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Spent Fuel Pool Studies
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SFP Analysis Background

*» NRC Vulnerability Project

— Past work primarily limited to “early phasye" heat-up
caiculations, no integrated severe accident analysis
nerformed

— Most codes only analyzed potential for zirconium fire using
“ignition temp” criteria |

» No Severe Accident Models
- Historical Tools Also Criticized for Modeling Limitations
— Damage propagation '
— Oxidant depletion
— FP release and transport modeling
— Heat transfer modeling
— Flow Mixing

« Shortcomings can be overcome with severe accident modeling
(MELCOR) + detailed T/H support (CFD)
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Spent Fuel Pool Analyses

- Analyses will address scenario characteristics (from different
threats)

— Partial Pool Drainage (Water Boildown)
— Complete Pool Drainage (Air Natural Circulation)

= |

- CFD Used to Evaluate
— Details of Single Assembly in Air Circulation and Heat Flows

Tk o ]
— Flow and Mixing Behavior in Pool and Building
— Provide Boundary Conditions for MELCOR Analyses

+ MELCOR Will Analyze
— Global Response of Pool and Assembilies,
— Fuel Damége, Steam and Air Oxidation
— Fission Product Source Term '
— Mitigation or Recovery Actions
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MELCOR Modeling Approach

~ » 2 Model Approach - Separate Effects and Whole Pool/Reactor
~Building Models .

— Subdivided into 2 Types of Sgenarios S
+ Complete Loss-of-Inventory ' | [ &e5
« Partial Loss-of Inventory):/—' . & s

= Separate Effects Model
— Developed First to Guide Full SFP Model Development
— Fast Running + Controlled Boundary Conditions
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Ex.5 |-

= Use Separate Effects Model to Develop Appropriate Modelmg Approach
» ldentify Sensitivities and Uncertainties
* Recommend Code Development. '

» Full SFP + Building Model
— integral Effects
— Whole SFP Source Term




Testing '

» Testing performed at ANL to confirm IVIELCOR alr
oxidation kinetics

— For Zircalloy and Zirlo testing confirmed general
adequacy of correlationa at low temp(<600 C)

— Breakaway phenomena seen f (temp, time)

— Testing imderway to examine effect of hydriding on
oxidation behavior for Zirlo
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Figure 19. A comparison of the temperature dependence of the oxidation rate constant for air

. oxidation of steam-preoxidized Zircaloy-4 and Zirlo at 300-600°C derived from this project with
those for Zircaloy-4. based on Nuregli (Powers), Nuregll, and CODEX.
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Figure 20. A comparison of the temperature dependence of the oxidation rate constant (in post-

breakaway region) for air oxidation of steam-preoxidized Zircaloy-4 and Zirlo at 400-900°C derived
“from this project with those for Zircaloy-4, based on Nureg! (Powers), Nuregll, and CODEX.
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~ Weight change (mg/mm?)
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Figure 13. Temperature dependence of rate constant for the air oxidation of Steam-preoxidized Zirlo
capsule specimens in the temperature range of 300-600°C.
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Figure 14. -Temperature dependence of rate constant for the air oxidation of steam-preéxidized
Zirlo capsule specimens in the temperature range of 300-900°C.
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Testing .

» New testing proposed for confirming spent fuel

pool modeling of T/H and accident progression

» Confirmation of modeling adequacy

— Natural circulation flow — air flow case
« Laminar flow losses (initial and degrading fuel
conditions)
* Base plate and bypass region modeling
» Convective heat transfer

» Radiation heat transfer

— Transient oxidation behavior

23



