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Westinghouse Non-Proprietary Class 3

1.0 Introduction

This document contains a description of the safety limit minimum critical power ratio
(SLMCPR) evaluation for Dresden 3 (DNPS3) Cycle 20, as well as identification of the critical
power ratio (CPR) correlation for Global Nuclear Fuel (GNF) GE14 fuel and the “conservative
Adder” required by SER restriction 7 of Reference 3. As discussed below, dual and single
recirculation loop SLMCPRs of 1.10 and 1.11, respectively, will be applied to the GE14 fuel in
Dresden 3 Cycle 20. Dual and single recirculation loop SLMCPRs of 1.12 and 1.14,
respectively, have been calculated for the Westinghouse SVEA-96 Optima2 assemblies in
Dresden 3 Cycle 20.

The GNF NRC-approved methodology (References 1 and 2) was used previously to determine
the appropriate SLMCPR values for the currently operating DNPS3 Cycle 19, which contains
GNF GE14 and Framatome-ANP (FANP) ATRIUM-9B fuel assemblies. Consistent with the
GNF methodology, the resulting Cycle 19 SLMCPRs apply to all fuel types in the core, such
that the same SLMCPRs are applied to both the GE14 and ATRIUM-9B fuel assemblies.

For D3 Cycle 20, Exelon Generation Company, LLC (EGC) will load Westinghouse SVEA-96
Optima2 fuel. Therefore, the Westinghouse NRC-approved methodology described in
Reference 3 and further clarified in the response to request for additional information (RAI)
D13 of Reference 4, was used to determine the SLMCPRs for Cycle 20. Further clarification
of the Westinghouse SLMCPR methodology was also provided to the NRC in support of the
transition to SVEA-96 Optima2 fuel in the Quad Citics and Dresden Units as follows:

The response to NRC Request 19 in Reference 9 which supported the Licensing
Amendment Request for transition to SVEA-96 Optima2 fuel in the Dresden and Quad
Cities plants provided in Refercnce 8,

The technical information supporting the Quad Citics 2 Technical Specification SLMCPR
changes transmitted by Reference 10 as supplemented by the clarifying information in
Reference 11.

The same SLMCPR methodology described in these references was followed for the DNPS3
Cycle 20 SLMCPR ecvaluations. Unlike the GNF methodology, [

]a,c

The EGC proposed license amendment to use the Westinghouse methodology for core reload
evaluations at the Dresden and Quad Cities units was submitted to the NRC in Reference 8.
This submittal was approved by the NRC and supported the QC2 startup with a reload core
containing SVEA-96 Optima2 fuel (i.e., Cycle 19). It also supports the DNPS3 Cycle 20 with
a reload core containing SVEA-96 Optima2 fuel.
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2.0

3.0

Condition 7 in the NRC safety evaluation for Reference 3 requires that a conservative factor
applied to the GE14 opcrating limit minimum critical power ratio (OLMCPR) be identified in
licensee applications. The value of this factor for DNPS3, Cycle 20, is | ]a’c which was
also used for the QC2 Cycle 19 licensing analysis.

GE14 SLMCPR for DNPS3 Cycle 20

Consistent with the Westinghouse methodology described in Reference 3, the treatment of the
SLMCPR in mixed cores containing non-Westinghouse fuel [

]a’c DNPS3 Cycle 19 contained 524
GE14 fuel assembles and 200 ATRIUM-9B fuel assemblies. As shown in Figure 2, all of the
ATRIUM-9B fuel assemblies were in their third cycle of operation in Cycle 19 and were
loaded on or near the core periphery (within the outer four rows), while the GE14 fuel was
loaded in the central part of the core. Therefore, the Atrium fuel CPRs were substantially
greater than those for the GE14 fuel and the SLMCPR for Cycle 19 was established by

contributions from the GE14 fuel assemblies. [

]a’c The Cycle 19 SLMCPR was

determined by GNF based on plant- and cycle-specific analyses using GNF’s NRC-approved
methodology and uncertainties (References 1 and 2) as supplemented with DNPS3-specific
uncertainties. The GNF evaluation used the GEXL14 correlation for GE14 fuel. The GNF
evaluation confirmed that the dual-loop and single-loop SLMCPRs of 1.10 and 1.11,
respectively, in Reference 5 bounded the calculated Cycle 19 results and, thercfore, continucd

to be appropriate for Cycle 19. [

a,c .
| A comparison betwecen the
Cycle 19 and 20 cores is shown in Table 1.

SVEA-96 Optima2 SLMCPR for Cycle 20

In establishing the SLMCPR for Westinghouse SVEA-96 Optima2 fucl assemblies, it is
assumed that [

]a,c

[ ]a,c a Reference Core
design (SVEA-96 Optima2 bundle designs, core loading pattern and state point depletion
strategy) that represents realistic current plans for the Cycle 20 loading and operation. The
Reference Core loading pattern for Cycle 20 is shown in Figure 1. The Reference Core design
was generated via collaboration between EGC and Westinghouse based on EGC’s cycle
assumptions and design goals. The Reference Core was designed to mect the cycle energy
requirements, to satisfy all licensing requirements, to provide adequate thermal margins and
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opcrational flexibility, and to meet other design and manufacturing criteria established by EGC
and Westinghouse.

In general, the calculated SLMCPR is dominated by the flatness of the assembly CPR
distribution across the core and the flatness of the relative pin CPR distribution based on the
pin-by-pin power/R-factor distribution in each bundle. Greater flatness in either parameter
yields more rods susceptible to boiling transition and thus a higher SLMCPR.

The calculation of the SLMCPR as a function of cycle exposure captures the interplay between
the relative fuel assembly CPR and bundle relative pin-by-pin CPR distributions established
from the power/R-factor distributions and allows a determination of the maximum (limiting)
SLMCPR for the entire cycle. This limiting SLMCPR is applied throughout the entire cycle.

The SVEA-96 Optima2 SLMCPR for DNPS3 Cycle 20 was determined as a function of cycle
exposure based on radial assembly power distributions at least as flat as the cycle exposure-

dependent radial power distributions from |[

]a,c

Accordingly, the SVEA-96 Optima2 SLMCPR for dual recirculation loop (DLO) operation
was calculated at 100% power and 100% flow at 15 cycle exposures throughout the cycle to
assure that the limiting SLMCPR was identified. In addition, the dual recirculation loop

SLMCPRs were calculated at 100% power at the minimum allowed corc flow at rated power
(95.3% flow) and a maximum core flow at ratcd power of 108% flow at the maximum 100%

core flow SLMCPR cycle burnup point to confirm that a limiting SLMCPR had been
established. Figure 3 shows a current DNPS3 power-to-flow map which is applicable to Cycle
20. While, as shown in Figure 3, DNPS3 Cycle 20 is not licensed for a maximum core flow of
108 %, a flow window 95.3% to 108 % of rated core flow was analyzed.

Single rcecirculation loop (SLO) SVEA-96 Optima2 SLMCPR calculations were also
performed. These SLMCPR calculations were performed at [

]a’c The single loop calculations used the same
procedure as the dual loop cases, except that the single loop cases applied a larger uncertainty
for the core flow.

The SLMCPR results for Cycle 20 arc plotted in Figurc 4. As shown in Figure 4, the dual
recirculation loop SLMCPR |
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. ]a,c the interplay between the assembly relative
CPRs and the relative fucl rod CPRs. In general, as the fraction of assembly or fuel rod CPRs
in the vicinity of the minimum assembly or fuel rod CPR increases, the number of rods with a
potential for experiencing dryout increases. Therefore, a larger SLMCPR is required to assure
that less than 0.1% of the rods are in dryout.

While control rod patterns at individual state points requircd to maintain margins to thermal
limits may perturb the trend, experience has shown that the assembly CPR distributions tend to

become |

]a’c Therefore, the peak SLMCPR tends
to occur when the assembly CPR and rod CPR distributions combine to place the maximum
number of fuel rod CPRs close to the minimum CPR.

This behavior is shown for the DNPS3, Cycle 20 SLMCPR by the relative assembly CPR and
relative fuel rod histograms shown in Figures 5 through 15 and 16 through 25, respectively. In
Figures 5 through 15, assembly types RA20, RB20, and RC20 refer to the SVEA-96 Optima2

assembly types loaded in Cycle 20. Assembly type [

]a,c
Inspection of the DLO histograms in Figures 5 through 15 and the relative fuel rod CPR

histograms in Figures 16 through 25 leads to the following observations, which explain the
SLMCPR behavior in Figure 4:

1.
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]a,c

Therefore, the dual recirculation loop SLMCPR results at rated conditions in Figure 4 can be

explained in terms of |
]a,c

As noted above, the continued adequacy of a dual recirculation loop SLMCPR of |

]a,c

The single recirculation loop (SLO) results calculated at |

]a,c

In addition to the strong dependence on assembly CPR and relative fuel rod CPR distributions,
the SLMCPR is strongly dependent on the distribution of assembly and relative fuel pin CPRs
about their mean values leading to an overall distribution of fuel rod CPRs relative to their
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mean values. The wider these distributions, the higher the SLMCPR must be to prevent 0.1%
of the fuel rods from experiencing boiling transition. The distributions of fuel rod CPRs
relative to their mean values are determined by the uncertainties relative to the mean CPRs.
Accordingly, the uncertainties used in establishing the SVEA-96 Optima2 SLMCPR for Cycle
20 arc shown in Table 2.

4.0 Westinghouse CPR Correlation for GE14 Fuel

The Westinghouse CPR correlation for GE14 fuel used in the DNPS3 reload design and
licensing analyses is the same as that used for QC2 Cycle 19 and described in the Response to
NRC Request 8 in Reference 9. Further clarification of the correlation was provided in the
response to NRC Request 2 in Reference 11 as well as in Reference 12.

[

C . . .
]a’ The determination of this value was also based on

EGC’s plans to continuc to monitor the CPR performance of GE14 fuel using the GNF
GEXL14 correlation within the POWERPLEX-III online corc monitoring system rather than
thec USAGI4 correlation. This approach is consistent with Westinghouse’s NRC-approved
methodology per Reference 3.
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Table 1 Comparison of Cycle 19 and 20 Cores

Description Dresden 3 Dresden 3

Cycle 19 Cycle 20
Number of Bundles in Core 724 724
Limiting Cycle Exposure Point N/A (GNF proprietary) Near EOC
Cycle Exposure at Limiting Point, EFPH N/A (GNF proprietary) 12,989 EFPH
Reload Fuel Type GEl4 SVEA-96 Optima2
Reload Batch Average Weight % Enrichment 3.98 w/o 3.90 w/o
Reload Batch Fraction (%) 33.1% 33.7%
Batch Fraction of SVEA-96 Optima2 Fuel 00.0% 33.7%
Batch Fraction of GNF GE14 Fuel 72.4% 66.3%
Batch Fraction of FANP ATRIUM-9B Fuel 27.6% 00.0%
Core Average Weight % Enrichment 3.96 w/o 3.99 w/o
Calculated Safety Limit MCPR (DLO) 1.10 for all fuel types [ ]a,c
Calculated Safety Limit MCPR (SLO) 1.11 for all fuel types [ ] ac
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Table 2 - Uncertainties used in Dresden 3 Cycle 20 SVEA-96 Optima2 SLMCPR Determination
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Figurc 1 — Dresden 3 Cycle 20 — Reference Loading Pattern

Page 11 of 35

NF-BEX-06-167 Rev. 2 NP-Attachment



11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 89

3 5§ 7 9

1

19

'
o~ Ne e ~§ 2«
WZ3341“14332w
PN 2l 321“123231w2w
2131413241_1423141312
22234331333m33313343222
221355545557“755545553122

W123377777774“477777773321w

2435747374737_7374737475342

W145774747474m474747477541w

.ow1435737374747“7474737375341w
223134774737473"374737477431322
w32315747473747_74737474751323w
233235774747374m473747477532332
142435737474747“747474737534241
111137474737473-r374737474731111.
L . N N ) ] L B R N ] o o pan e el enn et euh ey oan e sun gum ey gun sl Gme oum @
1111374L4737473“L74737474731111
T NT OO NONT N NSNS TN SN TN O OO TN Y -
233235774747374“473747477532332
w32315747473747“74737474751323w
223134774737473“374737477431322
Qe nwnraoronrnsrnanNNEN TN TITNON ONOO v - 2

w145774747474“474747477541w

2435747374737"7374737475342

m..123377777774“477777773321w

NNerowwLowesw oSNNS OO DT W VO & N
22234331333"33313343222
2131413241"1423141312
w2w132321“123231w2w
2o o rle oo
H

BB 233N ILIYRSINSREINRR eIV w0 v

# Assem

bl

[+¢]

Q

e

—AdfO NN 0 O OO

-l - - - - -

£

w

2

3]

>|

O

[:}]

© o

Blecoeeaes

8112236M

glz 8§ 555353

DM.AMJJJJ

=8 £ o ~ O~

101%5&5

© S = - o <

2 EEEEE

2223333
© © o

o ©

3MMM11.4W

Bundle Name
SPC ATRIUM-9B 3.62 12Gd5.0/12Gd6.0/10Gd5.0

SPC ATRIUM-9B 3.78 11Gd5.0/11Gd6.0/10Gd7.0

SPC ATRIUM-9B 3.78 11Gd5.0/11Gd7.0/11Gd8.0/10Gd8.0
GE14-P10DNAB411-4G7.0/9G6.0-100T-145-T6-2553
GE14-P10DNAB408-16GZ-100T-145-T6-2554
GE14-P10DNAB406-18GZ-100T-145-T6-2809

GE 14-P10DNAB396-18GZ-100T-145-T6-2808

Fuel Type

19
1
2
3
4

5
7

Figure 2 Dresden 3 Cycle 19 — Reference Loading Pattern
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Figure 4 Dresden 3 Cycle 20 SLMCPR Results for SVEA-96 Optima2 Fuel
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Figure 5 — Assembly Histograms
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Figure 6 — Assembly Histograms
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Figure 7 — Assembly Histograms
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Figure 8 — Assembly Histograms
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Figure 9 — Assembly Histograms
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Figure 10 — Assembly Histograms
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Figure 11 — Assembly Histograms
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Figure 12 — Assembly Histograms
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Figure 13 — Assembly Histograms
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Figure 14 — Assembly Histograms
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Figure 15 — Assembly Histograms
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Figure 16 — Assembly Histograms
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Figure 17 - Assembly Histograms
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—— Figure 18 — Assembly Histograms
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Figure 19 — Assembly Histograms
—
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Figure 20 — Assembly Histograms
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Figure 21 — Assembly Histograms
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Figure 22 — Assembly Histograms
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Figure 23 — Assembly Histograms
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Figure 24 — Assembly Histograms
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Figure 25 — Assembly Histograms
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