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ABSTRACT
The two-phase pressure drop due to the minor loss in

horizontal bubbly two-phase flow is studied. In particular,
geometric effects of a 90-degree elbow is of interest in the
present study. Experiments are performed in air-water two-
phase flow near atmospheric pressure condition in round glass
tube with inner diameter of 50.3mm. Along the test section,
90-degee elbow is installed at LID-206.6 from the two-phase
mixture inlet. Experiments are performed in 15 different flow
conditions and the local static pressures are measured at five
axial locations. Characteristic pressure drop due to the elbow
is clearly demonstrated in the profiles of local pressure data
along the axial direction. It is also found that the elbow effect
propagates and is more significant further downstream than
immediate downstream of the elbow. The overall two-phase
frictional pressure loss between LID=0 and 329 can be
predicted well with the Lockhart-Martinelli correlation with
parameter C=25, which is higher than the generally accepted
value of C=20. A correlation for the two-phase pressure loss,
including the minor loss due to the 90-degree elbow is

developed by employing the approach analogous to that of
Lockhart-Martinelli's. The newly developed correlation
suggests that the modified parameter, C=65 fits best with the
experimental data. In addition, the two-phase minor loss
factor for the 90-degree elbow is found to be k=0.58, 50%
higher than that recommended for single-phase flow.

INTRODUCTION
Two-phase pressure loss is one of the most fundamental

design parameters closely related to the performance of a two-
phase flow system. Because of this, there have been a number
of studies related to pressure drop in various two-phase flow
configurations"5 . In many practical engineering systems, two-
phase flow is transported through horizontal channels
interconnected via various flow restrictions, through which
significant changes in pressure occur as well as interfacial
structure and regime transition. Considering that the
horizontal flow configurations are frequently encountered in
both traditional light water reactor systems and advanced
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reactor systems, such as APWR, ABWR and ACR-700, lack
of experimental database and accurate models present a
serious shortcoming in thermal-hydraulic reactor system
analysis. In view of this, present study performs experimental
study to develop a predictive model for two-phase frictional
pressure loss that accounts for minor loss due to a 90-degree
elbow in horizontal bubbly two-phase flow conditions.

EXPERIMENTAL FACILITY
A simplified schematic diagram of the horizontal two-

phase test facility employed in the present study is shown in
Fig. 1. The test section is made with round Pyrex tubes with

inner diameter of 50.3 mm. Along the test section, a 90-degee
Elbow is installed at L/D=206.6 from the two-phase mixing
chamber (P0). The 90-degree elbow employed in the present
study has a radius of curvature of 76.2 mm with an (I/D).fw
of approximately 6. Detailed dimension of the elbow is shown
in the inset of Fig. 1. Along the test section, five pressure taps
are installed as denoted in the figure as P0 through P4. The
local pressure tap located right after the two-phase mixing
chamber is chosen as a reference point and denoted as P0 (or
L/D=0). Hence, the port P1 is located at L/D=197 from P0 (or
9.5 L/D's before the 90-degree Elbow), and the ports P2, P3
and P4 are located at LID=225, 250 and 329 from P0 (or 18.1,
43.9 and 122.7 LID's downstream of the elbow), respectively.
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Figure 1. A simplified schematic diagram of the 50.3 mm ID horizontal two-phase flow test facility with 90-degree Elbow
junction (shown in top view and not scaled).

EXPERIMENTAL RESULTS
Test Conditions

In total, 15 differentjg &jf combinations are investigated,
all in bubbly two-phase flow conditions. The test conditions
are labeled as Runs I through 15 and are summarized in Table
1. Since the local gas flow rate is a function of local pressure,
the gas flow rate for each test condition is defined by the flow
rate equivalent to that under the standard atmospheric pressure
condition. Hence, the local volumetric gas flow rate measured
at the flow meter with the back pressure, pbaj* is converted by

Similarly, the local volumetric gas flow rate is calculated by

Q.- ,P . : local gas flow rate
P. + PA.

(2)

where pl., is the local static pressure measured at the port of
interest. Then, the local gas superficial velocity is obtained by

J. = Q%1A : localjg (3)

Q = P. Pad Q wherepbk measured in acfin

Pm
(1)
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Table 1. Test conditions

jg [rm/s 5 l 0.116 0.124 0.127 0.312 0.320

jif [m/s] 3.762 4.051 4.335 3.765 4.047

jgam [mI/s] 0.329 0.644 0.659 0.673 0.985

if m/s] 4.338 3.772 4.048 4.338 3.764

jga,, [rm/si 1.004 1.031 1.336 1.372 1.406

jI[in/s] 4.049 4.313 3.760 4.051 4.332

*jgea is the superficial gas velocity equivalent to the standard atmospheric pressure condition.

In view of benchmarking the reliability of local pressure
measurement, the local superficial gas velocity, <jgjloc at each
measurement port is compared with that calculated based on
the a and ug acquired by the conductivity probe6 . They are
found to be in relatively good agreements within ± 10%
difference as shown in Fig. 2.

In Fig. 4, the local static pressure acquired at five
different axial positions along the entire test section is plotted
for all flow conditions. Each figure represents pressure
change at a fixed liquid flow rate with varying gas flow rates.
The pressure is measured at L/D=0, 197, 225, 250 and 329,
along which a 90-degree elbow is located at L/D=206.6.
Characteristic geometrical effect of the elbow on pressure loss
is clearly demonstrated in all flow conditions. It is interesting
to note, however, that there is little effect in the immediate
downstream of the elbow (L/D=225). The effect of elbow
becomes more pronounced in the region further downstream
of the elbow between LJD=225 and 250, and it is characterized
by a drastic loss in pressure in that region. As the flow
develops after L/D=250 into further downstream (L/D=329),
the effect of elbow diminishes, and the pressure drop slope
almost recovers to its initial slope before the elbow.
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Figure 2. Comparison of the local superficial gas velocity,
<jigsl> measured by flow meter with <cau> acquired by the

conductivity probe. ±10 % shown in dotted lines.
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Pressure Measurements

In Fig. 3, change in pressure per unit length, dp/dz over
the entire test section between L/D=0 and 329 is plotted with
respect to the various superficial gas velocity at three different
superficial liquid velocities. It is evident from the figure that
the pressure loss increases with increasing gas and liquid flow
rates.
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Figure 3. Pressure drop per unit length across the entire test
section between L/D=O and 329 for different superficial gas

and liquid velocities.
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PRESSURE LOSS CORRELATION FOR 90-DEGREE
ELBOW

In general, the two-phase frictional pressure drop is
correlated by the Lockhart and Martinelli correlation given by'

2 C I

X X2 (4)

where and X, are two-phase frictional multiplier and

Martinelli parameter, respectively. They are defined by

(5)
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In Eq. (5), superscripts f, g and 20 are the phase indices for
liquid, gas and two-phase mixture, respectively, and subscript
F indicates the frictional loss. Hence, (dp/), (dpI/ ) and

1/dzy,' d

P/ )20 in Eqs. (4) and (5) denote the frictional pressure drop

due to the single-phase liquid, single-phase gas and the two-
phase mixture, respectively. Here, the pressure drop due to
the k/h phase is given in terms of the friction factorf such that

(d =Z D Pk 2 where the subscript k =for g (6)

Here, the friction factor is obtained by the Blasius formulation
by:
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f = m Re- with Re =Pk k (7)
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where the subscript k =for g, and the coefficients m and n for
the round pipe flow are given by

m=64&n= 1

m = 0.079 & n =0.25

: for laminar flow

: for turbulent flow
(8)

Therefore, by finding appropriate values for the parameter
C in Eq. (4), one can estimate the two-phase frictional
pressure loss. The parameter C for the gas-liquid two-phase
flow in straight horizontal pipe without any flow obstructions
are given by Chishlom8 and summarized in Table 2.

In two-phase flow through a channel with flow restriction,
however, additional pressure loss stemming from the
geometric effect of the restriction needs to be considered and
Eq. (4) is no longer applicable. Therefore, present study
develops a simple correlation accounting for the minor loss by
employing similar approach as that of Lockhart and
Martinelli's

0. ... .... .. 50. .... .... .............. .. 00.. 150. ...... 200...-

0 so 100 150 200
1JD
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250 300 350

Figure 4. Change in local gage pressure measured along the
axial direction of the flow.
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Table 2. Suggested values for parameter C in Eq (4)8

Liquid - Gas C

Turbulent - Turbulent (tt) 20

Turbulent - Laminar (tl) 12

Laminar - Turbulent (It) 10

Laminar - Laminar (11) 5

First, it is noted that Eq. (4) originates from the
hypothesis that two-phase frictional pressure drop can be
expressed by the pressure drop caused by each phase and its
combination by:

X.2 = (Z)s,

2 (dl f
( dz) M

(13)

Eq. (12) is essentially same as Eq. (5) and represents the
contribution in the frictional pressure loss by the liquid-only
flow with respect to the gas-only flow without including the

minor loss. A new parameter XM given by Eq. (13), on the
other hand, reflects the contribution due to the flow restriction.
Furthermore, the ratio between the two parameters, X and XM
is defined for convenience as:

(d Z)2= (d,/)' + (d /) + C[(d _)' (d 11]
(9) 2 (dp}X2 = X =(_ z)d

XM (dp/)
I, dz),

(14)

Since Eq. (9) is written for the flow through pipes without any
minor loss, it does not account for the effect of flow restriction
in two-phase pressure drop. When there is a flow restriction
in a two-phase flow system, however, the total frictional
pressure drop should account for losses due to both the friction
and the restriction (or minor loss). Hence, the liquid-only
frictional pressure drop is given by

(d = = 4f k ) 1 with a flow restriction (10)
,dzF (D Li 2

where the second term in the parenthesis in the RHS of the
equation is due to the minor loss, and k and L are the minor
loss factor and characteristic length scale of the restriction
specific to the restriction geometry, respectively. Hence, Eq.
(10) can be broken into two terms such that:

Now, combining Eq. (9) with Eqs. (12) through (14), a
new Lockhart-Martinelli's correlation accounting for both the
frictional and minor losses is obtained as:

2 = I + + + | + (I + 2 ) (15)

where 2 is a new two-phase friction multiplier that accounts

for the minor loss. Therefore, by finding the parameter C that
fits best with experimental data, the two-phase frictional
pressure drop accounting for both friction and minor losses
can be estimated. Furthermore, the minor loss factor k can be
obtained for a given flow restriction geometry by noting that

(fdz), (/dz), ( dzJ)FM (I 1)
X=( k ) DL )R,--

(16)

w e d/z) and (ldz)F denote the contribution

frictional loss by the liquid phase and loss due to tl
restriction, respectively.

Assuming that the change in gas-phase frictional p
drop is negligibly small compared to that by the liquic
regardless of the existence of flow restriction, the ME
Parameter given by Eq. (5) is redefined in two ways as:

X2 ( ~/dZIFI
(dp)F - 'and
1. F dz ) '

ns from

ie flow

where (L/D) is specified by the restriction geometry, and

f is given by Eq. (7).

In the present study, Eqs. (15) and (16) are employed to
ressure obtain coefficients, C and k by plotting the logarithmic graph
I-phase of , versus X. The results are presented in Figs. 5(a) and
trtinelli

5(b). In Fig. 5(a), pressure drop across the entire test section
(L/D=0 to 329) is correlated by the conventional Lockhart-
Martinelli's correlation given by Eq. (4). In Fig. 5(b),
pressure drop across the elbow (LtD=197 to 250) is correlated

(12) by the newly developed correlation given by Eq. (15). In this

plot, both C and k (or X ) are varied to find the best fit to the

experimental data. In determining the parameters, it is noted
that the parameter C essentially determines the slope of the

asymptotic profile of In (0PM ), and the k-factor determines the

level of its asymptotic value. Therefore, the optimal value for
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C is found first, then the k-factor is varied to find the best fit to
the data.

In calculating the Martinelli parameter X, in the present
analysis, correlation for turbulent flow is employed for the
friction factor f, regardless of the gas flow rate whether it is
laminar or turbulent. Namely, Eq. (7) with m=0.079 and
n=0.25 is used to calculatef. This is because, in bubbly two-
phase flow, the transport of dispersed gas phase is determined
essentially by the liquid phase. Since all of the liquid flow
rates in the present test conditions indicate that the flow is
turbulent, turbulent flow correlation is employed to calculate
the friction factors for both gas and liquid phases.
Furthermore, the present model is correlated based on the
pressure drop between the ports PI and P3 (instead of PI and
P2). PI is located 9.5 diameter upstream of the elbow, and P2
and P3 are located 18.ID and 43.9D downstream of the elbow,
respectively. This is essentially because it is found from the

experiment that the most significant pressure drop occurs
across P1 and P3, instead of the PI and P2 in all of the test
conditions as shown in Fig. 4. Therefore, the present analysis
is based on (L/D)EmboW=53.5

Fig. 5(a) shows that the pressure drop across the entire
test section can be predicted well by the conventional
Lockhart-Martinelli's correlation with C=25, which is slightly
higher than the recommended value of C=20 developed for
turbulent-turbulent gas-liquid two-phase flow through straight
flow channel without flow restriction. In Fig. 5(b), the newly
developed correlation with modified parameter, C=65 and
k=0.58 is plotted with the experimental data. The present
model predicts the data quite well with an average percent
difference of only 2%. The two-phase minor loss factor,
k=0.58 acquired by the correlation is approximately 50%
higher than k=0.39 recommended for single-phase flow9.
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Figure 5. The two-phase frictional multiplier 0.fm with respect to the Martinelli parameter X for the bubbly air-water two-phase

flow in horizontal tube of 50.3 mm ID with 90-degree Elbow. (a) Prediction made by the conventional Lockhart-Martinelli's
correlation for pressure drop across the entire test section (b) Prediction made by the new correlation for pressure drop across the
elbow, between P1 and P3 (or IJD=197 and 250). Error bar shown: +5%.

SUMMARY AND DISCUSSION
In summary, following discussions can be made based on

the present results:

(1) The geometric effect of 90-degree elbow is well
demonstrated in the experimental data. Additional
pressure loss due to the minor loss across the elbow is
clearly characterized by steeper slope in the plot of
pressure loss versus development length. It is also shown

that the pressure drop increases with increasing gas and
liquid flow rates.

(2) The effect of elbow on pressure drop is found to be more
pronounced further downstream of the elbow than
immediate downstream of the elbow.

(3) The pressure drop across the entire test section matches
well with the existing Lockhart-Martinelli's correlation
with C=25. The higher value of C=25 compared to the
conventional value of C=20 is due to the remaining effect
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of elbow. It is evident from Fig. 4 that the slope in
pressure drop (i.e., dp/dz) between L/D=250 and 329 in
all flow conditions is not fully recovered to their initial
slope before the elbow, between L/D=0 and 197. It
implies that the flow is yet to be fully recovered from the
elbow effect even after 122.7 diameters downstream of
the elbow.

(4) The newly developed correlation, given by Eq. (15)
matches well with the experimental data when the minor
loss factor k=0.58 and C=65 are employed. The
significantly higher value of C=65 compared to the
conventional value of C=20 indicates geometric effect of
the elbow on two-phase frictional pressure loss. The
minor loss factor, k=0.58 is approximately 50% higher
than the conventional k-factor, k=0.39 recommended for
the single-phase flow through the regular 90-degree
(flanged) elbow. This signifies the additional pressure
loss due to the two-phase flow around the bend. The
present correlation matches very well with the data with
an average percent difference of only 2%.

(5) The current model needs to be verified by additional
experimental data. The present model is developed based
on the pressure measurement across ports P1 and P3,
instead of ports P1 and P2 because the most significant
pressure loss occurs across P1 and P3. P3 is located far
downstream of the Elbow ((L/D)ElbOw=43.9) and may not
reflect the actual pressure drop at the elbow.
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