Deliquescence Behavior of Salts Deposited Inside the Drifts of a Potential High-Level Waste Repository

Miriam Juckett Center for Nuclear Waste Regulatory Analyses Southwest Research Institute[®] San Antonio, Texas, U.S.A. mjuckett@swri.org

Objective and Outline

- Objective of study: determine geochemical properties and deliquescence relative humidities of materials potentially present in a geologic repository
- Outline
 - Background
 - Chemistry results
 - Mineralogic results
 - Deliquescence results
 - Observations and conclusions

Yucca Mountain, Nevada

 Site of potential deep geologic nuclear waste repository

CNWRA

A center of excellence in earth sciences and engineering[™]

- About 145 km NW of Las Vegas, Nevada, in the Mojave Desert
- Construction and operation by U.S. Department of Energy (DOE) if licensed by U.S. Nuclear Regulatory Commission

PROPOSED YUCCA MOUNTAIN NUCLEAR WASTE REPOSITORY SITE AND VICINITY

Deliquescence

- Defined: rapid absorption of water from air by salts to form a brine solution
- Deliquescence point varies by temperature and humidity
- Radioactive decay gives off heat and will raise the repository temperature
- When repository temperature falls, humidity will rise
- Salts present in dust and evaporated seepage water may deliquesce

Brine solution may affect corrosion of waste package depending on composition

Technical Approach

- Samples collected by U.S. Geological Survey (USGS) from the Exploratory Studies Facility (underground tunnel) and Yucca Mountain surface
- Analyzed soluble and insoluble fractions
 - Anion, cation by Ion Chromatography (IC)
 - Metals by Inductively-Coupled Plasma (ICP)
 - Scanning Electron Microscopy (SEM)
 - Energy Dispersive X-ray Spectrometry (EDS)
 - X-ray Diffraction analysis (XRD)
- Determined weight fraction of soluble material
- Conducted deliquescence experiments

Soluble Fraction Analysis

Analysis	Surface Sample (mg/kg)	Tunnel Sample (mg/kg)
Calcium	56.5	918
Sodium	17.8	686
Potassium	31.2	205
Silicon	42.9	21.9
Magnesium	8.84	101
Boron	0.72	3.03
Phosphorus	3.87	0.956
Molybdenum	-	0.910
Lithium	0.064	9.36
Iron		1.51
Manganese	-	7.28

Analysis	Surface Sample (mg/kg)	Tunnel Sample (mg/kg)
Sulfate	19.6	1920
Chloride	8.59	2350
Nitrate-N	1.69	218
Phosphate-P	3.22	-
Fluoride	1.40	14.1
Bromide		23.8
Nitrite-N	0.857	3.45

Soluble Fraction Weight Percent:

Surface Sample: <0.1%

Tunnel Sample: 0.69%

*Note: this data does not include analysis Page 6 of H, O, or C.

XRD: Whole Dust, Surface Sample

Primary Minerals:

- Quartz SiO₂
- Cristobalite SiO2
- Albite, ordered
 NaAlSi₃O₈
- Anorthoclase, disordered (Na,K)(Si₃Al)O₈
- Microcline, intermediate KAISi₃O₈

Southwest Research Institute

schvisadeldaab Wednesday, Jun 28, 2008 (803)(9)s

XRD: Whole Dust, Tunnel Sample

Primary Minerals:

- Anorthite, sodian, ordered (Ca,Na)(AI,Si)2Si₂O₈
- Albite, ordered NaAlSi₃O₈
- Anorthoclase,
 disordered
 (Na,K)(Si₃Al)O₈
- Orthoclase KAISi₃O₈
- Quartz SiO₂

EDS: Whole Dust, Surface Sample

EDS: Whole Dust, Tunnel Sample

SEM of Whole Dusts

Surface Dust

Tunnel Dust

Deliquescence Experiment

Deliquescence Experiment

- Impedance method used to detect Deliquescence Relative Humidity (DRH)
- Equipment
 - Thunder Scientific Model 2500
 High Precision Humidity
 Chamber
 - Quadtech Model 7600 LCR meter
 - Custom-made Teflon conductivity cell fitted with filter paper between two platinum electrodes
- Filter paper creates a salt bridge that carries current depending on moisture availability

Synthetic Mixture Composition

Deliquescence Behavior

Impedance (ohms) vs. Time 1.00E+07 1.00E+06 Impedance (ohms) 1.00E+05 1.00E+04 1.00E+03 6/30/2006 7/1/2006 0:00 7/1/2006 12:00 7/2/2006 0:00 7/2/2006 12:00 7/3/2006 0:00 7/3/2006 12:00 7/4/2006 0:00 7/4/2006 12:00 7/5/2006 0:00 12:00 Time

Deliquescence Behavior (continued)

Synthetic Salt Mixture Deliquescence Behavior

Example of Deliquescence Data

CNWRA

A center of excellence in earth sciences and engineering[™]

Data from the system Na/K/Cl/NO₃ showing typical impedance behavior resulting from deliquescence as humidity is increased

Observations and Conclusions

- Deliquescence behavior is observed in a synthetic soluble fraction of the tunnel dust sample
- Chemical analyses show the presence of chloride, a species that can enhance localized corrosion, as well as nitrates and sulfides, which can mitigate localized corrosion of waste packages
- Higher concentrations of chloride were observed than typically discussed in DOE studies
- The fraction of soluble salts is very small (<1%) and greater in tunnel dust than in surface dust, perhaps due to rain washing and underground water flow

Ongoing Studies

 Additional studies of in-drift samples have been initiated using mixtures of soluble salts with insoluble dust (quartz powder)

Acknowledgments

- Special thanks to
 - Zell Peterman of USGS for providing the samples used in this study
 - Jim Spencer of Southwest Research Institute for XRD, EDS, and SEM analyses
 - Bobby Pabalan and Jim Myers of Center for Nuclear Waste Regulatory Analyses (CNWRA) for technical support
- This presentation describes work performed by the CNWRA for the U.S. Nuclear Regulatory Commission (NRC) under Contract No. NRC-02-02-012. The activities reported here were performed on behalf of the NRC Office of Nuclear Material Safety and Safeguards, Division of High-Level Waste Repository Safety. This presentation is an independent product of CNWRA and does not necessarily reflect the view or regulatory position of NRC.