

New Project Challenges

- Permitting and Licensing
- Availability of Trained Personnel
 - Experienced Workers
 - Technical Staff
- Equipment Availability
- Experienced Contractors
 - Construction
 - Drilling
- Cost Increases

Wellfield Development 11/04

The Alta Mesa Project

- Newest ISL Uranium Recovery Facility
- South Texas geology, characterized by:
 - Sedimentary formations with extensive oil and gas production.
 - Significant faulting resulting in source of geochemical setting.
 - Typical roll- front roll-front ore body with narrow fronts (<75 ft wide).
- Operational Capacity
 - 5,000 GPM Design Flow Capacity
 - 1,000,000 lb U₃O₈ Design Annual Production Capacity
- Carbonate In-Situ Leach Process
- Conventional Up-Flow Ion-Exchange System

The Alta Mesa Project

- Licensing and Permitting (1999 2004)
- Project Development Commenced August 2004
 - Installation of Monitor Well Ring
 - Installation of Disposal Well
 - Commencement of Wellfield Development
- Plant Construction commenced January 2005.
- Commercial Operations started October 28, 2005
- First shipment of yellowcake product in January 2006.

Licensing and Permitting

- Provides the greatest uncertainty to the timing of the startup of a new project.
- All ISL Uranium Recovery Facilities in the U.S. are required to obtain the following: (In Texas)
 - Radioactive Materials License (DSHS)
 - Class III UIC Permit (TCEQ)
 - Production Area Authorization (TCEQ)
 - Exploration Permit (TRC)
 - Class I UIC Permit (Disposal Well) (TCEQ)
- The time required for these approvals is varied.

Factors Effecting Approval Time

- Agency Staffing Levels
 - With the exception of a few operations, the focus of regulatory activity has been decommissioning.
 - As a result staffing levels have declined.
 - Retirements and transfers
- Regulations
 - Overlap in the regulating ISL facilities
 - NRC regulations, guidance, and policy.
 - UIC regulations.
 - Dual Regulation

Typical Wellfield manifold

- Turnover rates
 - Work ethic of younger employees.
 - Drug testing.
 - Competition for experienced employees
- Approaches to addressing need
 - Finding experienced personnel from former operations.
 - Training new employees and building workforce from local sources.
 - Dependence on experienced contractors.
 - Hiring graduating engineers and geologists and provide rapid "on the job" training

Construction Challenges

- Getting Started
 - Material shortages
 - Steel for superstructure
 - Concrete and cement
- Finding equipment
 - Lead times extended during construction.
 - Vessels
 - New Fiberglass IX vessels had not been constructed in over 10 years.
 - · Fabrication of large fiberglass vessels limited manufacturers.
 - Steel pressure vessels (sand filters) had long lead times.
 - To address the lead time issues
 - Multiple supply sources
 - Material substitution, polyethylene tanks rather than fiberglass.

Placement of IX Columns 03/05

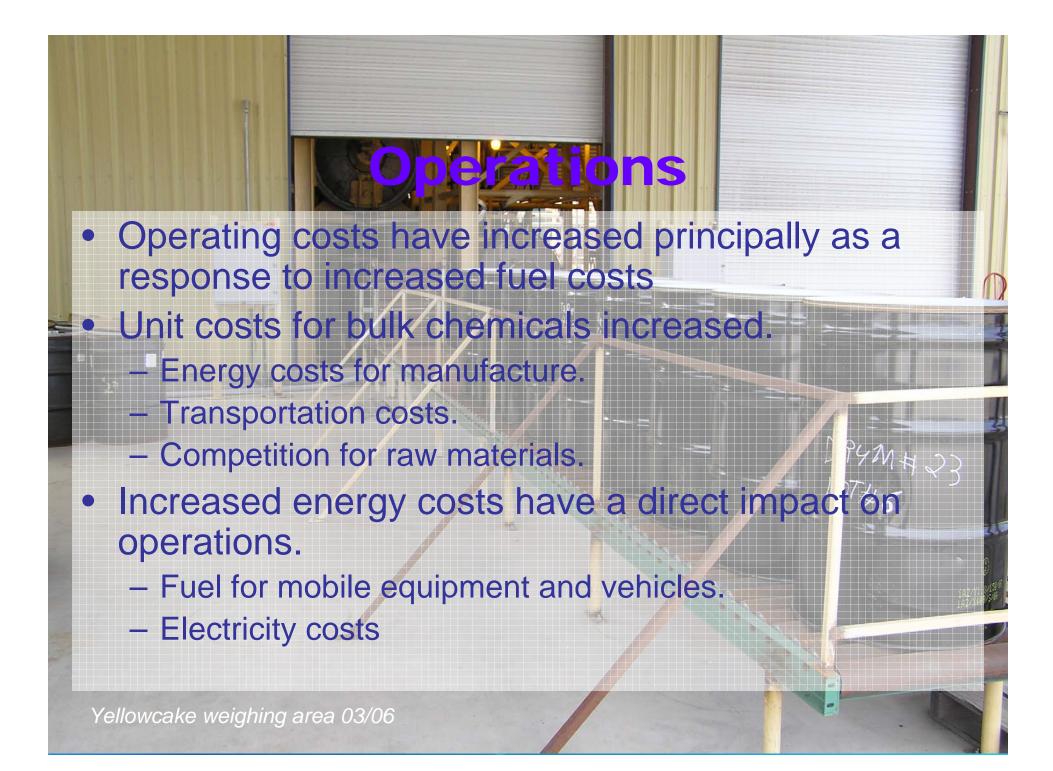
Construction Challenges

- Prepare for the unexpected
- Impacts of three hurricanes
 - Emily
 - 20 inches of rain
 - Flooding
 - Hampered construction progress
 - Stopped drilling activities for 2 weeks.

Katrina

- Impacted fuel supplies and costs
- Shortage of building materials (principally for metal buildings)
- Significant delays in equipment as normal transit was disrupted.

- Rita


- Mandatory Evacuation
- Loss of manufacturing base for poly-ethylene piping
- Gulf Coast refineries (bulk chemical sources)
- Material shortages and supply source loss mandated process changes and adjustments operating requirements

Wellfield Development

- At Alta Mesa, 10 drill rigs are currently in use.
 - All are owned and operated by 3rd Party Contractors.
 - Drilling costs increased during 2004 and 2005,
 - Drilling costs increased by 20% driven by increased fuel, insurance, and labor costs
 - Higher costs are creating additional cost increase pressure.
- Material costs for wellfield installation increased overall by almost 15% through 2005.
 - Portland Cement (over 60% increase)
 - PVC Casing (over 30% increase)
 - Poly-ethlylene piping (over 50% increase)

Plant Construction///

- During construction, significant and unanticipated cost increase occurred.
- Foundation and superstructure construction costs nearly doubled.
 - Concrete shortages and cost increases
 - Steel prices
- Electrical Installation Costs almost tripled.
 - Raw material cost increases (copper)
 - Installation of additional motor controls to accommodate electrical supplier limitations

Conclusions

- The greatest uncertainty for a new project is the licensing and permitting process.
 - Regulatory certainty is a key factor in project planning.
 - Timelines for approval are too dependent on factors outside of operators control.
- Resources such as experienced personnel and trained contractors are a valued commodity.
- Old assumptions of relative cost stability during construction and operations no longer hold.
- Cost contingencies should be re-evaluated for being too conservative.
- Currently, product prices are staying ahead of production cost increases.