Heinz Nabielek, Forschungszentrum Jülich, D

.. .

Presented at the 2nd Planning Workshop of the Task Force "Zero Emissions Technologies Strategy" IEA Working Party on Fossil Fuels, Washington D.C., 20 March 2002

> Original slides by Heather Hsydock, modified Nabielek and Sjunnesson March 2002.

HTR

1954 P Fortescue 1956 R Schulten

History of coated particles: 1957 R A U Huddle 1959 W Goeddel

1961 J Oxley, Battelle fluidised bed coating

Manufacturing NUKEM (DE) UKAEA, BNFL CERCA (F) Belgatom GA, ORNL (USA) Russia NFI (J) China NECSA (ZA)

Worldwide History of HTR Fuel Fabrication

Reactor/ Manufacturer	Fuel Description	Total HM (kg)
ROVER/GA LANL	BISO in rods	1
Peach Bottom/ GA	BISO in compacts	3,500
UHTREX/GA LANL	BISO in compacts	200
DRAGON	TRISO, BISO compacts	300
FSV/ GA	TRISO in compacts	33,400
THTR/ NUKEM	BISO in spheres	11,000
AVR/NUKEM	HEU BISO, TRISO spheres	1,700
AVR/ NUKEM	Modern LEU TRISO spheres	480
US development GA	Modern TRISO UCO	500
HTTR/ NFI	Modern LEU TRISO compacts	900
HTR-10/ INET	Modern LEU TRISO spheres	135

Forschungszentrum Jülich

German Particle Development 1989 1982 LEU TRISO Proof Tests for 1977 LEU TRISO HTR MODUL Phase I HEU TRISO and HTR-500 1972 Irradiation for Process Heat and HEU BISO **Direct Cycle** for AVR and Plants THIR

Varying goals in the German fuel development program have also led to a steady increase in the coated particle quality. The high enriched (Th,U)O₂ fuels were used in AVR and THTR and – with a TRISO coating – were also qualified for PNP and HHT. Latest development was UO₂ TRISO for the MODUL reactor with demonstration of fission product retention in all normal and off-normal conditions

Target philosophy

1

Desirable properties have been achieved and have been demonstrated (here HEU and LEU TRISO up to 1990)

Fuel Element Manufacturing Process

HTR-Fuel Element Fabrication

Fuel Element Manufacturing Process

Kernel Manufacture

Kernels in the Precipitating Agent

HTR Fuel Specific Characteristics

Kernels:

- diameter
- roundness

Coated Particles:

- ratio of defect SiC-layers
- diameter
- roundness
- thickness of each layer
- density of each layer
- anisotropy of both dense pyrocarbon layers

Forschungszentrum Jülich

Heinz Nabielek, Karl Verfondern

Forschungszentrum Jülich

Heinz Nabielek, Karl Verfondern

Special Quality Assurance System and Philosophy

 Target product Specification achieved, demonstrated by a "final" standard-quality

 essential targets for process and components achieved (close to the future production conditions) Sample for reference test as part of the standard quality

Special Quality Assurance System and Philosophy

Forschungszentrum Jülich

		P	re - 1985 productio	Post - 1985 production		
• •		AVR 19	LEU Phase 1	AVR 21-1	AVR 21-2	"Prooftest"
Experiment Particle batch	•	HT 232-298	• HFR-K3 FRJ2-K13 BUO 2308	HT 354-383		HFR-K5/K6 BUO 2358-236
Kernel composition Kernel diameter Kernel density	μm Mg m-3	UO2 500 10.80	ŬO2 497 10.81	UO2 501 10.85	UO2 502 10.87	UO2 508 10.72
Thickness of coating Buffer layer Inner PyC layer Sic layer Outer PyC layer	μm μm μm	93 38 35 40	94 41 36 40	92 38 33 41	92 40 35 40	102 39 36 38
Density of coating Buffer layer Inner PyC layer Sic layer Outer PyC layer	Mg m-3	1.01 1.86 3.19 1.89	1.00 ~1.9 3.20 1.88	1.01 1.9 3.20 1.88	1.1 1.9 3.2 1.9	1.02 1.92 3.20 1.92
Mod	ern	U02	LEU	Triso	in G	ermany

Forschungszentrum Jülich 🥖

Evaluation of free uranium and defective SiC layers in LEU TRISO fuel elements						
Designation of fuel element (FE) population		AVR 19	AVR 21	AVR 21-2	LEU PHASE I	Proof test fuel
Production year	·······	1981	1983	1985	19B1	1988
Number of FE lots		14	11	8		~
Number of FEs produced	•	24,600	20,500	14,000	<100	< 200
Type of fuel ¹³⁵ U enrichment		LEU UO2 9.8%	LEU UO ₂ 16.7%	LEU UO ₁ 16.7%	LEU UO2 9.8%	LEU UO ₂ 10.6%
Coating batch size	•	5 kg	3 kg	3° kg	5 kg	5 kg
Number of coating batches		65	54	29	1	B
Number of particle acts		4	. 2	3	· 🕳 .	1
Number of particles/FE		16,400	9,560	9,560	16,400	14,600
One particle uranium equivalent (in parts per milli	ion)	61	105	105	61	68
Evaluation of free uranium from burn-leach measu	remer	its	· ·	•		
Mean value (in parts per million)	• •	50.7	43.2	7.8	35.0	13.5
Number of FEs tested in burn-leach	•	70	55	40	5	10
Number of FEs with 0 particle delects		31	42	38	3.	8
Number of FEa with 1 particle defect		26	8	1	1	1
Number of FEs with 2 particle defects		9	2	- 1	1	1
Number of FEs with 3 particle defects	•	4	2	0	0	0
Number of FEs with 4 particle defects		0	0	0	0	0
Number of FEs with 5 particle defects		0	.0	0	0	0
Number of FEs with 6 particle defects	•.	· 0	1	0	0	0
Number of FEs with ≥ 7 particle defects	·	0	0	0	0	0

Heinz Nabielek, Karl Verfondern

.

HTR Fuel Specific Characteristics

Fuel Element:

- heat conductivity of the graphite matrix at 25 °C and 1000 °C
- ratio of defective SiC-layers (burn-leach test)
- corrosion rate
- crushing strengths
- fuel-free zone thickness
- abrasion rate

THTR-Fuel Element Production Experience

Produced:

Kernels:~ 1000 batchesCoated particles:~ 4000 batchesFuel element:~ 500 lots(~ 1.000.000 FE)

Yield:

For each of these products > 95%

Reject:

1 lot of coated particles
1 lot of fuel elements

Safety:

Not a single safety relevant incident

Design Parameter	HEU	LEU
Coated Particles		
Kernel Composition	(Th,U) O ₂	UO2
Kernel Diameter µm	500	500
Coating Layer Thickness µm	95/40/35/35	95/40/35/35
Coating Layer Sequence	Buffer/PyC/SiC/PyC	Buffer/PyC/SiC/PyC
Fuel Element		
Heavy Metal Loading	11	8-12
U 235 Enrichment	93 %	7-13 %
No. Particles per Element	19,000	10,000-20,000
Volume Loading of Particles	13 %	10-15 %
Operating Requirements		
Mean Operating Time d	1100-1500	700
Max. Burnup MWd/t _{HM}	120,000	90,000
Max. Fluence [E>0.1 MeV]	4.5x10 ²⁵ m ⁻²	3.3x10 ²⁵ m ⁻²
Max. Fuel Temperature °C	1020	1030
Max Power/Element kW	2.7	4.1

.

.

6

•

.

,

Free U fraction from TRISO defects

- Fraction of LEU UO₂ Triso defects during cold isostatic sphere pressing as a function of particle volume loading.
- Data are obtained by burn-leach and correspond to "SiC failure fraction" in US and Japanese terminology.
- All results on NUKEM fuel elements are below 6x10⁻⁵.

Number of particle defects per fuel element

Coated particle defects during sphere manufacture are rare random events. The frequency of spheres with zero defects has steadily improved during the years 1981-1985. Nucl. Eng. Des. 121/2 (1990)

Diagram shows non-zero free uranium measurements in the seventy burned leach tests from NUKEM quality control of the AVR 19 (GLE 3) production of 24,600 spherical fuel elements for AVR. This is a destructive test on 5 FEs per lot from the 14 lots in this production.

Measured free uranium corresponds to the contents of an integer number of coated particles; here zero, one, two or three out of 16,400 particles in a sphere.

The burn-leach with spherical fuel elements consists of the following steps:

-burn graphite and oPyC at 800°C

-leach with HNO₃

-determine U in solution

11

HTR fuel: main criteria quantified ...

<u>Manufacture</u> burn-leach on particles < 1x10⁻⁶ * burn-leach on fuel body < 6x10⁻⁵

 $\frac{\text{Irradiation}}{\text{in-pile R/B}} << 1 \times 10^{-6} *$ PIE shows F(¹³⁷Cs) < 2x10⁻⁵ ... and ... F(^{110m}Ag) < 2x10⁻³

<u>Heating</u> shows F(⁸⁵Kr) < 2x10⁻⁶ * and F(¹³⁷Cs) < 2x10⁻⁴

* Necessary, but not sufficient

Observed fission product release sequence during ramp

Typical fission product release profiles during linear temperature ramp. In both cases, -200 irradiated particles were heated to 2500° C. The left diagram shows intact particles, and the right diagram shows particles where the outer PyC layers had been removed.

Forschungszentrum Jülich

Goodin-Nabielek Modelling Approaches

Jülich

The Goodin-Nabielek Modelling Approach combines the statistics of SiC degradation with the variation of SiC thickness (= SiC mass) to predict simultaneously caesium and subsequent krypton release.

1988 MODEL UPDATE CORRELATES WITH THE HEATING DATA AT 1600°C

a den a fad

Forschungszentrum Jülich

Goodin-Nabielek Approach with SiC Degradation 9

Goodin-Nabielek Approach with SiC Degradation 10

A subsequent evaluation of about 20 heating tests by Goodin^{84,85} used the degradation rate

$$k_{o}(s^{-1}) = 5.03 \cdot 10^{-4} \times \left(\frac{\text{fission density}}{1 \cdot 10^{26}}\right)^{2.69} \times \left(\frac{\text{fast fluence}}{1 \cdot 10^{25} \text{ m}^{-2}}\right)^{0.41} \times \left(\frac{\text{int.temp.}}{\text{K}}\right)^{4.14}$$
(18)

Figs. 89 through to 92 show the good agreement with experimentally determined 137Cs release measurements in the range of heating tests from 1600° to 1800°C.

10⁻⁶

Ω

200

400

600

Heating time (h)

800

1000

¹³⁷Cs release measurement by Schenk and prediction by Goodin for 1600/ 1800°C heating test of sphere FRJ2-K13/4. Every fuel element in an irradiation experiment is contained in an isolated cell. Temperatures are closely controlled by adjusting the He/Ne ratio in the purge gas which also allows the on-line determination of the fission gas release rate.

Thermocouple Purge gas pipe Radiation shields Graphite cup Test fuel element

X-ray photograph from the assembled capsules 1 and 2 for experiment FRJ2-K13

Processing of fuel elements in the Hot Cells, e.g. during gamma spectrometry for burnup determination

German Irradiation Experiments with HTR Fuel

RDD program	Old LEUs 1972-1976	HEU Program for 1977-1981	LEU Program 1982-1993		
Coated Particle	UO ₂ TRISO UO ₂ BISO	Variant 1 (Th,U)O ₂ BISO	Variant 2 (Th,U)O ₂ Triso	Variant 3 UC _x O _y Triso+ ThO ₂ Triso	UO2 TRISO
Test Goal					<u> </u>
Particle Performance	HFR-M5 DR-S6	BR2-P24	BR2-P25	BR2-P23	HFR-P4 SL-1
FP Transport in Intact Particles	DR-S4	FRJ2-P22	FRJ2-P23	FRJ2-P24	FRJ2-P27
Release from Kernel	•	FRJ2-P25	FRJ2-P25	FRJ2-P25	FRJ2-P28
Chemical Effects	FRJ2-P16			HFR-P3	HFR-P5
Fuel Element Tes	its				
Fuel Element Performance	DR-K5	HFR-K1	R2-K12 R2-K13	R2-K12	HFR-K3
FE fission product transp.	•		FRJ1-K11	FRJ2-K10	FRJ2-K13 FRJ2-K15
Large Scale Demonstration	AVR 6	AVR 14	AVR 15	AVR 13	AVR 19 AVR 21 AVR 21-2
Proof Tests					HFR-K5 HFR-K6

The main parameters in fuel irradiation testing are heavy metal burnup and accumulated fluence of fast neutrons. Irradiation temperature, perhaps the most important parameter of all, is usually around 1000° in the tests shown here.
C)

18

Criteria for irradiation testing in order of relevance

- Temperature
- Burnup
- Fluence
- Power/ temperature gradients
- Transients
- Real time

The level of fission gas is determined by the uncovered uranium in the fuel. Here, the release rate over birth rate of ^{85m}Kr is shown for Fort St. Vrain, AVR and irradiation tests with modern TRISO fuels.

Forschungszentrum Jülich

Source terms

for fission products into the primary circuit of an HTR are:

- (i) heavy-metal contamination;
- (ii) particle defect and/ or failure;
- (iii) release from intact particles.

Sequence of release is ^{110m}Ag, ¹³⁷Cs, ¹³⁴Cs, ⁸⁵Kr, ⁹⁰Sr, ¹⁰⁶Ru, ⁹⁵Zř

Criteria for a high performance particle by Heinz Nabielek, Dan Goodin and Bill Scheffel

• Forschungszentrum Jülich

	Contribution to Fission Product Source Terms						
Observations:	Free heavy metal fraction	Ф broken particle fraction	Φ' defect SiC/ weak particle fraction	Diffusive release contribution			
Measurement Technologies							
<u>Manufacture</u>	Acid leach, we TRIGA	eak irradiation, furnace	Burn-leach hot chlorination				
Irradiation: in-pile	R/B (Kr, Xe	e isotopes)					
Irradiation: PIE	cold gas	release ?	F(Cs,), hot Cl	F(Ag,)			
Accident				F(Ag)			
condition testing	F(Cs)	F(Kr)	F(Cs, Sr,)	F(Kr) delayed by diffusion through PyC			

Criteria for a high performance particle by Heinz Nabielek, Dan Goodin and Bill Scheffel C:\HTR\Feb2001Symposien\Nabielek\CriteriaHighPerformance.doc

Brussels, 1-2 February 2001, p 4

Gas release and temperature during irradiation of experiment HFR-K3

Gas release and surface temperatures in experiment R2-K13

Radial distribution of irradiation temperatures (time average) of R2-K13 test and during 1600 °C heating test

The release rate of short-lived fission gases, R/B, as a function of burnup in an ongoing irradiation experiment in the Jülich DIDO reactor (FRJ2-K15, status from June 1989). The spikes in R/B have been measured during +200°C temperature transients. The slow increase in R/B is an artifact of the birthrate calculation for 16.7% enriched uranium, while the actual release is from uranium contamination of natural enrichment.

Irradiation to near 15 % FIMA

Irradiation time (full power days)

<u>Concern</u>: German Kernel Migration data from HFR-P5 appear to be higher than recommended amoeba line.

Diagram shows ^{110m}Ag and ¹³⁷Cs release fractions as a function of temperature in 230-530 d irradiation tests as measured in post irradiation examination work. Also shown is end-of-life R/B(^{85m}Kr).

Gas turbines are planned for all modern HTRs therefore, we need to:

- Re-analyse existing data (i.e. temperatures and Ag releases)
- Perform dedicated irradiation tests
- Consider design/ material improvements
- If all else fails, redesign the HTR

S

A gross comparison to a silver release prediction — with the diffusion coefficient of silver in SiC as recommended by IAEA TECDOC 978 "Fuel performance and fission product behaviour in gas cooled reactors" and using a primitive breakthrough formula — is shown below:

Of course, we need a much more sophisticated evaluation of these experiments taking account of distributions in space and time.

This is particularly necessary in the case of silver where first the stable ¹⁰⁹Ag is generated, is starting to be released by diffusion and is later activated to ^{110m}Ag.

AVR reloa	ds in
the years	1966
to	1987

Reload number	Insertion date	Fuel sisment	Number of fuel elements	Coaled fuel	parinae Coating	Enrichment
		type		Karnel		
0	Juty 66	UCC	30155	(Th,U)C,	HTI BISO	83%
1	Oct. 68	т	7510	(Th,U)C,	HTI BISO	\$3%
3	Apr. 69	GK	17770	(Th.UJC,	HTI BISO	80%.
., 4	July 70	GĶ	6210	(Th,U)C,	HTI BISO	93 h
5-1	Nov. 70	GK	25970	(Th,U)C ₂	HTI BISO	832
5-2	Dec. 71	GO1	20825	(M,U)0,	HTI BISO	92%
7	Jan. 73	G01	. 7840	(Th.UpD,	HTI BISO	93%.
6-1	Oct. 73	G01	11000	(Th,U)O,	HTI BISO	92%
6 -2	Dec. 73	GLE1	2446	UO,	LTI BISO	15% 0.7%
8-1	May 74	GFB1	1440	UO, TRO	LTI BISO	83%
8-2	May 74	GFB2	1610	UO, ThO	LTI TRISO	83%
9	Sep. 74	THTR-1	5145	(Th,U)O	HTI BISO	83%
10	Dec. 74	THTR-2	10000	(Th,UjO ₁	HTI BISO	93%
11	Dec. 74	THTR-2	5000	(Ու,ՍյՕ ₁	HTT BISO	93%
12	Mar. 76	601	11325	(Th,UjO,	HTI BISO	93%
14	Nov. 76	601	9930	(Th,U)O2	HTI BISO	93%
13-1	Dec. 77	GFB3	6077	UC, ThO,	LTI TRISO LTI BISO	905.
13-3	Dec. 77	GFB 5	5354	UCO ThO	LTI TRISO LTI TRISO	92%
13-2	July 80	GFB4	5861	UC, ThO,	LTI TRISO LTI BISO	90%
15	Feb. 81	602	6067	(Thuyo,	LTI TRISO	93%
18	July 81	603	11547	(Th,U)O ₂	HTI BISO	93X
19	July 82	GLES	24615	UO	LTI TRISO	105
21	Feb. 84	GLE4	20250	ಲ್ಮು	LTI TRISO	17%
20	Oct. 85	G02	11854	(Tr,UjO ₂	LTI TRISO	93%
22	Sep. 86	THTR	15228	ന്സ് ഗ് റ്	HTI BISO	93%
21-2	Oct. 87	GLE4	8740	ω,	LTI TRISO	17%

29

.

Heatup Testing

- Test rigs
- Near complete release up to 2500°C
- Cold finger KÜFA 1600-1800°C
- Measurement technology for fuel criteria

Sweep gas circuit of cold finger apparatus (KÜFA).

Heating furnace used in accident simulation tests with irradiated spherical fuel elements (KÜFA).

Schema of KÜFA solid fission product measurements

noble

Fission products Cs, Sr, I are radiologically significant because— unlike the noble fission gases — they can be incorporated in the human body.

Important fission products						
ELEMENT	ISOTOPE	HALF LIFE				
Solid fission products						
Cesium	¹³⁷ Cs	30 years				
	¹³⁴ Cs	2 years				
Strontium	⁹⁰ Sr	29 years				
lodine	¹³¹	8 days				
Fission gas	es					
Krypton	⁸⁵ Kr	11 years				
Xenon	¹³³ Xe	5 days				

Plate-out fractions of KÜFA furnace cold finger plate

Sequence of fission product release is ^{110m}Ag, ¹³⁷Cs, ¹³⁴Cs, ⁸⁵Kr, ⁹⁰Sr, ¹⁰⁶Ru, ⁹⁵Zr

Here the fractional release during temperature ramp to 2600°C [GA data, from Fig 4-39, page 192 of IAEA-TECDOC-978]

Gas release during temperature ramp to 2500°C.

Temperature / time correlation in standard isothermal tests.

Fission product release from UO₂ kernels (FRJ2-P28/C6) during heating test at 1600 °C.

40

Krypton release during tests with irradiated spherical fuel elements at 1600 to 2100 °C.

Caesium release from heated spheres as a function of heating times up to 500 hours.

100 10⁰ 10-1 10-1 2.5 x 107 Bg Ag 110m 10-2 10-2 1800 °C Fractional Release Fractional Release 10-3_ 10-3 Cs 137 9.6 x 10⁶ Bq 10-4 10 1600°C Sr 90 HFR-K3/1 6.3 x 10⁵ Bq 10-5 10-Sr90 1.7 x 10⁴ Bg Cs 137 Kr 85 10-6. 10-6 Kr 85 10-7 10-7 400 200 300 100 500 20

Heating Time (h) at 1600°C

Fission product release from fuel element HFR-K3/1.

Heating Time (h)

Fission product release at 1600°C and 1800°C.

Krypton release in isothermal heating tests.

.

Cesium release in isothermal heating tests.

Strontium release in isothermal heating tests.

Ag 110m release from fuel elements with UO_2 TRISO particles.

Ceramographic sections through UO₂ TRISO particles.

Ø /

Measured krypton releases from AVR fuel elements 90/2, 90/5 and 85/18 during accident scenario heatup to 1620°C and three PANAMA predictions using various assumed passages through AVR core:

After subtraction of contamination components, fission product release curves increase systematically indicating the progress of SiC deterioration during heating. This observation led to the development of the Goodin-Nabielek, abandoning the classical approach of pressure vessel failure modeling/ diffusional release prediction.

The Goodin-Nabielek model for Kr and Cs release predictions

Suggested HTR fuel work, to be discussed:

- (i) <u>^{110m}Ag</u>: Re-evaluate release data during normal operations for better source term data base in direct cycle applications.
- (ii) Determine influence of <u>burnup > 10% FIMA</u> on irradiation performance, in particular for potential reduction of 1600°C capability.
- (iii) Analyse <u>accident condition performance > 1600°C</u> for an improved coated particle model.

Confidence base for HTR

- HTR is alive again—more so than ever before
- Good international basis
 - Fuel manufacture in Britain, US, Germany, Russia, Japan, China
 - Complete irradiation qualification in Germany; many test results from USA, UK, Japan, Russia, China
 - Extensive results from core heatup simulations testing in Germany, USA, Russia and Japan

Next Steps

- Irradiation and core heatup testing in European HTR program [high burnup and >1600°C]
- Experiment planning and evaluation in cooperation with PBMR in South Africa
- German support in South African fuel manufacture
- US-German proposals...
 - international irradiation test, PIE, analysis
 - model development and applications