000
2	23	14	01H	1	22	>40% DOP	Repeat	0.11	45.0	32.0	0.55	0.50	0.61	6100	0.000	6100	0.000	6100	0.000	6100	0.000
2	25	44	05H	1	22		Repeat	0.40	20.0	10.5	0.50	-0.25	0.15	6100	0.000	6100	0.000	6100	0.000	6100	0.000
2	29	39	01H	1	37		New	0.14	20.0	15.2	0.53	-0.21	-0.07	6100	0.000	6100	0.000	6100	0.000	6100	0.000
3	15	47	02H	1	26		Repeat	0.09	25.0	15.7	0.18	-0.15	-0.06	6100	0.000	6100	0.000	6100	0.000	6100	0.000
3	21	78	03H	1	26	T	Repeat	0.33	47.0	36.3	1.15	-0.29	0.04	6100	0.000	6100	0.000	6100	0.000	5580	0.000
3	29	41	03H	1	26		Repeat	0.09	33.0	22.0	0.47	-0.11	-0.02	6100	0.000	6100	0.000	6100	0.000	6100	0.000
3	45	56	01H	1	26		Repeat	0.12	28.0	20.5	0.57	0.22	0.34	6100	0.000	6100	0.000	6100	0.000	6100	0.000
4	3	12	03H	1	25		Repeat	0.24	47.0	33.6	0.98	-0.21	0.03	6100	0.000	6100	0.000	6100	0.000	6100	0.000
4	5	15	01H	1	18		Repeat	0.12	26.0	18.5	0.30	-0.07	0.05	6100	0.000	6100	0.000	6100	0.000	6100	0.000
4	8	20	01H	1	18		Repeat	0.24	51.0	40.0	1.07	-0.30	-0.06	6100	0.000	6100	0.000	6100	0.000	5705	0.000

								Table	ə 5 – 2	R13 F	wscc /	ARC Su	mmary	y of Res	sults						
						,			2	R13 Ac	justed ND	DE			2R13 CM (WEC Mod	ei)	:	2R13 OA (Al	NL/TW Mo	del)
				·										FS		Total	Total	FS		Total	Totai
SG	R	С	TSP	Crack	Cal	Plug Reason	Ind Cat	Length (in.)	MD (%)	AD (%)	Max Volt	From	То	Burst Press psi	FS Leakage gpm	Length Burst Press psi	Length Leakage gpm	Burst Press psi	FS Leakage gpm	Length Burst Press psi	Length Leakage gpm
4	12	17	03H	1	18		Repeat	0.20	51.0	34.1	1.09	0.10	0.30	6100	0.000	6100	0.000	6100	0.000	6100	0.000
4	14	53	03H	1	18		Repeat	0.16	31.0	18.2	0.50	-0.03	0.13	6100	0.000	6100	0.000	6100	0.000	6100	0.000
4	22	21	03H	1	51	ID/OD	New	0.24	45.0	34.9	0.90	-0.23	0.01	6100	0.000	6100	0.000	6100	0.000	6100	0.000
4	23	52	02H	1	48	ID/OD	New	0.11	33.0	23.4	0.52	-0.09	0.02	6100	0.000	6100	0.000	6100	0.000	6100	0.000

							<u>.</u>				Unad	justed	NDE	Adju	isted N	DE	Adjust 99 Un	ed for L 5% NDE Icertain	Jpper E ty	ODSC for Upp Unce Mo	CC Adju per 95% ertainty ode Onl	sted NDE Mix y	Grow	th Rate	e per E	FPY
SG	R	с	TSP	Crk No.	Axial Elev	Max Volt	Dent Volt	Orient	Stab	Mix Mode	Angle deg	MD %	AD %	Angle deg	MD %	AD %	Angle deg	MD %	AD %	Angle deg	MD %	AD %	Angle deg	MD %	AD %	Volt
22	2	40	1H	1	-0.29	0.15	22.02	OD	Vaa	Yes	28.2	86	68.7	28.2	77.0	64.2	172.1	91.4	71.5	131.5	91.4	73.4	-6.0	-9.9	-8.4	-0.02
22	2	40	1H	2	-0.24	0.21	22.92	OD	res	Yes	21.2	94	73.9	21.2	86.0	69.8	169.2	98.0	75.0	127.9	98.0	76.9	-2.1	1.3	0.6	-0.01
22	5	30	1H	1	0.25	0.18	50.10	OD			25.2	1	0.9	25.2	40.0	31.3	170.9	64.3	51.0				0.5	0.0	2.9	0.02
22	10	30	1H	1	0.05	0.16	11 84	OD	Yes	Yes	24.9	1	0.9	24.9	40.0	31.5	170.8	64.3	51.2	129.8	64.3	52.7	0.7	0.0	1.0	0.02
22	10	30	1H	2	0.14	0.30	11.04	ID	103	Yes	25.0	42	27.6	25.0	40.0	27.2	78.9	64.2	44.3				-2.3	0.0	0.0	-0.01
22	11	31	1H	1	-0.17	0.32	31.90	OD	-		29.1	35	15.9	29.1	40.0	28.7	172.5	64.3	49.4				-3.1	0.0	-0.2	0.12
22	13	24	1H	1	-0.28	0.16	37.29	OD			31.2	94	69.6	31.2	82.0	63.8	173.4	95.0	71.3					NE	D	
22	14	39	1H	1	-0.33	0.13	29.96	OD			18.2	82	60.0	18.2	68.5	52.1	168.0	85.2	63.9					NE	D	
22	15	53	1H	1	0.06	0.23	13.95	OD			52.6	12	3.3	52.6	40.0	33.0	182.2	64.3	52.1				4.7	0.0	0.8	0.02
22	17	29	4H	1	-0.08	0.57	18.28	OD			25.4	39	26.4	25.4	40.0	26.3	171.0	64.3	47.9				3.4	0.0	-1.8	-0.06
22	19	26	1H	1	-0.18	0.22	20.08	OD			32.7	34	20.1	32.7	40.0	30.1	174.0	64.3	50.3					NE	D	
22	19	27	1H	1	-0.32	0.11	41.38	OD	Vos		18.2	37	20.6	18.2	40.0	27.9	168.0	64.3	48.9					NE	D	
22	19	27	1H	2	0.32	0.17	41.50	OD	163		25.4	1	0.9	25.4	40.0	29.7	171.0	64.3	50.1				6.8	0.0	1.6	0.00
22	19	32	1H	1	0.02	0.14	4.03	OD			32.7	21	4.9	32.7	40.0	29.0	174.0	64.3	49.6				0.8	0.0	-0.9	0.02
22	24	30	1H	1	0.06	0.22	5.35	OD			21	26	14.1	21	40.0	28.6	169.2	64.3	49.3				-4.8	0.0	0.8	0.06
24	11	16	ЗH	1	-0.18	0.44	39.06	ID			25.9	99	77.7	25.9	79.0	57.9	79.8	92.5	65.0				1.7	-3.8	-3.9	0.16
22	22	24	TSH	1	-0.05	0.16	NA	OD			73													NE	D	

Table 6 – 2R13 Circumferential Indications and Growth Rates

Note 1: Growth rate based on adjusted NDE, not the uncertainty adjusted NDE. Note 2: Location (inch) is relative to the centerline of the tube support plate, or top of tubesheet. Note 3: Tube stabilization determined per evaluation by Westinghouse. Note 4: NDD means prior outage lookup did not detect any degradation, so no growth rate can be assigned for indication. Note 5: SG 2-2 R22C24 TSH indication was too small to be sized using line by line technique.

Figure 1

DCPP Unit 2 TSP Circumferential Average Depth Trending

Figure 2

Figure 3

DCPP Unit 2 Number of New TSP Circumferential Indications

Figure 4 SG 2-2 R10 C30 1H Mixed Mode Axial PWSCC and Circumferential Indications

ENCLOSURE 3 SPECIAL REPORT 06-02

AREVA REPORT 86-9024635-000 "DCPP UNIT 2 R13 VOLTAGE-BASED ARC 90-DAY SUMMARY REPORT"

20697-9 (4/29/05) **CALCULATION SUMMARY SHEET (CSS)** AREVA Document Identifier 86-9024635-000 Title DCPP Unit 2 R13 Voltage-Based ARC 90-Day Report PREPARED BY: **REVIEWED BY:** METHOD: DETAILED CHECK I INDEPENDENT CALCULATION NAME Jeffrev M. Fleck NAME Alan M. Brown SIGNATURE SIGNATURE TITLE DATE TITLE Principal Engineer Mar DATE COST REF. TM STATEMENT: **REVIEWER INDEPENDENCE** CENTER 12742 PAGE(S) 106-107 NAME David J. Cislo PURPOSE AND SUMMARY OF RESULTS: This report summarizes the Diablo Canyon Unit 2 – 2R13 inspection of the steam generator tubing with respect to the implementation of the voltage-based repair criteria as specified in NRC Generic Letter 95-05. This document provides the projected probability of burst and leak rate calculations needed for submittal to the NRC. This report provides a nonproprietary summary of the results. The supporting proprietary calculations and necessary code verifications required for safety-related calculations are contained in Reference 23. THE DOCUMENT CONTAINS ASSUMPTIONS THAT

THE FOLLOWING COMPUTER CODES HAVE BEEN USED IN THIS DOCUMENT:

CODE/VERSION/REV

CODE/VERSION/REV

lkr97v30.exe / Version 3.0

pob97v20.exe / Version 2.0

YES NO

MUST BE VERIFIED PRIOR TO USE ON

SAFETY-RELATED WORK

Framatome ANP, Inc., an AREVA and Siemens company

RECORD OF REVISIONS

	Revision Number	Affected Page(s)	Description of Change(s)
--	-----------------	------------------	--------------------------

000

All

Original Release

TABLE OF CONTENTS

1.0	11	NTRODUCTION	8
2.0	E	XECUTIVE SUMMARY	8
3.0	E	OC-13 INSPECTION RESULTS AND VOLTAGE GROWTH RATES	10
	3.1 3.2 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.3 3.4 3.5 3.6 3.7	EOC-13 INSPECTION RESULTS	10 13 14 15 16 16 17 19 19
4.0	D	ATABASE APPLIED FOR LEAK AND BURST CORRELATIONS	72
5.0	4.1 4.2 E	CONDITIONAL PROBABILITY OF BURST. PROBABILITY OF LEAK AND CONDITIONAL LEAK RATE.	72 73 .
٢	5.1 5.2 5.3	EOC-13 CONDITION MONITORING RESULTS EOC-13 BENCHMARK CALCULATIONS ASSESSMENT OF POTENTIAL UNDERPREDICTIONS	75 75 75 76
6.0	Ρ	ROBABILITY OF PRIOR CYCLE DETECTION AND EOC-14 PROJECTIONS USING DCPP POPCD	85
	6.1 6.1.1 6.1.2 6.2	UPDATED DCPP POPCD CORRELATION	35 35 86 87
7.0	Ε	OC-14 PROJECTIONS FOR PROBABILITY OF BURST AND LEAK RATE	00
	7.1 7.2 7.3	INPUTS FOR CALCULATIONS)0)1)5
8.0	R	EFERENCES	06

LIST OF TABLES AND FIGURES

Glossany of Acronyms	7
Table 3-1: 2R13 DOS >2 Volts	21
Table 3-2: 2R13 AONDB Indications	22
Table 3-3: Summary of Inspection and Repair for Tubes Affected by ODSCC at TSPs	24
Table 3-4: Summary of Largest Voltage Growth Rates per FEPY	26
Table 3-5: DOS/AONDB Voltage and Growth Distribution by TSP	20
Table 3-5. DOD/AONDB voltage and Growth Distribution by ToT	, <u>2</u> 1 - ງວ
Table 3-0. DOPP-2 Vollage Glowin for Cycles 8 infolgin 13	. 20 20
Table 3-7. Summary of Independent Cycle 15 Voltage Glowin per LTPT	. 29 20
Table 3-0. Cycle 13 Voltage Dependent Growth for SC 2-3 (Information Only)	. 30
Table 3-9. Cycle 13 Voltage Dependent Growth for All SCs (Information Only)	. 31
Table 3-10: Cycle 13 Voltage Dependent Growth for All SGS (Information Only)	. 32
Table 3-11: Cycle 12 Supplemented Voltage Dependent Growth for SG 2-1	. 33
(Used for SG 2-1 EUC-14 Projections)	. 33
Table 3-12: Cycle 12 Supplemented Voltage Dependent Growth for All SGs	. 34
(Used for SGs 2-2, and 2-3 EOC-14 Projections)	. 34
Table 3-13 Cycle 12 Supplemented Voltage Dependent Growth for SG 2-4	. 35
(Used for SG 2-4 EOC-14 Projections)	. 35
Table 3-14: Delta Volts Adjustments Based on Cycle 13 Breakpoints (Information Only)	. 36
Table 3-15: Delta Volts Adjustments Based on Cycle 12 Breakpoints	. 37
Table 3-16: BOC-14 Voltage Distributions	. 38
Table 3-17: Re-tested DOSs that Failed the Probe Wear Check	40
Table 3-18: New 2R13 DOSs >= 0.5 Volts In Tubes Inspected With A Worn Probe In 2R12	42
Table 3-19: Summary of New DOS Indications for Probe Wear Comparison	43
Table 3-20: Summary of ARC In and Out Tube Inspections in 2R12	43
Table 3-21: NDE Uncertainty Distributions	44
Table 3-22: 2R12 RTS AONDB and Results in 2R13 for Each	45
Figure 3-1: 2R13 As-Found Voltage Distributions SGs 2-1 and 2-2	48
Figure 3-2: 2R13 As-Found Voltage Distributions SGs 2-3 and 2-4	48
Figure 3-3: 2R13 Repaired Voltage Distributions SGs 2-1 and 2-2	49
Figure 3-4: 2R13 Repaired Voltage Distributions SGs 2-3 and 2-4	49
Figure 3-5: 2R13 RTS Voltage Distributions for RPC Confirmed or Not Inspected SGs 2-1 a	and
2-2	50
Figure 3-6: 2R13 RTS Voltage Distributions for RPC Confirmed or Not Inspected SGs 2-3 a	and
2-4	. 50
Figure 3-7: 2R13 RTS Voltage Distributions SGs 2-1 and 2-2	. 51
Figure 3-8: 2R13 RTS Voltage Distributions SGs 2-3 and 2-4	. 51
Figure 3-9: 2R13 DOS and AONDB vs. TSP Elevation	52
Figure 3-10: Cycle 13 Growth Distributions SGs 2-1 and 2-2	53
Figure 3-11: Cycle 13 Growth Distributions SGs 2-3 and 2-4	53
Figure 3-12: Cycle 13 Independent Growth Curves – All SGs	54
Figure 3-13: Historical Change in Growth and BOC Voltage - All SGs	54
Figure 3-14: Cycle 12 vs. Cycle 13 Growth Comparison for SG 2-1	55
Figure 3-15: Cycle 12 vs. Cycle 13 Growth Comparison for SG 2-2	55
Figure 3-16: Cycle 12 vs. Cycle 13 Growth Comparison for SG 2-3	56
Figure 3-17: Cycle 12 vs. Cycle 13 Growth Comparison for SG 2-4	56
Figure 3-18: SG 2-1 Cycle 13 Growth vs. BOC Voltage	57

Figure 3-19: SG 2-2 Cycle 13 Growth vs. BOC Voltage	57
Figure 3-20: SG 2-3 Cycle 13 Growth vs. BOC Voltage	58
Figure 3-21: SG 2-4 Cycle 13 Growth vs. BOC Voltage	58
Figure 3-22: Cycle 13 Growth vs. BOC Voltage for All Steam Generators	59
Figure 3-23: SG 2-3 Cycle 13 VDG Breakpoint Analysis Results	60
Figure 3-24: SG 2-4 Cycle 13 VDG Breakpoint Analysis Results	60
Figure 3-25: Composite Cycle 13 VDG Breakpoint Analysis Results	61
Figure 3-26: Cycle 13 VDG for SG 2-3	62
Figure 3-27: Cycle 13 VDG for SG 2-4	62
Figure 3-28: Cycle 13 VDG for All SGs	63
Figure 3-20: SG 2-1 Supplemented Cycle 12 VDC Breakpoint Analysis Results	64
Figure 3-29: SG 2-1 Supplemented Cycle 12 VDG Breakpoint Analysis Results	64
Figure 3-30. 30 2-4 Supplemented Cycle 12 VDG Dieakpoint Analysis Results	65
Figure 3-31. Composite 36 Supplemented Cycle 12 VDG Dieakpoint Analysis Results	60
Figure 3-32. Supplemented Cycle 12 VDG for SG 2-1	00
Figure 3-33: Supplemented Cycle 12 VDG for SG 2-4	00
Figure 3-34: Supplemented Cycle 12 VDG for All SGS	b/
Figure 3-35: 2R13 Probe Wear Voltage Comparison	68
Figure 3-36: Bobbin Voltage Uncertainty Distributions	68
Figure 3-37: Inferred Voltage / Measured Voltage Comparison	69
Figure 3-38: +Point ¹¹ Indication to Bobbin Voltage Comparison for SG 2-1	70
Figure 3-39: +Point ^M Indication to Bobbin Voltage Comparison for SG 2-2	70
Figure 3-40: +Point [™] Indication to Bobbin Voltage Comparison for SG 2-3	71
Figure 3-41: +Point ^{IM} Indication to Bobbin Voltage Comparison for SG 2-4	71
Table 4-1: Burst Pressure vs. Bobbin Amplitude Correlation	72
Table 4-2: Probability of Leak Correlation	73
Table 4-3: Leak Rate vs. Bobbin Amplitude Correlation (2405 psi)	74
Table 5-1: Inputs for EOC-13 Benchmark Projections	75
Table 5-2: Summary of 95-05 ARC Calculations As-found vs. Projected EOC-13	77
Table 5-3: SG 2-1 BOC-13 Voltage Distribution Used for EOC-13 Benchmark Projections	78
Table 5-4: SGs 2-2, 2-3, and 2-4 BOC-13 Voltage Distributions Used for EOC-13 Benchm	ark
Projections	79
Table 5-5: Cycle 11 Growth Distributions for SG 2-1	80
Table 5-6: Cycle 11 Growth Distributions for Remaining SGs	81
Table 5-7: As-found EOC-13 vs. Projected EOC-13 Conditions	82
Figure 5-1: As-found SG 2-1 vs Projected Voltage Distributions (DCPP POPCD)	83
Figure 5-2: As-found SG 2-2 vs Projected Voltage Distributions (DCPP POPCD)	83
Figure 5-3: As-found SG 2-3 vs Projected Voltage Distributions (DCPP POPCD)	84
Figure 5-4: As-found SG 2-4 vs Projected Voltage Distributions (DCPP POPCD)	84
Table 6-1: 2R12 POPCD Results	88
Table 6-2: DCPP Composite POPCD Results (through 9 Inspections)	80
Table 6-2: DOPT Composite FOT OD Results (infolging inspections)	an
Table 6-5. FOFOD Matrix Table for Tracking indications between 200 _n and 200 _{n+1}	01
Table 6-4. 2R12 FOFCD Vollage-Specific Summary from 2R13 Inspection Results Regardless of Voltage	91 02
Table 6-5. 2R12 FOFOD Summary non 2R13 inspection Results Regardless of Voltage	92
Table 0-0. DOPP Composite Voltage-Specific POPCD Summary	93
Table 6-7: DCPP Composite POPCD Summary Regardless of Voltage	94
Table 6-8: DCPP POPOD Log Logistic Parameters	95
Table 6-9: New DCPP POPCD Correlation Comparison to Previous POPCD Correlations	96
(Best Estimates)	96

Table 6-10: 2R12 POPCD Results In Industry Format	97
Table 6-11: DCPP Composite POPCD Results (9 Inspections) In Industry Format	98
Figure 6-1: 2R12 POPCD Comparison to Composite POPCDs	99
Table 7-1: Inputs for EOC-14 POB and Leak Rate Projections	. 100
Table 7-2: Projected EOC-14 Voltage Distributions	. 102
(DCPP POPCD + Cycle 12 Supplemented Growth)	. 102
Figure 7-1: SG 2-1 EOC-14 Projected Voltage Distribution	. 103
Figure 7-2: SG 2-2 EOC-14 Projected Voltage Distribution	. 103
Figure 7-3: SG 2-3 EOC-14 Projected Voltage Distribution	. 104
Figure 7-4: SG 2-4 EOC-14 Projected Voltage Distribution	. 104
Table 7-3: Projected Leak Rate and Burst Probability at EOC-14 Using DCPP POPCD	. 105

Glossary of Acronyms

Term	Definition
	Avial ODSCC Not Detected by Bobbin
ARC	Alternate Renair Criteria
BOC	Beginning of Cycle
CDS	Computer Data Screening
CDD	Cumulative Probability Distribution Function
CED	Code of Enderal Regulations
	Cold Log Thipping
	Diable Canven Dewer Plant
	Diable Callyon Fower Fland Distorted ID Support Signal with possible Indication
DIS	Distorted OD Support Signal with possible Indication
DUS	Distorted OD Support Signal with possible indication
	Effective Full Dever Dev
EFPU	Effective Full Power Day
EFPT	Effective Full Power Year
EUT	Eddy Current Test
EUC	
	Free Span
AREVA	NDC Concris Letter 05.05
GL	NRC Generic Letter 95-05
GPIM	Gallons per Minute
	Indication Not Reportable
151	In-service Inspection
LRL	
	Lookup
MSLB	Main Steam Line Break
NDE	Non Destructive Examination
NDD	No Degradation Detected
NRC	Nuclear Regulatory Commission
ODSCC	Outside Diameter Stress Corrosion Cracking
PG&E	Pacific Gas and Electric Company
POB	Probability of Burst
POD	Probability of Detection
POPCD	Probability of Prior Cycle Detection
POL	Probability of Leak
PWSCC	Primary Water Stress Corrosion Gracking
RPC	Rotating Pancake Coll
RSS DTC	Refest Support Plate Signal
RIS	Return to Service
SG	Steam Generator
SER	Salety Evaluation Report
15	reconical Specification
152	I upe Support Plate
VDG	voltage Dependent Growth

÷ ...

1.0 Introduction

The Diablo Canyon Power Plant (DCPP) Unit 2 completed the thirteenth cycle of operation and subsequent steam generator ISI in May 2006. The unit employs four Westinghouse-designed Model 51 SGs with ⁷/₈-inch OD mill annealed alloy 600 tubing and ³/₄-inch carbon steel drilled-hole tube support plates. It should be noted that 2R13 was the last planned inspection of these SGs, as they are to be replaced at EOC-14.

In accordance with the Generic Letter 95-05, ARC implementation requires a pre-startup assessment (Ref. 1) and a 90-day post-startup tube integrity assessment. The NRC Generic Letter 95-05, Reference 2, outlines an alternate repair criterion (ARC) for allowing tubes containing ODSCC indications to remain in service if the indications are contained within the TSP structure and the measured Bobbin voltage is \leq 2.0 volts. A complete list of criteria for excluding TSP intersections from ARC application is provided in section 1.b of Reference 2 and in Reference 3. The NRC has approved implementation of the voltage-based repair criteria at both DCPP units per Reference 3. The steam generator TSP inspection results and the postulated MSLB leak rate and tube burst probabilities are summarized in this report. AREVA uses Monte Carlo codes, as described in References 4 and 5, to provide the burst and leak rate analysis simulations. These evaluations are based on the methods in Reference 6 (for burst) and the slope sampling method for calculating the leak rate as defined in Section 9.5 of Reference 8. These evaluations also use the voltage-dependent POPCD (Probability of Prior Cycle Detection) and the new growth methods as defined in References 16, 25, and 28, and approved by the NRC in Reference 29.

2.0 Executive Summary

During the 2R13 inspection, a total of 2457 DOS indications were detected with the bobbin coil. There were an additional 56 support plate intersections that were identified as containing AONDB (axial ODSCC not detected by bobbin). Since there were no DOS indications at these intersections, a bobbin voltage was inferred from the +PointTM results per the methodology provided in Reference 8.

There were 32 DOS indications greater than the lower repair limit of 2.0 volts. All of these indications were confirmed as axial ODSCC with +PointTM and were subsequently plugged. An additional 33 DOS and AONDB indications less than or equal to 2 volts were also plugged for other reasons, located in the wedge region, same TSP as ligament indication, ID/OD at same TSP, AONDB at dent >5 volts, or pluggable indications at another location in the same tube. Only one DOS was preventively repaired for high +PointTM volts.

A review of the growth rates over the previous cycle shows that axial ODSCC at support plates is most active in SG 2-4. SG 2-4 had the highest average growth rate, the highest percentage growth rate and the highest individual growth points of the entire population, consistent with past inspections. Voltage dependent growth was only evident in SGs 2-3 and 2-4. SGs 2-1 and 2-2 showed no effects of voltage dependent growth. Following the DCPP Unit 2 2R11 inspection in 2003, a significant amount of analysis and evaluation was performed on voltage growth for ODSCC at TSPs (Reference 14). The evaluations primarily involved statistical breakpoint analyses to determine where the data suggests a change in the slope of the regression curve that defines the growth data. These efforts led to the development of guidelines for determining the breakpoints and growth distributions. These guidelines were provided to the NRC via Reference 24, and were used to determine the breakpoints and growth distributions for the current OA.

The POB and leak rate projections for EOC-14 provided in this report use the DCPP-specific POPCD. The use of the voltage-dependent POPCD was approved in Reference 29. The updated POPCD correlation is provided in Section 6. Using the DCPP-specific POPCD, a conservatively estimated cycle length, and the conservative growth rate analyses discussed in Section 3.2, the projected POB at EOC-14 for the limiting steam generator (SG 2-4) was determined to be 5.94 x 10⁻³. The projected leak rate for the limiting generator (SG 2-4) was 3.75 gpm. Both of these results are below the acceptance criteria of 1 x 10⁻² and 10.5 gpm, respectively.

Section 5 provides the as-found EOC-13 condition monitoring results and results of a benchmarking study that compares the projected EOC-13 conditions to the as-found conditions. The as-found leak rate and POB at EOC-13 for the limiting steam generator (SG 2-4) were determined to be 0.78 gpm and 5.57×10^{-4} , respectively, and are both below the acceptance criteria of 10.5 gpm and 1×10^{-2} . The prior cycle operation assessment was recalculated using the actual cycle length and as shown in Section 6, the recalculated EOC-13 POB, leak rate, and number of indications were conservative in all cases compared to EOC-13 actual conditions.

3.0 EOC-13 Inspection Results and Voltage Growth Rates

3.1 EOC-13 Inspection Results

The DCPP 2R13 bobbin coil inspection consisted of a 100% full-length bobbin coil examination of in-service tubes in all four steam generators except for Rows 1 and 2 U-bends which were inspected with +PointTM. All in-service TSP intersections in the hot and cold legs were inspected with 0.720" replaceable feet bobbin probes.

Special interest +Point[™] examinations were conducted as follows in support of the voltagebased ARC, and in accordance with the Degradation Assessment (Ref. 9) and Surveillance Test Procedure STP M-SGTI (Ref. 12).

- 100% of DOS ≥ 1.7 volts
- 100% of DOS in dented intersections
- 100% of DIS (distorted ID support signal at dented intersection)
- 100% of hot leg SPR (Support Plate Residual) ≥ 2.3 volts; minimum of five largest hot leg SPRs in each steam generator
- 100% of prior cycle AONDB indications
- 100% of new DOS in cold leg thinning region
- Dented TSP examinations
- Other Special Interest or test programs that may test TSP intersections

Based upon the bobbin inspection of all steam generators, a total of 2457 indications were identified. The results of the inspections are summarized as follows:

- 1) Voltage Dependent Growth was evident in SGs 2-3 and 2-4, but was not occurring in SGs 2-1 and 2-2.
- 2) 32 DOS indications were greater than the lower repair limit (2.0 volts). Each of the indications confirmed as ODSCC, required repair by plugging, and were distributed as follows: 2 in SG 2-1, 1 in SG 2-2, 3 in 2-3, and 26 in SG 2-4. Table 3-1 lists the DOS indications that were above the LRL.
- 3) No indications were identified that exceeded the upper repair limit of 5.57 volts.
- 4) One less than or equal to 2.0 volt bobbin indication exceeded the 1.9 volt +Point[™] threshold for preventive plugging, per industry guidance in Reference 8. R33C55 in SG 2-4 had a 1.94 volt DOS and a 2.07 volt +Point[™] axial indication that was preventively plugged.
- 5) 64 indications at 56 TSP intersections were identified as AONDB (axial ODSCC not detected by bobbin). Table 3-2 lists the indications that were identified as AONDB. These are +Point[™] indications of axial ODSCC that have no signal present in the bobbin coil data (no DOS signal). These locations are typically smaller voltage ODSCC, by +Point[™], and can be accompanied by a dent that masks any bobbin signal. Per Reference 8, a methodology has been developed to assign a bobbin voltage based on a correlation to the +Point[™] voltage. Once the calculated voltages are obtained per Reference 17, the locations are subjected to exclusion criteria defined in Reference 12. All inferred voltages were small, less than about 0.96 equivalent bobbin volts.

6) Overall, 65 DOS/AONDB indications were in tubes that were repaired during 2R13. The breakdown is: 3 in SG 2-1, 6 in SG 2-2, 3 in SG 2-3, and 53 in SG 2-4. This population was used in computing the BOC-14 distributions for the OA calculations.

The average voltage was 0.64 volts, including AONDB indications. The 2R12 average was 0.61 volts. The average voltage for new DOS indications was 0.37v, excluding prior AONDB. The majority of the largest voltages were detected in SG 2-4, with the highest overall average voltage of 0.73 volts. Table 3-3 summarizes the voltage distributions for the as-found condition of the indications, the repaired indications, indications returned to service that were either confirmed by +PointTM or not inspected with +PointTM and the total indications returned to service. 32 confirmed DOS had to be repaired because they exceeded the 2-volt repair limit. The main reasons for repair of the other 33 DOS/AONDB included DOS < 2.0 volts (preventively, as discussed below), wedge exclusion criterion, AONDB at >5 volt dent, combined ID/OD degradation at the same intersection, or other pluggable tube degradation.

Reference 8 provides guidelines for preventive tube repair of less than or equal to 2.0 volt bobbin indications to reduce the potential for finding large voltage growth rates for indications left in service. PG&E committed to implement the guideline by performing +PointTM inspection of 100% of greater than 1.7 volt bobbin indications, and to repair any +PointTM confirmed ODSCC with +PointTM amplitude greater than 1.9 volts, as this could be near throughwall and potentially result in a large voltage growth rate in the next cycle. 27 less than 2.0 volt bobbin indications were therefore +PointTM inspected in 2R13 (that would not have been inspected otherwise) to meet this commitment. All of the indications were confirmed as ODSCC and the +PointTM and bobbin voltages were reviewed. Figures 3-38 to 3-41 plot all of the ODSCC +PointTM voltages versus bobbin voltages. For bobbin amplitudes less than 2.0 volts, only one +PointTM amplitude was greater than 1.9 volts (see Figure 3-41 for SG 2-4), therefore the tube was required to be preventively plugged per the guideline. This tube (R33C55 in SG 2-4) had a bobbin indication of 1.94 volts and a +PointTM indication of 2.07 volts. No other tubes were repaired less than this criterion. Therefore, it is concluded that the preventive plugging program used at 2R13 meets PG&E's commitment to the NRC.

The largest +Point[™] amplitude found in 2R13 was 2.89 volts with a DOS voltage of 4.16, and the largest bobbin voltage growth rate was 1.92 v/EFPY.

The +PointTM inspections required for DOS indications were accomplished as a part of the special interest exams. 306 +PointTM inspections were performed where DOS indications were called by bobbin, excluding the AONDB intersections. Of these inspections, 244 were confirmed yielding an overall confirmation rate of about 80%. However, when excluding the cold leg DOS signals from this count (none of which have ever confirmed as crack-like at DCPP), the confirmation rate is 89%, which is typical at DCPP.

The 2R13 +PointTM TSP inspection scope also included intersections with signals that could potentially mask or cause a flaw to be missed or misread. These inspections included dented intersections based on the criteria in the degradation assessment (Ref. 9) and hot leg intersections with support plate residuals (SPR) \ge 2.3 volts. Per GL 95-05, a large mixed residual is one that could cause a 1.0 volt bobbin signal to be missed or misread. In Reference 9, DCPP determined that a 2.3 volt SPR is the upper 95th value that could potentially mask bobbin indications \ge 1.0 volt. Per the inspection requirements specified in References 9 and

12, all hot leg intersections with SPRs with voltages ≥ 2.3 volts were inspected with +PointTM. In addition, References 9 and 12 require that, if there are less than five hot leg SPRs ≥ 2.3 volts in a given steam generator, the five largest hot leg SPRs in that steam generator should be inspected with +PointTM. A total of 3 hot leg SPRs ≥ 2.3 volts were identified and inspected, with no indications detected. Since none of the steam generators contained five SPRs ≥ 2.3 volts, the five largest hot leg SPRs were inspected in each steam generator resulting in a total of 20 inspected with +PointTM. No confirmed ODSCC indications were detected from these +PointTM inspections.

Figures 3-1 and 3-2 show the as-found voltage distribution (including AONDB) for all indications detected during the 2R13 inspection. Figures 3-3 and 3-4 show the indications removed from service at 2R13. Figures 3-5 and 3-6 illustrate the indications returned to service that were confirmed as axial ODSCC or were not inspected with RPC. Figures 3-7 and 3-8 illustrate all of the indications returned to service following the 2R13 ECT inspection. Table 3-1 lists all of the indications greater than the 2.0-volt lower repair limit. As previously stated, all of these indications were confirmed as axial ODSCC and were removed from service by plugging.

Of all the DOS indications returned to service, the largest bobbin voltage was 2.00 volts. This indication confirmed as two axial ODSCC indications with +PointTM voltages of 0.99 and 0.98 v. The single largest +PointTM voltage indication returned to service was 1.79 v, with a corresponding DOS bobbin voltage of 1.79 volts.

There were 223 intersections returned to service that contained confirmed axial ODSCC at dented TSP intersections. 53 were AONDB intersections and 170 were confirmed bobbin DOS indications. 207 of these intersections contained dents ≤ 2.0 v and 16 of these intersections contained dents between 2 and 5 volts, and there were no intersections containing >5 volt dent since it is an exclusion criteria. The largest bobbin voltage indication returned to service with a dent at the same TSP was 1.93 volts and confirmed as a 1.38v SAI. The largest +PointTM indication with a dent at the same TSP returned to service is 1.55 v, and has a corresponding DOS of 1.49 volts.

The DOS voltage distribution as a function of TSP elevation is provided in Table 3-5. Table 3-5 and Figure 3-9 show that the ODSCC mechanism is most active at the lower hot leg TSPs and the number of indications tends to decrease as a function of higher TSP elevations. This distribution shows the typical temperature dependence of ODSCC.

Table 3-5 and Figure 3-9 include a small number of cold leg DOS indications that were NDD by +PointTM based on the +PointTM inspection of new cold leg DOS (with no prior Plus Point inspections) located in the cold leg thinning region. 100% of cold leg DOS had been +PointTM inspected in the prior inspection (2R12) to define and validate the cold leg thinning region. No cold leg ODSCC has been confirmed by +PointTM to date at DCPP. Non-confirmed bobbin DOS indications in the cold leg are conservatively retained in the ODSCC ARC calculations.

3.2 Voltage Growth Rates

For projection of leak rates and tube burst probabilities at EOC-14, voltage growth rates were developed from the 2R12 and 2R13 inspection data. Cycle 13 was 1.31 EFPY in length per Reference 12. For repeat indications reported as DOS in both inspections, growth rates were determined based on comparison of the voltages called in 2R12 and 2R13. For indications not reported during the 2R12 inspection (i.e. new at 2R13), the indications were sized using the 2R12 ECT signals based on a lookup review. Lookups were also performed for all of the 2R13 DOS locations that were previously reported as DIS. In both of these cases, an OD component could not be always found in the bobbin lookup results, and these intersections were excluded from the growth distributions.

Table 3-4 provides a summary of indications with the largest growth during Cycle 13. Table 3-5 provides the maximum and average voltage growth distribution by TSP. Table 3-6 provides the average BOC voltage, average growth rate data and average percent growth for the last six cycles at DCPP-2. Figure 3-13 depicts this information graphically.

Table 3-7 shows the voltage independent growth distributions for each SG, the composite distribution for all four SGs, and the cumulative probability distribution function for each distribution. Figures 3-10 and 3-11 show the voltage growth distributions depicted in bar charts. Figure 3-12 provides the CPDF curves of the voltage growth distributions. Reviewing the Table 3-5 average and maximum voltage growth for all indications for each SG as well as the number of new indications in each SG shows that the ODSCC mechanism is most active in SG 2-4. This phenomenon of a leading SG in plants affected by ODSCC is common in the industry. Reviewing Table 3-6 and Figures 3-10 and 3-11 also supports this conclusion.

As discussed in Section 3.2.1 below, the Cycle 13 growth rates for each SG were less than Cycle 12 growth rates. There were 412 newly reported DOS indications in 2R13, the largest of which was 1.40 volts. 368 of these new indications were detected during the 2R12 lookup, sized appropriately, and subsequently included in the growth distributions. There were 42 new DOS indications that were not detected during the lookup and were, therefore, not included in the growth rate analyses. The largest of these new indications not present in the look up was 1.0v in SG 2-4 R35C65 2H. This particular location was AONDB in the previous inspection (See Section 3.7 and Table 3-22) and had an assigned voltage of 0.78 volts in 2R12. The upper 95% growth rates of all new and repeat indications were 0.18 and 0.31 v/EFPY, respectively. The average growth rates for new and repeat indications were 0.04 and 0.07 v/EFPY, respectively. These data confirm that the new indications continue to grow at a slower rate than the previously detected indications, consistent with prior inspection results at DCPP.

3.2.1 Selection of Limiting Growth Distribution for Each Steam Generator

In June 2004, PG&E received a set of RAIs from the NRC on their submittal for a permanent POPCD approval. The responses to these RAIs were provided in Reference 25. In response to one of the questions, PG&E prepared a guideline for determining the appropriate growth distribution to use for the operational assessments. This guideline was used for the determination of the growth rates used for the EOC-14 projections

provided in this document. This guideline either meets, or is more conservative than the guidance provided in References 2 and 6 and Enclosure 3 of Reference 24.

The first step in determining the most conservative growth distribution for each steam generator is to compare the SG-specific and the composite growth distributions for each of the last two cycles. These comparisons are initially done without considering the impact of voltage dependent growth. In order to determine which growth distribution to use for each steam generator in the next operational assessment, four different growth curves must be compared (SG-specific for Cycle 12, SG-specific for Cycle 13, composite for Cycle 12, and composite for Cycle 13). Worth noting is the fact that Cycle 12 had no BOC indications >1.2 volts returned to service for Cycle 12, due to the preventive repairs conducted at 2R11. Therefore, the Cycle 12 growth data is supplemented with Cycle 11 growth for BOC indications >1.2 volts at BOC-11. This approach is consistent with the 2R12 90 day report.

Figures 3-14 through 3-17 provide graphical comparisons of growth for each steam generator. All of the figures consistently show that the bounding curve comes from the supplemented Cycle 12 growth data (either SG-specific or composite), except in the case for SG 2-1. For SG 2-1, it was not apparent from the curves themselves which was bounding. Therefore, leak rate and probability of burst analyses were performed using both the SG 2-1 specific supplemented Cycle 12 growth and the composite supplemented Cycle 12 growth. These analyses showed that the SG 2-1 specific growth bounds the composite growth. For SG 2-4, the supplemented Cycle 12 SG-specific curve is bounding over the composite curve for supplemented Cycle 12, and all curves from Cycle 13. For SGs 2-2 and 2-3, the supplemented Cycle 12 composite curve is clearly bounding. In summary, for EOC-14 projections, supplemented Cycle 12 growth data was used for all SGs. SGs 2-1 and 2-4 used SG-specific curves, and SGs 2-2 and 2-3 used SG-composite curves.

3.2.2 Voltage-Dependent Growth Analyses for Cycle 13

Even though the Cycle 12 growth rates were determined to be bounding, the voltagedependent growth analyses for the Cycle 13 data are documented in this report for possible future reference. For Cycle 13, growth rates were plotted against the BOC voltage for all steam generators, including a composite curve. Their data are shown in Figures 3-18 through 3-22. As demonstrated by the figures, a positive slope exists only in SGs 2-1, 2-3, 2-4 and for the composite data. The slope is negative in SG 2-2. A threshold slope of 0.1 was defined in Reference 25 as the point at which voltagedependent growth should be considered in the operational assessment. Therefore SGs 2-1 and 2-2 are considered not to be experiencing VDG. The slope of the curve for SG 2-3 is slightly above this value at 0.113, with VDG apparent in SG 2-4 with a slope of 0.194.

Voltage-dependent growth is not a new concept, and has been documented by the operators of European steam generators affected by ODSCC. Because of their higher repair limits, their data encompass a much broader and higher range of data than at DCPP and the US plants and provides significant basis for the VDG approach.

86-9024635-000 Page 15 of 107

A significant amount of analysis and evaluation was performed following the 2R11 inspection on voltage growth for ODSCC at TSPs. The evaluations primarily involved statistical breakpoint analysis to determine where the data suggests a change in the slope of the regression curve that defines the growth data. These efforts led to the development of a guidelines document for determining the breakpoints. This document was transmitted to the NRC via Enclosure 3 of Reference 24 and currently resides in Reference 8. These methods were used to determine breakpoints for the Cycle 13 growth data.

Cycle 13 VDG breakpoint analyses were performed for SGs 2-3 and 2-4 and for a composite growth distribution (including all steam generators). Figures 3-23 through 3-25 show the scatter charts and the resulting breakpoints for all of these analyses. The analysis for SG 2-3 yielded a single breakpoint at 0.89 volts, and SG 2-4 yielded two breakpoints at 1.06v and 1.53v. The composite analysis also yielded two breakpoints at 0.88v and 1.50v. Tables 3-8 through 3-10 and Figures 3-26 through 3-28 provide the growth distributions and cumulative probability distribution function (CPDF) curves, respectively, for the Cycle 13 VDG analysis, for information only. These tables and figures reflect the results after application of the delta volts adjustments as discussed in Section 3.2.4 of this report. As shown in Figures 3-26 through 3-28, the growth rates for the higher VDG bins bound the lower bins, indicating it would be conservative to apply voltage dependent growth in EOC-14 projections if Cycle 13 growth was to be used.

3.2.3 Voltage-Dependent Growth Analyses for Cycle 12

As discussed in Section 3.2.1, the supplemented Cycle 12 growth rates were determined to bound the Cycle 13 growth rates. This section provides the VDG breakpoint analyses for the growth curves used in the EOC-14 Monte Carlo analyses. In the case of SGs 2-1 and 2-4, SG-specific growth was bounding and in the case of SGs 2-2 and 2-3, the composite growth was bounding.

Tables 3-11 through 3-13 and Figures 3-29 through 3-31 provide the results of the breakpoint analyses for the 2R12 inspection. These tables are similar to those provided in the 2R12 90 day report (Reference 27) except that the delta volts adjustments from Section 3.2.4 of this report were applied in lieu of the delta volts adjustments from Reference 27. SG-specific VDG curves for SG 2-1 and SG 2-4 are provided, as well as a composite VDG analysis curve. As shown in the figures, SG 2-1 had a single breakpoint at 1.12v, SG 2-4 had two breakpoints at 0.47 and 1.03v, and the composite analysis had breakpoints at 1.10 and 1.71 volts. These are the breakpoints that will be utilized in the EOC-14 projections, since the Cycle 12 supplemented growth is bounding. The CPDF curves of the Cycle 12 supplemented growth resulting from these breakpoints are included in Figures 3-32 through 3-34. These figures are similar to those provided in Reference 27 except for the application of the delta volts adjustments.

Another part of the growth guideline provided in Reference 25 involves implementation of a "delta volts adjustment" when implementing POPCD in operational assessment calculations. The purpose of this adjustment is to account for the possibility that the growth rates may increase over the next operating cycle. The intent of the adjustment procedure is to increase growth in a specific VDG bin when a comparison between cycle N and cycle N-1 indicates such. The growth rate guidelines that PG&E committed to utilize in combination with POPCD do not specifically address the case where growth rates decrease over subsequent cycles. The guidelines were written on the premise that once VDG is experienced, increasing growth would likely continue to occur. This is not the case in comparing Cycles 12 and 13. However, PG&E conservatively interprets the adjustment procedure applicable to this analysis, even though Cycle 12 is bounding.

The amount of the adjustment is determined by comparing the average growth from Cycle 13 to the average growth from Cycle 12 for each VDG bin. Tables 3-14 and 3-15 provide the details for the Cycle 13 and Cycle 12 breakpoints, respectively. Per the Reference 25 guideline, if the Cycle 13 data has a higher average growth rate than the Cycle 12 data, then the difference between the average growth rates would be added to each growth rate value in the distribution being used prior to binning the data. Per Table 3-14, if Cycle 13 growth rates were being used in the Cycle 14 operational assessment, a small growth adjustment would be required in SG 2-3 Bin 2. Table 3-15 shows a slight increase in the average growth rate for Bin 2 in SG 2-3 when using the Cycle 12 supplemented growth breakpoints. However, the SG-specific curve is not being used for SG 2-3 operational assessment; therefore, no adjustment is required for any of the EOC-14 projections documented in this report.

3.2.5 Growth Summary

As discussed in Section 3.2.1, supplemented Cycle 12 growth bounds Cycle 13 growth in all cases. Based on the Cycle 12 SG-specific versus composite growth evaluations, a composite curve should be used for SGs 2-2 and 2-3 and a SG-specific curve should be used for SGs 2-1 and 2-4 for EOC-14 projections.

Tables 3-11 through 3-13 show the supplemented Cycle 12 growth distributions that were used in the Monte Carlo analyses for EOC-14. These curves are shown graphically in Figures 3-32 through 3-34. As mentioned in Section 3.2.3, these tables and figures are similar to those found in the 2R12 90 day report (Reference 27) except for the application of the delta volts adjustments. As required by Generic Letter 95-05, the negative growth values were included as zero growth rates in the ARC calculations.

3.3 Voltage Distributions Used for Monte Carlo Analyses

Now that the breakpoints for the growth bins have been established (from supplemented Cycle 12 data), the BOC-14 voltage distributions to be used in the Monte Carlo simulations can be defined. Table 3-3 shows the voltage distributions for the as-found and repaired indications. Additional voltage bins must be inserted at the value of the VDG breakpoints, as shown in Table 3-16: an additional voltage bin at 1.12v was inserted into the SG 2-1 voltage distribution, an additional voltage bin at 1.71v was inserted into the voltage distributions for SGs 2-2 and 2-3, and two additional bins at 0.47 and 1.03 volts were inserted into the SG 2-4 voltage distribution. Adding these additional voltage bins forces the Monte Carlo simulation codes to apply each VDG growth distribution to the correct number of indications.

3.4 Probe Wear Criteria

In order to maintain consistent detection and sizing capabilities throughout the inspection, probe wear is monitored by following the requirements of Reference 15, which is documented in Reference 13. The first NRC requirement regarding probe wear is to minimize the potential for tubes to be inspected with a probe that had failed the probe wear check. This was accomplished by implementing the bobbin Examination Technique Specification Sheet (ETSS) #1 (Ref. 11), which required the probe have its feet replaced when failing the probe wear check, or in the case of non-changeable feet probes, the probe discarded. Review of the probe wear log sheets and the eddy current test results indicate that no tubes were inspected with a probe known to have failed the probe wear check.

If the DOS voltage is at or above the retest threshold (1.5 volts or higher) and the cal is designated as "ARC Out" on the cal board, the indication code is changed from a DOS to a RSS (retest support plate signal) indicating that a retest is required with a new probe. No new indications were detected in the tubes when retested with the new probe.

The 2R13 eddy current inspection resulted in 21 bobbin indications in excess of 1.5 volts that were inspected with a worn probe, termed as RSS (retest support signal) indications. Table 3-17 shows these RSS indications, including any less than 1.5 volt DOS indications in the same tube inspected with a worn probe, along with the retested DOS indications in a subsequent calibration group with a good probe. Figure 3-35 shows a comparison of the worn probe and good probe voltages. The final acceptable DOS voltage values compare reasonably well with the RSS voltages. In the majority of cases, the voltage of the DOS was lower than the corresponding RSS. The average change between the initial voltages (both DOS and RSS) relative to the final DOS call was 4.18%. There was only one instance (R21C79 in SG 2-4) where the final DOS indication (2.05 volts) exceeded the RSS indication (1.76 volts) by more than 15% (16.5%).

The next requirement involves monitoring tubes that contain new DOS indications that were inspected with probes that failed the wear check in the previous outage. This evaluation is intended to look for "new" large indications or a non-proportionately large percentage of "new"

86-9024635-000 Page 18 of 107

indications in tubes that failed the check in the previous outage. Table 3-18 shows the new 2R13 DOS indications that were ≥ 0.5 volts and were inspected on cal groups that failed the probe wear check in 2R12. As shown in Table 3-18, with the exception of R45C57 in SG 2-3, there are no newly reported DOS indications greater than 1 volt in tubes that were inspected with worn probes in 2R12. The lookup voltage for R45C57 for 2R12 was 1.37 volts and the 2R13 DOS voltage was 1.4 volts showing that the voltage change was not due to a probe wear condition, but a matter of POD. Additionally, about 75% of the new indications were < 0.5 volts in 2R12 based on the historical lookups performed. This also indicates that new indications are more a result of probability of detection rather than whether the tube was inspected with a worn probe in 2R12. The percentages do not indicate that a disproportionate number of new DOS >0.5 are present in tubes that were inspected with a worn probe in the previous outage.

Table 3-19 summarizes new DOS indications for probe wear comparisons. Overall there were 2457 DOS indications detected in the 2R13 inspection. 387 (about 16%) of the DOS indications were truly new indications (not reported as DIS in 2R12). Of the 387 total new indications, 108 (about 28%) were in tubes inspected with a worn probe in 2R12 and 279 were in tubes inspected with a good probe in 2R12. Additionally, the number of new indications ≥ 0.5 volts was determined to be 81. Out of these, 25 (about 31%) were in tubes that were inspected with a worn probe in 2R12. This confirms that a tube tested with a worn probe in 2R12 is no more likely to contain a large DOS in 2R13 than a tube tested with a good probe in 2R12.

Additionally, the 2R12 results were reviewed to determine the number of inspections performed with probes that passed and failed the probe wear check. These results are shown in Table 3-20. This review showed that the number of inspections performed with "ARC OUT" probes was 3661, compared to 9825 inspections that were performed with "ARC IN" probes. This total number of examinations is greater than the number of tubes in service because several tubes have multiple examinations. The ratio of ARC OUT tube inspections to the total number of bobbin inspections is about 0.27 (or 27%). This percentage is nearly equivalent to the percentage of new DOSs that was previously inspected with worn probes (about 28%). This demonstrates that the number of new indications is not biased towards the tubes that were inspected with worn probes in 2R12.

In summary, the NRC analysis requirements regarding probe wear monitoring were met during the 2R13 bobbin coil inspection and a more stringent wear tolerance is not required at DCPP.

3.5 Upper Voltage Repair Limit

Per Generic Letter 95-05, the upper repair limit must be calculated prior to each outage. The more conservative of the plant-specific average growth rate per EFPY or 30 percent per EFPY should be used as the anticipated growth rate input for this calculation. Since the average growth rate for Cycle 12 was 23.8% (Ref. 27 and Table 3-6), the required 30%/EFPY was used for the upper repair limit calculation. The structural limit used for this calculation is based on the Addendum 6 database. Based on the following formula, the upper repair limit was calculated to be 5.57v.

 $V_{URL} = \frac{V_{SL}}{1 + \frac{\% V_{NDE}}{100} + \frac{\% V_{CG}}{100}}$

where:

V_{URL} = upper voltage repair limit,

 V_{NDE} = NDE voltage measurement uncertainty = 20%,

 V_{CG} = voltage growth anticipated between inspections = 30%/EFPY x 1.62 EFPY = 48.6%, V_{SL} = voltage structural limit from the burst pressure – Bobbin voltage correlation, where the limit of 9.40 volts was used based on Reference 8.

3.6 NDE Uncertainty Distributions

NDE uncertainties must be taken into account when projecting the end-of-cycle voltages for the next operating cycle. The NDE uncertainties used in the calculations of the EOC-13 voltages are described in Reference 6. The acquisition uncertainty was sampled from a normal distribution with a mean of zero, a standard deviation of 7%, and a cutoff limit of 15% based on the use of the probe wear standard. The analyst uncertainty was sampled from a normal distribution with a mean of zero, a standard deviation of 10.3%, and no cutoff limit. These uncertainty distributions are shown in Table 3-21 and Figure 3-36.

3.7 +Point[™] to Bobbin Voltage Correlation

In Reference 28, PG&E committed to providing an assessment in each 90-day report to ensure that the bobbin voltages assigned to AONDB indications continue to be conservative. That is, for those prior cycle AONDB indications that become detectable by bobbin (DOS), this assessment was to include a review of the current cycle bobbin voltages against the expected bobbin voltages assuming that all of these indications grew at the average growth rate for the DOS population.

In 2R12, 58 AONDB were returned to service for Cycle 13. 21 of these AONDB indications were reported with bobbin as DOS in 2R13 and the remaining 37 remained AONDB. Table 3-22 provides the growth rate (volt/EFPY) comparison of inferred to DOS (apparent growth), inferred to inferred, and +Point[™] to +Point[™]. Comparing the 2R12 inferred voltage to the 2R13 DOS voltage (apparent growth), results in an average increase of 0.016 v/EFPY, which is about one-fourth of the average growth rate for DOS indications detectable in both inspections,

0.063 v/EFPY. Growth rates using inferred to inferred and +Point[™] to +Point[™] both indicate an average growth of 0.025v/EFPY, which is also less than the average of the DOS population.

As a prudent measure, the bobbin to +Point[™] voltage correlation continues to be assessed by comparing the inferred bobbin voltages against the measured bobbin voltages for all of the intersections that had both bobbin DOS indications and +Point[™] indications of axial ODSCC. The 2R13 +Point[™] indications were assigned bobbin voltages based on the following equation from Reference 17.

 $V_{Bobbin-95UCL} = V_{+PT} * 1.0161 + 0.2835 + \sqrt{0.00024 + 0.0011(V_{+PT} - 0.45)^2}$

For cases where more than one +PointTM indication was reported at the same intersection, each indication was assigned an inferred voltage. These multiple voltages were then combined via the square root of the sum of the squares method (SRSS) to obtain a single inferred bobbin voltage for those intersections.

These inferred bobbin voltages were then compared to the measured bobbin voltages to ensure that the inferred voltages are generally conservative relative to the measured bobbin voltages. There were a total of 245 intersections with DOS indications that were confirmed as containing axial ODSCC with +PointTM. In 152 of these 245 cases (about 62%), the inferred voltage was over predicted relative to the measured bobbin voltage. The average difference between the inferred voltages and the measured voltages was a 0.03v over-prediction, indicating conservatism in the voltage correlation across the entire data set.

In 2R13, the largest inferred voltage for an AONDB indication was 0.96v. Since the +PointTM to bobbin voltage correlation was only used for intersections with inferred voltages less than 0.96v, this is the voltage range of interest for this comparison. When only the inferred voltages less than 0.96v are considered, 108 of 146 (about 74%) inferred voltages were over predicted relative to the measured voltage. The average difference between the inferred voltages and the measured bobbin voltages for this population was a 0.10v over-prediction.

Figure 3-37 shows these comparisons graphically. This figure shows the inferred voltages plotted against the measured bobbin voltages. The linear regression fit shows that, in the region of interest (<0.96 inferred volts), the inferred bobbin voltage is comparable to the measured bobbin voltage. Based on the facts that about 74% of the voltages are over predicted and the average difference in voltages is a 0.10v over-prediction in the range of voltages where it is utilized, the +PointTM to bobbin voltage correlation is shown to provide reasonable and conservative results at 2R13.

SG	Row	Col	Ind	Elev	Volts				
21	5	45	DOS	1H	2.23				
21	13	39	DOS	1H	2.39				
22	19	85	DOS	2H	2.07				
23	12	8	DOS	2H	2.13				
23	20	32	DOS	1H	2.1				
23	22	52	DOS	2H	3.19				
24	1	60	DOS	2H	3.75				
24	6	56	DOS	1H	2.05				
24	6	64	DOS	2H ⁻	3.82				
24	7	10	DOS	2H	2.81				
24	7	78	DOS	3H	4.16				
24	8	69	DOS	_2H	2.19				
24	8	76	DOS	<u>2H</u>	3.09				
24	11	73	DOS	2H	2.23				
24	11	79	DOS	ЗН	2.63				
24	12	90	DOS	_2H	2.67				
24	13	88	DOS	2H	3.32				
24	14	36	DOS	2H	2.58				
24	14	69	DOS	2H	2.05				
24	16	84	DOS	2H	2.99				
24	18	70	DOS	2H	2.06				
24	18	71	DOS	2H	2.91				
24	19	79	DOS	_2H	2.05				
24	20	43	DOS	2H	2.35				
24	21	42	DOS	1H	2.18				
24	21	79	DOS	2H	2.05				
24	30	16	DOS	2H	2.25				
24	36	34	DOS	зн	3.99				
24	38	25	DOS	2H	2.26				
24	38	61	DOS	2H	3.24				
24	40	30	DOS	1H	2.14				
24	40	47	DOS	2H	2.01				

	Table 3-2: 2R13 AONDB Indications										
SG	Row	Col	Elev	+Pt	+Pt	Reason for Repair	Dent)ent Inferred Bobbir			
00				Ind	Volts		Voltage	Indication	Intersection		
21	2	47	2H	SAI	0.19		0.89	0.494	0.494		
21	17	9	ЗH	SAI	0.14		0.41	0.444	0.444		
21	44	55	1H	SAI	0.13		0.85	0.434	0.434		
21	44	57	2H	SAI	0.12		0.51	0.424	0.424		
22	4	29	1H	SAI	0.25	AONDB @ >5V DENT @ 1H	23.65	0.554	0.554		
22	8	13	1H	SAI	0.20		2.47	0.504	0.504		
22	8	30	1H	SAI	0.25		2.22	0.554	0.554		
22	13	22	1H	SAI	0.17		3.88	0.474	0.474		
22	14	42	1H	SAI	0.25		2.81	0.554	0.554		
22	14	50	1H	SAI	0.16		2.64	0.464	0.464		
22	15	41	1H	SAI	0.32	AONDB @ >5V DENT @ 1H	9.01	0.625	0.625		
22	17	42	1H	SAI	0.30		3.73	0.605	0.605		
22	19	45	1H	SAI	0.34		0.65	0.645	0.645		
22	19	75	1H	SAI	0.27		0.86	0.574	0.574		
22	22	28	2H	SAI	0.17		1.87	0.474	0.474		
22	22	62	1H	SAI	0.14		0.96	0.444	0.444		
22	24	40	2H	SAI	0.18		1.12	0.484	0.484		
22	25	8	1H	SAI	0.23		2.03	0.534	0.534		
22	25	46	2H	SAI	0.40		1.26	0.706	0.706		
22	26	17	ЗH	SAI	0.12			0.424	0.050		
22	26	17	3H	SAI	0.20		0.39	0.504	0.659		
22	27	50	3H	SAI	0.18		0.36	0.484	0.484		
22	29	36	2H	SAI	0.12		0.52	0.424	0.424		
22	31	22	2H	SAI	0.32		1.47	0.625	0.625		
22	33	22	1H	SAI	0.17	······································	0.42	0.474	0.474		
22	35	67	2H	SAI	0.11	· · · · · · · · · · · · · · · · · · ·	0.42	0.414	0.414		
22	37	46	2H	SAI	0.28		1.4	0.584	0.584		
22	45	39	2H	SAI	0.46		1.3	0.766	0.766		
23	5	66	3H	SAI	0.19		1.84	0.494	0.494		
23	13	58	1H	SAI	0.26		0.71	0.564	0.564		
23	17	80	1H	SAI	0.49	••••• •••••		0.797			
23	17	80	1H	SAI	0.23		1.4	0.534	0.959		
23	19	77	2H	SAI	0.11			0.414			
23	19	77	2H	SAI	0.10	· · · · · · · · · · · · · · · · · · ·	0.84	0.404	0.579		
23	22	10	1H	SAI	0.15		0.44	0.454	0.454		
23	26	80	2H	SAI	0.11		0.9	0.414	0.414		
23	29	61	1H	SAI	0.11			0.414			
23	29	61	1H	SAI	0.31		0.72	0.615	0.891		
23	29	61	1H	SAI	0.19	- <u> </u>		0.494			
23	29	66	2H	SAI	0.15		0.43	0.454	0.454		
23	30	15	1H	SAI	0.24		0.65	0.544	0.544		
23	33	35	2H	SAI	0.08	· ····································	0.69	0.385	0.385		
23	33	57	2H	SAI	0.15			0.454			
23	33	57	2H	SAI	0.16		0.43	0.464	0.650		
23	35	71	1H ·	SAI	0.07		0.2	0.375	0.375		

86-9024635-000 Page 23 of 107

Table 3-2: 2R13 AONDB Indications											
	+Pt	+Pt	Descent for Description	Dent	Inferred Bobbin Volts						
SG	Row	COI	Elev	Ind	Volts	Reason for Repair	Voltage	Indication	Intersection		
23	37	61	1H	SAI	0.13		1.39	0.434	0.434		
24	2	21	зн	SAI	0.28		2.88	0.584	0.584		
24	2	36	2H	SAI	0.18		0.72	0.484	0.484		
24	5	27	1H	SAI	0.10		0.83	0.404	0.404		
24	7	40	ЗH	SAI	0.10		3.85	0.404	0.404		
24	8	41	1H	SAI	0.27		0.52	0.574	0.574		
24	10	29	ЗН	SAI	0.17		1.52	0.474	0.474		
24	11	37	4H	SAI	0.27		0.2	0.574	0.702		
24	11	37	4H	SAI	0.10		0.5	0.404	0.705		
24	16	36	1H	SAI	0.14		0.32	0.444	0.703		
24	16	36	1H	SAI	0.24		0.32	0.544	0.703		
24	22	16	1H	SAI	0.29		0.71	0.595	0.595		
24	22	21	ЗН	SAI	0.11	SAI-ID/OD @ 3H	2.8	0.414	0.414		
24	22	22	ЗН	SAI	0.15		0.88	0.454	0.454		
24	24	10	1H	SAI	0.21		0.85	0.514	0.514		
24	25	27	1H	SAI	0.13		1.05	0.434	0.434		
24	27	19	ЗH	SAI	0.11		0.35	0.414	0.414		
24	30	36	ЗН	SAI	0.27		3.37	0.574	0.574		
24	42	61	1H	SAI	0.15		0.8	0.454	0.454		

Table 3-3: Summary of Inspection and Repair for Tubes Affected by ODSCC at TSPs

	SG 2-1					SG 2-2				SG 2-3			
Voltage	As-	Popairod	DOSs Returned to Se	ervice	As-	Repaired - 3 Tubes	DOSs Returned to Service		As-	Repaired	DOSs Returned to Se	ervice	
Bin	Found EOC-13	Tubes	Conf. ODSCC or Not Insp w/ +Pt	Total	Found EOC-13		Conf. ODSCC or Not Insp w/ +Pt	Total	Found EOC-13	Tubes	Conf. ODSCC or Not Insp w/ +Pt	Total	
0.1	0	0	0	0	0	0	0	0	2	0	2	2	
0.2	47	0	47	47	· 37	0	35	37	30	0	28	30	
0.3	83	1	81	82	66	0	61	66	46	0	42	46	
0.4	106	0	101	106	85	0	81	85	66	0	64	66	
0.5	62	0	60	62	71	2	67	69	50	0	46	50	
0.6	57	0	54	57	53	1	49	52	35	0	34	35	
0.7	44	0	42	44	44	1	40	43	27	0	27	27	
0.8	30	0	30	30	31	0	30	31	25	0	23	25	
0.9	27	0	26	27	15	0	15	15	12	0	12	12	
1	17	0	17	17	14	0	14	14	9	0	9	9	
1.1	17	0	17	17	8	0	8	8	5	0	5	5	
1.2	9	0	9	9	7	1	6	6	4	0	4	4	
1.3	4	0	4	4	7	0	7	7	2	0	2	2	
1.4	11	0	11	11	8	0	8	8	4	0	4	4	
1.5	3	0	3	3	3	0	3	3	5	0	5	5	
1.6	6	0	6	6	3	0	3	3	2	0	2	2	
1.7	2	0	2	2	2	0	2	2	3	· 0	3	3	
1,8	1	0	1	1	0	0	0	0	1	0	1	1	
1.9	1	0	1	1	1	0	1	1	0	0	0	0	
2	2	0	2	2	0	0	0	0	1	0	1	1	
2.1	0	0	· 0	0	1	1	0	0	1	1	0	0	
2.2	0	0	0	0	0	0	0	0	1	1	0	0	
2.3	1	1	0	0	0	0	0	0	0.	0	0	0	
2.4	1	1	0	_0	0	0	0	0	0	0	0	0	
2.5	0	0	0	0	0	0	0	0	0	0	0	0	
2.6	0	0	0	0	0	0	0	0	0	0	0	0	
2.7	0	0	0	_0	0	0	0	0	0	0	0	0	
2.8	0	0	0	0	0	0	0	0	0	0	0	0	
2.9	0	0	0	0	0	0	0	0	0	0	0	0	
3	0	0	0	0	0	0	0	0	0	0	0	0	
>3	0	0	0	0	0	0	0	0	1	1	0	0	
Total	531	3	514	528	456	6	430	450	332	3	314	329	
>1V	58	2	56	56	40	2	38	38	30	3	27	27	
>2V	2	2	0	0	1	1	0	0	3	3	0	0	
Ŋ

Table 3-3 (cont): Summary of Inspection and Repair for Tubes Affected by ODSCC at TSPs

ł,

		SG	2-4			Composite	e of All SGs	
Voltage	As-	Repaired	DOSs Returned to Se	ervice	As-	Repaired	DOSs Returned to Se	ervice
Bin	Found EOC-13	Tubes	Conf. ODSCC or Not Insp w/ +Pt	Total	Found EOC-13	Tubes	Conf. ODSCC or Not Insp w/ +Pt	Total
0.1	1	0	1	1	3	0	3	3
0.2	43	0	39	43	157	0	149	157
0.3	117	2	112	115	312	3	296	309
0.4	168	4	160	164	425	4	406	421
0.5	144	5	137	139	327	7	310	320
0.6	128	2	126	126	273	3	263	270
0.7	118	4	114	114	233	5	223	228
0.8	_69	2	67	67	155	2	150	153
0.9	77	3	74	74	131	3	127	128
1	62	0	62	62	102	0	102	102
1.1	57	1	56	56	87	1	86	86
1.2	43	1	42	42	63	2	61	61
1.3	33	0	33	33	46	0	46	46
1.4	39	2	37	37	62	2	60	60
1.5	24	0	24	24	35	0	35	35
1.6	13	0	13	13	24	0	24	24
1.7	12	0	12	12	19	0	19	19
1.8	4	0	4	4	6	0	6	6
1.9	5	0	5	5	7	0	7	7
2	11	.1	10	10	14	1	13	13
2.1	6	6	0	0	8	8	0	0
2.2	3	3	0	0	4	4	0	0
2.3	3	3	0	0	4	4	0	0
2.4	1	1	0	0	2	2	0	0
2.5	0	0	0	0	0	0	0	0
2.6	1	1	0	0	1	1	0	0
2.7	2	2	0	0	2	2	0	0
2.8	0	0	0	0	0	0	0	0
2.9	1	1	0	0	1	1	00	0
3	2	2	0	0	2	2	0	0
>3	7	7	0	0	8	8	0	0
Total	1194	53	1128	1141	2513	65	2386	2448
>1V	267	31	236	236	395	38	357	357
>2V	26	26	0	0	32	32	0	0

SG	Row	Col	Elev	Volts	Prev Volts (2R12)	Growth/EFPY	+Pt	New?
2-4	6	64	2H	3.82	1.3	1.924	SAI	Repeat
2-4	7	78	3H	4.16	1.72	1.863	SAI	Repeat
2-4	1	60	2H	3.75	1.41	1.786	SAI	Repeat
2-4	36	34	ЗН	3.99	1.92	1.580	SAI	Repeat
2-3	22	52	2H	3.19	1.40	1.366	SAI	Repeat
2-4	12	90	2H	2.67	0.990	1.282	SAI	Repeat
2-4	13	88	2H	3.32	1.67	1.260	SAI	Repeat
2-4	38	61	2H	3.24	1.65	1.214	SAI	Repeat
2-4	11	79	ЗH	2.63	1.22	1.076	SAI	Repeat
2-4	18	71	2H	2.91	1.63	0.977	SAI	Repeat
2-4	16	84	2H	2.99	1.80 0.908		SAI	Repeat
2-4	7	10	2H	2.81	1.640	0.893	SAI	Repeat
2-4	8	76	2H	3.09	1.94	0.878	SAI	Repeat
2-1	17	20	1H	1.47	0.34	0.863	Not Insp	Repeat
2-1	12	86	1H	1.79	0.74	0.802	SAI	Repeat
2-1	2	28	1H	1.51	0.50	0.771	Not Insp	Repeat
2-4	20	43	2H	2.35	1.410	0.718	SAI	Repeat
2-2	5	61	2H	1.20	0.27	0.710	Not Insp	Repeat
2-4	38	25	2H	2.26	1.38	0.672	SAI	Repeat
2-4	19	79	2H	2.05	1.20	0.649	SAI	Repeat
2-4	23	21	1H	1.18	0.35	0.634	Not Insp	Repeat
2-4	14	22	2H	1.18	0.35	0.634	Not Insp	Repeat
2-4	25	56	2H	1.11	0.30	0.618	Not Insp	Repeat
2-4	7	56	ЗH	1.97	1.18	0.603	SAI	Repeat
2-1	24	30	1H	1.32	0.54	0.595	Not Insp	Repeat
2-3	17	18	ЗН	1.63	0.85	0.595	Not Insp	Repeat
2-4	16	59	1H	1.12	0.35	0.588	Not Insp	Repeat
2-3	36	76	2H	1.38	0.62	0.580	Not Insp	Repeat
2-4	11	73	2H	2.23	1.48	0.573	SAI	Repeat
2-1	13	39	1H	2.39	1.68	0.542	SAI	Repeat
2-4	14	36	2H	2.58	1.87	0.542	SAI	Repeat
2-4	16	43	1H	1.07	0.37	0.534	Not Insp	Repeat
2-4	10	79	2H	1.59	0.89	0.534	Not Insp	Repeat
2-3	12	8	2H	2.13	1.43	0.534	SAI	Repeat
2-4	37	64	2H	1.14	0.45	0.527	Not Insp	Repeat
2-4	16	74	2H	1.37	0.69	0.519	Not Insp	Repeat
2-1	5	45	1H	2.23	1.55	0.519	SAI	Repeat
2-4	23	40	3H	1.91	1.23	0.519	SAI	Repeat
2-4	23	64	2H	1.81	1.14	0.511	SAI	Repeat
2-4	40	30	1H	2.14	1.48	0.504	SAI	Repeat
2-2	12	88	ЗH	1.01	0.35	0.504	Not Insp	Repeat
2-4	17	37	1H	1.25	0.59	0.504	Not Insp	Repeat

Table 3-4: Summary of Largest Voltage Growth Rates per EFPY

86-9024635-000 Page 27 of 107 -

Table 3-5: DOS/AONDB Voltage and Growth Distribution by TSP

			SG 2-1	· · · ·					SG 2-2		
Tube Support Plate	No. of Indications	Max Voltage	Average Voltage	Max Growth/ EFPY	Average Growth/ EFPY	Tube Support Plate	No. of Indications	Max Voltage	Average Voltage	Max Growth/ EFPY	Average Growth/ EFPY
1H	323	2.39	0.60	0.86	0.05	1H	155	1.82	0.57	0.19	0.02
2H	114	1.93	0.47	0.24	0.00	2H	179	2.07	0.56	0.71	0.03
3H	38	1.54	0.52	0.13	0.01	3H	67	1.51	0.49	0.50	0.03
4H	7	0.82	0.42	0.13	-0.01	4H	22	1.07	0.50	0.19	0.00
5H	22	1.07	0.53	_0.30	0.03	5H	3	0.84	0.62	0.20	0.04
6H	66	1.18	0.68	_0.39	0.06	6H	1	0.41	0.41	0.05	0.05
7H						7H	2	0.59	0.43	0.06	-0.06
CL	21	1.03	0.53	0.17	0.05	CL	27	0.63	0.39	0.20	0.01
All Inds	531	2.39	0.56	0.86	0.03	All Inds	456	2.07	0.54	0.71	0.02
			SG 2-3						SG 2-4		
Tube Support Plate	No. of Indications	Max Voltage	Average Voltage	Max Growth/ EFPY	Average Growth/ EFPY	Tube Support Plate	No. of Indications	Max Voltage	Average Voltage	Max Growth/ EFPY	Average Growth/ EFPY
1H	171	2.1	0.58	0.38	0.05	1H	419	2.18	0.69	0.63	0.07
2H	108	3.19	0.54	1.37	0.05	2H	502	3.82	0.84	1.92	0.13
3H	26	1.63	0.51	0.60	0.04	3H	178	4.16	0.64	1.86	0.09
4H	2	0.5	0.40	-0.01	-0.09	4H	66	1.34	0.55	0.32	0.06
5H	6	0.77	0.43	0.05	-0.02	5H	8	0.81	0.50	0.27	0.05
6H	1	0.51	0.51	0.15	0.15	6H	1	0.3	0.30	0.08	0.08
7H	1	0.16	0.16	-0.04	-0.04	7H					
CL	17	0.75	0.39	0.25	0.07	CL	20	0.51	0.33	0.11	-0.01
All Inds	332	3.19	0.55	1.37	0.05	All Inds	1194	4.16	0.73	1.92	0.09
		Composi	te of All For	ur SGs							
Tube Support Plate	No. of Indications	Max Voltage	Average Voltage	Max Growth/ EFPY	Average Growth/ EFPY						
1H	1068	2.39	0.63	0.86	0.05						
2H	903	3.82	0.70	1.92	0.08						
ЗH	309	4.16	0.58	1.86	0.07	-					
4H	97	1.34	0.53	0.32	0.04						
5H	39	1.07	0.51	0.30	0.03						
6H	9	1.18	0.59	0.39	0.07						
7H	3	0.59	0.34	0.06	-0.05						
CL	85	1.03	0.41	0.25	0.03						
All Inds	2513	4.16	0.63	1.92	0.06						

86-9024635-000 Page 28 of 107

		SG 2-1	SG 2-2	SG 2-3	SG 2-4	Ali
	Avg BOC Volts	0.34	0.36	0.40	0.42	0.39
Cycle 8	Average Growth Per EFPY	0.05	0.05	-0.01	0.06	0.05
	Average Percent Growth Per EFPY	•16.0%	15.2%	-1.9%	14.3%	13.3%
	Avg BOC Volts	0.388	0.362	0.324	0.387	0.377
Cycle 9	Avg Growth Per EFPY	0.04	0.09	0.17	0.17	0.13
	Average Percent Growth Per EFPY	9.2%	24.2%	52.0%	44.7%	35.6%
	Avg BOC Volts	0.42	0.43	0.48	0.53	0.49
Cycle 10	Avg Growth Per EFPY	0.14	0.08	0.12	0.20	0.16
	Average Percent Growth Per EFPY	33.2%	19.0%	25.5%	37.5%	33.4%
	Avg BOC Volts	0.42	0.44	0.38	0.51	0.47
Cycle 11	Avg Growth Per EFPY	0.13	0.10	0.13	0.23	0.18
	Average Percent Growth Per EFPY	30.9%	23.5%	34.7%	45.3%	38.7%
	Avg BOC Volts	0.42	0.43	0.45	0.50	0.46
Cycle 12	Avg Growth Per EFPY	0.11	0.09	0.05	0.14	0.11
	Average Percent Growth Per EFPY	25.3%	19.8%	11.2%	27.4%	23.8%
	Avg BOC Volts	0.52	0.51	0.49	0.61	0.56
Cycle 13	Avg Growth Per EFPY	0.03	0.02	0.05	0.09	0.06
	Average Percent Growth Per EFPY	6.5%	4.9%	10.5%	15.3%	11.3%

Table 3-6: DCPP-2 Voltage Growth for Cycles 8 through 13

Delta	SG	2-1	SG	2-2	SG	2-3	SG	2-4	То	tal
Volts Per EFPY	No. of Obs.	CPDF								
<=0.0	225	0.430	182	0.425	109	0.354	281	0.243	797	0.330
0.1	210	0.832	181	0.848	119	0.740	479	0.657	989	0.740
0.2	62	0.950	53	0.972	45	0.886	225	0.852	385	0.899
0.3	13	0.975	5	0.984	22	0.958	95	0.934	135	0.955
0.4	3	0.981	4	0.993	7	0.981	27	0.958	41	0.972
0.5	4	0.989	1	0.995	2	0.987	19	0.974	26	0.983
0.6	3	0.994	1	0.998	3	0.997	11	0.984	18	0.990
0.7	0	0.994	0	0.998	0	0.997	6	0.989	6	0.993
0.8	1	0.996	1	1.000	0	0.997	1	0.990	3	0.994
0.9	2	1.000	0	1.000	0	0.997	2	0.991	4	0.995
1	0	1.000	0	1.000	0	0.997	2	0.993	2	0.996
1.1	0	1.000	0	1.000	0	0.997	1	0.994	1	0.997
1.2	0	1.000	0	1.000	0	0.997	0	0.994	0	0.997
1.3	0	1.000	0	1.000	0	0.997	3	0.997	3	0.998
1.4	0	1.000	0	1.000	1	1.000	0	0.997	1	0.998
1.5	0	1.000	0	1.000	0	1.000	0	0.997	0	0.998
1.6	0	1.000	0	1.000	0	1.000	1	0.997	1	0.999
1.7	0	1.000	0	1.000	0	1.000	0	0.997	0	0.999
1.8	0	1.000	0	1.000	0	1.000	1	0.998	1	0.999
1.9	0	1.000	0	1.000	0	1.000	1	0.999	1	1.000
2	0	1.000	0	1.000	0	1.000	1	1.000	1	1.000
>2	0	1.000	0	1.000	0	1.000	0	1.000	0	1.000
Total	523	NA	428	NA	308	NA	1156	NA	2415	NA
Upper 95% Growth	0.1	98	0.1	83	0.2	80	0.3	51	0.2	82

Table 3-7: Summary of Independent Cycle 13 Voltage Growth per EFPY

86-9024635-000 Page 30 of 107

Table 3-8: Cycle 13 Voltage Dependent Growth for SG 2-3 (Information Only)

Consulting 1	Cycle	13 Data
(volts/EFPY)	Bin1 (<=0.89v)	Bin2 (>0.89v)
<0	100	8
0.1	116	4
0.2	41	3
0.3	17	6
0.4	3	3
0.5	1	2
0.6	2	1
0.7	0	0
0.8	0	0
0.9	0	0
1	0	0
1.1	0	0
1.2	0	0
1.3	0	0
1.4	0	11
1.5	0	0
1.6	0	0
1.7	0	0
1.8	0	0
1.9	0	0
>2	0	0
Total	280	28

Table 3-9: Cycle 13 Voltage Dependent Growth for SG 2-4 (Information Only)

	(Cycle 13 Dat	а
Growth (volts/EFPY)	Bin1 (<=1.06v)	Bin2 (1.07v- 1.53v)	Bin3 (>1.53v)
<0	261	19	1
0.1	447	28	4
0.2	190	34	1
0.3	74	15	6
0.4	17	8	2
0.5	10	8	1
0.6	6	4	1
0.7	3	3	0
0.8	0	1	0
0.9	0	0	2
1	0	0	2
1.1	0	1	0
1.2	0	0	0
1.3	1	0	2
1.4	0	0	0
1.5	0	0	0
1.6	0	0	1
1.7	0	0	0
1.8	0	1	0
1.9	0	0	1
2	0	1	0
>2	0	0	0
Total	1009	123	24

Table 3-10: Cycle 13 Voltage Dependent Growth for All SGs (Information Only)

	(Cycle 13 Dat	а
Growth (volts/EFPY)	Bin1 (<=0.88v)	Bin2 (0.89v- 1.5v)	Bin3 (>1.5v)
<0	705	89	3
0.1	887	95	7
0.2	305	76	4
0.3	90	39	6
0.4	20	17	4
0.5	12	13	1
0.6	9	6	3
0.7	3	3	0
0.8	2	1	0
0.9	2	0	2
1	0	0	2
1.1	0	1	0
1.2	0	0	0
1.3	0	1	2
1.4	0	1	0
1.5	0	0	0
1.6	0	0	1
1.7	0	0	0
1.8	0	1	0
1.9	0	0	1
2	0	1	0
>2	0	0	0
Total	2035	344	36

	(0000 10			0,0001011	·/	
Crowth	Cycle 1	2 Data	Cycle 1	1 Data	Comb	pined
(volts/EFPY)	Bin1 (<=1.12v)	Bin2 (>1.12v)	Bin1 (<=1.12v)	Bin2 (>1.12v)	Bin1 (<=1.12v)	Bin2 (>1.12v)
<0	75	0	0	3	75	3
0.1	198	0	0	1	198	1
0.2	86	2	0	1	86	3
0.3	43	0	0	1	43	1
0.4	19	1	0	0	19	1
0.5	6	0	0	0	6	0
0.6	2	0	0	0	2	0
0.7	2	0	0	0	2	0
0.8	2	0	0	0	2	0
0.9	1	0	0	2	1	2
1	2	0	0	0	2	0
1.1	1	0	0	0	1	0
1.2	0	0	0	0	0	0
1.3	0	0	0	0	0	0
1.4	0	0	0	0	0	0
1.5	0	0	0	0	0	0
1.6	0	0	0	1	0	1
1.7	0	0	0	0	0	0
1.8	0	0	0	0	0	0
1.9	0	0	0	0	0	0
2	0	0	0	0	0	0
2.1	0	0	0	0	0	0
2.2	0	0	0	0	0	0
2.3	0	0	0	1	0	1
2.4	0	0	0	00	0	0
2.5	0	0	0	0	0	0
2.6	00	0	0	1	0	1
2.7	0	0	00	0	0	0
2.8	0	0	0	0	0	0
2.9	0	0	0	1	0	1
3	0	0	0	0	0	0
3.1	0	0	0	0	0	0
3.2	0	0	0	0	0	0
>3.2	0	0	0	0	0	0
Total	437	3	0	12	437	15

Table 3-11: Cycle 12 Supplemented Voltage Dependent Growth for SG 2-1(Used for SG 2-1 EOC-14 Projections)

(0360 101 003 Z-Z,									
	С	ycle 12 Da	ta	С	ycle 11 Da	ta		Combined	
Growth (volts/EFPY)	Bin1 (<=1.1v)	Bin2 (1.11v- 1.71v)	Bin3 (>1.71v)	Bin1 (<=1.1v)	Bin2 (1.11v- 1.71v)	Bin3 (>1.71v)	Bin1 (<=1.1v)	Bin2 (1.11v- 1.71v)	Bin3 (>1.71v)
<0	293	7	0	0	11	0	293	18	0
0.1	856	4	0	0	7	2	856	11	2
0.2	468	9	0	0	5	0	468	14	0
0.3	192	9	0	0	6	2	192	15	2
0.4	75	2	0	0	1	0	75	3	0
0.5	29	4	0	0	1	0	29	5	0
0.6	18	3	0	0	2	1	· 18	5	1
0.7	9	0	0	0	3	0	9	3	0
0.8	4	0	0	0	2	0	4	2	0
0.9	3	0	0	0	4	0	3	4	0
1	2	1	0	0	1	0	2	2	0
1.1	1	0	0	0	1	0	1	1	0
1.2	0	0	0	0	2	0	0	2	0
1.3	0	0	0	0	2	0	0	2	0
1.4	0	0	0	0	1	1	0	1	1
1.5	1	0	0	0	1	2	1	1	2
1.6	0	0	0	0	2	1	0	2	1
1.7	0	0	0	0	0	1	0	0	1
1.8	0	0	0	0	1	0	0	1	0
1.9	0	0	0	0	1	1	0	1	1
2	0	0	0	0	1	0	0	1	0
2.1	0	0	0	0	0	0	0	0	0
2.2	0	0	0	Ō	3	1	0	3	1
2.3	0	0	0	0	2	0	0	2	0
2.4	0	0	0	0	0	0	0	0	0
2.5	0	0	0	0	1	0	0	1	0
2.6	0	0	0	0	1	1	0	1	1
2.7	0	0	0	0	0	2	0	0	2
2.8	0	0	0	0	0	0	0	0	0
2.9	0	0	0	0	0	1	0	0	1
3	0	0	0	0	0	1	0	0	1
3.1	0	0	0	0	0	0	0	0	0
3.2	0	0	0	0	0	0	0	0	0
>3.2	0	0	0	0	0	0	0	0	0
Total	1951	39	0	0	62	17	1951	101	17

Table 3-12: Cycle 12 Supplemented Voltage Dependent Growth for All SGs (Used for SGs 2-2, and 2-3 EOC-14 Projections)

86-9024635-000 Page 35 of 107

Table 3-13 Cycle 12 Supplemented Voltage Dependent Growth for SG 2-4 (Used for SG 2-4 EOC-14 Projections)

r	C		<u>ta</u>			ita	Combined		
									·
Growth (volts/EFPY)	Bin1 (<=0.47v)	Bin2 (0.48v- 1.038v)	Bin3 (>1.038v)	Bin1 (<=0.47v)	Bin2 (0.48v- 1.038v)	Bin3 (>1.038v)	Bin1 (<=0.47v)	Bin2 (0.48v- 1.038v)	Bin3 (>1.038v)
<0	47	25	3	0	0	6	47	25	9
0.1	286	98	5	0	0	8	286	98	13
0.2	134	122	10	0	0	4	134	122	14
0.3	47	68	6	0	0	7	47	68	13
0.4	3	38	3	0	0	1	3	38	4
0.5	4	11	6	0	0	1	4	11	7
0.6	1	10	5	0	Ō	3	1	10	8
0.7	3	3	0	0	0	2	3	3	2
0.8	0	1	0	0	00	2	0	1	2
0.9	0	1	1	0	0	2	0	1	3
1	0	0	1	0	00	1	0	0	2
1.1	0	0	0	0	0	0	0	0	0
1.2	0	0	0	0	0	2	0	0	2
1.3	0	0	0	0	0	2	0	0	2
1.4	0	0	0	0	0	1	0	0	1
1.5	0	1	0	0	0	3	0	1	3
1.6	0	0	0	0	0	2	0	0	2
1.7	0	0	0	0	0	0	0	0	0
1.8	0	0	0	0	0	1	0	0	1
1.9	0	0	0	0	0	2	0	0	2
2	0	0	0	0	0	1	0	0	1
2.1	0	0	0	0	0	0	0	0	0
2.2	0	0 .	0	0	0	4	0	0	4
2.3	0	0	0	0	0	11	0	0	1
2.4	0	0	0	0	0	0	0	0	0
2.5	0	0	0	0	0	1	0	0	1
2.6	0	0	0	0	0	1	0	0	1
2.7	0	0	0	0	0	1	0	0	1
2.8	0	0	0	0	0	0	0	0	0
2.9	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	11	0	0	1
3.1	0	0	0	0	0	0	0	0	0
3.2	0	0	0	0	0	0	0	0	0
>3.2	0	0	0	0	0	0	0	0	0
Total	525	378	40	0	0	60	525	378	100

	Guala		Average Growth (Volts per EFPY)				
36	Cycie	Breakpoint(s)	Bin1	Bin2	Bin3		
	Cycle 12		0.126				
2-1	Cycle 13	NA	0.033	NA	NA		
	Delta		<0				
	Cycle 12		0.102				
2-2	Cycle 13	NA	0.025] NA	NA		
	Delta		<0				
	Cycle 12		0.046	0.152	NA		
2-3	Cycle 13	0.89	0.040	0.167			
	Delta		<0	+0.015			
	Cycle 12		0.130	0.509	1.051		
2-4	Cycle 13	1.06/1.53	0.071	0.201	0.544		
	Delta		<0	<0	<0		
	Cycle 12		0.101	0.337	1.212		
Composite	Cycle 13	0.88/1.50	0.046	0.126	0.418		
1	Delta		<0	<0	<0		

Table 3-14: Delta Volts Adjustments Based on Cycle 13 Breakpoints (Information Only)

80	Cuolo	Presknaint(a)	Average G	Average Growth (Volts per EFPY)				
36	Cycle	Breakpoint(S)	Bin1	Bin2	Bin3			
	Cycle 12		0.105	0.722				
2-1	Cycle 13	1.12	0.031	0.075	NA			
	Delta		<0	<0				
	Cycle 12		0.083	0.540				
2-2	Cycle 13	1.00	0.023	0.046	NA			
	Delta		<0	<0				
	Cycle 12		0.046	0.171				
2-3	Cycle 13	0.96	0.041	0.192	NA			
	Delta		<0	+0.021				
	Cycle 12		0.095	0.178	0.638			
2-4	Cycle 13	0.47/1.03	0.057	0.084	0.248			
	Delta		<0	<0	<0			
	Cycle 12		0.108	0.514	1.542			
Composite	Cycle 13	1.10 / 1.71	0.050	0.188	0.552			
	Delta		<0	<0	<0			

Table 3-15: Delta Volts Adjustments Based on Cycle 12 Breakpoints

	se	5 2-1		SG	2-2	SG	2-3
Bin	As- Found	Repaired	Bin	As-Found	Repaired	As- Found	Repaired
0.1	0	0	0.1	0	0	2	0
0.2	47	0	0.2	37	0	30	0
0.3	83	1	0.3	66	0	46	0
0.4	106	0	0.4	85	0	66	0
0.5	62	0	0.5	71	2	50	0
0.6	57	0	0.6	53	11	35	0
0.7	44	0	0.7	44	1	27	0
0.8	30	0	0.8	31	0	25	0
0.9	27	0	0.9	15	0	12	0
1	17	0	1	14	0	9	0
1.1	17	0	1.1	8	0	5	0
1.12	2	0	1.2	7	1	4	0
1.2	7	0	1.3	7	0	2	0
1.3	4	0	1.4	8	0	4	0
1.4	11	0	1.5	3	0	5	0
1.5	3	0	1.6	3	0	2	0
1.6	6	0	1.7	2	0	3	0
1.7	2	0	1.71	0	0	0	0
1.8	1	0	1.8	0	0	1	0
1.9	1	0	1.9	1	0	0	0
2	2	0	2	0	0	1	0
2.1	0	0	2.1	1	1	1	1
2.2	0	0	2.2	0	0	1	1
2.3	1	1	2.3	0	0	0	0
2.4	1	1	2.4	0	0	0	0
2.5	0	0	2.5	0	0	0	0
2.6	0	0	2.6	0	0	0	0
2.7	0	0	2.7	0	0	0	0
2.8	0	0	2.8	0	0	0	0
2.9	0	0	2.9	0	0	0	0
3	0	0	3	0	0	0	0
3.1	0	0	3.1	0	0	0	0
3.2	0	0	3.2	0	0	1	1
Total	531	3		456	6	332	3

Table 3-16: BOC-14 Voltage Distributions

ļ

Dia	SG	2-4			
Bin	As-Found	Repaired			
0.1	1	0			
0.2	43	0			
0.3	117	2			
0.4	168	4			
0.47	96	4			
0.5	48	1			
0.6	128	2			
0.7	118	4			
0.8	69	2			
0.9	77	3			
1	62	0			
1.03	17	1			
1.1	40	0			
1.2	43	1			
1.3	33	0			
1.4	39	2			
1.5	24	0			
1.6	13	0			
1.7	12	0			
1.8	4	0			
1.9	5	0			
· 2	11	1			
2.1	66	6			
2.2	3	3			
2.3		3			
2.4		1			
2.5	0	0			
2.6	1	1			
2.7	2	2			
2.8		0			
2.9	1				
3		2			
3.1	<u> </u>				
3.2		1			
3.3	- 1	1			
3.4					
3.0					
37		0			
3.0	1	1			
30	1	<u>├──</u> <u>└</u>			
<u> </u>	1	1			
<u> </u>	<u>-</u>				
4.2	1	1			
Total	110/	52			
i utai	1 1 1 2 7 1	~~			

Table 3-16 (cont): BOC-14 Voltage Distributions

SG	Row	Col	Ind	Elev	Volts	Probe	Cal No.	ARC Out 2R13	% Difference
	6	46	RSS	2H	1.71	720RF	CL - 32	Yes	
	6	46	DOS	2H	1.58	720RF	CL - 39		-7.6%
	16	64	RSS	1H	1.65	720RF	HL - 8	Yes	
2.2	16	64	DOS	1H	1.82	720RF	CL - 37		10.3%
2-2	16	64	DOS	2H	0.27	720RF	HL - 8		
	16	64	DOS	2H	0.21	720RF	CL - 37		-22.2%
	22	28	RSS	1 <u>H</u>	1.66	720RF	CL - 19	Yes	
	22	28	DOS	1 <u>H</u>	1.36	720RF	CL - 37		-18.1%
	16	61	RSS	1H	1.63	720RF	CL - 26	Yes	
	16	61	DOS	1H_	1.47	720RF	CL - 40		-9.8%
	18	48	RSS	1H	1.85	720RF	CL - 27	Yes	
	18	_48_	DOS	1 <u>H</u>	1.78	720RF	CL - 32		-3.8%
2-3	21	42	RSS_	2H	1.56	720RF	CL - 26	Yes	
20	21	42	DOS	2H	1.48	720RF	CL - 32		-5.1%
	27	51	RSS	1H_	1.57	720RF	HL - 11	Yes	
	27	<u>5</u> 1	DOS	_1H_	1.35	720RF	<u>CL-41</u>		-14.0%
	15	39	RSS	<u>2H</u>	1.62	720RF	CL - 26	Yes	
	15	39	DOS	2H	1.55	720RF	<u>CL - 48</u>		-4.3%
	15	_23_	RSS	1H	1.57	720RF	CL - 22	Yes	
	15	23	DOS	1H_	1.5	720RF	CL - 30		-4.5%
r	_18	70	RSS	2H_	2.23	720RF	HL-9	Yes	
	18	_70_	DOS	<u>2H</u>	2.06	720RF	CL - 28		-7.6%
	18	70	DOS	4H	0.52	720RF	<u> HL - 9</u>	Yes	
	18	70	DOS	<u>4H</u>	0.45	720RF	CL - 28		-13.5%
	19	77	RSS	2H	1.91	720RF	HL - 9	Yes	
	19	77	DOS	<u>2H</u>	1.78	720RF	CL - 28		-6.8%
	19	79	RSS	2H_	1.87	720RF	HL - 12	Yes	
	19	_79_	DOS	2H	2.05	720RF	CL - 28	·	9.6%
2-4	19	79	DOS	<u>3H</u>	0.45	720RF	<u>HL - 12</u>	Yes	
	19	79	DOS	<u>3H</u>	0.35	720RF	CL - 28		-22.2%
	_21	79	DOS	<u>1H</u>	0.22	720RF	HL - 12	Yes	
	21	_79_	DOS	1H	0.31	720RF	CL - 28		40.9%
	21	79	RSS	2H	1.76	720RF	HL - 12	Yes	
•	21	79	DOS	2H_	2.05	720RF	CL - 28		16.5%
	21	_79	DOS	<u>4H</u>	0.61	720RF	HL - 12	Yes	
	21	79	DOS	<u>4H</u>	0.81	720RF	CL - 28		32.8%
	24	75	RSS	2H_	2.1	720RF	HL-9	Yes	
	_24	75	DOS	<u>2H</u>	1.92	720RF	CL - 28		8.6%
	_26	28	RSS	<u>3H</u>	1.5	720RF	CL - 16	Yes	
	26	28	DOS	<u>3H</u>	1.39	720RF	CL - 28		-7.3%
	31	31	RSS	<u>1H</u>	1.78	720RF	CL - 16	Yes	
	31	31	DOS	1 <u>H</u>	1.93	720RF	CL - 28		8.4%

Table 3-17: Re-tested DOSs that Failed the Probe Wear Check

.

SG	Row	Col	Ind	Elev	Volts	Probe	Cal No.	ARC Out 2R13	% Difference
	31	31	DOS	2H	1.47	720RF	CL - 16	Yes	
ľ	31	31	DOS	2H	1.42	720RF	CL - 28	·	-3.4%
	36	32	RSS	2H	1.52	720RF	CL - 16	Yes	
ľ	36	32	DOS	2H	1.36	720RF	CL - 28	······	-10.5%
	36	32	DOS	<u>3H</u>	0.67	720RF	CL - 16	Yes	
ł	36	32	DOS	3H_	0.6	720RF_	CL - 28		-10.4%
	36	34	DOS	1H	0.41	720RF	CL - 17	Yes	
	36	34	DOS	1 <u>H</u>	0.41	720RF	CL - 28	· · · · · · · · · · · · · · · · · · ·	0.0%
	36	34	RSS	<u>3H</u>	4.61	720RF	<u>CL - 17</u>	Yes	
2-4	36	34	DOS	<u>3H</u>	3.99	720RF	CL - 28		-13.4%
	36	34	DOS	4H	0.88	720RF_	<u>CL - 17</u>	Yes	
	36	34	DOS	<u>4H</u>	0.78	720RF	CL - 28	· 	-11.4%
	38	28_	DOS	1 <u>H</u>	1	720RF	CL - 17	Yes	
	38	28	DOS	<u>1H</u>	0.95	720RF	CL - 28		-5.0%
1	38	28	DOS	2 <u>H</u>	0.62	720RF	<u> </u>	Yes	
	38	28	DOS	<u>2H</u>	_0.44	720RF	CL - 28		-29.0%
	38	28	RSS	<u>3H</u>	2.22	720RF	<u> </u>	Yes	
	38	_28	DOS	<u>3H</u>	1.97	720RF	CL - 28		<u>-11.3%</u>
1	40	30	RSS	1 <u>H</u>	2.03	720RF	<u>CL - 16</u>	Yes	
1	40	_30_	DOS	1H	2.14	720RF	CL - 28	 	5.4%
ł	40	46	RSS	2H	1.89	720RF	CL - 11	Yes	
	40	46	DOS	2H	1.79	720RF	CL - 28		-5.3%

 Table 3-17: Re-tested DOSs that Failed the Probe Wear Check

SG	Row	Col	Ind	Elev	Volts	Probe	Cal No.	ARC Out 2R13	ARC Out 2R12
SG 2-1	36	47	DOS	2H	0.63	720RF	HL - 13	Yes	Yes
	29	58	DOS	2H	0.87	720RF	HL - 18		Yes
SG 2-2	41	54	DOS	3H	0.58	720RF	HL - 18		Yes
	23	34	DOS	2H	0.56	720RF	CL - 25	Yes	Yes
36 2-2	38	70	DOS	2H	0.55	720RF	HL - 14		Yes
	12	87	DOS	4C	0.52	720RF	CL - 36		Yes
	38	52	DOS	2H	0.5	720RF	HL - 16		Yes
-	45	57	DOS	1H	1.4	720RF	HL - 14		Yes
	11	39	DOS	1H	0.85	720RF	CL - 48		Yes
SG 2-3	7	29	DOS	2H	0.67	720RF	CL - 46		Yes
	11	48	DOS	2H	0.58	720RF	CL - 38		Yes
	43	59	DOS	1H	0.56	720RF	HL - 14		Yes
	14	48	DOS	2H	0.99	720RF	CL - 25		Yes
	23	32	DOS	2H	0.83	720RF	CL - 24		Yes
	27	42	DOS	2H	0.79	720RF	CL - 12		Yes
i i	24	83	DOS	1H	0.77	720RF	HL - 11		Yes
[[14	22	DOS	1H	0.76	720RF	CL - 23		Yes
· · ·	22	39	DOS	1H	0.69	720RF	CL - 24		Yes
5624	24	78	DOS	2H	0.66	720RF	HL - 10		Yes
302-4	21	42	DOS	2H	0.64	720RF	CL - 24		Yes
} [25	39	DOS	2H	0.58	720RF	CL - 25		Yes
	16	71	DOS	1H	0.56	720RF	HL - 9	Yes	Yes
	27	84	DOS	1H	0.52	720RF	HL - 11		Yes
1 [23	40	DOS	1H	0.52	720RF	CL - 25		Yes
[18	70	DOS	4H	0.52	720RF	HL - 9	Yes	Yes
	13	49	DOS	2H	0.51	720RF	CL - 20		Yes

Table 3-18: New 2R13 DOSs >= 0.5 Volts In Tubes Inspected With A Worn Probe In 2R12

SG	2R13 DOSs in Active Tubes (Total)	New 2R13 Not Detected in 2R12	New 2R13 Ind. In Tubes Insp. w/ Worn Probe in 2R12	New 2R13 Ind. In Tubes Insp. w/ Good Probe in 2R12	New 2R13 Ind. >=0.5 Volts	New 2R13 Ind. >=0.5 Volts in Tubes Insp. w/ Worn Probe in 2R12
2-1	527	70	9	61	8	1
2-2	433	65	17	48	12	6
2-3	319	61	21	40	11	5
2-4	1178	191	61	130	50	13
Total	2457	387	108	279	81	25

Table 3-19: Summary of New DOS Indications for Probe Wear Comparison

 Table 3-20:
 Summary of ARC In and Out Tube Inspections in 2R12

SG	# ARC Out Tubes (2R12)	# ARC In Tubes (2R12)	Total # of Inspections
2-1	908	2519	3427
2-2	797	2459	3256
2-3	912	2631	3543
2-4	1044	2216	3260
Total	3661	9825	13486

Table 3-21: NDE Uncertainty Distributions

Analyst Uncertainty

Acquisition Uncertainty

Percent	Cumulative									
Variation	Probability									
-40.0%	0.00005									
-38.0%	0.00011									
-36.0%	0.00024									
-34.0%	0.00048									
-32.0%	0.00095									
-30.0%	0.00179									
-28.0%	0.00328									
-26.0%	0.00580									
-24.0%	0.00990									
-22.0%	0.01634									
-20.0%	0.02608									
-18.0%	0.04027									
-16.0%	0.06016									
-14.0%	0.08704									
-12.0%	0.12200									
-10.0%	0.16581									
-8.0%	0.21867									
-6.0%	0.28011									
-4.0%	0.34888									
-2.0%	0.42302									
0.0%	0.50000									
2.0%	0.57698									
4.0%	0.65112									
6.0%	0.71989									
8.0%	0.78133									
10.0%	0.83419									
12.0%	0.87800									
14.0%	0.91296									
16.0%	0.93984									
18.0%	0.95973									
20.0%	0.97392									
22.0%	0.98366									
24.0%	0.99010									
26.0%	0.99420									
28.0%	0.99672									
30.0%	0.99821									
32.0%	0.99905									
34.0%	0.99952									
36.0%	0.99976									
38.0%	0.99989									
40.0%	0.99995									
Std Deviat Mean No (40.0% <u> 0.99995</u> Std Deviation = 10.3% Mean = 0.0% No Cutoff									

Variation <-15.0%	Probability 0.00000 0.01606							
<-15.0%	0.00000							
15.0%	0.01606							
-15.0 %								
-14.0%	0.02275							
-13.0%	0.03165							
-12.0%	0.04324							
-11.0%	0.05804							
-10.0%	0.07656							
-9.0%	0.09927							
-8.0%	0.12655							
-7.0%	0.15866							
-6.0%	0.19568							
-5.0%	0.23753							
-4.0%	0.28385							
-3.0%	0.33412							
-2.0%	0.38755							
-1.0%	0.44320							
0.0%	0.50000							
1.0%	0.55680							
2.0%	0.61245							
3.0%	0.66588							
4.0%	0.71615							
5.0%	0.76247							
6.0%	0.80432							
7.0%	0.84134							
8.0%	0.87345							
9.0%	0.90073							
10.0%	0.92344							
11.0%	0.94196							
12.0%	0.95676							
13.0%	0.96835							
14.0%	0.97725							
15.0%	0.98394							
>15.0%	1.00000							
Std Deviation = 7.0% Mean = 0.0% Cutoff = +/- 15.0%								

Table 3-22: 2R12 RTS AONDB and Results in 2R13 for Each

				2R12	2R12 Infe	rred Bobbin		2813		2R13	Apparent	Inferred to	+Pt to +Pt
SG	Row	Col	Elev	AONDB +Pt Volts	Indication	Intersection	2R13 Result	Bobbin Voits	2R13 +Pt Volts	Inferred Bobbin Volts	(v/EFPY) (Inferred to DOS)	Inferred Growth (v/EFPY)	Growth (v/EFPY
	2	47	2H	0.21	0.514	0.514	AONDB		0.19	0.494		-0.015	-0.015
21	22	58	_2H	0.40	0.706	0.706	DOS	0.69	0.43	0.740	-0.012	0.026	0.023
-	44	55	<u>1H</u>	0.09	0.395	0.395	AONDB		0.13	0.434		0.030	0.031
	44	57	2H	0.11	0.414	0.414	AONDB		0.12	0.424		0.008	0.008
	8	13	_1H	0.22	0.524	0.524	AONDB		0.2	0.504		-0.015	-0.015
	8	30	_1H	0.24	0.544	0.544	AONDB		0.25	0.554		0.008	0.008
	13	22	1H	0.16	0.464	0.464	AONDB		0.17	0.474		0.008	0.008
	14	42	1H	0.23	0.534	0.534	AONDB		0.25	0.554		0.015	0.015
	17	42	1H	0.29	0.595	0.595	AONDB		0.3	0.605		0.008	0.008
	19	75	1H	0.19	0.494	0.494	AONDB		0.27	0.574		0.061	0.061
	22	28	2H	0.21	0.514	0.514	AONDB		0.17	0.474		-0.031	-0.031
22	22	62	1H	0.14	0.444	0.444	AONDB		0.14	0.444		0.000	0.000
	24	40	_2H	0.16	0.464	0.464	AONDB		0.18	0.484		0.015	0.015
	25	8	_1H	0.24	0.544	0.544	AONDB		0.23	0.534		-0.008	-0.008
ľ	_25	46	2H	0.26	0.564	0.564	AONDB		0.4	0.706		0.108	0.107
	26	17	3H	0.18	0.484	0.484	2 AONDB		0.12, 0.20	0.659		0.133	0.015
	31	22	<u>2H</u>	0.30	0.605	0.605	AONDB		0.32	0.625		0.015	0.015
ļ	37	46	2H	0.30	0.605	0.605	AONDB		0.28	0.584		-0.015	-0.015
	45	39	_2H	0.44	0.746	0.746	AONDB		0.46	0.766		0.016	0.015
23	5	66	_3H	0.19	0.494	0.494	AONDB		0.19	0.494		0.000	0.000
1	6	76	2H	0.08	0.385	0.385	DOS	0.08	0.13	0.434	-0.232	0.038	0.038
ĺ	13	58	<u>1</u> H	0.20	0.504	0.504	AONDB		0.26	0.564		0.046	0.046
	16	32	1H	0.09	0.395	0.395	DOS	0.44	0.17	0.474	0.035	0.061	0.061
	18	53	2H	0.21	0.514	0.514	DOS	0.25	0.21	0.514	-0.202	0.000	0.000
	22	10	1H	0.14	0.444	0.444	AONDB		0.15	0.454		0.008	0.008
	24	45	1H	0.09	0.395	0.395	DOS	0.31	0.08	0.385	-0.065	-0.007	-0.008
	29	61	<u>1</u> H	0.29	0.595		AONDB		0.11				-0.137
	29	61	1H	0.16	0.464	0.842	AONDB		0.31	0.891	· · · · · · · · · · · · · · · · · · ·	0.037	0.115
	29	61	1H	0.07	0.375		AONDB		0.19	1		1	0.092
	29	66	2H	0.13	0.434	0.434	AONDB		0.15	0.454		0.015	0.015

86-9024635-000 Page 46 of 107

 Table 3-22:
 2R12 RTS AONDB and Results in 2R13 for Each

.

				2R12	2R12 Infe	rred Bobbin			2813		2R13	Apparent	Inferred to	+Pt to +Pt
SG	Row	Col	Elev	AONDB +Pt Volts	Indication	Intersection		2R13 Result	Bobbin Volts	2R13 +Pt Volts	Inferred Bobbin Volts	(v/EFPY) (Inferred to DOS)	Inferred Growth (v/EFPY)	Growth (v/EFPY
	33	35	2H	0.09	0.395	0.395		AONDB		0.08	0.385		-0.008	-0.008
23	33	57	2H	0.17	0.474	0.626		AONDB		0.15	0.650		0.010	-0.015
	33	57	2H	0.12	0.424	0.030		AONDB		0.16	0.050		0.010	0.031
	37	19	1H	0.36	0.665	0.665		DOS	0.54	0.45	0.756	-0.095	0.069	0.069
	37	61	1H	0.14	0.444	0.444		AONDB		0.13	0.434		-0.008	-0.008
24	2	21	3H	0.20	0.504	0.504		AONDB		0.28	0.584		0.061	0.061
	2	36	2H	0.18	0.484	0.484		AONDB		0.18	0.484		0.000	0.000
	5	27	1H	0.14	0.444	0.444		AONDB		0.10	0.404		-0.030	-0.031
	5	67	2H	0.15	0.454	0.454		DOS	0.62	0.26	0.564	0.126	0.084	0.084
	7	65	3H	0.28	0.584	0.584		DOS	0.62	0.29	0.595	0.027	0.008	0.008
	8	41	1H	0.22	0.524	0.524		AONDB		0.27	0.574		0.038	0.038
	10	29	ЗH	0.12	0.424	0.424		AONDB		0.17	0.474		0.038	0.038
	10	77	3H	0.10	0.404	0.601	DOS	0.48	0.11	0.660	-0.092	0.045	0.008	
	10	77	<u>_3H</u>	0.14	0.444	0.001	0.001		0.40	0.20				0.046
	10	84	_2H	0.22	0.524	0.687		DOS	07	0.08	0.385	0.010	-0.231	-0.107
ſ	10	84	_2H	0.14	0.444	0.001				0.24	0.544			0.076
	13	77	<u>4H</u>	0.14	0.444	0.444		DOS	0.5	0.2, 0.09	0.640	0.042	0.150	0.046
	14	7	<u>2</u> H	0.11	0.414	0.700		DOS	1.02	0.15	0.740	0.244	0.030	0.031
]	14	7	_2H	0.26	0.564					0.28				0.015
	16	36	<u> _1H</u>	0.13	0.434	0 704		AONDB		0.14	0.703		-0.001	0.008
	16	36	<u> 1H</u>	0.25	0.554				<u> </u>	0.24			0.000	-0.008
	19	82	_2H	0.11	0.414	0.600		DOS	0.86	0.13	0.434	0.198	-0.127	0.015
ľ	19	82	<u>2H</u>	0.13	0.434					0.18				0.038
	20	78	_ <u>4H</u>	0.21	0.514	0.514		DOS	0.34	0.11, 0.21	0.660	0.133	0.111	0.000
ļ	22	16	<u>1H</u>	0.27	0.574	0.574	ļ	AONDB		0.29	0.595		0.015	0.015
ļ	22	_22	<u>3H</u>	0.14	0.444	0.444	ļ	AONDB	ļ	0.15	0.454	ļ	0.008	0.008
		10	_1H	0.18	0.484	0.484		AONDB	<u> </u>	0.21	0.514		0.023	0.023
1	25	27	<u>1H</u>	0.12	0.424	0.424		AONDB	<u> </u>	0.13	0.434		0.008	0.008
l	25	66	<u>2H</u>	0.38	0.685	0.685	Į	DOS	0.63	0.55	0.858	-0.042	0.132	0.130
	30	36	<u>3H</u>	0.22	0.524	0.524		AONDB		0.27	0.574		0.038	0.038
	35	65	2H	0.11	0.414	0.777		DOS	1.00	0.15	0.788	0.170	0.009	0.031

86-9024635-000 Page 47 of 107

SG	Row	Col	Elev	2R12 AONDB +Pt Volts	2R12 Inferred Bobbin Volts		2813	2R13	2D13 +Dt	2R13	Apparent Growth	Inferred to	+Pt to +Pt
					Indication	Intersection	Result	Bobbin Volts	Volts	Bobbin Volts	(v/EFPY) (Inferred to DOS)	Growth (v/EFPY)	Growth (v/EFPY
	35	65	2H	0.14	0.444				0.23				0.069
24	35	65	2H	0.18	0.484]			0.25				0.053
	36	28	2H	0.13	0.434	0.594		0.87	0.11	0.645	0.211	0.039	-0.015
	36	28	2H	0.10	0.404		003		0.19				0.069
	36	29	- 1H	0.26	0.564	0.689		0.49	0.14	0.742	-0.152	0.041	-0.092
	36	29	1H	0.09	0.395		003		0.29				0.153
	36	33	2H	0.09	0.395	0.395	DOS	0.59	0.19	0.494	0.149	0.076	0.076
	37	29	2H	0.08	0.385	0.650	DOS	0.58	0.14	0.726	-0.054	0.058	0.046
	37	29	2H	0.22	0.524		003		0.27				0.038
[41	61	4H	0.15	0.454	0.454	DOS	0.71	0.42	0.726	0.195	0.207	0.206
								Ave	rages	0.016	0.025	0.025	

Table 3-22: 2R12 RTS AONDB and Results in 2R13 for Each

86-9024635-000 Page 48 of 107

Figure 3-1: 2R13 As-Found Voltage Distributions SGs 2-1 and 2-2

Voltage Distributions of As-Found DOS/AONDB Indications SG 2-1 and SG 2-2

Voltage Distributions of As-Found DOS/AONDB Indications SG 2-3 and SG 2-4

Figure 3-3: 2R13 Repaired Voltage Distributions SGs 2-1 and 2-2

Figure 3-4: 2R13 Repaired Voltage Distributions SGs 2-3 and 2-4

Repaired Tube Voltage Distributions SG 2-3 and SG 2-4

86-9024635-000 Page 50 of 107

Figure 3-5: 2R13 RTS Voltage Distributions for RPC Confirmed or Not Inspected SGs 2-1 and 2-2

Figure 3-6: 2R13 RTS Voltage Distributions for RPC Confirmed or Not Inspected SGs 2-3 and 2-4

86-9024635-000 Page 51 of 107

Figure 3-7: 2R13 RTS Voltage Distributions SGs 2-1 and 2-2

Voltage Distributions of All DOS/AONDB Indications Returned to Service SG 2-1 and SG 2-2

Voltage Distributions of All DOS/AONDB Indications Returned to Service SG 2-3 and SG 2-4

Figure 3-9: 2R13 DOS and AONDB vs. TSP Elevation

Distribution of Indications by TSP Location

Tube Support Plate

Figure 3-10: Cycle 13 Growth Distributions SGs 2-1 and 2-2 Delta Volts per EFPY

Delta Volts per EFPY

Delta Volts per EFPY SG 2-3 and SG 2-4

Figure 3-12: Cycle 13 Independent Growth Curves - All SGs

Figure 3-13: Historical Change in Growth and BOC Voltage - All SGs

Cycle 13 vs. Supplemented Cycle 12 Growth Comparison SG 2-1

Figure 3-15: Cycle 12 vs. Cycle 13 Growth Comparison for SG 2-2

Cycle 13 vs. Supplemented Cycle 12 Growth Comparison SG 2-2

Voltage Growth per EFPY

Figure 3-16: Cycle 12 vs. Cycle 13 Growth Comparison for SG 2-3

Cycle 13 vs. Supplemented Cycle 12 Growth Comparison

Cycle 13 vs. Supplemented Cycle 12 Growth Comparison SG 2-4

Voltage Growth per EFPY

Figure 3-17: Cycle 12 vs. Cycle 13 Growth Comparison for SG 2-4

86-9024635-000 Page 57 of 107

Figure 3-18: SG 2-1 Cycle 13 Growth vs. BOC Voltage

Growth Rate vs. BOC Voltage DCPP-2 SG 2-2

Figure 3-20: SG 2-3 Cycle 13 Growth vs. BOC Voltage

Growth Rate vs. BOC Voltage DCPP-2 SG 2-4

Figure 3-22: Cycle 13 Growth vs. BOC Voltage for All Steam Generators

Growth Rate vs. BOC Voltage DCPP-2 All SGs

Figure 3-23: SG 2-3 Cycle 13 VDG Breakpoint Analysis Results

Bilinear Growth Determination for SG 2-3 Cycle 13

Trilinear Growth Determination for SG 2-4 Cycle 13

Figure 3-25: Composite Cycle 13 VDG Breakpoint Analysis Results

Figure 3-28: Cycle 13 VDG for All SGs

Figure 3-29: SG 2-1 Supplemented Cycle 12 VDG Breakpoint Analysis Results

Bilinear Growth Determination for SG 2-1 Cycle 12 + Cycle 11 >1.2v

Trilinear Growth Determination for SG 2-4 Cycle 12 + Cycle 11 >1.2v

Figure 3-31: Composite SG Supplemented Cycle 12 VDG Breakpoint Analysis Results

Figure 3-32: Supplemented Cycle 12 VDG for SG 2-1

Voltage Growth per EFPY

Supplemented Cycle 12 VDG for SG 2-4

Figure 3-34: Supplemented Cycle 12 VDG for All SGs

Voltage Growth per EFPY

Figure 3-35: 2R13 Probe Wear Voltage Comparison

Probe Wear Comparison 2R13

Figure 3-36: Bobbin Voltage Uncertainty Distributions

NDE Uncertainty Distributions

Percent Variation In Voltage

Figure 3-37: Inferred Voltage / Measured Voltage Comparison

Figure 3-38: +Point[™] Indication to Bobbin Voltage Comparison for SG 2-1

Figure 3-39: +Point[™] Indication to Bobbin Voltage Comparison for SG 2-2

SG 2-2 +Point[™] vs. Bobbin Volts

Figure 3-40: +Point[™] Indication to Bobbin Voltage Comparison for SG 2-3

SG 2-4 +Point[™] vs. Bobbin Volts

4.0 Database Applied for Leak and Burst Correlations

Per GL 95-05, the databases used to perform the tube integrity evaluations should be the latest NRC approved industry database. The updated leak and burst correlations in Reference 8 for the ODSCC database include the 2R11 and 1R12 tube pull results from Diablo Canyon, as well as other recent industry tube pulls.

4.1 Conditional Probability of Burst

For the case of the burst pressure versus voltage correlation, the Addendum 6 database contained in Reference 8, meets all GL 95-05 requirements and was used in the as-found EOC-13 calculations and the EOC-14 projections, as well as the benchmarking of the prior cycle operational assessment. The correlation parameters were taken from Reference 8 and are shown in Table 4-1.

$P_{B} = a_{0} + a_{1}\log(Volts)$						
	Parameter	Addendum 6				
	Intercept, a ₀	7.4801				
	Slope, a ₁	-2.4002				
	r^2	79.67%				
	Std. Dev., σ _{Error}	0.8802				
	Mean Log(V)	0.3111				
	SS of Log(V)	51.6595				
	N (data pairs)	100				
	Structural Limit (2560 psi) ⁽¹⁾	7.51V				
	Structural Limit (2405 psi) ⁽¹⁾	9.40V				
	p Value for $a_1^{(2)}$	5.60·10 ⁻³⁶				
	Reference σ_{f}	68.78 ksi ⁽³⁾				
Notes:	The number of significant figures repor output from the calculation code an engineering significance.	ted simply corresponds to the nd does not represent true				
(1)	Values reported correspond to applying differential pressure associated with a po	a safety factor of 1.4 on the stulated SLB event.				
(2)	Numerical values are reported only to concriterion value of 0.05. For such small statistically meaningless.	mpare the calculated result to a values the relative change is				
(3)	This is the flow stress value to which all d performing the regression analysis.	ata was normalized prior to				

Table 4-1:	Burst Pressure v	s. Bobbin	Amplitude	Correlation
	Drigri icganic A	3. DODD	ninpilluuc	oonclauon

4.2 Probability of Leak and Conditional Leak Rate

Reference 8 presents the results of the regression analysis for the voltage-dependent leak rate correlation using the Addendum 6 leak rate database for 7/8" tubes. It should be noted that, for the 2405 psi delta pressure, the one-sided p-value for the slope parameter in the voltage dependent leak rate correlation is 0.5%, which meets the 5% threshold for an acceptable correlation specified in Generic Letter 95-05. AREVA computer simulations include the slope sampling method for the leak rate correlation that is presented in Reference 8.

The methodology used in the calculation of these parameters is consistent with NRC criteria in Reference 2. The probability of leak and leak rate correlation parameters used in the CM and OA were taken from Reference 8 and are shown in Tables 4-2 and 4-3.

$\Pr(Leak) = \frac{1}{1+1}$	$\frac{1}{e^{-[b_1+b_2\log(Volts)]}}$					
Parameter	Addendum 6					
Intercept, b ₁	-5.0407					
Slope, b ₂	7.5434					
$V_{11}^{(1)}$	1.3311					
V ₁₂	-1.7606					
V ₂₂	2.7744					
DoF ⁽²⁾	118					
Deviance	32.37					
Pearson SD	0.611					
MSE	0.279					
Notes:						
1) Parameters V _{ij} are elements of the covariance matrix						

Table 4-2: Probability of Leak Correlation

emicients, bi of the regression equation.

2) Degrees of freedom.

$Q = 10^{[b_3+]}$	$b_4 \log(Volts)$]
Parameter	Addendum 6
Intercept, b ₃	-0.8039
Slope, b ₄	1.2077
Index of Deter., r ²	20.0%
Std. Error	0.7774
Mean of Log(Q)	0.5090
Std. Dev. of Log(Q)	22.6667
p Value for b ₄	0.5%
Data Pairs, N	32
Mean of Log(V)	1.0871
SS of Log(V)	3.1116
Note: The number of sig simply corresponds to calculation code and do engineering significance.	nificant figures reported the output from the pes not represent true

.

Table 4-3: Leak Rate vs. Bobbin Amplitude Correlation (2405 psi)

5.0 EOC 13 Condition Monitoring, Benchmarking of EOC-13 Conditions and Assessment of Potential Underpredictions

This section provides the EOC-13 condition monitoring, the results of a benchmarking study that compares the projected EOC-13 conditions to the as-found conditions, and an assessment of potential underpredictions as committed to the NRC.

5.1 EOC-13 Condition Monitoring Results

EOC-13 as found conditions were evaluated to ensure that CM burst and leakage requirements were not exceeded. The burst probabilities and leak rates are shown in Table 5-2 and at the bottom of Table 5-7. The requirements for burst probabilities are met for all of the SGs, and for the leak rate, the plant-specific value of 10.5 gpm for the faulted steam generator was not exceeded in any steam generator.

5.2 EOC-13 Benchmark Calculations

EOC-13 projections using the composite DCPP POPCD through 7 inspections have been previously provided to the NRC in Reference 27. Those projections used an estimated Cycle 13 operating interval of 1.33 EFPY and correlations using Addendum 5 plus DCPP pulled tube data from 2R11. The actual Cycle 13 operating interval was 1.31 EFPY and the correlation database has been revised to Addendum 6, so the EOC-13 projections have been recalculated. In addition, the composite DCPP POPCD through 8 inspections was used in the recalculations.

Table 5-1 provides a summary of the inputs required and the corresponding section(s) or table(s) that provide these data. If the input was unchanged relative to the input used in the 2R12 90 day report projections, then "no change" is noted in the comment field. For example, the growth distributions used in the benchmark calculations were the same as used in the 2R12 90 day report, and followed the guidelines provided in References 25 and 28.

Input Description	Section or Table Reference	Comments		
BOC Voltage Distribution	Tables 5-3 and 5-4	No change		
Repaired Voltage Distribution	Tables 5-3 and 5-4	No change		
NDE Uncertainties	Section 3.6 and Table 3-21	No change		
- POD	DCPP POPCD Table 6-8	Composite POPCD through 8		
FOD	from Reference 7.	inspections		
Growth	Table 5-5 and 5-6	No change		
Cycle Length	Section 5.2	1.31 EFPY		
Tube Integrity Correlations	Tables 4-1 to 4-3	Addendum 6		
Material Properties	Section 7.1	No change		

Table 5-1: Inputs for EOC-13 Benchmark Projections

Table 5-7 provides a comparison of the EOC-13 benchmarking projections to the as-found EOC-13 conditions. This table shows the voltage distributions as well as the POB and leak rate results. In all cases, the leak rate, POB, and the number of indications were over-predicted by wide margins. Therefore, the EOC-13 projections using DCPP POPCD correlation and the growth guidelines provided conservative results relative to the as-found conditions, and no adjustments to either of the methodologies are warranted.

5.3 Assessment of Potential Underpredictions

DCPP Tech Specs require that, upon implementation of POPCD, if the EOC conditional MSLB burst probability, the projected MSLB leak rate, or the number of indications are underpredicted by the previous cycle operational assessment, the following guidelines must be applied to assess the need for methods adjustments:

- The assessment of the probable causes for the under predictions, proposed corrective actions, and any recommended changes to probability of detection or growth methodology indicated by potential methods assessments.
- An assessment of the potential need to revise the ARC analysis methods if: the burst probability is underpredicted by more than 0.001 (i.e., 10% of the reporting threshold) or an order of magnitude; or the leak rate is underpredicted by more than 0.5 gpm or an order of magnitude.
- An assessment of the potential need to increase the number of predicted low voltage indications at the BOC if the total number of as found indications in any SG are underestimated by greater than 15 percent or by greater than 150 indications. If future inspection results provide additional information that could alter these guidelines, PG&E would provide recommended changes to the guidelines and basis for the changes in the subsequent 90 day report.

As discussed above, EOC-13 benchmark projections were performed using the actual Cycle 13 operating interval, DCPP POPCD through 8 inspections, and Addendum 6 correlations. As shown in Table 5-7, the POBs, leak rates, and numbers of indications (also shown graphically in Figures 5-1 through 5-4) were overestimated in all cases for EOC-13. Therefore, there is no need to perform a method adjustment assessment.

1

Table 5-2: Summary of 95-05 ARC Calculations As-found vs.Projected EOC-13								
		SG 2-1	SG 2-2	SG 2-3	SG 2-4			
Number of	As-Found	531	456	332	1194			
AONDB	Projected ⁽¹⁾	944	797	609	1715			
Leak Rate	As-Found	0.11	0.07	0.09	0.78			
(gpm)	Projected ⁽¹⁾	0.75	0.49	0.30	2.52			
POP	As-Found	4.38 x 10 ⁻⁵	2.63 x 10 ⁻⁵	6.52 x 10 ⁻⁵	5.57 x 10 ^{-₄}			
FOB	Projected ⁽¹⁾	9.63 x 10 ^{-₄}	3.61 x 10 ⁻⁴	2.86 x 10 ⁻⁴	2.76 x 10 ⁻³			
Accepta	nce Criteria	1.0 ×	10 ⁻²	10.5 gpm				

Notes: (1) Used actual cycle length of 1.31 EFPY and DCPP POPCD through 8 inspections.

٦,

(2) The 95% Upper Confidence Limit (UCL) is based on the number of trials with one or more failures.(3) Equivalent volumetric rate at room temperature.

(4) The calculated total leak rate reflects the upper 95% quantile value at an upper 95% confidence bound.

(5) The reference leak limits (10.5 gpm) consider contributions from other ARCs. Therefore other ARC Leak rates should be added to the results in this table to assess total leakage.

1

	SG 2-1				
Voltage Bin	As-Found EOC-12	Repaired			
0.1	0	0			
0.2	29	0			
0.3	74	0			
0.4	97	0			
0.5	55	1			
0.6	54	0			
0.7	43	0			
0.8	33	0			
0.9	25	0			
1	14	0			
1.06	9	0			
1.1	2	0			
1.2	10	0			
1.3	2	0			
1.4	4	0			
1.5	8	0			
1.6	1	Ō			
1.7	3	0			
1.8	2	1			
1.9	2	1			
2	0	0			
2.1	2	2			
2.2	2	2			
2.3	0	0			
2.4	1	1			
2.5	0	0			
2.6	0	0			
2.7	0	0			
2.8	0	0			
2.9	00	0			
3	0	0			
Total	472	8			

Table 5-3: SG 2-1 BOC-13 Voltage Distribution Used for EOC-13 Benchmark Projections

Voltorio	SG 2-2		SG 2	-3	SG 2-4		
Bin	As-Found EOC-12	Repaired	As-Found EOC-12	Repaired	As-Found EOC-12	Repaired	
0.1	0	0	1	0	0	0	
0.2	28	1	17	0	31	0	
0.3	54	0	42	0	104	0	
0.4	70	1	65	0	134	0	
0.5	72	2	35	0	141	3	
0.59	42	2	35	1	108	1	
0.6	5	0	3	0	19	0	
0.7	31	0	20	0	100	0	
0.8	24	1	18	0	77	2	
0.9	23	0	11	0	66	2	
1	15	0	5	0	56	0	
1.1	5	0	2	0	45	0	
1.2	5	0	5	0	38	0	
1.3	7	0	5	0	26	0	
1.4	4	0	1	0	20	0	
1.5	6	0	5	0	18	0	
1.6	1	0	2	0	5	0	
1.66	2	0	0	0	7	1	
1.7	0	0	0	0	4	0	
1.8	1	1	0	0	7	2	
1.9	0	0	0	0	6	3	
2	1	1	0	0	4	2	
2.1	1	1	0	0	1	1	
2.2	0	0	0	0	0	0	
2.3	0	0	0	0	0	0	
2.4	0	0	0	0	0	0	
2.5	0	0	0	0	1	1	
2.6	0	0	0	0	0	0	
2.7	0	0	0	0	1	1	
2.8	0	0	0	0	0	0	
2.9	0	0	0	0	1	1	
3.0	0	0 .	0	0	0	0	
Total	397	10	272	1	1020	20	

Table 5-4: SGs 2-2, 2-3, and 2-4 BOC-13 Voltage Distributions Used for EOC-13Benchmark Projections

Growth (Volts/EFPY)	Bin1 (<=1.06v)	Bin3 (>1.06v)
<=0	38	3
0.1	179	2
0.2	73	1
0.3	19	1
0.4	9	1
0.5	9	1
0.6	0	0
0.7	1	0
0.8	0	0
0.9	0	2
1	0	0
1.1	0	0
1.2	1	0
1.3	1	0
1.4	1	0
.1.5	0	0
1.6	0	1
1.7	1	0
1.8	0	0
1.9	0	0
2	0	0
2.1	0	0
2.2	0	0
2.3	0	1
2.4	0	0
2.5	0	0
2.6	0	1
2.7	0	0
2.8	0	0
2.9	0	1
3	0	0
3.1	0	0
3.2	0	0
3.3	0	0
3.4	0	0
3.5	0	0
>3.5	0	0
Total	332	15

Table 5-5: Cycle 11 Growth Distributions for SG 2-1(Used for EOC-13 Benchmark Projections for SG 2-1)

ł

Table 5-6: Cycle 11 Growth Distributions for Remaining SGs(Used for EOC-13 Benchmark Projections for SGs 2-2, 2-3, and 2-4)

	SGs 2-2 and 2-3 SG 2-4					
Growth (Volts/EFPY)	Bin1 (<=0.59v)	Bin2 (0.59v to 1.66v)	Bin3 (>1.66v)	Bin1 (<=0.59v)	Bin2 (0.59v to 1.66v)	Bin3 (>1.66v)
<=0	152	68	0	48	28	0
0.1	690	84	2	307	50	2
0.2	374	59	1	220	37	1
0.3	124	53	3	79	29	3
0.4	32	37	0	24	24	0
0.5	17	28	0	5	21	0
0.6	10	19	1	8	13	1
0.7	5	10	0	5	6	0
0.8	3	6	0	3	4	0
0.9	· 0	10	0	0	7	0
1	1	6	0	1	6	0
1.1	0	7	0	0	6	0
1.2	1	3	0	0	3	0
1.3	1	7	0	1	5	0
1.4	0	3	1	0	1	1
1.5	0	3	2	0	3	2
1.6	0	3	2	0	3	1
1.7	1	1	1	1	0	0
1.8	0	2	0	0	2	0
1.9	0	2	1	0	1	1
2	0	1	0	0	1	0
2.1	0	0	0	0	0	0
2.2	0	3	1	0	3	1
2.3	0	2	0	0	1	0
2.4	0	1	0	0	1	0
2.5	0	1	1	0	1	1
2.6	· 0	1	1	0	1	0
2.7	0	0	2	0	0	1
2.8	0	0	0	0	0	0
2.9	0	0	1	0	0	0
3	0	0	1	0	0	1
>3.0	0	0	0	0	0	0
Total	1411	420	21	702	257	16

•

ŧ

Voltage	SG	2-1			SG	2-3	SG 2-4		
Bin	As-Found	Projected	As-Found	Projected	As-Found	Projected	As-Found	Projected	
0.1	0	1.04	0	0.93	2	5.78	1	0.66	
0.2	47	20.70	37	18.18	30	28.79	43	13.69	
0.3	83	93.81	66	77.47	46	63.08	117	80.39	
0.4	106	147.55	85	113.33	66	90.41	168	160.52	
0.5	62	161.14	71	128.43	50	102.70	144	213.60	
0.6	57	130.52	53	119.97	35	88.74	128	228.81	
0.7	44	97.33	44	92.64	27	67.16	118	202.54	
0.8	30	74.19	31	61.51	25	43.83	69	151.93	
0.9	27	58.09	15	38.57	12	26.84	. 77	103.92	
1	17	43.02	14	25.95	9	17.28	62	74.26	
1.1	17	30.42	8	19.61	5	12.46	57	60.16	
1.2	9	20.32	7	16.06	4	9.93	43	53.59	
1.3	4	13.14	7	13.57	2	8.24	33	49.74	
1.4	11	8.22	8_	11.37_	4	6.93	39	44.76	
1.5	3	5.36	3	9.51	5	5.77	24	38.58	
1.6	6	3.80	3	7.70	2	4.68	13	31.95	
1.7	2	3.05	2	6.16	3	3.80	12	26.01	
1.8	1	2.87	0	5.15	1	3.20	4	21.77	
1.9	1	2.92	1	4.42	0	2.78	5	19.05	
2	2	2.82	0	3.71	1	2.35	11	16.71	
2.1	0	2.49	1	3.14	1	1.96	6	14.68	
2.2	0	2.09	0	2.56	1	1.57	3	12.57	
2.3	1	1.77	0	2.13	0	1.32	3	10.83	
2.4	1	1.91	0	1.96	0	1.21	1	9.64	
2.5	0	1.88	0	1.72	0	1.06	0	8.19	
2.6	0	1.58	0	1.49	0	0.92	1	7.15	
2.7	0	1.13	0	1.29	0	0.78	2	6.47	
2.8	0	0.79	0	1.09_	0	0.66	0	5.60	
2.9	0	0.56	0	0.88	0	0.53	1	4.43	
3	0	0.39	0	0.75	0	0.45	2	3.78	
3.5	0	1.88	0	2.65	1	1.61	3	13.34	
4	0	0.96	0	2.20	0	1.33	3	13.22	
4.5	0	1.94	0	0.99	0	0.58	1	7.33	
5	0	2.83	0	0.20	0	0.12	0	2.44	
5.5	0	1.80	0	0.03	0	0.01	0	1.50	
6	0	0.31	0	0.01	0	0.00	0	0.92	
6.5	0	0.02	0	0.00	0	0.00	0	0.14	
7	0	0.00	0	0.00	0	0.00	0	0.01	
>7	0	0.00	0	0.00	0	0.00	0	0.00	
Total	531	944.62	456	797.31	332	608.86	1194	1714.92	
<=1	473	827.37	416	676.98	302	534.60	927	1230.32	
>1	58	117.25	40	120.33	30	74.26	267	484.60	
>2	2	24.32	1	23.07	3	14.12	26	122.26	
>5	0	2.12		0.04	0	0.01	0	2.57	
POP	4 38E 05	0.635-04	2.635-05	3.61E-04	6 52E-05	2.865-04	5 57E 04	2 76E 02	
	4.302-03	9.032-04	2.032-03	0.016+04	0.322-03	2.000-04	0.07 =-04	2.102-03	
Leak Rate	<u> </u>	0.75	0.07	0.49	0.09	0.3	0.78	2.52	

Table 5-7: As-found EOC-13 vs. Projected EOC-13 Conditions

.

Figure 5-1: As-found SG 2-1 vs Projected Voltage Distributions (DCPP POPCD)

EOC-13 As-Found vs. Projected Voltage Distributions DCPP-2 SG 2-1

Figure 5-2: As-found SG 2-2 vs Projected Voltage Distributions (DCPP POPCD)

EOC-13 As-Found vs. Projected Voltage Distributions DCPP-2 SG 2-2

EOC-13 As-Found vs. Projected Voltage Distributions DCPP-2 SG 2-3

Figure 5-4: As-found SG 2-4 vs Projected Voltage Distributions (DCPP POPCD)

DCPP-2 SG 2-4 250 As-Found Projected 200 Number of Indications 150 100 50 0 0.1 0.2 0.3 0.6 0.6 0.7 0.9 2 3 9 4 1.8 1.9 2.1 2.3 2.5 2.6 2.6 2.8 5.5 6.5 ~7 1 2.9 3.5 1.5 **Bobbin Volts**

EOC-13 As-Found vs. Projected Voltage Distributions DCPP-2 SG 2-4

6.0 Probability of Prior Cycle Detection and EOC-14 Projections Using DCPP POPCD

The NRC approved use of the voltage-dependent POPCD at DCPP in Reference 29. This section provides the 2R12 POPCD results, which is based on the results of the 2R12 and 2R13 inspections. This section also provides the updated POPCD correlation that was used in the EOC-14 projections provided in Section 7, as well as NRC reporting requirements for continued application of POPCD.

6.1 Updated DCPP POPCD Correlation

The POPCD method, which is based on results from actual field inspections, reflects the DCPP detection results that approach 1.0 at bobbin voltages above 1.6 volts. The resulting larger POD above about two volts realistically lowers the detection uncertainty, thereby lowering the number of the larger undetected indications in the BOC voltage distribution. Reference 7 provided the DCPP-specific correlation through 1R12 (eight inspections). The data from Reference 7 has since been updated to include the 2R13 results, referred to as the 2R12 POPCD data. Tables 6-1 and 6-2 provide the 2R12 POPCD and composite POPCD data. respectively. The composite POPCD includes results from nine inspections (2R8, 2R9, 2R10, 2R11, 2R12, 1R9, 1R10, 1R11, and 1R12). Table 6-3 provides the POPCD tracking matrix with column letters that correspond to the columns in Tables 6-1 and 6-2. Table 6-4 provides the POPCD matrix table including data from only the just completed cycle segregated into voltage bins of <=1.00v, 1.01-2.00v, and >2.00v based on the beginning-of-cycle (BOC) voltage. Table 6-5 provides the POPCD matrix table for the just completed cycle regardless of the beginningof-cycle voltage. Table 6-6 provides the composite multi-cycle POPCD matrix table segregated into the three voltage bins. Table 6-7 provides the composite multi-cycle POPCD matrix table regardless of the beginning-of-cycle voltage. Table 6-8 provides the correlation parameters for the composite data set.

The largest "undetected" POPCD indication in 2R12 was 1.37v. SG 2-3 R45C57 1H had a 1.40 volt DOS reported in 2R13 that was not reported in 2R12. The location was not inspected with $+Point^{TM}$ in either inspection (BND w/o RPC to BDD w/o RPC in Table 6-1 Column H) and had a 1.37v DOS look-up in 2R12. POPCD methods conservatively require that new indications at EOC_{n+1} that were not identified by bobbin or $+Point^{TM}$ at EOC_n are counted as no detection at EOC_n.

6.1.1 Assessment of POPCD Changes

NRC requires an assessment of the POPCD method for potential changes over time, that is, the multi-cycle POPCD distribution applied for the last operational assessment must be compared with the POPCD distribution obtained for only the last operating cycle. Differences in the two POPCD distributions must be assessed relative to the potential for significant changes in detection capability. Figure 6-1 shows the POPCD curves for the just completed cycle as well as three prior composite POPCD curves (data through 2R12, 1R13, and 2R13). The curve labeled "through 1R12 (eight inspections)" was used for the benchmarking calculations

provided in Section 5 of this document. The composite POPCD through 2R12 was used for the EOC-14 projections provided in Section 7 of this document.

The 2R12 POPCD distribution for the just completed cycle (based on the 2R13 inspection results) is improved over all voltage ranges compared to the previous composite POPCD distributions. As a result, the composite POPCD through 2R12 (9 inspections) is also improved for voltages less than about 2.0 volts compared to previous composite POPCD distributions. The improvements are due to the numbers of indications counted as detection in 2R12 in the lower voltage ranges, as well as no significant missed indications (largest missed indication was 1.37 volts). Large voltage missed indications had a negative affect on the 1R12 POPCD distribution in the upper tail as previously discussed in Reference 30. Table 6-9 provides a direct comparison of the best estimates of the previous and current composite POPCD values up through 10 volts. The improvement in the composite POPCD through 9 inspections may not represent a significant change in actual detection capability and may be more reflective of reduced rates of new crack initiation at detectable levels. The growth rates decreased in Cycle 13 compared to Cycle 12. This growth rate decrease may have contributed to the improvement in the POPCD distribution, assuming that slower growth implies reduced rates of new crack initiation at detectable levels and therefore fewer new indications, which translates into fewer misses for POPCD. The improved POPCD continues to move the DCPP POPCD closer to that found across the industry as reflected in the industry POPCD distribution of the EPRI Addendum 6 Database (Ref. 8).

From Table 6-1 which is the POPCD for the just completed cycle based on 2R13 inspections, the number of non-detected indications was only 473, compared to 2017 detected indications. This is a greater than 4-to-1 ratio. This ratio of detections to non-detections has been increasing over time at DCPP, and was 2.35 for the prior inspection. There were a large number of new small voltage indications detected in 2R12. These new indications were then re-identified in 2R13 and counted as detections at EOCn, which also improved DCPP POPCD based on larger numbers of detected indications.

6.1.2 Assessment of Disappearing Flaws

NRC also requires an assessment of disappearing flaws. For RPC confirmed indications at EOC_n that are RPC NDD at EOC_{n+1} , an assessment is required for the cause of the "disappearing flaws" if the +PointTM voltage is greater than 0.5 volt. If there are a significant number of occurrences of these "disappearing flaws", the cause must be evaluated independent of the +PointTM voltage. (Note: In support of this evaluation, an RPC inspection is required at EOC_{n+1} for RPC confirmed indications at EOC_n (either bobbin detected or bobbin NDD) that are bobbin NDD at EOC_{n+1} . This inspection is necessary to ensure that all known ODSCC indications are included in the condition monitoring and operational assessments as well as properly categorized for the POPCD method evaluation.)

All 2R12 +Point[™] indications were also detected by +Point[™] during the 2R13 inspection. Therefore an assessment is not required.

6.2 Input to Industry POPCD Database

Tables 6-10 and 6-11 provide the 2R12 and the composite POPCD results in the format of EPRI ODSCC Database Report Addendum 6, Table 7-2, for eventual inclusion in the next addendum of the database report. The EPRI format differs slightly from the DCPP format in that DCPP treats EOC_n RPC NDD indications as no detection as requested by the NRC (listed in Column G of Table 6-1 and Table 6-2), whereas the EPRI table treats these as detection.

.

Table 6-1: 2R12 POPCD Results

Column	A	в	c	D	E	F	G	н		J	к
<u> </u>	<u> </u>		·	2R12 P	OPCD Data Table		·	•	· · · · ·		L
		Detection at EOC,			No Detection at E	OCn (New Indications)	_				
	EOC _n Bobbin Ind. RPC Confirmed at EOC _{n+1}	EOC, Bobbin Ind. Not RPC Inspected at EOC.	EOC _a Bobbin Ind. Repaired at EOC,	New EOC _{ert} Bobbin RPC Confirmed	New EOC _{a+1} Bobbin Not RPC Inspected	Ind. Found Only by RPC at EOC _{n+1} or at EOC _n & Plugged at EOC _n ⁽³⁾	EOC, RPC NDD Bobbin Indications ⁽²⁾	Excluded from POPCD	Totals fo Eval	or POPCD uation	
Voltage Bin	BDD / RDD → BDD / RDD BDD / RDD → BND / RDD BDD w/o RPC → BDD / RDD BDD w/o RPC → BND / RDD BDD w/o RPC → BND / RDD	BDD w/o RPC → BDD w/o RPC BDD / RDD → BDD w/o RPC	BDD / RDD → Ptugged at EOCn BDD w/o RPC → Ptugged at EOCn	BND w/o RPC → BDD / RDD BND / RDD → BDD / RDD BND / RND → BDD / RDD BND / RND → BDD / RDD	BND w/o RPC → BDD w/o RPC BND / RDD → BDD w/o RPC BND / RND → BDD w/o RPC	BND w/o RPC → BND / RDD BND / RDD → BND / RDD BND / RND → BND / RDD BND / RDD → Plugged at EOCn	BDD / RND → BDD w/o RPC BDD / RND → BDD / RDD BDD / RND → BND / RDD	All RND AT EOC _{art} All BND w/o RPC at EOCn+1 BDD/RND/Plugged at EOCn	Detection at EOCn	No Detection at EOCn	POPCD for Voltage Bin Note ⁽¹⁾
0.01-0.10	0	0	0	0	7	0	0	3	0	7	0.000
0.11-0.20	2	96		1	85	0	3	5	99	89	0.527
0.21-0.30	11	236	0	2	121	<u> 1</u>	<u> </u>	19	247	131	0.653
0.31-0.40	21	310		<u> </u>			14	24	332	106	0.758
0.41-0.50	26	214	3	0			<u>├</u>		2/4	39	0.865
0.61-0.70	19	166	<u> </u>	2	10	4			185	19	0.003
0.71-0.80	16	123	3	0	6	0	4	2	142	10	0.934
0.81-0.90	15	105	2	0	3	2	0	4	122	5	0.961
0.91-1.00	11		00	1	2	00	11	0	88	4	0.957
1.01-1.10	9	54	0	0	0	0	00	0	63	0	1.000
1.11-1.20	1	4/	0	0		<u> </u>	0	<u> </u>	58	0	1.000
1.21-1.30	[- <u></u>		l			<u> </u>	·		40	<u> </u>	1.000
1.41-1.50	<u> </u>	20	<u> </u>		<u> </u>	·····	<u>0</u>	<u> </u>	- 29	 	1,000
1.51-1.60	6	3	<u>0</u>	ŏ					9	<u> </u>	1,000
1.61-1.70	ii	4	1	<u> </u>			0	- <u></u>	16	- ō	1.000
1.71-1.80	6	0	4	0	0	0	0	0	10	0	1.000
1.81-1.90	3	1	4	0	0	0	0	0	8	0	1.000
1.91-2.00	22	0	3	0	0	0	0	0	5	0	1.000
2.01-2.10	<u> </u>	0	4	0	0	<u>0</u>	0	0	4	0	1.000
2.11-2.20	<u> </u>	<u> </u>	2	<u> </u>	<u> </u>	0	0	<u> </u>	2		1.000
2.21-2.30			1		0		<u>0</u>	<u> </u>		0	1000
2.31-2.40	<u>├</u>		<u>↓</u>	·				t			1.000
2.51-2.60			0	ŏ			<u>_</u>	1- <u> </u>	i o	0	
2.61-2.70	0	0	1 1	0	0	0	0	0	1	0	1.000
2.71-2.80	0	0	0	0	0	0	0	0	0	0	
2.81-2.90	0	0	11	0	0	0	0	0	1	0	1.000
2.91-3.00	0	0	0	0	0	0	0	0	0	0	<u></u>
3.01-3.10	<u> </u>	0	0	<u> </u>	0	<u> </u>	0	0	0	0	<u> </u>
3.11-3.20	<u> </u>	0	<u> </u>	<u> </u>		0	0	0			ł
3.21-3.30			<u> </u>	· · · · · · · · · · · · · · · · · · ·	<u>v</u>	<u> </u>					<u> </u>
341-350									<u> </u>	0	ł
3.51-3.60	0	0	<u> </u>	<u>_</u>		0	0		1 <u></u>	1 ŏ	t
3.61-3.70		0	0	<u> </u>	<u> </u>	0			0	1 - <u>0</u> -	t
3.71-3.80	0	i	0	0	0	0	0	0	0	0	
3.81-3.90	0	0	0	0	0	0	0	0	0	0	
3.91-4.00	0	0	0	0	0	0	0	0	0	0	
4.01-4.10	0	0	0	0	0	0	0	0	0	0	1
Totai	231	1748	38	8	365	56	44	69	2017	4/3	1
Notes: 1) POPCD	or each voltage bin calculated as	(Detection at EOCn)/(Detection at E	EOCn + No Detection at EOCn). By colu	mn, POPCD = (A+B+C)/(A+B+C	+D+E+F+G).		_				

EOCn RPC NDD bobbin indications are treated as new indications per NRC request
 Includes indications at EOCn plugged at EOCn and new indications at EOCn+1, not reported in the bobbin inspection, and found only by RPC inspection of dents, mixed residuals or other reasons for the RPC inspection.
 BDD = Bobbin detected indication; BND = Bobbin NDD Intersection; RDD = RPC detected indication; RND = RPC ND intersection

Table 6-2: DCPP Composite POPCD Results (through 9 Inspections)

Column	A	В	С	D	Ę	F	G	н	1	<u> </u>	ĸ
			L	DCPP Spec	ific POPCD Data Table						
	······	Detection at EOC.			No Detection at El	OCn (New Indications)			i		
	500 D-111 - 1 000	The matter and Marpho	<u></u>		New 500 Babble Net BBO	Ind Found Only by BBC at EOC	FOC PRC NDD Robbin		Tatata A.	- 00000	
1	EOC, Bobbin Ind. RPC	Loca Bobbin Ind. Not RPC	EOC, Bobbin Ind. Repaired at EOC,	New EUC _{e+1} Boobin RPC	New EUCert Bobbin Not RPG	or at EOC & Plugged at EOC. ⁽³⁾	Indications ⁽²⁾	POPCD	Evalu	recect	
	Committed at LOOm1			500 h 000 h 000 / 000							·
V-14	BDD/RDD -> BDD/RDD	BOD W/o RPC -> BOD W/o RPC	BDD w/o BBC -> Plugged at EOCh	BND WO RPC BUD / RDD				AT BND W/n BBC	Detection	No	POPCO
Voltage Bin	BDD WO RPC -> BDD / RDD	BDD/RDD - BDD W/8 RPC	BDD with RPC - Plogged at EOCH	BND/RDD -+ BDD/RDD	BND / RND -> BDD w/o RPC	BND/RND - BND/RDD	BDD/RND -> BND/RDD	at EOCn+1	at EOCn	Detection	Voltage Bin
	BDD w/o RPC -> BND / RDD]			BND / RDD -> Plugged at EOCn	1	BDD/RND/Plugged		at EOCn	Note (1)
		•						at EOCn			L
0.01-0.10	6	2	<u>1</u>	31	139		1		9	171	0.050
0.11-0.20		794	32	123	1029	126	52	121	927	1366	0.404
0.31-0.40	167	1065	51	144	710	192	63	118	1283	1109	0.536
0.41-0.50	201	917	45	84	376	126	35	78	1163	621	0.652
0.51-0.60	190	579	40	51	97		21		995	175	0.740
0.71-0.80	130	418	27	23		7	12	22	575	108	0.842
0.81-0.90	124	317	14	22	32	4	8	18	455	66	0.873
0.91-1.00	81		14	9	16		2	4	320	28	0.920
1.01-1.10	<u> </u>	131	<u> </u>	<u> </u>			4	5	194	13	0.934
1.21-1.30	55	80	43	4	4		0	2	178	8	0.957
1.31-1.40	56	46	25	2	2	0	0	2	127	4	0.969
1.41-1.50	43	42	22	1	<u> </u>	<u>0</u>	0	<u>0</u>		$\frac{1}{1}$	0.991
1.61-1.70	32	6	21	0	0	0	0	0	59		1.000
1.71-1.80	32	1	21	2	0	0	0	0	54	2	0.964
1.81-1.90	20	1	19	0	0		1	0	40	1	0.976
2.01-2.00		<u> </u>	15	0			0		18	-0	1.000
2.11-2.20		Ŏ	13	0		0	0	0	13	ō	1.000
2.21-2.30	0	0	18	0	0	0	0	0	18	0	1.000
2.31-2.40	<u> </u>	0	22	<u> </u>	<u>0</u>	<u> </u>	0	<u> </u>	22		1.000
2.51-2.60		<u> </u>	9	0			0	<u>0</u>	<u> </u>		1.000
2.61-2.70	0	<u> </u>	6	0	0	0	0	0	6	0	1.000
2.71-2.80	0	0	8	0	0	<u> </u>	0	<u> </u>	8	0	1.000
2.81-2.90	l	· · · · · · · · · · · · · · · · · · ·	12	<u> </u>	0		0	0	3	0	1.000
3.01-3.10	<u>0</u>	<u>0</u>	8	0	0	0	0	0	8	0	1.000
3.11-3.20	0	0	22	0	0	0	0	0	2	0	1.000
3.21-3.30	0	<u>0</u>	4	<u> </u>	0	<u> </u>	0	<u> </u>		0	1.000
3.41-3.50		<u>_</u>	4	<u> </u>		<u>0</u>	0	0	4	0	1.000
3.51-3.60	0	0	2	0	0	0	0	0	2	0	1.000
3.61-3.70	0	<u> </u>	2	0	<u> </u>	<u> </u>	0	<u> </u>	$\frac{2}{2}$	 	1.000
3.81-3.90			2	<u> </u>		0			2	- 0 -	1.000
4.01-4.10	0	0	5	0	0	0	0	0	5	0	1.000
4.11-4.20	0	0	3	0	0	0	<u> </u>	<u> </u>	3	0	1.000
4.21-4.30	0	0	<u> </u>	0							1.000
4.41-4.50	0	0	2	i <u></u> ŏ	<u> </u>	0	<u> </u>	0	2	<u> </u>	1.000
4.51-4.60	0	0	2	0	0	0	0	0	2	0	1.000
4.61-4.70	0	0	·	0	<u> </u>	0	<u>_</u>	<u> </u>	<u> </u>		1.000
4.81-4.90		0	3	0		0			3	t	1.000
5.01-5.10	0	<u> </u>	5	0	0	0	0	0	5	0	1.000
5.21-5.30	0	0	2	0	0	0	0	0	2	0	1.000
5.41-5.50	0	<u> </u>	3				0	1		\	1.000
5.61-5.70	0	<u> </u>	1	ŏ	i		iõ	<u> </u>		t ŏ	1.000
6.11-6.20	0	<u> </u>	3	0	0	0	0	0	3	0	1.000
6.31-6.40	0	0	1	0	0	0	<u> </u>	<u> </u>	<u>↓</u>	<u> </u>	1.000
6.51-6.60	0	0	1	<u> </u>		0		0		<u>+</u> [∞]	1.000
21.41-21.50		0	1	ō	<u> </u>	ŏ	<u> </u>	0	1	0	1.000
Total	1618	5780	655	702	3472	565	261	541	8053	5000	
Notes:					+D+E+E+C)						
1) POPCD (for each voltage bin calculated as PC NOD bobbin indications are to	(Detection at EOCn)/(Detection at I	EUCh + No Detection at EUCh). By com aquest	JIIII, FUPCU = (A+D+U)/(A+B+U	+0+E+++0).						
3) Includes	indications at EOCn blueged at E	OCn and new indications at EOCn+	1. not reported in the bobbin inspection.	and found only by RPC inspectio	n of dents, mixed residuals or other	reasons for the RPC inspection.					
A BDD - B	obbin detected indication: BND a	Robbin NDD Interraction: PDD = P	PC detected indication: RND = RPC ND	D intersection		•					

Table 6-3: POPCD Matrix Table for Tracking Indications Between EOC_n and EOC_{n+1}

						BDD at	EOC _{n+1}					BND at	EOC _{n+1}		
	FOC			BDD w/	o RPC	BDD v	v/RDD	BDD v	v/RND	BND w	/o RPC	BND v	v/RDD	BND v	v/RND
	LOOn			Plugged	Not Plugged	Plugged	Not Plugged	Plugged	Not Plugged	Plugged	Not Plugged	Plugged	Not Plugged	Plugged	Not Plugged
		Plugged	С			· ·									
	BDD w/o RPC	Not Plugged		В	В	Α	A	Н	Н	Н	Н	A	A	н	Н
BDD		Plugged	С			• • • • • •		the states and							
at EOC _n		Not Plugged		В	В	A	Α	H (2)	H (2)	H (1)	H (1)	A	A	H (2)	H (2)
		Plugged	Н		an the the second s	n a car Si ƙasar	e d'are		1.11	an dharan an a					
•		Not Plugged		G (3)	G (3)	G (3)	G (3)	H	Н	Н	н	G (3)	G (3)	Н	Н
		Plugged			and the second s		a she ka				the second			a ana an An ann an Anna Anna Anna Anna A	
	BND w/o RPC	Not Plugged		E	E	D	D	н	н	No Count	No Count	F	F	No Count	No Count
BND		Plugged	F	Tani are a			a tha A								
at EOC _n		Not Plugged		E	E	D	D	H (2)	H (2)	H (1)	H (1)	F	F	H (2)	H (2)
		Plugged	Γ					and a second s							
	BIND W/ RND	Not Plugged		Е	E	D	D	н	н	No Count	No Count	F	F	No Count	No Count

General Notes:

The column letters correspond to the column letters in POPCD Tables 6-1 and 6-2.

BDD = Bobbin detected indication

BND = Bobbin no detectable degradation (NDD) intersection

RDD = RPC detected indication

RND = RPC no detectable degradation intersection

No Count = Intersections having no bobbin or RPC indication at either EOC_n or EOC_{n+1} . These are not needed for POPCD.

Specific Notes:

1) For EOC_n bobbin indications that are confirmed by RPC or detected only by RPC, EOC_{n+1} RPC will be performed when bobbin is NDD and the number in this category will be "0" for future inspections.

2) If indications are RPC confirmed at EOC_n but RPC NDD at EOC_{n+1}, and the +PointTM voltage is greater than 0.5 volts the causative factors for this change in RPC detection will be discussed in the ARC 90-day report. If there are a significant number of these occurrences of this category, independent of the +PointTM voltage, the cause will be evaluated in the 90-day report.

3) EOC_n bobbin indications that were RPC NDD at EOC_n, and at EOC_{n+1} are either RPC detected or bobbin detected without RPC inspection, are treated as undetected at EOC_n in accordance with NRC request.

Page 91 of 107

Table 6-4: 2R12 POPCD Voltage-Specific Summary from 2R13 Inspection Results 2R12 POPCD Results

				PO	PCD Ma	trix for l	ndicatior	ns <=1.0	0v at EO	Cn					
						BDD at	EOCn+1					BND at I	EOCn+1		
	E	OCn		BDD w	/o RPC	BDD v	v/RDD	BDD v	N/RND	BND w	/o RPC	BND v	v/RDD	BND v	N/RND
4		5011	l		Not		Not		Not	[]	Not		Not		Not
L				Plugged	Plugged	Plugged	Plugged	Plugged	Plugged	Plugged	Plugged	Plugged	Plugged	Plugged	Plugged
		Plugged	8			· · · · · ·	in the s	- 1. C						1.	1.1.4
BDD	BDD w/o RPC	Not Plugged		13	1522	0	2	0	0	0	5	0	0	0	0
	BDD w/ PDD	Plugged	8							1	•	1 - 1 - 1 - 1	·		NT 11.00
	000 W/ 1.00	Not Plugged		1	30	6	141	0	0	0	0	0	1	0	0
EOCO		Plugged	0		1.8.2		1.1.8 Las	· · · ·						-11. 	1997 - Mari
		Not Plugged		0	_38	0	6	0	48	0	2	0	0	0	0
		Plugged		•	1				•	· ·		·		1	1.1
BND	BND BND W/O RPC	Not Plugged		5	359	3	4	0	14	No Count	No Count	3	11	No Count	No Count
at	BND W/ RDD	Plugged	1	e 1	18 a.e. 1		11 (C) - 14	1. 1. 2. 1. 4		•					1 1 1
	0101.100	Not Plugged		0	0	0	1	0	0	No Count	No Count	0	38	No Count	No Count
EUUN	BND W/ BND	Plugged_		· · ·	1921 - A A	1.1.1.1.1.1.1	Arrest Arrest	al 1 .				·	1 a		1 d .
		Not Plugged		0	0	0	0	0	0	No Count	No Count	0	3	No Count	No Count

				POPCDI	Matrix fo	r Indicat	lions >1.	.00v and	<=2.00v	at EOCr	1				
						BDD at	EOCn+1					BND at	EOCn+1		
	F/	OCn		BDD w	//o RPC	BDD	w/RDD	BDD v	w/RND	BND w	/o RPC	BND v	N/RDD	BND	w/RND
	L`	501			Not		Not		Not	[Not		Not		Not
L				Plugged	Plugged	Plugged	Plugged	Plugged	Plugged	Plugged	Plugged	Plugged	Plugged	Plugged	Plugged
\square		Plugged	1				1 m		· · · · · ·	2.0	1				ч _Ч
	BDD w/o RPC	Not Plugged		<u> </u>	175	20	21	0	0	0	0	0	0	0	0
		Plugged	11	1.1		1 1 1 1 1 1	1146.00 2	· · ·		[• • • •			1997 - 19	1.0010	
	BUD WINCO	Not Plugged		0	6	13	27	0	0	0	0	0	0	0	0
EUCh	BOD W/ BND	Plugged	0	1		1.30.00	A 1 1 P	· · · ·	1		· · · · ·	1	· · · · ·	1. S. 1. S. 1.	· . *
L'		Not Plugged		0	0	0 /	0	0	0	0	0	0	0	0	0
Γ I	(Plugged				<u>•</u> • • • •	'			<u></u>	11		,		2.11 1
BND		Not Plugged		0		0	0	0	<u> </u>	No Count	No Count	0	0	No Count	No Count
at	BND W/ BDD	Plugged	0			~	1.000		<u> </u>	1		· · · · · ·		Section.	
500-		Not Plugged		0		<u> </u>	0		0	No Count	No Count	0	<u> </u>	No Count	No Count
EUCH	BND W/ BND	Plugged		1.1.1				!						1. 1. 1.	
į 1		Not Plugged	· ,	0	0	1 0 1	0 '	1 0 /	1 0 /	No Count	No Count	101		No Count	No Count

				PC	OPCD Ma	atrix for	Indicatio	ns >2.00	v at EO	Cn					
				[BDD at	EOCn+1					BND at	EOCn+1		
ļ	F	OCn		BDD w	/o RPC	BDD	w/RDD	BDD \	w/RND	BND w	/o RPC	BND	v/RDD	BND	w/RND
				Plugged	Not Plugged	Plugged	Not Plugged	Plugged	Not Plugged	Plugged	Not Plugged	Plugged	Not Plugged	Plugged	Not Plugged
		Plugged	0		5	P	1. A. M. M.		N N.					an da ser	1.1.1.1.1
BDD	BDD w/o RPC	Not Plugged		0	0	0	0	0	0	0	0	0	0	0	0
		Plugged	10	$\mathbb{P}_{(\mathcal{A}^{(1)})}$	· · ·	1. (1	14. J.	1. A		1.1		4.1			1. ¹
at EOCn		Not Plugged		0	0	0	0	0	0	0	0	0	0	0	0
EOCn	BDD w/ BND	Plugged	0					· · · ·						. 1	10 A 10 A
	000 1 1410	Not Plugged		0	0	0	0	0	0	0	0	0	0	0	0
		Plugged				Nin kara kara	S. 21 A	, •	1 1 1 N 1	1.1.1	1 1 1 1 1 1 1	<i>2</i> .	1.1.1 A. 1.1.1	$(a_{i}^{*}) \in [a_{i}^{*}] \times [a_{i}^{*}]$	ant i i i i
BND	BND BND W/O RPC N	Not Plugged		0	0	0	0	0	0	No Count	No Count	0	0	No Count	No Count
BND BND at BND	BND w/ BDD	Plugged	0		1.1		1.10	$ _{\mathcal{L}_{2}} = _{\mathcal{L}_{2}} + _{\mathcal{L}_{2}} + _{\mathcal{L}_{2}} + $					22.2.2.3	$B=2\pi^{-1}+B_{\rm eff}/F_{\rm eff}$	1.4
		Not Plugged		0	0	0	0	0	0	No Count	No Count	0	0	No Count	No Count
EUCh	BND w/ BND	Plugged		1 - 5 - 5			11 A.	1.5		1.1.1	1	1.16	1.1	1.35	19 E
		Not Plugged		0	0	0	0	0	0	No Count	No Count	0	0	No Count	No Count

				POPCD	Matrix f	ior All In	dication	s Regarc	lless of	Voltage					
						BDD at	EOCn+1					BND at	EOCn+1		
	F	$\cap \cap n$		BDD w	/o RPC	BDD v	N/RDD	BDD v	N/RND	BND w	/o RPC	BND v	N/RDD	BND v	N/RND
		501		Plugged	Not Plugged	Plugged	Not Plugged	Plugged	Not Plugged	Plugged	Not Plugged	Plugged	Not Plugged	Plugged	Not Plugged
		Plugged	9	1			Constant Inter	5 E		Î. l					
מספ '	BDD w/o RPC	Not Plugged		14	1697	20	23				5				
		Plugged	29		· · · ·		1.500 1.50		£				· · ·		1 1 E
		Not Plugged		1	36	19	168						1		
EUCn		Plugged				[1.1.1.1.1								S
 '	BUUWINIU	Not Plugged	'		38		6		48		2				
[,	Plugged		1.25.51.2	1.00		1	· · · ·		· · · · ·		· · ·	1. 1.	1. 1. 1.	
BND	BND w/o RPC	Not Plugged	·'	5	360	3	4		14	No Count	No Count	3	11	No Count	No Count
at	BND w/ BDD	Plugged	1		1		Constanting of	$f(x,y) \in \mathbb{R}^{n}$	$T = \frac{1}{2} \left[\frac{1}{$			1. a	· · ·	$ f_{i}(t,t) = f_{i}(t,t) $	1
	BND WI NOD	Not Plugged	·'					<u> </u>		No Count	No Count		38	No Count	No Count
EOCH	BND w/ BND	Plugged	[<u> </u>		<u> </u>	11 - B	$(x,y) \in [2^{n-1}]$		N	· ·			11.5	
1 '	DIND WITHOUT	Not Plugged	·	· · ·	í – ,		\square			No Count	No Count		3	No Count	No Count

.

.

Table 6-6: DCPP Composite Voltage-Specific POPCD Summary

Composite of 1R9, 1R10, 1R11, 1R12, 2R8, 2R9, 2R10, 2R11 & 2R12 POPCD Evaluations

				PO	PCD Ma	trix for l	ndicatio	ns <≈1.0	0v at EO	Cn					
						BDD at	EOCn+1					BND at	EOCn+1		
	F	OCn		BDD w	/o RPC	BDD v	v/RDD	BDD v	w/RND	BND w	/lo RPC	BND v	v/RDD	BND v	w/RND
		0011		Plugged	Not Plugged	Plugged	Not Plugged	Plugged	Not Plugged	Plugged	Not Plugged	Plugged	Not Plugged	Plugged	Not Plugged
		Plugged	110		an a		1.275.24	12140	м н					N	$x_{i} = x_{i} \cdot \Delta_{i}$
BDD	BDD w/o RPC	Not Plugged		95	4685	146	221	2	73	1	67	0	8	0	0
at		Plugged	153	$= 1.5 \pm 0.01$			121.00		•	1. A. A.	1	$X_{i} = X_{i} = - X_{i}$		1. A. A.	4 1 A 14
at EOCn		Not Plugged		2	523	37	755	0	2	0	0	0	26	0	2
FOCU		Plugged	4		3		4 1 1 1	1 <u>.</u>	1.554.75	5 (M	S & 3	- 11 - 11 - 1	·	11	1997 - 1997 -
		Not Plugged		5	175	10	62	0	162	0	40	0	3	0	3
		Plugged		10 10 10 10		i tifaw	11 A.F.			<u>.</u>		<u>,</u>			1. N. 1. N.
BND	BND BND W/O RPC	Not Plugged		61	3386	115	523	4	159	No Count	No Count	48	217	No Count	No Count
at	BND w/ PDD	Plugged	47	1	1. A. A.	$(\Delta u, \Delta) = 1.10$		2.000	1233	1.14	Carlos en el compositor de la	¹	1	2 3.	
		Not Plugged		0	3	1	34	0	0	No Count	No Count	10	199	No Count	No Count
EUCN		Plugged					• 11 · · · ·	1. 1. 1. 1.	a start a	1.1	Barro De				$(r,r,q) \in \mathbb{N}$
		Not Plugged		0	1	3	5	0	6	No Count	No Count	19	25	No Count	No Count

				POPCD	Matrix fo	r Indicat	ions >1.	00v and	<=2.00v	at EOCr	<u>ו</u>				
						BDD at	EOCn+1					BND at	EOCn+1		
	F	$\Omega C n$		BDD w	/o RPC	BDD v	w/RDD	BDD v	w/RND	BND w	/o RPC	BND	w/RDD	BND v	w/RND
ļ	<u>ل</u> ــــ			Plugged	Not Plugged	Plugged	Not	Plugged	Not Plugged	Plugged	Not	Plugged	Not	Plugged	Not Plugged
		Plugged	14	1 toggou	. logget		logged		,	, lugget	, luggou		, 109900	, indiggiou	, luggou
BDD	BDD w/o RPC	Not Plugged		6	373	189	58	0	4	0	0	0	0	0	0
		Plugged	189			100		1.1 C		1		$-1 = \Lambda - \epsilon$		· ·	100 E
at EOCn		Not Plugged		2	94	62	115	0	0	0	0	0	1	0	0
EOCU		Plugged	2			1.1	1.5	4	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	×	1. S. 1.				
	BDD w/ RND	Not Plugged		0	4	0	2	0	5	0	0	0	0	0	0
		Plugged					2.20	· · ·				14 - A		1	1.
BND	BND w/o RPC	Not Plugged		0	21	4	15	1	4	No Count	No Count	0	0	No Count	No Count
at EOCn	BND w/ RDD	Plugged	0			1	1. 64.	1000		1. A.				1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	
		Not Plugged		0	0	1	1	0	0	No Count	No Count	0	0	No Count	No Count
	BND w/ BND	_Plugged _			55 E	1. Sec. 1. Sec	1.1200	5 C -	-	·			·	1.1	<u></u>
L		Not Plugged		0	0	0	0	0	0	No Count	No Count	0	0	No Count	No Count

				PC	OPCD Ma	atrix for	Indicatio	ns >2.00	v at EO	Cn					
						BDD at	EOCn+1					BND at	EOCn+1		
	E	ΩCn		BDD w	/o RPC	BDD v	v/RDD	BDD	w/RND	BND w	/o RPC	BND	w/RDD	BND v	w/RND
		0011		Plugged	Not Plugged	Plugged	Not Plugged	Plugged	Not Plugged	Plugged	Not Plugged	Plugged	Not Plugged	Plugged	Not Plugged
		Plugged	0		1	- 4			2000	• • • • • •	1.11			14 - A	1.155.575
BDD	BDD w/o RPC	Not Plugged		0	0	0	0	0	0	0	0	0	0	0	0
	BUD W BUD	Plugged	189		÷		1. 1. 1.							1.5	1947 - N
	000 W K00	Not Plugged		0	0	0	0	0	0	0	_0	0	0	0	0
EUCN		Plugged	0	a constant			1.1. 1.1.1	11.	1.1.1				· ·		
I		Not Plugged		0	0	0	0	0	0	0	0	0	0	0	0
		Plugged		·		$(1,1,1,2,\dots,n) \in \mathbb{R}^{n}$	11.11		18 - 11 - 1	1 A A		<u> </u>	.·		1
BND	BND w/o RPC	Not Plugged		0	0	0	0	0	0	No Count	No Count	0	0	No Count	No Count
at	at BND w/ RDD N	Plugged	0	A second		se fan se			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	1 S. 11 .			23.25		Υ.
		Not Plugged		0	0	0	0	0	0	No Count	No Count	0	0	No Count	No Count
FOCU		Plugged		1. A.	1999 - 1997 -	6	100 Jan 10	1.44	S. 1					3.1	2 - 2
		Not Plugged		0	0	0	0	0	0	No Count	No Count	0	0	No Count	No Count

				POPCD	Matrix f	or All In	dication	s Regard	lless of	Voltage					
						BDD at	EOCn+1					BND at	EOCn+1		
	E	OCn		BDD w	/o RPC	BDD	w/RDD	BDD v	w/RND	BND w	/o RPC	BND	w/RDD	BND v	w/RND
	L,	0011			Not		Not		Not		Not		Not		Not
				Plugged	Plugged	Plugged	Plugged	Plugged	Plugged	Plugged	Plugged	Plugged	Plugged	Plugged	Plugged
		Plugged	124			1	a an i sa i th	· • •	1.2	1.11		•••	- 1	• • • •	19 - 1 - 1
BDD	BDD w/o RPC	Not Plugged		101	5058	335	279	2	77	1	67		8		
	BDD w/ BDD	Plugged	531	1. j.	1. A. 1. A.	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		1		1	1.15				
		Not Plugged		4	617	99	870		2				27		2
EOCU		Plugged	6				. *			· .		$(x_{i})_{i\in \mathbb{N}} = (1, \dots, 1)$	· ·		×
		Not Plugged		5	179	10	64		167		40		3		3
		Plugged				5.00	1	1.15	×	1.1.1.1.1			100 C		
BND	BND w/o RPC	Not Plugged		61	3407	119	538	5	163	No Count	No Count	48	217	No Count	No Count
+	at BND w/ RDD	Plugged	47	· · ·	1.1				1.			14 J. 11 11 11 11 11 11 11 11 11 11 11 11 11	1. A.A.	1.00	¥ ·
	at BND w/ RDD	Not Plugged			3	2	35			No Count	No Count	10	199	No Count	No Count
EUCN	BND W/ BND	Plugged		1. A. A. A. A. A.		an an an an a'	15-14-5	12.11	1. A. A.	$1 \in [2, 2]$	· (1	a 1.	$(x_1,y_2) = (x_2,y_3)$	1.1.1.1	
		Not Plugged			1	3	5		6	No Count	No Count	19	25	No Count	No Count

Table 6-7: DCPP Composite POPCD Summary Regardless of Voltage

Parameter	POPCD Through 2R11 (7 Inspections)	POPCD Through 1R12 (8 Inspections)	Updated POPCD Through 2R12 (9 Inspections)
Number of Data Points	8647	10566	13053
a.0 (intercept)	2.147	2.125	2.258
a.1 (slope)	4.846	4.634	4.466
V ₁₁	0.00317	0.00245	0.00203
V ₁₂	0.00607	0.00471	0.00383
V ₂₂	0.01454	0.01146	0.00909

Table 6-8: DCPP POPCD Log Logistic Parameters

Table 6-9: New DCPP POPCD Correlation Comparison to Previous POPCD Correlations (Best Estimates)

Volts	POPCD Through 1R11 (Six Inspections)	POPCD Through 2R11 (Seven Inspections)	POPCD Through 1R12 (Eight Inspections)	POPCD Through 2R12 (Nine Inspections)
0.1	0.050	0.063	0.075	0.099
0.12	0.072	0.090	0.105	0.135
0.14	0.096	0.120	0.138	0.174
0.16	0.123	0.153	0.173	0.215
0.18	0.152	0.188	0.210	0.256
0.2	0.183	0.224	0.247	0.297
0.22	0.214	0.261	0.285	0.337
0.25	0.262	0.316	0.340	0.394
0.3	0.342	0.404	0.426	0.481
0.35	0.417	0.484	0.503	0.555
0.4	0.485	0.554	0.570	0.618
0.45	0.546	0.615	0.627	0.670
0.5	0.600	0.666	0.675	0.714
0.6	0.686	0.745	0.750	0.780
0.7	0.751	0.802	0.803	0.827
0.8	0.799	0.843	0.842	0.861
0.9	0.836	0.873	0.871	0.886
1	0.863	0.895	0.893	0.905
1.1	0.885	0.913	0.910	0.920
1.2	0.902	0.926	0.924	0.932
1.4	0.927	0.946	0.943	0.948
1.6	0.944	0.958	0.956	0.960
1.8	0.955	0.967	0.965	0.968
2	0.964	0.974	0.971	0.973
2.2	0.970	0.978	0.976	0.978
2.4	0.975	0.982	0.980	0.981
2.6	0.979	0.985	0.983	0.984
2.8	0.982	0.987	0.985	0.986
3	0.984	0.989	0.987	0.988
3.5	0.988	0.992	0.990	0.991
4	0.991	0.994	0.993 ·	0.993
4.5	0.993	0.995	0.994	0.994
5	0.9944	0.9961	0.9953	0.9954
6	0.9962	0.9973	0.9968	0.9968
7	0.9972	0.9981	0.9976	0.9976
8	0.9979	0.9985	0.9982	0.9982
9	0.9984	0.9989	0.9986	0.9985
10	0.9987	0.9991	0.9988	0.9988
86-9024635-000 Page 97 of 107

Table 6-10: 2R12 POPCD Results in Industry Format

Column	A	в	C	D	E	F	G	н	1	J
DCPP 2R12 Input to Generic POPCD Data Table										
	Detection at EOC,				No Detection at EOCn (New Indica	ations)		I		
	EOC _n Bobbin Ind. RPC Confirmed at EOC _{n+1}	EOC, Bobbin Ind. Not RPC Inspected at EOC,	EOC, Bobbin Ind. Repaired at EOC,	New EOC _{ant} Bobbin RPC Confirmed	New EOC _{ant} Bobbin Not RPC Inspected	Ind. Found Only by RPC at EOC _{n+1} or at EOC _n & Plugged at EOC _n ⁽³⁾	Excluded from POPCD	Totals fo Evalu	r POPCD ation	
Voltage Bin	$\begin{array}{c} BDD / RDD \rightarrow BDD / RDD \\ BDD / RDD \rightarrow BND / RDD \\ BDD / RND \rightarrow BDD / RDD \\ BDD / RND \rightarrow BND / RDD \\ BDD / RND \rightarrow BND / RDD \\ BDD \psi_0 RPC \rightarrow BDD / RDD \\ BDD \psi_0 RPC \rightarrow BND / RDD \end{array}$	BDD w/o RPC → BDD w/o RPC BDD / RDD → BDD w/o RPC BDD / RND → BDD w/o RPC	BDD / RDD → Plugged at EOCn BDD w/o RPC → Plugged at EOCn	BND w/o RPC → BDD / RDD BND / RDD → BDD / RDD BND / RND → BDD / RDD	BND w/o RPC → BDD w/o RPC BND / RDD → BDD w/o RPC BND / RND → BDD w/o RPC	BND w/o RPC → BND / RDD BND / RDD → BND / RDD BND / RND → BND / RDD BND / RND → Plugged at EOCn	All RND AT EOC _{A1} All BND w/o RPC at EOC _{A1} BDD/RND/Plugged at EOCn	Detection at EOCn	No Detection at EOCn	POPCD for Voltage Bin (Note 1)
0.01-0.10	0	0	0	0	7	0	3	0	7	0.000
0.11-0.20	2	99	· · · · · · · · · · · · · · · · · · ·	1	85	0	5	102	86	0.543
0.21-0.30	12		0	22	121		19	254	124	0.672
0.31-0.40	24	321		2	68	22	24	346	92	0.790
0.41-0.50		245	<u> </u>	<u> </u>		17	6	281	56	0.834
0.51-0.60	20	160	3	<u>_</u>	23	10	5	248	33	0.883
0.01-0.70		109			10	4	<u> </u>	188	16	0.922
0.81-0.00	15	105				0		146	6	0.961
0.91-1.00	11	78				<u> </u>	4	122	5	0.961
1 01-1 10	9	54		<u>_</u>	<u> </u>			69	3	0.967
1.11-1.20	11	47		<u>0</u>			·		<u> </u>	1.000
1.21-1.30	10	30	0	0		0	· · · · · · · · · · · · · · · · · · ·	40	<u>0</u>	1.000
1.31-1.40	9	20	0	0		<u> </u>		29	1	0.967
1.41-1.50	14	23	0	0	0	0		37		1,000
1.51-1.60	6	3	0	0		0	0	9	0	1.000
1.61-1.70	11	4	1	0	0	0	0	16	0	1.000
1.71-1.80	6	0	4	0	0	0	0	10	0	1.000
1.81-1.90	3	<u> </u>	4	0	0	0	0	8	0	1.000
1.91-2.00	2	0	3	0	0	00	0	5	0	1.000
2.01-2.10	0	<u> </u>	4	0	0	0	0	4	0	1.000
2.11-2.20	0	<u> </u>	2	0	0	0	0	2	0	1.000
2.21-2.30		<u> </u>	0	<u> </u>	0	0	0	0	0	
241-250	0	<u> </u>	<u>├</u> <u>}</u>	<u> </u>	<u> </u>	0	0	<u> </u>		1.000
251-260		<u></u>	1	<u> </u>		00	<u>0</u>		<u> </u>	1.000
261-270	0	J	······································	·	0	<u> </u>	<u> </u>	<u> </u>		1
2,71-2,80		<u> </u>		t 		0			<u> </u>	1.000
2.81-2.90		<u> </u>	<u> </u>	<u> </u>			·		<u>├</u>	1.000
2.91-3.00	<u> </u>	<u> </u>		<u> </u>	——————————————————————————————————————			 _ ;	X	1.000
3.01-3.10	0	<u> </u>	<u> </u>	<u> </u>	<u>_</u>	<u> </u>	0	1 ő –		├──── ┤
Total	237	1786	38	8	365	56	69	2061	429	
Notes: 1) POPCD f	Notes: 1) POPCD for each voltage bin calculated as (Detection at EOCn)/(Detection at EOCn + No Detection at EOCn). By column, POPCD = (A+B+C)/(A+B+C+D+E+F).									

Plot Did tack with Voltage bin calculated as (Detection at EOCH * 10 Detection at EOCH * 10 Detection

Table 6-11: DCPP Composite POPCD Results (9 Inspections) In Industry Format

Column	A	В	c	D	E	F F	G	н		
				DCPP Total Input to Generic POPCD Data Table				1		<u> </u>
	· · · · · · · · · · · · · · · · · · ·	Detection at EOC		No Defection at 5000 (New Indicational						
1 1	EOC Bobbin Ind BBC	FOC Robbin Ind Not RPC	· · · · · · · · · · · · · · · · · · ·			Lad Found Only by DDC at FDC		1		1
	Confirmed at EOC _{#1}	Inspected at EOC _{e+1}	EOC, Bobbin Ind. Repaired at EOC,	Confirmed	Inspected	EOC, & Plugged at EOC, ⁽²⁾	Excluded from POPCD	Totals fo Evalu	r POPCD sation	
	BDD / RDD -> SDD / RDD	BDD w/o RPC -> BDD w/o RPC	BDD / RDD -> Plugged at £OCn	BND w/o RPC - BDD / RDD	BND w/o RPC -> BDD w/o RPC	BND w/o RPC -+ BND / RDD	AII RND AT EOC	i	<u> </u>	·
Voltage	BDD / RDD BND / RDD	BDD / RDD> BDD w/o RPC	BDD w/o RPC -> Plugged at EOCn	BND/RDD> BDD/RDD	BND / RDD -> BDD w/o RPC	BND/RDD BND/RDD	All BND w/o RPC at EOC _{m1}	Detection	No	POPCD for
Bin		BOD / RND> BOD w/o RPC		BND / RND -+ BDD / RDD	BND / RND -> BOD w/o RPC	BND / RND -> BND / RDD	BDD/RND/Plugged at EOCn	at EOCn	Detection	Voltage Bin
	BDD w/o RPC -> BDD / RDD					BND/RDD Plugged at EOCh			at EOCn	(Note 1)
	BDD w/o RPC -> BND / RDD					I		ł		1
0.01-0.10	6	3	1	31	139	0	13	10	170	0.056
0.21-0.30	124	823		123	1029	8	61	299	919	0.245
0.31-0.40	185	1110	51	144	710	192	118	1346	1314	0.427
0.41-0.50	205	948	45	84	376	126	78	1198	586	0 672
0.51-0.60	192	<u></u>	40	51	198	79	51	1016	328	0.756
0.71-0.80	132	428	27	23	<u> </u>	7	22		154	0.838
0 81-0.90	126	323	14	22	32	4	18	463	58	0.889
0.91-1.00	81	227	14	9	16	11	4	322	26	0.925
1.11-1.20	<u> </u>	134			10		7	256	17	0.938
1.21-1.30	55	80	43	4	<u>4</u>	<u>_</u>	3	178		0.957
1.31-1.40	56	46	25	2	2	0	2	127	4	0.969
1.41-1.50	43	42	22	11		0		107		0.991
1.61-1.70	32	6	21	<u> </u>		<u>0</u>		59	<u> ;</u>	0.982
1.71-1.80	32	11	21	2	0	0	0	54	2	0.964
1.81-1.90	20	2	19	<u>0</u>		0	0		0	1.000
2.01-2.10	0		18		0			35	<u> </u>	1.000
2.11-2.20	0	0	13	0	0	ŏ		13	<u> </u>	1.000
2.21-2.30	<u> </u>	0	18	0	0	0	0	18	0	1.000
2 41-2 50	0		<u> </u>	0	0	<u>0</u>		22	0	1.000
2.51-2.60	0	<u>0</u>	9	ŏ				<u>8</u>	<u> </u>	1.000
2.61-2.70	0	<u> </u>	6	0	0	0	0	6	0	1.000
2.71-2.80	<u> </u>	<u> </u>	8	0		0	0	8	0	1.000
2.91-3.00	0	0	3		0		0	12	<u> </u>	1.000
3.01-3.10	0	0	8	0	0	0	0	8	0	1.000
3.11-3.20	<u> </u>	<u> </u>	2	0		0	0	2	0	1.000
3.31-3.40	<u>0</u>		<u> </u>	0	0	<u> </u>		<u></u>	0	1.000
3.41-3.50	0	0	4	Ŏ.	0	0	0	4		1.000
3.51-3.60	0	0	22	<u> </u>	0	0	0	2	0	1.000
3.71-3.80	<u> </u>	0	2				0	<u>2</u>	<u> </u>	1.000
3.81-3.90	0	ŏ	2	0	0	<u>0</u>		2		1.000
3.91-4.00	<u> </u>	0	0	0	0	0	0	0	0	
4.01-4.10	<u> </u>	0	5	0	<u>0</u>			5	<u> </u>	1.000
4.21-4.30	0	<u> </u>		ŏ		0	0	1		1,000
4.31-4.40	0	0	4	0	0	0	0	4	0	1.000
4.41-4.50	<u> </u>	0	2	<u> </u>	0		0	2	0	1.000
4.61-4.70	Ŏ		<u> </u>		<u>_</u>	<u>v</u>	<u> </u>	$\frac{2}{1}$	<u>0</u>	1.000
4.71-4.80	0	0	0	0	0	0	0	<u> </u>	Ŏ	
4.81-4.90	0	<u> </u>	<u> </u>	<u> </u>		0	0	<u>!</u>	0	1.000
5.01-5.10	<u> </u>		<u> </u>	<u> </u>			<u> </u>	- <u>3</u> -	<u> </u>	1.000
5.11-5.20	0	0	0	0	0		<u>,</u>	i ő		1.000
5.21-5.30	<u> </u>		2	00	0	0	0	2	0	1.000
5.41-5.50	<u>0</u>	<u> </u>			<u> </u>	0	0	<u> </u>		1 000
5.51-5.60	0	i	2	ŏ	ŏ	,	0	2	0	1.000
5.61-5.70	0	0	11	0	0	0	0	1	0	1.000
5.81-5.90	<u> </u>	l	0		<u> </u>		0	0	0	I
5.91-6.00	0	<u> -−− ŏ−−−</u> −−	l	0				- °	0	
>6.00	0	0	7	0	0	0	0	\overline{i}	<u> </u>	1.000
Total	1695	5964	655	702	3472	565	541	8314	4739	
1) POPCD fe	or each voltage bin calculated se (D	election at EOCnV(Detection at EOCo	+ No Detection at EOCn). By column P	OPCD = (A+B+CV/A+B+C+D+F+F)						
2) Plant spec	Plant specific POPCD to be based upon voltage bins of 0, 10 volt. Industry POPCD database may use 0.20 volt bins due to difficulty of adjusting existing database to smaller bins,									
Includes li	ndications at EOCn plugged at EOC	n and new indications at EOCn+1, no	t reported in the bobbin inspection, and fo	und only by RPC Inspection of dent:	 mixed residuals or other reasons for 	the RPC inspection.				

4) BDD = Bobbin detected Indication; BND = Bobbin NDD Intersection; RDD = RPC detected Indication; RND = RPC NDD Intersection

Figure 6-1: 2R12 POPCD Comparison to Composite POPCDs

EOCn Bobbin Volts

7.0 EOC-14 Projections for Probability of Burst and Leak Rate

This section provides the results of the EOC-14 POB and leak rate projections. AREVA uses Monte Carlo codes, as described in References 4 and 5, to provide the burst and leak rate analysis simulations. These evaluations are based on the methods in Reference 6 (for burst) and the slope sampling method for calculating the leak rate as defined in Section 9 of Reference 8. In addition, these evaluations use the POPCD and growth methodologies as described in Reference 16, as updated in References 25 and 28.

7.1 Inputs for Calculations

Most of the inputs required for the POB and leak rate calculations have been described in other sections of this document. Table 7-1 provides a summary of the inputs required and the corresponding section(s) or table(s) that provide these data. The inputs that have not been previously discussed are provided in this section.

Input Description	Section or Table Reference	Comments
BOC Voltage Distribution	Table 3-16	
Repaired Voltage Distribution	Table 3-16	
NDE Uncertainties	Section 3.6; Table 3-21	
POD	Table 6-8	Composite POPCD through 2R12 (9 inspections)
Growth	Section 3.2; Tables 3-11 and 3-12	Cycle 12 supplemented growth used for EOC-14 projections
Cycle Length	Section 7.1	1.62 EFPY
Tube Integrity Correlations	Tables 4-1 through 4-3	Addendum 6
Material Properties	Section 7.1	

Table 7-1: Inputs for EOC-14 POB and Leak Rate Projections

Material Properties

Since the burst pressure for a given flaw varies with the material properties of the tube, the material properties of the tubes must be included as an input into the POB program. This data is obtained from Reference 6. The values used for the EOC-14 projections were taken directly from Reference 6 and were a mean flow stress of 68.78 ksi and a standard deviation of the flow stress of 3.1725 ksi.

Cycle Length

The estimated cycle length for Unit 2 Cycle 14 is 1.62 EFPY (Ref. 12). This value was used in all projections for EOC-14 conditions.

7.2 Projected EOC-14 Voltage Distributions

The EOC-14 voltage distributions are obtained by applying a Monte Carlo sampling process to the BOC-14 voltages. The process starts by selecting a random POPCD correlation based on the POPCD parameters through 2R12 shown in Table 6-8. Based on the POPCD correlation, the BOC-14 population of indications is determined (detected plus assumed undetected). The process then randomly assigns NDE uncertainty values and a growth value to each of the BOC-14 indications. The EOC-14 voltage distributions are then used to calculate a leak rate and probability of tube burst. As discussed in Section 3.2, the Cycle 12 supplemented growth rates were determined to bound the Cycle 13 growth rates. Therefore, the Cycle 12 supplemented growth rates divided into two growth bins with a breakpoint at 1.12v. SGs 2-2 and 2-3 utilized a composite growth rate divided into three bins with breakpoints at 1.10 and 1.71 volts, and SG 2-4 used a SG-specific Cycle 12 supplemented growth rate divided into three bins with breakpoints at 0.47v and 1.03v. No "delta volts adjustment" was required. Table 7-2 and Figures 7-1 through 7-4 provide the projected EOC-14 voltage distributions.

1

Table 7-2: Projected EOC-14 Voltage Distributi	ions
(DCPP POPCD + Cycle 12 Supplemented Grow	vth)

Voltage Din	EOC-14 Projected Distributions					
	SG 2-1	SG 2-2	SG 2-3	SG 2-4		
<=0.1	2.01	1.39	11.41	4.04		
0.2	38.98	26.87	34.06	27.11		
0.3	77.76	56.96	63.49	83.83		
0.4	<u>133.81</u>	101.43	90.92	168.19		
0.5	145.41	121.05	96.11	223.79		
0.6	126.05	112.60	89.28	222.70		
0.7	110.09	102.41	76.72	177.56		
0.8	86.15	80.90	59.04	138.57		
0.9	<u> </u>	62.95	46.04	117.98		
	28.00	47.24	24.20	01.47		
12	28.88	24.01	17.70	83.05		
13	21.03	17.52	12.32	70.13		
1.0	15.07	12.26	8.58	56.25		
1.5	11.53	8.80	6.09	45.44		
·1.6	8.58	6.46	4.47	36.03		
1.7	6.64	4.98	3.49	27.55		
1.8	5.79	3.91	2.78	21.42		
1.9	4.74	3.01	2.25	17.53		
2	4.04	2.38	1.82	15.10		
2.1	2.93	1.86	1.44	13.05 '		
2.2	2.09	1.48	1.15	11.00		
2.3	1.42	1.19	0.92	9,11		
2.4	1.01	0.96	0.75	7.56		
2.5	0.85	0.80	0.66	6.38		
2.6	0.90	0.77	0.61	5,47		
2./	0.98	0.73	0.55	4.70		
2.8	0.96	0.65	0.49	3.93		
2.9	0.60	0.50	0.43	3,37		
21	0.69	0.40	0.37	3.20		
3.2	0.37	0.38	0.32	2.82		
33	0.37	0.36	0.26	2.62		
3.4	0.18	0.33	0.24	2.63		
3.5	0.13	0.30	0.22	2.71		
3.6	0.14	0.28	0.20	2.80		
3.7	0.23	0.26	0.19	2,74		
3.8	0.35	0.25	0.18	2.47		
3.9	0.41	0.23	0.18	2,16		
4	0.41	0.21	0.18	1.94		
4.1	0.35	0.21	0.18	1.89		
4.2	0.27	0.21	0.19	1.92		
4.3	0.20	0.21	0.20	1.88		
4.4	0.15	0.21	0.20	1.74		
4.5	0.10	0.20	0.19	1.09		
<u>4.0</u>	0.07	0.20	0.19	2.25		
4.8	0.16	0.28	0.20	2.23		
4,9	0.29	0.31	0.22	2.15		
5	0.39	0.30	0.22	1.87		
5.1	0.42	0.27	0.21	1.65		
5.2	0.42	0.23	0.19	1.51		
5.3	0.45	0.21	0.18	1.45		
5.4	0.52	0.19	0.16	1.42		
5.5	0.55	0.16	0.13	1.33		
5.6	0.52	0.12	0.11	1.15		
5.7	0.49	0.09	0.08	0.93		
5.8	0.51	0.06	0.07	0.77		
5.9	0.56	0.05	0.06	0.72		
6	0.57	0.04	0.06	0.69		
7	1.97	0.28	0.53	2,44		
>7	0.02	0.01	0.03	0.05		
Totals	1011.00	848.48	699.04	1858.63		

Figure 7-1: SG 2-1 EOC-14 Projected Voltage Distribution

EOC-14 Projected Voltage Distribution for SG 2-1

EOC-14 Projected Voltage Distribution for SG 2-2

Figure 7-3: SG 2-3 EOC-14 Projected Voltage Distribution

EOC-14 Projected Voltage Distribution for SG 2-3

EOC-14 Projected Voltage Distribution for SG 2-4

7.3 Projected Tube Burst Probability and Leak Rate for EOC-14

Calculations to predict SLB leak rate and tube burst probability for each steam generator in DCPP Unit 2 at the projected EOC-14 conditions were performed using the burst pressure, leak rate, and probability of leakage correlations provided in Tables 4-1 through 4-3. The results of these calculations are shown in Table 7-3. As shown in Table 7-3, all of the results for projected EOC-14 conditions are below the acceptance criteria of 1.0 x 10^{-2} for POB and 10.5 gpm for leakage.

Steam	Projected Number of Indications at EOC-14	Probability	SLB Leak Rate	
Generator		Best Estimate	95% UCL (1 or More Failures)	(gpm)
SG 2-1	1011.00	1.91 × 10 ⁻³	-3 2.02 × 10	1.16
SG 2-2	848.48	6.46×10^{-4}	7.08 × 10	0.61
SG 2-3	699.04	6.90×10^{-4}	7.54 × 10 ⁻⁴	0.53
SG 2-4	1858.63	5.76×10^{-3}	5.94 × 10 ⁻³	3.75
F	Reporting Thres	-2 1.0 × 10	10.5	

Table 7-3: Projected Leak Rate and Burst Probability at EOC-14 Using DCPP POPCD

8.0 References

- 1. AREVA Document 86-9019535-000, "DCPP Unit 2R13 Voltage-Based ARC and W-star Startup Report", May 2006.
- NRC Generic Letter 95-05, "Voltage-Based Repair Criteria for the Repair of Westinghouse Steam Generator Tubes Affected by Outside Diameter Stress Corrosion Cracking," USNRC Office of Nuclear Reactor Regulation, August 3, 1995.
- 3. NRC SER for Diablo Canyon Units 1 and 2 for Voltage-Based Repair Criteria, letter to PG&E dated March 12, 1998.
- 4. AREVA Document 51-5001160-02, "Steam Generator POB Simulation Code POB97vb_R20.F90", December 2003.
- 5. AREVA Document 51-5001151-02, "Steam Generator Leak Rate Simulation Code LKR97VB2_r30.F90", December 2003.
- 6. WCAP 14277, Revision 1, SLB Leak Rate and Tube Burst Probability Analysis Methods for ODSCC at TSP Intersections, December 1996.
- 7. AREVA Document 86-9011354-000, "DCPP 1R13 Bobbin Voltage ARC 90-Day Summary Report", February 2006.
- 8. EPRI Report NP 7480-L, Addendum 6, 2004 Database Update, "Steam Generator Tubing Outside Diameter Stress Corrosion Cracking at Tube Support Plates Database for Alternate Repair Limits", Electric Power Research Institute, January 2005.
- 9. Pacific Gas and Electric, Diablo Canyon Unit 1 Refueling Outage 2R13, "Steam Generator Tubing Degradation Assessment", Revision 1, May 2, 2006.
- 10.Not used.
- 11. Diablo Canyon Power Plant Procedure, NDE ET-7, "Eddy Current Examination of Steam Generator Tubing", Revision 8.
- 12. Pacific Gas and Electric Company, Diablo Canyon Power Plant, Surveillance Test Procedure, STP M-SGTI, Revision 12, "Steam Generator Tube Inspection", March 7, 2006.
- 13.AREVA Document 51-9019522-000, "Bobbin Coil Probe Wear Monitoring for DCPP 2R13", May 2006.
- 14. AREVA Document 86-5029429-00, "DCPP 2R11 Bobbin Voltage ARC 90 Day Summary Report", June 2003.
- 15.NRC Letter to NEI, dated February 9, 1996, "Probe Wear Criteria."

- 16.PG&E Letter DCL-04-028, License Amendment Request 04-01, "Revised Steam Generator Voltage-based Repair Criteria Probability of Detection Method for DCPP Units 1 and 2", March 18, 2004.
- 17.AREVA Document 51-5039454-00, "Bobbin/+Point[™] Correlation for AONDB Indications at DCPP", February 2004.
- 18.Not Used.
- 19.Not Used.
- 20.Not Used.
- 21.Not Used.
- 22.Not Used.
- 23.AREVA Document 32-9024634-000, "DCPP Unit 2 R13 Voltage-Based ARC 90-Day Report Supporting Calculation File".
- 24.NEI Letter to NRC, "Generic Letter 95-05 Alternate Repair Criteria Methodology Updates", June 2, 2004.
- 25.PG&E Letter DCL-04-104, "Response to NRC Request for Additional Information Regarding License Amendment Request 04-01", August 18, 2004.
- 26. Not used.
- 27.AREVA Document 86-5059194-00, "DCPP Unit 2 R12 Voltage-Based ARC 90-Day Report", March 2005.
- 28.PG&E Letter DCL-04-117, "Response to August 24, 2004, NRC Request for Additional Information Regarding License Amendment Request 04-01", September 17, 2004.
- 29.NRC Letter to PG&E, "Diablo Canyon Power Plant, Unit Nos. 1 and 2 Issuance of Amendment Re: Permanently Revised Steam Generator Voltage-Based Repair Criteria Probability of Detection Method (TAC Nos. MC2313 and MC2314)", October 28, 2004.
- 30.PG&E Letter DCL-06-080, "Reply to Request for Additional Information Regarding: Special Report 04-02 - Results of Steam Generator Inspections for Diablo Canyon Power Plant Unit 1 Thirteenth Refueling Outage", June 23, 2006.