

Iterative Process for Development and Implementation of Safety Bases

Presented to:

NRC/DOE Technical Exchange and Management Meeting on Preclosure Safety Analysis and Supporting Information

Presented by:

Thomas Dunn
Preclosure Safety Analysis
Bechtel SAIC Company, LLC

Dave Tooker
Repository Design Engineering
Bechtel SAIC Company, LLC

May 16-17, 2006 Las Vegas, Nevada

Implementation Process for Safety Bases: Important to Safety (ITS) Active Systems

Approach

- Nuclear safety design bases
- Design detail necessary to demonstrate requirements are met
- Assessment that requirements are achievable
- Examples of selected active systems
 - Standard equipment: Overhead cranes
 - Standard systems: HVAC / HEPA
 - Non-standard equipment: Trolley

HVAC = heating, ventilation, and air conditioning HEPA = high-efficiency particulate air (filter)

Example: Nuclear Safety Design Bases Reliability Requirement for Overhead Crane

- Important to Safety
 - Minimize the probability of a load drop or collision
- Nuclear Safety Design Bases Requirement
 - The drop rate for cranes involved in handling waste forms shall be equal to or less than 10⁻⁵ drop / transfer

Information Sufficient to Perform a Reliability Assessment on System

- Basis of design (BOD) document
- Mechanical equipment envelope (MEE) drawings
- Piping and instrumentation diagram (P&IDs)
- Control logic functional diagrams
- System Description Document (SDD)
- Facility Description Document (FDD)
- Design / procurement specifications
- Mechanical handling calculations

Demonstration of Safety for Overhead Crane in License Application

- Basis of design document that defines the safety design requirements and safety functions
- NOG-1 Type 1 or Type 2 justification
- Mechanical equipment envelope drawing(s) for the crane
- Crane P&IDs that identify the principal controls on the crane
- Logic diagrams for the crane that present the controls and control logic for each of the crane safety functions

Demonstration of Safety for Overhead Crane in License Application (cont.)

- System Description Document and Facility
 Description Document that provide description
 of crane controls, equipment, and operation
- Mechanical handling calculations that define the space envelope, load paths, load drops, and interactions with other systems, components, and structures
- Crane specification

Example: Demonstration that Overhead Cranes Meet Reliability Requirement

- Reliability estimate based on operating experience at U.S. nuclear power plants
 - Data from NUREG-1774 (A Survey of Crane Operating Experience at U.S. Nuclear Power Plants from 1968 through 2002) over the period 1980 to 2002
 - Data for an estimated 54,000 very heavy lifts (>30 tons) was used to estimate that overhead crane drop rate is about 9x10⁻⁶ drops per lift

Example: Demonstration that Overhead Cranes Meet Reliability Requirement (cont.)

- Calculated crane drop rate
 - Includes failures due to all modes (e.g., human error, control system failures, etc.)
 - Is conservative because operating experience covers both single failure-proof cranes and non-single failure proof cranes, while repository cranes will be designed to NOG-1
- Tracking of uncertainties and margins
- Stacking conservatisms

Example: Nuclear Design Bases Reliability Requirement for HVAC / HEPA System

- Important to Safety
 - HVAC / HEPA

- Nuclear Safety Design Bases Requirement
 - The probability that the HVAC system, including HEPA filtration in the primary confinement areas, becomes unavailable during a 4-hour mission time shall be 0.01 or less without credit for backup electrical power

Information Sufficient to Perform a Reliability Assessment for HVAC / HEPA System

- Ventilation flow diagrams (VFDs)
- Ventilation and instrumentation diagrams (V&IDs)
- Process and instrumentation diagrams
- Electrical single lines
- Control logic diagrams
- Schematic / block diagrams
- Supporting calculations and analyses

Demonstration of Safety for HVAC / HEPA System in License Application

- Basis of design document that defines safety / design requirements and safety functions
- HVAC / HEPA System VFDs (and where appropriate V&IDs)
- P&IDs that identify flow rates, duct / damper arrangements, major equipment configuration, and controls for the HVAC system
- Functional logic diagrams for the HVAC / HEPA system that present the controls and control logic for each of the safety functions

Demonstration of Safety for HVAC / HEPA System in License Application (cont.)

- System Description Document and Facility Description Document that provide description of the HVAC / HEPA system controls, equipment, and operations
- Nuclear radiation and contamination zone drawings for the facility served by the HVAC / HEPA system
- Mechanical equipment sizing and heating / cooling calculations

Example: Level of Detail for Electrical Single Line

Example: Level of Detail for ITS Power from Load Center

Example: Electrical Power Distribution Fault Tree

Example: Subtree for Electrical Power Distribution MCC Failure

Industry Data Used to Assess Fault Tree

Component/ Subsystem Type	Failure Mode	Failure Rate	Unit	Data Source	Reference	Basis for Probability	Probability of Basic Event in FT Model	Comment
Substation Transformer Liquid Filled, 3 phase 146 -242kV	Fails to operate	2.23 ×10 ⁻⁰⁶	h ⁻¹	IEEE Std 500 - 1991	p. 392	λt	8.92 ×10 ⁻⁰⁶	Used for 230kV-12.47kV Main Transformer A
Substation Transformer Liquid Filled, 3 phase 73 -145kV	Fails to operate	1.24 ×10 ⁻⁰⁶	h ⁻¹	IEEE Std 500 - 1991	p. 391	λt	4.96 × 10 ⁻⁰⁶	Used for 138kV-12.47kV Main Transformer B
Transmission Tie Transformer - Liquid Filled, 3 phase 2 - 30kV	Fails to operate	0.49 ×10 ⁻⁰⁶	h ⁻¹	IEEE Std 500 - 1991	p. 372	λt	1.96 × 10 ⁻⁰⁶	Used for 12.47kV - 4.16kV Transformer and 4.16kV - 480V Transformer
Power Cables	Fails to conduct power	4.84 ×10 ⁻⁰⁶	h ⁻¹	IEEE Std 500 - 1991	p. 747	λt	1.94 × 10 ⁻⁰⁵	Used for all Internal Power Lines
Bus Duct 480V, 3phase 100 -1600 Amps	Fails short circuited	0.48 ×10 ⁻⁰⁶	h ⁻¹	IEEE Std 500 - 1991	p. 797	λt	1.92 ×10 ⁻⁰⁶	Used for LCA, LCB, and all MCC Buses
Bare Buses, Outdoor Switchgear	Fails short circuited	0.26 ×10 ⁻⁰⁶	h ⁻¹	IEEE Std 500 - 1991	p. 804	λt	1.04 ×10 ⁻⁰⁶	Used for Main SWGR A and B, Emergency Switchgear A and B, and 125V DC Distribution Bus A and B
Metal Clad Drawout Circuit Breaker Above 600 Amps	Fails to close	0.30 ×10 ⁻⁰⁶	h ⁻¹	IEEE Std 500 - 1991	p. 146	λt	1.2 0×10 ⁻⁰⁶	Used for Medium Voltage Circuit Breakers
	Fails to shed							
	Fails to connect							
Molded Case	Fails to close	1.13 × 10 ⁻⁰⁶	h ⁻¹	IEEE	p. 124	λt	4.52 × 10 ⁻⁰⁶	Used for Low Voltage Circuit
Circuit Breaker	Fails to shed			Std 500 - 1991		William		Breaker
	Fails to connect							

Example: Surface Nuclear HVAC System (Illustrative only)

Fault Tree Model of the Surface Nuclear HVAC System

Fault Tree Model - Subtree for the HVAC Exhaust Fan Subsystem

Industry Data Used to Assess Fault Tree

Component/ Subsystem Type	Failure Mode	Failure Rate	Unit	Data Source	Basis for Probability	Probability of Basic Event in FT Model	Comment	
Pressure Sensor Transmitter	Fail to operate	3.43×10 ⁻⁰⁶	h ⁻¹	Denson et al. 1991 G, p. 2-122	λt	1.37×10 ⁻⁰⁵	Used for Differential Pressure Transmitter	
Pneumatic Differential Pressure Controller	Fail to operate	1.21×10 ⁻⁰⁶	h ⁻¹	IEEE Std 500-1984 (Reaffirmed 1991), p. 572	λt	4.84×10 ⁻⁰⁶	Used for Differential Pressure Controller	
Control Box	Fail to operate	3.56×10 ⁻⁰⁵	h ⁻¹	Denson et al. 1991 Mil, A, p. 2-43	λt	1.42×10 ⁻⁰⁴	Control Start/Stop Signal	
Electro-pneumatic Actuator	Fail to operate	0.28×10 ⁻⁰⁶	h ⁻¹	IEEE Std 500-1984 (Reaffirmed 1991), p. 498	λt	1.12×10 ⁻⁰⁶	Used to find failure probability for Slide Gate Damper	
Damper	Spurious operation	3.00×10 ⁻⁰⁷	h ⁻¹	Eide & Calley 1993, p. 1178	λt	1.20×10 ⁻⁰⁶		
Switch, general	Spurious operation	1.00×10 ⁻⁰⁶	h ⁻¹	Eide & Calley 1993, p.	λt	4.00×10 ⁻⁰⁶	Used for Start/ Stop Switch and Local Switch	
	Fails to open/close	1.00×10 ⁻⁰⁵	d ⁻¹	1179	q	1.00×10 ⁻⁰⁵		
Air Filter	Plugs	1.00×10 ⁻⁰⁵	h ⁻¹	Eide & Calley 1993, p. 1178	λt	4.00×10 ⁻⁰⁵	Used for Clogged HEPA Filter	
Heat Exchanger	Plugs	3.40×10 ⁻⁰⁶	h ⁻¹	CRWMS 1999, p. IV-2	λt	1.36×10 ⁻⁰⁵	Used for Clogged Air Handling Unit	
Speed Transducer	Fail to operate	1.86×10 ⁻⁰⁶	h ⁻¹	IEEE Std 500-1984 (Reaffirmed 1991), p. 596	λt	7.44×10 ⁻⁰⁶	Used for Speed sensors	
Transmitter	Fail to operate	1.22×10 ⁻⁰⁶	h ⁻¹	IEEE Std 500-1984 (Reaffirmed 1991), p. 686	λt	4.88×10 ⁻⁰⁶	Used for Speed transmitters	
Temperature Transducer	Spurious operation	1.73×10 ⁻⁰⁶	h ⁻¹	IEEE Std 500-1984 (Reaffirmed 1991), p. 527	λt	6.92×10 ⁻⁰⁶	Used for smoke detector	

Example: Nuclear Design Bases Reliability Requirements for Trolley

Important to Safety

Waste package trolley

Nuclear Safety Design Bases Requirement

- Upon a loss of power, this trolley shall be designed to stop, retain its load, and enter a locked mode; upon a restoration of power, this trolley shall stay in the locked mode until operator action is taken
- The trolley shall be designed with an inherent speed limit such that a collision at the trolley speed limit would not cause the trolley to drop its load

Information Sufficient to Perform a Reliability Assessment on Transfer Trolley

- Basis of design document that defines the safety design requirements and safety functions
- Mechanical equipment envelope drawings
- P&IDs that identify the principal controls on the trolley
- Functional control logic diagrams for the trolley that present the controls and control logic for each of the trolley safety functions

Information Sufficient to Perform a Reliability Assessment on Transfer Trolley (cont.)

- System Description Document and Facility Description Document
- Specification for the trolley
- Mechanical handling design reports
- Mechanical handling calculations that define the space envelope, load paths, load drops, and interactions with other systems, components, and structures

Transfer Trolley Design Information in License Application

- Basis of design document that defines the safety design requirements and safety functions
- Mechanical handling design reports
- Mechanical equipment envelope drawings
- P&IDs that identify the principal controls on the trolley
- Functional logic diagrams for the trolley that present the controls and control logic

Transfer Trolley Design Information in License Application (cont.)

- System Description Document and Facility Description Document
- Mechanical handling calculations that define the space envelope, load paths, load drops, and interactions with other systems, components, and structures
- Trolley specification

Transfer Trolley for Waste Package (Illustrative example only)

Fault Tree Analysis of Transfer Trolley

- Electrical and mechanical design details will be analyzed similar to the level of detail performed for the HVAC / HEPA system to assess the probability of system failure
- Industry reliability data will be used for subsystems and components
- Fault tree evaluation will be compared to nuclear safety basis reliability requirements
- Uncertainties considered
- Reliability evaluation based on design detail demonstrates compliance with the safety requirements

Summary

- The examples presented demonstrate how safety requirements are implemented in the design
- A sufficient level of design detail will be developed to support assessment that systems and components can achieve required reliability requirements
- The Preclosure Safety Analysis (PCSA) process, following an iterative approach and development of appropriate design detail, ensures compliance with safety requirements

