Accident Progression, Source Term and Consequence Estimates

Objective: Develop realistic accident progression, source term and consequence estimates to identify key vulnerability issues

- Major Tools
 - MELCOR
 - MACCS

Orluon's Ex 5

- Major Tasks:
 - Review / improve fission product modeling
 - Improve consequence modeling treatments
 - Perform integrated reactor analysis BWR & PWR
 - Perform integrated SFP analyses
 - Mitigation

Testing

was

deleted

of Information

Official Use Only_

EK 5

10/02

1

Spent Fuel Pool Analyses

Ex 5

Fx 5

8

- Evaluate Response to Initiating Events in Terms of Heatup and Source Term Generation
 - Partial Pool Drainage
 - Complete Pool Drainage (Air Natural Circulation)
- FLUENT and FLOW-3D Used to Evaluate
 - Details of Single Assembly in Air Circulation and Heat Flows
 - Flow and Mixing Behavior in Pool and Building
 - Provide Boundary Conditions for MELCOR Analyses
- MELCOR Will Analyze
 - Global Response of Pool and Assemblies,
 - Fuel Damage, Steam and Air Oxidation
 - Fission Product Source Term
 - Mitigation or Recovery Actions

Official Use Only-

Overview of CFD Analyses

 Intent is to analyze flow details of individual assemblies to provide input and boundary conditions for MELCOR models of SFP

– Detailed flow and pressure drops \rightarrow loss coefficients

- Full pool and building analysis using porous media approximation will provide additional flow boundary conditions for MELCOR
 - Principal flow patterns → MELCOR volume/flow path nodalization
 - Room air mixing \rightarrow correct return air temperatures
 - Underfloor pressure drops \rightarrow

MELCOR SFP Modeling Approach

- 2 Model Approach Separate Effects and Whole Pool/Building Models
 - Subdivided into 2 Types of Scenarios
 - Complete Loss-of-Inventory
 - Partial Loss-of Inventory ...
- Separate Effects Model

Developed to Guide Full SFP Model Development

- Identify Sensitivities and Uncertainties
- Use Separate Effects Model to Develop Appropriate Modeling Approach and Code Improvements
- Full SFP + Building Model
- Integral Effects
- Whole SFP Source Term

JEx5 Ex5

EK 5

MELCOR SFP Separate Effects Model Calculations

- >50 Calculations Completed in Preliminary Matrix
- Considerable Effort to Develop Robust Model
 - Model Includes
- Parametric Calculations Performed on Both Scenarios
 - Complete Loss-of-Water Inventory
 - Partial Loss-of-Water Inventory

---Official Use-Only

Fission Product Modeling

Objective: Reflect Best-Estimate Fission Product Release, Transport and Deposition

- Review and assess present MELCOR fission product source term modeling
- Update as appropriate for present applications

Ex

NUREG-1150 Probabilistic Risk Analysis

Probabilistic Physical Process Modeling

-Official Use Only-

26

Testing Activities

-Official-Use Only-

ANL Cladding Air Oxidation Experiments

- Present data base sparse in low temperature regime
- Experiments presently underway at ANL
- Emphasis on low temperature oxidation in air
 - Important in predicting thresholds for initiating zirconium fire
- Will incorporate data in MELCOR as is becomes available

SFP Thermal Hydraulic Experiments

- Characterize effect of SFP geometry on air thermal-hydraulics and onset of oxidation
 - Grid spacers and end pieces
 - SFP rack construction, flux trap, boral
 - Under-floor details affecting flow and pressure drop
 - Flow paths and Bernoulli effects
- Characterize air oxidation and Zirc Fire Onset
 - Heat generation from oxidation and nitriding combined with decay heat profile
 - Air reactions affecting flow and pressure drop
 - Burn localization, role of radiation heat transfer
 - Rack wall heating, failure (melting and materials interaction)
 - Adjacent assembly heating and zirc-fire propagation
- Model Integral effects
 - Modeling extensions to capture integral behavior of SFP damage progression
- Testing also applicable to Dry Cask Storage analysis

Official Use Only

Fission Product Release Experiments

- Data on fission product release from fuel in airoxidation environment deficient
- Ru release of more volatile oxide expected data lacking
- UO₂ oxidation to volatile higher oxides also expected
 - Fuel decrepitation observed in Canadian testing
 - Large fuel volatilization can release otherwise low volatile fission products owing to physical stripping of fuel matrix