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ABSTRACT

The Nuclear Regulatory Commission has developed an integrated Total-system Performance Assessment
(TPA) code with technical assistance from the Center for Nuclear Waste Regulatory Analyses to evaluate
the U.S. Department of Energy Total System Performance Assessment for the proposed high-level
radioactive waste repository at Yucca Mountain, Nevada, USA. The TPA code development relied on
significant technical contributions and time commitments from a multi-disciplinary team and
encompassed a host of considerations ranging from diverse user needs to computer resource
requirements. Because the TPA code was developed primarily by scientists and engineers, code
development strategies used by computer programmers in the software industry were not fully
implemented. Instead, code development strategies evolved during TPA code development. The focus of
this paper is on these strategies and the key considerations in planning, developing, and testing this
scientific code. The paper presents a brief description of the processes and events modeled in the code
and outlines the code structure, which was developed based on user and developer considerations and the
implementation of quality assurance procedures considered vital to the acceptability of the code for
regulatory review. In presenting the TPA code development process, this paper provides not only insights
into the functionality of the TPA code, but also emphasizes good practices that can be used and pitfalls to
avoid in developing a large, multidisciplinary scientific code.

INTRODUCTION

To prepare for reviewing the safety case to be made in the license application by the U.S.
Department of Energy (DOE) for a proposed repository at Yucca Mountain (YM), the Nuclear
Regulatory Commission (NRC) has developed the capability to conduct independent confirmatory
performance assessments (PAs) using the Total-system Performance Assessment (TPA) code (1, 2). As
the licensee, the DOE is responsible for conducting a detailed and complete Total System Performance
Assessment (TSPA) of the YM repository system adequate to present a safety case in the license
application. Rather than duplicating the DOE TSPA, the NRC will use its PA capability, of which the
TPA code is a major part, to focus its review of the license application and to analyze or review technical
aspects critical to making licensing decisions. The NRC will use the TPA code to check the DOE TSPA
results, investigate variants of DOE models, assess repository design changes, and evaluate alternative
conceptual models. The TPA code is designed to provide the NRC a versatile tool for exploring a wide
range of conceptualizations for the behavior of the YM system by performing calculations that can be
viewed either as (i) estimates to check the reasonableness of the DOE TSPA results or (ii) independent
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evaluations of aspects of the engineered and natural systems that are highly uncertain, or have the
greatest effect on repository performance.

The NRC code development objective is to enable the staff to perform calculations sufficient to
implement policy requirements in the public interest in a manner that is professionally competent and
financially accountable. The development of a scientific multidisciplinary code, such as the TPA code,
can be highly resource intensive and time consuming if issues and steps associated with the development
are not clearly defined a priori. It is difficult to define all details of a complex and large code
development effort a priori, however, because of the very large number of models and parameters and,
generally, the short time frame available for developing the code. Currently, very little appears to have
been published formally in performance assessment literature about the key aspects of a large, integrated
scientific code development effort that involves several different professional disciplines undertaking
many interacting tasks. Hence, the description of the TPA code development activity® presented in this
paper may serve as a source of information to developers of other large, integrated scientific computer
codes who may learn from these experiences and practices and thereby avoid some of the problems
encountered.

This paper provides a brief description of the TPA code components, the code structure, user and
developer design considerations, and a review of the code features. Throughout the text, the
multidisciplinary aspects of the TPA code development and important features embedded in the code are
highlighted.

TOTAL-SYSTEM PERFORMANCE ASSESSMENT CODE COMPONENTS

In developing the TPA code, the first level of effort was to divide and isolate the total system at a
conceptual level into components, or subsystems, so that various parts of the large, complex problem
could be addressed by staff with specific areas of expertise. The components of the YM system were
defined and grouped into six categories following extensive consensus-building meetings between the
NRC and Center for Nuclear Waste Regulatory Analyses (CNWRA) staff. The six components included
(i) infiltration, (ii) near-field environment, (iii) waste package (WP) failure and radionuclide releases
from the engineered barrier system (EBS), (iv) aqueous radionuclide transport through the unsaturated
zone (UZ) and saturated zone (SZ), (v) airborne transport from extrusive volcanic events, and
(vi) exposure scenario and reference biosphere. Each component accounted for a process or group of
processes.

An overview of these six YM system components is provided in figure 1. As shown in figure 1,
precipitation moves throughout the land surface and infiltrates the UZ above the repository, which is
divided into subareas for modeling purposes. The infiltration enters the near field of the repository and
contacts WPs. WPs, which contain spent nuclear fuel (SNF) and other high-level wastes stored in the
repository, may fail by a number of mechanisms including corrosion and the occurrence of seismic,
faulting, or igneous disruptive events. After a WP fails, water contacts, dissolves, and transports the SNF
in the hydrogeologic units of the UZ and SZ to the discharge point. The discharge point corresponds to
the location of the interface between the geosphere and the biosphere where individuals may be exposed
to SNF in groundwater. Additionally, individuals may be exposed to radionuclides released from the
repository in extrusive igneous disruptive events (not shown in figure 1) that fail WPs and incorporate
crushed SNF into magma and eject fine particles that become airborne.
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The challenge in modeling these components involved developing mathematical representations
of the complex environment at YM. The mathematical model needed to embody complexities associated
with (i) long-term behavior of the EBS components, (ii) coupling between the engineered and the natural
system components, (iii) large uncertainties in the characterization of geologic components, (iv) flow and
transport prediction for highly fractured heterogeneous porous media, and (v) evolution of processes
including climate, geology, chemistry, and biosphere over long time scales (~10°~10° yr).

TOTAL-SYSTEM PERFORMANCE ASSESSMENT CODE STRUCTURE

The six components of the YM repository site provided the overall framework for developing
and implementing modules in the TPA code. Detailed models of these components, which incorporated
the aspects of the YM system complexities described in the previous section, were considered to be
beyond the scope of the NRC effort. Therefore, models implemented in the TPA code relied on
abstractions that allowed calculations to be performed within a reasonable computation time. Model
abstractions are simplified mathematical representations of the underlying detailed conceptual model.
The TPA model abstractions were verified against the detailed conceptual models and provided an
efficient means of analyzing the components of the YM system. The abstractions, including the six
components of the YM system and the associated TPA modules, are described in the TPA code user’s

guide (1).

In addition to modules performing scientific functions, the TPA code consists of five other
components: (i) a driver or main program, (ii) an input data reader, (iii) data files, (iv) standalone codes,
and (v) a utility module. At the beginning of a TPA simulation, the driver performs initializations,
executes the input data reader, which stores all data specified in the primary input file, and controls the
sequence of module execution with a subroutine call that has explicit input and output expectations. The
input data reader processes data for values that the user is not generally interested in modifying.
Standalone codes represent models similar to the subroutines except that they can be executed
independently of the driver or the main program of the TPA code. The final component of the TPA code
is the utility module. The utility module contains algorithms that are available to all modules, eliminating
repeated algorithms. Additional discussions of these components are presented subsequently in this

paper.

One of the objectives in the TPA code development was to capture the important aspects of the
YM system within the code structure. Additionally, factors such as data analysis requirements and
flexibility to accommodate alternative models that will allow the NRC to evaluate the DOE TSPA
calculations were critical. The next section describes these factors, which are subdivided into user and
developer considerations, that affected both the TPA code development and the module implementation.

TOTAL-SYSTEM PERFORMANCE ASSESSMENT CODE DEVELOPMENT
CONSIDERATIONS AND IMPLEMENTATION

Prior to the TPA code development, the design requirements were established based on
experience gained from developing and executing previous versions of the TPA code and after
consensus-building meetings between the code developers and the users. The most significant of these
developer and user considerations implemented in the TPA code are highlighted in this section. In
general, the user considerations relate to the interaction of the users with the TPA code, and the
developer considerations are applicable to programming and code development.
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User Considerations

Distinct from developer concerns, user considerations involve execution of the TPA code,
accessing subsystem- and system-level results, and providing a perspective about the meaning of the
results by supplying an understanding of the flow of information in the TPA code. The user
considerations in the TPA code include maintaining transparency and traceability, accounting for the
available computer resources of the users, and accommodating multiple users. These considerations are
described in the following subsections.

Transparency and Traceability

A code is traceable if there is a complete record through an unbroken chain linking the results
unambiguously with the model assumptions and the data used in the computer code (5). A code is
transparent if the user can gain a satisfactorily clear picture of the model implementation, the results, and
an explanation for the behavior of the results. Transparency and traceability® in the TPA code and the
interrelationships between the model abstractions are also provided through internal documentation in the
source code and information contained in the TPA code user’s guide (1). Transparency and traceability
attributes are also evident in the example screen output presented in figure 2. The screen message in this
figure provides information that the user can review during the TPA simulation to relate final results with
key intermediate results. The specific contents of the screen message shown in figure 2 are explained in
more detail subsequently in this paper.

Computer Resources

Until recently, detailed modeling of complex systems was limited by the computer resources.
Complex systems were often divided into subsystems and simplifying assumptions utilized. However,
with recent advances in computer technology, not only is it practical to develop and run codes that place
greater demands on computer resources, but user’s expectations for computer code capabilities and
access have increased: More computer processor speed, memory, and storage are accessible. With these
resources, workstations and desktop computers can complete computationally demanding simulations in
a reasonable amount of time. The implication for the TPA code development was that the user demanded
incorporation of greater process details into the system-level simulation. For example, instead of relying
on analytical or semi-analytical solutions that typically use simplifying assumptions, the increased
memory and processor speed allow the implementation of numerical models with finer spatial and
temporal discretization. Increasing the spatial and temporal discretization, although requiring more
memory and processor time, can provide a more accurate numerical solution with fewer simplifying
assumptions. The TPA code developers, therefore, had to strike a delicate balance between the user
expectations and the available computer resources, including memory, disk space, and simulation-time
needs, to ensure the TPA code requirements remained within the limits of these resources for trouble-free
code execution.

Multiple Users

One of the challenges in developing the TPA code involved incorporating features needed by
multiple code users. During planning for the TPA code development, it was recognized that TPA code
users had different objectives and data analysis requirements, and each user had a different degree of
familiarity with computer systems. Five general categories of users were identified: (i) analysts familiar
with performance assessment who evaluate the system-level performance; (ii) process-level specialists
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interested in the behavior of repository subsystems; (iii) managers who perform project management and
programmatic functions; (iv) reviewers who are experts in performance assessment at the subsystem or
system level; and (v) general users, including the public. Thus, while the code had to fulfill the
detail-oriented needs of the specialists, it also had to fulfill the summary-level and easy-to-interpret needs
of the nonexperts. Fulfilling such diverse needs resulted in the use of nearly 70 files to present outputs (at
subsystem and system level) and required incorporation of numerous user-group-specific features into the
TPA code. As an example, process-level specialists were interested in evaluating alternate conceptual
models. To provide this capability, code developers implemented provisions for specialists to add such
conceptual models through new modules or standalone codes with minimal modifications to the TPA
source code. Also, output files were created to provide in-depth information to the process-level
specialists. However, for general users, the TPA code utilized summary-level files and screen messages,
such as the example shown in figure 2, to provide a transparent and traceable indication of the progress
of the TPA simulation through summary-level presentation of important input parameters and
intermediate results.

Developer Considerations

The responsibility of code developers was to correctly implement, test, and document
modifications to the TPA code and to complete these tasks on schedule. To assist code developers in
accomplishing these tasks, there were several important considerations in the code development
procedures, including using a modular design to accommodate new and alternate models, accommodating
multiple developers, maintaining consistency in calculations, following quality assurance (QA)
procedures, and performing code validation. The following sections describe these considerations.

Modular Structure and Implementation

The TPA code was anticipated to be frequently modified when the repository design changed,
new data became available, model abstractions were revised, regulatory compliance criteria were
adopted, or output requirements were updated. Thus, an important developer design consideration for the
TPA code was to include the capability to readily modify the code. This capability was incorporated into
the TPA code by implementing a modular structure. The employment of a modular structure, a standard
in software engineering practice (6), permits incremental changes to the code (as new information is
available) without disrupting the entire code because most modifications and any subsequent testing are
local. Modularity is an important aspect of the TPA code even though it has the disadvantage of
producing many more code components. Because of the modular structure, the TPA code can provide the
option of replacing a module with an alternative model and comparing results. Aside from developer-
related advantages, TPA users and project managers benefitted from the modular structure. A modular
structure permits TPA users to focus on individual modules representing subsystems and to evaluate the
sensitivity of the results to input data. Additionally, in the development and maintenance activities
associated with the TPA code, the modular design assisted the project manager with assigning tasks to
developers and testers, monitoring progress, and meeting the code delivery schedule by allowing parallel
code development.

Modules were implemented in the TPA code in the form of a subroutine call, standalone code, or
table look-up. Because there are various levels of abstraction implemented in the TPA code, selecting the
appropriate module implementation or combination of implementations depended on the level of detail in
the model abstraction and was related to the source and nature of data, the computational needs in the
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module, and requirements for off-line analyses. For example, the standalone code implementation was
used for detailed calculations that needed to be conducted both inside and outside the TPA code, and also
completed in a reasonable amount of simulation time. If the process-level specialist did not need to
perform calculations external to the TPA code, subroutines were implemented to decrease computation
time. The table look-up implementation utilized values computed in off-line analyses that required a long
simulation time or when tabular data was available.

Multiple Contributors to Code Development and Testing

The conceptual models and model abstractions for the six components described in the TPA code
components section encompass many technical disciplines including hydrology, material science,
seismology, volcanology, geology, climatology, chemistry, geochemistry, health physics, and nuclear
engineering. The TPA code developers either directly incorporated models from these different fields
into the TPA code or worked together with process-level specialists to write a TPA code module.
Although not the most suitable tool for modularization and data access, the FORTRAN programming
language was chosen for the TPA code to accommodate the expertise and experience of the majority of
these multidisciplinary contributors and to provide continuity with past versions of the TPA code. To the
extent possible, all multidisciplinary contributors followed one designated programming style (7) to
ensure consistency in source code documentation and input and output data format. For example,
although multiple individuals contributed to the TPA code, the implementation was consistent; all TPA
output files were consistent in terms of unique identification of file names, date and time of creation, and
the code name and version number.

In addition to the multidisciplinary scope of the TPA code, other factors made it necessary to
employ special procedures during code development. For example, to efficiently develop the TPA code,
meet the schedule requirements, and maintain version control, a project management approach was
adopted that employed parallel development using code developers and multidisciplinary contributors.
This project management approach allowed many individuals to concurrently develop different modules.
In the concurrent code development, module "stubs" were utilized on a temporary basis. Each stub
performed the same input and output as the final version of the module and typically performed a simple
data manipulation. In this way, code developers were able to concurrently write a module, replace the
stub with the new module, and conduct tests.

Many individuals were involved not only in developing source code, but also in testing activities.
These activities, combined with the tight development schedule, accentuated the importance of having
effective version control. Version control was maintained with Software Configuration and Control
System (SCCS) (8) code and other control practices including designation of a code custodian. Although
the version control used during TPA code development was not foolproof, it minimized problems
associated with updating the source code. Testing occurred throughout the code development cycle with
the code developers and multidisciplinary contributors receiving, modifying, and returning the source
code to the designated code custodian by following pre-established version control procedures. After a
code developer completed the modifications and the source code was tested and ready for incorporation
into the controlled version of the code, the developer copied the new file into a designated check in
subdirectory and notified the code custodian. Each code developer maintained a check in subdirectory,
together with a checkout subdirectory. The checkout subdirectory contained files copied from the
controlled version that were being modified. In this way, the designated code custodian was aware of
which files were being modified and avoided conflicts arising from one file being simultaneously
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changed by more than one individual, which was a potential problem considering the large-scale and the
fast-paced development schedule. The designated custodian of the TPA code was responsible for
maintaining documentation of the changes in SCCS, testing the changes, documenting differences in
results, verifying with the code developer and multidisciplinary contributors that the modifications were
implemented correctly, and updating the controlled version of the TPA code.

Consistency in Calculations

During TPA code development, considerable emphasis was placed on consistency not only in the
programming style and module implementations but also in the algorithms employed to perform the
calculations. There are numerous examples in the TPA code of the same type of calculation performed in
more than one module. Using similar algorithms in different modules that perform the same calculation is
inefficient, and there is a higher probably of introducing errors. For these reasons, it was important to
maintain consistency in TPA calculations. To ensure consistency, the TPA code developers centralized
algorithms by placing them in a utility module that could be accessed by any of the TPA modules. This
required significant coordination with scientists involved in code development. The utility module
conducts many generic manipulations including adding, scaling, or copying arrays, transposing matrices,
and numerous computations that were specific to the TPA code.

Using utility modules has the added advantage of efficient testing. If an algorithm was contained
in many different modules, the algorithm would need to be tested in each module. However, only a single
test was required when the algorithm was a part of the utility module. Additionally, for those algorithms
employing a numerical solver, the utility module helped to ensure that the same convergence criteria
were used for all calculations.

Quality Assurance Procedures

The TPA code developers followed the formal QA procedure developed at the CNWRA ¢ which
is based on NUREG/BR-0167 (9). Some of the high-level procedural requirements included preparing a
software requirement description (SRD), a software development plan (SDP), and a software change
report (SCR), and validating the computer code.

The SRD that was prepared after the pre-code-development interactions with process-level
experts, documented a general description of the software project, including the technical bases for
software development. The technical bases for model abstractions and parameters were developed
through numerous interactions between the NRC and CNWRA technical staff. The SRD also provided a
vehicle to define software development, changes, and functions, and computational approach. The
intended computer platforms and operating systems were also identified in the SRD. Additionally, the
mathematical models, control flow, data flow, control logic, user interfaces, and data structure were
identified to the extent possible in the SRD.

After completing the SRD, an SDP was prepared that described project plans for conducting the
TPA code development effort. The SDP identified new development, modification, maintenance, and the
associated activities pertaining to the TPA code software and documentation. The SDP also provided a
tool for monitoring software development and presented plans for software configuration management
and risk management, including discussions of the standards and testing applied to the software, the
necessary resources, and the proposed schedule.
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Each change to the TPA code was documented in an SCR that described the specific
modifications and provided supporting information. To improve traceability, SCRs were assigned unique
control numbers, which were documented within the code. For each change to the TPA code, acceptance
testing was performed both at the subsystem and system level. The test cases and test procedures were
documented and maintained as a QA record.

The code validation part of the software development activities (i.e., comparison with analytical
solutions and/or results generated using numerical tools), which ensures that module abstractions are
implemented correctly, was divided into functional testing and “black box” testing. In functional testing,
the correct implementation of a specific algorithm or an entire module was evaluated by exercising that
portion of the code either as a standalone code, with an program prepared by the tester, or in a TPA code
simulation. Black box testing generally involved specifying input values and analyzing the TPA output
results for reasonableness and consistency with expected results. As with functional testing, black box
testing evaluated results from a single module or from the overall system.

OTHER CODE FEATURES AND PRACTICES

In previous sections of this paper, good programming practices in the TPA code development,
the significant user and developer design considerations, and the methods employed to satisfy those
considerations were emphasized. These considerations and features include traceability and transparency,
computer resources, needs of multiple users, multiple contributors, module implementation, consistency
in calculations, QA procedures, and code validation. In addition to these considerations and features,
there were other features that improved users’ confidence in the TPA code. These features are discussed
in this section and include the treatment of data files, checking the input data for errors, utilizing screen
messages, and other useful design and development practices.

To foster transparency, one of the goals of the TPA code developers was to remove hardwired
data from the source code and place the data in a primary input file and static data files. The developers
carefully distinguished between data that most likely would be used and modified by general users
(primary input file) and data that would most likely remain unchanged or modified by process-level
experts (static data files). Additionally, some data were identified as not being modified by any users.
Because of issues related to schedule, an evolving understanding of the users needs, modifications to the
model abstractions, and the large size of the TPA code, some data that might be important to users
remains in the source code, and this goal has not been fully achieved. However, in each revision of the
TPA code, developers have continued to identify data that might be important to users and move the data
out of the source code and into data files.

A useful feature in the TPA code is first- and second-level error checking of the input data. These
error checks facilitate debugging and correcting errors by identifying problems during code execution.
First-level checks are performed when the TPA code read from data files and ensures the data format is
correct; second-level checks are conducted within modules to verify that parameter values were within
acceptable ranges. When an error is found, the TPA code execution terminates and a message is written
to the screen providing a description of the error.

Screen messages are a transparent way for code developers and users to monitor the progress of a
run, perform a preliminary analysis of intermediate results prior to completion of the run, and check
whether the run is correctly defined in the primary TPA input file. From the beginning of code
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development to the current version of the TPA code, screen message contents have been continuously
evolving to provide the most helpful information to code developers and users. Developers and users
utilize the screen message as a starting point for high-level debugging to ensure that the code is
computing as expected and view some of the important input parameters and results. The screen message
from the beginning of a TPA simulation is shown in figure 2 and includes information on important
global parameters, paths showing the location of the static data files and standalone codes, disk-space
requirements corresponding to selected user options, the largest six radionuclide release rates and time of
the release from the EBS, UZ, and SZ in the first subarea and first realization, and the initial results from
the second subarea.

Other design features and code development practices are helpful to TPA code developers and
users. These features and practices include (i) assigning descriptive names with units in the primary TPA
input file to make parameter identification easier (e.g., WellPumpingRate AtReceptorGroup20km-
[gal/day] clearly identified this parameter), (i1) utilizing an auxiliary program that automatically
generated source code documentation, (iii) providing a user’s guide documenting the code capabilities
and features (1), and (iv) developing pre- and post-processors that helped the users analyze system- and
subsystem-level results.

It is important to acknowledge that the practices presented in this paper evolved during code
development. In the TPA code development effort, as in other large projects, there were unforeseen
issues and problems. The TPA code developers responded to these issues and problems by implementing
new practices. For example, at the initial stages of the TPA code project, code development was
performed by a single individual. After four months, however, there were more than five individuals
involved in the project. At this time, there were instances when more than one individual modified the
same code and considerable time was expended by code developers merging the different versions of the
code. In response to this problem, the version control procedures, which were described previously in
this paper, were developed and implemented. Another issue identified early in the code development was
that the technical contributors needed to use a programming style consistent with the TPA code format.
There were instances-when the code developers spent considerable time modifying and testing the source
code supplied by technical contributors to ensure consistency. In response, code developers emphasized
to these contributors the required format for the source code and the importance of providing source code
as a module that could be exchanged with the existing code.

SUMMARY AND CONCLUSIONS

This paper identified several of the good code development practices and features incorporated
into the TPA code that will allow the NRC to thoroughly and expeditiously review the adequacy of the
DOE safety case for the proposed repository at YM. The practices summarized in this paper evolved
during the TPA code development process and became better defined as code development progressed. In
this regard, developers of scientific codes will benefit from adopting the strategy presented in this paper.

The flexibility of the TPA code modular design allows the NRC to investigate the DOE model
assumptions; alternate conceptual models; and design, site characterization, and compliance
demonstration factors. The advantage of the modular approach was that the TPA code modules may be
modified and implemented in a timely manner to model the anticipated design changes proposed by the
DOE. Additionally, the flexibility of the TPA code development to employ an efficient module
implementation was illustrated and includes using subroutines, standalone codes, and table look-ups.
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Accommodations were made in the TPA code development process to allow multiple individuals to
contribute to the multidisciplinary scope of the TPA code in developing, implementing, and testing
modules. Throughout TPA code development activities, remaining within the computer resources of the
anticipated TPA code users was a consideration. The needs of users to evaluate subsystem- and system-
level TPA output were satisfied by providing documentation and a transparent and traceable flow of
results. Utility modules supply the TPA modules with useful algorithms and remove redundant
subroutines and functions. With these features, the NRC possesses a tool capable of investigating the
DOE safety case for the proposed HLW repository at YM. Moreover, the experiences and practices
utilized in developing the TPA code and the description of the TPA code presented in this paper should
be useful to TPA code users, as well as the developers of other integrated total-system applications such
as the disposal of low- and medium-level waste and other programs.

ACKNOWLEDGMENTS

The authors wish to thank B. Sagar and W. Patrick for their technical and programmatic reviews of the
paper. The process described in this paper involved the participation of many staff members at the NRC
and the CNWRA for its implementation; too numerous to recognize individually. Their contributions are
gratefully acknowledged. This work was performed by the CNWRA on behalf of the NRC Office of
Nuclear Material Safety and Safeguards Division of Waste Management under Contract No.
NRC-02-97-009. This paper does not necessarily reflect the views or regulatory position of the NRC.

REFERENCES

1. S. MOHANTY and T.J. McCARTIN (coordinators), “Total-system Performance Assessment
(TPA) Version 3.2 Code: Module Description and User’s Guide,” Center for Nuclear Waste
Regulatory Analyses (1998).

2. S. MOHANTY, T.J. McCARTIN, R. CODELL, R. RICE, R. JANETZKE, M. JARZEMBA,
G. WITTMEYER, G. CRAGNOLINO, S. STOTHOFF, P. LAPLANTE, S. HSIUNG, G. RICE,
T. AHN, J. WELDY, R. FEDORS, C. McKENNEY, B. HILL, C. CONNOR, J. TRAPP,
R. ABU-EID, R. GREEN, B. LESLIE, K. GRUSS, J.A. STAMATAKOS, A. IBRAHIM,
N. COLEMAN, J. WINTERLE, A. GHOSH, W. MURPHY, “A Total-system Performance
Assessment Code for the Safety Assessment of the Proposed High-Level Nuclear Waste
Repository at Yucca Mountain,” Eos Transactions/Supplement 80(46): pp. F313-F314 (1999).

3. R.B. CODELL, N. EISENBERG, D. FEHRINGER, W. FORD, T. MARGULIES,
T.J. McCARTIN, J. PARK, AND J. RANDALL, “Initial Demonstration of the NRC’s Capability
to Conduct a Performance Assessment for a High-Level Waste Repository,” NUREG-1327,
Nuclear Regulatory Commission (1992).

4. R.G. WESCOTT, M.P. LEE, N.A. EISENBERG, T.J. McCARTIN, AND R.G. BACA, eds.,
“NRC Iterative Performance Assessment Phase 2,” NUREG-1464, Nuclear Regulatory
Commission (1995).

5. Nuclear Regulatory Commission, “Issue Resolution Status Report—Key Technical Issue: Total

System Performance Assessment and Integration,” Revision 2 (1999).

10



Y3

6. B. LISKOV and J. GUTTAG, “Abstraction and Specification in Program Development,” MIT
Press (1986).

7. D.M. COOK, N.H. MARSHALL, E.S. MARWIL, S.D. MATHEWS, and G.A. MORTENSON,
“FORTRAN Coding Guidelines,” EGG-CATT-8898, EG & G Idaho, Inc. (1990).

8. Sun Microsystems, Inc. “Code Manager User’s Guide,” Revision A (1992).
9. Nuclear Regulatory Commission, “Software Quality Assurance Program and Guidelines,”
NUREG/BR-0167 (1993).

10. J.R. WELDY, G.W. WITTMEYER, and D.R. TURNER, “Building Confidence in Quantitative
Safety Assessment for Deep Geologic Disposal of HLW: External Peer Review of the NRC
Total-system Performance Assessment Code,” To be presented at the WM2000 conference (same
volume) (2000).

FOOTNOTES

* This succeeds two previous development efforts reported in Codell, et al. (3) and Wescott,
et al. (4).

® The level of transparency and traceability in the Total-system Performance Assessment code
was verified by an external review group and is documented in Weldy, et al. (10).

¢ Center for Nuclear Waste Regulatory Analyses, “Technical Operating Procedure (TOP)-018”
(1999).

11



oy

[\

Land Precipitation

222

Pumping
X Well

Unsaturated Zone ——
(Above Repository)

Unsaturated Zone —+—»
(Below Repository)

Saturated Zone —f-

y v 4

Discharge Point

Y

Figure 1. Overview of the Total-system Performance Assessment conceptualization of the Yucca Mountain repository system
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exec: Welcome to TPA Version 3.3 PVM capable
Job started: Fri Jan 21 09:23:04 2000

Specified Global Parameters:

10000.0 (yr)
10000.0 (yr)
1
7
0 (yes=1, no=0)
0 (yes=1l, no=0)
1 (yes=1, no=0)
20.0 (km)

Compliance Period

Maximum Simulation Time
Number Of Realizations
Number Of Subareas
Volcanism scenario
Faulting scenario

Seismic scenario

Distance to Receptor Group

**>>> CAUTION: CHECKING OF NUCLIDES AND CHAINS IS DISABLED <<<*¥*
**>>> You may not be using the standard chains specified <K

**>>> in the invent module. <<<**
**>>> (see "CheckNuclidesAndChains(yes=1,no=0)" in tpa.inp)<<<**
The specified path for data = $TPA_DATA/
The specified path for codes = $TPA_TEST/

**To modify global parameters or the path, stop code execution using control-C**

exec: calling uzflow
exec: calling nfenv
exec: calling ebsfail
*** No Corrosion WP Failure ***
exec: calling seismo

exec: failed WPs from INITIAL event = 16 at time = 0.0 yr
**x fajled WPs: 16 out of 1663 ***
exec: calling ebsrel
Highest release rates from Sub Area 1
Tc99 1.6936E-02 [Ci/yr/SA] at 2.198E+03 yr
Ni59 3.5837E-03 [Ci/yr/SA] at 3.076E+03 yr
Cl4 1.8156E-03 [Ci/yr/SA] at 3.076E+03 yr
Csl35 6.5995E-04 [Ci/yr/SA] at 4.191E+03 yr
Se79 6.4718E-04 [Ci/yr/SA] at 2.198E+03 yr
I129 5.1619E-05 [Ci/yr/SA] at 2.251E+03 yr

exec: calling uzft

Highest release rates from UZ
Tc99 1.6791E-02 {Ci/yr/SA] at 2.251E+03 yr
Ni59 3.5555E-03 [Ci/yr/SA] at 3.384E+03 yr
Csl35 6.5933E-04 [Ci/yr/SA] at 4.191E+03 yr
Se79 6.4038E-04 [Ci/yr/SA] at 2.251E+03 yr
1129 5.1098E-05 ([Ci/yr/SA} at 2.307E+03 yr
C1l36 2.0831E~-05 [Ci/yr/SA]l at 2.251E+03 yr

exec: calling szft
Highest release rates from SZ
I129 4.3106E-05 [Ci/yr/SA} at B8.897E+03 yr

Cl36 1.7282E-05 [Ci/yr/SA] at 8.101E+03 yr
The remaining 18 nuclide(s) have zero release
subarea 2 of 7 realization 1 of 1

exec: calling uzflow
exec: calling nfenv
exec: calling ebsfail

Figure 2. Example of a screen message from the Total-system Performance Assessment code.
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