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• Revision of response modification procedure to address fillet 
weld low-cycle fatigue concerns

• Consideration of structures with f1 > 10 Hz
• Verification of conservatism of in-structure spectra generated 

with modified design spectra 
• Recommendations on qualification testing procedures for 

equipment and components to demonstrate function during 
and after high frequency seismic motion

• Development of vertical response modification evaluation 
model 

• Additional studies on high frequency structural response 
behavior

Summary of Additional S2.2 Studies (Phase 2)
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Fillet Weld Load-Deformation Behavior 

• The original EPRI study (Reed, 1993) focused on the transverse 
loaded fillet weld as the worst case scenario with the non-linear 
behavior concentrated within the most highly loaded equipment 
anchorage interface region

• It was felt that the consideration of this “worst case” would 
serve as a surrogate for the effect of limited non-linear behavior 
in the primary loadpath of high frequency components

• Based on static load test results (basis of current LRFD design 
provisions for fillet welds), the load-deformation function was 
characterized by a yield deformation of 0.001 inch and an 
ultimate deformation of 0.0105 inch (Deformation Ratio, 
δu/δy=10)

• The prior study (and the S2.2 Task) assumed that the quarter-
cycle hysteretic loop for the transverse loaded fillet weld is 
specified by the static load-deformation function and is fully 
effective for reverse cycle loading up to the ultimate 
deformation
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Low-Cycle Fatigue of Fillet Weld

• The assumption of multiple cycles at the ultimate (static failure) 
deformation has been questioned

• In general, the expected number of effective full load cycles 
during a seismic event is N < 20 which places the strength 
evaluation in the ultra low-cycle fatigue realm (N<100) which 
does not have extensive test data

• Two low-cycle fatigue test studies were found which indicate 
that an ultimate deformation ratio of δu/δy=7.5 can sustain at 
least N=50 full cycles

• It has been decided to utilize a lower value of maximum cyclic 
deformation δu=0.0075 inch instead of δu=0.01 inch for the 3/16”
weld used in the S2.2 study

• This revised estimate of allowable ultimate weld deformation 
increases the modified design spectrum by 5-10%
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S-N Curve for Transversely Loaded Fillet Welds
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CEUS Rock Site Modified Spectra

Effect of Ultimate Deformation
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Consideration of Structures with Fundamental 
Frequency Greater than 10 Hz

• The S2.2 amplification studies assumed that the fundamental 
frequency of most plant structures will be less than 10 Hz 

• Since the modification procedure affects high frequency 
systems with 10 Hz or greater, the spectral amplification of the
higher modes > than 10 Hz was shown to be less than 2.5 for a 
Timoshenko beam structure model

• Plant structures with fundamental frequency greater than 10 Hz 
do exist, thus the higher amplification of the fundamental mode 
(~7.5) must be considered

• The response modification procedure is still applicable, 
however Fsm=1.6(7.5)=12 is the scale factor for this case
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CEUS Rock Response Modification
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Indirect Spectra Generation vs. 
Direct Spectra Generation

• At the August project review meeting it was concluded 
that it was desirable to demonstrate that: 
1) in-structure spectra generated with a time history that 
is compatible with a modified design spectrum are equal 
to or greater than 
2) in-structure spectra generated with a time history that 
is compatible with the unmodified design spectrum and 
then individually modified at the structure level. 

• The following sub-tasks were identified: 
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Indirect Spectra Generation vs. 
Direct Spectra Generation (con’t.)

• 1.  Indirect In-Structure Spectrum Modification using Modified 
Ground Design Spectrum 
– a.  Reduce CEUS rock design spectrum (use FSM = 0.4-4)
– b.  Generate a time history compatible with the reduced 

spectrum
– c  Generate in-structure spectra at x/L = 0.38 and x/L = 0.9 using 

three Timoshenko Beam building models – f1=3, 5, 9 Hz
• 2.  Direct In-Structure Spectrum Reduction

– a.  Generate a time history compatible with the CEUS rock 
design spectrum 

– b.  Generate in-structure spectra at x/L = 0.38 and x/L = 0.9 
using three Timoshenko Beam building models – f1=3, 5, 9 Hz

– c. Reduce in-structure spectra using S2.2 procedure 
(use FSM = 1.6)

• 3.  Compare in-structure spectra generated both ways
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Comparison of Input Motion for 
Timoshenko Beam

Compare TH Spectra
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Comparison of Directly Modified In-Structure Spectrum with 
Indirectly Modified In-Structure Spectrum for Timoshenko Beam
f1 = 9 Hz, x/l = 0.38

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 10 20 30 40 50 60 70 80 90 100

Frequency, Hz

Sp
ec

tr
al

 A
cc

el
er

at
io

n,
 g

SA

SA indirect

SAr direct (Fsm=1.6)

5% Damping



13© 2006 Electric Power Research Institute, Inc. All rights reserved.

Qualification Procedures for Equipment 
Requiring Functional Demonstration

• Specification of in-structure response for use in seismic  equipment 
qualification has in the past been accomplished using in-structure 
response spectra generated from the response of a structure model

• However, response spectra tend to reflect the peak response of the 
lower modes in the high frequency regime resulting in a false level of 
motion being specified for the high frequency range

• For this reason, the specification of non-seismic dynamic 
environments (transportation, aerospace, military, etc.) is 
accomplished using Power Spectral Density functions for the 
definition of the required motion for qualification of equipment and 
components

• The following figures show example ground motion spectra being 
using for the design of new plants along with the PSD functions 
compatible with these motions   
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Example Input Ground Design Spectra 
(conservative)

Input Spectra
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Input PSD Functions Compatible with the 
Example Design Response Spectra

Input PSD
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In-Structure Response Spectra for Timoshenko Beam 
(f1=9 Hz, 7% Structure Damping)

In-Structure Spectra
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Base Input Transfer Function for 
Timoshenko Beam

Base Input Transfer Function for Timoshenko Beam

0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

Frequency Ratio, f/f1

Tr
an

sf
er

 F
un

ct
io

n 
M

od
ul

us

ModHx (x/l=0.90)
ModHx (x/l=0.8)
ModHx (x/l=0.77)
ModHx (x/l=0.70)
ModHx (x/l=0.60)
ModHx (x/l=0.50)
ModHx (x/l=0.40)
ModHx (x/l=0.38)
ModHx (x/l=0.30)
ModHx (x/l=0.20)
ModHx (x/l=0.10)

E/k'G=4.6
r2/L2=0.1

7% Structure Damping



18© 2006 Electric Power Research Institute, Inc. All rights reserved.

PSD for Timoshenko Beam 
(f1=9 Hz, 7% Structure Damping)

PSD of Timoshenko Beam Positions
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PSD Envelope for All Beam Positions

PSD Envelope for Timoshenko Beam Positions
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PSD Envelope Comparison

PSD Comparison

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1 10 100

Frequency, Hz

PS
D

, g
2/

H
z

CEUS Rock PSD

AP1000 PSD

Rock In-Structure PSD Bound (>20Hz)

Rock In-Structure PSD Bound (<20Hz)

AP1000 In-Structure PSD Bound

7% Structure Damping



21© 2006 Electric Power Research Institute, Inc. All rights reserved.

High Frequency Region (>20 Hz)

PSD Comparison
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Environmental Stress Screening (ESS)

• ESS (also referred to as HASS/HALT) is a technique 
used for quality control of military and commercial 
electronics.  The PSD level shown is a commonly used 
random vibration level known as the Willoughby 
spectrum originally provided in NAVMAT P-9492 (1979)

• The concept was to screen electronic components with 
random vibration as a means of insuring that the 
components do not have common manufacturing defects 
and meet functional requirements while being shaken 
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Qualification Approach Being Studied

• Test equipment to RRS defined from in-structure  
spectra in the 1-25(33) Hz regime as is currently done 
under IEEE-344 or ASME QME.

• Screen equipment with a random vibration level defined 
as either a constant PSD (say 0.01 g2/Hz over 20-80 Hz) 
or a mounted component level established by applying a 
clipping factor to the envelope of the individual narrow-
band modal PSD response levels and a clipped 
amplification factor 
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Summary of Phase 2 Efforts

• Revised response modification procedure to 
accommodate low-cycle fatigue effects

• Considered building fundamental frequencies greater 
than 10 Hz

• Demonstrated that indirect generation of in-structure 
spectra using modified input motion is a conservative 
procedure

• Developed recommendations for high frequency 
screening of functional equipment

• Formulation of evaluation models for vertical response 
modification 


