

U.S. EPR Pre-Application Review Meeting: Codes and Methods Applicability Topical Report

AREVA NP Inc. and the NRC August 1, 2006

AREVA NP INC. > NRC Meeting – August 1, 2006

Introduction

Sandra M. Sloan Manager, Regulatory Affairs New Plants Deployment

AREVA NP INC. > NRC Meeting – August 1, 2006

- > Provide overview of U.S. EPR design
- > Describe topical report content and approach
- > Describe relationship of this topical report to others

- > Introduction
- > U.S. EPR design overview
- > Fuel analysis methods
- > Safety analysis methods
- > Summary and next steps

Jerry Holm

Roger Stoudt

Chris Lewis

Robert Salm

Sandra Sloan

AREV/

Jerry Holm Manager, Product Licensing Corporate Regulatory Affairs

AREV#

> November 2, 2005 meeting

Pre-submittal meeting

> NRC approved codes and methods

Minimize NRC review effort

> Future topical reports

New or revised methods

Report Content

> Fuel analysis methods

- PRISM/CASMO
- COPERNIC
- LYNXT
- NEMO-K

> Safety analysis methods

- SBLOCA
- Non-LOCA

Bases for Methods Applicability Evaluation

- Comparison of physical characteristics of plants and fuel designs for which methods are currently approved and U.S. EPR
- Comparison of phenomena and conditions in currently approved plants and U.S. EPR
- > Changes to methods will be documented and supported in the topical report
 - Minimal changes
 - None for most methods

Additional Topical Reports

- > CHF correlation
- > Large break LOCA methodology
- > Fuel mechanical design for U.S. EPR
- > Set-point methodology
- > RIA methodology

Roger Stoudt Advisory Engineer Nuclear Island Engineering

AREVA NP INC. > NRC Meeting – August 1, 2006

AREVA

U.S. EPR Design Overview

- > High level plant description
- > U.S. EPR similar to current operating PWRs
- > U.S. EPR design undergoing conversion to U.S. standards/requirements

Primary System Features

- Conventional 4-loop design proven by decades of design, licensing and operating experience
- Main components enlarged as compared with existing designs to increase margin in transients and accidents

Fuel Design Proven By Operation

> 17x17

> Typical pitch-to-diameter ratio

- > M5[®] cladding
- > Heated length similar to STP
- > M5[®] HTP mixing grids
- > Anti-debris lower end fitting
- > Significant design margins

U.S. EPR Fuel Assembly Comparison

	Current 17x17 HTP	<u>U.S. EPR HTP</u>
Lower Nozzle	FUELGUARD TM	Same
Fuel Pin Array	17 x 17	Same
Fuel Pin Pitch (in)	0.496	Same
Fuel Rod OD (in)	0.376	0.374
Cladding ID (in)	0.328	0.329
Fuel Pellet OD (in)	0.3215	0.3225
Fuel Pellet TD (%)	95	96
Active Fuel Length (in)	144	165.354
Fuel Cladding	M5®	Same
Spacer Grid in Active Fuel	HTP	Same
Fuel Rods/Assembly	264	265
Guide Tubes/Assembly	24	Same
Instrument Tubes/Assembly	1	0
Guide Tube OD (in)	0.48	0.49

AREVA NP INC.

Reactor Coolant System: U.S. EPR vs. Current U.S. 4-Loop PWRs

- > RCS configuration
 - Four separate loops similar arrangement
 - Pressurizer similar arrangement
 - Recirculating steam generators with axial economizer
 - Centrifugal reactor coolant pumps
 - Four safety system trains similar type, locations
 - Emergency feedwater
 - ECC accumulator
 - ECC pumped injection (medium and low head)
 - Large dry containment with liner

Reactor Coolant System: Parametrics

Parameter	U.S. EPR	Typical Current 4-Loop U.S. Design
Thermal power (MW)	~4,500	3,411
Hot leg temp (°F)	625	610
Cold leg temp (°F)	564	547
RCS flow per loop (gpm)	125,000	90,000
Primary system pressure (psia)	2,250	2,250
Total RCS volume (ft ³)	16,245	12,600
PZR volume (ft ³)	2,650	1,800
SG secondary inventory (Ibm per SG)	182,000	106,000
Number of fuel assemblies	241	193
Average linear heat rate (kW/ft)	4.98	5.44
Peak linear heat rate (kW/ft)	12.95	13.06
Primary volume/power (ft ³ /MW)	3.61	3.69
Secondary mass/power (lbm/MW/SG)	40.4	31.1
PZR steam-to-RCS liquid volume	0.070	0.061
LOCA Break Area/System Volume (1/ft)	3.17 (E-04)	3.27 (E-04)
Accumulator Volume/RCS Volume	0.35	0.30

U.S. EPR Design Features vs. Current U.S. 4-Loop PWR Designs

- > Higher thermal power, lower LHR
- > Larger primary and secondary volumes
- > Longer active core, comparable to STP
- > RCS volume/power essentially same
- Comparable cold leg mass flux (flows and flow areas increase with volume and power)

U.S. EPR Design Features vs. Current U.S. 4-Loop PWR Designs (cont.)

- Medium head SI with safety grade SG cooldown
 - Improved SBLOCA performance
 - Improved SG tube rupture performance
- > Elevations
 - Top of active core ~6 ft below cold leg (vs ~4 ft on current plants)
 - Loop seal elevation at top of active core
 - Improved LBLOCA reflooding and SBLOCA loop seal clearing

> Volumes

 Pressurizer and SG volumes increased on a relative basis-- improves transient response

Identify and validate methodologies for U.S. EPR analysis

Neutronics

AREV#

- Thermal-hydraulics
- Thermo-mechanical
- > Present benchmarks and sample analyses for U.S. EPR

- > Topical report identifies currently approved methodologies selected for use in U.S. EPR Fuel Analysis
 - Neutronics core design and neutronics input to safety
 - "Reactor Analysis System for PWRs," Volumes 1 and 2, EMF-96-029(P)(A), January 1997
 - "NEMO-K A Kinetics Solution in NEMO," BAW-10221P-A, October 1998
 - Thermal Hydraulics core hydraulics and DNB analysis
 - "LYNXT Core Thermal-Hydraulic Program," BAW-10156A, Revision 1, August 1993
 - Thermo-mechanical fuel/fuel rod response
 - "COPERNIC Fuel Rod Design Computer Code," BAW-10231PA-00, June 2002

Methodologies (continued)

> Additional Supporting Methodologies

- "Evaluation of Advanced Cladding and Structural Material (M5[®]) in PWR Reactor Fuel," BAW-10227P-A, Revision 1, June 2003
- "Incorporation of M5[®] Properties in Framatome ANP Approved Methods," BAW-10240P-A, Revision 0, May 2004
- "Fuel Rod Bowing in Babcock & Wilcox Fuel Designs," BAW-10147P-A, Revision 1, May 1983
- Extended Burnup Evaluation," BAW-10186P-A, Revision 2, June 2003
- "Fuel Rod Gas Pressure Criterion (FRGPC)," BAW-10183P-A, Revision 0, July 1995
- "Statistical Fuel Assembly Hold Down Methodology", BAW-10243P-A, September 2005

Neutronics: EMF-96-029(P)(A), "Reactor Analysis System for PWRs," Volumes 1 & 2

- NRC approved general purpose physics code suite (MICBURN/CASMO-3/PRISM)
 - Core design
 - Incore monitoring systems
 - Neutronics input to safety
- > Broad range of applications
 - 14x14 to 17x17 fuel lattices
 - Westinghouse 2-, 3-, and 4- loop plants, variety of CE plants
 - Various axial fuel configurations
 - Various burnable poisons (boron BP rods, IFBA, gadolinia)

Neutronics: EMF-96-029(P)(A), "Reactor Analysis System for PWRs," Volumes 1 & 2 (continued)

- Minor methodology changes
 - 0.625 eV thermal energy cutoff
 - Heavy reflector cross sections
- > U.S. EPR configuration similar to U.S. 4-loop core designs
 - 17x17 lattice (.374" rod O.D. and 24 guide tubes)
 - Gadolinia burnable poison
 - ~14 ft active fuel length
 - 241 assembly core
- > Benchmarking/validation calculations demonstrate applicability for use on U.S. EPR configurations.
 - Uses new thermal energy cutoff of 0.625 eV
 - Includes plants with aeroball measurement system
 - Characterizes and evaluates heavy reflector modeling methodology

Neutronics: 0.625 eV Thermal Energy Cutoff

- > Converges with German code methodology
- > All validation calculations use new energy cutoff
- Impact on cold critical pin power measurement uncertainties < 0.1%</p>
- > One plant from original topical re-benchmarked with negligible change in results

Neutronics: Aeroball Measurement System (AMS)

- > AMS has been used in virtually all German reactors for decades
- > Benchmarking includes two plants using AMS and POWERTRAX/S core monitoring
 - Siemens KONVOI 177 assembly core 15x15 lattice
 - Siemens KONVOI 193 assembly core 18x18 lattice
- > 10 cycles of measured data
- > 147 core power distribution maps

Neutronics: Heavy Reflector Model

- > Process similar to that for benchmarked plants
- > Physical problem simpler due to the elimination of large areas of moderator at the core boundary
- > PRISM vs. MCNP comparisons

Neutronics: EMF-96-029(P)(A), "Reactor Analysis System for PWRs," Volumes 1 & 2

> Basis for applicability

- Minimal changes to methodology
- Similarity of U.S. EPR fuel to current designs
- Satisfactory validation results

Supports application of methodology ton U.S. EPR

Neutronics: BAW-10221P-A, "NEMO-K A Kinetics Solution in NEMO"

> NRC approved general purpose kinetics code

- Transient core power distributions
- Core reactivity during rapid transients
- > Transient kinetics equations added to core simulator
- > Current applications
 - 15x15 and 17x17 fuel lattices
 - Westinghouse 3- and 4-loop and B&W plants
 - Physics input to RIA and other fast transients

Neutronics: BAW-10221P-A, "NEMO-K A Kinetics Solution in NEMO"(Cont.)

- > U.S. EPR configuration similar to U.S. 4-loop core designs
 - 17x17 lattice (.374" rod O.D. and 24 guide tubes)
 - Gadolinia burnable poison
 - ~14 ft active fuel length
 - 241 assembly core
- > Uses same cross section code (CASMO-3) as core simulator
- > Benchmarked against industry standard problems
- No changes made to methodology

Supports direct application of methodology to U.S. EPR

Thermal-Hydraulics: BAW-10156A, "LYNXT Core Thermal-Hydraulic Program"

> NRC approved general purpose thermal-hydraulic code

- Calculates core fluid conditions (pressure, temperature, flow distributions)
- Calculates DNB under normal and accident conditions

> Also used in:

- Setpoint verification
- Control component cooling calculations

> Current Applications

- 15x15 and 17x17 fuel lattices
- Westinghouse 3- and 4-loop and B&W plants
- Mixing vane and HTP spacer designs
- Various top and bottom nozzle designs, including FuelGuard[™]

Thermal-Hydraulics: BAW-10156A, "LYNXT Core Thermal-Hydraulic Program" (Cont.)

> EPR fuel hydraulically similar to current U.S. fuel designs

- 17x17 Lattice
- HTP Spacer
- FuelGuard[™] Bottom Nozzle
- > CHF correlation
 - EPR fuel design
 - Correlated using LYNXT
- > No modeling changes were made to the code models

Supports direct application of methodology to U.S. EPR

Thermo-Mechanical: BAW-10231PA, "COPERNIC Fuel Rod Design Computer Code"

> NRC approved general purpose thermal-mechanical code

- UO₂ and Gd₂O₃-UO₂ fuel pellets
- M5[®] rod material
- Thermal and mechanical response during normal and accident conditions
- > Approved for use in both best estimate and 95/95 bounding calculations of:
 - Rod internal pressure
 - Centerline fuel melt
 - Transient strain
 - Fatigue
 - Clad corrosion
 - Provides input to non-LOCA transient analyses

A AREVA

Thermo-Mechanical: BAW-10231PA, "COPERNIC Fuel Rod Design Computer Code" (Cont.)

- U.S. EPR fuel pellet/rod design fundamentally the same as used in current operating reactors:
 - < 5 w/o UO₂
 - 2-8 w/o Gd_2O_3 as burnable poison
 - Fuel density = 96%
 - Rod burnup < 62 MWd/MTU
 - Rod OD = 0.374 inches
- Sample problems include subset of original topical problems
- No changes to the inherent code models for U.S. EPR application

Supports direct application of methodology to U.S. EPR

Fuel Analyses Conclusions

- > Fuel design codes are generic in nature
- > U.S. EPR similar in core/fuel design and conditions to current U.S. 4-loop PWRs
- Few or no modifications were made to the existing NRC approved methodologies
- Sample problems and benchmarking show similar behavior to current fuel

The fuel analyses codes/methodologies are directly applicable to U.S. EPR analyses

Bob Salm Supervisor, Safety Analysis New Plants Engineering

AREVA

- Identify and validate methodologies for U.S. EPR Chapter 15 safety analyses
 - Small break LOCA
 - Non-LOCA
- > Present sample analyses for U.S. EPR

A D E V /

- > Topical report identifies NRC approved methodologies selected for U.S. EPR analysis
 - SBLOCA "PWR Small Break LOCA Evaluation Model, S-RELAP5 Based," Revision 0, EMF-2328 (P)(A), January 2000
 - Non-LOCA "SRP Chapter 15 Non-LOCA Methodology for Pressurized Water Reactors," EMF-2310(P)(A) Revision 1, June 16, 2004

- > Topical report demonstrates NRC approved codes and methods are applicable to U.S. EPR
 - Describes events, analysis basis and acceptance criteria
 - Identifies important phenomena by event phase and plant component
 - Cites experimental benchmarks
 - Highlights U.S. EPR design features, configuration and functionality and how they are modeled
 - Shows phenomenological equivalence to current U.S. 4-loop PWRs
 - Similar plant behavior
 - Same range of conditions
 - No new phenomena

Small Break LOCA

> Approved SBLOCA methodology is unchanged

- Break flow area ≤ 10% of the cold leg area (5" diameter or 0.5 ft²)
- Deterministic approach using S-RELAP5
- Steady-state fuel conditions obtained from RODEX2-2A
- Satisfies 10 CFR 50.46 and Appendix K

SBLOCA Methodology Justification

> U.S. EPR justification approach, by event

- Describe transient, when necessary, by phase
- Identify important components/functionality
- Identify important phenomena
- Confirm phenomena same as for current 4-loop PWRs

Similar design, same phenomena

Typical SBLOCA Transient Phases

- > RCS depressurization following break initiation in cold leg discharge piping
 - Characteristics
 - Rapid depressurization
 - Approach to saturation in hot legs
 - Events
 - Reactor trips on low RCS pressure
 - SG pressure rises to MSRT setpoint following turbine trip
 - LOOP assumed coincident with scram
 - Important components/phenomena
 - <u>Core</u> fuel rod behavior (model prescribed by NUREG-0630)
 - <u>Break</u> flowrate (Moody correlation per 10 CFR 50.46, Appendix K)

- > RCS saturation and primary flow coastdown
 - Characteristics
 - Transition to natural circulation as RC pumps coast down following LOOP
 - Saturation of RCS as depressurization continues
 - Events
 - Safety injection is initiated on low-low RCS pressure signal
 - Programmed cooldown of SG initiated on SI signal
 - Important components/phenomena
 - <u>Core</u> Fuel rod behavior same as Phase 1; cladding temperature approaches saturation; counter-current flow at core exit (S-RELAP5 checks for CCFL)
 - <u>Steam Generator</u> Heat transfer helps depressurize RCS
 - <u>Break</u> Two-phase; includes MHSI

- > Loop Seal Clearing
 - Characteristics
 - Safety injection (MHSI) is insufficient to offset break flow
 - Steam collects in SG U-bends; natural circulation stops; condensation heat transfer is established
 - Core covered by mixture
 - Important components/phenomena
 - <u>Core</u> decay heat, heat transfer, phase separation and fuel behavior
 - <u>Steam Generator</u> secondary side depressurizes with programmed cooldown
 - Condensation on SG primary side
 - Reflux boiling between core and hot leg sides of SGs
 - <u>Cold Leg/Pump/Downcomer</u>
 - Loop seal clears when RCS depletes sufficiently for steam to reach the break via cold leg piping and downcomer
 - Break Quality approaches one after loop seal clearing

> Boil-off

- Characteristics
 - Break flow exceeds MHSI capacity; vessel inventory decreases, potentially causing partial core uncovery
 - RCS depressurization continues due to SG cooldown and/or break flow; may reach accumulator discharge pressure
- Important components/phenomena
 - <u>Core</u> same as Phase 3, except a portion may have only steam cooling; potential for clad swelling and rupture
 - <u>Steam Generator</u> secondary side continues programmed cooldown; if primary pressure is above secondary, heat transfer via
 - Condensation on primary side
 - Reflux boiling between core and hot leg sides of SGs
 - <u>Break</u> largely steam, includes MHSI and possibly accumulator water if discharging

- > Core Recovery
 - Characteristics
 - ECC flow (MHSI and potentially accumulator discharge) exceeds leak flow
 - Inner vessel region mixture level reaches its minimum and begins increasing
 - Important components/phenomena
 - <u>Core</u> same as Phase 4 except if partially uncovered, rewet and quench occur as vessel refills
 - <u>Steam Generator</u> secondary side depressurizes with programmed cooldown; if primary pressure is above secondary,
 - Condensation on primary side
 - Reflux boiling between core and hot leg sides of SGs
 - <u>Cold Leg/Pump/Downcomer</u> steam relief to break via cold legs and downcomer
 - <u>Break</u> largely steam, includes MHSI and possibly accumulator water if discharging

SBLOCA Phenomena Ranking and Validation

- NRC approved SBLOCA methodology topical report EMF-2328 (P)(A)
 - Identifies phenomena
 - Ranks importance of phenomena to each phase
 - Identifies benchmarks appropriate to phenomena and phase

Methodology is applicable to the U.S. EPR

SBLOCA Sample Problems

- > Covers the same cases reported in EMF-2328(P)(A), the SBLOCA methodology topical report
 - Reports on analyses of a spectrum of break sizes (2.0, 2.5, 3.0, 3.5, 4.0 and 4.5-inch-diameter cold leg breaks)
 - Presents details of limiting case (4.0-inch break)
- > Behavior similar to that for current U.S. PWRs
- > PCT results are favorable

SBLOCA Sample Problem Results

Break Size	Break Area (ft ²)	PCT (°F)	Time of PCT (sec)
2 in	0.0218	No Heatup	N/A
2.5 in	0.0341	No Heatup	N/A
3.0 in	0.0491	No Heatup	N/A
3.5 in	0.0668	704.99	681.54
4.0 in	0.0873	1128.7	1056.1
4.5 in	0.1104	1011.3	893.15

AREVA NP INC.

SBLOCA Sample Problem Results (cont.)

<u>4.0 Inch Cold</u> Leg Break

Primary and Secondary Side Pressures

SBLOCA Sample Problem Results (cont.)

<u>4.0 Inch Cold Leg</u> <u>Break</u>

Vapor and Clad Temperatures for Hot Node

- Comprises Non-LOCA events from NUREG-0800, Chapter 15
- > Deterministic approach using S-RELAP5
- Methodology change to obtain initial fuel conditions from COPERNIC code rather than RODEX2A
- > Provides system fluid boundary conditions input to external DNBR, fuel centerline melt and radiological calculations

Non-LOCA Methodology Justification

- > Assessment approach the same as SBLOCA
 - Event description
 - Identification of important components/functionality
 - Identification of important phenomena
 - Justification that phenomena same as for current 4-loop PWRs
 - Justification that NRC approved analysis methodology is applicable

Similar design, same phenomena

Non-LOCA Sample Problems

- > Topical report presents same scenarios reported in EMF-2310 (P)(A)
 - Non-LOCA
 - Post-scram main steam line break
 - Loss of external load / turbine trip
 - Loss of normal feedwater
 - Loss of coolant flow
 - Uncontrolled bank withdrawal at power
 - Steam generator tube rupture
- > Behavior similar to those for current U.S. plants reported in referenced topical reports

Results demonstrate applicability of approved methodologies to U.S. EPR

Safety Analysis Conclusions

- > U.S. EPR is similar in design and functionality to current U.S. 4-loop plants
- > Phenomena associated with U.S. EPR Chapter 15 events are same as for current U.S. 4-loop plants
- Sample problem results for the U.S. EPR show similar behavior to current U.S. 4-loop plants
- > Approved safety analysis codes and methods are applicable to U.S. EPR

Sandra M. Sloan Manager, Regulatory Affairs New Plants Deployment

AREVA NP INC. > NRC Meeting – August 1, 2006

- > Thorough evaluation of fuel analysis and safety analysis methods performed
 - Differences in physical characteristics evaluated
 - Phenomena and conditions compared to currentlyapproved applications
 - Most methods are directly applicable to U.S. EPR
 - Minimal changes are described and justified

Topical report will demonstrate applicability of codes and methods to U.S. EPR

Next Steps

> Codes and Methods Applicability Topical Report

- Submittal in mid-August 2006
- Request safety evaluation report approving use of methods for U.S. EPR, by August 2007
- Post submittal meeting proposed in October 2006

> Next U.S. EPR pre-application meeting

• August 30: I&C

Acronyms

- > BP burnable poison
- > CCFL counter current flow limit
- > CHF critical heat flux
- > DNB departure nucleate boiling
- > EPR evolutionary power reactor
- > ID inner diameter
- > IFBA integral fuel burnable absorber
- > LBLOCA large break loss of coolant accident
- > LHR linear heat rate
- > LOOP loss of offsite power
- > MHSI medium head safety injection
- > MSRT main steam relief train

Acronyms (continued)

- > OD outer diameter
- > PCT peak cladding temperature
- > PWR pressurized water reactor
- > PZR pressurizer
- > RC reactor coolant
- > RCS reactor coolant system
- > RIA reactivity insertion accident
- > SBLOCA small break loss of coolant accident
- SI safety injection
- > SG steam generator
- > STP South Texas Project
- > TD theoretical density

