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ABSTRACT 

Two sensitivity (or uncertainty importance) measures particularly relevant to the disposal of HLW are 
presented. These measures are referred to as performance-mean-based sensitivity measures, 
dp, l dpx, and dp, l do, , where p, is the mean of the model output Y and oxi is the standard 

deviation of the input variable Xi. These two sensitivity measures are demonstrated using the U.S. 
Nuclear Regulatory Commission's total-system performance assessment model, for evaluating the 
proposed repository at Yucca Mountain. Based on dp, ldp,, , fifteen out of 330 variables are 

identified as significantly contributing to sensitivities at 95% acceptance limit. Similarly, based on the 
calculated dp, l d ~ ,  , twenty variables are identified as significantly contributing to sensitivities. 

Because of the large variability in the performance, approximately 700 samples are needed for the 
ranking of the variables to be stabilized. 
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INTRODUCTION 

Physics-based probabilistic analysis of engineered and natural systems is emerging as an important 
tool for studying reliability in addition to field and laboratory tests. However, new challenges exist 
because highly complicated physics-based models are computationally intensive and involve a large 
number of parameters. The performance assessment of a high-level radioactive waste (HLW) disposal 
is an example. The performance assessment model has a large number of input parameters that are 
described by probability distribution functions representing uncertainty and variability. Sensitivity 
analysis of the performance assessment model is conducted to explain the variability in the output due 
to uncertainties in the model (not considered in the paper) and input parameters and to determine the 
most influential input parameters that control the behavior of the output. Knowledge of the most 
influential input parameters is important because (among other reasons) it can provide an insight on 



where more efforts should be devoted to reduce the uncertainties in the output and to significantly 
improve the understanding of the system. 

A variety of sensitivity measures have been used in the literature to identify influential parameters 
emphasizing different aspects of the input-output relationships. In a recently published article by 
Mohanty and Wu [I], two sampling-based sensitivity measures in the context of the CDF-sensitivity 
analysis function were presented. However, the HLW problem requires sensitivity measures that are 
consistent with the regulatory criteria, such as the peak expected dose for compliance [2]. Two 
performance-mean-based sensitivity measures, ay, 1 ay,, and ay, / 30, , have been proposed in the 

past in [3] for importance analysis for HLW applications in which components of the repository are 
artificially neutralized to identify important components. However, applicability of these measures has 
not been established in the context of sensitivity analysis. 

This paper summarizes the development and application of these two mean-based sensitivity 
measures. Details of the development of these measures in conjunction with the cumulative 
distribution function (CDF)-based sensitivity analysis method and their comparison with the 
previously developed [4] and implemented [I]  sensitivity measures is a subject of a future paper. In 
the following sections, we present a very brief description of the processes involved in the 
performance assessment model, a brief description of the mean-based sensitivity measures, and the 
results from the application of these measures to the NRC performance assessment model. 

THE PERFORMANCE ASSESSMENT COMPUTER MODEL 

Performance assessment models often use a probabilistic approach to propagate uncertainties 
(sometimes variability) in model parameters, conceptual models, and future system states (i.e., 
scenario classes). A probabilistic model, as implemented in the NRC TPA code [ 5 ] ,  simulates (at the 
process level) thermal, hydrological, mechanical, and chemical processes of the repository system. 
This paper uses only the portion of the TPA code that models the most likely scenario. This scenario 
involves the degradation of waste package (WP) in which high-level waste is disposed in the 
engineered barrier system (EBS), the release of radionuclides when the water infiltrating the ground 
surface contacts exposed spent nuclear fuel, and transports the radionuclides through the partially 
water-saturated geologic medium beneath the repository and subsequently in the saturated zone to a 
reasonably maximally exposed individual assumed to be located at 20 km down-gradient of the 
repository [ 5 ] .  The TPA code estimates dose from released radionuclides during specified time periods 
(e.g. regulatory compliance period). Input parameters are sampled from assigned probability 
distributions using Latin Hypercube Sampling (LHS). The code contains 961 input parameters out of 
which 330 are sampled from specified distribution functions. Several sampled input parameters are 
specified to have correlation with other parameters. 

SENSITIVITY MEASURES 

Based on a reliability sensitivity concept [4], the response CDF is defined as the integral of the joint 
probability-density-function of the parameters, with a domain of integration that corresponds to the 
domain of the identified samples. The response CDF sensitivities are then calculated from the 
derivatives of the probability integral. The derivatives are statistically estimated from the samples and 
used to identify and rank the importance of the random variables. 



w 
The CDF of a performance Y = Y (X) can be represented as: 

where n is the region of X for Y(X) < yo .  From Eq. 1, the sensitivity of p with respect to a 

distribution parameter 8 (e.g., mean or standard deviation) can be formulated as: 

in which ( f , i p )  is the sampling density function that corresponds to the sampling regionQ. By 
applying Eq. 2 for a number of different percentiles, the sensitivities for the entire CDF of Y can be 
estimated from random samples. Two CDF sensitivities, the standard-deviation sensitivity, 
S ,  = ( d p  1 p )  I(& l o i ) ,  and the mean sensitivity, Spj = ( d p  1 p )  I(& 1 q ) , were developed in [4] 

and implemented in [I]. Parameters pi and q are the mean and the standard deviation, respectively, 

of the random variable Xi . 

New Mean Response-Based Sampling Sensitivity Measures 

Other sensitivity measures proposed for HLW applications include two performance mean-based 
measures dp, lapx, and apY / d o x  . The sampling-based methods for estimating these two 
sensitivities have been derived and a summary is given herein. More detailed derivations will be 
published in a future paper. 

The variable transformation is used to transform Xi to Zi. This transformation can be expressed as 

whereZ, is a normal variable with mean value of pzj = O  and standard deviation of O, = l .  

Sensitivities with respect to the original variables can be expressed as: 

In Eqs. 3-4, ap, I apxi and dozj  1 doxj  are calculated numerically or analytically based on Eq. 3. The 

sensitivities a,uy 1 dpZ, and ap, 1 aoz, are calculated from the random samples as described below. 

ay, 1 ap, Sensitivity from Random Samples 

After the transformation using Eq. 3, the mean value of Y is: 

P y  = hu (u,Pz, Oz) 

in which @,, is the joint standard normal pdf. The mean-based sensitivity is (several 

intermediate steps are not presented): 



To distinguish if the sensitivity is statistically significant or not, we can test the hypothesis that 
Syp = 0 and develop the acceptance limits. The test statistics is 

- 
s, - syp (= 0 )  

2, = (8) 

in which the sampling estimate is 

Using normal distribution approximation, justified for sufficiently large k based on the central limit 
theorem, the following probability statement can be made: 

where E[Y2]  can be estimated using the Monte Carlo or LHS samples. Ct is the significant 
probability level or the risk of making a wrong conclusion about the null hypothesis that u is unrelated 
to the performance Y and has zero sensitivity. 

a,uY / dozi Sensitivity from Random Samples 

The mean-based sensitivity is: 

To test the hypothesis that Syo = 0 ,  the test statistics is 

in which the sampling estimate is 

Using the normal distribution approximation, the following probability statement can be made: 
7 - 

where E[Y2]  can be estimated using the samples. 

Acceptance Limits and Adaptive Sampling 

If the calculated sensitivities are outside of the acceptance limits defined by Eqs. 10 or 14, we will 
accept the alternative hypotheses that the sensitivities are greater than zero at the corresponding 
confidence level. If the calculated point lies well outside of the limits, then the variable is likely to be 
important. In such cases, the magnitudes of the sensitivities may be used to rank the important 
variables. The number of samples can be adaptively increased to reduce the sampling error and to 
identify the important variables and their ranking with confidence. 



RESULTS 

Figure 1 shows the calculated sensitivities from 1000 LHS samples and the nominal case 10,000-yr 
compliance period response (peak dose) calculations using the TPA code. Based on ap, ldpzi ,  15 

variables (corresponding to the data that are outside the acceptance limits) are identified as having 
significant sensitivities at a= 5%. Similarly, based on dp, I d a ,  , 20 variables are identified as 

significant at a = 5%. The identified important variables are listed in table 1. The results show that 
the two sensitivity measures produce substantially different set of influential variables. But, when 
these two measures are applied to the previous version of the TPA code, the difference between the 
two sets of influential variables is small. Therefore, we believe that the difference between these two 
measures when applied to the latest version of the TPA code is a result of the new process models and 
the associated parameter ranges. A formal validation study is currently underway to ensure that the 
differences are logical and justified. 
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Figure 1. Influential variables identified by (a) S, and (b) Syo sensitivities (see table 1 for top 10) 
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Table 1. Top ten random variables identified by S, and Syc sensitivity 

The mean sensitivity is expected to stabilize as the number of samples is increased. Figure 2 shows 
that the ranking convergence seems to become stabilized as the number of samples exceeds about 700. 
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More samples will be generated to confirm the convergence. Several parameters that are known to 
have very little significance show up in table 1 (Rank 7 for Sy sensitivity), but this variable drops out 

as the number of samples is increased from 1000 to 2000. Investigation continues to address this issue. 
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Figure 2. Mean sensitivity of performance to top 10 variables as a function of sample size 

CONCLUSIONS 

The development and successful implementation of two performance-mean-based sensitivity (or 
uncertainty importance) measures, dp, / dpxi and dp, 1 do,, , that are particularly relevant to the 

disposal of HLW regulatory criteria are summarized. Based on dp, / dpxi and dpy / dox, sensitivities, 

fifteen and twenty out of 330 variables are identified as having significant sensitivities at 95% 
acceptance limit. Further studies are underway to determine the reason for significant differences in 
the list of influential variables identified through these two mean-based measures. It appears that 700 
samples are sufficient for obtaining stable results at 95% confidence limit for the S, sensitivity. 
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