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SUMMARY 
 

This study presents the results of a parametric study that evaluates the inelastic absorption energy 
capacity factors of short period deteriorating single-degree-of-freedom (SDOF) systems with 
low-ductile nonlinear characteristics.  Systems with these dynamic characteristics are usually 
encountered in nuclear facilities, where thick reinforced concrete shear walls with low aspect 
ratios are commonly used to withstand lateral loads.  Deteriorating hysteretic models that include 
softening of the backbone curve of the hysteresis loops, and cyclic strength and stiffness 
deterioration are used in the study.  The inelastic absorption energy capacity factors are computed 
for a set of “ordinary” ground motions.  Median and different percentiles of non-exceedance 
probability are computed, considering that record-to-record variability is the only source of 
uncertainty in the response.  The results indicate that inelastic absorption energy capacity factors 
largely depend on the period of vibration of the system and the target maximum to yield 
displacement ratio.  The type of hysteretic model and level of cyclic strength and stiffness 
deterioration have less influence in the assessment of the inelastic absorption energy capacity 
factors than the former parameters.  Also, the design conservatism expected in the inelastic 
absorption energy factor values recommended in seismic design guidelines may be greatly reduced 
for deteriorating short-period systems. 

 
 

1. INTRODUCTION 
 
1.1 Background 
 
The inelastic absorption energy capacity factors (Fµ), or strength reduction factors due to hysteretic nonlinear 
behavior, reduce the lateral strength demand caused by nonlinear behavior in the structure by taking into account 
the hysteretic energy dissipation capacity of the structure.  Several studies have shown that the inelastic energy 
absorption capacity factors are mainly affected by the maximum tolerable displacement ductility demand, the 
period of the system, soil conditions; and in a lesser degree by damping and hysteretic behavior [Miranda and 
Bertero, 1994; Riddell, 1995].  Most of the current seismic design guidelines, however, include reduction factors 
that depend only on the type of structural component used to withstand the seismic loads, and occasionally on 
the expected failure mechanism.  Although these guidelines provide conservative estimates for most structural 
systems, this conservatism may be largely reduced for special structural systems.  For instance, nuclear facilities 
usually are made of thick reinforced concrete shear walls with low aspect ratio, resulting in rigid systems with 
short fundamental periods of vibration.  For a given displacement ductility ratio demand, short-period systems 
which are located in the acceleration-sensitive region of the response spectrum, usually exhibit small Fµ factors.  
Also, the aspect ratio (height/length ratio) of shear walls in nuclear facilities is usually small, in several cases 
even smaller than unity.  Shear walls with aspect ratios smaller than about two are commonly referred to as squat 
shear walls.  These shear walls usually exhibit large elastic strength but tend to present strength and stiffness 
deterioration and exhibit shear-type failure mechanisms [Paulay and Priestly, 1992].  This type of nonlinear 
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behavior usually leads to small inelastic energy absorption capacity factors.  In addition, the performance of 
some nuclear facilities in the U.S.A. is evaluated by conducting seismic margin analyses of the system, using 
simplified methodologies such as the conservative deterministic failure marginal method.  This methodology 
requires Fµ values corresponding to approximately a 5% failure probability level.   
 
The Fµ factors have been analyzed in a large number of studies, many of them summarized in Miranda and 
Bertero [1994], where simplified expressions to estimate the inelastic design spectra as a function of the strength 
reduction factors are presented. These researchers observed that Fµ factors are similar in different seismic 
regions.  For instance, they obtained remarkable similarity on mean Fµ factors from different studies for 
single-degree-of-freedom (SDOF) systems subjected to different sets of ground motions recorded on firm 
alluvium sites.  Rahnama and Krawinkler [1993] evaluated Fµ factors using analytical hysteretic models that 
include cyclic strength and stiffness deterioration.  The results indicated that cyclic strength deterioration may 
greatly affect the response of SDOF systems.  The above studies did not focus on strength reduction factors for 
deteriorating short-period systems, however, Aschheim, et al. [1998], and Akkar and Miranda [2004] indicated 
that approximate methods used to obtain displacement modification factors can lead to large errors in the 
assessment of maximum inelastic deformations of short-period SDOF systems (T < 0.5 s.).  Regarding 
deteriorating systems, Song and Pincheira [2000] reported that the displacement ratio between a deteriorating 
and non-deteriorating system could be as large as two, especially in the short-period range.  These results 
indirectly affect the effectiveness of the inelastic energy absorption factors for short-period systems used in the 
nuclear industry, where these factors are linked to maximum interstory drift limits.   
 
Experimental cyclic loading tests were also reviewed to determine the nonlinear dynamic characteristics of squat 
shear walls seismic performance.  For instance, Duffey, et al. [1994] presented a compilation of the most 
important experimental shear wall studies at that time, concluding that code drift limits are generally 
unconservative for squat shear walls.  The evaluated shear walls, however, have wall thicknesses that range from 
50 mm [2 in] to 350 mm [14 in].  Therefore, the confinement properties for the evaluated shear walls may differ 
from those of thick shear walls, leading to different nonlinear performance.  Experimental tests performed by 
Hidalgo, et al. [2002] indicate that the peak strength of squat shear walls may take place for relative low inelastic 
to yield displacement ratios.  Also, the experimental hysteretic loops exhibited pinched behavior, cyclic strength 
and stiffness deterioration, and in some cases, steep softening slope.   
 
This study presents the results of parametric studies that estimate the inelastic absorption energy factor capability 
focusing on systems with short period deteriorating SDOF systems with low-ductile nonlinear characteristics. 
 

2. DETERIORATING HYSTERETIC MODELS  
 
Deteriorating hysteretic models are used to replicate the nonlinear performance of squat shear walls.  The models 
include strength deterioration of the backbone curve (softening), and cyclic strength and stiffness deterioration; 
as described in Ibarra, et al. [2005].  The backbone curve that defines the monotonic response and the boundaries 
for the load−displacement relationship are presented in Figure 1.  If no deterioration exists, the backbone curve is 
defined by three parameters:  the elastic (initial) stiffness Ke, the yield strength Fy, and the strain-hardening 
stiffness Ks = αsKe.  If deterioration of the backbone curve is included, a softening branch, or post-capping 
stiffness, Kc = αcKe, begins at the cap displacement, δc, which corresponds to the peak strength, Fc, of the 
load-displacement curve.  If δc is normalized by the yielding displacement the resulting ratio is called ductility 
capacity, δc/δy.  A residual strength may also be assigned to the model, Fr = λFy, although this option is not used 
in this study.  The backbone parameters can be obtained from experimental monotonic load-displacement 
relationships.   
 
Cyclic deterioration is accounted for by using energy dissipation as a deterioration criterion.  Four modes of 
cyclic deterioration are included:  basic strength, post-capping strength, unloading stiffness, and accelerated 
reloading stiffness deterioration (see Figure 1b).  The cyclic deterioration rates are controlled by the rule 
developed by Rahnama and Krawinkler [1993], which is based on the hysteretic energy dissipated when the 
component is subjected to cyclic loading.  It is assumed that the hysteretic energy dissipation capacity is a known 
quantity that is independent of the loading history. The cyclic deterioration in excursion i is defined by the 
parameter βi, 
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where 

iE    = hysteretic energy dissipated in excursion i 

Σ jE =hysteretic energy dissipated in all previous excursions (both positive and negative) 

tE    = hysteretic energy dissipation capacity, yyt FE δγ=  
c       = The exponent defining the rate of deterioration of the hysteretic parameter (c = 1 for this study) 
 

 
(a)       (b) 

Figure 1:  (a) Backbone Curve for Deteriorating SDOF Systems, (b) Cyclic Strength and Stiffness 
Deterioration for a Peak-Oriented Hysteretic Model 

 
 
The parameters γi and βi are individualized for the four modes of deterioration. For example, the unloading 
stiffness, Ku, is deteriorated in accordance with the following equation, 

1,,, )1( −−= iuikiu KK β                                              (2) 

where Ku,i, Ku,i-1  are deteriorated unloading stiffness for excursion i and i-1, whereas βk,i is associated with an 
appropriated cyclic deterioration parameter γk.  The parameters for cyclic deterioration can be derived from 
cyclic loading experiments, such as the squat shear walls of Figure 2a [Hidalgo, 2002].  Because of this typical 
hysteretic behavior for shear walls, pinching models exhibiting strength and stiffness deterioration are used in 
this study (Figure 2b).  Details of the deterioration model are presented in Ibarra, et al. [2005].   

 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a)       (b) 
Figure 2:  (a) Experimental Hysteretic Response for a Squat Shear Wall [Hidalgo, et al. 2002], 

(b) Analytical Pinching Model 
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3. METHODOLOGY  
 
3.1 Inelastic Energy Absorption Capacity Factor Definition 
 
The computation of inelastic energy absorption capacity factors is usually associated to a maximum tolerable 
displacement ductility demand µi.  Then, the goal is to calculate the minimum lateral strength capacity Fy(µ = µi) 
that is needed to avoid ductility demands larger than µi,  
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where the numerator is the lateral yielding strength required to maintain the system elastic.  The denominator is 
the lateral yielding strength to avoid ductility demands larger than µi.  Traditionally, the term ductility refers to 
the ability of a component or a system to displace inelastically without significant deterioration in strength or 
stiffness.  Therefore, for deteriorating systems, the maximum to yield displacement ratio, δmax/δy, should be used 
instead of displacement ductility because the loading path may be in the softening region of the backbone curve.   
 
3.2 Failure Limit State 
 
The failure limit states to be evaluated derive from trends observed in experimental results, as well as code 
recommendations.  Seismic guidelines for nuclear facilities, such as ASCE 43−05 [2005], propose inelastic 
absorption factors for reinforced concrete shear walls controlled by shear at different limit states.  The proposed 
factors associated to deformation limit states are period-independent, and are not correlated to a specific 
probability of exceedance. The strength reduction factor for the first limit state that allows nonlinear 
performance (limit state C) is Fµ = 1.5, which should lead to limited permanent distortion.  Specifically, the 
interstory drift should be less than 0.4%.  On the other hand, the strength reduction factor for limit state A, which 
represents the onset of collapse, is Fµ = 2.0; and the allowable interstory drift is 0.75%.  Given that the interstory 
drift is prescribed, the expected ductility depends on the strength and stiffness of the system.  Then, stiff 
components may develop relatively large displacement ductilities before reaching the drift limit. 
 
The above intestory drifts may lead to relatively large displacement ductilities, depending on the stiffness and 
strength characteristics of the system.  However, some experimental results show that squat shear walls may 
exhibit more brittle behavior.  For instance, Figure 2a presents a component at the onset of collapse for an 
insterstory drift smaller than 0.1% {shear wall height was 1,400 mm [55 in]}, and a ductility at the peak strength 
no larger than two or three.  A complete representation of the expected interstory drift of short-period systems 
requires a systematic study beyond the scope of this work.  Therefore, this study will include the assessment of 
strength reduction factors for two different failure modes:  (i) Ductility Limit State, where Fµ values are assessed 
at target ductilities for systems with cyclic deterioration, but no softening of the backbone curve, and 
(ii) Collapse Limit State, where Fµ values are obtained for deteriorating systems.  Collapse occurs when the 
loading path is on the backbone curve and the restoring force approaches zero. 
 
3.3 Nonlinear Analyses to Obtain the Strength Reduction Factor 
 
To estimate the inelastic absorption energy factor for the ductility and collapse limit states, a series of nonlinear 
dynamic analyses were performed, in which the relative intensity of the system was increased until the target 
limit state was reached [Medina, 2002].  The relative intensity is the ratio of the ground motion intensity to the 
strength of the structure, (Sa/g)/η.  The ground motion intensity, Sa/g, is the 5% damped spectral acceleration at 
the elastic period of the SDOF system (without P−Delta effects).  The strength, η = Fy/W, is the base shear 
strength of the SDOF system normalized by its seismic weight. In this paper, the relative intensity is plotted 
against the maximum displacement normalized by the yielding displacement, δmax/δy.  Note that (Sa/g)/η = 1 
defines the elastic threshold of the structural system.  The (Sa/g)/η − δmax/δy curves for SDOF systems are the 
same whether the increase is due to variations in the ground motion intensity or in the strength of the system.  If 
the ground motion intensity is increased and the strength of the system is kept constant, the (Sa/g)/η – δmax/δy 
curves represent incremental dynamic analyses.  If the ground motion intensity is kept constant, and the strength 
of the system is decreased, the (Sa/g)/η  − δmax/δy curves represent ductility demands for various strength levels 
[Medina and Krawinkler, 2003], and (Sa/g)/η is equivalent to Fµ, 
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where m is the mass of the system.  Figure 3a presents individual and statistical (Sa/g)/η − δmax/δy curves for a 
non−deteriorating SDOF system with period of vibration T = 0.15 s., subjected to the set of 40 ground motions 
described in Section 4.2.  The relative intensity of the system is increased for each record in small steps until the 
target ductility selected for this example, δmax/δy = 3.0, is reached (dotted vertical line), where statistical 
information for Fµ factors is obtained.  For this purpose, a lognormal distribution is assumed to fit the (Sa/g)/η 
data, and first and second moments are obtained by carrying out “vertical statistics” (Figure 3a).  Note that the 
equal energy rule, 12/)/( −== µηgSR a  (ductility µ = δmax/δy if deterioration has not taken place) is a 
good approximation to the median curve for this SDOF system with period T = 0.15 s.  For systems with 
T < 0.15 s., the equal energy rule underestimates the ductilities with respect to the median response.  
 
To trace the collapse limit state, Figure 3b shows the same curves for a deteriorating system with a ductility 
capacity δmax/δy = 3, and a post-capping stiffness slope αc = −0.30; cyclic deterioration is not included.  Note that 
δmax/δy corresponds to the target ductility of the non-deteriorating system of Figure 3a.  Thus, the increase in the 
Fµ factor is due to the nonlinear performance obtained when the loading path is already in the softening region of 
the backbone curve.  The collapse limit state takes place when the deteriorating system is unable to resist 
additional lateral strength and small perturbations in the relative intensity produce large variations in the 
response of the system.  The relative intensity at collapse is called the “collapse capacity” [Ibarra and 
Krawinkler, 2005], and for SDOF systems indicates that zero strength is reached during the reloading of the 
hysteretic path.  Given that cyclic deterioration is not included in this example, the displacement at collapse, δf, 
is dictated by the backbone curve of Figure 1a (after assuming δs = 0.03): δf /δy = δc /δy ! [1 + (δc /δy!1) "s ]/"c.  
For numerical realizations, however, δf is only an upper limit because the algorithm obtains the collapse capacity 
within a small tolerance range with respect to (Sa/g)/η.  The variation on individual δf values (see diamonds in 
Figure 3b) reflects the high numerical sensitivity of the evaluated displacements, as collapse is approached.  
Statistical information for collapse capacity is also obtained from “vertical statistics.”  The median δmax/δy is 
based on “horizontal statistics” (Figure 3b) at different intensity levels and terminates when 50% of the records 
have led to collapse of the system.  The statistical δmax/δy values are evaluated by using counted statistics, in 
which the median and percentiles of interest are directly obtained from the sorted data [Ibarra and Krawinkler, 
2005].  In general, the response of deteriorating and non-deteriorating short-period systems exhibit large 
sensitivity of δmax/δy to slight variations of (Sa/g)/η.   
 

4. PARAMETER STUDY  
 
4.1 System Characteristics 
 
The study includes mostly short-period SDOF systems. Then, periods of vibration:  T = 0.03, 0.06, 0.09, 0.12, 
0.15, 0.18, 0.21, 0.24, 0.50, and 0.75 s are selected for the analyses.  The system with T = 0.03 s. corresponds to 
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Figure 3:  (Sa/g)/η − δmax/δy Curves for SDOF Systems with T = 0.15 s. and No Cyclic Deterioration, 
(a) Non-Deteriorating System, (b) δc/δy = 3.0, αc = −0.30 
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Quasi-rigid system, whereas the last couple of periods of vibration are usually associated with medium-period 
systems, and are included to compare trends in different period regions.  System parameters that are not expected 
to significantly modify the response are kept constant.  For instance, the percentage of critical damping for all 
systems is ξ = 5% [Newmark and Hall, 1978].  The hardening stiffness ratio is assumed constant (αs = 0.03) 
because its effect on the response is relatively small for αs values between 0.02 and 0.08 [Nassar and 
Krawinkler, 1991].  Also, the SDOF systems do not include P−Delta effects because of the limited effect of 
geometric nonlinearities on short-period systems. 
 
For the nonlinear response, a pinching model is used to estimate the hysteretic response because reinforced 
concrete shear walls usually exhibit pinched hysteretic loops.  An intermediate pinching level is assumed 
because this parameter should not have a large influence in the response [Ibarra and Krawinkler, 2005].  The 
study also includes a limited number of analyses with a bilinear hysteretic model, which is the base model for a 
large number of previous studies.  For the ductility limit state, four target ductilities are considered: δmax/δy = 
1.25, 1.50, 3.0, and 8.0.  Based on experimental results, however, squat shear walls usually will not reach a 
ductility of 8.0 without exhibiting strength and stiffness deterioration.  For the collapse limit state there are four 
cases with ductilities capacities, δc/δy = 1.25, 1.50, 3.0, and 8.0; which match the target ductilities of the ductility 
limit state.  For both the ductility and the collapse limit state, the systems were evaluated for (i) no cyclic 
deterioration, and (ii) intermediate cyclic deterioration, γs,c,k,a = 50 [Ibarra, et al., 2005].  For the collapse limit 
state, the post-capping stiffness ratio is assumed as αc = −0.30.  Reinforced concrete shear walls expected to fail 
in shear usually exhibit a softening branch with steep slope.  Therefore, the proposed value is based on several 
experimental tests for squat shear walls failing in shear [e.g., Hidalgo, 2002].      
 
4.2 Input Ground Motions 
 
A set of 40 Californian ground motions is used for all nonlinear analyses of this study.  The ground motions were 
recorded on stiff soil or soft rock, and do not exhibit pulse−type near−fault characteristics.  The source-to-site 
distances of the selected time history ranges from 13 to 60 km., and the moment magnitude from 6.0 to 6.9.  The 
selected records are a subset of the set of 80 ground motions proposed by Medina and Krawinkler [2003], and 
the median response spectra of this subset grossly matches the acceleration response spectra of a specific site in 
the West Coast [Bechtel SAIC Company, LLC, 2004], see Figure 4a.  Because the 5% linear elastic spectral 
acceleration at the elastic period of the structural system, Sa(T), is selected as the intensity measure, the ground 
motions are scaled to a common Sa at the elastic period of the SDOF system.  For instance, the ground motions 
of Figure 4a are scaled to the same spectral acceleration at T = 0.50 s.  Because a lognormal distribution is 
assumed, the shape of the median spectrum is preserved even if the records are scaled.  Figure 4b presents the 
standard deviation of the log of Sa, due to record−for−record variability.  The dispersion increases with period, 
and response predictions may exhibit significant scatter depending on the extent of inelasticity, which leads to 
period elongation.  The use of a single set of ground motions for most of this study is partly justified by previous 
studies showing that the inelastic response of SDOF systems is not affected greatly by earthquake magnitude and 
distance to the source—except for near-fault regions [Medina and Krawinkler, 2003; Jalayer, 2003].   
 

ELASTIC STRENGTH DEMAND SPECTRA
TH-SpecWCS, ξ = 0.05, Scaled at T = 0.50 s.
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(a)       (b) 
Figure 4:  (a) Pseudo-Acceleration (Elastic Strength Demand) Spectra, (b) Dispersion of the Spectra  
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5. RESULTS  
 

5.1 Ductility Limit State 
 
Inelastic energy absorption factors for target ductility capacities δc/δy = 1.25, 1.5, 3.0, and 8.0 are computed for 
this limit state.  Figure 5a shows relative intensities (or Fµ factors) period curves at the limit state of failure when 
δmax/δy = 1.5, which were obtained by performing analyses similar to those of Section 3.3 for different periods of 
vibration.  The 5th nonexceedance probability (NEP) is included because EPRI [1991] suggests this probability 
of failure level when performing nonlinear analyses to obtain the inelastic energy absorption factor.   
 
For limit state C, ASCE 43−05 [2005] specifies Fµ = 1.5 for shear walls controlled by shear.  As Figure 5a 
shows, for a ductility limit state where δmax/δy = 1.5, the median Fµ factors are close to this threshold {Fµ = 
(Sa/g)/η = 1.5} for systems with periods of vibration larger than about T = 0.15 s.  For the 5th NEP level, 
however, the Fµ factors are below the above threshold for all evaluated systems.  Figure 5b presents the 
dispersion of the SDOF systems due to record-to-record (RTR) variability expressed as the standard deviation of 
the log of Fu, i.e., )(ln RTRFµσ .  The dispersion for the four evaluated ductility limit states is relatively 
period-independent for systems with T > 0.2 s., and in all cases there is a sudden increase at about T = 0.09 s.  
The dispersion increases for systems with larger ductility limit states, and is grossly period-independent except 
for very short period systems, which is in agreement with Miranda and Bertero [1994], and Riddell [1995].  
 
In the above discussion, it was assumed that ductility limit state with δmax/δy = 1.5 is a good representation of 
limit state C, where the amount of damage should be minimal.  Nevertheless, the limit state C is based on a 
limited interstory drift that depends on the specific characteristics of the shear wall.  To account for this 
variation, Figure 6a presents the median relative intensity-period curves for the four evaluated ductility limit 
states.  For very short period systems (T < 0.06 s.), Fµ is similar for all ductility limit states because δmax/δy  
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Figure 5:  (a) Individual and Statistical (Sa/g)/η at Different Periods for Ductility Limit State δmax/δy = 1.5; 
αc = −0.30, γs,c,k,a = 50, (b) (Sa/g)/η Dispersion for Different Ductility Limit States, αc = −0.30, γs,c,k,a = 50  
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Figure 6:  (Sa/g)/η − T Curves for Ductility Limit States, αc = -0.30, γs,c,k,a = 50, (a) Median, (b) 5th NEP  
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values are very large independently of the target ductility parameter.  For medium-periods systems (T = 0.50, 
0.75 s.), Fµ can increase significantly as the target δmax/δy parameter increases.  Figure 6b shows the 5th relative 
intensity-period curves for the same cases.  Note that Fµ,5th = 1.5 is only reached for systems with δmax/δy of 3.0 
and 8.0, and only for systems with T > 0.20 s. and 0.15 s., respectively.    
 
The ductility limit state was also evaluated for systems without cyclic deterioration.  Median strength reduction 
factors for similar systems without cyclic deterioration and with intermediate cyclic deterioration (γs,c,k,a = 50) are 
presented in Figure 7a.  Cyclic strength and stiffness deterioration is not relevant for evaluation of median Fµ 
factors on short-period systems when the target ductility is relatively small.  For 5th NEP, the difference in Fµ,5th 
factors due to cyclic deterioration is even smaller.   
 
Also, nonlinear time history analyses were carried out for bilinear models that obey kinematic-hardening rules.  
Figure 7b compares the predicted median Fµ values for ductility limit states δmax/δy = 1.5 and 3.0 for bilinear and 
pinching systems.  For short-period systems, Fµ values obtained from bilinear systems are larger than those of 
pinching systems, although the larger differences are less than 15%.  These results corroborate that cyclic 
deterioration and the type of hysteretic model have a secondary effect in the evaluation of Fµ factors. 
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Figure 7:  5th NEP (Sa/g)/η − T Curves for Ductility Limit States δmax/δy = 1.5 & 3.0; αc = −0.30 (a) Effect of 
Cyclic Deterioration, (b) Effect of Hysteretic Model, γs,c,k,a = 50  

 
5.2 Collapse Limit State 
 
For this limit state there are four deteriorating systems with ductility capacities δc/δy = 1.25, 1.5, 3.0, and 8.0; all 
of them with a post-capping stiffness ratio αc = −0.30.  Figure 8 presents a comparison of the inelastic absorption 
energy factor for the ductility and collapse limit states for systems with δc/δy = 1.5 and 8.0.  The increase in the 
relative intensity (Sa/g)/η, when the softening slope αc = −0.30 is included (collapse limit state), is caused by the 
hysteretic energy dissipated in the softening region of the backbone curve (i.e., after the loading path reaches its 
peak strength).  This increase in capacity (Fµ factors) is larger for systems in which δc/δy is small because δc is 
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Figure 8:  Comparison of Fµ  factors for Collapse and Limit States, αc = −0.30, γs,c,k,a = 50 (a) Median, 
(b) 5th NEP  
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surpassed at earlier stages of nonlinear behavior.  For instance, the median Fµ  factor at T = 0.21 s. is about 40% 
larger for the collapse limit state than for the ductility limit state when δc/δy = 1.5.  The difference in Fµ  factors 
is reduced to less than 10% when δc/δy = 8.0.  On the other hand, for 5th NEP, the Fµ,5th  factors for short-period 
systems are very close. 
 
5.3 Fragility Curves for Specified Limit States 
 
A fragility curve for a predetermined limit state expresses the conditional probability of exceeding the limit state 
capacity for a given level of ground motion intensity. In this study, the limit states are evaluated by using Sa(T) 
as the ground motion intensity.  The fragility curve under these conditions is, 
 

][][)( ,,, ,
xSPxSSSPxF faafaaSC fa

≤==≥=  (5) 

 
)(

,, xF
faSC  corresponds to the value of the fragility curve at spectral acceleration, x, for the target limit state.  By 

considering that the demand (Sa = x) is statistically independent of the capacity of the system (Sa,c), the fragility 
curve can be expressed as the probability that Sa,c is less than or equal to x.  Then, the information presented in 
Figure 5a is sufficient to generate the fragility curves of Figure 9, which shows fragility curves derived for 
different ductility limit states.  The systems in which the target ductility is larger develop more capacity, but also 
the dispersion is larger.  Therefore, the difference in Fµ factors at small percentiles of NEP is smaller.  For this 
reason, Fµ,5th is less affected by parameter variations than median Fµ values.  
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Figure 9:  Fragility Curves for Different Periods of Vibration, γs,c,k,a = 50, (a) Ductility Limit State δmax/δy = 
1.5, (b) Ductility Limit State δmax/δy = 3.0  

 
 

6. CONCLUSIONS 
 
Inelastic absorption energy capacity factors are evaluated for SDOF systems that reproduce dynamic 
characteristics of lateral-load resisting systems commonly used in the nuclear industry.  These systems present 
relatively short periods of vibration, and low ductile behavior as a result of significant strength and stiffness 
degradation.  The nonlinear response is obtained for a set of 40 ground motions, and record-to-record (RTR) 
variability is the only source of dispersion in the response.  The main findings of the study are as follows:  
 
- The inelastic energy absorption capacity factor, Fµ , and its associated variability mainly depend on the period 
and ductile characteristics of the system.   
- For deteriorating short−period systems, both the Fµ factor and the dispersion due to RTR variability tend to 
decrease because these systems are subjected to large inelastic displacements independently of the frequency 
content of the ground motions.  Then, systems with very a short period of vibration (T < 0.10 s) exhibit similar 
Fµ for target ductilities as dissimilar as Fµ = 1.25 and 8.0.  For systems with 0.10 s. < T < 0.20 s., the response is 
also very similar for systems with ductility capacities δc/δy = 3 or smaller.  Thus, these systems should not have 
incursions in the nonlinear range because the demand displacements are difficult to control.  
- The inelastic absorption energy factor is not largely affected by the type of hysteretic model. 
- For the evaluated systems, cyclic deterioration is not a controlling parameter in the evaluation of Fµ factors.  
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- The remaining strength capacity of the system after the peak strength is surpassed is relatively small, and the 
ductility limit state is enough to predict the strength reduction factor of the evaluated systems.  The main reason 
is that, according to experimental tests, the post-capping stiffness for squat shear walls is relatively large (for the 
study αs = −0.30.)  
- Systems with larger ductile characteristics tend to exhibit larger Fµ factors, but also larger dispersion.  
Therefore, the Fµ factors for small percentiles of non-exceedance probability tend to be closer to the median 
values, as shown in the presented fragility curves.  
- Inelastic absorption energy factors recommended in seismic guidelines may be nonconservative for some 
deteriorating short−period structural systems. 
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