

Official Use Only-

SFP Analysis

- SFP Background
- Analysis Summary

-CFD

- MELCOR Results
 - Separate Effects Model
 - Whole Pool Model
- Modeling Issues/Uncertainties

• Testing

-Official Lise Only-

SFP Analysis Background

NRC Vulnerability Project

- Past work primarily limited to "early phase" heat-up calculations, no integrated severe accident analysis performed
- Most codes only analyzed potential for zirconium fire using "ignition temp" criteria
 - No Severe Accident Models
 - Historical Tools Also Criticized for Modeling Limitations
 - Damage propagation
 - Oxidant depletion
 - FP release and transport modeling
 - Heat transfer modeling
 - Flow Mixing
 - Shortcomings can be overcome with severe accident modeling (MELCOR) + detailed T/H support (CFD)

Spent Fuel Pool Analyses

- Analyses will address scenario characteristics (from different threats)
 - Partial Pool Drainage (Water Boildown)
 - Complete Pool Drainage (Air Natural Circulation)

- CFD Used to Evaluate
 - Details of Single Assembly in Air Circulation and Heat Flows
- EXE
 - Flow and Mixing Behavior in Pool and Building
 - Provide Boundary Conditions for MELCOR Analyses
 - MELCOR Will Analyze
 - Global Response of Pool and Assemblies,
 - Fuel Damage, Steam and Air Oxidation
 - Fission Product Source Term
 - Mitigation or Recovery Actions

-Official-Use-Only_

MELCOR Modeling Approach

- 2 Model Approach Separate Effects and Whole Pool/Reactor Building Models
 - Subdivided into 2 Types of Scenarios
 - Complete Loss-of-Inventory⁴
 - Partial Loss-of Inventory)^(*)
- Separate Effects Model
 - Developed First to Guide Full SFP Model Development
 - Fast Running + Controlled Boundary Conditions
 - Use Separate Effects Model to Develop Appropriate Modeling Approach
 - Identify Sensitivities and Uncertainties
 - Recommend Code Development.
- Full SFP + Building Model
 - Integral Effects

Ex.5 [-

Whole SFP Source Term

Official Use Only_

] Ex 5 Ex 5

Testing

 Testing performed at ANL to confirm MELCOR air oxidation kinetics

- For Zircalloy and Zirlo testing confirmed general adequacy of correlationa at low temp(<600 C)
- Breakaway phenomena seen f (temp, time)
- Testing underway to examine effect of hydriding on oxidation behavior for Zirlo

fficial Use Only

Figure 19. A comparison of the temperature dependence of the oxidation rate constant for air oxidation of steam-preoxidized Zircaloy-4 and Zirlo at 300-600°C derived from this project with those for Zircaloy-4, based on Nureg1 (Powers), NuregII, and CODEX.

Figure 20. A comparison of the temperature dependence of the oxidation rate constant (in postbreakaway region) for air oxidation of steam-preoxidized Zircaloy-4 and Zirlo at 400-900°C derived from this project with those for Zircaloy-4, based on Nureg1 (Powers), NuregII, and CODEX.

6

Figure 5. Weight change data during air oxidation of steampreoxidized Zirlo capsule specimens.

21

Figure 13. Temperature dependence of rate constant for the air oxidation of steam-preoxidized Zirlo capsule specimens in the temperature range of 300-600°C.

Figure 14. Temperature dependence of rate constant for the air oxidation of steam-preoxidized Zirlo capsule specimens in the temperature range of 300-900°C.

13

Testing

- New testing proposed for confirming spent fuel pool modeling of T/H and accident progression
- Confirmation of modeling adequacy
 - Natural circulation flow air flow case
 - Laminar flow losses (initial and degrading fuel conditions)
 - Base plate and bypass region modeling
 - Convective heat transfer
 - Radiation heat transfer
 - Transient oxidation behavior